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"We have shown that scientific knowledge consists of a sequence of abstract models, preferably formal,
occasionally material in nature. We shall now proceed to examine the results of carrying model-making
to the limit. Consider first material models. They start by being rough approximations, surrogates for
the real facts studied. Let the model approach asymptotically the complexity of the original situation.
It will tend to become identical with that original system. As a limit it will become that system itself.
That is, in a specific example, the best material model for a cat is another, or preferably the same cat."
(Rosenblueth and Wiener 1945 [1]).
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Abstract in English

This thesis gives a theoretical description of the active tilting-pad journal bearing (ATPJB). It provides
the qualified reader with the tools to model an ATPJB, while staying clear of pitfalls. The model is based
on well known techniques and allows for local stability analyses, harmonic stationary analyses as well as
nonlinear time domain analyses of ATPJBs. Examples of all of these analysis types are presented. As
opposed to some of the more convoluted modelling methods in the literature, the presented one permits
dimensional analysis in a straight forward and intuitive manner. Dimensional analyses are performed for
a tilting-pad journal bearing (TPJB) and an ATPJB under static conditions, followed by a generalisation
to dynamic conditions (transient as well as stationary harmonic). These analyses will be of interest to
experimentalists, since they permit experiments performed on scaled down test rigs to be extrapolated to
the full size product in a confident manner. Finally, a selection of simulation results is presented. These
prove that ATPJBs show promise in attenuating some of the limitations of TPJBs. But also, they show
that ATPJBs should be modelled, tuned and implemented with great care, since the addition of a control
system may just as well harm rotor-bearing performance as improve it.
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Resumé på dansk

Denne afhandling beskriver teorien bag regulerede vippeskolejer. Den giver den indviede læser værktøjerne
til at udvikle en matematisk model af et reguleret vippeskoleje, og samtidig holde sig fri af faldgruber-
ne. Modellen baserer sig på velkendte metoder, og kan benyttes til lokal stabilitetsanalyse, stationær
harmonisk frekvens respons analyse samt beregning af ikke lineære tidsserier. I modsætning til nogle
af de mere omstændelige modelleringsmetoder fra faglitteraturen, er den præsenterede fremgangsmåde
velegnet til dimensionsanalyse. Dimensionsanalyse er nyttig i eksperimentplanlægning, da den forklarer
lovmæssighederne bag ekstrapolering af eksperimentelle resultater fra nedskalerede laboratorieopstillinger
til produkter i fuld skala. Dimensionsanalyser udføres for et passivt vippeskoleje og for et reguleret vip-
peskoleje under statiske forhold. Efterfølgende generaliseres analyserne til dynamiske tilstande. Til slut
præsenteres udvalgte simuleringsresultater. De viser at regulering er et lovende værktøj til håndteringen
af vippeskolejers ellers iboende begrænsninger. Men samtidig må det konkluderes at matematisk modelle-
ring, justering og implementering af reguleringssystemer i vippeskolejer bør foretages med stor omhu, da
reguleringssystemet lige så vel kan ødelægge lejets egenskaber som forbedre dem.
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NOMENCLATURE ix

Table 1: Nomenclature - upper-case Latin letters.

A Pressure system matrix [m
5

Ns ]
Ca Assembled clearance [m]
Cm Machined clearance [m]
D Generalized damping matrix -
Dq-q Flow damping matrix [Vs2

m3 ]
Dr Rotor diameter [m]
E Young’s modulus [ N

m2 ]
F Characteristic force [N]
F Set of fluid nodes -
F3 Set of fluid displacement degrees of freedom -
GP Proportional gain matrix [ V

m ]
GD Derivative gain matrix [Vs

m ]
K Generalized stiffness matrix -
Kpq Flow-pressure constant [m

3

Vs ]
Kpq Valve flow-pressure relation matrix [m

5

Ns ]
Kq-q Flow stiffness matrix [ Vs

m3 ]
Ks Solid stiffness matrix [ N

m ]
Kr Rotor stiffness matrix [ N

m ]
Kv Valve static amplification [m

3

Vs ]
Lijkl Solid constitutive tensor [ N

m2 ]
L Characteristic length [m]
Lb Bearing length [m]
M Generalized mass matrix -
Mq-q Flow mass matrix [Vs3

m3 ]
Mr Rotor mass matrix [kg]
Ms Solid mass matrix [kg]
No Number of orifice arrays -
Q Orifice flow-pressure relation matrix [m

5

Ns ]
Rr Rotor radius [m]
Rp Pad inner surface radius [m]
S Set of solid nodes -
S3 Set of solid displacement degrees of freedom -
U Tangential rotor speed [ms ]
Up Tangential
pad speed

[ms ]

Vs Matrix of solid modes of vibration -
Vinj Fluid injection velocity profile [ms ]
V Reduction matrix -
W Pressure system cross coupling matrix [m

5

Ns ]



NOMENCLATURE x

Table 2: Nomenclature - lower-case Latin letters.

b Modal coordinate vector [m]
(b1,b2,b3) Curvilinear coordinate basis vectors [m]
dg Generalised displacement vector -
dr Rotor damping or characteristic damping [Ns

m ]
f Nodal force vector [N]
fg Generalised force vector -
fr Rotor force [N]
fr Rotor force vector [N]
gi Orifice flow shape function [m2]
h Fluid film thickness [m]
kr Rotor stiffness or characteristic stiffness [ N

m ]
l0 Orifice inlet length [m]
mr Rotor mass or characteristic mass [kg]
p Fluid pressure [Pa]
p Generalised vector of nodal pressure values [Pa]
pinji Injection pressure [Pa]
qL Leak flow [m

3

s ]
qv Valve flow [m

3

s ]
r Pressure right hand side [m

3

s ]
r0i Orifice radius [m]
resr Residual vector -
t Time [s]
ui Displacement [m]
uv Valve input signal vector [V]
uvr Valve reference signal vector [V]
uch Valve characteristic signal voltage [V]
vi Fluid velocity vector or test function [ms ] or -
xi Inertial coordinates [m]

Table 3: Nomenclature - upper-case Greek letters.

∆i Perpendicular distance to orifice i [m]
Γ Fluid boundary -
Λ Solid boundary -
Λs Diagonal matrix of squared eigenvalues [s−2]
Π Solid domain -
Φ Fluid domain -
Ω Fundamental frequency or rotational speed [s−1]



NOMENCLATURE xi

Table 4: Nomenclature - lower-case Greek letters.

δij Kronecker’s delta -
εij Strain tensor -
ζ Isoparametric coordinate -
η Isoparametric coordinate -
µ Fluid viscosity [ Ns

m2 ]
ν Poisson’s ratio -
ξ Isoparametric coordinate -
ξv Valve damping ratio -
ρ Solid density or fluid density [ kg

m3 ]
φi Shape function -
χi Curvilinear coordinates [m]
ωv Valve eigenfrequency [s−1]
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Chapter 1

Introduction

The present thesis is of a theoretical nature. No experimental data will be presented. However, the thesis
is written under the premise, that the work is justified if and only if it contributes directly or indirectly
to the design and construction of improved machine elements. As such, the work falls into the category
of applied science.

Eventual industrial application of the results of the this thesis will contribute to reliable and confident
implementation and operation of ATPJBs. As shall be reported in later sections, the addition of a
control system to a TPJB is by no means fool proof, and can result in undesired effects. In the worst
case scenario, improper tuning of an ATPJB can destabilise the rotor-bearing system. At this point, we
may define rotor-bearing stability as the stability of the equilibrium corresponding to nominal bearing
operation. E.g., a fluttering pad corresponds to a stable limit cycle, but not a stable bearing, as per our
definition of rotor-bearing stability.

TPJBs operate in a wide range of applications. Though, what these applications have in common
is, firstly, that radial rotor motion is critical and, secondly, that the application is such, that it merits a
relatively expensive machine element with low tolerance requirements. In cheap, mass produced machines
where predictability, long service life and low noise are not selling points, TPJBs are not ideal. TPJBs
find their niche in machines operating under heavy load, where emergency maintenance is cheaper than
unit replacement, where planned maintenance is much cheaper than emergency maintenance and where no
maintenance at all is much cheaper than planned maintenance. TPJBs are predictable, have potentially
infinite service life under the right conditions, and have the ability to handle large rotational speeds and
severe radial loads. Figure 1.1[9] shows an application of TPJBs to a very large shaft, connecting a
hydropower turbine to a generator.

Despite the merits of TPJBs, as with any machine element, there are limits to their performance. For
instance, while increasing the rotational speed increases the bearings radial stiffness, its ability to dissipate
vibration energy remains largely constant. That is, given that the stiffness increases, the damping ratio
drops. Ultimately, the bearing itself may become unstable [10, 11]. Also, crossing rotor-bearing resonance
frequencies, e.g. during a start-up, may produce large amplitudes of vibration, resulting in wear - also in
the TPJB. Furthermore, often, other shaft components or the shaft itself will produce speed dependent
loads, which impose stability limits on machine operational range regardless of the bearing type [12]. But
proper bearing design (and tuning) can potentially push these limits. Hence, there is reason to investigate
possible improvements in the design of TPJBs. The ATPJB is one such proposal out of several. As all
designs, it has its advantages and drawbacks. It is described in detail in the following sections.
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12 pad TPJB

16 pad TPJB
generator (700MW)

turbine (715MW)

16 pad TPTB

16 pad TPJB

Figure 1.1: Schematic representation of a hydrogenerator at the ITAIPU hydropowerplant in Brazil. Two
TPJBs and a tilting-pad thrust bearing (TPTB) are shown. The image is adapted from the presentation
of [9], courtesy of Dr. Geraldo Brito, senior engineer at ITAIPU.

1.1 Plain journal bearings
Stodola [13] is generally credited as the first person to perform linear frequency domain analysis of a fluid
film bearing, due to his 1925 paper. He did not coin the terms "bearing stiffness" or "bearing damping"
rather, he referred to oil film flexibility. Nevertheless, the concepts of bearing stiffness and damping
originate with his work. Together with Jeffcott’s 1919 publication on rotor dynamics [14], this meant
that the dynamic behaviour of shafts supported by fluid films could be assessed. In 1967 Orcutt and
Arwas [15] extended fluid film bearing analysis to account for lubricant turbulence through an extension
of the Reynolds equation [16]. The extension introduced two new parameters which were function of the
Reynolds number. However, in general, viscous forces dominate in oil lubricated bearings. Indeed the
differences between purely laminar and generalised results in [15] were noticeable, but not dramatic. The
authors investigated cases with Reynolds numbers reaching 13000. In the present study, the Reynolds
numbers are kept much lower.

1.2 Tilting-pad journal bearings
While Boyd and Raimondi performed static analyses of pivoted pad bearings as early as from 1953 [17, 18],
the first thorough theoretical study of the dynamics of TPJBs was that of Jørgen Lund in 1964 [19]. The
computational work of bearing analysis was, and still is substantial. Given that the year was 1964, Lund
had to mitigate this problem somehow. He did this so elegantly that his work is still relevant today,
and will be in the future. Lund limited his analysis to linear stationary (harmonic) vibrations. This
enabled him to prescribe a rotor motion of a given amplitude and frequency. Given the prescribed rotor
motion, the system of equations was decoupled into several scalar equations - one for each pad. Thus
he could compute the force response from each pad individually. After computing each force response, a
vectorial sum provided the total force response, i.e., that felt by the journal. This method reduced the
computational work load enough, that the equations could be solved even on a 1964 computer. The price
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that Lund knowingly paid, was that his analysis was restricted to frequency response computation. It
could not be used for stability analysis.

In 1980 Ettles [20] performed comprehensive analyses of tilting pad journal bearings. To reduce
simulation time, Ettles employed a semi-analytical method to solve for the pressures and responses. At
the time, both the finite element and finite difference methods were available, but considered too time
consuming. Ettles’ model considered thermal effects and deformation.

In 1981 Allaire, Parsell and Barrett [21] published a paper which addressed the limitations of Lund’s
method. They succeeded in setting up linearised equations of motion for the tilting-pad journal bearing
with no prescribed rotor motion. This yielded a system of equations which, while small by today’s
standards, was substantially larger than that of Lund’s method. The advantage was that this system of
equations could be used for both local stability analysis as well as frequency response computations. As
opposed to the work of Ettles [20], which was essentially a phenomenological extension of a onedimensional
model, Allaire, Parsell and Barrett’s work encompassed full twodimensional solutions to the Reynolds
equation. However, in retrospect, the two main contributions of [21] were, firstly, to provide a detailed
manual, as to how to set up the linearised equations of motion for a tilting pad journal bearing and,
secondly, to explain in unmistakable terms to the tribology community, that frequency dependent dynamic
coefficients cannot be used for stability analysis of tilting pad journal bearings. In 1993 Brockett and
Barrett [22] correctly stated that "Results from a stability analysis, therefore, might be quite misleading if
synchronously-reduced bearing coefficients are used instead of complete tilting-pad bearing models". They
proposed an "Exact" dynamic reduction, which yielded a condensed 2×2 system of equations for the
journal. The terms depended on the complex frequency, which was treated as an unknown, thus the
reduction made no assumption on journal motion in time. However, it introduced a truncation error with
respect to the frequency. Since the year was 1993, and substantial computing power was available, one
must ask if it was worth while to condense a 7×7 system (5 pads) of equations to a 2×2 at the cost of a
noticeable error.

As mentioned in [21]. The years that passed after Lund’s paper [19] and [21] saw some leading authors
using Lund’s dynamic coefficients in stability analysis, for instance Nicholas, Gunter and Barrett [23]. As
mentioned, such use is erroneous. Lund was aware of his method’s limitations as Nicholas states in his
comprehensive review paper from 2003 [24] "Lund pointed out that it is mathematically incorrect to use a
synchronous frequency for a stability calculation. He went on to say that "...the damped natural frequency
should be used instead." [24]. However, Lund’s method was also used by Nicholas, Gunter and Allaire to
conduct an elegant and useful parameter study of bearing stationary harmonic performance [25]. Here
the effect of pad preload and offset pivoting was investigated for a bearing with five pads.

If frequency dependent dynamic coefficients are used in a stability analysis of TPJBs, the computation
is strictly valid if and only if one of the below conditions is satisfied

#1 The real parts of all of the eigenvalues are zero and the imaginary parts of all of the eigenvalues are
equal to the perturbation frequency.

#2 The, now nonlinear, eigenvalue problem is solved as such. I.e., iteratively. [26].

Condition #1 entails that the stability threshold of all modes of vibration be the same. That is, they
must all become unstable at exactly the same set of parameters and operating conditions. In practice,
this never happens. Furthermore, #1 requires that all modes of vibration have the same eigenfrequency
as the perturbation frequency. Again, in practice this hardly ever happens [27]. The concept of stability
it thoroughly explained in, e.g., Thomsen’s book on vibrations [28]. Of course, the analyst may assume
the real part of the critical eigenvalue to be zero [29], as per the definition of a critical eigenvalue. But the
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frequency of vibration must be kept as an unknown (as in [29]). In a dynamic condensation, synchronous
or non-synchronous, it is not kept as an unknown. At least two publications have compared true stability
analysis, and stability analysis with frequency dependent dynamic coefficients [30, 31]. In both studies, the
use of dynamic coefficients overpredicted the rotor-bearing stability. That is, in the investigated cases, use
of frequency dependent dynamic coefficients for stability analysis could result in bearing failure. It is worth
noting, that as long as a dynamic perturbation procedure involves perturbations of all relevant degrees
of freedom, it will capture the stationary harmonic, as well as the transient (stability) behaviour of the
rotor-bearing system. Thus, for instance, a passive plain journal bearing can be represented generally as a
2×2 system of equations, even if the matrices result from a dynamic perturbation with the assumption of
stationary harmonic vibrations. Here the dynamic perturbation can be viewed as a parameter identification
procedure. The assumption of harmonic motion is useful in an experimental determination of bearing
dynamic coefficients. However, in a model, the assumption of harmonic motion is redundant and the
matrices will be independent of the frequency. The question is then: Why assume stationary harmonic
vibrations, if it does not simplify the problem? Perturbations of displacement and velocity will yield the
exact same system, and are simpler to perform.

In 1989 Someya based a model on the preceding years of research, and used it to perform the most
comprehensive parameter study of journal bearings to date, the results were published in the "Journal
Bearing Databook" [32]. The book contains values of stiffness and damping for a variety of fluid film
bearing configurations at a variety of operating conditions. Since then, the book has been cited widely.

In 1992 Chan and White [33] performed steady state analyses of a five pad journal bearing. The
bearing was excited at sub synchronous frequency. The analysis revealed that bearing damping is small at
low frequencies, when comparing to the damping at synchronous frequency, especially at low pad preload.
Thus the potential exists for large vibration amplitude spikes if the rotor-bearing system is excited at
lower excitation frequencies.

As computing power increased through the nineties, scientists began to refine tilting-pad journal bear-
ing models. Pivot flexibility as well as a simplified pad compliance model was developed by Lund and
Thomsen in 1987 [34]. As a precursor to their previously mentioned work [30], Earles, Palazzolo and
Armentrout provided a more general methodology in [35]. Their method solved the Reynolds equation
on a two dimensional mesh, and captured finite bearing length effects. Their pad compliance calculation
was that of infinitely long pads through a plane strain assumption. It made use of a twodimensional finite
element grid. However, deformation results were condensed to their influence on effective pad radius.
Thus, their analysis considered the pads perfectly circular, even in the deformed state. Their study also
neglected thermal deformations. This was in 1990, so their model was advanced for its time, and it is
evident that the simplifications were very prudent. In 1994 the field took a leap forward with the work of
Desbordes, Fillon, Chan Hew Wai and Frêne [36]. Their model resembled that of [35] but allowed arbitrary
twodimensional pad deformations. Since some of the analyses in [36] were for heavily loaded bearings,
it was decided not to linearise the model. Thus the analysis was limited to the study of time series. So
as to not introduce high frequencies, and thus a low limit on the maximum time step, pad inertia was
limited to that of the tilting motion. The simulations revealed pad deformations to be of significance to
the journal orbit radius, maximum pressure, and minimum film thickness, at least for the heavily loaded
bearings. In [37] a similar study was conducted by Desbordes, Fillon and Frêne. This time including
full three dimensional pad deformation, but still neglecting the inertia of higher pad modes. In parallel,
a similar model including thermal effects was presented in [38]. In the work [39] by Monmousseau and
Fillon, thermal effects were included along with a Hertz contact model for the pivots. comparison with
experimental results was conducted. Among other things, the work confirmed thermal effects to be slower
than mechanical effects. That is, in the words of the authors, the "...thermal transient period.." was much
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longer than the "...mechanical transient period...". This, in itself, does however not permit neglecting all
thermal effects. But it allows the analyst to treat thermal effects as a static phenomenon.

Brancati, Rocca and Russo [40] performed stability analysis of nonlinear journal orbits, i.e., phase
planes. They calculated the nonlinear orbits by introduction of a series expansion and separation of
the equations into terms of equal power. I.e., a finite perturbation method was employed. However, the
stability analysis was of the nonlinear orbits themselves, not of the bearing in a given equilibrium position.
I.e. given that the bearing was stable in a certain equilibrium, Brancati and colleagues gave the answer
to which orbit around this stable equilibrium it would then follow. Thus, prior to employing the method
in [40], a local stability analysis should be performed. Recently, Qiao, Wang and Zheng [41] published a
consistent and well written paper on local stability calculations of TPJBs.

Pivot flexibility has been shown to affect bearing performance [42, 43]. In [43], it was shown exper-
imentally as well as theoretically, that pivot flexibility can affect the performance of tilting-pad journal
bearings. Among other things, the study concluded that pivot flexibility tends to decrease bearing har-
monic stationary damping at higher frequencies.

1.3 Active fluid film journal bearings
Active fluid film journal bearings have not yet found as widespread use as their passive counterparts. This
also holds for the particular case of active tilting-pad journal bearings. So far, the ATPJBs of the type
investigated in this thesis do not appear in industrial applications, and with good reason. In particular,
until now, there are no trustworthy stability calculations for the designer to rely on. The stability analyses
performed so far on the ATPJBs, of the type investigated in this thesis, e.g. in [44], rely on frequency
dependent system matrices. As shall be explained in the following, they cannot be trusted.

As early as 1981 Stanway and Burrows [45] investigated the controllability and observability of a fluid
film bearing. They introduced the idea of actively controlling the position of the bearing housing. Their
investigation, which was theoretical, revealed the concept to be promising, and paved the way for further
development.

In 1989 Ulbrich and Althaus [46] performed experimental investigations of an active TPJB with mov-
able pads. Their test rig controlled the pads through electromagnetic linear actuators. This was probably
the first active TPJB to be built. In the same study, the authors proposed the use of piezoelectric actu-
ators and hydraulic chambers for the active pad motion. The latter concept was investigated by Fürst,
Althaus and Ulbrich in [47] and by Althaus and Ulbrich in [48]. This idea was extended to TPJBs in
1993 by Santos [49]. Piezoactuators as a rotor control element was the subject of investigation in [50]. In
the 2004 paper by Deckler, Veillette, Braun and Choy [51] the bearing was controlled by active pivots as
in [46]. That is, the pivots were moved in the radial direction with linear actuators. Each pad could be
controlled individually, and parameters were identified, so as to allow independent control of stiffness and
damping. The results in [51] were theoretical, but followed by an experimental investigation by Wu, Cai
and Queiroz in 2007 [52].

Another possibility of bearing control is to introduce a flexible sleeve, or arc, controlled by a variable
pressure chamber, as described by Sun and Krodkiewski in 2000 [53]. Other methods include, but are not
exclusive to, the use of magneto-rheological lubricant, local heating of the lubricant or deformation of the
lubricated surface. An exhaustive overview shall not be given here. The recent work by Glavatskih and
Höglund [54] gives a good overview of the presently available control methods, and proposes the generic
term "tribotronics".

The first journal paper to deal with the concept of radial oil injection into the gap between journal
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and bearing was the 1998 publication by Santos and Scalabrin [55]. The idea had been introduced four
years earlier in 1994 at the IUTAM conference that year [56]. They introduced a method of computing
the pressure profile resulting from coupled hydrodynamic and hydrostatic lubrication, so called "hybrid
lubrication". The work was a forerunner for the subsequent years of research into the control of shaft
vibrations through active hybrid lubrication. Also, the authors coined the term "modified Reynolds equa-
tion". The method retains the concept of the oil film thickness, even in the orifice region. Here, as in the
rest of the wetted surface, the no slip condition is applied. The assumption would be valid if the orifice
diameter was much smaller than the oil film gap. This is rarely the case, as the diameter of the injection
orifice is typically more than an order of magnitude larger than the oil film gap. However, except for
extreme parameter choices the pressure profile in the orifice region is all but constant [55]. Most often, the
mesh will need refinement in and around the orifice, so as to describe the circular profile. Thus the size
of the discretised pressure problem is increased. This is particularly true when using the finite difference
method, which is restricted to rectangular elements. For this reason, the finite element method is far more
convenient. In 1986 Klit and Lund [57] used six node triangular elements in a finite element solution of the
Reynolds equation. The method developed in [55] was the first of its kind and is adopted in the present
study as well as in others. If, in a future study, more accurate flows in the orifice region are desired,
a more advanced method should be employed. Similar remarks were made in 2008 by Heinrichson and
Santos [58] in their study of TPTPs with recesses. In 1997 and 1994 Braun and co workers [59, 60] solved
the Navier-Stokes equations for a hydrostatic journal bearing pocket with radial lubricant injection. Here
the flow fields were seen to approach that of [55] in the "jet dominated" case or when far from the fluid
film gap inside the injection orifice.

In two papers from 1998 and 2001 Santos and Nicoletti [61, 62] performed simultaneous solution of
the Reynolds and energy equations to gain insight into the thermal implications of radial oil injections.
As of yet, these are the only internationally published documents to consider the thermal aspect of the
hybrid lubrication method which was introduced in [55]. Injecting oil into the bearing gap at a given
pressure is an open loop control technique, since no feedback is considered. In 2003 Santos and Nicoletti
[63] included a controllable servo-valve into the system, thus producing a closed loop controllable bearing.
The servo-valve model was simple, but captured the most important phenomenon; namely the limited
servo-valve bandwidth. It was reported, that above the servo-valve eigenfrequency, the servo-valve based
control system looses its effect.

In [64], the servo-valve motion was considered stationary harmonic. A stability analysis was performed
a posteriori. Similarly, in [44], a frequency dependent system of equations was derived so as to represent an
ATPJB. Synchronous motion was assumed. Subsequently the system was used for calculation of complex
eigenvalues and stability considerations. Such use [64, 44] of dynamic coefficients is not recommended.
This is for the same reason, which was explained above, that frequency dependent bearing coefficients for
TPJBs cannot be used in stability analysis. Firstly, it is not mathematically stringent, secondly, results
may be misleading. When including servo-valve dynamics, each servo-valve adds one degree of freedom
to the system. This means that even a plain journal bearing, if it is active, is not represented fully as a
2×2 system of equations and it means that an ATPJB with, e.g., four rigid pads is not represented fully
as a 6×6 system of equations.

1.4 Main contributions of this thesis
The present investigation adopts the active lubrication method of [55, 64, 65], though with "general"
perturbations. That is, no assumption is made with regard to the motion of the perturbation in time.
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Thus the model can be used for local stability analysis as well as harmonic response analysis with equal
validity. As mentioned, previous attempts at assessing the stability of the bearing type under investigation
have not been successful. It has now been 16 years after the bearing type was first introduced in 1994.

The model presented in this thesis is benchmarked against several authors with good agreement. Both
time domain analysis and frequency domain analysis show the model to agree with those of previous
investigators.

The stability analysis of [4] is extended to further combinations of parameters. Also, a dimensional
analysis is performed and tested for validity, through computation of dimensionless rotor orbits.

The "hydroelastic number" is derived, and a limiting value of this number is computed. This allows
future researchers to neglect pad compliance for certain system parameters.

Frequency response functions for rotor-bearing systems are computed for different values of rotor
mass, revealing that the frequency, at which the control system no longer yields a reduction in amplitude
of vibration, depends on rotor mass.

Three simple adaptive control strategies are implemented, and studied through their impact on system
eigenvalues and rotor motion time series. Finally, a guide to mathematically and physically stringent
stability prediction of ATPJBs is presented.

1.5 The candidates publications
In addition to this thesis, several publications have been made, that document the progress of the past
three years of research [5, 6, 7, 2, 8, 3, 4].

In [5] the fluid film thickness and bearing dynamic coefficients were calculated for a range of pad
elastic moduli and injection pressures. That is, the investigation was concentrated on hybrid lubrication
of compliant bearings.

In [6] a simple closed loop control model was implemented and added to the model of [5]. Valve dy-
namics were neglected. That is, servo-valve bandwidth was assumed infinite. Still, at least one important
conclusion could be made with confidence. Namely that if a closed loop control system is tuned based on
model predictions, then negligence of pad compliance could lead to significant error, and unexpected beha-
viour by the active bearing. It was demonstrated that a control system tuned for a bearing with the elastic
modulus of steel, would not perform as expected in a bearing with the elastic modulus of aluminium, and
vice versa. The model was expanded to include harmonic valve dynamics in [7], which focussed entirely
on the modelling procedure, and did not present any results. In the abstract of [7] the word "stability"
appears, although the model was not suited for stability (complex eigenvalue) calculations.

In [2] valve dynamics were included and general perturbations were made, so as to yield the linearised
system of equations for the bearing with compliant pads and controllable servo-valves. The pads were
discretised with finite elements. On the middle of each pad, an injection orifice was placed. The simulations
in [2] proved to be very time consuming, with parameter studies lasting weeks. In [8] this was addressed
with the proposal of a fast solution method. Though, this method was later abandoned in favour of more
conventional and proven techniques.

The rotor-bearing model was extended and modified in [3]. As in [2] the pads were discretised with
finite elements, but the pad finite element model was used solely for computation of the pad mode shapes.
These mode shapes were then used for pseudo modal reduction of the pads, truncating their movement to
the first four mode shapes. This method proved to be fast, while still capturing essential pad behaviour.
Several orifice configurations were tested, and stationary harmonic performance was evaluated. The control
system was seen to have the biggest influence, when orifices were placed far from the pivot line.
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In [4] the stability of active compliant bearings was evaluated. Eigenvalues were computed for a range
of parameters. It appeared that poor choice of control gains could destabilise the bearing. Furthermore
it was demonstrated that those gains leading to a stable bearing appear as connected sets.

1.6 Thesis structure
The thesis is divided into the following chapters.

Chapter 2 provides the reader with a detailed derivation of the mathematical model. A reader with
previous knowledge of mechanics, partial differential equations and the finite element method will be able
to reproduce the mathematical model after reading this chapter.

Chapter 3 derives the non-dimensional form of the system of equations. Key dimensionless parameter
groups are identified for later use.

Chapter 4 validates the model through benchmarking against other authors and a convergence study.

Chapter 5 shows selected simulation results generated with the mathematical model. Curves for the fre-
quency response function, stability plots, time series and rotor orbits are presented. Emphasis is placed
on the influence of the control system on rotor-bearing behaviour. The dimensional analysis is used to
illustrate the usefulness of similitude and determine a limiting value for the hydroelastic number, beyond
which pad compliance can be neglected.

Chapter 6 summarises the most important conclusions with respect to bearing design considerations and
model validity. A general recommendation for the direction of future research within the field is given.



Chapter 2

Mathematical modelling

Fluid film lubrication, may be modelled in a variety of fashions. The fluid film pressure distribution may
be modelled using short bearing or long bearing theory or the twodimensional Reynolds equation. If the
Reynolds number is large, fluid inertia may be included. In the case of gas bearings, compressibility may be
included. Leading edge lubricant build up may be modelled through full threedimensional computational
fluid dynamics if deemed necessary.

In the case of tilting pad journal bearings, the motion of the pads needs to be accounted for. This
can be captured by a rigid body model, or deformation can be included through a beam model, plate
theory or a threedimensional finite element mesh. Typically one will assume linear elasticity with small
strains and rotations. If thermal effects are estimated to play a role, they may be included into the model
through thermal energy considerations.

If a parameter study is to be undertaken, the model must be simple enough that many simulations
can be run in a reasonable time.

In this study, the oil film is taken to be described by the twodimensional Reynolds equation. The pads
are modelled as linearly elastic with small strains and rotations. They are discretised with a threedimen-
sional finite element mesh. The nodes on the lubricated surface of the pad coincide with the nodes on
the oil film. In this way, computation of pressure forces from the oil film onto the pads becomes intuitive
and straight forward through Gauss quadrature. If desired, the pads may be subsequently reduced by a
modal reduction. The mode-shapes of the pads alone (without oil film forces) are used for the pseudo
modal reduction. This, along with a condensation, will yield a system of equations of manageable size.

Index notation will appear in certain places. To avoid confusion, while retaining a consistent no-
menclature, summation of repeated indices is not employed, thus all summations are stated explicitly.
Underlined indices are part of variable names and indices without underline are used for numbering, e.g.
qvi is the valve flow of servo-valve number i. A Nomenclature is provided in Tabs. 1, 2, 3 and 4.

Figure 2.1 shows the domains relevant to the continuous parts of the problem, i.e., the pads and
the fluid film. The valves are not shown. The solid domain and its boundary are denoted Π and Λ,
respectively. The fluid domain and its boundary are denoted Φ and Γ, respectively. Note that Φ is a
subset of Λ. The figure also indicates provision for radial oil injection, through two generic domains
where the injection terms are non zero. Furthermore, the cartesian coordinate system (x1, x2, x3) and the
curvilinear coordinate system (χ1, χ2, χ3) are defined.

11
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Figure 2.1: Generic pad with a cutaway. The solid domain is Π and the fluid domain is Φ. Their boundaries
are denoted Λ (not shown) and Γ, respectively. Note that Φ ⊂ Λ. The regions where gi 6= 0 are the orifices
of lubricant injection into the gap. Note that each pad may have more than one injection orifice.

2.1 From the Navier-Stokes equations to the Reynolds equation
The general motion of a fluid is well described by the Navier-Stokes equations, which capture many effects.
These equations, while encompassing, are time consuming to solve. For the present application, at very
little loss of accuracy, the fluid can be taken to follow the far simpler Reynolds equation. Here we shall
derive the Reynolds equation from the Navier-Stokes equations, explaining the assumptions step by step.
The derivation follows that of [49]. The main assumptions are as follows

• Newtonian fluid (stress independent viscosity).

• Laminar flow.

• Negligible inertia.

• A fluid film gap much smaller than all other dimensions, thus permitting the negligence of curvature.

• Averaged fluid properties across the gap.

The reasoning behind these approximations is explained in detail in [66].
We recall, that the velocity field is a function of position as well as time, thus

vi = vi(χ1, χ2, χ3, t), i = 1, 2, 3 (2.1)

where vi is the velocity of a fluid particle in the χi direction. The acceleration is the total derivative of
the velocity, i.e., it must account for fictitious forces due to the moving reference frame. Defining

dχi

dt
= vi, i = 1, 2, 3 (2.2)
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and plugging into Eq. (2.1), we arrive at

v̇i =
dvi
dt

= v1
∂vi
∂χ1

+ v2
∂vi
∂χ2

+ v3
∂vi
∂χ3

+
∂vi
∂t
, i = 1, 2, 3 (2.3)

Zjournal

pad

χ2 χ3
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inlet i, pinji

l0i

gi, Vinji 6= 0

Figure 2.2: Generic picture of a journal, a pad and the gap in between. An injection orifice is also shown.

The Navier-Stokes equations can be found in many textbooks, e.g. [67]. For a Newtonian fluid, they
take the form of Eq. 2.4.

ρv̇1 = − ∂p

∂χ1
+

∂

∂χ1

(
µ

(
2
∂v1
∂χ1

− 2

3

(
∂v1
∂χ1

+
∂v2
∂χ2

+
∂v3
∂χ3

)))
+

∂

∂χ2

(
µ

(
∂v1
∂χ2

+
∂v2
∂χ1

))
+

∂

∂χ3

(
µ

(
∂v3
∂χ1

+
∂v1
∂χ3

))

ρv̇2 = − ∂p

∂χ2
+

∂

∂χ2

(
µ

(
2
∂v2
∂χ2

− 2

3

(
∂v1
∂χ1

+
∂v2
∂χ2

+
∂v3
∂χ3

)))
+

∂

∂χ3

(
µ

(
∂v2
∂χ3

+
∂v3
∂χ2

))
+

∂

∂χ1

(
µ

(
∂v1
∂χ2

+
∂v2
∂χ1

))

ρv̇3 = − ∂p

∂χ3
+

∂

∂χ3

(
µ

(
2
∂v3
∂χ3

− 2

3

(
∂v1
∂χ1

+
∂v2
∂χ2

+
∂v3
∂χ3

)))
+

∂

∂χ1

(
µ

(
∂v3
∂χ1

+
∂v1
∂χ3

))
+

∂

∂χ2

(
µ

(
∂v2
∂χ3

+
∂v3
∂χ2

))
(2.4)

where ρ is the density of the fluid, p is the pressure and µ is the dynamic viscosity.
We assume incompressible flow, thus the volume dilation is set to zero, i.e.

