
Sparse Kernel Orthonormalized PLS for feature
extraction in large data sets

Anonymous Author(s)
Affiliation
Address

City, State/Province, Postal Code, Country
email

Abstract

In this paper we are presenting a novel multivariate analysis method for large
scale problems. Our scheme is based on a novel kernel orthonormalized partial
least squares (PLS) variant for feature extraction, imposing sparsity constrains
in the solution to improve scalability. The algorithm is tested on a benchmark
of UCI data sets, and on the analysis of integrated short-time music features for
genre prediction. The upshot is that the method has strong expressive power even
with rather few features, is clearly outperforming the ordinary kernel PLS, and
therefore is an appealing method for feature extraction of labelled data.

1 Introduction

Partial Least Squares (PLS) is in its general form a family of techniques for analyzing relations
between data sets by latent variables. It is a basic assumption that the information is overrepresented
in the data sets, and that these therefore can be reduced in dimensionality by the latent variables.
Exactly how these are found and how the data is projected varies within the approach, but they are
often maximizing the covariance of two projected expressions. Some of the appealing properties of
PLS which has made it popular are that it can handle data sets with more dimensions than samples
and massive collinearity between the variables.

The basic PLS algorithm is considering two data setsX andY, where samples are arranged in rows,
and is finding latent variables, which accounts for the covarianceXT Y between the data sets. This
is done either as an iterative procedure or as an eigenvalue problem. Given the latent variables, the
data setsX andY are then transformed in a process which subtracts the information contained in
the latent variables. This process, which is often referred to asdeflation, can be done in a number of
ways and these different approaches are defining the many variants of PLS.

Among the many variants of PLS, the one that has become particularly popular is the algorithm
presented in [17] and studied in further details in [3]. The algorithm described in these, will in this
paper be referred to as PLS2, and is based on the following two assumptions: First that the latent
variables ofX are good predictors ofY and second that there is a linear relation between the latent
variables ofX and ofY. This linear relation is implying a certain deflation scheme, where the
latent variable ofX is used to deflate also theY data set. Several other variants of PLS exists such
as “PLS Mode A” [16], Orthonormalized PLS [18] and PLS-SB [11]; see [1] for a discussion of
the early history of PLS, [15] for a more recent and technical description, and [9] and for a very
well-written contemporary overview.

No matter how refined the various early developments of PLS become, they are still linear projec-
tions. Therefore, in those cases where the variables of the input and output spaces are not linearly
related, the challenge of the data is still poorly handled. To counter this, different non-linear ver-
sions of PLS have been developed and these can be categorized on two fundamentally different

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13755253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

approaches: 1) The modified PLS2 variants in which the linear relation between the latent variables
are substituted by a non-linear relation; and 2) the kernel variants in which the PLS algorithm has
been reformulated to fit a kernel approach. In the second approach, the input data is mapped by a
non-linear function into a high-dimensional space in which ordinary linear PLS is performed on the
transformed data. A central property of this kernel approach is, as always, the exploitation of the
so-called kernel trick, i.e., that only the inner products in the transformed space are necessary and
not the explicit non-linear mapping. It was Rosipal and Trejo who first presented a non-linear kernel
variant of PLS in [7]. In that paper, the kernel matrix and theY matrix are updated the same way,
and the PLS variant is thus more in line with the PLS2 variant than to the traditional algorithm from
1975 (PLS Mode A). The non-linear kernel PLS by Rosipal and Trejo is in this paper referred to as
simply KPLS2, although many details could advocate more detailed nomenclator.

The appealing property of kernel algorithms in general is that one can obtain the flexibility of non-
linear expressions while still solving only linear equations. The downside is that for a data set ofl
samples, the kernel matrices to be handled arel × l, which for even moderate number of samples,
quickly become a problem with respect to both memory and computing time. This problem is
present not only in the training phase, but also when predicting the output given some large training
data set: evaluating thousands of kernels for every new input vector is, in most applications, not
acceptable. Furthermore, there is, for these so-called dense solutions in multivariate analysis, also
the problem of overfitting. To counter the impractical dense solutions in kernel PLS, a few solutions
have been proposed: In [2], the feature mapping directly is approximated following the Nystrom
method and in [6] the underlying cost function is modified to impose sparsity.

