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1 Introduction

This report conducts an investigation of the convergence properties of the EM
algorithm used for linear mixture models. Since the linear mixture model is a
rather general approach, the analysis is relevant for a wide range of models which
to some degree are subsets of each other: Independent Component Analysis
(ICA), probabilistic PCA, Factor Analysis (FA), Independent Factor Analysis
(IFA) and Mean Field ICA.

1.1 Timeline on ICA Using EM

In order to present an overview of the results of using the EM algorithm for ICA
and related models, is here a short list of selected set of papers each described
in a few words.

• 1994 Belouchrani et al. [3]: Seemingly the first paper to suggest the EM
algorithm for an ICA problem. They estimate the mixing matrix and the
noise covariance. The sources here are assumed discrete QAM4 symbols
and the integrals are possible to complete due to the discreteness of the
signals.

• 1997 Moulines et al. [8]: Introduction of the EM algorithm for noisy
convolutive mixtures with a focus on the instantaneous case. They use
MoG as priors to avoid the intractable integrals in the posterior average.

• 1999 Bermond et al. [4]: Update of a square mixing matrix is Taylor
expanded in the noise variance. Doing this, they are able to demonstrate
several points: (i) In the low noise limit, EM is freezing in the sense that
An+1 = An. (ii) To first order in the noise variance, there is no correction
for noise compared to Bell and Sejnowski (BS) [2]. That is, the noise
model is not making a better estimate than BS when σ4 is negligible.

• 1999 Attias [1]: A noisy instantaneous mixture model is solved with an
EM algorithm using MoG priors. Compared to previous publications he
is considering also source reconstruction and situation of having many
sources.

• 2000 Lappalainen [7]: In the square case compensating for the slowdown
proved earlier by a Taylor expansion in the noise variance, by removal
of the ”source parts” of the update. They also demonstrates that ”Fast
ICA” is in fact a special case of this speedup technique.

• 2001 Welling et al. [11]: A so-called constrained EM, where A is a scaling
of a rotation, A = αR. Priors are MoG.

• 2002 Højen-Sørensen et al. [6]: As Moulines an EM algorithm for ICA,
but here the major contribution is the use of mean field theory for the
posterior means which makes other priors than MoG possible.
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• 2002 Deligne et al. [5]: A convolutive ICA using EM. Problems with
convergence has been addressed through special initial conditions. MoG
Priors.

• 2003 Salakhudinov et al. [10]: The adaptive over-relaxed approach to the
problem of slow convergence. Not specific for the ICA using EM, but
indeed applicable.

• 2005 Petersen et al. [9]: Small statistical Investigation for MF-ICA. In
this they demonstrate the benefit of using the Adaptive EM and a BFGS
method.

1.2 The contents of this report

The above list illustrates that many aspects have already been investigated.
In the context of this report, especially the paper of Bermond et. al. [4] is
central since it has presented many of the central results also to be presented
in this report. The reason is that this report is documenting an independent
rediscovery of the results. The contribution of this report is

• A detailed derivation.

• A different investigation of the overdetermined case.

• Insight into why Adaptive Overrelaxed EM works.

The structure of the report is as follows: In Sec 2 is described the observation
model and the basics of the EM algorithm. Sec 3 is a derivation of the sad-
dle point approximation, while Sec 4 is analyzing the EM algorithm using the
saddle point approximation. Finally the conclusions are gathered in sec 5 and
computational details are in the appendix.