∂v1
∂χ1

+
∂v2
∂χ2

+
∂v3
∂χ3

= 0 (2.5)
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also, since the Reynolds number is low for the applications we shall consider, we can neglect inertia

ρv̇i = 0, i = 1, 2, 3 (2.6)

Thus the Navier-Stokes equations for incompressible flow at low Reynolds number, are

0 = − ∂p

∂χ1
+

∂

∂χ1

(
2µ
∂v1
∂χ1

)
+

∂

∂χ2

(
µ

(
∂v1
∂χ2

+
∂v2
∂χ1

))
+

∂

∂χ3

(
µ

(
∂v3
∂χ1

+
∂v1
∂χ3

))
(2.7)

0 = − ∂p

∂χ2
+

∂

∂χ2

(
2µ
∂v2
∂χ2

)
+

∂

∂χ3

(
µ

(
∂v2
∂χ3

+
∂v3
∂χ2

))
+

∂

∂χ1

(
µ

(
∂v1
∂χ2

+
∂v2
∂χ1

))
(2.8)

0 = − ∂p

∂χ3
+

∂

∂χ3

(
2µ
∂v3
∂χ3

)
+

∂

∂χ1

(
µ

(
∂v3
∂χ1

+
∂v1
∂χ3

))
+

∂

∂χ2

(
µ

(
∂v2
∂χ3

+
∂v3
∂χ2

))
(2.9)

we assume the fluid to be homogeneous, i.e., that the viscosity is independent of the position. So

∂µ

∂χ1
= 0,

∂µ

∂χ2
= 0,

∂µ

∂χ3
= 0 (2.10)

This limits the analyses to isothermal cases. The resulting error is discussed in section 5.7.
With this, we arrive at

0 = − ∂p

∂χ1
+ 2µ

∂

∂χ1

(
∂v1
∂χ1

)
+ µ

∂

∂χ2

(
∂v1
∂χ2

+
∂v2
∂χ1

)
+ µ

∂

∂χ3

(
∂v3
∂χ1

+
∂v1
∂χ3

)

0 = − ∂p

∂χ2
+ 2µ

∂

∂χ2

(
∂v2
∂χ2

)
+ µ

∂

∂χ3

(
∂v2
∂χ3

+
∂v3
∂χ2

)
+ µ

∂

∂χ1

(
∂v1
∂χ2

+
∂v2
∂χ1

)

0 = − ∂p

∂χ3
+ 2µ

∂

∂χ3

(
∂v3
∂χ3

)
+ µ

∂

∂χ1

(
∂v3
∂χ1

+
∂v1
∂χ3

)
+ µ

∂

∂χ2

(
∂v2
∂χ3

+
∂v3
∂χ2

)
(2.11)

Furthermore, we assume that any change in the χ3 direction dominates any change in the other
directions

∂

∂χ1
<<

∂

∂χ3
>>

∂

∂χ2
(2.12)

With these approximations, we arrive at

∂p

∂χ1
= µ

∂2v1
∂χ2

3

∂p

∂χ2
= µ

∂2v2
∂χ2

3

∂p

∂χ3
= 2µ

∂2v3
∂χ2

3

(2.13)



CHAPTER 2. MATHEMATICAL MODELLING 15

pad

journal

Z

v2h(χ1, χ2, t)

Vp

Up

χ2

χ1

χ3

Vj

Uj

α

Figure 2.3: Zoom of a part of figure Fig. 2.2

Assuming the pressure constant across the gap ( ∂p
∂χ3

= 0) and integrating Eq. (2.13) twice in the χ3

direction and rearranging we arrive at

v1 =
1

µ

∂p

∂χ1
(k1χ

2
3 + k2χ3 + k3)

v2 =
1

µ

∂p

∂χ2
(k4χ

2
3 + k5χ3 + k6)

v3 =
1

µ
(k7χ3 + k8) (2.14)

Where, k1 through k8 are integration constants and determined by the boundary conditions. We, apply
the following boundary conditions to (2.14)

Pad surface: (χ3 = 0)

v1 = 0

v2 = Up

v3 = Vp + Vinj

Journal surface: (χ3 = −h)
v1 = 0

v2 = Uj cos(α) − Vj sin(α)

v3 = −Vj cos(α) + Uj sin(α) (2.15)

Since the angle between journal and pad α (see Fig. 2.3) is small, then

cos(α) ≈ 1

sin(α) ≈ 0 (2.16)
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Thus, from (2.14), (2.15) and (2.16) we arrive at

v1 =
1

2µ

∂p

∂χ1
(χ2

3 + χ3h)

v2 =
1

2µ

∂p

∂χ2
(χ2

3 + χ3h) +
Up(χ3 + h)− Ujχ3

h

v3 =
(Vp − Vinj)(χ3 + h) + Vjχ3

h
(2.17)

The radial flow profile Vinj is most often zero. When inside an orifice it is non-zero. Figure 2.3 shows a
zoom of the oil film with indication of the boundary conditions. Figure 2.2 shows an area where Vinj is
non-zero. Note that the no slip condition is taken to apply - even inside the orifice area.

The further derivation follows that of [66], chapter 7. We write Eq. (2.5) in integral form as

∫ −h

0

(
∂v1
∂χ1

+
∂v2
∂χ2

+
∂v3
∂χ3

)
dχ3 = 0 (2.18)

By use of Eqs. (2.17), the first two terms of (2.18) become

∫ −h

0

(
∂v1
∂χ1

)
dχ3 =

∂

∂χ1

∫ −h

0

v1dχ3 + v1|χ3=−h
∂h

∂χ1
=

1

12

∂

∂χ1

(
h3

µ

∂p

∂χ1

)

∫ −h

0

(
∂v2
∂χ2

)
dχ3 =

∂

∂χ2

∫ −h

0

v2dχ3 + v2|χ3=−h
∂h

∂χ2
=

1

12

∂

∂χ2

(
h3

µ

∂p

∂χ2

)
−
Uj + Up

2

∂h

∂χ2
(2.19)

Henceforth, we assume that the tangential velocity of the pad is zero and drop the index on Uj, thus

U = Uj + Up (2.20)

The treatment of the third term of (2.18) differs slightly from that of [66] due to the extra injection terms.
We have

∫ −h

0

(
∂v3
∂χ3

)
dχ3 = [v3]

−h
0 = −Vj − Vp + Vinj (2.21)

For convenience, let us define the film thickness rate as

ḣ = Vj cos(α) + Vp ≈ Vj + Vp (2.22)

where

ḣ =
∂h

∂t
(2.23)

Now, applying Eq. (2.18) with Eq. (2.19), Eq.(2.20) and Eq. (2.22), we are left with

1

12

2∑

i=1

∂

∂χi

(
h3

µ

∂p

∂χi

)
=
U

2

∂h

∂χ2
+ ḣ− Vinj (2.24)
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gi

pinji

p

2r0i

∆i

Pad

Figure 2.4: The perpendicular orifice distance, radius and velocity profile.

The injection velocity profice can be written as the sum of the contributions from each orifice, thus

Vinj =

No∑

i=0

Vinji (2.25)

As in [55], the injection velocity profile is taken to be that of a pressure driven, fully developed, laminar
flow in a circular pipe (Poiseuille pipe flow). Thus

Vinji =
pinji − p

4µl0i
gi, i = 1, 2, ..., No (2.26)

where

gi(χ1, χ2) =

{
r20i −∆i(χ1, χ2)

2, ∆i < r0i
0, ∆i ≥ r0i

, i = 1, 2, ..., No (2.27)

and No is the number of orifices, l0i is the length of inlet i, pinji is the injection pressure and ∆i is the
perpendicular distance to orifice i. See Fig. 2.4 for an explanation.

Thus (pinji−p) is the pressure drop over the length of the pipe (inlet) number i. See [67] for a detailed
description of flow in pipes.

Inserting Eq. (2.26) and Eq. (2.27) into Eq. (2.24), we arrive at the modified Reynolds equation,
which is subject to all the assumptions made in this section.

1

12

2∑

i=1

∂

∂χi

(
h3

µ

∂p

∂χi

)
=
U

2

∂h

∂χ2
+ ḣ+

No∑

j=1

gj(p− pinjj)

4µl0j
(2.28)

As mentioned, the specific choice of flow profile has little influence on the solution for the pressure,
since the injection terms typically dominate in Eq. (2.28). Letting 1/(µl0j) approach infinity simply
yields the solution p = pinjj in the orifice domain, where gj is non-zero. This does however not mean that
the pressure is assumed constant in the orifice domain - simply that the solution happens to be close to
constant.
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2.2 Discretisation
Before we derive the discrete equations for the fluid and the solid, we introduce the discretisation method.

The discretisation is performed with second order serendipity finite elements. Serendipity elements
are second order elements, with midnodes on their edges. Since we are dealing with somewhat complex
geometries, the finite element is far more convenient than, e.g. the finite difference method. For example,
the finite element method is ideally suited to describe the circular orifices. Figure 2.5 shows a twenty node
threedimensional serendipity element. The local node numbers are shown.

1

2

3

4

5

6

7

8 9
10

11

12

13

14

15

16 17

18

19

20

Figure 2.5: Twenty node serendipity element.

The element is defined locally in the isoparametric coordinates (ξ, η, ζ). In Fig. 2.6 the coordinates are
seen mapped onto the element. These coordinates facilitate numerical integration using Gauss quadrature
as well as operations on relevant element fields.

If the element has a wetted surface, i.e., is in contact with the fluid, then the nodes of the relevant face
are numbered locally, and define an eight node twodimensional serendipity element. One such situation
is depicted in Fig. 2.7, where the surface defined by ξ = 1 is in contact with the fluid.

With the given numbering defined in Fig. 2.5, the isoparametric shape functions have the following
expressions.
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η

ξ

ζ

ζ
=
0ζ
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0.5

ζ
=
1

ξ =
−1

ξ =
−0
.5

ξ
=
0

ξ =
0.
5

ξ =
1

η = 0

η = 0.5

η = 1

η = −0.5η = −1
ζ
=
−
0.5

ζ
=
−
1

Figure 2.6: Isoparametric coordinates.

φi(ξ, η, ζ) =
1

8
(1 + ξξi)(1 + ηηi)(1 + ζζi)(ξξi + ηηi + ζζi − 2), i = 1, 2...8

φi(ξ, η, ζ) =
1

4
(1− ξ2)(1 + ηηi)(1 + ζζi), i = 9, 11, 13, 15

φi(ξ, η, ζ) =
1

4
(1− η2)(1 + ζζi)(1 + ξξi), i = 10, 12, 14, 16

φi(ξ, η, ζ) =
1

4
(1− ζ2)(1 + ξξi)(1 + ηηi), i = 17, 18, 19, 20 (2.29)

where ξi is the ξ value of node i and so forth.
Isoparametric coordinates are convenient, since they do not change from element to element, i.e. they

are independent of the specific elements shape, size, orientation and position. The (x1, x2, x3) coordinates
are given directly as function of the nodal positions and the isoparametric coordinates (ξ, η, ζ)

xi =

20∑

j=1

φj(ξ, η, ζ)xij , i = 1, 2, 3 (2.30)

where xij is the nodal position in xi = (x1, x2, x3) coordinates of node j.
As we shall see, to solve the equations governing the solid and the fluid, we need to be able to define

partial derivatives with respect to the inertial coordinates (x1, x2, x3) as well as the curvilinear coordinates
(χ1, χ2, χ3). The partial derivatives with respect to isoparametric coordinates can be written in therms
of partial derivatives with respect to inertial coordinates as
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Figure 2.7: Element with wetted surface.





∂
∂ξ
∂
∂η
∂
∂ζ





=




∂x1

∂ξ
∂x2

∂ξ
∂x3

∂ξ
∂x1

∂η
∂x2

∂η
∂x3

∂η
∂x1

∂ζ
∂x2

∂ζ
∂x3

∂ζ








∂
∂x1
∂

∂x2
∂

∂x3



 (2.31)

So to get the partial derivatives with respect to inertial coordinates, we simply invert the matrix. Thus





∂
∂x1
∂

∂x2
∂

∂x3



 =




∂x1

∂ξ
∂x2

∂ξ
∂x3

∂ξ
∂x1

∂η
∂x2

∂η
∂x3

∂η
∂x1

∂ζ
∂x2

∂ζ
∂x3

∂ζ




−1


∂
∂ξ
∂
∂η
∂
∂ζ





(2.32)

To get partial derivatives with respect to curvilinear coordinates is slightly more complicated. First
we define the inward normal of an element a as

a3 = a3k =
3∑

i,j=1

ejik
∂xj
∂ζ

∣∣∣∣
ξ=1

∂xi
∂η

∣∣∣∣
ξ=1

, k = 1, 2, 3 (2.33)

where ejik is the permutation symbol. In vector notation, thus

a3 =
∂x

∂ζ

∣∣∣∣
ξ=1

× ∂x

∂η

∣∣∣∣
ξ=1

(2.34)

Now, let us define the axial direction of the rotor as vr where the left hand rule applies, i.e., the rotor
is rotating clockwise with vr pointing out of the paper. Then the projection of this axis onto the surface
of an element is
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a1 = vr − (vr · a3)a3 (2.35)

finally, let us define

a2 = a3 × a1 (2.36)

We then normalize, to yield

b1 =
a1

|a1|
, b2 =

a2

|a2|
, b3 =

a3

|a3|
(2.37)

Note that in the present thesis, all analyses will assume the rotor to align with the x3 direction. However,
the above theory allows for axial rotor tilt inside the bearing.

The three vectors (b1,b2,b3) form the local basis of the curvilinear coordinate system (χ1, χ2, χ3).
Thus we may write





∂
∂χ1
∂

∂χ2
∂

∂χ3





=



b11 b12 b13
b21 b22 b23
b31 b32 b33







∂
∂x1
∂

∂x2
∂

∂x3



 (2.38)

Now, plugging in Eq. (2.32) we arrive at




∂
∂χ1
∂

∂χ2
∂

∂χ3





=



b11 b12 b13
b21 b22 b23
b31 b32 b33







∂x1

∂ξ
∂x2

∂ξ
∂x3

∂ξ
∂x1

∂η
∂x2

∂η
∂x3

∂η
∂x1

∂ζ
∂x2

∂ζ
∂x3

∂ζ




−1


∂
∂ξ
∂
∂η
∂
∂ζ





(2.39)

Now, with information of nodal positions in the inertial coordinates and rotor orientation, we can compute
partial derivatives in both inertial and curvilinear coordinates.

For more detail on isoparametric coordinates, see [68].

2.3 The fluid film
In section 2.1 the Reynolds equation was derived from the Navier-Stokes equations. The Reynolds equa-
tion can be solved in a variety of ways. Here we choose the finite element method. This is for two
reasons. Firstly, the solid will be discretised with the finite element method, so using it also for the fluid
makes communication between the two systems straight forward. Secondly, because of the orifices in the
lubricated surface, the geometry to be discretised is not simple. In previous studies [55, 61] the finite
difference method has been used. While it is easy to implement, the finite difference method is restricted
to rectangular grids, and thus requires many grid points to describe the circular orifice profiles.

Let us restate Eq. (2.28)

1

12

2∑

i=1

∂

∂χi

(
h3

µ

∂p

∂χi

)
=
U

2

∂h

∂χ2
+ ḣ+

No∑

i

gi(p− pinji)

4µl0i
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With the assumption of a piecewise smooth pressure profile, the Reynolds equation can be written in weak
form as

∫

Φ

1

12

2∑

i=1

∂

∂χi

(
h3

µ

∂p

∂χi

)
vdΦ =

∫

Φ

U

2

∂h

∂χ2
vdΦ +

∫

Φ

ḣvdΦ+

∫

Φ

No∑

i

gi(p− pinji)

4µl0i
vdΦ (2.40)

Where v is a test function, i.e., it is a function that satisfies the same boundary conditions as p. Applying
the divergence theorem to the left hand side we get

∫

Φ

1

12

2∑

i=1

∂

∂χi

(
h3

µ

∂p

∂χi

)
vdΦ =

∫

Γ

1

12

2∑

i=1

h3

µ

∂p

∂χi
nivdΓ−

∫

Φ

1

12

2∑

i=1

∂v

∂χi

h3

µ

∂p

∂χi
dΦ (2.41)

where ni = [n1, n2]
T is the outward normal of the boundary of Φ. Field quantities are now expanded in

terms of shape functions as

h =
∑

n∈F
hnφn, p =

∑

n∈F
pnφn, v =

∑

n∈F
vnφn, gi =

∑

n∈F
ginφn (2.42)

where F is the set of nodes in the fluid. Plugging this into Eqs. (2.40) and (2.41) produces
∫

Γ

1

12

2∑

i=1

(∑
n∈F hnφn

)3

µ

(∑

n∈F
pn
∂φn
∂χi

)
ni

∑

m∈F
(φmvm)dΓ−

∫

Φ

1

12

2∑

i=1

(∑

n∈F
vn
∂φn
∂χi

) (∑
n∈F hnφn

)3

µ

(∑

n∈F
pn
∂φn
∂χi

)
dΦ =

∫

Φ

U

2

(∑

n∈F
hn
∂φn
∂χ2

)(∑

n∈F
vnφn

)
dΦ+

∫

Φ

(∑

n∈F
ḣnφn

)(∑

n∈F
vnφn

)
dΦ+

∫

Φ

No∑

i=1

((∑
n∈F ginφn

)

4µl0i

((∑

n∈F
pnφn

)
− pinji

))(∑

n∈F
vnφn

)
dΦ (2.43)

Since the shape functions φn, n = 1, 2, 3..., are also test functions, Eq. (2.43) must hold for any choice
of vn, n = 1, 2, 3.... Thus we can eliminate vn and the summation over it. We arrive at the equations

∫

Γ

1

12

2∑

i=1

(∑
n∈F hnφn

)3

µ

(∑

n∈F
pn
∂φn
∂χi

)
niφmdΓ−

∫

Φ

1

12

2∑

i=1

∂φm
∂χi

(∑
n∈F hnφn

)3

µ

(∑

n∈F
pn
∂φn
∂χi

)
dΦ =

∫

Φ

U

2

(∑

n∈F
hn
∂φn
∂χ2

)
φmdΦ+

∫

Φ

(∑

n∈F
ḣnφn

)
φmdΦ+

∫

Φ

No∑

i=1

((∑
n∈F ginφn

)

4µl0i

((∑

n∈F
pnφn

)
− pinji

))
φmdΦ (2.44)
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We can state the discretised Reynolds equation more simply as

∑

n∈F
Amnpn +

No∑

i=1

Wmipinji = rm, m ∈ F (2.45)

where

Amn =

∫

Φ

1

12

2∑

i=1

∂φm
∂χi

(∑
n∈F hnφn

)3

µ

∂φn
∂χi

dΦ +

∫

Φ

No∑

i=1

∑
k∈F gikφk
4µl0i

φnφmdΦ (2.46)

,

Wmi = −
∫

Φ

∑
n∈F ginφn
4µl0i

φmdΦ, i = 1, 2, ..., No (2.47)

and

rm =

∫

Γ

1

12

2∑

i=1

(∑
n∈F hnφn

)3

µ

(∑

n∈F
pn
∂φn
∂χi

)
niφmdΓ−

∫

Φ

U

2

(∑

n∈F
hn
∂φn
∂χ2

)
φmdΦ−

∫

Φ

(∑

n∈F
ḣnφn

)
φmdΦ (2.48)

This accounts for the pressure distribution in the oil film. Let dim(F) denote the cardinality of the set F.
As we have dim(F)+No variables and only dim(F) equations, the system as such has no unique solution.
The following section considers the flow through the valve, and will provide the equations needed for a
unique solution to exist.

2.3.1 The valve
The model of the valve is distinctly simple in order to keep model complexity reasonable. Real life valves
are rather complex and display nonlinear behaviour. If the valve is overlapped, there exist positions of
the valve piston, where supply to both orifices is shut off. If the valve is underlapped, there is always
a flow to both orifices, albeit this flow may vary. It can be argued that an underlapped valve can be
captured better by a linear model, than an overlapped valve, since a flow shut off is a strongly nonlinear
phenomenon. The present valve model is that of an underlapped valve. This is however not only to make
the modelling easier; a constant lubricant supply is desirable. The main assumptions with regard to the
valve are as follows

• The leak flow can be prescribed, i.e., is independent of the orifice pressure.

• The internal orifice to orifice flow-pressure impedance 1/Kpq is constant.

A refinement of the valve model would most prudently introduce a dependency between the leak flow
and the orifice pressure. The resulting functional would depend on the reservoir pressure. Also, one
would make the flow-pressure impedance depend on the flow. Such refinements would introduce further
nonlinearities into the model. We shall refrain from this in the present study.
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qv = 0

qv > 0

MasterSlave

Slave Master
−qv + qL qv + qL

qL qL

Figure 2.8: Schematic of generic underlapped servo-valve. The valve is shown in two situations. Top: No
driven flow. Bottom: A positive piston flow, showing the positive orientation of the valve.

Figure 2.8 shows a servo-valve with two orifices and illustrates the concept of "master" and "slave"
orifices. The master orifice is defined as the orifice through which the flow increases when qv is increased.
Henceforth, let us denote qv the "piston flow".

Figure 2.9 shows the pressure driven flow in the servo-valve. Which will pass from the high pressure
orifice to the low pressure orifice. The total flow through an orifice is the linear superposition of leak flow,
piston flow and the pressure driven flow. Consider the special case of one valve connecting two orifices i
and j, i.e., No = 2. If orifice i (master) and j (slave) are connected as a pair, the flows through them qi
and qj would be computed as.

{
qi
qj

}
=

[ −Kpq Kpq

Kpq −Kpq

]{
pinji

pinjj

}
+

{
qv
−qv

}
+

{
qL
qL

}
(2.49)

i j

Kpq(pinji − pinjj)

Figure 2.9: Schematic of generic underlapped servo-valve. The pressure driven flow is illustrated.

The piston flow is described by the second order ordinary differential equation [47]

q̈v + 2ξvωvq̇v + ω2
vqv = ω2

vKvuv (2.50)

or
1

ω2
vKv

q̈v +
2ξv

ωvKv
q̇v +

1

Kv
qv = uv (2.51)
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If more servo-valves are included, an uncoupled system of equations results, thus.

Mq-qq̈v +Dq-qq̇v +Kq-qqv = uv (2.52)

From the derivation of the modified Reynolds equation (2.28) we know that the flow through a given
orifice into the gap can be written in terms of the pressure difference field over the orifice as

qi =

∫

Φ

gi
1

4µl0i

(
pinji − p

)
dΦ (2.53)

where gi are shape functions, that describe the velocity profile in the orifice. Plugging Eq. (2.53) into Eq.
(2.49) we arrive at





∫
Φ gi

1
4µl0i

(
pinji − p

)
dΦ

∫
Φ
gj

1
4µl0j

(
pinjj − p

)
dΦ



 =

[ −Kpq Kpq

Kpq −Kpq

]{
pinji

pinjj

}
+

{
qv
−qv

}
+

{
qL
qL

}
(2.54)

again, expanding in terms of shape functions




∫
Φ

(∑
n∈F ginφn

)
1

4µl0i

((
pinji −

∑
n∈F pnφn

))
dΦ

∫
Φ

(∑
n∈F gjnφn

)
1

4µl0j

((
pinjj −

∑
n∈F pnφn

))
dΦ



 =

[ −Kpq Kpq

Kpq −Kpq

]{
pinji

pinjj

}
+

{
qv
−qv

}
+

{
qL
qL

}
(2.55)

or

∑

m∈F
Wmipm +

No∑

m=1

Qimpinjm +

No∑

m=1

Kpqimpinjm = rinji, i = 1, 2, ..., No (2.56)

where, in this case, No = 2. The system matrices are defined as

Qin =

[
Q11 Q12

Q21 Q22

]
=



∫
Φ

∑
n∈F g1nφn

4µl01
dΦ

∫
Φ

∑
n∈F g2nφn

4µl02
dΦ


 , (2.57)

Kpqin =

[
Kpq11 Kpq12

Kpq21 Kpq22

]
=

[
Kpq −Kpq

−Kpq Kpq

]
(2.58)

and
rinji = {r}inj =

{
qv + qL
−qv + qL

}
(2.59)

Restating Eq. (2.45) for the present special case of one servo-valve connecting two orifices (No=2)
yields

∑

n∈F
Amnpn +

2∑

i

Wmipinji = rm, m ∈ F (2.60)
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Thus, Eq. (2.60) and Eq. (2.56) make up the equations that describe the oil film pressure distribution,
as well as the injection pressures. Extending to a system of two servo-valves, 1 and 2, connecting orifices
1 to 2 and 3 to 4, respectively, we get

∑

n∈F
Amnpn +

4∑

i

Wmipinji = rm, m ∈ F

∑

m∈F
Wmipm +

4∑

m

Qimpinjm +
4∑

m

Kpqmpinjm = rinji, i = 1, 2, 3, 4 (2.61)

With this, the last four equations extend to




WT
1

WT
2

WT
3

WT
4


 {p}+




∫
Φ

∑
n∈F g1nφn

4µl01
dΦ 0 0 0

0
∫
Φ

∑
n∈F g2nφn

4µl02
dΦ 0 0

0 0
∫
Φ

∑
n∈F g3nφn

4µl03
dΦ 0

0 0 0
∫
Φ

∑
n∈F g4nφn

4µl04
dΦ








pinj1

pinj2

pinj3

pinj4





+




Kpq −Kpq 0 0

−Kpq Kpq 0 0

0 0 Kpq −Kpq

0 0 −Kpq Kpq








pinj1

pinj2

pinj3

pinj4





=





qv1
−qv1
qv2
−qv2





+





qL1
qL1
qL2
qL2





(2.62)

where W1 = Wm1, W2 = Wm2, W3 = Wm3 and W4 = Wm4 for m ∈ F. Note that any orifice only
couples to the orifices that connect to the same valve. Therefore, the matrix is block diagonal.

The extension to more servo-valves is trivial. In general, we write
[

A W
WT Q+Kpq

]{
p
pinj

}
=

{
r
rinj

}
(2.63)

Since A, Q and Kpq are symmetric, the system of equations is symmetric. This is only achieved if the
Reynolds equation is stated in the form of Eq. (2.28). In the shown examples we have talked of one orifice
per pad, i.e., one valve to couple two orifices. However, the equations are equally valid for cases with
"orifice arrays", i.e. situations where lubricant is injected by the same servo-valve to many orifices on the
same pad. The way to accomplish this, is to alter the laminar flow profile shape function gi, so that it is
defined in all the orifices of pad i. I.e. it will be non zero on many domains inside each pad. In figure
2.1 the flow profile shape function is non-zero in two domains inside one pad, thus this pad has an orifice
array consisting of two orifices.

2.3.2 Fluid boundary conditions
The fluid is subject to two different boundary conditions.
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• # 1: The pressure on the boundary (Γ) is set to zero. In reality the pressure is equal to the ambient
pressure, however, as long as the fluid is incompressible, we may simply add the ambient pressure
to all pressure results obtained, if we wish. Since the ambient pressure is hydrostatic, and acts on
all pad faces, it does not affect the resulting force on the pads.

• # 2: The pressure gradient on the boundary is set to zero. This is sometimes called the Reynolds
condition.

• # 3: Any computed negative pressure is set to zero. This is the Gumbell cavitation condition.

The first of these boundary conditions is a Dirichlet boundary condition while the second is a Neumann
boundary condition. As it turns out, in this case, if condition #1 is satisfied, then condition #2 is
automatically also satisfied. This can be realised by considering Eq. (2.48). The boundary condition is
invoked by the method of zeros and ones, see, e.g., [68].

Condition #3 is the simplest possible cavitation model. Since TPJBs generally do not cavitate, the
condition is seldom needed. This holds true in particular for the linearised analyses (stability and harmonic
frequency response) since they assume infinitesimal perturbations about the static equilibrium state, which
does most often not involve cavitation.

2.4 The pads
The solid is taken to be linearly elastic and isotropic. Small strains and rotations suffice for the description
of the deformed state. The governing equation is traditionally given directly in integral form as the
principle of virtual work

3∑

i,j,k,l=1

∫

Π

LijklεklδεijdΠ = −
3∑

i=1

∫

Π

ρüiδuidΠ+

3∑

i=1

∫

Λ

TiδuidΛ (2.64)

where εkl is the strain tensor, ρ is the density of the solid, Ti denotes the surface traction, ui is the
displacement vector δ denotes an increment and Lijkl is the constitutive tensor for the material, and is
given by

Lijkl =
E

2(1 + ν)

(
δikδjl + δilδjk +

2ν

1− 2ν
δijδkl

)
(2.65)

where δjl is Kronecker’s delta. Since we consider the strains and rotations to be small, the relation between
displacement and strain becomes

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, 2, 3 (2.66)

where E is Young’s modulus and ν is Poisson’s ratio. From equations Eq. (2.64) and Eq. (2.65) the
stiffness and mass matrices of the solid can be derived. We expand the displacement vector field and
traction field in terms of shape functions as

ui =
∑

n∈S
uinφn, Ti =

∑

n∈S
Tinφn, (2.67)



CHAPTER 2. MATHEMATICAL MODELLING 28

Where uin is the displacement of node n in direction xi, Tin is the traction of node n in direction xi and
S is the set of nodes that belong to the solid. It is convenient to introduce

dj = uin, j = 3(n− 1) + i, i = 1, 2, 3, n ∈ S (2.68)

and

ψij = δikφn, j = 3(n− 1) + k, i, k = 1, 2, 3, n ∈ S (2.69)

that is

dj = [u11 u12 u13 u21 ...]
T (2.70)

and

ψij =



φ1 φ2

φ1 φ2 ...
φ1 φ2


 (2.71)

Thus, we can write the displacement field as

ui =
∑

n∈S3
ψindn (2.72)

where S3 is the set of degrees of freedom in the (discrete) solid. thus, plugging into Eq. (2.66), we get

εij =
1

2

∑

n∈S
uin

∂φn
∂xj

+ ujn
∂φn
∂xi

=
1

2

∑

n∈S3

(
∂ψin

∂xj
+
∂ψjn

∂xi

)
dn (2.73)

and Eq. (2.64) becomes
3∑

i,j,k,l=1

∫

Π

Lijkl
1

4

∑

m∈S3

(
∂ψkm

∂xl
+
∂ψlm

∂xk

)
dm

∑

m∈S3

(
∂ψin

∂xj
+
∂ψjn

∂xi

)
δdndΠ =

−
3∑

i=1

∫

Π

ρ
∑

m∈S3
ψimd̈m

∑

n∈S3
ψinδdndΠ+

3∑

i=1

∫

Λ

∑

m∈S3
Timφm

∑

n∈S3
ψinδdndΛ (2.74)

Since the equations must hold for any δdn, we can eliminate δdn to produce
3∑

i,j,k,l=1

∫

Π

Lijkl
1

4

∑

m∈S3

(
∂ψkm

∂xl
+
∂ψlm

∂xk

)
dm

(
∂ψin

∂xj
+
∂ψjn

∂xi

)
dΠ =

−
3∑

i=1

∫

Π

ρ
∑

m∈S3
ψimd̈mψindΠ+

3∑

i=1

∫

Λ

∑

m∈S3
TimφmψindΛ, n ∈ S3 (2.75)

or

∑

m∈S3




3∑

i,j,k,l=1

∫

Π

Lijkl
1

4

(
∂ψkm

∂xl
+
∂ψlm

∂xk

)(
∂ψin

∂xj
+
∂ψjn

∂xi

)
 dΠdm =

−
∑

m∈S3

[
3∑

i=1

∫

Π

ρψimψindΠ

]
d̈m +

3∑

i=1

∫

Λ

∑

m∈S3
TimφmψindΛ, n ∈ S3 (2.76)
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thus arriving at the algebraic equations
∑

m∈S3
Ksnmdm +

∑

m∈S3
Msnmd̈m = fn, n ∈ S3 (2.77)

or simply

Ksd+Msd̈ = f (2.78)

where

Ksnm =

3∑

i,j,k,l=1

∫

Π

Lijkl
1

4

(
∂ψkm

∂xl
+
∂ψlm

∂xk

)(
∂ψin

∂xj
+
∂ψjn

∂xi

)
dΠ, m, n ∈ S3

Msnm =
3∑

i=1

∫

Π

ρψimψindΠ, m, n ∈ S3

fn =
3∑

i=1

∫

Λ

∑

m∈S3
TimφmψindΛ, n ∈ S3 (2.79)

These equations are derived in many textbooks, for instanve in [68].

2.4.1 Pad boundary conditions
The pads are free to rotate, that is, the only resistance to rotation is that coming from the fluid. But
they are not free to translate. That is, we need to invoke a pivoting boundary condition. The simplest
way to do this is to constrain a line of nodes. This is unphysical, since it corresponds to a pad, which
balances on an infinitely sharp knifes edge, which is not the real life case. In a rigid body model that will
not matter, since the pad does not deform. In a compliant pad model it introduces a mesh dependency
and a stress singularity; as the mesh is refined, the pad will become increasingly "soft" and the stresses
around the pivot will go to infinity. The solution will never converge. Other authors [37] have tackled this
problem simply by supporting the pads along two lines of nodes. However, then the pad rotation must be
introduced ad hoc.

A realistic pivot boundary condition can be invoked with relative ease. The idea is illustrated in Fig.
2.10. The solid stiffness matrix is transformed to a rotated coordinate system, where one coordinate axis
is aligned with the direction from the relevant node to the pivot point. In this coordinate system, there
is one, and only one coordinate direction corresponding to axial movement, i.e., movement toward the
pivot. The degrees of freedom pointing in that coordinate direction are constrained with the method
of zeros and ones [68]. After the degrees of freedom have been constrained, the solid stiffness matrix
is transformed back to the (x1,x2,x3) coordinate system. This means that invoking the pivot boundary
condition, requires one coordinate transformation for each node to be constrained. Keep in mind though,
that only the parts of the solid stiffness matrix, that couple to the relevant node, need be transformed.