In this paper we introduce a novel kernel PLS variant called Reduced Kernel Orthonormalized Par-
tial Least Squares (rKOPLS) for large scale feature extraction. It consists of two parts: A novel
orthonormalized variant of kernel PLS called KOPLS, and a sparse approximation for large scale
data sets. Compared to related approaches like [8], the KOPLS is transforming only the input data,
and is keeping them orthonormal at two stages: the images in feature space and the projections in
feature space. The sparse approximation is along the lines of [4], that is, we are representing the
reduced kernel matrix as an outer product of a reduced and a full feature mapping, and thus keeping
more information than changing the cost function or doing simple subsampling.

Since rKOPLS is specially designed to handle large data sets, our experimental work will focus on
such data sets. Paying extra attention to the prediction of music genre, and application that typically
involves large amount of high dimensional data. The abilities of our algorithm to discover non-linear
relations between input and output data will be illustrated, and the relevance of the derived features
compared to those provided by an existing kernel PLS method.

The paper is structured as follows: In Section 2 the novel kernel orthonormalized PLS variant is
introduced, and in Section 3 the sparse approximation is presented. Section 4 shows numerical
results on UCI benchmark data sets, and on the above mentioned music application. In the last
section, the main results are summarized and discussed.

2 Kernel Orthonormalized Partial Least Squares

Consider we are given a set of pairs{φ(xi),yi}l
i=1, with xi ∈ <N , yi ∈ <M , andφ(x) : <N → F

a function that maps the input data into some Reproducing Kernel Hilbert Space (RKHS), usually
referred to as feature space, of very large or even infinite dimension. Let us also introduce the
matricesΦ = [φ(x1), . . . , φ(xl)]T andY = [y1, . . . ,yl]T , and denote by

Φ′ = ΦU and Y′ = YV

two matrices, each one containingnp projections of the original input and output data,U andV
being the projection matrices of sizesdim(F) × np andM × np, respectively. The objective of
(kernel) Multivariate Analysis (MVA) algorithms is to search for projection matricesU andV such
that the projected input and output data are maximally aligned. For instance, Kernel Canonical Cor-
relation Analysis (KCCA) finds the projections that maximize the correlation between the projected
data, while Kernel Partial Least Squares (KPLS2) provides the directions for maximum covariance
[13]:

KPLS : maximize: Tr{UT Φ̃
T
ỸU}

subject to: UT U = I
(1)

whereΦ̃ andỸ are centered versions ofΦ andY, respectively,I is the identity matrix of sizenp,
and theT superscript denotes matrix or vector transposition. In this paper, we propose a kernel
extension of a different MVA method, namely, the Orthonormalized Partial Least Squares [18]. Our
proposed kernel variant, called KOPLS, can be stated in the kernel framework as

KOPLS : maximize: Tr{UT Φ̃
T
ỸỸT Φ̃U}

subject to: UT Φ̃
T
Φ̃U = I

(2)

Note that, unlike KCCA or KPLS, KOPLS only extracts projections of the input data. It is known
that Orthonormalized PLS is optimal for performing linear regression on the input data when a
bottleneck is imposed for data dimensionality reduction [10]. Similarly, KOPLS provides optimal
projections for linear multi-regression in feature space. In other words, the solution to (2) also
minimizes the sum of squares of the residuals of the approximation of the label matrix:

‖Ỹ − Φ̃
′
B̂‖2F , B̂ = (Φ̃

′T Φ̃
′
)−1Φ̃

′T Ỹ (3)

where‖ · ‖F denotes the Frobenius norm of a matrix andB̂ is the optimal regression matrix. Sim-
ilarly to other MVA methods, KOPLS is not only useful for multi-regression problems, but it can
also be used as a very powerful kernel feature extractor in supervised problems, including also the
multi-label case, whenY is used to encode class membership information. The optimality condi-
tion suggests that the features obtained by KOPLS will be more relevant than those provided by
other MVA methods, in the sense that they will allow similar or better accuracy rates using fewer
projections, a conjecture that we will investigate in the experiments section of the paper.