2 Model and Estimation

2.1 Observation Model

The models under consideration are the linear mixture models, i.e. models of
the type

xt = Ast + ηt, t = 1, ..., N

where the sources are distributed according to some prior and the noise is zero-
mean gaussian, ηt ∼ N (0,Σ). The observation vectors xt can be collected
into a larger matrix X as columns, such that the dimensions of X is M × N .
Correspondingly we can collect all the source vectors into a larger source matrix
S and write the mixing process including all time steps as X = AS + Γ, where
Γ is the matrix of the noise. In this more compact notation, X conveniently
denotes the entire data set and we only use the vector notation when ever it is
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needed to denote a single observation vector. From the assumption of gaussian
noise we get a gaussian observation model

p(X|S) =
1

√
|2πΣ|N

exp
[
− 1

2
Tr[(X−AS)T Σ−1(X−AS)]

]

in which the product over all time steps has been expressed as a trace in the
exponential function.

2.2 Maximum Likelihood using the EM algorithm

In estimating the parameters A and Σ, a maximum likelihood using the EM
algorithm is used. By rewriting p(X) using the hidden variables S it becomes
apparent that we at least in principle have everything we need, knowing the
observation model and the source priors. The parameters are estimated as the
optimal points of the log likelihood

0 =
∂ ln p(X)

∂A
0 =

∂ ln p(X)
∂Σ

These equations have the solution

A = X〈ST 〉〈SST 〉−1 Σ = 〈(X−AS)(X−AS)T 〉/m

where 〈·〉 denotes average with respect to the source posterior p(S|X). In cases
where Σ is further constrained in some way, it is straight forward to compute
the corresponding expression. If we assume that we can compute the first and
second moment of the sources with resepct to the source posterior, we now have
the two basic steps which is put in to the EM algorithm:

E-step: 〈S〉 =
∫

Sp(S|X)dS 〈SST 〉 =
∫

SST p(S|X)dS

M-step: A = X〈ST 〉〈SST 〉−1 Σ = 〈(X−AS)(X−AS)T 〉/m

Starting from some reasonable values, we iteratively update our estimate of the
source posterior moments and the model parameters, and we are guaranteed in
each step an increase of the likelihood.

The source posterior moments are in general not easy to compute. If the
source priors are gaussians (FA), mixture of gaussians (IFA) or some other well-
chosen family of distribution, then we can compute the moments exactly, but
otherwise we must resort to approximations as in MF-ICA, which in many cases
are sufficiently accurate to produce good results.

3 Saddle Point Approximation

In this section, as a general approach to the difficulty of computing the source
posterior moments, we make an approximation of the integral involved in the
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posterior and obtain an expansion of the moments in orders of the noise. In
this way we are able to study some general properties of the algorithm in the
low noise limit.

For simplicity of the equations, we assume for the rest of the paper that the
noise is isotropic, Σ = σ2I. In our experience this does not change any of the
results obtained. Furthermore, since the time steps are assumed independent
and the log likelihood therefore a sum over over time, we need in this section
only to consider one single time step in the saddle point approximation.

3.1 Approximation of an Integral

The technique applied here is the so-called saddle-point approximation of the
integral, which is well-known in statistical physics and in large parts of applied
mathematics. To lowest order, it is basically an approximation of the integral
I =

∫
exp[−f(s)]ds which for very large values of f(s) and if f(s) is uni-modal,

becomes dominated by its minimum f(s0). The point s0 in which the function
has its minimum is called the saddle-point, and the approximation is to lowest
order I ∼= exp[−f(s0)]. The application of the technique in this paper is slightly
more complicated since we have more dimensions, are expanding to higher order,
and considering the low noise limit, but the basic idea is the same. Inspired by
the equation ln p(x) = ln

∫
eln p(x,s)ds, we define

g(s,h) = −σ2
(
ln p(x|s) + ln p(s) + hT s

)