It may seem tempting to simply add very stiff springs between the pivot point and the nodes. This
will, however, introduce high frequencies into the system, and produce numerical difficulties.
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pad

pivot (rigid)
pivot point

Figure 2.10: The pivot boundary condition. The pivot point is marked with an ×. A zoom is shown,
where a node on the boundary is being constrained. The rotated pivot coordinate system is shown.

2.5 The rotor
The rotor is described as a two by two particle system, with provision for stiffness, damping and inertia.
It is given directly as

[
kr11 kr12
kr21 kr22

]{
dr1
dr2

}
+

[
cr11 cr12
cr21 cr22

]{
ḋr1

ḋr2

}
+

[
mr 0
0 mr

]{
d̈r1

d̈r2

}
=

{
fr1
fr2

}
(2.80)

As mentioned, henceforth the rotor shall be assumed to align with the x3 coordinate direction, and
move only laterally. The stiffness and damping matrices include off diagonal terms, to account for either
structural damping in the rotor or aerodynamic cross coupling in a component on the rotor.

2.6 Coupling of the fluid, solid, valve and rotor
With all the subsystems and coupling equations defined, the global system of equations may be compiled.
Figure 2.11 shows an example of a bearing with four pads connected in pairs by two servo-valves. The
valves are responding to a rotor displacement.

Let us restate the equations for the fluid, the solid, the valve and the rotor.
Fluid: [

A W
WT Q+Kpq

]{
p
pinj

}
=

{
r
rinj

}
,

Solid:

Kd+Md̈ = f

Valve:
Mq-qq̈v +Dq-qq̇v +Kq-qqv = uv

Rotor:
[
kr11 kr12
kr21 kr22

]{
dr1
dr2

}
+

[
cr11 cr12
cr21 cr22

]{
ḋr1

ḋr2

}
+

[
mr 0
0 mr

]{
d̈r1

d̈r2

}
=

{
fr1
fr2

}
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Eq. (2.51)

Eq. (2.78)

Eq. (2.53)

Eq. (2.80)

Eq. (2.63)

Figure 2.11: Generic rendering of the global system consisting of oil film (fluid), pads (solid), valve and
rotor. Some of the relevant equations are indicated.

With slight abuse of notation, we can write the dependencies as

r = r(d, ḋ,dr, ḋr)

A = A(d,dr)

f = f(p)

fr = fr(p)

uv = uv(dr, ḋr, ...) (2.81)

Here we have indicated how the equations depend on each other. Immediately we see that the equations
are nonlinear, since the parameters of one set of equations depend on the solution to the other set of
equations.

With this, we may write the equations unified as

Nodal solid equations: Msd̈ + Ksd = f(p)

Rotor equations: Mrd̈r + Drḋr + Krdr = fr(p)

Nodal pressure equations: A(d,dr)p + Wpinj = r(d, ḋ,dr, ḋr)

Injection pressure equations: WTp + (Q+Kpq)pinj = rinj(qv)

Valve flow equations: Mq-qq̈v + Dq-qq̇v + Kq-qqv = uv(dr, ḋr, ...)

We define the control system signal as the sum of proportional and derivative (P-D) contributions, as well
as a reference signal. The P-D contributions respond to rotor movement. Thus

uv = −GPdr −GDḋr + uvr (2.82)
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Moving the control system gains to the left hand side, the servo-valve equations are written as

Mq-qq̈v + Dq-qq̇v + Kq-qqv +GPdr +GDḋr = uvr (2.83)

The matrices GP and GD are the matrices of control system proportional and derivative gains. The vector
uvr represents the vector of reference signals. In all analyses in this study, the reference signal is set to
zero.

In matrix form, we can write




Ms
Mr

Mq-q








d̈

d̈r
p̈
p̈inj

q̈v





+




Dr

GD Dq-q








ḋ

ḋr
ṗ
ṗinj

q̇v





+




Ks
Kr

A W
WT Q+Kpq

GP Kq-q








d
dr
p
pinj

qv





=





f
fr
r
rinj

uvr





(2.84)

These equations are the starting point for any of the analyses presented in this thesis, be it in the time
domain or frequency domain, linear or nonlinear.

2.7 Linearisation
From Eq. (2.84) let us define the residual equations.





resf
resfr
resr
resrinj
resuvr





=




Ms
Mr

Mq-q








d̈

d̈r
p̈
p̈inj

q̈v





+




Dr

GD Dq-q








ḋ

ḋr
ṗ
ṗinj

q̇v





+




Ks
Kr

A W
WT Q

GP Kq-q








d
dr
p
pinj

qv





−





f
fr
r
rinj

uvr





(2.85)

The left hand side of Eq. (2.85) must be identically zero, for Eq. (2.84) to be satisfied. Let us seek the
linear part of Eq. (2.85). Since the left hand side is identically zero (thus constant, regardless of solution),
its derivative vanishes. We may therefore write the first order taylor expansion of Eq. (2.85) as
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∂resf
∂d̈T

∂resf
∂d̈T

r

∂resf
∂p̈T

∂resf
∂p̈T

inj

∂resf
∂q̈T

v

∂resfr

∂d̈T

∂resfr

∂d̈T
r

∂resfr
∂p̈T

∂resfr
∂p̈T

inj

∂resfr
∂q̈T

v

∂resr
∂d̈T

∂resr
∂d̈T

r

∂resr
∂p̈T

∂resr
∂p̈T

inj

∂resr
∂q̈T

v

∂resrinj

∂d̈T

∂resrinj

∂d̈T
r

∂resrinj

∂p̈T

∂resrinj

∂p̈T
inj

∂resrinj

∂q̈T
v

∂resuT
vr

∂d̈T

∂resuT
vr

∂d̈T
r

∂resuT
vr

∂p̈T

∂resuT
vr

∂p̈T
inj

∂resuT
vr

∂q̈T
v








δd̈

δd̈r
δp̈
δp̈inj

δq̈T
v





+




∂resf
∂ḋT

∂resf
∂ḋT

r

∂resf
∂ṗT

∂resf
∂ṗT

inj

∂resf
∂q̇T

v

∂resfr

∂ḋT

∂resfr

∂ḋT
r

∂resfr
∂ṗT

∂resfr
∂ṗT

inj

∂resfr
∂q̇T

v

∂resr
∂ḋT

∂resr
∂ḋT

r

∂resr
∂ṗT

∂resr
∂ṗT

inj

∂resr
∂q̇T

v

∂resrinj

∂ḋT

∂resrinj

∂ḋT
r

∂resrinj

∂ṗT

∂resrinj

∂ṗT
inj

∂resrinj

∂q̇T
v

∂resuT
vr

∂ḋT

∂resuT
vr

∂ḋT
r

∂resuT
vr

∂ṗT

∂resuT
vr

∂ṗT
inj

∂resuT
vr

∂q̇T
v








δḋ

δḋr
δṗ
δṗinj

δq̇T
v





+




∂resf
∂dT

∂resf
∂dT

r

∂resf
∂pT

∂resf
∂pT

inj

∂resf
∂qT

v

∂resfr
∂dT

∂resfr
∂dT

r

∂resfr
∂pT

∂resfr
∂pT

inj

∂resfr
∂qT

v

∂resr
∂dT

∂resr
∂dT

r

∂resr
∂pT

∂resr
∂pT

inj

∂resr
∂qT

v

∂resrinj

∂dT

∂resrinj

∂dT
r

∂resrinj

∂pT

∂resrinj

∂pT
inj

∂resrinj

∂qT
v

∂resuT
vr

∂dT

∂resuT
vr

∂dT
r

∂resuT
vr

∂pT

∂resuT
vr

∂pT
inj

∂resuT
vr

∂qT
v








δd
δdr
δp
δpinj

δqv





=





δf
δfr
δr
δrinj

δuvr





(2.86)

where δ denotes a small perturbation. This amounts to




Ms
Mr

Mq-q








δd̈

δd̈r
δp̈
δp̈inj

δq̈v





+




Dr
∂resr
∂ḋT

∂resr
∂ḋT

r

GD Dq-q








δḋ

δḋr
δṗ
δṗinj

δq̇v





+




Ks
∂resf
∂pT

Kr
∂resfr
∂pT

∂resr
∂dT

∂resr
∂dT

r
A W

WT Q
∂resrinj

∂qT
v

GP Kq-q








δd
δdr
δp
δpinj

δqv





=





δf
δfr
δr
δrinj

δuvr





(2.87)

Some terms we recognise from previous derivations. Others must be investigated to yield explicit
expressions. These are
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∂resr

∂dT
=
∂resrm
∂di

=
∑

n∈F

∂Amn

∂di
pn − ∂rm

∂di
, m ∈ F, i ∈ S3 (2.88)

∂resr

∂dT
r

=
∂resrm
∂dri

=
∑

n∈F

∂Amn

∂dri
pn − ∂rm

∂dri
, m ∈ F, i = 1, 2, 3 (2.89)

∂resr

∂ḋT
=
∂resrm

∂ḋi
= −∂rm

∂ḋi
, m ∈ F, i ∈ S3 (2.90)

∂resr

∂ḋT
r

=
∂resrm

∂ḋri
= −∂rm

∂ḋri
, m ∈ F, i = 1, 2, 3 (2.91)

∂resf

∂pT
=
∂fn
∂pi

, n ∈ S3, i ∈ F (2.92)

∂resfr
∂pT

=
∂frk
∂pi

, k = 1, 2, 3, i ∈ F (2.93)

∂resrinj

∂qT
v

= −
∂rinjj

∂qvi
i, j = 1, 2, ...Number of valves (2.94)

The derivative of the right hand side of the Reynolds equation with respect to nodal displacements is

∂rm
∂di

=
∂

∂di

(
−
∫

Φ

U

2

(
N∑

n=1

hn
∂φn
∂χ2

)
φmdΦ−

∫

Φ

(
N∑

n=1

ḣnφn

)
φmdΦ

)
=

−
∫

Φ

U

2

(
N∑

n=1

∂hn
∂di

∂φn
∂χ2

)
φmdΦ (2.95)

Note that we have invoked the Reynolds condition a priori. As such, the above expression is only valid
for cases where this applies. Similarly we get

∂rm
∂dri

= −
∫

Φ

U

2

(
N∑

n=1

∂hn
∂dri

∂φn
∂χ2

)
φmdΦ (2.96)

∂rm

∂ḋi
= −

∫

Φ

(
N∑

n=1

∂ḣn

∂ḋi
φn

)
φmdΦ = −

∫

Φ

(
N∑

n=1

∂hn
∂di

φn

)
φmdΦ (2.97)

∂rm

∂ḋri
= −

∫

Φ

(
N∑

n=1

∂ḣn

∂ḋri
φn

)
φmdΦ = −

∫

Φ

(
N∑

n=1

∂hn
∂dri

φn

)
φmdΦ (2.98)

(2.99)

All of these equations require computation of the derivative of oil film thickness with respect to nodal or
rotor displacement. This is a purely kinematic quantity, see figure 2.12 for a schematic of the concept.

Similarly, the derivation of the Reynolds equation system matrix is
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x1

journal

pad

x2

node n
ddi

∂hn

∂di

Figure 2.12: Schematic showing the kinematic relation between film thickness and nodal displacement.

∂Amn

∂dj
=

∫

Φ

1

12

2∑

i=1

∂φm
∂χi

3

(∑
n∈F hnφn

)2

µ

∂φn
∂χi

(∑

n∈F

∂hn
∂dj

φn

)
dΦ (2.100)

∂Amn

∂drj
=

∫

Φ

1

12

2∑

i=1

∂φm
∂χi

3

(∑
n∈F hnφn

)2

µ

∂φn
∂χi

(∑

n∈F

∂hn
∂drj

φn

)
dΦ (2.101)

where the chain rule has been applied. The nodal force derived with respect to the pressure is essentially
an inward projection and integration of a unit pressure, i.e.

∂resf

∂pT
=
∂fn
∂pi

=
∂

∂pi




3∑

j=1

∫

Λ

∑

m∈S3
TjmφmψjndΛ


 =

3∑

j=1

∫

Λ

∑

m∈S3

∂Tjm
∂pi

φmψjndΛ = −
3∑

j=1

∫

Λ

∑

m∈S3
aimφmψjndΦ (2.102)

where aim is the outward normal of node m. For the purpose of force projection, the error from assuming
pads and rotor surfaces parallel is vanishing. Thus, we may write for the rotor force

∂resfr
∂pT

=
∂frk
∂pi

= −
∑

n∈S3
akn

∂fn
∂pi

(2.103)

With this, the system matrices in Eq. (2.87) may be computed.

2.8 Pseudo modal reduction
Since the solid typically contains a large number of degrees of freedom, there may be situations where
solution time is prohibitive, for instance in a parameter study. For these situations, it may be useful to
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implement a pseudo modal reduction. We approximate the nodal displacements in terms of the pseudo
modal vector b as

d = Vsb (2.104)

The matrix Vs contains in its columns some of the eigenmodes of vibration of the solid, thus it satisfies

KsVs = MsVsΛ (2.105)

where Λs contains the squares of the corresponding solid eigenfrequencies in its diagonal and zeros else-
where. Also, we pre-multiply the solid equations by VT

s . With this, the linear augmented system (2.87)
becomes




VT
s MsVs

Mr

Mq-q








δb̈

δd̈r
δp̈
δp̈inj

δq̈v





+




Dr
∂resr
∂ḋT

Vs
∂resr
∂ḋT

r

GD Dq-q








δḃ

δḋr
δṗ
δṗinj

δq̇v





+




VT
s KsVs VT

s
∂resf
∂pT

Kr
∂resfr
∂pT

∂resr
∂dT Vs

∂resr
∂dT

r
A W

WT Q
∂resrinj

∂qT
v

GP Kq-q








δb
δdr
δp
δpinj

δqv





=





VT
s δf

δfr
δr
δrinj

δuvr





(2.106)

The approximation can be applied to the original nonlinear augmented form (2.84) with equal sim-
plicity. Generally, the more modes included, the more accurate the reduction is. Later in this thesis,
a convergence study is performed, so as to determine a sensible compromise in terms of the number of
modes to use.

2.9 Condensation
Although the fluid system contains less degrees of freedom than the solid, its size is still substantial. In
the linear case, the fluid may be condensed away with no loss of accuracy, i.e. with no assumptions.

Consider the linear augmented equations (2.87). Generally only the force vector will be perturbed,
thus much of the right hand side can be set to zero as
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δf
δfr
δr
δrinj

δuvr





=





δf
δfr
0
0
0





(2.107)

With this, let us write the pressure expression

∂resr

∂ḋT
δḋ+

∂resr

∂ḋT
r
δḋr +

∂resr

∂dT
δd+

∂resr

∂dT
r
δdr +Aδp+Wδpinj = 0 (2.108)

Now, solving for the pressure increment

δp = −A−1

(
∂resr

∂ḋT
δḋ+

∂resr

∂ḋT
r
δḋr +

∂resr

∂dT
δd+

∂resr

∂dT
r
δdr +Wδpinj

)
(2.109)

Substituting this expression for the pressure increment into (2.87) we get the condensed system
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δḋr
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(2.110)

Note how the pressure is no longer explicitly a part of the problem. It manifests itself purely as a force
on the solid and the rotor. If we only consider the passive part of the system, the condensed equations
are simplified to

[
Ms

Mr

]{
δd̈

δd̈r

}
+




−∂resf
∂pT A−1 ∂resr

∂ḋT
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δḋ

δḋr

}
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∂pT A−1 ∂resr

∂dT
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∂dT
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{
δd
δdr

}
=

{
δf
δfr

}
(2.111)
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For clarity, we split the system into solid and fluid contributions, thus

[
Ms

Mr

]

︸ ︷︷ ︸
structural mass matrix

{
δd̈

δd̈r

}
+




[

Dr

]

︸ ︷︷ ︸
structural damping matrix

+




−∂resf
∂pT A−1 ∂resr

∂ḋT
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∂ḋT
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−∂resfr
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︸ ︷︷ ︸
fluid damping matrix




{
δḋ

δḋr

}
+
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Kr

]

︸ ︷︷ ︸
structural stiffness matrix
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︸ ︷︷ ︸
fluid stiffness matrix




{
δd
δdr

}
=

{
δf
δfr

}
(2.112)

2.9.1 Pseudo modal reduction of the condensed system
Just as we can perform a pseudo modal reduction of the augmented linear and nonlinear equations, we
can perform one on the condensed system. Following the same methodology as in section 2.8 the pseudo
modal reduction of Eq. (2.110) becomes.
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∂ḋT
Vs −VT

s
∂resf
∂pT A−1 ∂resr

∂ḋT
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(2.113)

Equally, the pseudo modal reduction of the passive system in Eq. (2.112) becomes
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{
VT

s δf

δfr

}
=

[
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s MsVs
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]

︸ ︷︷ ︸
structural mass matrix
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}
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structural damping matrix
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︸ ︷︷ ︸
fluid damping matrix
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}
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structural stiffness matrix
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︸ ︷︷ ︸
fluid stiffness matrix




{
δb
δdr

}
(2.114)

If Vs contains only the first mode of each pad, the rigid body mode, then the equations in (2.114) are
equivalent to the equations presented by [21]. As mentioned, Eqs. (2.113) and (2.114) (for the ascive and
passive cases, respectively) are the most compact form, which still serves to evaluate rotor-bearing local
stability. Note that they do not assume stationary harmonic motion. Thus, they shall be the starting
point of the stability analyses later in this thesis.

2.10 Time domain analysis
Generally, time domain analysis has its merits when solving the nonlinear equations, as it handles nonlin-
earity in a straight forward manner. Thus time domain analysis applies to either the augmented equations
(2.84) or the corresponding pseudo modal reduction. There are many ways to perform time domain ana-
lysis, depending on the specific situation. The explicit form of the Newmark algorithm is well known and
widely used in time domain analysis. If the explicit form of the Newmark method is implemented to Eqs.
(2.84), the pseudo algorithm is
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set d, ḋ, dr, ḋr, qv, q̇v

solve
[

A W
WT Q+Kpq

]{
p
pinj

}
=

{
r
rinj

}

compute f , fr, uv

solve for d̈ : Msd̈ = f −Ksd

solve for d̈r : Mrd̈r = fr −Drḋr −Krdr

solve for q̈v : Mq-qq̈v = uv −GDḋr −GPdr

for t<T
update d = d+∆tḋ+ 1

2∆t
2d̈

update ḋ = ḋ+ 1
2∆td̈

solve
[

A W
WT Q+Kpq

]{
p
pinj

}
=

{
r
rinj

}

compute f , fr, uv

solve for d̈ : Msd̈ = f −Ksd

solve for d̈r : Mrd̈r = fr −Drḋr −Krdr

solve for q̈v : Mq-qq̈v = uv −GDḋr −GPdr

update ḋ = ḋ+ 1
2∆td̈

update t = t+∆t
end

Of course, the algorithm can equally well be applied to the pseudo modal reduced version of the nonlinear
equations (2.84). In fact, in doing this, the maximum allowable timestep is increased substantially, since
this is limited by the largest frequency in the system. By applying the pseudo modal reduction, the highest
frequencies are removed. This reduces CPU time for a given simulation. It falls outside the scope of the
thesis to investigate CPU time requirements and maximum time step sizes. As a rule of thumb, the time
step is set to which ever is smallest of the two values

∆t = 0.05/|λ|max , or ∆t = 0.05/ω (2.115)

where ω is the frequency of the excitation force and λ is a system eigenvalue. It is unpractical to compute
system eigenvalues for the system without prior pseudo modal reduction. If a time series solution is run
for the unreduced system, a rough estimate of the maximum allowable time step can be made as the time
it takes a dilatational wave to pass through a solid element. See [68] for details.

2.11 Frequency domain analysis
When performing frequency domain analysis, we are confined to the linearised augmented system of
equations. It may be subject to a pseudo modal reduction or not. Let us write it as the generic system of
equations

Mÿ+Dẏ +Ky = j (2.116)

where
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y =





δd
δdr
δp
δpinj

δqv




, j =





δf
δfr
δr
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δuvr





(2.117)

in the case of a system that has not been reduced, or

y =





δb
δdr
δp
δpinj

δqv




, j =
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(2.118)

for the case of a pseudo modal reduction, or

y =





δb
δdr
δpinj

δqv




, j =





VT
s δf

δfr
δrinj

δuvr





(2.119)

for the case of a pseudo modal reduction and a condensation.
The considerations in the following apply to all three cases.
As we know D and K are functionals of the state, i.e., also of a given equilibrium position. To determine

whether or not a given equilibrium position is locally stable, we consider the homogeneous case

Mÿ +Dẏ +Ky = 0 (2.120)

This has the solution {
ẏ
y

}
= veλt, λ ∈ C, v ∈ C2dim(y) (2.121)

where v and λ are unknown a priori and are functionals of M, D and K only. There are as many solutions
(λ,v) as the dimension of v. The solutions appear as the solutions to the generalised eigenvalue problem

[
0 K
I 0

]
v = λ

[
−M −D

0 I

]
v (2.122)

If the real part of any eigenvalue λ is larger than zero, the equilibrium position in question is unstable.
For realistic system parameters, there are typically two static equilibria of the system of equations,

but only one which is physically meaningful. Thus there is only one equilibrium that should be checked
for stability. In Fig. 2.13 is seen the pressure profile for the physically meaningful static equilibrium of a
bearing with a preload factor of 0.5 and a rotational speed of 6000rpm. The corresponding displacements
are shown in Fig. 2.14. Primarily, note two things. (i) Firstly, the pads tilt in the same direction as the
rotor rotation. This creates the well known wedge effect [66]. (ii) Secondly, the pressure on the entire
surface of the pads is positive. The physically meaningless equilibrium is characterised by pads that tilt
in the opposite direction of the rotor rotation, resulting in negative pressures. Here we are outside the
domain of validity of our mathematical model. Any negative pressure (p < 1atm, since zero is defined
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x1
4.33Mpa

x2
x3

Orifices

0

Figure 2.13: The pressure field over the pads at static equilibrium for 6000rpm and zero radial rotor load.
Maximum pressure is 4.33MPa. Post processing was done with Gmsh [69].

as 1atm) is an artefact of the Reynolds equation, which assumes an incompressible fluid; it has nothing
to do with physics. The model could be generalised by introduction of a more advanced fluid cavitation
model or contact between rotor and pads. In the present investigation however, we shall focus on the
local behaviour around the nominal operating condition. Here, neither cavitation nor contact occurs
[4]. Henceforth, let us refer to the stability of the physically meaningful equilibrium position simply as
"rotor-bearing stability".

If we wish to compute the response to a given excitation, we consider the inhomogeneous case

Mÿ +Dẏ +Ky = j0e
iωt, ω ∈ R (2.123)

This has the solution
y = y0e

iωt, y0 ∈ Cdim(y) (2.124)

where y0 is unknown a priori and is a functional of M, D, K and ω. Note that ω is known a priori. The
solution y0 is the vector of frequency response functions for the system. Particularly the components of
y0 related to the rotor degrees of freedom shall be investigated in the following.

2.11.1 Harmonic response and dynamic coefficients
When computing the harmonic response and dynamic coefficients of the bearing itself, we set the rotor
impedance to zero. That is,

Mr = 0, Dr = 0, Kr = 0 (2.125)

we then define two force increment vectors
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Direction of rotor rotation

x2 x1

x3

Figure 2.14: Displacement field of the pads at static equilibrium for 6000rpm and zero radial rotor load.
Displacement is dominated by rigid body tilting, but also note the slight deformation of the pads. Max-
imum displacement is 28.9µm.
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eiωt (2.126)

and
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0
0
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eiωt (2.127)

Also, let us write the displacement increment vector resulting from the first force increment vector as

y =





δd
δdr
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δpinj

δqv





=





δd0
δdr0
δp0
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δqv0




eiωt =
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eiωt (2.128)
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and the one resulting from the second force increment vector as
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δqv
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δd0
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δqv0




eiωt =
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eiωt (2.129)

the bearing dynamic stiffness matrix is then defined as

[
Kb11 Kb12
Kb21 Kb22

]
= Re

(
−
[

δfr01
δdr011

δfr01
δdr021

δfr02
δdr012

δfr02
δdr022

])
(2.130)

and the dynamic damping matrix is defined as

[
Db11 Db12
Db21 Db22

]
=

1

ω
Im

(
−
[

δfr01
δdr011

δfr01
δdr021

δfr02
δdr012

δfr02
δdr022

])
(2.131)

Similarly, the bearing transfer function matrices are

Arg

[
δfr01
δdr011

δfr01
δdr021

δfr02
δdr012

δfr02
δdr022

]
and

∣∣∣∣∣

[
δfr01
δdr011

δfr01
δdr021

δfr02
δdr012

δfr02
δdr022

]∣∣∣∣∣ (2.132)

Whether or not one prefers the stiffness and damping format or the transfer function format is a question
of taste and particular application. Both formats fit readily into rotor-bearing simulation codes. However,
their use is limited to stationary harmonic analysis (frequency response analysis).

2.12 Chapter discussion and summary
From the principle of virtual work for the pads, the navier stokes equations for the fluid, a second order
generic ODE for the servo-valves and a twodimensional particle model for the rotor, the unified equations
for the coupled system were derived. The pad solution assumes small strains and rotations. The pads
and the fluid can be reduced to varying degrees of detail, depending on need and available computer
capacity. The highest level of generality available with the present model is a full threedimensional finite
element description of the pads with the fluid described by the twodimensional reynolds equation. This
system of equations will capture general pad deformations and the nonlinear oil film behaviour. Since
this system of equations is nonlinear and large, it is not suited for frequency domain analysis, but it can
be used for static and time domain analysis. If a pseudo modal reduction is applied to this system, the
nonlinear pseudo modal reduced system results. This system is ideal for fast time domain analysis, since
it captures oil film nonlinearirty, as well as the most important pad behaviour. Generation of time series is
fast because the pseudo modal reduction has removed the highest system frequencies, thus allowing larger
timesteps. However, the Reynolds equation must still be solved at each time step. The most compact,
and least general variant of the model is obtained by applying a pseudo modal reduction to the pads and
subsequently perturbing the pad mode shapes to get the condensed fluid force response. For a rigid body
model, i.e., a single mode (for each pad) expansion, this will yield one equation for each pad, two for the
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rotor, and one for each servo-valve. Thus a four pad bearing with two servo-valves will be represented as
a 8×8 system of second order ODEs. This sort of system is ideally suited for frequency domain analysis
due to its small size and linearity. It can also be used for very fast time series computations, but will not
capture oil film nonlinearity, so must such use must be limited to small displacements.



Chapter 3

Dimensional analysis

Before actually solving the equations, we may extract fundamental and useful information from them.
This is possible, partly because the equations are stated in augmented form, i.e., as in Eq. (2.84). In
the following, the dimensional information is extracted from the bearing equations. To begin with, the
simplest possible situation is considered, namely the passive TPJB under static conditions. The derivation
is then extended to the ATPJB under dynamic conditions.

3.1 Static similitude of passive bearings
To begin with, let us consider the static behaviour of a passive bearing. The equations (2.84) then reduce
to




Ks
Kr

A







d
dr
p



 =





f
fr
r



 (3.1)

With the derivation process in mind, the dimensions of each submatrix and subvector can be written
explicitly, such that we get



ELK̃s

krK̃r
L3

µ Ã








Ld̃

Ld̃r
F
L2 p̃



 =





F f̃

F f̃r
L3Ωr̃



 (3.2)

Here, ELK̃s = Ks, F f̃ = f and so on. We have introduced the characteristic length L. This can be
chosen to be rotor diameter, fluid film thickness, or any other important measure of length, depending on
convenience. Also, we have introduced the characteristic force F , this may be the lateral static load on
the rotor, but other measures of force may be chosen. The characteristic rotor stiffness kr may simply be
the value of the diagonal terms in the rotor stiffness matrix. If the rotor is made from the same material
as the bearing, kr may be replaced by EL.

After column and row division of the relevant factors, the system of equations (3.2) becomes

46
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f̃

f̃r
r̃



 =




EL2

F K̃s
krL

F K̃r
F

L2µΩÃ








d̃

d̃r
p̃



 (3.3)

or





f̃

f̃r
r̃



 =




EL2

F
krL

F
F

L2µΩ


 ◦




K̃s

K̃r

Ã







d̃

d̃r
p̃



 (3.4)

where ◦ is the symbol for Hadamard (element by element) multiplication. Thus we are left with the three
characteristic numbers in Tab. 3.1.

Table 3.1: Dimensionless numbers for passive static bearing.

EL2

F

krL

F
F

L2µΩ

The third number in Tab. 3.1 is immediately identified as a variation of the Sommerfeld number

S = F
L2µΩ (3.5)

i.e. the ratio of bearing load to hydrodynamic forces. Setting F to the lateral static load on the rotor, the
Sommerfeld number as it is defined in, E.g., [32] is

S =
µΩLRr

πF

(
Rr

Rp −Rr

)2

(3.6)

For a given rotor-bearing shape, all dimensions are proportional to L. Thus (in dimensional terms) the
expression in Eq. (3.6) reduces to that of the inverse of that in Eq. (3.5).

The first number in Tab. 3.1 is a measure of elastic forces to bearing load. Consider two similar
bearings, for which

E1L
2
1

F1
=
E2L

2
2

F2
(3.7)

and
F1

L2
1µ1Ω1

=
F2

L2
2µ2Ω2

(3.8)

Then, multiplying Eq. (3.7) with Eq. (3.8) we arrive at a new similitude equation

E1

µ1Ω1
=

E2

µ2Ω2
(3.9)

Thus, Eqs. (3.9) and (3.8) now define bearing similitude in lieu of Eqs.(3.7) and (3.8). This is merely
an example of the fact that ratios, products and inverses of non-dimensional characteristic numbers are



CHAPTER 3. DIMENSIONAL ANALYSIS 48

themselves non-dimensional characteristic numbers. Consider the case where the lateral static load on
the rotor is zero; another measure of force must then be chosen. I.e. zero lateral static load on the rotor
does not allow us to set F to zero. If there are no other external loads on the rotor, we have effectively
removed one parameter from the system (the load). In such cases, e.g., the viscous force L2µΩ may be
used as a characteristic load in lieu of F . The above derivation allows us to do this.

Equation (3.9) states that the ratio of elastic forces to viscous forces be the same in two similar
bearings. Let us call this ratio the hydroelastic number

H =
E

µΩ
(3.10)

If H is sufficiently high, bearing deformation may be neglected in the given analysis. The critical value of
H depends on the specific bearing design, i.e., the proportions of the bearing. However, when a critical
H value is established for a given bearing, the analyst can neglect bearing deformation with confidence
when prudent. Notice that H is independent of L, meaning that it is independent of bearing size. From
this we can draw an important conclusion: If bearing deformation can be neglected in a given small-scale
laboratory experiment, it can also be neglected in a full size bearing of similar design. Lund [34] has
previously derived an expression for a dimensionless pad flexibility for a beam model of the pad.

The second number in Tab. 3.1 is the ratio of rotor structural (shaft) forces to rotor load. I.e. it is a
measure of how much of the load is carried by the rotor itself (thus not by the bearing). When this number
approaches infinity, all the load is carried by the rotor itself. When it approaches zero, the bearing carries
all the load. In most of the results presented in this thesis the number will be zero, since rotor structural
stiffness is neglected.

3.2 Static similitude of active bearings
The static similitude of active bearings can be investigated in a similar fashion to that of the passive
case. We include the relevant terms in the static part of the augmented system of equations. Long hand
derivation can be found in appendix B. After the relevant row and column divisions, we arrive at
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p̃inj

p̃inj
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r̃inj

ũvr
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(3.11)



CHAPTER 3. DIMENSIONAL ANALYSIS 49

where kpq is a characteristic flow pressure impedance of one of the valves, GP is a characteristic
proportional gain, Kv is a characteristic flow voltage coefficient, uch is a characteristic signal voltage and
qL is a characteristic flow. Note that the valve inlet pipe length of pipe i l0i is measured in terms of the
characteristic length L. We are thus left with the seven characteristic numbers in Tab. 3.2

Table 3.2: Dimensionless numbers for active static bearing.

Passive Active
EL2

F

krL

F
F

L2µΩ
FL
µqL

kpqF

L2qL

GPL

uch

qL
Kvuch

We recognise the first three numbers in Tab. 3.2 to be those we previously derived for a passive bearing.
Additionally we have four numbers associated with the control system. The first control system number
is the ratio of bearing load to valve flow induced forces. The second active number is the dimensionless
characteristic pressure driven flow. The third active number is the ratio of the characteristic proportional
gain signal to the characteristic reference signal. Finally, the fourth active number is the inverse dimen-
sionless piston driven flow. Often, the reference signal is zero. This corresponds to sending no signal when
the rotor is in the centre of the bearing. In these cases we eliminate uch to produce the characteristic
number

GPLKv

qL
(3.12)

which is the dimensionless proportional gain flow. This number then replaces GPL

uch
and qL

Kvuch
.

3.3 Dynamic similitude of passive bearings
In a dynamic similitude analysis, it is convenient to work with the equations in state space form. As it
turns out, transient similitude and stationary harmonic similitude are equivalent and encompassed in the
dynamic similitude considerations. This is a very powerful conclusion, as it allows us to both predict the
stability properties and stationary harmonic response of, e.g. very large bearings.

The dimensionless time t̃ is introduced as

t̃ = Ωt (3.13)

then

∂

∂t
= Ω

∂

∂t̃
,

∂2

∂t2
= Ω2 ∂

2

∂t̃2
(3.14)

That is, the dimensionless time is measured in terms of the journal rotation. This provides a sensible
measure of the "speed" of system mode shapes, since the time to, e.g., damp out a transient is now given
as a number of rotations of the journal, rather than seconds. Furthermore, any critical dimensionless
eigenfrequency is immediately identified as being unity. If all dimensionless eigenfrequencies are larger
than unity, the system is operating subsynchronously. If any dimensionless eigenfrequency is smaller than
unity, the system is operating supersynchronously.

When letting the dot notation (̇) denote derivation with respect to t̃, column and row division and
factoring yields
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(3.15)

where ρ is the characteristic pad density, mr is the characteristic rotor mass and cr is the characteristic
rotor damping. Again, the reader is referred to appendix B for a long hand derivation.