Coming back to the KOPLS optimization problem, when projecting data into an infinite dimensional
space, we need to use the Representer Theorem that states that each of the projection vectors inU
can be expressed as a linear combination of the training data. Then, introducingU = Φ̃T A into
(2), whereA = [α1, . . . , αnp] andαi is anl-length column vector containing the coefficients for
theith projection vector, the maximization problem can be reformulated as:

maximize: Tr{AT KxKyKxA}
subject to: AT KxKxA = I (4)

where we have defined the centered kernel matricesKx = Φ̃Φ̃
T

andKy = ỸỸT , such that only
inner products inF are involved1. Applying ordinary linear algebra to (4), it can be shown that the
columns ofA are given by the solutions to the following generalized eigenvalue problem:

KxKyKxα = λKxKxα (5)

There are a number of ways to solve the above problem. We propose a procedure consisting of
iteratively calculating the best projection vector, and then deflating the involved matrices. In short,
the optimization procedure at stepi consists of the following two differentiated stages:

1. Find the largest generalized eigenvalue of (5), and its corresponding generalized eigenvec-
tor: {λi, αi}. Normalizeαi so that the conditionαiKxKxαi = 1 is satisfied.

2. Deflate thel × l matrixKxKyKx according to:

KxKyKx ← KxKyKx − λiKxKxαiα
T
i KxKx

The motivation for this deflation strategy can be found in [13] in the discussion of gener-
alized eigenvalue problems. Some intuition can be obtained if we observe its equivalence
with

Ky ← Ky − λiKxαiα
T
i Kx

which accounts to removing from the label matrixY the best approximation based on the
projections computed at stepi, i.e., Kxαi. It can be shown that this deflation scheme
decreases by 1 the rank ofKxKyKx at each step. Since the rank of the original matrix
is at mostrank(Y), this is the maximum number of projections that can be derived when
using KOPLS.

This iterative algorithm, which is very similar in nature to the iterative algorithms used for other
MVA approaches, has the advantage that, at every iteration, the achieved solution is optimal with
respect to the current number of projections.

1Centering of data in feature space can easily be done from the original kernel matrix. Details on this
process are given in most text books describing kernel methods, e.g. [13, 12]

3 Compact approximation of the KOPLS solution

The kernel formulation of the OPLS algorithm we have just presented suffers some drawbacks. In
particular, as most other kernel methods, KOPLS requires the computation and storage of a kernel
matrix of sizel × l, which limits the maximum size of the datasets where the algorithm can be
applied. In addition to this, algebraic procedures to solve the generalized eigenvalue problem (5)
normally require the inversion of matrixKxKx which is usually rank deficient. Finally, the matrix
A will in general be dense rather than sparse, a fact which implies that when new data needs to be
projected, it will be necessary to compute the kernels between the new data and all the samples in
the training data set.

Although it is possible to think of different solutions for each of the above issues, our proposal here
is to impose sparsity in the projection vectors representation, i.e., we will use the approximation
U = ΦT

RB, whereΦR is a subset of the training data containing onlyR patterns(R < l) and
B = [β1, · · · , βnp

] contains the parameters of the compact model. Although more sophisticated
strategies can be followed in order to select the training data to be incorporated into the basisΦR,
we will rely on random selection, very much in the line of the sparse greedy approximation proposed
in [4] to reduce the computational burden of Support Vector Machines (SVMs).