Note that for h = 0 the function g is a scaled version of the joint distribution
ln p(x, s). The somewhat artificial variable h is a utility variable which will help
us obtain the posterior moments as we shall se shortly. Defining the function
g(s,h) as above, we get that

ln I = ln
∫

e−
1

σ2 g(s,h)ds

is a moment generating function in the sense

〈s〉 =
∂ ln I

∂h

∣∣∣
h=0

〈ssT 〉 − 〈s〉〈s〉T =
∂2 ln I

∂h∂hT

∣∣∣
h=0

where 〈·〉 denotes average with respect to the source posterior p(s|x). For small
σ2 we can approximate ln I by a Taylor expansion of g(s,h) in the saddle point
s0 defined by g′(s0) = 0. From this we obtain the saddle point approximation
to the integral in ln I

ln I = ln
∫

e−
1

σ2 g(s,h)ds

= ln
∫

e−
1

σ2 g(s0,h)− 1
2

1
σ2 (s−s0)

T g′′0 (s−s0)ds +O(σ2)

= − 1
σ2

g(s0) + ln
√

det[2πσ2(g′′0 )−1] +O(σ2) (1)

In the limit of small σ2, the derivative of the second term is scaling as O(σ4) and
thus the approximation is efficiently dominated by the first term −g(s0)/σ2.

5



3.2 Finding the Saddle Point

In the above we have used the saddle point without explicitly knowing its value.
To find it, we make use of the definition g′(s0) = 0 but also an approximation of
the saddle point in the zero-noise regime, i.e. we write s0 as a Taylor expansion
in σ2

s0 = ŝ0 + σ2s̃0 +O(σ4)

The zeroth order term ŝ0 is the least squares solution

ŝ0 = (AT A)−1AT x

which simplifies further when A is square. We now want an expression for the
first order term s̃0 and to find this we insert the combined expression for s0 into
the equation g′(s0) = 0 and rearrange the terms to first order in σ2. Doing that
we obtain

s̃0 = (AT A)−1

[
p′(ŝ0)
p(ŝ0)

+ h
]

Having an expression for the saddle point orders of σ2, makes it possible for
us to use the approximation of the integral to obtain the expressions for the
posterior moments.

3.3 The Posterior Moments

Inserting into Eq. 1 and performing the calculations, we get

〈s〉 =
∂ ln I

∂h

∣∣∣
h=0

= ŝ0 + σ2s̃0 +O(σ4) (2)

〈ssT 〉 − 〈s〉〈s〉T =
∂2 ln I

∂h∂hT

∣∣∣
h=0

= σ2(AT A)−1 (3)

Note that the posterior mean is the saddle point. This is due to the fact that
a minimization of g(s,h) corresponds to a maximization of ln[p(x, s)] which
through Bayes theorem has the same maximum as the posterior p(s|x). In the
approximation of the integral we have implicitly assumed that the posterior
is uni-modal and symmetric and therefore is the mean the same as the most
probable value. The variance provide us with the second moment through

〈ssT 〉 = ŝŝT + σ2Bt +O(σ4)

Bt = (AT A)−1 + (AT A)−1 p′(ŝ)
p(ŝ)

ŝT + ŝ
p′(ŝ)
p(ŝ)

T

(AT A)−1

To summarize we now have approximations for the posterior moments in the low
noise regime. In order to investigate the quality of this approximation, we have
computed the exact and approximated moments for a mixture of gaussians. The
result is plotted in Fig. 1. As expected is the approximation not good for large
noise variance, but for noise variance in the area of 10−2 to 10−3 and smaller,
the saddle point approximation is very accurate.
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Figure 1: Approximation of the moments - how accurate is it? This plot shows how accurate
the saddle point approximation is for different noise levels. The error is defined as the squared
mean difference between the approximation and the true posterior mean. For perspective,
we have included the generating sequence as well. The prior chosen here is a mixture of two
zero-mean gaussians with variance 1 and 1/100.