We can write the equations compactly as

D ◦Ey+G ◦ Jẏ = j (3.16)

where y is now the total state vector, not to be confused with the incremental one. Similarly j is the
total right hand side. All the dimensional information is contained in D and G. Thus we arrive at the six
characteristic numbers in Tab. 3.3.

Table 3.3: Dimensionless numbers for passive dynamic bearing.

Static Dynamic
EL2

F

krL

F
F

L2µΩ
ρL4Ω2

F

LΩ2mr
F

crΩL

F

The first three (static) numbers in Tab. 3.3 are recognised as the hydroelastic number, the rotor
force ratio and the Sommerfeld number, respectively. The first dynamic number is the dimensionless pad
mass. The second dynamic number is the dimensionless rotor mass and the third dynamic number is
the dimensionless rotor damping. It is deemed worthwhile assigning a symbol to the dimensionless pad
mass, as it will be discussed later in this document. Also, as a characteristic load F can be difficult to
determine in situations where the static rotor load is zero, it seems sensible to eliminate it. Combining
the Sommerfeld number and the dimensionless pad mass, to eliminate F , we arrive at

H2 =
ρL2Ω

µ
(3.17)
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which is the ratio of inertial to viscous forces. Note that other expressions for the dimensionless pad mass
and dimensionless rotor mass have been mentioned in litterature, e.g., in [29] and [34].

3.4 Dynamic similitude of active bearings
Now, including both dynamic and active terms, the starting point is the full set of equations (2.84) in
state space form. After row and column division and factoring in hadamard products, we arrive at
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(3.18)

Where ωv is the characteristic valve eigenfrequency ξv is the characteristic valve damping ratio, and GD
is the characteristic derivative gain. As before, this is written in compact form as

D ◦Ey+G ◦ Jẏ = j (3.19)

with all the dimensional information contained in D and G, thus leaving us with the dimensionless numbers
in Tab. 3.4.

Apart from numbers that we have seen in the previous sections, we have six new ones. That is, those
belonging to the dynamic part of the system (bottom row of Tab. 3.4). Consider first the numbers for
the passive system. The first of these is the dimensionless pad inertia. The second and third are the
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Table 3.4: Dimensionless numbers for active dynamic bearing.

Passive Active
Static EL2

F

krL

F
F

L2µΩ
FL
µqL

kpqF

L2qL

GPL

uch

qL
Kvuch

Dynamic ρL4Ω2

F

LΩ2mr
F

crΩL

F

Ω2qL
ω2

vKvuch

GDLΩ

uch

ξvΩqL
ωvKvuch

dimensionless rotor inertia and damping, respectively. Now consider the numbers for the active system.
The first of these is the inverse of the dimensionless valve inertia, the second is the dimensionless derivative
gain signal and the third is the dimensionless valve damping. As in the static active case, the absence of
a reference signal will yield different dimensionless numbers. That is,

GPL

uch
,

qL

Kvuch
,

Ω2qL

ω2
vKvuch

,
GDLΩ

uch
and

ξvΩqL

ωvKvuch

are replaced by
GPLKv

qL
,

Ω2

ω2
v
,

GDLΩKv

qL
and

ξvΩ

ωv
(3.20)

Details of the derivation are given in appendix B. Furthermore, as before mentioned, in cases where the
lateral static load on the rotor is zero it can be difficult to determine a characteristic force in the system. It
is then convenient to perform the same operations that were used to derive Eqs (3.7) from Eq. (3.9). That
is, we exploit that products and ratios of dimensionless numbers are themselves dimensionless numbers.
Basically the operation constitutes substituting L2µΩ for F . Thus, we may replace the dimensionless
numbers

Passive Active
Static EL2

F

krL

F
F

L2µΩ
FL
µqL

kpqF

L2qL

Dynamic ρL4Ω2

F

LΩ2mr
F

crΩL

F

(3.21)

with
Passive Active

Static E
µΩ

kr
LµΩ

F
L2µΩ

L3Ω
qL

kpqµΩ

qL

Dynamic ρL2Ω
µ

Ωmr
Lµ

cr
Lµ

(3.22)

The latter set of numbers is far more convenient in cases where the lateral rotor load is zero or unknown.

3.5 Chapter discussion and summary
The non dimensional version of the rotor-bearing-valve system of equations has been derived. Key dimen-
sionless numbers have been identified. The cases of static similitude of passive bearings, static similitude
of active bearings, dynamic similitude of passive bearings and dynamic similitude of active bearings have
been investigated. The three former cases can be considered special cases of the latter. Some of the dimen-
sionless numbers are known in the literature, while others are novel. The dimensionless groups are useful
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for experiment planning, since they allow extrapolation of experimental data to situations which may be
hard to reproduce in a laboratory. For instance, it may be challenging to reproduce extreme rotational
speeds or heavy rotors, both of which are found frequently in industrial machinery. With knowledge of
the scaling of different effects, representative experiments may be planned with confidence. Examples
of similitude across bearing sizes are shown in section 5.3. Furthermore, simulations are run so as to
determine the critical hydroelastic number for a given bearing design.



Chapter 4

Model validation

There are no published studies of active bearings of the type studied in this thesis, which include pad
deformations. However, some experimental data is available. There are several theroetical rigid pad
studies of passive bearings, as well as a few studies of passive bearings which include pad deformations.
In this chapter the present model will be compared to a selection of these studies. Furthermore, a mesh
density convergence study is conducted. Calculations of the Reynolds number as well as a thermal error
estimate are provided in chapter 5.

4.1 Mesh density convergence
The required mesh density varies from analysis to analysis. Generally, higher frequencies entail higher
mesh density requirements. Also, if derived fields, such as stress and strain fields are of interest, mesh
refinement should be increased. Here, the fields of displacement and pressure are in focus, thus the mesh
density requirements are modest.

A mesh convergence study of eigenvalues is performed on a generic pad for varying mesh densities.
For the convergence study only a single pad need be investigated. The rotor diameter is 0.0998m and the
bearing inner radius of curvature is 0.05m, so the machined clearance is 100µm. The preload factor is
0.25. The pad thickness is 10mm with an extension of 80◦. The pad is pivoted along its centreline at a
radial distance of 70mm from the bearing centre. The rotor is thus fixed laterally, but rotating at a speed
of 100Hz. The lubricant viscosity is 0.013Ns/m2, the elastic modulus is 100GPa, the Poisson ratio is 0.3
and the pad density is 8400kg/m3.

Meshes with 1×2×3, 2×4×6, 3×6×9 and 4×8×12 elements are utilised. The elements are twenty node
serendipity elements. Key data for the meshes is shown in Tab. 4.1.

Figure 4.1 shows mesh #2. As indicated in Tab. 4.1 this mesh consists of 48 elements. The mesh
connectivity is such that the total number of nodes is 349 and the total number of degrees of freedom for
the deformation problem is 1047.

For each mesh, four different pseudo modal reductions are applied, starting with a rigid body reduction
and ending with a four-mode reduction. Note that the computed pseudo mode shapes themselves depend
on the mesh density. Again, in general, the lower the mode shape, the less severe are the mesh density
requirements.

Figures 4.2 and 4.3 show the two first eigenvalues of the pad as a function of mesh density for the

54
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Table 4.1: Mesh overview.

Number of elements in * direction
Mesh # *Radial *Axial *Circumferential Elements Nodes
1 1 2 3 6 70
2 2 4 6 48 349
3 3 6 9 162 982
4 4 8 12 384 2113

x3

x1
x2

Figure 4.1: The pad under investigation. The shown mesh is mesh #2, with 2×4×6 elements. Each
element is a twenty node serendipity element. Nodes are not shown.

four different pseudo modal reductions. Notice that the eigenvalues are real, i.e., the first two modes of
the isolated pad are overdamped. Secondly notice the magnitude of the eigenvalues. The first and second
eigenvalues are one and two orders of magnitude larger than the rotational speed, respectively. Thus,
for all practical purposes, no more eigenvalues need be considered. Consider Fig. 4.2. The rigid body
model seems to be largely independent of mesh refinement. Thus we may conclude that the rigid body
motion, the pressure field as well as the pressure response to the rigid body motion converge very quickly.
This may well be in part due to the use of higher order elements. Furthermore, we observe that the
two-, three- and four mode reductions behave quite similarly with only minor differences. In deed, the
two mode reduction of mesh #2 comes within 5% of the four mode reduction of the finest mesh. Finally
notice that the rigid body model never fully reaches the other reductions. From this we may conclude
that even the first mode of pad motion contains some pad deformation. Now consider Fig. 4.3. Notice
that the rigid body model is not in the plot, i.e., this mode is dominated by pad deformation with tilting
playing a minor role. Secondly, there is only very little difference between the two- three- and four mode
reductions. So pad deformation is dominated by the second mode. The difference between mesh #2 and
mesh #4 is roughly 15%. However, considering the magnitude of the eigenvalue this error is acceptable,
as the error will not be relevant under any practical circumstances.

The combined observations of Figs. 4.2 and 4.3 lead os to conclude that for the applications relevant
to this work, a two mode reduction of a mesh comparable to mesh #2 is adequate. All meshes used for
the analyses presented in this thesis make use of meshes that are significantly finer.
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4.2 Benchmarking against Someya

Figure 4.4: Mesh of bearing corresponding to calculation # 29 in Someya’s book [32]. The mesh as shown
consists of 7248 nodes and 1024 solid elements. Exploiting symmetry cuts this number in half.

As mentioned, Someya’s journal-bearing databook is widely cited, and a valuable source of journal
bearing data. Here, a comparison to one of Someya’s results shall be made. A bearing with the same
properties as the bearing in calculation # 29 in Someya’s book [32] is considered. The bearing under
investigation has four pads, and is in a load between pad configuration. Each pad extends 80 degrees and
is pivoted on the middle. The rotor radius is 49.8mm and the pad inner surface radius of curvature is
50mm. The bearing length is 0.1m, thus the length to diameter ratio is 1. The preload factor is 0.5, thus
the assembled clearance is 100µm. The journal rotational speed is 100Hz and the lubricant viscosity is
0.00937Ns/m2. These parameters do not reflect what is considered to be good bearing design. Rather they
are chosen solely so as to match the parameters in Someya’s calculations. The pad inertia is neglected,
thus pad density is set to zero. A single mode pseudo modal reduction is employed, so as to mimic the
rigid body model of Someya. Each pad is pivoted about the centreline on its inner surface at a radius of
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50mm. The pad thickness is 17mm, but is unimportant due to the rigid body assumption. The mesh is
shown in Fig. 4.4 with indication of the pivot line on one pad and the pivoting mode of another pad.

Figure 4.5 shows fields of displacement and pressure for the static equilibrium, when the rotor is at
0.2 eccentricity, corresponding to a displacement of 20µm. The rotor is displaced in the x1 direction.

ba

x1

0.97MPa

x2

0

Figure 4.5: Fields for the static equilibrium when the rotor is displaced 20µm in the x1 direction. a: Pad
displacements (scaled). Maximum displacement of any node in the pad is 61.8µm. b: Pressure.

Figure 4.6 shows a plot of Sommerfeld number as a function of eccentricity. The graph is compared to
Someya’s data. A near perfect match is made. The Sommerfeld number S is defined as in [32]. Thus,

S =
µΩLRr

πfr1

(
Rr

Rp −Rr

)2

(4.1)

0.1

0.2

0.3

0.0
0.1 0.4 0.7

dr1/Ca

Someya

This study

S

Figure 4.6: Comparison with calculation # 29 in Someya’s book [32].
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where L is bearing length and fr1 is the total static bearing load, since no load is applied in the x2
direction in this case. Figures 4.7 and 4.8 show plots of synchronously reduced dimensionless stiffness and
damping, respectively. Again, comparison is made to Someya’s data, showing good agreement.
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29 in Someya’s book [32].
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4.3 Benchmarking against Desbordes, Fillon and Frêne
Desbordes, Fillon and Frêne pioneered the introduction of pad compliance into TPJB modelling and
used their model to compute journal orbits. Here we shall make a comparison between journal orbits
as computed by the present code, and the journal orbits from [37]. The bearing is a three pad bearing,
with steel pads. The journal radius is 60mm with a pad thickness of 30mm. The bearing length is
72mm. Machined clearance is 120µm with a preload factor of 0.5. Lubricant viscosity is 0.013Ns/m2, pad
elastic modulus is 210GPa and Poisson’s ratio is 0.3. Rotor mass is 1000kg, and rotor speed is 3000rpm,
corresponding to 50Hz or 100πrad/s. The static load is 30000N in the negative x2 direction.

Here, we adopt a two mode pseudo modal reduction to account for the pad deformations. The pad
modes are shown in Fig. 4.9. The pivots are located at 0.56 along the pad arc, that is, they are offset
in the direction of rotor rotation. This is clearly visible in the rigid body modes. In [37] pad inertia was
neglected by iterating to static pad equilibrium for every new journal position. Here, this is emulated by
setting pad density to a low value. Since this lowers the time step limit, a reasonable (not too small) value
must be chosen. Pad density is set to 1000kg/m3 which is small enough to virtually eliminate the effect
of pad inertia, while still allowing for a reasonable time step.

x1

x3

x2

Figure 4.9: The first two pad modeshapes of each pad with wireframes indicating the undisplaced pads.

Various values of unbalance are applied to the journal. In [37] they are given as unbalance eccentricities
varying from 100µm through 500µm. This corresponds to 4935N through 24674N, such that for the 100µm
case, the rotor is subjected to

fr1 = 4935N cos(100πs−1t+ 4π/3)

fr2 = −30000N+ 4935N sin(100πs−1t+ 4π/3)

(4.2)

Note the 4π/3 phase shift owing to the different coordinate system used in [37]. The orbits from the present
calculation are compared to [37] in Fig. 4.10. They are virtually identical, with only minor differences.
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Figure 4.10: Comparison with Desbordes and Fillon [37]. The figure on the right is taken from [37]. The
unbalance force amplitude is given as an unbalance eccentricity in the figure from [37], while it is given
directly as a force in the present study. The mass of the eccentricity is such that the force amplitudes are
identical.

4.4 Benchmarking against Allaire, Parsell and Barrett
Allaire, Parsell and Barrett [21] introduced a pad perturbation method with no assumption on pad motion
in time. Their model could thus be used for bearing stability analysis. This set their work apart from
previous TPJB models. Despite this, they did not present any stability analyses, but proceeded to present
curves of bearing coefficients. As mentioned in the theory section, the present model reduces to that of
[21] for a passive bearing with rigid pads, i.e., when a single mode reduction (per pad) is used.

The bearing in [21] was a five pad bearing with zero preload and centrally located pivots. Each
pad arced 55◦. Journal radius was 3.5 inches (88.9mm) with a clearance of 0.0055 inches (139.7µm)
and a length of 4.0 inches (101.6mm). Oil viscosity was 2.03·10−6Reyn (0.0140Ns/m2) and pad inertia
was neglected. We adopt the same parameters here, and compute the synchronously reduced bearing
coefficients for comparison. As was reported in [21] the two top pads cavitate completely. In [21] results
for fixed and non-fixed pivots were presented. The present model corresponds to the fixed pivot case, since
the pivots are not allowed to move. This effect disappears when the preload is increased [21]. Figure 4.12
shows curves of the dimensionless synchronously reduced bearing coefficients. A near perfect match with
[21] is observed. Figure 4.11 shows the pad modes used for the pseudo modal reduction.

4.5 Consistency between time series and frequency domain ana-
lyses

A good check of whether the model is consistent or not, is to compare the amplitudes of time series solutions
to the predicted amplitudes from a linear frequency domain analysis. For small excitations around the
equilibrium state, the the amplitudes should be predicted precisely. Figure 4.13 shows time series solutions
as well as predicted amplitudes. The bearing is identical to that of the previous investigations in Fig. 4.5
and 4.6. The static load on the bearing is 2000N in the x1 direction. This produces a rotor displacement
of 201µm. Thus the static equilibrium position corresponds to that of Fig. 4.5. Now the bearing transfer
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Figure 4.11: The rigid body modes of the
bearing pads with wireframes indicating the
undisplaced pads.
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Figure 4.12: Comparison with [21].

function at this equilibrium position is computed, according to the expression in Eq. (2.132). The rotor
stiffness and damping are set to zero. The rotor mass is 200kg. Thus, now, for a given harmonic force of
known amplitude and excitation frequency, the linear amplitudes of vibration can be determined. Figure
4.13 shows results for a harmonic force amplitudes of 200N and 2000N, respectively. In both cases the
frequency of excitation is 100rad/s, i.e., 15.9Hz. That is, the excitation force is given as

fr1 = 2000N+ 200N cos(100s−1t), or fr1 = 2000N+ 2000N cos(100s−1t)

fr2 = 0 (4.3)
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Figure 4.13: Comparison between predicted amplitude and nonlinear time domain solution for rotor
position. a: Low excitation force amplitude of 200N. b: High excitation force amplitude of 2000N.

The initial condition for the nonlinear time series computation is that of a system at rest at the
static equilibrium position. The low force case shows a near perfect correspondence between the linear
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frequency domain amplitude prediction and the amplitude of the nonlinear time series. When comparing
the results, it is clear that the low amplitude case produces a very good correlation between the linear
frequency domain result and the time domain solution. For the high amplitude case, nonlinear effects
have gained influence, and thus the prediction is less accurate.

4.6 Benchmarking against Santos
Not much experimental data exists in the literature for ATPJBs of the type under investigation in this
thesis. In the 2004 paper by Santos, Nicolletti and Scalabrin [70], experiments were conducted on a
ATPJB with 5 orifices per pad. The control system was kept off for 0.5 seconds of operation, and then
switched on. The bearing was a four pad bearing with a journal radius of 50.80mm and a pad inner
radius of curvature of 50.921mm. The assembled clearance was 76µm, thus the preload factor was 0.37.
The pads were offset pivoted with an offset of 0.6. The pad width was 44.45mm and each orifice had
a diameter of 5mm. The radial pivot position was 68.253mm placing them 17.377mm from the pad
surface. The lubricant dynamic viscosity was µ =0.015Ns/m2. The servo-valve had an eigenfrequency
of ωv =320.0Hz, damping ratio ξv =0.48, static amplification Kv =16.7·10−6m3/(sV) and flow-pressure
constant Kpq =1.13·10−12m3/(sPa). The rotational speed was 650rpm, corresponding to 10.8Hz. When
the control system is on, the control gains are GP =62992V/m and GD =314Vs/m. These gains respond
to vertical movements of the journal inside the bearing, which is in a load on pad configuration. Turning
off the control system corresponds to setting the gains to zero.

To test the mathematical model against the experimental test case, we set the parameters so as to best
represent the physical bearing. The concept of leak flow is not considered in [70]. In stead the pressure
supply value is given. Here we set the leak flow to qL =6ml/s. In [70] the total rotor mass is not given for
the test rig, a value of 20kg is assumed, judging from the test rig photo in [70]. With a gravity of 9.81m/s2,
the static bearing load on the bearing becomes 196.2N. Similarly, the diagonal entries of the rotor mass
matrix become mr =20kg. Now, considering the load on pad configuration with pad # 4 as the loaded
pad, this corresponds to a static load in the x1 direction of 138.7N and in the x2 direction of -138.7N.
For the pads, the two-mode pseudo modal reduction is employed. The modes are shown in Fig. 4.14,
which also depicts the used mesh and the orifice arrangement. The orifice configuration is not explicitly
defined in [70], i.e., a detailed drawing is not provided. However, it is clear that the arrangement consists
of a central orifice and orifices in each corner, totalling five orifices. Here we adopt an arrangement with
one orifice in the centre of the pad, and corner orifices at +

−25◦ and +
−15mm from the pad centreline and

bearing plane of symmetry, respectively. Each pad consists of 1158 nodes and 182 solid elements.
Figure 4.15 shows a comparison between the experimentally obtained rotor motion [70] and the com-

puted one. In both cases the control system is turned on after 0.5 seconds of passive hybrid lubrication.
The value of the excitation force amplitude is unknown, so the comparison serves only to evaluate the
relative drop in the vibration amplitude after the control system is turned on. The curve in Fig. 4.15a is
obtained by applying a synchronous excitation with a magnitude of 1000N, and a frequency of 18Hz i.e,

fr1 = 138.7N+ 1000N cos(113.1s−1t) (4.4)

fr2 = −138.7N+ 1000N sin(113.1s−1t) (4.5)

The frequency was chosen to match the dominant frequency in the results from [70], although it is evident
that more frequencies are present in the experimentally obtained plot in [70].

As seen from the comparison, there is a fair correspondence between the experimental curve and the
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Figure 4.14: Bearing mesh, with indication of modes used for pseudo modal reduction.

computed one. The computation is stopped after 1 second of operation, since the transient has been
damped out at that stage.
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Figure 4.15: Journal vibration in the loaded direction. a: Computed. b: Experimental (figure taken from
[70]). Zero is defined as the static equilibrium position.



Chapter 5

Selected results

In this chapter, analyses for selected bearing parameters shall be presented. The analyses complement,
and in some cases, are identical to analyses from the papers by Haugaard and Santos [2, 3, 4]. Results
from both nonlinear time domain analyses and linear frequency domain analyses are shown. While the
bearing parameters generally vary from case to case, the fundamental bearing design and pad geometry
remains the same and is described in the following section.

5.1 The bearing
In the present investigation, focus shall lie on four-pad TPJBs. Analyses for passive, hybrid, and active
bearings shall be presented. In the case of hybrid and active bearings, two servo-valves are connected to
a bearing. They couple the pads in pairs of master and slave. A sketch of such a configuration is shown
in Fig. 5.1. The bearing to be analysed is a four pad bearing designed by Bo Bjerregaard Nielsen at the
Technical University of Denmark. A simplified version of his design is adopted for numerical simulation.
A single pad of the simplified design is sketched in Fig. 5.2.

The way the regulator is implemented is to connect the pads in pairs with servo-valves. Pad #1 is
connected to pad #3 with a servo-valve. Also, pad #4 is connected to pad #2 with a servo-valve. Pads
#1 and #4 are chosen as master pads, with pads #3 and #2 as their respective slave counterparts. Both
servo-valves respond to rotor movement in the x1 direction and x2 direction. The software written for
the bearing analysis takes a vector as input, so as to define what direction of rotor movement, that each
servo-valve shall respond to. This vector is normalised inside the program. Here, we set the first valve to
respond to (1,1) and the second valve to respond to (1,-1). Thus, after normalisation, the two servo-valve
signals are computed as

uv1 = GD(ḋr1 + ḋr2)/
√
2 +GP(dr1 + dr2)/

√
2 (5.1)

uv2 = GD(ḋr1 − ḋr2)/
√
2 +GP(dr1 − dr2)/

√
2 (5.2)

where GD is the derivative gain and GP is the proportional gain. This makes for an active bearing which
still almost decouples the x1 and x2 coordinate directions, just as a passive tilting-pad journal bearing.
An explanation of why this is the case is given in [3, 4].

64
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Positive direction of valve flow

Antisymmetry

Symmetry

Pad #1 (master)

Pad #4 (master)

x1

Pad #2 (slave)

Pad #3 (slave)

x2

Figure 5.1: Schematic of a bearing showing the coordinate system, pad numbering and valve orientation.
Figure taken from [3].
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Figure 5.2: Detailed sketch of a pad with indication of dimensions in mm. The pad is for a passive bearing
with no orifices. Note that only half of the pad is sketched due to symmetry.



CHAPTER 5. SELECTED RESULTS 66

The preload factor is well known in the tribology community, and is an important bearing parameter
since it describes the unloaded oil film shape. It is defined as

mp = 1− Ca

Cm
(5.3)

where Ca is the assembled clearance of the bearing, and Cm is the machined clearance, defined as

Cm = Rp −Rr (5.4)

Rr is the radius of curvature of the rotor and Rp is the radius of curvature of the inner pad surface. These
geometrical measures are depicted in Fig. 5.3.

Rr

Ca

Rp

x1

Pad #1 (master)

Pad #4 (master)

Pad #2 (slave)

Pad #3 (slave)

x2

Figure 5.3: Schematic showing key geometric features of the bearing. Figure taken from [4].

Several combinations of parameters shall be investigated. The nominal bearing and servo-valve para-
meters are given in Tab. 5.1 and Tab. 5.2, respectively. Unless otherwise stated, these parameters
apply.

Simulations will be run at a range of rotational speeds. For the model to remain valid, the rotational
speed must be low enough to ensure that the onset of turbulence in the lubricant is not reached. For flow
between parallel plates, the Reynolds number may be defined as [67]

Re =
ρUCm

µ
(5.5)

The expression in Eq. (5.5) is pessimistic, since Cm is larger than the maximum oil film thickness (at rest)
and U is very likely to be larger than the average lubricant velocity, which is the characteristic velocity
used in [67]. Hydraway HVXA 22 oil has a dynamic viscosity of 0.019 Ns/m2s at 38.5◦C and a density
of 860kg/m3 at 15◦C, which is taken to apply to the 38.5◦C case. The critical reynolds number is 1400
[67]. Thus with the parameters in Tab. 5.1, the limit tangential speed is U = 309m/s, corresponding to
Ω = 6186Hz. We shall stay far below this limit in all simulations. Furthermore, the limit speed in terms
of thermal effects is expected to be much lower. Thermal effects will be discussed in section 5.7. As stated
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in Hamrocks book [66], one can also define the modified Reynolds number

Re =
ρUC2

m

µπDr
(5.6)

Hamrock [66] recommends the limiting value of the modified Reynolds to be unity. With the given
parameters, this results in a limiting rotational speed of Ω = 1105Hz. Again, since Cm is larger than the
maximum oil film thickness (at rest), this is a pessimistic limiting value.

Table 5.1: Bearing data.

Property Unit Value(s)
Pad radius of curvature mm 50
Rotor radius mm 49.9
Rotor mass Kg 200.0
Static radial load N 0.0
Pad extension ◦ 69.3
Angular pivot locations ◦ 45, 135, 225 and 315 (at pad centres)
Radial pivot location mm 64
Pad length mm 100
Nominal pad thickness mm 14
Pad Young’s modulus GPa 100.0
Pad Poisson’s ratio - 0.3
Pad density Kg/m3 8400
Lubricant dynamic viscosity Ns/m2 0.019
Preload factor - 0.5

Table 5.2: Servo-valve data.

Property Unit Value(s)
Valve flow-pressure coefficient m3/(sPa) 1.13·10−12

Valve flow-voltage coefficient m3/(sV) 33.4·10−6

Valve damping ratio - 0.48
Valve eigenfrequency Hz 320.16
Valve leak flow m3/s 6·10−6

Valve inlet length m 1.0

A pseudo modal reduction is implemented as described in section 2.8. Some of the results in this thesis
will make use of a four-mode (per pad) reduction, while some will make use of a two-mode reduction.
In this authors experience, for all practical purposes, the extra precision from a four mode reduction is
negligible. Thus, results for two-mode reductions may be compared to those of four-mode reductions and
vice versa. Figure 5.4 shows the first four modes of pad deformation. Also, from this figure, the pad design
can be seen. The pad in Fig. 5.4 has six orifices with placement corresponding to configuration # 3 in
[3]. The modes are largely independent of the orifice configuration, hence the ones shown in Fig. 5.4 shall
be used for all orifice configurations. The used mesh consists of 3905 nodes per pad and 686 elements per
pad and exploits symmetry. The image in Fig. 5.4 depicts two times the number of nodes and elements
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since the whole pad is shown. I.e. 7810 nodes and 1372 elements. Note that the post-processing program
connects all mid-nodes with lines.

mode 1 mode 2 mode 3 mode 4

Figure 5.4: The first four pad mode shapes. The first modeshape is a rigid body modeshape consisting of
pure pad pivoting. The shown orifice configuration corresponds to the six-orifice configuration described
in [3]. A variation of this figure also appears in [3].
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5.2 Stability
As explained in section 2.11, the local rotor-bearing stability is assessed by evaluation of the largest real
part of any system eigenvalue. If any real part is larger than zero, the rotor-bearing system is unstable.
A map of stable gain selections can be produced by computing the eigenvalues for a large number of
combinations of gain. That is, the computations create a mesh in the gain plane. This mesh is then used
to create isolines. The isoline corresponding to the largest real part equal to zero defines the threshold
of stability. After each computation, the largest real part of any eigenvalue is investigated. If it is below
zero, the rotor-bearing system is stable. In the following, we shall see that the stable domain depends on
bearing operating conditions.

In all the analyses in this section, the lubricant viscosity is 0.019Ns/m2, the bearing length and diameter
are both 0.1m, the static load is zero, the rotor structural damping and stiffness are zero, the servo-valve
leak flow is 6.0 · 10−6m3/s, the flow-voltage coefficient is 16.7 · 10−6m3/(sV), the flow-pressure coefficient
is 1.13 · 10−12m5/(sN), the orifice inlet length is 1.0m, the pad elastic modulus is 100GPa and the Poisson
ratio is 0.3. The two first mode shapes are included for each pad. There are four injection orifices on each
pad, corresponding to configuration #2 in [3]. Figure 5.5 shows stability thresholds for pseudo modal
reductions using one through four modes for each pad. Clearly, convergence has been reached with the
two-mode reduction. Thus henceforth the two-mode reduction is utilised.

1.0 · 106

0.0

1 mode reduction
2 mode reduction

3 mode reduction
4 mode reduction

−0.5 · 106

0.5 · 106

0.0G
D
K

v
L
Ω
/
q L

10.0 · 1055.0 · 105
GPKvL/qL

Figure 5.5: Comparison of stable domains in the gain-plane for pseudo modal reductions of one to four
modes. The rotational speed is Ω = 100Hz, rotor mass is mr = 200kg and assembled clearance is
Ca = 75µm corresponding to a preload factor of 0.25.

Figures 5.6-5.17 show stable domains in the gain-plane. That is, domains where the rotor-bearing
system is stable. These domains are shaded. The results in Figs. 5.14 and 5.15 are also found in [4]. In
addition to the curve of marginal stability, there are curves where the maximum real part of any eigenvalue
is equal to 0.1Ω (outside the stable domain) and −0.1Ω (inside the stable domain). The distance between
the curve of marginal stability, and these curves, gives an impression of the bearings sensitivity to changes
in the gains. The closer the curves are, the more significant is the influence of changes in gains on the
rotor-bearing stability. The point where the gains are both zero is where the dotted lines cross. This point
indicates the passive hybrid bearing - or open loop controlled bearing.

Figures 5.6 and 5.7 show stable domains for a 200kg rotor, with a rotational speed of 25Hz. The
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Figure 5.6: The stable domain in the gain
plane for Ω = 25Hz, mr = 200kg and Ca =
75µm corresponding to a preload factor of
0.25.
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Figure 5.7: The stable domain in the gain
plane for Ω = 25Hz, mr = 200kg and Ca =
95µm corresponding to a preload factor of
0.05.

preload is 0.05 and 0.25 for Figs. 5.6 and 5.7, respectively. Comparing Fig. 5.6 to Fig. 5.7, i.e., the
effect of reducing preload, we immediately identify a modest decrease in the size of the stable domain.
Also, the lower bound on the proportional gain moves quite close to zero, thus limiting the use of negative
proportional gains. The lower bound on the proportional gain is almost constant, while the upper bound
depends on the derivative gain.

Figures 5.8 and 5.9 show stable domains for a 2000kg rotor, with a rotational speed of 25Hz. The
preload is 0.05 and 0.25 for Figs. 5.8 and 5.9, respectively. With the larger rotor mass, the effect of
reducing the preload is much more substantial, as the stable domain grows much more than in the lighter
rotor case. On the other hand, the lower bound on the proportional gain seems to be only modestly
affected by the preload decrease. For both the light rotor and heavy rotor cases at 25Hz (Figs.5.6 through
5.9), the lower left corner of the stable domain seems to be insensitive to changes in preload.

Figures 5.10 and 5.11 show stable domains for a 200kg rotor, with a rotational speed of 50Hz. The
preload is 0.05 and 0.25 for Figs. 5.10 and 5.11, respectively. The first thing we notice, is that the higher
rotational speed has had the effect of rounding off the lower left corner of the stable domain, where it
was relatively sharply defined for the lower speed. The increased rotational speed increases the bearings
tolerance to negative proportional gains, as the stronger hydrodynamic effects will keep the bearing stable.
Decreasing the preload factor from 0.25 (Fig. 5.10) to 0.05 (Fig. 5.11) causes the lower left corner of the
stable domain to move close to the origin. Thus, the passive hybrid bearing is close to being unstable.
On the other hand, the size of the stable domain is largely unaffected by the reduced preload.

Figures 5.12 and 5.13 show stable domains for a 2000kg rotor, with a rotational speed of 50Hz. The
preload is 0.05 and 0.25 for Figs. 5.12 and 5.13, respectively. Consider Fig. 5.13. The low preload and
absence of eccentricity have made the passive hybrid bearing unstable. That is, this bearing under the
given operating conditions needs a control system to remain stable. Apart from this observation, Figs.
5.12 and 5.13 demonstrate tendencies that are similar to what we have seen previously; the reduction of
preload increases the stable domain of gains with the effect being most evident in the upper bound of
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Figure 5.8: The stable domain in the gain
plane for Ω = 25Hz, mr = 2000kg and
Ca = 75µm corresponding to a preload
factor of 0.25.