ReplacingU in (2) by its approximation, we get an alternative maximization problem that constitutes
the basis for a KOPLS algorithm with reduced complexity (rKOPLS):

rKOPLS : maximize: Tr{BT KRKyKT
RB}

subject to: BT KRKT
RB = I (6)

where we have definedKR = ΦRΦ̃
T

, which is a reduced kernel matrix of sizeR× l. Note that, to
keep the algorithm as simple as possible, we decided not to center the patterns in the basisΦR. Our
simulation results suggest that centeringΦR does not result in improved performance. Similarly
to the standard KOPLS algorithm, the projections for the rKOPLS algorithm can be obtained by
solving

KRKyKT
Rβ = λKRKT

Rβ (7)

The iterative two-stage procedure described at the end of the previous section can still be used by
simple replacement of the following matrices and variables:

KOPLS rKOPLS
αi βi

KxKx KRKT
R

KxKyKx KRKyKT
R

To conclude the presentation of the rKOPLS algorithm, let us summarize some of its more relevant
properties, and how it solves the different limitations of the standard KOPLS formulation:

• Unlike KOPLS, the solution provided by rKOPLS is enforced to be sparse, so that new
data is projected with onlyR kernel evaluations per pattern (in contrast tol evaluations for
KOPLS). This is a very desirable property, specially when dealing with large data sets.

• Training rKOPLS projections only requires the computation of a reduced kernel matrixKR

of sizeR × l. Nevertheless, note that the approach we have followed is very different to
subsampling, since rKOPLS is still using all training data in the MVA objective function.

• The rKOPLS algorithm only needs matricesKRKT
R andKRKyKT

R. It is easy to show
that both matrices can be calculated without explicitly computingKR, so that memory
requirements go down toO(R2) andO(RM), respectively. Again, this is a very convenient
property when dealing with large scale problems.

• ParameterR acts as a sort of regularizer, makingKRKT
R full rank.

Table 1 compares the complexity of KOPLS and rKOPLS, as well as that of the KPLS2 algorithm.
Note that KPLS2 does not admit a compact formulation as the one we have used for the new method,
since the full kernel matrix is still needed for the deflation step. The main inconvenience of rKOPLS
in relation to KPLS2 it that it requires the inversion of a matrix of sizeR×R. However, this normally

KOPLS rKOPLS KPLS2
Number of nodes l R l

Size of Kernel Matrix l2 R · l l2

Storage requirements O(l2) O(R2) O(l2)
Maximumnp ≤ min{r(Φ), r(Y)} ≤ min{R, r(Φ), r(Y)} ≤ r(Φ)

Table 1: Summary of the most relevant characteristics of the proposed KOPLS and rKOPLS algo-
rithms. Complexity for KPLS2 is also included for comparison purposes. We denote the rank of a
matrix with r(·).

Train/Test # Clases dim
ν-SVM (%)

(linear)
vehicle 500 / 346 4 18 66.18

segmentation 1310 / 1000 7 18 91.7
optdigits 3823 / 1797 10 64 96.33
satellite 4435 / 2000 6 36 83.25
pendigits 7494 / 3498 10 16 94.77

letter 10000 / 10000 26 16 79.81

Table 2: UCI benchmark datasets. Accuracy error rates for a linearν-SVM are also provided.

pays off in terms of reduction of computational time and storage requirements. In addition to this,
our extensive simulation work shows that the projections provided by rKOPLS are generally more
relevant than those of KPLS2.

4 Experiments

In this section, we will illustrate the ability of rKOPLS to discover relevant projections of the data.
To do this, we compare the discriminative power of the features extracted by rKOPLS and KPLS2 in
several multi-class classification problems. In particular, we include experiments on a benchmark of
problems taken from the repository at the University of California Irvine (UCI)2, and on a musical
genre classification problem. This latter task is a good example of an application where rKOPLS can
be specially useful, given the fact that the extraction of features from the raw audio data normally
results in very large data sets of high dimensional data.

4.1 UCI Benchmark Data Sets

We start by analyzing the performance of our method in six standard UCI multi-class classification
problems. Table 2 summarizes the main properties of the problems that constitute our benchmark.
The last four problems can be considered very large problems, specially for MVA algorithms which
in general are not sparse and require the computation of the kernels between any two points in the
training set. Our first set of experiments consists on comparing the discriminative performance of the
features calculated by rKOPLS and KPLS2. For classification, we use one of the simplest possible
models: we compute the pseudoinverse of the projected training data to calculateB̂ (see Eq. (3)),
and then classify according tõΦ

′
B̂ using a “winner-takes-all” (w.t.a.) activation function. For the

kernel MVA algorithms we used a Gaussian kernel

k(xi,xj) = exp
(−‖xi − xj‖22/2σ2

)

using 10-fold cross-validation (10-CV) on the training set to estimateσ. To obtain some reference
accuracy rates, we also trained aν-SVM with Gaussian kernel, using the LIBSVM implementation3

and 10-CV was carried out for both the kernel width andν.