3.4 The EM Updates

Combining the posterior moments for each time step into larger matrices for
the entire data set, we get

〈S〉 = Ŝ + σ2S̃ +O(σ4) (4)

〈SST 〉 = ŜŜT + σ2B +O(σ4) (5)

where B =
∑

t Bt. From this we can directly insert into Eq. XXX and obtain
the EM updates of A and σ2

An+1 = XŜ(ŜŜT )−1 + σ2XFT (ŜŜT )−1 +O(σ4) (6)

σ2
n+1 = σ2

bias + σ2
(

rank(A)
m − 2

mTr(U)
)

+O(σ4) (7)

where F = (AT A)−1p′(Ŝ)/p(Ŝ)− ŜT (ŜŜT )−1B and σ2
bias,U will be explained

shortly. These equations are general in the sense that they apply for both square
and overdetermined mixing matrix and they simplify considerably in the square
case which we analyze in the subsection below.
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Figure 2: Convergence of the noise for a square FA model: The left plot shows how the
noise converges to the levels of the generative model and that lower noise result in slower
convergence. The right plot shows that the change of noise variance ∆σ2 is indeed proportional
to σ4. The drop in ∆σ2 seen for σ2 = 1 is due to the fact that the model is converged from
a very early stage.

4 Analysis

4.1 The Square Case

In the square case we have σ2
bias = 0 and U = 0, and the expressions simplify

into

An+1 = An + σ2Ãn +O(σ4)
σ2

n+1 = σ2
n +O(σ4)

Ãn = A−T
(
AT + 1

N Q̂XT
)
A

where Qt = p′(St)/p(St) and we have assumed the data are whited, XXT = NI.
Many important conclusions can be reached from these equations: (i) the update
of the mixing matrix is ”freezing” in the sense that to zeroth order the new
estimated mixing matrix is identical to the previous one. (ii) The first order
correction of the mixing matrix is scaling with the change derived from the
noiseless Bell & Sejnowski algorithm (the expression in the parenthesis). This
shows that to fist order in the noise variance, there are no improvement of
the noisy model compared to the noiseless counterpart. The consequence is
that only for noise variances sufficiently large to make σ4 important, is the
noise model different (and hopefully better) than the noiseless model. (iii) The
update of the noise is scaling with σ4 which makes the change in the estimated
noise extremely slow to converge when the noise levels are small.
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4.2 The Overdetermined Case

To simplify the equations reasonably it is of even greater importance to assume
that the data is whitened, i.e. XXT /N = I. When that is the case we have
that

An+1 = An + σ2Ãn +O(σ4)

Ãn = (I−AA+)
XQ̂T

N
−A−A(AT A)−1 Q̂XT

N
A

σ2
bias = 1− rank(A)

m
, U = ∆T XQT Â+/N

where ∆ = I − AA+. Following should be noted about these equations: (i)
As in the square case, the update in the mixing matrix in freezing, resulting
in extremely slow convergence in the low noise limit. (ii) In the correction
term for mixing matrix is, we can recognize the structure which leads to the BS
solution in the square case and see that it is the first term which is the difference.
Not surprisingly, this term is increasing as the ratio of sensors and sources are
increasing. (iii) The noise now also have a bias term. On an intuitive level
this can be explained as the spill-over from the misjudgement of the number of
sources.

4.3 Adaptive Overrelaxed EM

The EM-variant Adaptive Overrelaxed EM is found in [10] and is a very easy
and general applicable speedup suggestion. Basically one is enlarging the step
size proposed by EM with a factor η

An+1 = An + η(AEM
n+1 −An)

When we combine the low noise analysis with this idea we get

An+1 = An + ησ2Ã +O(σ4)

That is, the trick of the adaptive Overrelaxed EM is directly countering the
problem of the small noise variance. On the downside we are no longer guaran-
teed an increase in the log likelihood for each step, but this can be controlled
with a test-step modification and the combined algorithm works well on ICA
[9].