75

50

25

0

-25
0 50 100 150

(GPKvL/qL)/10
4

(G
D
K

v
L
Ω
/
q L
)/
1
0
4

Figure 5.9: The stable domain in the gain
plane for Ω = 25Hz, mr = 2000kg and
Ca = 95µm corresponding to a preload
factor of 0.05.

proportional and derivative gains.
Now, let us compare Fig. 5.14 to Fig. 5.15. That is, let us compare a situation with a moderate

preload factor of 0.25 to a situation with a very small preload factor of 0.05. In both cases the rotational
speed is 100Hz and the rotor mass is 200kg. At this rotational speed, the reduction in preload has the
effect of curving the lower left corner of the stable domain. While the lower bound on the proportional
gain tends to be a straight vertical line in the moderate preload case, it curves in the gain plane in the low
preload case. A comparison between Figs. 5.16 and Fig. 5.17 reveals a similar conclusion. In both figures,
the rotor mass is 2000kg. However here, additionally, the magnitude of the stable domain increases with
the preload reduction, as was seen before. Also, the reduction in preload has made the passive hybrid
bearing unstable, so that non-zero gains must be chosen to produce a stable bearing. Also note, that in
addition to the large stable domain, a small stable island has appeared to the south west in fig. 5.16.
However, for all practical purposes, this island should be ignored because of its small size.
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Figure 5.10: The stable domain in the gain
plane for Ω = 50Hz, mr = 200kg and Ca =
75µm corresponding to a preload factor of
0.25.
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Figure 5.11: The stable domain in the gain
plane for Ω = 50Hz, mr = 200kg and Ca =
95µm corresponding to a preload factor of
0.05.
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Figure 5.12: The stable domain in the gain
plane for Ω = 50Hz, mr = 2000kg and
Ca = 75µm corresponding to a preload
factor of 0.25.
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Figure 5.13: The stable domain in the gain
plane for Ω = 50Hz, mr = 2000kg and
Ca = 95µm corresponding to a preload
factor of 0.05.
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Figure 5.14: The stable domain in the gain
plane for Ω = 100Hz, mr = 200kg and
Ca = 75µm corresponding to a preload
factor of 0.25.
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Figure 5.15: The stable domain in the gain
plane for Ω = 100Hz, mr = 200kg and
Ca = 95µm corresponding to a preload
factor of 0.05.
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Figure 5.16: The stable domain in the gain
plane for Ω = 100Hz, mr = 2000kg and
Ca = 75µm corresponding to a preload
factor of 0.25.
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Figure 5.17: The stable domain in the gain
plane for Ω = 100Hz, mr = 2000kg and
Ca = 95µm corresponding to a preload
factor of 0.05.
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5.3 Dimensional analysis
The dimensionless numbers derived in chapter 3 are useful in several ways. Firstly, they provide ex-
perimentalists with information on how to interpret and scale experimental data to full size bearings.
Secondly, they provide insight into the relative importance of phenomena. Potentially, they aid the ana-
lyst in neglecting certain effects, thus simplifying the modelling procedure and shortening analysis time.
This shall be the focus in the following where the critical value of the hydroelastic number is determined
for a passive bearing.

5.3.1 The hydroelastic number
Consider the hydroelastic number which was defined in Eq. 3.10. Let us restate it here

H =
E

µΩ

Now, let us conduct a parameter study, where H is varied for all other parameters (dimensionless
numbers) kept constant. At a critical value of H , we expect the effect of pad compliance to virtually
disappear. The critical value will depend on the specific bearing design. That is, it will depend on the
other dimensionless numbers, as well as the bearing geometric proportions. But the skilled engineer will be
able to apply knowledge of critical H value across different designs. The bearing inner radius of curvature
is 0.0499m and the machined clearance is 100µm with a preload factor of 0.5 and pivots placed centrally
on the pads at a radial distance of 70mm from the bearing centre. Pad thickness is 10mm and the length
to diameter ratio is 1. The pad Poisson ratio is 0.3. Lubricant viscosity is 0.019Ns/m2. The journal
rotates at 100Hz and is assigned a mass of 400kg with zero rotor stiffness. The bearing is shown in Fig.
5.18 along with the first four modes of one of the pads.

Figure 5.18: The bearing with the first four modes of one pad shown.

We employ the set of dimensionless numbers in Eq. (3.22) and use the lateral rotor load as the
characteristic force F and the journal diameter as the characteristic length L. The lateral load on the
rotor is set to zero to begin with. We thus have

kr

LµΩ
= 0

F

LµΩ
= 0 (S = ∞)

ρL2Ω

µ
= 277 · 104 Ωmr

Lµ
= 132 · 106 cr

Lµ
= 0 (5.7)

Now, we vary the hydroelastic number. For each value, we solve for the static equilibrium and then for
the eigenvalues. This is done for a four mode (per pad) pseudo modal reduction. When the eigenvalues
converge to those of the corresponding one mode (per pad) pseudo modal reduction, i.e., the rigid body
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model, the critical value of the hydroelastic number has been reached. For values of H above the critical
value, pad deformation may be neglected. Figures 5.19 and 5.20 show the system eigenvalues for values of
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Figure 5.20: Normalised real part (modal
damping ratio) of system eigenvalues for
varying H and no lateral bearing load.

the hydroelastic number across ten orders of magnitude. It is observed that some eigenvalues converge to
those of the rigid body model, while the magnitudes of others diverge and go to infinity. This reflects that
as the pads become stiffer certain modes will begin to resemble those of the pure rigid body model, while
those containing pad deformation will become faster due to the stiffer pads. In other words, the very high
frequency behaviour will never be captured by the rigid body model. However, the very high frequency
behaviour is hardly relevant to the bearing designer. Thus, the loss of information from replacing a flexible
pad model with a rigid pad model is irrelevant for high enough H . Note that the order of the system
of equations for a four mode pseudo modal reduction of a passive bearing is 18×18, since there are four
pseudo modes for each pad and the rotor has two degrees of freedom. Thus there are 36 solutions to
the characteristic polynomial (second order eigenvalue problem). From looking at Figs. 5.19 and 5.20 we
observe ten distinct eigenvalues for low values of H . Thus one or more of the eigenvalues have algebraic
multiplicity larger than unity. Some simple observations can explain this. The bearing consists of four
identical pads, and the rotor is centred in the bearing. Thus, for symmetry reasons, all the pads move in
the same way through time, and the rotor motion in the x1 and x2 directions must be identical. Since we
have four pads, and each pad contributes with four (second order) equations, there are eight eigenvalues
with algebraic multiplicity of four. The rotor contributes with two (second order) equations, resulting in
two eigenvalue with algebraic multiplicity of two. This amounts to ten distinct eigenvalues. Considering
Fig. 5.20, it appears that the argument of some eigenvalues goes zero for increasing H , leading us to
suspect that the system is becoming critically damped. However, this is merely the effect of an increasing
imaginary part for an almost constant (negative) real part. That is, some modes are becoming faster,
but their ability to dissipate energy is largely unaltered. Investigation of the real/imaginary parts of the
eigenvalues has confirmed this.
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We now repeat the analysis for a static lateral load of 20000N. Thus now

F

LµΩ
= 8377 (S = 0.238) (5.8)

While the rest of the dimensionless numbers are as in the previous analysis. Figures 5.21 and 5.22 show
the system eigenvalues. Again, the range of H is ten orders of magnitude. The first thing we notice
when observing the figures is that some of the symmetry is lost, since the rotor is not centred in the
bearing. Thus, we have more distinct eigenvalues than for the unloaded case. Apart from this, Figs. 5.21
and 5.22 resemble Figs. 5.19 and 5.20. In fact, it seems that the critical value of H is not significantly
influenced by the bearing load. This is good news, since it allows us to define a critical H independently
of the bearing operating condition, albeit only for this bearing design. In both the loaded and unloaded
case, for λ/Ω < 10, the eigenvalues converge for H > 2 · 1011. For the given rotational speed (100Hz),
and viscosity (0.019Ns/m2), this means that the requirement is for the pads to have a minimum elastic
modulus of roughly E = 2000GPa, which is far beyond the elastic modulus of conventional materials.
Thus, for this bearing design at given rotational speed, the pad deformation should be included. A steel
pad (E = 210GPa) would result in H = 1.76 · 1010. It has been shown before that pad deformation is an
important effect for realistic bearing parameters, for instance in [37, 36, 2, 3, 4].

5.3.2 Similitude
In the following, the usefulness and relevance of similitude is illustrated. Imagine that we are designing
a large bearing for an industrial application. For example for a hydropowerplant. Shaft diameters for
such applications can reach 1 meter and beyond. For machines of this magnitude, producing a prototype
is prohibitively expensive. Furthermore, if a prototype is manufactured, it can be very challenging to
subject it to operating conditions and loads of sufficient severity to test its performance. E.g., how would
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one replicate the load of thousands of cubic meters of water per hour powering the turbine? One solution
could be to rely entirely on computer simulations to predict the behaviour of the real system. This is
obviously not recommended, since no mathematical model can completely capture all relevant effects. If
experimental data is desired, but the costs of building a prototype are too high, a scaled down experimental
test rig is a good compromise. However, if this test rig is to behave like the real system, care must be taken
in its design to ensure similitude. Clearly, it is paramount to run the two systems at identical Sommerfeld
numbers but, as we shall see, other dimensionless numbers are relevant.

Let us investigate the similitude of active bearings under dynamic conditions. Consider a design
requirement for a large bearing with two servo-valves attached for control. The active bearing has an
orifice configuration corresponding to the four-orifice configuration described in [3]. The journal diameter
is 0.999m and the machined clearance is 1mm. The pads are preloaded to a preload factor of 0.25. The
static load on the journal is 20kN in the x1 direction. The lubricant is quite viscous at 0.19Ns/m2. The
journal rotates at 15.915Hz or 100s−1. The pad material has elastic modulus 100GPa and Poisson ratio
0.3. Rotor structural stiffness and damping are neglected. Rotor mass is 200 metric tons. The servo-valve
is underlapped, and leaks lubricant at a rate of 6.0·10−4m3/s or 600ml per second. The linear valve flow-
pressure constant is 1.13 ·10−10m5/sN or 11.3ml/s

atm . In other words the valve will yield a considerable flow,
for a relatively low pressure (it is a big valve). The linear flow-voltage coefficient is 33.4·10−4m3/(sV).
Thus, in the hypothetical situation of zero impedance, a signal voltage of 1V would correspond to a
flow of 3340ml per second. We set the proportional gain to 10000V/m or 10V/mm, thus the maximum
theoretical voltage from a static load on pad deflection of the journal would be 7.5V, corresponding to
the assembled clearance. The derivative gain is set to 500Vs/m or 0.5Vs/mm. Thus, for zero proportional
gain, a synchronous journal vibration of 0.75mm amplitude, corresponding to the machined clearance, at
100s−1 would produce a maximum voltage of 37.5V. The servo-valve eigenfrequency is 32.016Hz. Since
the reference signal is zero we eliminate it as described in section 3.2. We now seek to represent this large
bearing with a smaller bearing, thus paving the way for experiment planning. There are many ways to
scale down the large bearing to a smaller test-rig, while obeying the rules of similitude. An option is the
following

• Use same pad material.
• Decrease characteristic length by factor of 10.
• Reduce static load by factor of 100.
• Reduce lubricant viscosity by factor of 10.
• Increase rotational speed by factor of 10.
• Reduce rotor mass by factor of 1000.
• Reduce linear valve flow-pressure constant by factor of 100 (smaller valve).
• Increase valve eigenfrequency by factor of 10 (smaller valve).
• Decrease valve leak flow by factor of 100 (smaller valve).
• Decrease valve inlet length by factor of 10 (smaller valve).
• Reduce static amplification by factor of 100.
• Increase proportional gain by factor of 10.
• Leave derivative gain unaltered.

Table 5.3 shows parameters for the big bearing (case #1) as well as two smaller bearings (cases #2
and #3). While case #2 is similar to the large bearing, case #3 is not, since we have not adjusted the
proportional gain according to the rules of similitude. This is a very likely mistake to make. Since the
derivative gain should not be changed, it is easy to make the (wrong) assumption that the same holds for
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the proportional gain. In other words, the problem is that

GP3L3Kv3

qL3
6= GP1L1Kv1

qL1
(5.9)

Table 5.3: Bearings parameters. Cases #1 and #2 are similar. Case #3 is not similar to the other two,
since its proportional gain has not been adjusted.

case #1 #2 #3
E [GPa] 100 100 100
L [m] 1 0.1 0.1
F [kN] 20 0.2 0.2
kr [N/m] 0 0 0
µ [Ns/m2] 0.19 0.019 0.019
Ω [Hz] 15.915 159.15 159.15
ρ [kg/m3] 8400 8400 8400
mr [kg] 200000 200 200
cr [Ns/m] 0 0 0
kpq [m5/(sN)] 1.13 · 10−10 1.13 · 10−12 1.13 · 10−12

kv [m3/(sV)] 33.4 · 10−4 33.4 · 10−6 33.4 · 10−6

ξv − 0.48 0.48 0.48
ωv [Hz] 32.016 320.16 320.16
qL [m3/s] 6.0 · 10−4 6.0 · 10−6 6.0 · 10−6

l0 [m] 10.0 1.0 1.0
GP [V/m] 104 105 104

GD [Vs/m] 500 500 500

(5.10)

Figure 5.23 shows non-dimensionalised orbits of rotor motion for cases #1 through #3. As expected,
the similar cases #1 and #2 almost overlap, while case #3 is distinct. Here, the effect can be largely
attributed to the stationary harmonic part of the motion, i.e., the amplitude of stationary vibration.
However, as was seen in the previous stability analysis, a high proportional gain can destabilise the rotor-
bearing system. Indeed, setting the gain a factor of ten too high, may result in unpredicted bearing
behaviour.

While much of the knowledge that is gained from a dimensional analysis is common sense, the large
number of parameters defining an ATPJB makes experiment planning error prone. While one dimensional
effect is considered, another may be forgotten. Thus, the ATPJB dimensionless numbers are useful. The
present investigation shows a case where the lack of similitude has only moderate effects on the rotor-
bearing behaviour. As such, it does not warn about the dangers of extrapolating results in blindness,
which may be significant.
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Figure 5.23: Journal orbits for cases #1, #2 and #3. Note that case #1 and #2 are similar, while case
#3 is not similar to the other two.
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5.4 Stationary harmonic response
The amplitude of the rotor vibration in the bearing can often be critical to a given design. To evaluate
this, typically a linear model is sufficient [19]. In the following, we shall compute force responses for a
passive, a hybrid, and an active bearing, respectively. Only one set of gains is investigated here.
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Figure 5.24: Amplitude of linear bearing force responses for the passive, hybrid and active bearing,
respectively.
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Figure 5.25: Phase of linear bearing force responses for the passive, hybrid and active bearing, respectively.

Figure 5.24 shows amplitudes of bearing force responses in the x1 direction for a unit rotor amplitude
in the x1 direction. Curves are shown for a passive bearing, a hybrid bearing and an active bearing.
The journal rotational speed is 6000rpm and the journal diameter is 0.1m. The machined clearance is
100µm and the assembled clearance is 75µm, which corresponds to a preload factor of 0.25. The lubricant
viscosity is 0.019Ns/m2. The pad density is 8400kg/m3, the elastic modulus is 100GPa and the first
two modeshapes of each pad are included in the computation. The static load on the bearing is 2000N
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in the x1 direction. The hybrid and active bearings incorporate two servo-valves each. The servo-valve
eigenfrequency is 320.16Hz, the flow-voltage coefficient is 33.4·10−6m3/sV, the flow pressure coefficient is
1.13 · 10−12m5/sN, the valve damping ratio is 0.48, the leak flow is 6.0 · 10−4 and the inlet pipe length
is 1.0m. For the active bearing the proportional and derivative gains are 500V/mm and 0.5Vs/mm,
respectively. For the hybrid bearing both the proportional and derivative gains are zero. Thus the hybrid
bearing is essentially an open loop controlled bearing with a constant flow of fluid through the orifices into
the bearing gap. The passive bearing has an uninterrupted wetted surface, while the active and hybrid
bearings have orifice configurations corresponding to the four-orifice configuration described in [3]. The
corresponding phase plots between rotor movement and bearing force responses are seen in Fig. 5.25. As
mentioned, the curves in 5.24 and 5.25 are for displacement perturbations and force perturbations in the
x1 direction. The corresponding plots for the x2 direction are almost identical, while the bearing cross
coupling is neglected, as is most often reasonable with TPJBs.

With the curves in Figs. 5.24 and 5.25 the force from the bearing on a rotor for a given rotor movement
is given. Then, for known rotor parameters, the forces from the structural stiffness, the damping, and
the inertia of the rotor can be computed. Subsequently the rotor and bearing forces can be superimposed
to produce the total force. If the rotor motion is of unit amplitude, the inverse of the total force is the
frequency response function of the rotor-bearing system. Neglecting the structural stiffness and damping
of the rotor, the rotor force response is simply −mrΩ

2. This force is superimposed on the bearing force
of Fig. 5.24 and 5.25 for different values of the rotor mass mr. Values of 2000kg, 1000kg and 200kg are
investigated. The resulting frequency response functions are presented in Figs. 5.26, 5.27 and 5.28. The
frequency range is 0 to 5Ω, corresponding to 500Hz. The servo-valve eigenfrequency thus corresponds to
roughly 3Ω.
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Figure 5.26: Amplitude of journal frequency response function for a rotor mass of 2000kg. The static load
is 2000N in the x1 direction, the rotational speed is 6000rpm and the lubricant viscosity is 0.019Ns/m2.
The assembled clearance is 75µm and the machined clearance is 100µm.

Consider Fig. 5.26, which is the frequency response function for the heavy rotor case. The control
system is seen to damp out the first primary resonance peak considerably, while also increasing the
resonance frequency. In both the active and passive cases there is only one significant resonance peak.
Coincidentally, the control system reduces vibration amplitude for frequencies below the synchronous
(rotational) frequency. So whether or not it is beneficial to activate the control system depends on which
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frequencies dominate the forcing. Henceforth, let us denote the frequency where the amplitude curves
cross each other the "shut-off frequency". One always has the option of reverting from the active bearing
to the hybrid bearing. This simply requires setting the control gains to zero. The hybrid bearing is seen
to perform roughly as the passive bearing, in particular for higher frequencies. Possibly, for higher valve
leak values, this would not be true.

Keep in mind that the shown frequency response function is for the case of constant rotational speed
Ω. Thus it is not suited for investigation of the vibrational amplitude during start-up of a rotor. Its merit
is in the investigation of a rotor operation at nominal operating conditions.
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Figure 5.27: Amplitude of frequency response function for a rotor mass of 1000kg. The static load is
2000N in the x1 direction, the rotational speed is 6000rpm and the lubricant viscosity is 0.019Ns/m2. The
assembled clearance is 75µm and the machined clearance is 100µm.

Figure 5.27 shows the frequency response functions for the moderate rotor mass. The study of these
curves yields similar conclusions to that of Fig. 5.28 except perhaps, that all relevant frequencies have
increased slightly. That is, the resonance frequencies for all cases, as well as the shut-off frequency.

The frequency response function for a light rotor of 200kg is shown in Fig. 5.28. The light rotor
means that even for relatively high frequencies, the bearings force response is significant. Thus, for the
active bearing, apart from the first resonance peak, a second peak is identified close to the servo-valve
eigenfrequency. Also, as before, reducing rotor mass has had the effect of increasing the resonance and
shut-off frequencies.
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Figure 5.28: Amplitude of frequency response function for a rotor mass of 200kg. The static load is
2000N in the x1 direction, the rotational speed is 6000rpm and the lubricant viscosity is 0.019Ns/m2. The
assembled clearance is 75µm and the machined clearance is 100µm.
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5.5 Simple adaptive control
In recognition of the fact that rotor-bearing system behaviour depends heavily on rotational speed, it seems
that control gain choice should be made accordingly. That is, the choice of control gain should also depend
on the rotational speed. A few preliminary reflections are in order here. Firstly, the mission of the control
system should be clarified. In optimization terms, we would refer to the objective function. Secondly, any
constraints should be identified. For instance, it is quite possible that control gains, which result in small
stationary harmonic amplitude of vibration actually make the bearing unstable. Furthermore, there are
limits as to how high control gains can be chosen, since the capacity of the control system is limited. That
is, we must keep the risk of control system saturation in mind. Saturation is a nonlinear phenomenon, and
cannot readily be included in a linear frequency domain analysis. Whether it be a stability analysis or
a stationary linear harmonic response analysis. The easiest way to tackle the issue, is to impose sensible
limits on the magnitude of the control gains. In optimization terms, we would refer to such limits as the
constraint function(s).

In the following analyses, the results are normalised with the fundamental frequency Ω0. As it is
difficult to choose one relevant frequency for normalisation in both the passive and active cases, we set Ω0

to the quite arbitrary value
Ω0 = 100Hz (5.11)

In the active cases, the implemented servo-valve has an eigenfrequency of 320.16Hz, so in those cases one
may substitute this as the fundamental frequency, if it is useful.

The rotational speed, Ω, is varied from almost zero to Ω0, i.e., 100Hz. The assembled clearance is
75µm and the machined clearance is 100µm. A two mode reduction is utilised for the pads. Rotor mass is
2000kg with zero structural rotor stiffness and damping. The static load is zero as is the rotor structural
damping and stiffness. The flow-voltage coefficient is 16.7 ·10−6m3/(sV). Apart from this, the parameters
are as in Tabs. 5.1 and 5.2. The orifice array is that of configuration #2 in [3].

The external force on the rotor is defined as that of an unbalance and set to

ω = Ω (5.12)

fr1 = 8000N(ω/Ω0)
2 cos(ωt)

fr2 = 8000N(ω/Ω0)
2 sin(ωt) (5.13)

The proportional gain is confined to the interval +
−4MV/m and the derivative gain is confined to the

interval +
−6kVs/m. Each interval is divided into 20 segments. Thus at each rotational speed, there are

400 discrete combinations of gains, which can be selected. The passive hybrid bearing still has the valves
attached, but the gains are set to zero. Thus the flow into the bearing gap is constant and equal to the
leak flow. We test three different control strategies. The first (I) is to select the gains so as to produce the
minimum stationary amplitude of vibration, subject to a synchronous unbalance. As a constraint, all real
parts of system eigenvalues must be negative. The second (II) is to minimize the largest real part of any
system eigenvalue. The third (III) is to again select the gains so as to produce the minimum stationary
amplitude of vibration, subject to a synchronous unbalance. But now with the constraint, that the largest
real part of any eigenvalue must be smaller than that of the passive hybrid bearing (with zero gains). The
gains are selected through brute force trial and error calculations.

The adoption of the three strategies results in the gain selections shown in Figs. 5.29 and 5.30. We
note that none of the selected gains are negative. The curve of selected gains for strategy II seems to be
quite erratic, in particular for the lower rotational speeds. As the rotational speed increases, the curve
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Figure 5.30: Selected derivative gains as a
function of rotational speed.

straightens. In contrast, strategies I and III produce much simpler curves, with less features. It is worth
noting, that strategy III tends to select smaller proportional gains than strategy I throughout most of the
range of rotational speeds.
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Figure 5.31 shows the amplitudes of stationary vibration for the different control strategies. While
strategy I produces a large drop in amplitude across the range of rotational speed, the behaviour of
strategy II is more erratic, although it too results in amplitude drops as a secondary effect. The hybrid
strategy II performs almost as well as strategy I in reducing the amplitude.

Figure 5.32 shows the maximum real part of any system eigenvalue for the range of rotational speeds
and the three control strategies. As seen, all cases are stable. However, the real parts of strategy I
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come very close to the zero line. Thus, it is likely, that this strategy will produce a bearing with poor
performance in terms of dissipation of energy. That is, it will perform poorly in the transient vibration
regime. Furthermore, a small change or uncertainty in any system parameter may cause the bearing to
become unstable. Thus, strategy I is rejected. Naturally, strategy II has the lowest maximum real parts
across the whole range of rotational speeds. The maximum real part of strategy II stays fairly close to
that of the passive case, indicating the the constraint is influencing the choice of gains.
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Figure 5.33: Timeseries for the passive case along with two of the control strategies.

Figure 5.33 shows timeseries for the passive case, as well as control strategies II and III. The rotational
speed, Ω, is increased in 63 equal steps from zero to 100Hz over a time interval of 3.18 seconds. The
unbalance force is defined by Eq. 5.13. The predicted stationary vibration amplitude (from Fig. 5.31) is
overlaid as a red curve. As the speed (hence the magnitude of the unbalance force) is increased in abrupt
steps, each speed increase will introduce a small amount of energy into the system. Thus, the system
will vibrate transiently throughout the analysis, after each step. However, the magnitude of the transient
part is modest, as the curves of stationary vibration amplitude almost perfectly predict the response.
One exception is the very beginning of the analysis for strategy III, where substantial transient vibrations
take place. Also, keep in mind, that changing the gains abruptly is in itself a transient event, which may
adversely affect the system response. In terms of vibration response, however, both strategies outperform
the passive case across the range of rotational speeds.
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5.6 Stability calculation with dynamic coefficients
As a final analysis. We investigate the possible error from applying frequency dependent bearing dynamic
coefficients to stability analysis of ATPJBs. That is, dynamic coefficients from a dynamic, synchronous
(or asynchronous) motion perturbation. As previously mentioned, such use is not recommended. We shall
see selected examples of why this is true in the following.

The procedure for a stability analysis is

1. Find the static equilibrium of the TPJB, considering pad, rotor and valve degrees of freedom.

2. Considering the pad, rotor and valve degrees of freedom, solve for the eigenvalues.

The procedure for a synchronous motion stability analysis is

1. Find the static equilibrium of the TPJB, considering pad, rotor and valve degrees of freedom.

2. Perform dynamic condensation, considering the pad, rotor and valve degrees of freedom. This results
in the 2×2 system of the rotor, with frequency dependent coefficients. The bearing contributions
are defined by Eq. (2.130) and Eq. (2.131).

3. Considering only the rotor degrees of freedom, solve for the eigenvalues.

Let us use one of the test cases from section 5.2 as an example. The mass is set to mr = 200kg
and the assembled clearance to Ca = 75µm corresponding to a preload factor of 0.25. Two rotational
speeds are investigated Ω = 100Hz and Ω = 10Hz. A two-mode pseudo modal reduction is employed (pad
tilt and bending). The 100Hz case previously produced the stable domain in Fig. 5.14. Now, in stead
of performing a true stability analysis, we perform a dynamic condensation to produce the 2×2 system
of equation for the journal. The condensation frequency is the synchronous value, i.e., ω = 100Hz or
ω = 10Hz. The bearings contribution to the stiffness and damping matrices are given by Eq. (2.130)
and Eq. (2.131), respectively. The rotor structural stiffness and damping are set to zero, and the mass
matrix is diagonal with mr in the diagonal entries. The resulting stable domain is shown in Fig. 5.36 and
Fig. 5.37 for 100Hz and 10Hz, respectively. The corresponding actual stable domain is also shown for
comparison. Clearly, the error is unacceptable. However, note that in the low frequency case, the lower
left corner of the stable domain is predicted fairly accurately by the synchronously reduced method, as is
the lower bound on the proportional gain. However, information on the rest of the stability threshold is
lost, as the upper bounds on both gains are not seen at all.

Since the synchronously (or asynchronously) reduced dynamic coefficients for a passive plain (no pads)
journal bearing are frequency independent, and may be used for stability analysis, it is tempting to use
them for stability analysis of said bearings with active servo-valves [65]. However, as mentioned, such
use is not recommended, since the addition of the control system adds degrees of freedom to the system,
and thus makes the condensed system frequency dependent. Firstly, such use constitutes a mathematical
error. Secondly, as we shall see, the error can be significant. To make the analysis as simple and clear
and reproducible as possible, it is desirable to investigate a bearing in which cavitation does not occur.
A straight forward way of doing this is to simply define the bearing surface as that of a TPJB at static
equilibrium. It is straight forward to create a plain journal bearing from a tilting pad journal bearing;
simply fix the pads. Figure 5.34 illustrates the idea. It shows the generic system of equations for a rigid
body model of an ATPJB with indication of components. The pads are fixed in a position that corresponds
to static equilibrium of the corresponding bearing with rigid pad degrees of freedom. That is, the pads are
allowed to tilt into the static equilibrium position and are subsequently fixed. This ensures that cavitation
does not occur. The generic geometry of the active plain bearing is illustrated in Fig. 5.35.
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Figure 5.34: a: Illustration of the structure of the system of equations for a rigid body model of an ATPJB
with indication of the individual contributions. b: Indication of the corresponding system of equations for
an active plain journal bearing and a passive TPJB.
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Now, for the stability analysis, the procedure is as follows.

1. Find the static equilibrium of the TPJB, considering pad, rotor and valve degrees of freedom.

2. Considering only the rotor and valve degrees of freedom (active plain journal bearing), solve for the
eigenvalues.

The procedure for a synchronous motion coefficient stability analysis is

1. Find the static equilibrium of the TPJB, considering pad, rotor and valve degrees of freedom.

2. Perform dynamic condensation, considering only the rotor and valve degrees of freedom. This results
in the 2×2 system of the rotor, with frequency dependent coefficients. The bearing contributions
are defined by Eq. (2.130) and Eq. (2.131).

3. Considering only the rotor degrees of freedom, solve for the eigenvalues.
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Figure 5.35: Schematic representation of the active journal bearing. The four pads are fixed, leaving only
the degrees of freedom of the rotor and the servo-valve. Effectively, this makes the bearing an active plain
journal bearing. The incline of the pads is greatly exaggerated.

As before, the mass is set to mr = 200kg and the assembled clearance to Ca = 75µm corresponding to
a preload factor of 0.25. Two rotational speeds are investigated Ω = 100Hz and Ω = 10Hz. Also, as before,
the condensation frequency is the synchronous value, i.e., ω = 100Hz or ω = 10Hz. The rotor structural
stiffness and damping are set to zero, and the mass matrix is diagonal with mr in the diagonal entries.
The resulting stable domains are shown in Fig. 5.38 and Fig. 5.39 for 100Hz and 10Hz, respectively.
The corresponding actual stable domain is also shown for comparison. Again, we note that in the low
frequency case, the lower left corner of the stable domain is predicted accurately by the synchronously
reduced method. Also, the lower bound on the proportional gain is in agreement with that of the actual
stability analysis. However, as before, the rest of the stability threshold is not captured.
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Figure 5.37: Stable domains for an AT-
PJB. The stable domain, as predicted by
the dynamic coefficient method, is shaded.
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5.7 Thermal error estimate
To gain insight into the magnitude of the error from neglecting thermal effects, a simplified thermal study
is conducted. The study adopts an engineering approach and is by no means exact. But it will serve to
effectively estimate how sensitive the previously presented results are with respect to thermal influences.
For this investigation we shall assume the bearing infinitely long. Also, while the study does not assume
isothermal conditions, it does rely on averaged system parameters.

Assuming the pad and rotor surfaces parallel, then the oil film shear stress is constant across the film
thickness and is given as

τ = µ
U

h

[
N
m2

]
(5.14)

furthermore, the average area specific power dissipated in the oil film shear is given as

P = τU

[
W
m2

]
(5.15)

For a four pad bearing, the maximum arc length of a pad is πD/4. A rough estimate of the average
lubricant velocity is U/2. Thus the average time that a lubricant particle spends in the gap is given as

∆t =
πD/4

U/2
[s] (5.16)

Assuming no heat transfer through the pad and rotor, then all the shear dissipation is stored in the
lubricant as thermal energy. Thus the area specific energy absorbed by the lubricant through its motion
past one pad is given as

Eshear = P∆t = µ
UπD/2

h

[
J

m2

]
(5.17)

The average area specific heat capacity is given as

ca = cpρoilh

[
J

m2K

]
(5.18)

where cp is the lubricant heat capacity and ρoil is the density. The temperature change of the lubricant
through its motion past one pad is computed as

∆T = Tout − Tin =
Eshear

ca
=
µUπD/2

cpρoilh2
(5.19)

Thus now we have one equation linking temperature and viscosity change to rotational speed. That is,
we have one equation with two unknowns. As a constitutive relation between temperature and viscosity
we make use of the following empirical relation [66]

µ = 10G0(1+
T

135 )
−S0−4.2 [Ns/m2] (5.20)

where G0 and S0 are determined from experiment. Thus with two datapoints, the temperature-viscosity
relation can be established. Note that T is measured in ◦C. The equation (5.20) has been rewritten slightly
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from the expression in [66] so as to define µ in SI units. We set the temperature to the median over the
pad. Thus

T = (Tout + Tin)/2 = Tin +∆T/2 (5.21)

Thus Eq. (5.20) with Eq. (5.21) produces

µ = 10G0(1+
Tin+∆T/2

135 )−S0−4.2 [Ns/m2] (5.22)

Equations (5.19) and (5.22) can be solved iteratively for ∆T and µ. We combine them to define the
residual equation

rµ =
cpρoilh

2∆T

UπD/2
− 10G0(1+

Tin+∆T/2

135 )−S0−4.2 = 0 (5.23)

which is a single nonlinear equation in ∆T . We solve this equation with the Newton-Raphson method.
Deriving with respect to ∆T yields

∂rµ

∂∆T
=

2cpρoilh
2

UπD/2
+ ln(10)G0S0

(
1 +

Tin +∆T/2

135

)−S0−1

10G0(1+
Tin+∆T/2

135 )−S0−4.2/270 (5.24)

Hydraway HVXA 22 oil has a kinematic viscosity of 21.2 mm2/s at 40◦C and 4.8 mm2/s at 100◦C.
The density at 15◦C is 860kg/m3 and assumed constant. The heat capacity is taken to be 1900 J

kgK which
is a realistic value. Figure 5.40 shows the dynamic viscosity as a function of temperature for the oil in
question. The curve follows the expression in Eq. (5.20). Figure 5.41 shows the temperature change over
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one pad as a function of rotational speed as computed from Eq. (5.23). The inlet temperature Tin is set
to 38.5◦C. This temperature produces a viscosity of 0.019Ns/m2, which is the value adopted in many of
the analyses in this thesis. The other system parameters are chosen to correspond to the analyses in 5.2.
Here a 0.1m journal is rotating at speeds up to 100Hz in a bearing with a machined clearance of 100µm.
There is no static load on the bearing. A thin oil film will produce higher shear stresses, so the worst case
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is that of the high preload factor, which is 0.25. As a worst case scenario for the thermal computation,
the film thickness is set to 50µm. In Fig. 5.42 the resulting relative change in average viscosity over the
pad is shown. The effect is substantial, with the error reaching 36% for the 200Hz case. At 150Hz the
reduction is 32%. To investigate the impact on the results of such a decrease in viscosity, we compute
the stable domain of gains with a 32% reduction in viscosity (from 0.019Ns/m2 to 0.0129Ns/m2). This is
taken to represent a more severe thermal error than that of any result presented, as the rotational speed
is 150Hz, compared to the 100Hz speed of, e.g., Fig. 5.14. The effect of the viscosity drop is presented
in Fig. 5.43. The effect is noticeable, but would not impact any drawn conclusions. Note that asserting
that the computation with a reduced viscosity is more accurate than the original would be false. For this,
the thermal correction is too simple. What the thermal correction allows us to do is merely evaluate the
sensitivity of the results with respect to the thermal influence. As it is seen, the control system is not
severely affected by changes in the viscosity. Also, note that the effect may be even more modest, if the
control system is taken to inject oil at the inlet temperature and viscosity. As such, the presented thermal
computation constitutes a worst case investigation.
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5.8 Chapter discussion and summary
In the present chapter, the mathematical model has been validated inexhaustibly against selected results
from literature.