Accuracy error rates for rKOPLS and different values ofR are displayed in the first rows and first
columns of Table 3. Comparing these results with SVM (under the rbf-SVM column), we can

2http://www.ics.uci.edu/ ∼mlearn/MLRepository.html
3Software available athttp://www.csie.ntu.edu.tw/ ∼cjlin/libsvm

rKOPLS - pseudo+w.t.a. KPLS2 - pseudo + w.t.a

R = 250 R = 500 R = 1000 l′ =
√

250 l l′ =
√

500 l l′ =
√

1000 l l′ = l

vehicle 80.4± 1.2 79.9 — 81.3± 1.3 80.5 — 80.5

segmentation 95.7± 0.4 95.5± 0.3 — 93.9± 0.5 94.2± 0.5 — 95.1

optdigits 97.4± 0.2 97.7± 0.1 98.2± 0.2 96.5± 0.3 97± 0.3 97± 0.2 97.6

satellite 89.8± 0.2 90.6± 0.3 91± 0.2 89.7± 0.4 90.3± 0.6 91.1± 0.3 91.8
pendigits 97.6± 0.1 98.2± 0.1 98.1± 0.2 97.4± 0.2 97.6± 0.1 97.7± 0.2 96.9

letter 84.8± 0.3 90± 0.2 92.9± 0.4 84± 0.6 86± 0.6 86.2± 0.4 —

rKOPLS - SVM KPLS2 - SVM rbf-SVM

vehicle 81.2± 1 80.3± 1.5 — 81.2± 1.1 80.6 — 83

segmentation 95.1± 2 95.4± 0.4 — 95.6± 0.5 94.8± 0.3 — 95.2

optdigits 97.3± 0.2 97.6± 0.1 98.2± 0.2 96.4± 0.2 96.9± 0.2 96.9± 0.3 97.2

satellite 89.6± 0.6 90.5± 0.4 91± 0.2 89.7± 0.5 90.4± 0.6 90.8± 0.5 91.9

pendigits 97.6± 0.2 98.2± 0.1 98.1± 0.2 96.9± 0.1 97.1± 0.2 97.3± 0.2 98.1

letter 88.8± 1.5 92.1± 0.2 93.9± 0.3 85.8± 0.5 85.9± 1.1 87.7± 1.2 96.2

Table 3: Classification performance in a benchmark of UCI datasets. Accuracy rates (%) and stan-
dard deviation of the estimation are given for 10 different runs of rKOPLS and KPLS2, both when
using the pseudoinverse of the projected data together with the “winner-takes-all” activation func-
tion (first rows), and when using aν-SVM linear classifier (last rows). The results achieved by an
SVM with linear classifier are also provided in the bottom right corner.

conclude that the rKOPLS approach is very close in performance or better than SVM in four out
of the six problems. A clearly worse performance is observed in the smallest data set (vehicle) due
to overfitting. Forletter, we can see that, even forR = 1000, accuracy rates are far from those of
SVM. The reason for this is that SVM is using 6226 support vectors, so that a very dense architecture
seems to be necessary for this particular problem.

To make a fair comparison with the KPLS2 method, the training dataset was subsampled, selecting
at randoml′ samples, withl′ being the first integer larger than or equal to

√
R× l. In this way,

both rKOPLS and KPLS2 need the same number of kernel evaluations. Note that, even in this
case, KPLS2 results in an architecture withl′ nodes (l′ > R), so that projections of data are more
expensive than for the respective rKOPLS. In any case, we must point out that subsampling was only
considered for training the projections, but all training data was used to compute the pseudoinverse
of the projected training data. Results without subsampling are also provided in Table 3 under the
l′ = l column except for theletterdata set which we were unable to process due to massive memory
problems.