5 Conclusions

The saddle point approximation and the resulting analysis has demonstrated
that

• The linear mixture models have bad convergence properties in the low
noise limit, both for square and overdetermined case, and both for the
mixing matrix and the noise variance.
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Figure 3: Plot a) upper left: The numerical difference in the mixing matrix in a problem
with fixed noise at the generative level. Apart from the two largest noise levels, the delta
values are exactly where they are predicted. The reason the two largest are not following the
predict level is that they are already as converging to whatever solution are optimal for them.
Plot b) upper right: Same as plot a) but without the fixed noise. Instead the noise is here
estimated and results are therefore less clear. The predicted levels are clear obscured by the
complications of the combined algorithm in which also initial conditions and choice of mixing
matrix makes a difference. Plot c) lower left: The difference from the estimated mixing
matrix to the optimal. As expected are the low-noise difference very slow to change. Plot d)
lower right: As plot c) but with estimated noise. Clearly only the example with generative
noise level of 1/100 is actually converging to an acceptable solution. This is because lower
noise makes the algorithm freeze and higher noise levels make estimation impossible.
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• The Overrelaxed Adaptive EM works because the step size directly coun-
ters the small noise variance.

Future work, which we are presently working on, is the generalize the presented
results to non-linear observation models and to the Variational Bayes EM vari-
ant.
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A Calculations and Details

In this section we make extensive use of the possible prewhitening of the data
XXT = NI and of the notation

α = A(AT A)−1AT

= AA+

∆ = I−AA+

Q̂ = p′(Ŝ)/p(Ŝ)

A.1 The Moments

The moments, derived in the text, are repeated here for consistency

〈S〉 = Ŝ + σ2S̃ +O(σ4)

Ŝ = (AT A)−1AT X

S̃ = (AT A)−1Q

〈SST 〉 = ŜŜT + σ2B +O(σ4)

ŜŜT = (AT A)−1AT XXT A(AT A)−1

= N(AT A)−1 (whitening)

B = N(AT A)−1 + (AT A)−1QŜT + ŜQT (AT A)−1

= N(AT A)−1 + (AT A)−1QXT A(AT A)−1 + (AT A)−1AT XQT (AT A)−1

= (AT A)−1[NAT A + QXT A + AT XQT ](AT A)−1

A.2 General (Non-square) identities

The following identities turn out to be useful in later calculations

XT AŜ = XT A(AT A)−1AT X

XT AS̃ = XT A(AT A)−1Q

ŜŜT = (AT A)−1AT XXT A(AT A)−1

AT AŜŜT = AT XXT A(AT A)−1

AT AB = NI + QXT A(AT A)−1 + AT XQT (AT A)−1
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A.3 The Mixing Matrix

A = X〈S〉T 〈SST 〉−1

= X(Ŝ + σ2S̃)T (ŜŜT + σ2B)−1

= X(Ŝ + σ2S̃)T ((ŜŜT )−1 − σ2(ŜŜT )−1B(ŜŜT )−1) +O(σ4)

= XŜT (ŜŜT )−1 + σ2(XS̃T (ŜŜT )−1 −XŜT (ŜŜT )−1B(ŜŜT )−1)

= XŜT (ŜŜT )−1 + σ2X(S̃T − ŜT (ŜŜT )−1B)(ŜŜT )−1

= XŜT (ŜŜT )−1 + σ2XFT (ŜŜT )−1

Overdetermined: Using αx = AT XXT A

Ân = XXT A(AT XXT A)−1AT A

Ãn =
{
XQT −XXT Aα−1

x [NAT A + QXT A + AT XQT ]
}

α−1
x AT A

A.4 The Noise Variance

〈(X−AS)(X−AS)T 〉
= XXT + A〈SST 〉AT −X〈S〉T AT −A〈S〉XT

= XXT + A(ŜŜT + σ2B)AT −X(Ŝ + σ2S̃)T AT −A(Ŝ + σ2S̃)XT

= XXT + AŜŜT AT −XŜT AT −AŜX

+σ2
(
ABAT −XS̃T AT −AS̃XT

)

= XXT + AŜŜT AT −XŜT AT −AŜX

+σ2
(
ÂBÂT −XS̃T ÂT − ÂS̃XT

)
+O(σ4)