The model has been checked for consistency through comparison between linear stationary harmonic
analysis and nonlinear time domain analysis. Also a convergence check with respect to spacial resolution
has been performed, by comparing pseudo modal reductions with different numbers of modes.

A large study on the influence of model parameters on stability has been performed. Most notably,
stability limits on control parameters have been established. The results from the dimensional analysis
have been put to use, as all stable domains are non-dimensional.

The critical hydroelastic number for a given bearing design has been established. Also, a small study
on the implications of similitude and the lack thereof is also included. This serves as a guide to the safe
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extrapolation of results to bearings of other dimensions.
A linear frequency response analysis has been performed. This is useful for the limitation of the

amplitude of stationary harmonic non-synchronous vibrations. The analysis is performed for three values
of rotor mass. Generally, the lighter the rotor, the higher is the frequency at which it is beneficial to
shut off the control system. At low frequencies the control system should be on, since hydrodynamic load
carrying capacity is low.

Finally, it has been shown that a 2×2 system of equations with frequency dependent matrix entries is
not suitable for ATPJB stability predictions, nor for stability predictions of active plain journal bearings
without moving pads.



Chapter 6

Conclusions and future aspects

A mathematical modelling procedure for active tilting-pad journal bearings has been presented. The res-
ulting model can be used for local stability analysis, stationary harmonic vibration analysis, and nonlinear
time series analysis. All three analysis types are combined to evaluate specific bearing designs at given
operating conditions. The conclusions in the following draw from the results of this thesis as well as the
candidates recent publications [2, 3, 4, 5, 6, 7, 8].

It is seen that placement of radial injection orifices is important. Placement far from the pad pivot line
is recommended, as passive hydrodynamic pressure in this region is small. Thus, all other things being
equal, orifice placement far from the pivot line will amount to a more effective control system than one
with centrally placed orifices. Secondly, it has been demonstrated that, while pad deformation has modest
influence on the static equilibrium and oil film thickness of the bearing, it is of great importance to the
dynamics. This is particularly relevant for active tilting-pad journal bearings, as use of a rigid body model
can lead to miss-tuning of the bearing. Miss-tuning can lead to bearing instability and failure.

Stable domains in the proportional-derivative gain planes have been identified. These depend on
operating conditions and bearing parameters. Increased rotor mass is seen to increase the size of the
domain. The effect of reducing the pad preload factor is less obvious, but the effect of rounding off the
south-west corner of the stable domain seems to prevail across the range of simulations. This round off
effect can in some cases destabilise the passive bearing. That small preload can lead to an unstable bearing
is well known, so this is not surprising in itself. However, the same analyses reveal, that the control system
can stabilise the bearing when the small preload makes the passive bearing unstable.

A dimensional analysis has been performed. A total of twelve dimensionless parameters are identified
for the dynamic behaviour of active tilting-pad journal bearings. A few of these have already been known
for many years, namely the Sommerfeld number and the dimensionless rotor mass. These are also, by
far, the most important. However, as active tilting-pad journal bearings are not yet fully understood,
the dimensionless numbers related to the control system, will aid greatly in future experiment planning.
An example of a representative scaled down test-rig bearing design process is presented. Furthermore,
simulations have revealed the value of the critical hydroelastic number for a given bearing design. Future
research should aim to produce tables of critical values for a range of bearing designs.

Initial attempts at simple adaptive control have been made. These reveal that the concept of "ideal"
rotor-bearing behaviour poses ambiguous requirements on the control gains. That is, ideal stationary
vibration performance is in conflict with transient performance. Thus, the designer must consider carefully
what the role of the control system is. Is it to minimise vibration inside the bearing for reduced wear and
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long bearing service life? Or is it to dissipate mechanical transients from other machine elements on the
rotating shaft? These roles will lead to different gain selections.

It has been illustrated through theoretical argumentation and selected examples, that frequency de-
pendent dynamic coefficients are not suited for stability predictions of active journal bearings of the type
investigated here. This holds, whether the bearings are of the tilting-pad type or not.

Finally, it cannot be overemphasised that all the presented simulations assume isothermal conditions.
Once a sound thermoelastohydrodynamic model of an active tilting-pad journal bearing is developed,
many conclusions in this thesis become subject to possible revision.
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Appendix A

Software implementation

Numerical simulations with tilting pad journal bearings may require many different operations in different
sequences. Furthermore, they require direct access to details in the model, which are generally not access-
ible in commercial software. In recognition of this, a scripting language has been developed specifically
for bearing simulations. Subroutines may be called in a user defined sequence, and the results may be
post processed as the user sees fit. Generally, the output consists of a nodal result file with ending ".nsol"
along with several output files containing data such as rotor position and valve flow. The ".nsol" files are
post-processed1 and subsequently read by Gmsh [69] for production of nodal solution plots, e.g., plots of
pressure and nodal displacement.

To run a bearing simulation, the user must create a mesh file and an input file. The mesh file contains
nodal positions and connectivity information. The input file contains a reference to the mesh file, as well
as the commands for the program. Per default, when the program is run, a proprietary variable file is
created. This file stores variables that are declared when running the program. Each variable is assigned
a line in the variable file. This feature is inspired from the .php language, and brings the advantage that
a variables type and size does not need to be know a priori. In addition to the mandatory files, the user
may include auxiliary files. For instance, it may be useful to compute the mode-shapes for the pads in one
simulation, and then save them for re-use in other simulations. Also, it may be useful to save the static
equilibrium state in a file for later use.

Figure A.1 shows a schematic of the flow of information. The user created script file "myscript.scr"
contains call to subroutines, as well as references to the mesh file "mymesh.i" and the proprietary vari-
able file "myscript.scr.vars". Also, in this case, it refers to two auxiliary variable files; "aux1.vars" and
"aux2.vars".

A.1 Example input files
An example of an input file is shown below. The script file computes synchronously reduced dynamic
coefficients for a range of rotational speeds and control gains. The condensation frequency is set to match
the rotational speed. Also, the eigenvalues are computed at each rotational speed and set of control gains.
Again, it is stressed that the eigenvalues have nothing to do with the condensation frequency. The rotors
structural stiffness and damping matrices are set to nil, but a diagonal mass matrix is defined.

1Post processing is done with a simple command line tool developed by the author.
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mymesh.i myscript.scr.vars

myscript.scr

aux.vars aux2.vars

myoutput2.out

myoutput1.out

myoutput3.out

mymesh.i.nsol

Figure A.1: A simple flowchart, illustrating the flow of information.

READ mekmulti_mg.i !Read mesh file for one pad, including nodal boundary conditions
RUN COPYPAD 4 !Copy the pad to generate a total of four pads
RUN INIT !Initialise
RUN INITFLUID !Initialise fluid
RUN INITSTRUCT !Initialise solid
RUN SOLIDBC PERMANENT !Impose permanent boundary conditions
SET NEWMARK OUTPUT NSOL NFR 5 !Output 5 nodal frames in the newmark algorithm.
SET NEWMARK OUTPUT ORBIT NFR 100 !Output 5 orbit frames in the newmark algorithm.
SET NEWMARK OUTPUT SERVO NFR 100 !Output 5 servo-valve frames in the newmark algorithm.
SET NR OUTPUT NSOL ON !Toggle nodal output on for newton-raphson iterations
SET NR OUTPUT ORBIT ON !Toggle rotor output on for newton-raphson iterations
SET NR OUTPUT SERVO ON !Toggle servo-valve output on for newton-raphson iterations
CLEARFILE response.out !Clear or create file
CLEARFILE frequency.out !Clear or create file
CLEARFILE eigvals_01_re.out !Clear or create file
CLEARFILE eigvals_01_im.out !Clear or create file
CLEARFILE eigvals_01_TVEL_re.out !Clear or create file
CLEARFILE eigvals_01_TVEL_im.out !Clear or create file

RUN WRITEHEADER !Write header in mekmulti.i.nsol

SET ROTOR LOAD STATIC 0.0 0.0 !Set static lateral rotor load to nil
SET ROTOR K 1 1 0.0 !Set rotor 2X2 stiffness matrix to zero
SET ROTOR K 1 2 0.0
SET ROTOR K 2 1 0.0
SET ROTOR K 2 2 0.0

SET ROTOR M 1 1 100.0 !Set rotor 2X2 mass matrix
SET ROTOR M 1 2 0.0
SET ROTOR M 2 2 0.0
SET ROTOR M 2 2 100.0

SET ROTOR C 1 1 0.0 !Set rotor 2X2 damping matrix
SET ROTOR C 1 2 0.0
SET ROTOR C 2 2 0.0
SET ROTOR C 2 2 0.0

INCLUDEVAR mekmulti_mg_modeshapes_16modes.vars !Include file with previously computed solid modeshapes

SET TVEL 31.415926535 !Set the tangential velocity of the journal

RUN PRELOAD 25.0E-6 !Preload the pads

!Define pads (i.e., relate elements to a pad number)
SET PAD 1 0 90
SET PAD 2 90 180
SET PAD 3 180 270
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SET PAD 4 270 360

!Declare variables...

VAR $FR
VAR $COUNTER
VAR $PRELOAD
VAR $EQ
VAR $TVEL
VAR $RUNME
VAR $RUNME2
VAR $RUNME3
VAR $NN
VAR $RESIDUAL
VAR $MAXREAL
VAR $MODSOL1
VAR $MODSOL2
VAR $MODSOL3
VAR $MODSOL4
VAR $EIGVALS_REAL
VAR $EIGVALS_IMAG
VAR $VGAIN
VAR $DGAIN
VAR $SHAPES_REAL
VAR $SHAPES_IMAG

!These variables are already declared and defined in mekmulti_mg_modeshapes_16modes.vars,
!so we do not declare them here.
!VAR $PAD_1_MODES
!VAR $PAD_1_FREQS
!VAR $PAD_2_MODES
!VAR $PAD_2_FREQS
!VAR $PAD_3_MODES
!VAR $PAD_3_FREQS
!VAR $PAD_4_MODES
!VAR $PAD_4_FREQS
VAR $PADMODES
VAR $STOP
VAR $STOP2
VAR $INDEX1
VAR $INDEX2
VAR $INDEX3
VAR $INDEX4
VAR $ROTOR_D_X

$INDEX1 = 1
$INDEX2 = 46860
$INDEX3 = $INDEX2 + 1
$INDEX4 = $INDEX2 * 2

!If we didn’t have the solid mode shapes from mekmulti_mg_modeshapes_16modes.vars, we could
!compute them here.
!RUN MODAL 4 1 $PAD_1_FREQS $PAD_1_MODES
!RUN MODAL 4 2 $PAD_2_FREQS $PAD_2_MODES
!RUN MODAL 4 3 $PAD_3_FREQS $PAD_3_MODES
!RUN MODAL 4 4 $PAD_4_FREQS $PAD_4_MODES

!Generate vector with all modeshapes, pad after pad.
$PADMODES = $PAD_1_MODES(1:93720) & $PAD_2_MODES(1:93720)
$PADMODES = $PADMODES & $PAD_3_MODES(1:93720)
$PADMODES = $PADMODES & $PAD_4_MODES(1:93720)

!Set boolean variable
$RUNME = T

!Set integer variable
$COUNTER = 0



APPENDIX A. SOFTWARE IMPLEMENTATION 107

!We already have a good initial guess for the NR algorithm, but if we needed it, we could get it here.
!RUN COMBINATORICS 5 2 $PAD_1_MODES 50E-6 5E-6 $RESIDUAL 0 $MAXREAL $MODSOL1
!RUN COMBINATORICS 5 2 $PAD_2_MODES 50E-6 5E-6 $RESIDUAL 0 $MAXREAL $MODSOL2
!RUN COMBINATORICS 5 2 $PAD_3_MODES 50E-6 5E-6 $RESIDUAL 0 $MAXREAL $MODSOL3
!RUN COMBINATORICS 5 2 $PAD_4_MODES 50E-6 5E-6 $RESIDUAL 0 $MAXREAL $MODSOL4

!Initial guess for NR algorithm (modal coordinates)
$MODSOL1 = [-5.5E-4;9.5E-5]
$MODSOL2 = [-5.5E-4;-9.5E-5]
$MODSOL3 = [-5.5E-4;-9.5E-5]
$MODSOL4 = [5.5E-4;-9.5E-5]

!Apply initial guess
SET D MODAL $PAD_1_MODES $INDEX1 $INDEX2 $MODSOL1(1) 0
SET D MODAL $PAD_1_MODES $INDEX3 $INDEX4 $MODSOL1(2) 1
SET D MODAL $PAD_2_MODES $INDEX1 $INDEX2 $MODSOL2(1) 1
SET D MODAL $PAD_2_MODES $INDEX3 $INDEX4 $MODSOL2(2) 1
SET D MODAL $PAD_3_MODES $INDEX1 $INDEX2 $MODSOL3(1) 1
SET D MODAL $PAD_3_MODES $INDEX3 $INDEX4 $MODSOL3(2) 1
SET D MODAL $PAD_4_MODES $INDEX1 $INDEX2 $MODSOL4(1) 1
SET D MODAL $PAD_4_MODES $INDEX3 $INDEX4 $MODSOL4(2) 1

!Set variables
$TVEL = 0.0
$FR = 0.0

!Begin while loop
WHILE $RUNME3

!Increment variables
$TVEL = $TVEL + 0.031415926535
$FR = $FR + 0.62831853

!Set tangential velocity
SET TVEL $TVEL

!Find equilibrium for pseudo modal reduced model.
!Static lateral load is nil, so equilibrium does not depend on displacement gain.

RUN NRMODAL 10 $EQ 8 $PADMODES

!Set variable
$DGAIN = -2000000.0

!Set boolean variable
$RUNME = T

!Begin while loop
WHILE $RUNME

!Set variable
$VGAIN = -2000.00

!Set displacement (proportional) gains
SET SERVOVALVE 1 DGAIN $DGAIN
SET SERVOVALVE 2 DGAIN $DGAIN

!Set boolean variable
$RUNME2 = T

!Begin while loop
WHILE $RUNME2

!Set velocity (derivative) gains
SET SERVOVALVE 1 VGAIN $VGAIN
SET SERVOVALVE 2 VGAIN $VGAIN
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!Allow rotor motion
SET ROTOR FREE

!Compute eigenvalues for pseudo modal reduced system
RUN EIGMODAL 8 $PADMODES $EIGVALS_REAL $EIGVALS_IMAG $SHAPES_REAL $SHAPES_IMAG $MAXREAL
SET ROTOR LOCK

!FIRST MODESHAPE IS IN SHAPES_REAL(13:24), second is in SHAPES_REAL(37:48) and so on

!Write the computed eigenvalues to files
WRITE $EIGVALS_REAL eigvals_01_TVEL_re.out
WRITE $EIGVALS_IMAG eigvals_01_TVEL_im.out

!Set frequency for dynamic condensation
SET DC FREQUENCY $FR !0Hz

!Perform harmonic dynamic condensation for pseudo modal reduced system
RUN DCMODAL 1 8 $PADMODES

!Write harmonic response to file
WRITE DC RESPONSE response.out

!Increment variable
$VGAIN = $VGAIN + 500.0

!Evaluate boolean variable
$STOP2 = $VGAIN > 4001

!Evaluate boolean variable. Stop loop?
IF $STOP2

$RUNME2 = F
END_IF

!End of while loop
END_WHILE

!Increment variables
$COUNTER = $COUNTER + 1
$DGAIN = $DGAIN + 200000.0

!Evaluate boolean variable
$STOP = $DGAIN > 2000001.0
IF $STOP

$RUNME = F
END_IF

!Write text to file
WRITE TEXT DGAIN_INCREMENT eigvals.out

!End of while loop
END_WHILE

!Evaluate boolean variable
$STOP = $TVEL > 0.3141

!Set boolean variable
$RUNME3 = T

!Evaluate boolean variable. Stop loop?
IF $STOP

$RUNME3 = F
END_IF

!End of while loop
END_WHILE

!Finish script
FINISH
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Appendix B

Detailed derivation of dimensionless
numbers

B.1 The solid
Let us restate the expressions for the solid stiffness and mass matrices, as well as the force vector.

Ksnm =
3∑

i,j,k,l=1

∫

Π

Lijkl
1

4

(
∂ψkm

∂xl
+
∂ψlm

∂xk

)(
∂ψin

∂xj
+
∂ψjn

∂xi

)
dΠ, m, n ∈ S3

Msnm =

3∑

i=1

∫

Π

ρψimψindΠ, m, n ∈ S3

fn =

3∑

i=1

∫

Λ

∑

m∈S3
TimφmψindΛ, n ∈ S3

We shall seek to write these in a form, where the dimensional information is contained in a scalar factor.
We introduce dimensionless space

xi = Lx̃i, i = 1, 2, 3

∂

∂xi
=
∂x̃i
∂xi

∂

∂x̃i
=

1

L

∂

∂x̃i
∂2

∂xi∂xj
=

1

L2

∂2

∂x̃i∂x̃j
, i, j = 1, 2, 3

dΠ = L3dΠ̃

dΛ = L2dΛ̃ (B.1)
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Similarly we introduce dimensionless time.

Ωt = t̃

∂

∂t
=
∂t̃

∂t

∂

∂t̃
= Ω

∂

∂t̃
∂2

∂t2
= Ω2 ∂

2

∂t̃2
(B.2)

Thus, now space is measured in fractions of a characteristic length L, and speed is measured in terms of
the rotational speed of the rotor Ω. Furthermore, we write the dimensionless surface traction as

Tim =
F

L2
T̃im, i = 1, 2, 3, m ∈ S (B.3)

(B.4)

So traction is measured in terms of a characteristic force F , and the characteristic length L. Restating
the expression for the constitutive tensor for the solid, the dimensional information is readily available

Lijkl = E
1

2(1 + ν)

(
δikδjl + δilδjk +

2ν

1− 2ν
δijδkl

)

i.e.
Lijkl = EL̃ijkl (B.5)

Now, substituting spatial derivatives with their dimensionless counterparts and by use of Eq. B.5, we may
write

Ksnm =

3∑

i,j,k,l=1

∫

Π

EL̃ijkl
1

4

1

L2

(
∂ψkm

∂x̃l
+
∂ψlm

∂x̃k

)(
∂ψin

∂x̃j
+
∂ψjn

∂x̃i

)
L3dΠ̃, m, n ∈ S3 (B.6)

or simply

Ksnm = ELK̃snm (B.7)

with

K̃snm =

3∑

i,j,k,l=1

∫

Π

L̃ijkl
1

4

(
∂ψkm

∂x̃l
+
∂ψlm

∂x̃k

)(
∂ψin

∂x̃j
+
∂ψjn

∂x̃i

)
dΠ̃, m, n ∈ S3 (B.8)

Similarly we may write the mass matrix as

Msnm = ρL3M̃snm, m, n ∈ S3 (B.9)

where

M̃snm =

3∑

i=1

∫

Π

ψimψindΠ̃, m, n ∈ S3 (B.10)
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The force vector is readily written as fractions of the characteristic force F , so that

fn = F f̃n, n ∈ S3 (B.11)

where

f̃n =
3∑

i=1

∫

Λ

∑

m∈S3
T̃imφmψindΛ̃, n ∈ S3 (B.12)

Furthermore, through substitution of dimensionless time and space, the dimensionless displacement, ve-
locity and acceleration can be written as

dn = Ld̃n, n ∈ S3

ḋn = LΩ
∂d̃n

∂t̃

d̈n = LΩ2∂
2d̃n

∂t̃2
(B.13)

B.2 The fluid
Now, let us restate the expressions for the fluid system matrices and right hand side.

Amn =

∫

Φ

1

12

2∑

i=1

∂φm
∂χi

(∑
n∈F hnφn

)3

µ

∂φn
∂χi

dΦ +

∫

Φ

No∑

i=1

∑
k∈F gikφk
4µl0i

φnφmdΦ

,

Wmi = −
∫

Φ

∑
n∈F ginφn
4µl0i

φmdΦ, i = 1, 2, ..., No

and with the Reynolds boundary condition invoked a priori

rm = −
∫

Φ

U

2

(∑

n∈F
hn
∂φn
∂χ2

)
φmdΦ−

∫

Φ

(∑

n∈F
ḣnφn

)
φmdΦ

Again, we introduce dimensionless space, but now in the curvilinear coordinates

χi = Lχ̃i, i = 1, 2, 3

∂

∂χi
=
∂χ̃i

∂χi

∂

∂χ̃i
=

1

L

∂

∂χ̃i

∂2

∂χi∂χj
=

1

L2

∂2

∂χ̃i∂χ̃j
, i, j = 1, 2, 3

dΦ = L2dΦ̃ h = Lh̃ (B.14)
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We introduce the dimensionless film thickness, pipe inlet length and flow profile shape function as

h = Lh̃

l0i = Ll̃0i, i = 1, 2, ..., No

gik = L2g̃ik, i = 1, 2, ..., No, k ∈ F (B.15)

Now, applying these substitutions, the pressure system matrix can be written as

Amn =

∫

Φ

1

12

2∑

i=1

1

L

∂φm
∂χ̃i

(∑
n∈F Lh̃nφn

)3

µ

1

L

∂φn
∂χ̃i

L2dΦ̃ +

∫

Φ

No∑

i=1

∑
k∈F L

2g̃ikφk

4µLl̃0i
φnφmL

2dΦ̃ (B.16)

Or simply

Amn =
L3

µ
Ãmn (B.17)

where

Amn =

∫

Φ

1

12

2∑

i=1

∂φm
∂χ̃i

(∑

n∈F
h̃nφn

)3
∂φn
∂χ̃i

dΦ̃ +

∫

Φ

No∑

i=1

∑
k∈F g̃ikφk

4l̃0i
φnφmdΦ̃ (B.18)

Likewise we may write the injection pressure matrix as

Wmi =
L3

µ
W̃mi (B.19)

where

W̃mi = −
∫

Φ

∑
n∈F g̃inφn

4l̃0i
φmdΦ̃, i = 1, 2, ..., No (B.20)

Furthermore the right hand side can be written as

rm = L3Ωr̃m (B.21)

where

rm = −
∫

Φ

Ũ

2

(∑

n∈F
h̃n
∂φn
∂χ̃2

)
φmdΦ−

∫

Φ

(∑

n∈F

∂h̃n

∂t̃
φn

)
φmdΦ̃ (B.22)

We measure the flow and its time derivatives in fractions of the leak flow as

qv = qLq̃v

q̇v = qL
∂q̃v

∂t̃

q̈v = qL
∂2q̃v

∂t̃2
(B.23)
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With this, we rewrite the right hand side of the injection equations as

rinjm = qLr̃injm, m = 1, 2, ...No (B.24)

where, if the leak flow is the same for all valves, we have

r̃injm =





1 + q̃v1
1− q̃v1
1 + q̃v2
1− q̃v2
...





(B.25)

if this is not the case, we can write the vector components as fractions of the leak flow of one of the valves,
e.g., the first one as

r̃injm =





1 + q̃v1
1− q̃v1

qL2/qL1 + q̃v2
qL2/qL1 − q̃v2

...





(B.26)

The dimensionless pressure and its time derivatives can be written in terms of the characteristic force
and length as

pm =
F

L2
p̃m, m ∈ F

pm =
F

L2
Ω
∂p̃m

∂t̃
, m ∈ F

pm =
F

L2
Ω2 ∂

2p̃m

∂t̃2
, m ∈ F (B.27)

Similarly, the injection pressure is written as

pinjm =
F

L2
p̃injm, m ∈ F

pinjm =
F

L2
Ω
∂p̃injm

∂t̃
, m ∈ F

pinjm =
F

L2
Ω2
∂2p̃injm

∂t̃2
, m ∈ F (B.28)

B.3 The rotor
Let us restate the rotor equations

[
kr11 kr12
kr21 kr22

]{
dr1
dr2

}
+

[
cr11 cr12
cr21 cr22

]{
ḋr1

ḋr2

}
+

[
mr 0
0 mr

]{
d̈r1

d̈r2

}
=

{
fr1
fr2

}

or less explicitly as
Krdr +Crḋr +Mrd̈r = fr (B.29)



APPENDIX B. DETAILED DERIVATION OF DIMENSIONLESS NUMBERS 115

We introduce dimensionless rotor displacement, velocity and acceleration as

drn = Ld̃rn, n ∈ S3

ḋrn = LΩ
∂d̃rn

∂t̃

d̈rn = LΩ2∂
2d̃rn

∂t̃2
(B.30)

which allows us to rewrite the rotor equations as

krK̃rLd̃r + crC̃rLΩ
∂d̃r

∂t̃
+mrM̃rLΩ

2 ∂
2d̃r

∂t̃2
= F f̃r (B.31)

In all of the simulations presented in this thesis kr11 = kr22 = kr, kr12 = kr21 = 0 and cr11 = cr12 = cr21 =
cr22 = 0, so

K̃r =

[
1 0
0 1

]
, D̃r =

[
0 0
0 0

]
, M̃r =

[
1 0
0 1

]
(B.32)

B.4 The valve
Let us restate the equations for the valves

∑

m∈F
Wmipm +

No∑

m=1

Qimpinjm +

No∑

m=1

Kpqimpinjm = rinji, i = 1, 2, ...No

where, for the case of two coupled orifice arrays (pads), the pipe flow impedance matrix is defined as

Qin =

[
Q11 Q12

Q21 Q22

]
=



∫
Φ

∑
n∈F g1nφn

4µl01
dΦ

∫
Φ

∑
n∈F g2nφn

4µl02
dΦ


 ,

and the valve flow impedance matrix is defined as

Kpqin =

[
Kpq11 Kpq12

Kpq21 Kpq22

]
=

[
Kpq −Kpq

−Kpq Kpq

]
(B.33)

and the right hand side consists of valve flows

rinji = {r}inj =

{
qv + qL
−qv + qL

}
(B.34)

Considering the expression for the pipe flow impedance matrix, we may write

Qin =
L3

µ
Q̃in (B.35)



APPENDIX B. DETAILED DERIVATION OF DIMENSIONLESS NUMBERS 116

where, for the case of two orifice arrays

Q̃in =

[
Q̃11 Q̃12

Q̃21 Q̃22

]
=



∫
Φ

∑
n∈F g̃1nφn

4l̃01
dΦ̃

∫
Φ

∑
n∈F g̃2nφn

4l̃02
dΦ̃


 , (B.36)

and, readily,
Kpqin = KpqK̃pqin, i = 1, 2, n = 1, 2 (B.37)

where, for the case of two orifice arrays

K̃pqin =

[
1 −1
−1 1

]
(B.38)

Not that Eqs. (B.36) and (B.37) may be readily extended to cases with many orifice arrays, as the orifice
arrays couple in pairs, and produce block diagonal matrices.

Consider the valve dynamic equation for valve i

q̈vi + 2ξviωviq̇vi + ω2
viqvi = ω2

viKviuvi

If the the valves are identical, the index i on the parameters ξvi, ωvi and Kvi may be dropped.
As before, we define the control signal as that of a P-D controller with a constant reference signal.

Thus for two valves responding to twodimensional lateral rotor movement, we have

uv = − GP︸︷︷︸
Nv×2

dr − GD︸︷︷︸
Nv×2

ḋr + uvr (B.39)

all results presented in this thesis apply te same control strategy, namely that of Eq. (5.2), thus

GP = GP

[
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

]
(B.40)

and

GD = GD

[
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

]
(B.41)

In general, we write

GP = GPG̃P

GD = GDG̃D (B.42)

where, in this special case,

G̃P = G̃D =

[
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

]
(B.43)

We write the reference signal vector as fractions of a characteristic voltage uch

uvr = uchũvr (B.44)

with Eq. (B.42) and the introduction of dimensionless time, flow and rotor displacement, we get

Ω2qL
∂2q̃v

∂t̃2
+ 2ξvωvΩ

∂q̃v

∂t̃
+ ω2

vqLq̃v = −ω2
vKvLGPG̃Pd̃r − ω2

vKvΩLGDG̃D
∂d̃r

∂t̃
+ ω2

vKvuchũvr (B.45)
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B.5 The global system
Let us restate Eq. (2.84) in state space form.




0




Ks
Kr

A W

GP WT Q + Kpq
Kq-q




I 0









ḋ

ḋr
ṗ
ṗinj
q̇v
d
dr
p
pinj
qv






+







Ms
Mr

Mq-q







Dr

GD
Dq-q




0 −I









d̈

d̈r
p̈
p̈inj
q̈v
ḋ

ḋr
ṗ
ṗinj
q̇v






=





f
fr
r
rinj
uvr
0








0




Ks
Kr

A W

WT Q Kpq
GP Kq-q

I −I




I 0









ḋ

ḋr
ṗ
ṗinj
ṗinj
q̇v
d
dr
p
pinj
pinj
qv






+







Ms
Mr

Mq-q







Dr

GD Dq-q




0 I









d̈

d̈r
p̈
p̈inj
p̈inj
q̈v
ḋ

ḋr
ṗ
ṗinj
ṗinj
q̇v






=





f
fr
r
rinj
uvr
0
0





(B.46)

now, applying Eqs. (B.7), (B.9), (B.11), (B.13), (B.17), (B.19), (B.21), (B.27), (B.28) (B.31), (B.35),
(B.45), (B.38) and redefining the dot-notation to mean

˙=
∂

∂t̃
(B.47)

we can write Eq. (B.46) as




0




ELK̃s
krK̃r

L3

µ
Ã L3

µ
W̃

L3

µ
W̃T L3

µ
Q̃ KpqK̃pq

GPω2
vKvG̃P ω2

vK̃q-q
I −I




I 0









LΩ
˙̃
d

LΩ
˙̃
dr

Ω F
L2

˙̃p

Ω F
L2

˙̃pinj
Ω F

L2
˙̃pinj

qLΩ ˙̃qv
Ld̃

Ld̃r
F
L2 p̃

F
L2 p̃inj
F
L2 p̃inj
qLq̃v






+







ρL3M̃s
mrM̃r

M̃q-q







crD̃r

GDω2
vKvG̃D ξvωvD̃q-q




0 I









LΩ2¨̃
d

LΩ2¨̃
dr

Ω2 F
L2

¨̃p

Ω2 F
L2

¨̃pinj
Ω2 F

L2
¨̃pinj

qLΩ2¨̃qv
LΩ

˙̃
d

LΩ
˙̃
dr

Ω F
L2

˙̃p

Ω F
L2

˙̃pinj
Ω F

L2
˙̃pinj

qLΩ ˙̃qv






=





F f̃

F f̃r
L3Ωr̃
qL r̃inj
uchω2

vKvũvr
0
0





(B.48)
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Now, multiplying the factors of the state vectors into the matrices, we arrive at




0




EL2K̃s
LkrK̃r

FL
µ

Ã FL
µ

W̃

FL
µ

W̃T FL
µ

Q̃ F
L2 KpqK̃pq

LGPω2
vKvG̃P qLω2

vK̃q-q
F
L2 I − F

L2 I




I 0









˙̃
d
˙̃
dr
˙̃p
˙̃pinj
˙̃pinj
˙̃qv
d̃

d̃r
p̃
p̃inj
p̃inj
q̃v






+







ρL4Ω2M̃s
LΩ2mrM̃r

qLΩ2M̃q-q







LΩcrD̃r

LΩGDω2
vKvG̃D qLΩξvωvD̃q-q




0 I









¨̃
d
¨̃
dr
¨̃p
¨̃pinj
¨̃pinj
¨̃qv
˙̃
d
˙̃
dr
˙̃p
˙̃pinj
˙̃pinj
˙̃qv






=





F f̃

F f̃r
L3Ωr̃
qLr̃inj
uchω2

vKvũvr
0
0





(B.49)

Dividing rows, so as to get dimensionless right hand side vectors and matrix components, we get
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The matrices in Eq. (B.50) can be written as Hadamard products, thus yielding Eq. (3.18).
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B.5.1 Zero reference signal case
Now, let us investigate the case where the reference signal is zero, i.e., the case where the signal is zero
when the rotor is at rest in the centre of the bearing. Equation (B.49) is then simplified slightly to
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Now, as before, dividing rows, so as to get dimensionless right hand side vectors and matrix components,
we get
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Again, the dimensionless coefficients can be readily seen from this system of equations
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Elastohydrodynamics Applied to
Active Tilting-Pad Journal
Bearings
The static and dynamic properties of tilting-pad journal bearings with controllable radial
oil injection are investigated theoretically. The tilting pads are modeled as flexible struc-
tures and their behavior is described using a three-dimensional finite element framework
and linear elasticity. The oil film pressure and flow are considered to follow the modified
Reynolds equation, which includes the contribution from controllable radial oil injection.
The Reynolds equation is solved using a two-dimensional finite element mesh. The rotor
is considered to be rigid in terms of shape and size, but lateral movement is permitted.
The servovalve flow is governed by a second order ordinary differential equation, where
the right hand side is controlled by an electronic input signal. The constitutive flow-
pressure relationship of the injection orifices is that of a fully developed laminar velocity
profile and the servovalve is introduced into the system of equations by a mass conser-
vation consideration. The Reynolds equation is linearized with respect to displacements
and velocities of the nodal degrees of freedom. When all nodal points satisfy static
equilibrium, the system of equations is dynamically perturbed and subsequently con-
densed to a 2�2 system, keeping only the lateral motion of the rotor. As expected,
bearing dynamic coefficients are heavily influenced by the control parameters and pad
compliance. �DOI: 10.1115/1.4000721�

Keywords: tilting-pad journal bearings, control, elastohydrodynamics, vibration

1 Introduction
During the last 4 decades, the dynamics of tilting-pad journal

bearings have been intensively investigated by many authors
worldwide using different computer models. In Lund’s pioneering
work �1�, damping and stiffness coefficients of tilting-pad journal
bearings under conventional hydrodynamic lubrication are calcu-
lated. In Ref. �2� a simplified beam-model is used to include pad
flexibility and deal with an elastohydrodynamic analysis. Such an
elastohydrodynamic analysis became much more sophisticated
and the results much more precise in Refs. �3,4�, aided by the
finite element method. In 5 and 6, based on an isothermal conven-
tional hydrodynamic analysis, a perturbation method was used to
obtain the global and reduced dynamic coefficients of tilting-pad
journal bearings and predict the dependency of the reduced coef-
ficients on the perturbation frequency. Such a frequency depen-
dency is detected and measured more easily, when pivot compli-
ance is clearly pronounced. This is shown theoretically, as well as
experimentally in Ref. �7� using a test rig, where the excitation
force is applied directly to the rotating shaft. Such a frequency
dependency seems to be more difficult to measure accurately
when no pivot or pad compliance is present, and the excitation
force is applied directly to the moving bearing housing, as it can
be concluded from Refs. �8,9�. “Passive” thermoelastohydrody-
namic analysis of tilting-pad journal bearings is carried out in
Refs. �10,11� considering dynamic loading, where good agree-
ments between theoretical and experimental results are reported.