As a first comment, we have to point out that all the results for KPLS2 were obtained using 100
projections, which were necessary to guarantee the convergence of the method. In contrast to this,
the maximum number of projections that the rKOPLS can provide equals the rank of the label matrix,
i.e., the number of classes of each problem minus 1. In spite of using a much smaller number of
projections, our algorithm performed significantly better than KPLS2 with subsampling in the five
largest problems.

As a final set of experiments, we have replaced the classification step by a linearν-SVM. The results,
which are displayed in the bottom part of Table 3, are in general similar to those obtained with the
pseudoinverse approach, both for rKOPLS and KPLS2. However, we can see that the linear SVM is
able to better exploit the projections provided by the MVA methods invehicleandletter, precisely
the two problems where previous results were less satisfactory.

Based on the above set of experiments, we can conclude that rKOPLS provides more discriminative
features than KPLS2. In addition to this, these projections are more “informative”, in the sense that
we can obtain a better recognition accuracy using a smaller number of projections. An additional
advantage of rKOPLS in relation to KPLS2 is that it provides architectures with less nodes.

4.2 Feature Extraction for Music Genre Classification

In this subsection we consider the problem of predicting the genre of a song, using the audio data
only – a task which since the seminal paper [14] has been subject of much interest. The data set we

100 250 500 750
20

25

30

35

40

45

R , l’

A
cc

ur
ac

y
ra

te
s

KPLS2, AR
rKOPLS, AR
KPLS2, song
rKOPLS, song

0 10 20 30 40 50
0

10

20

30

40

Number of projections

A
cc

ur
ac

y
ra

te
s

KPLS2, AR
rKOPLS, AR
KPLS2, song
rKOPLS, song

Random

(a) (b)

Figure 1: Genre classification performance of KPLS2 and rKOPLS.

analyze has previously been investigated in [5], and consists of 1317 snippets each of 30 seconds
distributed evenly among 11 music genres: alternative, country, easy listening, electronica, jazz,
latin, pop&dance, rap&hip-hop, r&b, reggae and rock. The music snippets are MP3 (MPEG1-
layer3) encoded music with a bitrate of 128 kbps or higher, down sampled to 22050 Hz, and they
are processed following the method in [5]: MFCC features are extracted from overlapping frames
of the song, using a window size of 20 ms. Then, to capture temporal correlation, a Multivariate
Autoregressive (AR) model is adjusted for every 1.2 seconds of the song, and finally the parameters
of the AR model are stacked into a 135 length feature vector for every second.

For training and testing the system we have split the data set into two subsets with 817 and 500 songs,
respectively. After processing the audio data, we have 57388 and 36556 135-dimensional vectors
in the training and test partitions, an amount which for most kernel MVA methods is prohibitively
large. For the rKOPLS, however, the compact representation is enabling usage of the entire training
data.

In Figure 1 the results are shown. Note that, in this case, comparisons between rKOPLS and KPLS2
are for a fixed architecture complexity(R = l′), since the most significant computational burden
for the training of the system is in the projection of the data. Since every song consists of about
seventy AR vectors, we can measure the classification accuracy in two different ways: 1) On the
level of individual AR vectors or 2) by majority voting among the AR vectors of a given song. The
results shown in Figure 1 are very clear: Compared to KPLS2, the rKOPLS is not only consistently
performing better as seen in Figure 1(a), but is also doing so with much fewer projections. The strong
results are very pronounced in Figure 1(b), where forR = 750, rKOPLS is outperforming ordinary
KPLS, and is doing so with only six projections compared to fifty projections of the KPLS2. This
demonstrates that the features extracted by rKOPLS holds much more information relevant to the
genre classification task than KPLS2.

5 Conclusions

In this paper we have presented a novel kernel PLS algorithm, that we call reduced kernel orthonor-
malized PLS (rKOPLS). Compared to similar approaches, rKOPLS is making the data in feature
space orthonormal, and imposing sparsity on the solution to ensure competitive performance on
large data sets.