= (X−AŜ)(X−AŜ)T + σ2 (...1) +O(σ4)

= (X− (Â + σ2Ã)Ŝ)(X− (Â + σ2Ã)Ŝ)T + σ2 (...) +O(σ4)

= ((X− ÂŜ)− σ2ÃŜ)((X− ÂŜ)− σ2ÃŜ)T + σ2 (...1) +O(σ4)

= (X− ÂŜ)(X− ÂŜ)T − σ2[(X− ÂŜ)ŜT ÃT + ÃŜ(X− ÂŜ)T ] + σ2 (...1) +O(σ4)

= (X− ÂŜ)(X− ÂŜ)T − σ2[...2] + σ2 (...1) +O(σ4)

= (X− ÂŜ)(X− ÂŜ)T + σ2 (...1 − ...2) +O(σ4)

= (X− Â(ÂT Â)−1ÂT X)(X− Â(ÂT Â)−1ÂT X)T + σ2 (...1 − ...2) +O(σ4)
= (I−α)XXT (I−α)T + σ2 (...1 − ...2) +O(σ4)
= N(I−α)(I−α)T + σ2 (...1 − ...2) +O(σ4)
= N∆∆T + σ2 (...1 − ...2) +O(σ4)
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(...1) = ÂBÂT −XS̃T ÂT − ÂS̃XT

= Â
[
(ÂT Â)−1[NÂT Â + QXT Â + ÂT XQT ](ÂT Â)−1

]
ÂT

−X((ÂT Â)−1Q)T ÂT − Â(ÂT Â)−1QXT

= (Â+)T [NÂT Â + QXT Â + ÂT XQT ]Â+ −XQT Â+ − (Â+)T QXT

= NÂÂ+ + (Â+)T QXT ÂÂ+ + (ÂÂ+)T XQT Â+ −XQT Â+ − (Â+)T QXT

= Nα + (Â+)T QXT (ÂÂ+ − I) + ((ÂÂ+)T − I)XQT Â+

= Nα− {(Â+)T QXT ∆ + ∆T XQT Â+}

(...2) = (X− ÂŜ)ŜT ÃT + ÃŜ(X− ÂŜ)T

= (XŜT − ÂŜŜT )ÃT + Ã(XŜT − ÂŜŜT )

= (NÂ(ÂT Â)−1 −NÂ(ÂT Â)−1)ÃT

+Ã(N(ÂT Â)−1ÂT −N(ÂT Â)−1ÂT )
= 0

In the square case, ∆ = 0 and α = I, and therefore

σ2
n+1 = Tr(〈(X−AS)(X−AS)T 〉)/(Nm)

= σ2 +O(σ4)

In the overdetermined case we have

σ2
n+1 = Tr(〈(X−AS)(X−AS)T 〉)/(Nm)

= Tr(∆∆T )/m + σ2
(
Tr(α)/m− Tr(UT + U)/m

)
+O(σ4)

where U = ∆T XQT Â+/N

= Tr((I−α)(I−α)T )/m + σ2
(
Tr(α)/m− Tr(UT + U)/m

)
+O(σ4)

= Tr(I− 2α + αα)/m + σ2
(
Tr(α)/m− 2Tr(U)/m

)
+O(σ4)

= Tr(I−α)/m + σ2
(
Tr(α)/m− 2Tr(U)/m

)
+O(σ4)

= 1− Tr(α)
m

+ σ2
(
Tr(α)/m− 2Tr(U)/m

)
+O(σ4)

= 1− rank(α)
m

+ σ2
( rank(α)

m
− 2Tr(U)/m

)
+O(σ4)

= 1− rank(A)
m

+ σ2
( rank(A)

m
− 2Tr(U)/m

)
+O(σ4)

= σ2
bias + σ2

(
rank(A)

m − 2
mTr(U)

)
+O(σ4)
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