Tilting-pad journal bearings �TPJBs� are frequently used in in-
dustrial applications due to their excellent stability properties. It is
true that such bearings are much more stable than other types of
hydrodynamic bearings, but instabilities may occur depending on
the operational conditions, i.e., low preload factor and low static
loading. This is thoroughly investigated theoretically, as well as

experimentally, by different authors �12–17�. Moreover, TPJB di-
rect damping is significantly smaller than that of other types of
hydrodynamic bearings. TPJBs are more stable at high angular
velocities than other types of hydrodynamic bearings, but the
amount of direct damping at higher angular velocities is normally
small. This is carefully investigated by many authors, among oth-
ers by Glienicke �18�. When size and mass �inertia� of supercriti-
cal rotating machines increase, combined with small values of
direct damping, rotors supported by TPJBs can face severe vibra-
tion problems, for example, when crossing critical speeds or ex-
cited by aerodynamic effects originated from the process. It is
relatively common in the oil and gas industry to have squeeze-film
dampers attached to TPJB housings, with the aim of increasing the
amount of damping in the system. Such a design solution can be
found in many industrial gas compressors, for example, radial
compressors. This means that there are “rotordynamic deficien-
cies” to be overcome, even though TPJBs have good stability
properties. Squeeze-film dampers or arc-spring dampers are pos-
sible passive solutions to the problem of lack of damping in su-
percritical gas compressors supported by TPJBs. Active lubrica-
tion is another feasible solution. Both technical solutions, namely,
passive or “active,” have advantages and drawbacks. There are
many advantages in using actively lubricated TPJBs. This is thor-
oughly mentioned in the literature, among others in Ref. �19�.

A model including radial oil injection, but disregarding pad
compliance, was developed in Ref. �20�. In Ref. �20�, the funda-
mental set of equations to describe a controllable radial oil injec-
tion into the bearing gap using servovalves and a simple feedback
controller was presented. However, the procedure entailed assum-
ing that the pressure is almost constant in the orifice region in
order to allow coupling between servovalve flow and journal pres-
sure. The formulation was not explained clearly in all details,
which could lead to confusion. It is important to point out that in
Ref. �20�, the journal pressure in the orifice region was Taylor
expanded and only the term of order zero was taken into account.
The justification was based on the claim that the orifice area is
much smaller than the pad surface area and the journal pressure
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variation over this small area is almost negligible when compared
with the journal pressure variation over the entire pad surface
area. The control parameters were later introduced directly into
the modified Reynolds equation for active lubrication �21� under
such an approximation. This provided insight into the influence of
the control terms since they appeared explicitly in the modified
Reynolds equation. The present paper relies heavily on the ideas
introduced in Ref. �20�.

Theoretical and experimental contributions to conventional
�22–24�, hybrid �22–26�, and active lubrication �22–24� applied to
tilting-pad bearings can be found in the literature. The lateral dy-
namics of a light and rigid rotor supported by a tilting-pad journal
bearing under conventional hydrodynamic and active lubrication
is compared in the time �22� and frequency �23� domains. In Ref.
�24�, the lateral dynamics of flexible rotors is experimentally con-
trolled by using a tilting-pad journal bearing under three different
lubrication regimes, namely, hydrodynamic, hybrid
�hydrodynamic+hydrostatic�, and actively lubricated �using a
simple PD-controller�. In Refs. �25,26�, the influence of the injec-
tion pockets on the steady-state performance of tilting-pad journal
bearings are theoretically, as well as experimentally investigated,
using two different test setups, and thermoelastohydrodynamic
models validated for heavily loaded bearings.

The paper gives an original contribution to a multiphysics prob-
lem, where tribology is in the center of the different areas of
expertise. The combination of solid mechanics, fluid power, con-
trol theory, and CAD is done in an original way, opening new
possibilities for integrated-engineering design. Working in the
field of mechatronics demands good analytical skills and a good
capability of synthesis, i.e., to put together different areas of ex-
pertise and develop new products and achieve more advanced,
more robust, and more efficient machines. The integration of dif-
ferent areas of expertise �multiphysics� is a modern trend and
vision in engineering design. The main original contribution of
this paper is of theoretical nature. In the present investigation, pad
compliance, as well as radial oil injection, are included. The ori-
fice flow is introduced into the model consistently as an integral of
the pressure field �assuming a constitutive relation between pres-
sures and velocities�. The pressure field is not assumed constant in
the orifice region, as in Ref. �20�. The equations for the fluid and
solid are handled with the finite element method, which makes
numerical integrals of field quantities straight forward and unam-
biguous. The elastohydrodynamic model is used to investigate
static and dynamic properties of a tilting-pad journal bearing in a
load between pads configuration under hybrid elastohydrodynam-
ics �open loop control�, as well as in controllable radial oil injec-
tion �closed loop control�.

It is important to mention that all technical solutions toward
achieving a more stable and more damped rotordynamic system
will be associated with additional costs. Squeeze-film dampers or
arc-spring dampers, passive devices to be attached to TPJB hous-
ings, also have costs related to manufacturing, pressurization, etc.
Such passive solutions do not allow significant changes and ad-
justments. Active lubrication �a mechatronic device� obviously
also entails costs. Nevertheless, such a design solution allows en-
gineers to work with many more variables toward achieving more
robustness �capability of system adjustments to different needs, at
different operational conditions�. Keeping our application focus
on the oil and gas industry, an unexpected stop of a power plant
production, due to vibration problems, will lead to much higher
costs than an actively lubricated TPJB and its additional control
features. For example, the control features will make feasible the
temporary elimination of vibration problems and will give engi-
neers time to plan the power plant shutdown, repair machine prob-
lems, and significantly reduce economic damages due to the un-
expected stop of production.

Finally, the authors want to emphasize that the intention of the
research work is not to replace active magnetic bearings by ac-
tively lubricated TPJBs, but add new features and capabilities to

such a machine element. Active magnetic bearing technology is a
well-established technology with a long history �27–30�, while
active lubricated bearings is an emerging technology, a little more
than 1 decade old �24�. Both technologies have advantages and
drawbacks. No bearing type can beat an active magnetic bearing
in terms of friction. Comparing the two technologies in more
depth, not only considering “friction,” it is fair to claim that: Ac-
tively lubricated TPJBs can operate in passive and active modes,
depending on situation needs. Active magnetic bearings need
backup bearings while actively lubricated TPJBs do not. In case of
control failure, the conventional hydrodynamic lubrication will
still be supporting the rotating shaft. Active magnetic bearings
operate always with control. The static and dynamic forces gen-
erated by fluid power are much higher than the forces generated
by electromagnetism. Given the load capacity, an actively lubri-
cated TPJB is significantly smaller than an active magnetic bear-
ing.

2 Governing Equations
In the present paper, tensors will appear in certain places. To

avoid confusion, while retaining a consistent nomenclature, sum-
mation of repeated indices is not employed, thus, all summations
are stated explicitly. Underlined indices are part of variable
names, and indices without underline are used for numbering, e.g.,
qvi is the valve flow of servovalve number i.

Figure 1 illustrates the different coordinate frames and domains
used to describe the elastic behavior of the pads, and the journal
pressure distribution among the rotor and the pads. The curvilin-
ear coordinates ��1 ,�2� are used to represent the fluid film and the
Cartesian coordinates �x1 ,x2 ,x3� are used to represent the pads.

The solid is taken to be linearly elastic and isotropic. Small
strains and rotations suffice for the description of the deformed
state. The governing equation is traditionally given directly in
integral form as the principle of virtual work

�
i,j,k,l=1

3 �
�

Lijkl�kl��ijd� = �
i=1

3 �
�

�üi�uid� + �
i=1

3 �
�

Ti�uid�

�1�
From this, a stiffness and mass matrix for the solid can be derived.
The pressure field in the fluid is described by the modified Rey-
nolds equation, which becomes

1

12�
i=1

2
�

��i
�h3

�

�p

��i
� =

U

2

�h

��2
+ ḣ +

�igi�p − pinji�

4�l0
�2�

Here, the �2 coordinate is aligned with the direction of rotation.
For reasons that shall soon become obvious, the Reynolds equa-
tion has been divided by 12 on both sides, when comparing to the
way that it is normally stated.

Fig. 1 Overview of the different domains, the fluid film curvi-
linear coordinate system „�1 ,�2…, and the Cartesian coordinate
system „x1 ,x2 ,x3…. The figure depicts a generic bearing pad,
with an arbitrarily placed orifice. It is to be understood as a
qualitative aid.
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The flow in the servovalves is described by the second order
ordinary differential equation �4�

q̈v + 2	v
vq̇v + 
v
2qv = 
v

2Kvuv �3�

or

1


v
2Kv

q̈v +
2	v


vKv
q̇v +

1

Kv
qv = uv �4�

If more servovalves are included, an uncoupled system of equa-
tions results, thus

Mq − qq̈v + Dq − qq̇v + Kq − qqv = uv �5�

where the system matrices follow directly from Eq. �4�. The in-
jection orifices are connected by servovalves as pairs. Thus, the
flows in an orifice pair are coupled. The linearized 2�2 system of
equations for a servovalve connecting, e.g., orifices i and j, is

	qi

qj

 = � Kpq − Kpq

− Kpq Kpq
�	pinji

pinjj

 + 	 qv

− qv

 + 	qL

qL

 �6�

where Kpq and qL are valve specific constants, i.e., they can differ
from valve to valve. Here we have selected a positive direction of
flow for the servovalve. The orifice associated with positive valve
flow, in this case orifice i, is denoted as the master orifice. The
orifice associated with the negative valve flow, in this case, orifice
j, is denoted as the slave orifice.

Since the bearings are the main focus of this investigation, the
rotor is described as simple as possible, however, still in a fashion
that retains its qualitative behavior. The rotor is assumed to move
laterally only, i.e., rotor tilting motion is not included, and its
center of mass is assumed to coincide with its axis of rotation at
all times. Also, since the focus of this investigation is the bearing
influence on the rotor behavior, no stiffness is assigned to the rotor
apart from the one coming from the oil film. In Fig. 2, a system
with two pads and one servovalve is shown, with the indication of
the governing equation of each body. The figure is for illustrative
purposes only. The oil film thickness is greatly exaggerated, and
in this investigation, bearings with four pads will be investigated.

2.1 Boundary Conditions. The pads are pivoted about their
center. The pivoting is modeled as a radial constraint on relevant
nodes, see Fig. 3. This is done by coordinate transformations back
and forth between the inertial coordinate system, and systems that
are aligned with the constraints. When in a constraint coordinate
system, zeros can be introduced into the off diagonal components
of the stiffness matrix, which couple with the degree of freedom
to be constrained. One could simply introduce stiff springs be-
tween the pivot point and the surface nodes, but this would intro-
duce high frequencies into the system, thus, possibly reducing the

maximum allowable time step. The boundary condition for the
Reynolds equation is the Reynolds condition, i.e., the pressure is
set to zero along the boundary of the lubricated surface. In this
investigation, cavitation has not been observed.

3 Coupling
The different governing equations cannot be coupled in a gen-

eral way before they are brought into a space where they are all
defined. The servovalves are not defined in space, thus, the servo-
valves cannot be introduced into the system in a consistent man-
ner before the pressure field is discretized, unless some practical
assumptions �20� are made, as described in the introduction. This
is of course also the case for the displacement field. Once spatial
discretization has been performed, a system of equations, all de-
fined in time only, arises. These equations are straight forward to
couple. This approach is more general.

It is evident that the oil pressure should be imposed as a surface
load on the solid, that is

Ti = ai �
j�F2

� jpj on � �7�

From the expression for the traction Ti, the nodal force of degree
of freedom n, fn can be computed as

f i =�
�

�
m=1

3

Tmeimd�, i = 1,2, . . . ,N �8�

When solving for the pressures, the very slight pad-rotor mis-
alignment is of vital importance. However, for the particular pur-
pose of obtaining the resultant force on the rotor, it is reasonable
to assume rotor and pad surfaces parallel, thus, when i corre-
sponds to a rotor degree of freedom, we may write

f i = −�
�

Tid� �9�

The flow through a given orifice can be written in terms of the
pressure difference field over the orifice as

qi =�
�

gi

1

4�l0
�p��1,�2� − pinji�d� �10�

where gi are shape functions that describe the velocity profile in
the orifice. Here we shall let them describe a fully developed
laminar pipe velocity profile, which is reasonable, considering the
dimensions and operating conditions, but in principle, any profile
could be used.

In matrix form, we get

� �Ap − p� �Ap − inj�

�Ainj − p� �Ainj − inj � �	 p

pinj

 = 	 r

rinj

 �11�

The nodal pressure to nodal pressure matrix Ap − p is derived from
Eq. �2� as

Fig. 2 Overview of the coupled system, with denotion of the
equations that govern the different parts, i.e., „2… means that
that part is governed by the Reynolds equation. The first coor-
dinates of the Cartesian coordinate system „x1 ,x2… are shown,
the coordinate system is right handed, thus, x3 points out of
the plane of the paper. The curvilinear coordinate �2 is also
shown, but is better understood by regarding Fig. 1.

Fig. 3 Schematic of the pivot boundary conditions. The pivot
is modeled as rigid. Nodes along the surface of the pad are
constrained to move tangentially relative to the pivot point.
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Note that Ap − p is the matrix that contains the scalar components
Ap − pmn. This nomenclature is used throughout the paper.

The nodal pressure part of the right hand side is given by

r = rm = �
elements

−�
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1

2
U

�h
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�md� −�

�

�h

�t
�md� �13�

In Eqs. �12� and �13�, the fields h=h��1 ,�2� and gi=gi��1 ,�2� are
expanded in terms of element shape functions. To retain compact-
ness, this is not stated explicitly, nor will it be henceforth. Inte-
gration is performed with full Gauss quadrature, see, e.g., Ref.
�31�.

The orifices are coupled in pairs by the Ainj− inj matrix. If the
system only contains the orifices m and n, which are coupled by a
valve, the Ainj− inj matrix becomes

Ainj − inj = Ainj − injmn = Kpq +�
�

gm

4�l0
d� − Kpq

− Kpq Kpq +�
�

gn

4�l0
d��

�14�

Since the orifices are coupled in pairs, the Ainj− inj matrix has a
bandwidth of two, and is sparse when many orifices exist.

The injection pressure part of the right hand side of Eq. �11� is
given by

rinj = rinjm = Nmqvm − qLm �15�

where Nm=1 if orifice m is a master orifice and Nm=−1 if it is a
slave orifice.

The coupling between orifice injection pressure and pressure
distribution is governed by the Ainj− p matrix

Ainj − p = Ainj − pmn = −�
�

gm�n

4�l0
d� �16�

If the Reynolds equation is in the form of Eq. �2�, then

Ap − inj = Ainj − p
T �17�

This is of paramount importance since it makes the system of
equations �11� symmetric, thus allowing the use of fast equation
solvers, like, for instance, the conjugate gradient �CG� method,
which is a well known method, see, e.g., Ref. �32�. The CG
method has been used in this investigation for symmetric system
solution. Let us write the system of equations �12� more com-
pactly as

Apg�
= rg�

, pg�
= 	 p

pinj

, rg�

= 	 r

rinj

 �18�

where the index g indicates that the system of equations include
the injection terms, i.e., pg is the vector of generalized pressures.
Now, given the valve flow vector qv, we can solve simultaneously
for the nodal pressures, as well as injection pressures. With the
given formulation, time series solutions can be computed by time
integration schemes. Here, the explicit form of the Newmark
method shall be used.

4 Linearization
The system of equations can be linearized with respect to dis-

placements, so as to provide a fluid film stiffness and damping.
The linearized system is derived by first order Taylor expansions
of relevant quantities. Since, as before mentioned, the injection
pressures are not defined in space; we may as well work directly
on the discretized system. Thus

pgn � p̃gn + �
i

�pgn

�di
�di + �

i

�pgn

� ḋi

�ḋi + �
i

�pgn

�qvi
�qvi �19�

Deriving both sides of Eq. �18� with nodal displacements, we
arrive at

�pgn

�di
=

�pg

�di
= A−1� �rg

�di
−

�A

�di
pg� �20�

Here, A depends on di since the fluid film thickness does. Of
course, expressions for velocity perturbations and flow perturba-
tions are completely analogous
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� ḋi
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� ḋi

−
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Here, A depends on ḋi since the fluid film thickness rate does

�pgn

�qvi
=

�pg

�qvi
= A−1� �rg
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−
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�qvi

0

pg�
�

�
�� �22�

The expression for �rg /�qvi is particularly simple, that is

�rg

�qvi
= �0 . . . 0 − 1 1 0 . . . 0 �T �23�

where the position of the nonzero components depends on the
specific numbering of degrees of freedom. Now, the second order
ordinary differential equation describing the dynamics of the sys-
tem can be written as

Md̈g + Dḋg + Kdg = f �24�

If the last degrees of freedom are assigned to the flows, the
structure of the system of equations is

�25�

Note that Kq − q is given in Eq. �5�.
Since the fluid inertia is neglected, the mass matrix contains

contributions only from the solid. The stiffness and damping ma-
trices contain contributions from the fluid, as well as the solid.
The displacement to displacement stiffness matrix can be shown
to be

Kd − d = Kd − dmn = Ksolidmn + Kfluidmn �26�

where

Kfluidmn = −�
�

�i=1

3
emiai� j�F2 � j

�pj

�dn
d� �27�

and
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Ksolidmn = �elements�
�

�i,j,k,l=1

3 Lijkl

4
� �Vim

�xj
+

�Vjm

�xi
�� �Vkn

�xl

+
�Vln

�xk
�d� �28�

where Vjm is the coupling between uj and dm, i.e., the coupling
between the displacement field in the xj direction and the displace-
ment of degree of freedom m. Thus, Vjm is either zero or equal to
the shape function of the node associated to degree of freedom m.

Note that in the expression for the fluid part of the stiffness
matrix, the inward normal of the solid ai will depend on space
��1 ,�2� if higher order elements are used. Since damping is domi-
nated by the fluid, the structural damping is neglected, leading to

Dd − d = Dd − dmn = −�
�

�
i=1

3

emiai �
j�F2

� j

�pj

� ḋn

d� �29�

Fluid inertia is neglected as one of the assumptions in the Rey-
nolds equation. This assumption is valid due to the low Reynolds
number of the flow. Thus, the displacement to displacement mass
matrix contains only contributions from the solid

Md − d = Md − dmn = �
elements

�
�

�
i=1

3

�VimVind� �30�

The flow to displacement stiffness matrix is the nodal force
produced by an incremental change in an orifice flow, thus

Kd − q = Kd − qmn =�
�

�
i=1

3

emiai �
j�F2

� j

�pj

�qvn
d� �31�

The displacement to flow stiffness matrix is the change in con-
trol signal, resulting from an incremental change in a nodal dis-
placement, that is

Kq − d = Kq − dmn =
�uvm

�dn
�32�

Note that the functionals �uvm ,m=1,2 , . . .� can be chosen freely.
Thus, Kq − d constitutes an active part of the system, and can be
tuned to produce desired behavior. If, for instance, a linear
D-regulator was implemented, �uvm /�dn would be the displace-
ment gain. Let us consider an example with one servovalve so that
qvn=qv1=qv with a P-D regulator that responds to the rotor dis-
placement and displacement rate in the x2 direction only. If we
assign the last nodal degree of freedom r to the rotor movement in
the x2 direction, then the functional uvm=uv1=uv would be

uv = GPdrotor2 + GDḋrotor2 �33�

Moving the electronic servovalve signal to the left hand side, the
system matrices become

K =  �Kdd� �
�

�i=1

3
emiai� j�F2 � j

�pj

�qv
d�

�0, . . . ,− GP� 1/Kv
� �34�

D =  �Ddd� 0

�0, . . . ,− GD�
2	v


vKv
�, M = �Mdd� 0

0
1


v
2Kv

� �35�

The linearized system is useful for two things. First, it allows
linear frequency domain analysis of the bearing; this shall be per-
formed in Sec. 5. Second, the system stiffness matrix is exactly
the Jacobian of the out of balance forces, and is thus necessary
when performing Newton–Raphson iterations toward equilibrium.
Since the system is nonlinear, it will potentially have more than

one static equilibrium. A good way to reach a �the� stable equilib-
rium position is to run a Newmark time stepping solution until a
given time, and use the final system state as the initial guess for
Newton–Raphson iterations. Since the pads are allowed to de-
form, the system typically contains many thousands of degrees of
freedom. The solid part of the stiffness matrix is singular because
of the pivot supports, so the equations must be solved as fully
coupled, which means that the fluid part of the stiffness matrix
must be computed at each Newton–Raphson iteration step. This is
nonsymmetric and nonsparse, which makes the solution computa-
tionally challenging. In the present investigation, the Jacobi pre-
conditioned conjugate gradient squared method �see, e.g., Ref.
�32�� was used to solve at each iteration step, exhibiting decent
performance. Presumably, a more advanced preconditioner would
improve performance.

5 Analyses
To obtain tangible information about the bearing behavior, we

create a bearing superelement, i.e., we condense away all degrees
of freedom, except those of the rotor. Setting rotor parameters to
zero, the isolated properties of the bearing, i.e., the stiffness and
the damping, are obtained. Given that the problem is dynamic in
nature, the bearing properties become frequency dependent. With
a time harmonic excitation of the rotor fg= fg0eı
t, we can write
the solution as dg=dg0eı
t, where

�K + ı
D − 
2M�dg0 = fg0 �36�

Now, the bearing stiffness is defined as the real part of the force
amplitude response to a unit movement of displacement ampli-
tude. The damping is defined as the imaginary part divided by the
frequency. That is, we know that the displacement of the rotor in
the x1 and x2 direction is unity and zero, respectively, but we need
to solve the system to know the value of the other roughly 29,998
�complex valued� displacements. For example, given a solution to
Eq. �36� dg0= �. . . ,1 ,0 , . . .�T, where the 1 and 0 are a prescribed
rotor displacements in the x1 ,x2 plane, and a corresponding force
vector fg0= �. . . , f rotor1 , f rotor2 , . . .�T. Then

Kb11 = Re�f rotor1�, Kb21 = Re�f rotor2� �37�

and

Db11 =
1



Im�f rotor1�, Db21 =

1



Im�f rotor2� �38�

For tilting-pad journal bearings, for the special case of four
pads and load between pad configurations, it is generally the case
that the off diagonal stiffness and damping components are neg-
ligible, compared with the diagonal ones. Furthermore, the diag-
onal components are all but equal. So it is sensible to consider the
bearing stiffness and damping simply as scalar values Kb and Db.
Since the rotor is perturbed along the real axis, all phases between
degrees of freedom of the result vector dg0 are measured from the
real axis, and are relative to the phase of the rotor �Fig. 4�.

Fig. 4 Visualization of rotor perturbation and result vector
components
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6 Computations and Results
The bearing under investigation has a length and diameter of

0.1 m, so the length/diameter ratio is 1. Each pad extends 69.3
deg. There is one orifice situated in the center of each pad. Each
orifice has a diameter of 6 mm. The pads are at 45 deg angles to
the x1 and x2 directions. Key geometrical parameters are indicated
in Table 1. The rotor is loaded in the x1 direction, thus, we have a
load between pad configuration. Figure 5 shows the finite element
mesh used for the computations. Second order elements with 20
nodes are used. The mesh may seem coarse, but we remind that in
this particular investigation, derived fields �e.g., stresses and
strains� are of no interest, thus, convergence is achieved rather
quickly.

The mesh, as shown in Fig. 5, contains roughly 60,000 degrees
of freedom. We exploit the symmetry of the problem, and thus
only have to deal with half of these, although the whole structure
is shown. The number of degrees of freedom is modest for, for
instance, static stress analysis of a solid with a dead load. How-
ever, as mentioned, the current problem produces system matrices
that have none of the usual beneficial properties that facilitate fast
solution of large systems of equations. They are not symmetric/
hermitian nor sparse. This makes the solution of the linearized
system of equations �36� a computational challenge. In the present
investigation, the conjugate gradient squared method with the Ja-

cobi preconditioner has been used. For the given discretization,
solution time for the system of equations �36� is of the order of
magnitude of hours with a modern CPU, when the code �FOR-

TRAN90� is compiled with the highest level of compiler optimiza-
tion. It is expected that solution time can be significantly reduced
by implementing a solver, which is more suited to the given prob-
lem. This work is underway.

First, we shall implement a hybrid lubrication system where a
constant static injection pressure is specified a priori to all orifices.
The value of the injection pressure is the same in all four orifices,
and results for pinji= P=0, 10 MPa, and 22 MPa are investigated.
Furthermore, we select two different values of the pad modulus of
elasticity, E=100 GPa and E=1000 GPa, representing bearing
brass, and a quasi rigid material, respectively. Parameters for bear-
ing brass are selected, since the authors have access to a test rig
with brass pads. The Poisson’s ratio is set to =0.3 and the den-
sity to �=8400 kg /m3. The rotational speed is U=31.14 m /s,
corresponding to �=100 Hz, and the oil viscosity is �
=0.019 Ns /m2. The preload factor, as defined in, e.g., Ref. �33�,
is 0.5. The servovalve leak flow is qL=3.0 ml /s. The orifice inlet
of each orifice is set to l0=1 m, meaning that we specify the
injection pressure 1 m of pipe before the oil reaches the journal.
Unless otherwise stated, these are the relevant model parameters
henceforth.

6.1 Static Analysis. Figure 6 shows curves of minimum film
thickness for the two different load cases, and three different static
injection pressure values. Table 2 gives an overview of the simu-
lation parameters. Clearly, the value of the pad elastic modulus
influences the minimum film thickness. It is worth to highlight
that, where an increase in static injection pressure has a positive
influence on the minimum film thickness at low load, the opposite
is true for the high load case. Here, there are two oppositely acting
effects playing an important role: �i� the pressure and flow effects
related to the radial oil injection and �ii� the changes of oil film
gradient. The pad-rotor realignment associated with an increase in
static injection pressure will increase the minimum film thickness,
if the oil film gradient does not drastically change, as it can be
seen in Fig. 6 at low load. The oil film gradient can change due to
a change in the relative equilibrium position between the rotor and
tilting-pad or due to the deformation of the pad and changes in the

Table 1 Bearing geometrical properties

Property Unit Value

Pad radius of curvature mm 50
Rotor radius mm 49.9
Nominal clearance �m 100
Assembled �minimum� clearance �m 50
Preload - 0.5
Pad extension deg 69.3
Angular pivot location deg Center ofpad
Radial pivot location mm 64
Pad length mm 100
Nominal pad thickness mm 14

Table 2 Static analysis parameters

Property Unit Value�s�

Static radial bearing load N 20,000, 2000
Injection pressures Pa 0, 100, 220
Rotational speed rpm 6000
Viscosity N s /m2 0.019

Fig. 5 The finite element mesh used for the computations.
Note that the mesh, as shown here, contains roughly 60,000
degrees of freedom. Due to symmetry, only half of these need
be considered. The elements are 20 node „second order… ser-
endipity elements. When derived fields „stresses and strains…
are not of relevance, this mesh is more than adequate in terms
of refinement.

Fig. 6 Curves of minimum film thickness for different load
cases and pad elastic moduli. High load refers to a radial static
bearing load of 20,000 N, and low load corresponds to 2000 N.
The data are fitted by polynomials.
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pad radius. At high load, the elastic deformation of the pad, and
consequently of the pad radius, strongly influences the oil film
gradient. The bearing preload effect decreases due to the reduction
in the pad radius. Figure 7 shows curves of static fluid film thick-
ness at equilibrium for different injection pressures and elastic
moduli, as a function of the angular position. The load is high, at
20,000 N. The loaded pads are the ones in the intervals
�2 / ��D�� �0;0.25� and �2 / ��D�� �0.75;1.0�. Considering Fig.
7�a�, which is the computation for the flexible case. Clearly, the
film thickness of the loaded pads changes with injection pressure.
However, the effect is concentrated to the center of the pad, leav-
ing the thickness practically unaltered at the edges. This consti-
tutes the aforementioned decrease in effective pad radius. Com-
pare this with the quasi rigid case in Fig. 7�b�, where the effect
occurs more evenly along the pad surface in a tilting motion, thus,

with no change in pad effective radius.
Figure 8 shows pressure curves at x3=0 for the three different

static injection pressures and two different values of elastic modu-
lus. Only results for the high load case �S=0.235� are presented.
Notice that the pressure profiles are very similar. However, when
the curves are carefully analyzed, one can see that the more com-
pliant the material is, the narrower are the pressure profiles. The
load tends to distribute itself over a smaller surface in the com-
pliant pad case, deforming the pad, reducing the pad radius, and
decreasing the bearing load capacity and minimum oil film thick-
ness. Although the pad compliance has little effect on static pres-
sure, it has a profound impact on fluid film thickness, as previ-
ously stated. Also, as we shall see in Sec. 6.2, it influences the
bearing stiffness �i.e., the effect of the infinitesimal change in
pressure due to an infinitesimal rotor movement.

6.2 Bearing Dynamic Coefficients (Hybrid Lubrication).
In Figs. 9�a� and 9�b�, curves of bearing stiffness for different
values of static injection pressure and pad elastic modulus are
shown. Table 3 gives an overview of the simulation parameters. In
Fig. 9�a�, the rotor is operating at low static load of fr

= �2000 N,0�T, corresponding to the Sommerfeld number S
=2.35. In Fig. 9�b�, the load is increased ten-fold to S=0.235.
Primarily, it is interesting to observe that, for the low load case,
increasing the static injection pressure will decrease the stiffness.
For the high load case, the effect of changing the static injection
pressure is the opposite. This change in the sign of the effect of
hybrid lubrication corresponds well to what was observed for the
minimum film thickness in Fig. 6. For higher loads, pad compli-
ance tends to dominate, compared with the effect of static injec-
tion. This is because a given change in the static injection pressure
will have a diminishing effect on pad angle as the load increases.
One could conclude that, for higher loads, the effect of pad com-

Fig. 7 Curves of static oil film thickness as a function of �2 measured from
„x1 ,x2…= „D /2 ,0… for different injection pressures and pad elastic moduli; „a…
E=100 GPa and „b… E=1000 GPa. The bearing is under a static radial load
of 20,000 N in the x1 direction, corresponding to S=0.235.

Fig. 8 Curves of static pressure at x3=0 as a function of �2
measured from „x1 ,x2…= „D /2 ,0…. The bearing is under a static
radial load of 20,000 N in the x1 direction, corresponding to S
=0.235. Results for the three different values of static injection
pressure are shown.

Fig. 9 „a… Curves of bearing stiffens for various values of the static injec-
tion pressures in the low load case, S=2.35. „b… Curves of bearing stiffens
for various values of the static injection pressures in the high load case,
S=0.235.
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pliance almost cancels out the hybrid lubrication terms. It is im-
portant to point out though, that such a conclusion is valid only
for a single orifice positioned over the pivot line.

Figures 10�a� and 10�b� show curves of bearing damping for
different values of static injection pressure and pad elastic modu-
lus. The loads are S=2.35 and S=0.235, respectively. Again, the
high load case shows that pad compliance almost eliminates the
effect of static oil injection. Also, the dependence of frequency
seems to drop.

6.3 Bearing Dynamic Coefficients (Active Lubrication).
Now we shall implement a control system that responds to rotor
displacement in the x1 direction. We select two sets of gains; these
sets apply to both servovalves, and the master and slave orifice of
each valve is set so that the oil injection will oppose rotor motion
�increase stiffness and damping�. The orifices have the same di-
mensions and locations as before. The “proportional gains” GP

=500,000 V /m, GD=0 Vs /m and the “derivative gains” GP

=0 V /m, GD=50,000 Vs /m. The servovalve constants are set to
Kpq=1.13·10−12 m3 / �sPa�, Kv=33.4�10−6 m3 / �sV�, 	v=0.48,
and 
v=320.16 Hz. Note that there is no reason to believe that
the coupled system will have a resonance exactly at 
=
v. The
servovalve parameters are similar to those used in Ref. �22�. The

servovalve parameters are realistic in the sense that, even under
severe load conditions, the assumed maximum injection pressure
of 22 MPa is not exceeded.

Figures 11�a� and 11�b� show curves of bearing stiffness for
proportional gains and two different values of pad elastic modu-
lus. Note that the figures are almost identical; only a factor of 10
makes them different. This factor stems from the simple fact that
the set of curves in Fig. 11�a� is normalized with the force �fr�
=2000 N, whereas Fig. 11�b� is normalized with �fr�=20,000 N.
In other words, the stiffness is independent of load case, i.e., in-
dependent of the state, so the system is essentially linear in be-
havior. This is because the controller, which is a linear controller,
dominates the system almost completely. It is seen that pad com-
pliance has an effect on bearing stiffness—in particular, for higher
excitation frequencies. The first bending mode of the pads has an
eigenfrequency of several kHz, so we are nowhere near pad bend-
ing resonance. Nevertheless, pad compliance has a significant
effect.

Comparing the values of the stiffness coefficients for 
�
v in
Figs. 9 and 11, one can conclude that no significant change in
such coefficients is achieved. To realize this, compare the values
after the point marked by x in Fig. 11 to the corresponding values
of Fig. 9. The curves are very similar. That is, above the servov-
alve eigenfrequency, the servovalves have almost no dynamic re-
sponse, and the flow is almost constant in time.

Figures 12�a� and 12�b� show curves of bearing stiffness for
derivative gains and two different values of pad elastic modulus.
Again, the figures are almost identical, differing only by the pre-
viously mentioned factor of 10. Again, higher frequencies pro-
mote an increasing influence from pad compliance. However,
where pad compliance tended to increase stiffness for the propor-
tional gain controller, it has the opposite effect in the case of the
derivative gain controller. Also note that the derivative gain con-
troller has a much greater influence on the bearing stiffness at
higher frequencies than the proportional gain controller for the
given parameters. This can seem contradictory, since a propor-

Table 3 Dynamic analysis parameters

Property Unit Value�s�

Static radial bearing load N 20,000, 2000
Proportional gain V/m 0, 500,000
Derivative gain V/m 0, 50,000
Valve flow-pressure coefficient m3 / �s Pa� 1.13�10−12

Valve flow-voltage coefficient m3 / �s V� 33.4�10−6

Valve damping ratio - 0.48
Valve eigenfrequency Hz 320.16
Rotational speed rpm 6000
Viscosity N s /m2 0.019

Fig. 10 „a… Curves of bearing damping for various values of the static in-
jection pressures in the low load case, S=2.35. „b… Curves of bearing damp-
ing for various values of the static injection pressures in the high load case,
S=0.235.