Our method has been tested on a benchmark of UCI data sets, and we have found that the results
were competitive in comparison to those of rbf-SVM, and superior to those of ordinary kernel PLS
method. Furthermore, when applied to a music genre classification task, rKOPLS performed very
well even with only a few features, keeping also the complexity of the algorithm under control.

Because of the nature of music data, in which both the number of dimensions and samples are very
large, we believe that feature extraction methods such as rKOPLS are crucial to music information
retrieval tasks, and hope that other researchers in the community will be able to benefit from our
results.

Acknowledgments

This work has been partially supported

References

[1] Paul Geladi. Notes on the history and nature of partial least squares (PLS) modelling.Journal
of Chemometrics, 2:231–246, 1988.

[2] L. Hoegaerts, J. A. K. Suykens, J. Vanderwalle, and B. De Moor. Primal space sparse ker-
nel partial least squares regression for large problems. InProceedings of International Joint
Conference on Neural Networks (IJCNN), 2004.

[3] Agnar Hoskuldsson. PLS regression methods.Journal of Chemometrics, 2:211–228, 1988.

[4] Yuh-Jye Lee and O. L. Mangasarian. RSVM: reduced support vector machines. InData
Mining Institute Technical Report 00-07, July 2000. CD Proceedings of the SIAM International
Conference on Data Mining, Chicago, April 5-7, 2001,, 2001.

[5] Anders Meng, Peter Ahrendt, Jan Larsen, and Lars Kai Hansen. Temporal feature integration
for music genre classification.IEEE Trans. on Signal Processing, Submitted, 2006.

[6] Michinari Momma and Kristin Bennett. Sparse kernel partial least squares regression. In
Proceedings of Conference on learning theory (COLT), 2003.

[7] Roman Rosipal and Leonard J. Trejo. Kernel partial least squares regression in reproducing
kernel hilbert space.Journal of Machine Learning Research, 2:97–123, 2001.

[8] Roman Rosipal, Leonard J. Trejo, and Bryan Matthews. Kernel pls-svc for linear and nonlinear
classifiction. InProceedings of Internation Conference on Machine Learning (ICML), 2003.

[9] Kramer N. Rosipal R. Overview and recent advances in partial least squares. InSubspace,
Latent Structure and Feature Selection Techniques, 2006.

[10] Sam Roweis and Carlos Brody. Linear heteroencoders. Technical report, Gatsby Computa-
tional Neuroscience Unit, 1999.

[11] Paul D. Sampson, Ann P. Streissguth, Helen M. Barr, and Fred L. Bookstein. Neurobehav-
ioral effetcs of prenatal alcohol: Part II. Partial Least Squares analysis.Neurotoxicology and
teratology, 11:477–491, 1989.

[12] Bernhard Schoelkopf and Alexander Smola.Learning with kernels. MIT Press, 2002.

[13] John Shawe-Taylor and Nello Christiani.Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

[14] George Tzanetakis and Perry Cook. Music genre classification of audio signals.IEEE Trans-
actions on Speech and Audio Processing, 10(5):293–302, July 2002.

[15] Jacob A. Wegelin. A survey of partial least squares (PLS) methods, with emphasis on the
two-block case. Technical report, University of Washington, 2000.

[16] Herman Wold. Path models with latent variables: the NIPALS approach. InQuatitative so-
ciology: International perspectives on mathematical and statistical Model Building, pages
307–357. Academic Press, 1975.

[17] S. Wold, C. Albano, W. J. Dunn, U. Edlund, K. Esbensen, P. Geladi, S. Hellberg, E. Johans-
son, W. Lindberg, and M. Sjostrom.Chemometrics, Mathematics and Statistics in Chemistry,
chapter Multivariate Data Analysis in Chemistry, page 17. Reidel Publishing Company, 1984.

[18] K. Worsley, J. Poline, K. Friston, and A. Evans. Characterizing the response of pet and fMRI
data using multivariate linear models (MLM).NeuroImage, 6:305– 319, 1998.