Fig. 11 „a… Curves of bearing stiffness for proportional control gains in the
low load case, S=2.35. „b… Curves of bearing stiffness for proportional con-
trol gains in the high load case, S=0.235.
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tional term is generally regarded as stiffness, and a derivative term
is generally regarded as damping. What is important to remember
is that the dynamic condensation process couples everything.

Figures 13�a� and 13�b� show curves of bearing damping for
proportional gains and two different values of pad elastic modu-
lus. As before, the figures are almost identical, with a factor of 10
between them. The effect of pad compliance is to reduce damping.
For lower frequencies, the stiffness was only affected a little by
pad compliance �see Fig. 12�, but as we see, the damping is af-
fected for all frequencies. When comparing the active case in Fig.
13 with the corresponding hybrid case in Fig. 10, we see very
similar magnitudes. Thus, we must conclude that a control system
with only proportional gains will not affect bearing damping. This
corresponds well to the findings in Ref. �21�.

Figures 14�a� and 14�b� show curves of bearing damping for
derivative gains and two different values of pad elastic modulus.
Again, the system shows an effectively linear behavior. Here we
see little to no pad compliance effect on damping, meaning that
not only does the controller make the system almost linear, it also
dominates the imaginary part of the dynamic condensation pro-
cess.

7 Conclusions
It is seen that for quasi rigid pads, static �constant pressure� oil

injection significantly influences bearing coefficients, a bit less so

at high load. However, when pad compliance is taken into ac-
count, this effect is dramatically reduced. One should keep this in
mind when designing open loop control systems, since all real
pads are flexible. We restate that the pad elastic modulus chosen
for the flexible case corresponds to that of bearing brass.

The minimum oil film thickness is influenced by static oil in-
jection. However, depending on radial load, the influence will be
positive or negative. This result is explained as a shift between
two effects: �i� the pressure and flow effects related to the radial
oil injection and �ii� the changes of oil film gradient due to the
relative equilibrium position between rotor and tilting-pad or due
to the deformation of the pad and changes in the pad radius.

When closed loop control is applied to the system, either as a
proportional or derivative controller �or a combination�, and sen-
sible control gains are selected, the dynamic coefficients can be
significantly modified. It seems that a controller with realistic con-
trol parameters can dominate the bearing dynamics. Embracing
this fact, we can design closed loop control systems, with disre-
gard to the static load case. This greatly reduces the work of
tuning a control system, since there is one less parameter to take
into consideration.

Nomenclature
Db � bearing damping

Fig. 12 „a… Curves of bearing stiffness for derivative control gains in the
low load case, S=2.35. „b… Curves of bearing stiffness for derivative control
gains in the high load case, S=0.235.

Fig. 13 „a… Curves of bearing damping for proportional control gains in the
low load case, S=2.35. „b… Curves of bearing damping for proportional con-
trol gains in the high load case, S=0.235.

Fig. 14 „a… Curves of bearing damping for derivative control gains in the
low load case, S=2.35. „b… Curves of bearing damping for derivative control
gains in the high load case, S=0.235.
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D � bearing diameter
E � modulus of elasticity for the solid

�the pads�
F � set containing the numbers of nodes

in �
F2 � set containing the degrees of freedom

of nodes in � in two dimensions
GP � proportional �displacement� gain of

servovalve
GD � derivative �velocity� gain of

servovalve
Kv � servovalve electrical signal constant

Kpq � servovalve pressure-flow constant
Kb � bearing stiffness

Lijkl � constitutive tensor
N � total number of degrees of freedom
Ti � traction in direction xi

S=1 /4�Ul�D /h0��2/
���fr�� � Sommerfeld number

U � tangential velocity of rotor surface
ai � inward normal of the solid
di � displacement of degree of freedom i

eim � the unit vector of displacement com-
ponent di, thus if di points in the x1
direction, then �e�i= �1,0 ,0�T, and so
on

f i � external force on degree of freedom i
fri= fr � rotor force vector

gi � shape function, that describes the
velocity profile of the orifice i

h � fluid film thickness
hmin � minimum fluid film thickness

h0� � assembled clearance
l � axial length of bearing

l0� � length of orifice inlet
p � fluid film pressure

pinji � orifice injection pressure of orifice i
qv � servovalve flow
qL � servovalve leakage flow
qi � flow to orifice i
ui � field of displacements in the xi

direction
uv � servovalve control signal

�x1 ,x2 ,x3� � Cartesian coordinate system
� � boundary of �
� � domain of solid �the pads�
� � domain of lubricated surface
� � angular velocity
� � absolute �dynamic� viscosity
	v � servovalve damping factor
�i � shape function of node i
�ij � strain tensor

��ij � tensor of virtual strain increments
� � density of solid

��1 ,�2� � curvilinear coordinate system on lu-
bricated surface


 � excitation frequency

v � servovalve eigenfrequency
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a b s t r a c t

The dynamic performance of tilting-pad journal bearings with controllable radial oil injection is

theoretically investigated, exploring the synergetic effect between passive elastohydrodynamics and

active radial lubricant injection.

The flexible tilting-pads are modelled as linearly elastic using finite elements. To reduce

computational work, a pseudo-modal reduction is applied.

Curves of dynamic bearing coefficients as well as the corresponding phase-magnitude plots are

presented.

Strong synergy between elastohydrodynamics and active control is observed, in particular for

bearings with injection orifices far from the pivot line.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the development of high performance rotating
machinery, growing attention has been paid to the design of
new active (mechatronic) devices able to actively control
vibrations and improve dynamic behaviour, i.e. magnetic bearings
[1] piezoelectric bearing pushers [2–5], hydraulic actuator journal
bearings [6–8], variable impedance bearings [9], actively con-
trolled bearing surface profiles or simply deformable bushes [10],
active journal bearings with flexible sleeves [11,12], active
lubricated bearings [13–15], or pressurised bearings [16,17]
among others.

The active systems described in [10–12,15] belong to a special
category of tribological devices where ‘‘controllable’’ elastohy-
drodynamics plays a crucial role. In such systems the bearing
surface profile is intentionally modified and/or adjusted in order
to control rotor vibrations and improve bearing dynamic proper-
ties. The actively controlled bearing surface profiles [10] can be
generated by coupling any kind of actuator (hydraulic, electro-
magnetic or piezoelectric) to deformable bushes. The efficiency of
such an approach will be strongly dependent on the number and
type of actuators used. In [10] the unbalance response of a rigid
rotor is significantly reduced using actuators in one single
direction. By adapting pressure chambers to the back of one
single finger-form deformable sleeves bearing profile can also be
changed and subsynchronous vibration instabilities eliminated, as

illustrated in [11]. The same idea is later on used to design an
active journal bearing composed of three finger-form deformable
sleeves [12] in the form of a tilting-pad bearing with three flexible
pads clamped at one of their ends. In [15] a combined effect of
active radial pressure control [12–14] and bearing surface profile
is investigated. Due to the manufacturing of only a single orifice in
the centre of the deformable pad, the modification of the bearing
surface profile is limited.

This paper is fundamentally based on the knowledge gained in
[15]. The main original theoretical contribution is the exploration
of different orifice configurations over the pad surface in order to
improve the dynamic properties of the bearing through the
combined effect of active radial oil injection (active lubrication)
and pad deformation.

In [15], dynamic coefficients for active tilting pad journal
bearings were determined, but only with centrally placed orifices.
It was found in [15] that, while maybe not significant for static
analysis, pad compliance plays a major role in bearing response
for higher frequencies, and thus must be included. In [15] this was
done with a full fletched finite element model, making analysis a
computationally heavy process. Though, in [18] it is shown that,
under certain circumstances, computation time can be reduced
significantly. Here we shall take a different approach than that of
[15] to reduce computation time. The solid part of the finite
element model is used to compute approximate eigenmodes of
the system. These are then used for pseudo-modal reduction of
the entire system. Pseudo; because the eigenmodes of the solid
system will never expand the motion of the entire system
(including the fluid) exactly. Nevertheless, as long as fluid forces
from pad deformation are small compared to solid forces, a
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pseudo-modal reduction is sufficiently accurate to capture the
essential behaviour of the system. In other words, fluid forces
from mode shape perturbation are a measure of the error of the
pseudo-modal reduction. As long as these are small, the method is
accurate. In fact, many previous studies, e.g. [19–21] model the
pads as rigid bodies. A rigid body model is essentially a pseudo-
modal reduction containing only the first eigenmode of vibration
of the solid, since the first eigenmode of vibration will be the rigid
body pivoting motion.

One of the earliest studies of tilting pad journal bearings to
include pad compliance is [22], where a beam model is taken to
capture essential bearing deformation. Since then, more advanced
models have been introduced. In [23] the fluid and solid are both
discretised in two-dimensional on perpendicular surfaces. Thus the
bearing is assumed ‘‘long’’, but only in terms of the solid
deformations. This should not be confused with the ‘‘long’’ and
‘‘short’’ bearing theory of tribology literature. Furthermore, the
deformations are reduced to a scalar; pad effective radius. This is a
clever way of incorporating pad compliance in a compact way. The
analyses are conducted for single pads only. In [24] an assembled
rotor pad system is investigated. Pad compliance is seen to have a
destabilising effect on the system, reducing the instability onset
speed. In [25] a similar model is used to compute time series
solutions for various system states. However, very prudently, pad
inertia from all but the tilting motion is neglected. This reduces
computation time considerably. In [26] a similar study is conducted
on a model where the pads are modelled in three dimensions.
A comparison is carried out, which reveals that for severely loaded
bearings, a three-dimensional pad compliance model is necessary.

The present investigation does not take thermal effects into
account. This is relegated to future research. In [27], thermal
effects were accounted for in an active tilting-pad journal bearing,
but pad compliance was neglected.

In terms of potential application of this work, one could
mention steam turbine shafts, normally supported by tilting-pad
journal bearings [28–31]. Instability phenomena in steam tur-
bines may happen as a consequence of certain characteristics of
the steam flow as well as of the mechanical and geometrical
properties of the seals. The steam-whirl instability onsets occur
generally in on-load operating conditions characterised by high
values of steam pressure and flow.

2. Governing equations

In the present paper, tensors will appear in certain places. To
avoid confusion, while retaining a consistent nomenclature, sum-
mation of repeated indices is not employed, thus all summations are
stated explicitly. Underlined indices are part of variable names and
indices without underline are used for numbering, e.g. qvi is the
valve flow of servo-valve number i. An overview of the nomen-
clature is given in Table 1.

Fig. 1 illustrates the different coordinate frames and domains
used to describe the elastic behaviour of the pads, and the journal
pressure distribution among the rotor and the pads. The curvilinear
coordinates ðw1;w2Þ are used to represent the fluid film and the
Cartesian coordinates (x1, x2, x3) are used to represent the pads.

The solid is taken to be linearly elastic and isotropic. Small
strains and rotations suffice for the description of the deformed
state. The governing equation is traditionally given directly in
integral form as the principle of virtual work

X3

i;j;k;l ¼ 1

Z
P

Lijklekldeij dP¼�
X3

i ¼ 1

Z
P
r €uidui dPþ

X3

i ¼ 1

Z
L

Tidui dL ð1Þ

where ekl is the strain tensor, r is the density of the solid, Ti

denotes the surface traction, ui is the displacement vector, d
denotes an increment and Lijkl is the constitutive tensor for the
material, and is given by

Lijkl ¼
E

2ð1þnÞ dikdjlþdildjkþ
2n

1�2n dijdkl

� �
ð2Þ

where E is Young’s modulus, n is Poisson’s ratio and dij is
Kronecker’s delta. From Eqs. (1) and (2) the stiffness and mass
matrices of the solid can be derived, refer to [15].

The pressure field in the fluid is described by the modified
Reynolds equation

1

12

X2

i ¼ 1

@

@wi

h3

m
@p

@wi

� �
¼

U

2

@h

@w2

þ _hþ

P
igiðp�pinjiÞ

4ml0i
ð3Þ

Table 1
Nomenclature.

A Pressure system matrix

D Generalised damping matrix

Db Bearing damping

Dq�q Flow damping matrix

E Young’s modulus

GD Derivative gain

GP Proportional gain

K Generalised stiffness matrix

Kb Bearing stiffness

Kpq Flow pressure constant

Kq�q Flow stiffness matrix

Ks Solid stiffness matrix

Kv Valve static amplification

Lijkl Solid constitutive tensor

M Generalised mass matrix

Mr Rotor mass matrix

Mq�q Flow mass matrix

Ms Solid massmatrix

U Tangential rotor speed

V Reduction matrix

Vs Matrix of solid modes of vibration

b Modal coordinate vector

dg Generalised displacement vector

f Nodal forcevector

fg Generalised force vector

fr Rotor forcevector

gi Orifice flow shape function

h Fluid film thickness

h0 Assembled clearance

l0i Orifice inlet length

p Generalised pressure vector

p Fluid pressure

pinji Injection pressure

qL Leak flow

qv Valve flow

r Pressure right-hand side

t Time

ui Displacement

uv Valve input signal

xi Inertial coordinates

Ddri Rotor perturbation

Dfri Rotor force response

L Solid boundary

P Solid domain

eij Strain tensor

xv Valve damping ratio

wi Curvilinear coordinates

ov Valve eigenfrequency

G Fluid boundary

Ls Diagonal matrix of eigenvalues

F Fluid domain

n Poisson’s ratio

r Solid density

o Excitation frequency
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where p is the pressure, h is the oil film thickness, U is the relative
tangential speed of the rotor, gi is a shape function describing a
laminar flow profile in orifice i, pinji is the injection pressure in
orifice i, l0i is the length of the orifice inlet tube i and m is the
dynamic viscosity of the lubricant. The w2 coordinate is aligned
with the direction of rotation. The Reynolds equation has been
divided by 12 on both sides, when comparing to the way that it is
normally stated. This makes the governing matrix of the pressure
problem symmetric. Refer to [15] for a more detailed explanation.

The flow in the servo-valves is described by the second order
ordinary differential equation

€qvþ2xvov _qvþo2
v qv ¼o2

v Kv uv ð4Þ

or

1

o2
v Kv

€qvþ
2xv

ov Kv

_qvþ
1

Kv
qv ¼ uv ð5Þ

where ov is the servo-valve eigenfrequency, Kv is the valve flow
voltage coefficient, xv is the valve damping ratio and qv is the
valve flow.

If more servo-valves are included, an uncoupled system of
equations results, thus

Mq2q €qvþDq2q _qvþKq2q qv ¼ uv ð6Þ

where the system matrices follow directly from Eq. (4). The
injection orifice arrays (pads) are connected by servo-valves as
pairs. Thus the flows in a pad pair are coupled. The linearised 2 by
2 system of equations for a servo-valve connecting, e.g. pad i and j

is

qi

qj

( )
¼

Kpq �Kpq

�Kpq Kpq

" #
pinji

pinjj

( )
þ

qv

�qv

( )
þ

qL

qL

( )
ð7Þ

where Kpq is the valve flow-pressure coefficient, qL is the valve
leak flow, qi is the flow to pad i and pinj i is the injection pressure at
pad i. Here we have selected a positive direction of flow for the
servo-valve. The pad associated with positive valve flow, in this
case pad i, is denoted the master pad. The pad associated with
negative valve flow, in this case pad j, is denoted the slave pad.

Since the bearings are the main focus of this investigation, the
rotor is described as simply as possible, however, still in a fashion
that retains its qualitative behaviour. The rotor is assumed to
move laterally only, i.e. the axis of symmetry is assumed to align
with x3 at all times, also its centre of mass is assumed to coincide

with its axis of rotation at all times. Since the focus of this
investigation is the bearing influence on the rotor behaviour, no
stiffness is assigned to the rotor apart from the one coming from
the oil film. Also, as mentioned in the Introduction, this study
assumes an isothermal bearing and lubricant. This greatly
simplifies the modelling. Including thermal effects is the most
prudent next step in the refining process of the model. In Fig. 2 a
system with two pads and one servo-valve is shown, with
indication of the governing equation of each body. The figure is
for illustrative purposes only. The oil film thickness is greatly
exaggerated, and in this investigation, bearings with four pads
will be investigated.

2.1. Boundary conditions

The pads are pivoted about their centre. The pivoting is
modelled as a radial constraint on relevant nodes, see Fig. 3. This
is done by coordinate transformations back and forth between the
inertial coordinate system, and systems that are aligned with the
constraints. When in a constraint coordinate system, zeros can
be introduced into the off diagonal components of the stiffness
matrix, which couple with the degree of freedom to be con-
strained. One could simply introduce stiff springs between the
pivot point and the surface nodes, but this would introduce high

Fig. 1. Overview of the different domains, the fluid film curvilinear coordinate

system ðw1;w2Þ and the Cartesian coordinate system (x1, x2, x3). The sub-domain

where gi a0 is that of an orifice. The solid domain is denoted by P and its

boundary by L. Note that all external surfaces are part of the solid boundary. The

fluid domain is denoted by F and its boundary by G.

Fig. 2. Overview of coupled system, with denotation of the equations that govern

the different parts. I.e. Eq. (3) means that part is governed by the Reynolds

equation. The first coordinates of the Cartesian coordinate system (x1, x2) are

shown, the coordinate system is right handed, thus x3 points out of the plane of the

paper. The curvilinear coordinate w2 is also shown.

Fig. 3. Schematic of the pivot boundary conditions. The pivot is modelled as rigid.

Nodes along the surface of the pad are constrained to move tangentially relative to

the pivot point.

A.M. Haugaard, I.F. Santos / Tribology International 43 (2010) 1374–13911376



ARTICLE IN PRESS

frequencies into the system, thus possibly reducing the maximum
allowable time step for time integration procedures. The bound-
ary condition for the Reynolds equation is the Reynolds condition,
i.e. the pressure is set to zero along the boundary of the lubricated
surface.

3. Coupling

Eqs. (1), (3) and (6) can, given a few prudent conditions, be
coupled into one set of non-linear algebraic equations. Also, the
rotor is included. Three conditions are applied: (i) The fluid film
pressure is applied as a surface load on the solid and the rotor. (ii)
The fluid film thickness is given as a function of the displacement
(rigid body motion and deformation) of the solid as well as the
rotor position. (iii) The flow through an orifice is set equal to the
net flow into the fluid film in the domain of that orifice.

The details of the implementation of these three conditions
can be found in [15]. When they are applied, we can write the
system of equations compactly as

Ms
€dþKs d¼ fðpÞ

Mr
€dr ¼ fr ðpÞ

Aðd; _d;dr ; _dr Þp¼ rðd; _d;dr ; _dr ;qv Þ

Mq2q €qvþDq2q _qvþKq2q qv ¼ uv ðdr ; _dr ; . . .Þ ð8Þ

where Ms and Mr are the solid mass matrix and rotor mass
matrix, respectively, Ks is the solid stiffness matrix and A is the
system matrix for the pressure problem as derived from the
modified Reynolds equation, r is the corresponding right-hand
side, d is the nodal displacement vector and dr is the rotor
displacement vector. Here Ms , Mr , A, Mq2q , Dq2q and Kq2q are
positive definite. Ks is positive semidefinite on account of the
rigid body mode. The bulk of the computational work lies with the
solution for pressures and nodal displacements, as the number
of nodes is typically in the order of thousands. Note that the
generalised pressure vector p contains the nodal values of
the pressure field as well as the pad injection pressures pinji.
The nodal force vector f(p) depends linearly on the fluid film
pressure p. This also applies to the rotor force vector fr ðpÞ. The
servo-valve signal uv can be any functional of any measurable
quantity. In the present investigation we shall let it be a
functional of lateral rotor displacement and velocity, i.e. we will
implement a PD-controller.

4. The linear system

The system of equations can be linearised with respect to
displacements, so as to provide a fluid film stiffness and damping.
The linearised system is derived by first order Taylor expansions
of relevant quantities. Since, the injection pressures are not
defined in space, we may as well work directly on the discretised
system. Thus

pgn � ~pgnþ
X

i

@pgn

@di
ddiþ

X
i

@pgn

@ _di

d _di

þ
X

i

@pgn

@qv i
dqv iþ

X
i

@pgn

@dr i
ddiþ

X
i

@pgn

@ _dri

d _di ð9Þ

where ~pgn is the generalised pressure vector at static equilibrium.
That is, we expand the system around static equilibrium, and
assume deviations from this state to be small. To find ~pgn can

itself be a challenge, since it involves solving a system of non-
linear equations. The process of building the discrete global
linearised system of equations follows that of [15]. After some
derivation, one ends with the system of equations

M €dgþD _dgþKdg ¼ fg ð10Þ

where dg and fg are the vectors of generalised displacements and
forces, respectively. The vector dg contains all nodal displace-
ments of the solid (d) as well as the lateral displacement of the
rotor ðdr Þ and the flow in each servo-valve ðqv Þ. The vector fg

contains the corresponding forces, and the servo-valve signal. As
such

dg ¼

d

dr

qv

8>>>><
>>>>:

9>>>>=
>>>>;
; fg ¼

f

fr

uv

8>>>><
>>>>:

9>>>>=
>>>>;

ð11Þ

The vector of nodal displacements will typically contain thou-
sands of degrees of freedom, and so contributes with the bulk of
the computational workload. The vector of lateral rotor displace-
ments contains only the two components of lateral rotor move-
ment, i.e. dr ¼ ½dr1 dr2�

T . Finally, the vector of flows contains as
many components as there are servo-valves. In the present
investigation, this means two. Grouping d and dr together, we can
write the system matrices as

M¼
½Md2d � ½Md2q �

½Mq2d � ½Mq2q �

2
4

3
5 ð12Þ

,

D¼
½Dd2d � ½Dd2q �

½Dq2d � ½Dq2q �

2
4

3
5 ð13Þ

and

K¼
½Kd2d � ½Kd2q �

½Kq2d � ½Kq2q �

2
4

3
5 ð14Þ

Since the fluid inertia is neglected, the mass matrix contains
contributions only from the solid. The stiffness and damping
matrices contain contributions from the fluid as well as the solid.
The matrices are derived in more detail in [15].

Note that the functionals ðuvm, m=1,2,y) can be chosen freely.
Thus, Kq2d constitutes an active part of the system, and can be
tuned to produce desired behaviour. Let us consider an example
with one servo-valve so that qvn ¼ qv1 ¼ qv with a PD-controller
that responds to rotor displacement and displacement rate in the
x2 direction only. If we assign the last nodal degree of freedom r to
the rotor movement in the x2 direction, then the functional
uvm ¼ uv1 ¼ uv would be

uv ¼ GP dr2þGD
_dr2 ð15Þ

where GP is the proportional gain GD is the derivative gain and dr2

is the displacement of the rotor in the x2 direction. Moving the
electronic servo-valve signal to the left-hand side, the system
matrices become

K¼
½Kdd �

R
F
P3

i ¼ 1 emiai

P
jAF2 jj

@pj

@qv dF
½0; . . . ;�GP � 1=Kv

2
64

3
75 ð16Þ
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½Ddd � 0
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ov Kv
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3
775; M¼
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v Kv
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The linearised system is useful for two things. Firstly it allows
linear frequency domain analysis of the bearing, this shall be
performed in the following section. Secondly the system stiffness
matrix is exactly the Jacobian of the out of balance forces, and is
thus necessary when performing Newton–Raphson iterations
toward equilibrium. Since the system is non-linear, it will
potentially have more than one static equilibrium, though in
practice only one stable equilibrium is observed. A good way to
reach a stable equilibrium position is to run a Newmark time
stepping solution until a given time and use the final system state
as the initial guess for Newton–Raphson iterations. As mentioned,
since the pads are allowed to deform, the system typically
contains many thousands degrees of freedom. The solid part of
the stiffness matrix is singular because of the pivot supports,
so the equations must be solved as fully coupled, which means
that the fluid part of the stiffness matrix must be computed at
each Newton–Raphson iteration step. This matrix is non-
symmetric and non-sparse, which makes solution computation-
ally challenging. To speed up solution, while retaining reasonable
precision, a pseudo-modal reduction is performed.

4.1. Pseudo-modal reduction

If the force from perturbing a node comes mainly from the
solid, then the mode shapes of the solid only system will be very
similar to those of the combined fluid–solid system. In other
words: Given the assumption that the deformation forces from
the solid are larger than those from the fluid, the system of
equations (10) can be condensed spectrally as

VT MV €bþVT DV _bþVT KVb¼VT f ð18Þ

where

V¼
½Vs � ½0�

½0� ½I�

" #
ð19Þ

Now, dg is approximated as

dg ¼ Vb ð20Þ

The matrix Vs contains in its columns some of the eigenmodes of
vibration of the solid, thus it satisfies

Ks Vs ¼Ms VsLs ð21Þ

and Ls contains the squares of the corresponding solid eigenfre-
quencies in its diagonal and zeros elsewhere. The identity matrix in
the lower right corner of Eq. (19) transfers the rotor and servo-valve
degrees of freedom untransformed. I.e. The purpose of V is to reduce
the workload associated with the large number of degrees of
freedom in the pads. The rotor and valves cannot and will not be
reduced any further. In the present investigation, four modes of
vibration have been considered for each pad. The system has four
pads, one rotor and two servo-valves. Thus the size of the reduced
system equation (18) is 20 �20, which is manageable by any
modern computer. Fig. 4 shows the four modes considered for each
pad. These figures also give an impression of the mesh refinement
used in the analyses, as the meshes shown are used throughout the
investigation. The elements are 20-node serendipity elements, see
e.g. [32]. Since we include only four modeshapes, the mesh is more
than adequate in terms of refinement.

5. Analyses

To obtain tangible information about the bearing behaviour,
we perturb the rotor, and measure the force response, i.e. we
determine the transfer function of the rotor. With a time

harmonic perturbation of the rotor Dfg ¼Dfg0eiot , we can write
the solution as Db¼Db0 eiot , where

VT
ðKþ ioD�o2MÞVDb0 ¼ VTDfg0 ð22Þ

Now, the bearing stiffness is defined as the real part of the rotor force
response. The damping is defined as the imaginary part divided by
the frequency. We know that the displacements of the rotor in the x1

and x2 direction are unity and zero, respectively, but we need to solve
the system to know the value of the other displacements. E.g. given a
solution to Eq. (22) Db0 ¼ ½. . . ;Ddr1; Ddr2; . . . �

T ¼ ½. . . ;1;0; . . .�, where
the 1 and 0 are a prescribed rotor displacements in the x1, x2 plane,
and a corresponding force vector Dfg0 ¼ ½. . . ;Dfr1;Dfr2; . . . �

T . Then
the bearing stiffness is defined as

Kb ¼ ReðDfr1Þ ð23Þ

and the bearing damping is defined as

Db ¼
1

o ImðDfr1Þ ð24Þ

For four pad bearings in a load between pad situation, the off diagonal
terms are very small. Thus the bearing stiffness and damping are
considered scalar. Note that for this to hold for an active bearing, the
orifices should be placed symmetrically about the pivot line. In the

Fig. 4. Eigenmodes of the solid part of the system. (a) The first mode, which is a

rigid body mode. (b) The second, bending, mode. (c) The third, skewing, mode.

(d) The fourth, flapping, mode. Given that E = 100 GPa, the eigenfrequencies for the

modes are 0, 7.29 kHz, 8.34 kHz and 10.76 Hz, respectively. Note that the

modeshapes are independent of E.
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results section, the force response magnitude and phase will be
presented. These quantities can be related to the stiffness and
damping by the inverse of the relations in Eqs. (23) and (24), thus

jDfr j ¼ jDfr1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

b þo2D2
b

q
ð25Þ

and

ArgðDfr Þ ¼ ArgðDfr1Þ ¼ ArgðKbþ ioDb Þ ð26Þ

here, one should keep in mind that both Kb and Db are rational
functions of o.

A dynamic analysis based on the stiffness and damping
coefficients, Eqs. (23) and (24), gives engineers the main
information about the softening/hardening effect of the bearing
as a function of the excitation frequency and different lubrication
regimes, i.e. an equivalent impedance. With the equivalent
damping coefficients a general idea of vibration energy dissipa-
tion as a function of the excitation frequency can be achieved.
Such coefficients can be directly used as input data for rotor-
dynamic computational programs and rotor unbalance response
can be performed in a straightforward manner.

A dynamic analysis based on amplitude and phase of the journal
bearing forces, Eqs. (25) and (26), gives engineers insight into their
maximum values depending on the different lubrication regimes and
excitation frequency. Moreover, the phase between the maximum
value of the journal force and the maximum rotor lateral displace-
ment allows for the calculation of time delay between rotor response
and controllable journal forces. Using the dynamic coefficients for
stability analysis can seem tempting, given the naming convention of
equivalent ‘‘stiffness’’ and ‘‘damping’’. This is, however, not possible,
and may lead to erroneous results. An advantage of the phase and
magnitude representation is that it is not prone to this error.

In this paper both dynamic analyses, based on bearing
dynamic coefficients and journal forces amplitude and phase,
will be presented.

6. Results

This section contains documentation of selected results.
The bearing under investigation has length as well as diameter

0.1 m, so the length/diameter ratio is 1. Each pad extends 69:33.
The rotational speed of the rotor is 6000 rpm. Three different
orifice configurations will be investigated, the possible orifice
configurations are explained in Fig. 5 and Table 2. Each orifice has
a diameter of 6 mm. Key bearing data are given in Table 3. The
bearing preload factor of 0.5 is high enough that passive
hydrodynamic effects in themselves are substantial. The idea of
the investigations is that if a bearing with a high preload factor
can be improved, then so can a bearing with a low preload factor.
The servo-valve constants for the active bearing are given in
Table 4. These values apply to all of the discussed analyses.
The bearing has four pads. The bearing pads are numbered
consecutively in the counter clockwise direction from the
x1-axis. Thus we have pad #1 (x140 and x240), pad #2 (x1o0
and x240), pad #3 (x1o0 and x2o0) and pad #4 (x140 and
x2o0). Fig. 6 shows a schematic of the bearing with indication of
pad numbering.

The pivots are at 451 angles to the x1 and x2 directions, and the
pads extend symmetrically from the pivot lines. The rotor is
loaded in the x1 direction, thus we have a load-between-pad
configuration. The pad is pivoted about its centre.

We shall implement a control system that responds to rotor
movement in the x1 direction. The way we do this is to connect
the pads in pairs with servo-valves. Pad #1 is connected to pad #3
with a servo-valve. Also, pad #4 is connected to pad #2 with a

servo-valve. Pads #1 and #4 are chosen as master pads, with pads
#3 and #2 as their respective slave counterparts. Both servo-
valves respond to rotor movement in the x1 direction and x2

direction. The software written for the bearing analysis takes

Fig. 5. Schematic of possible orifice placement. The orifices are denoted A1

through B3. The orifices are places symmetrically on the pad.

Table 2
Overview of orifice configurations.

Configuration Orifices

#1 A2–B2

#2 A1–A3–B1–B3

#3 A1–A2–A3–B1–B2–B3

Table 3
Bearing and lubricant data.

Property Unit Value(s)

Pad radius of curvature mm 50

Rotor radius mm 49.9

Nominal clearance mm 100

Assembled (minimum) clearance mm 50

Preload – 0.5

Pad extension 1 69.3

Angular pivot locations 1 45, 135, 225 and 315

(at pad centres)

Radial pivot location mm 64

Pad length mm 100

Nominal pad thickness mm 14

Pad Young’s modulus GPa 100

Pad Poisson’s ratio - 0.3

Pad density Kg/m^3 8400

Static load (in x1 direction) N 20 000

Number of pads – 4

Lubricant dynamic viscosity N s/m2 0.019

Table 4
Servo-valve constants.

Property Unit Value(s)

Valve flow-pressure coefficient m3/(s Pa) 1.13 �10�12

Valve flow-voltage coefficient m3/(s V) 16.7 �10�6

Valve damping ratio – 0.48

Valve eigenfrequency Hz 320.16

A.M. Haugaard, I.F. Santos / Tribology International 43 (2010) 1374–1391 1379



ARTICLE IN PRESS

a vector as input, so as to define what direction of rotor
movement, that each servo-valve shall respond to. This vector is
normalised inside the program. Here, we set the first valve to
respond to (1,1) and the second valve to respond to (1,�1). Thus,
after normalisation, the two servo-valve signals are computed as

uv1 ¼ GP ðdr1þdr2Þ=
ffiffiffi
2
p
þGD ð

_dr1þ
_dr2Þ=

ffiffiffi
2
p

ð27Þ

uv2 ¼ GP ðdr1�dr2Þ=
ffiffiffi
2
p
þGD ð

_dr1�
_dr2Þ=

ffiffiffi
2
p

ð28Þ

This makes for an active bearing which still, for all practical
purposes decouples the x1 and x2 coordinate directions, just as a
passive tilting-pad journal bearing. Consider a movement in the x1

direction. Since the two valve arrangements are symmetric about
the x1, x3 plane, the resulting net flow from top (pad #1 and pad
#2) to bottom (pad #3 and pad #4), i.e. in the x2 direction is nil.
Similarly, consider a movement in the x2 direction. The two valve
arrangements are antisymmetric about the x2, x3 plane. However,
valve number two responds negatively to movement in the x2

direction, so the net flow from left (pad #2 and pad #3) to right
(pad #1 and pad #4) is nil.

6.1. Preliminary analysis—static load

Before embarking upon dynamic analyses, the static behaviour
of the active bearing is investigated. A proportional gain of
500 V/mm is chosen. This value represents the maximum
proportional gain, that will allow a substantial eccentricity of
the rotor without producing excessive injection pressures, and at
the same time respects the linear response range of the servo-
valve (approx. 5% of the maximal voltage). The maximum
injection pressure of a servo-valve is typically 22 MPa. The
pressure in the oil film in the orifice domain is very close to the
injection pressure. So one way of checking the injection pressure
is by setting the rotor eccentricity to a given maximum value, and
then evaluating the pressure field. An appropriate maximum
proportional gain can then be set by trial and error. The derivative
gain is irrelevant, since the analysis is static. Some results shall be
compared to a corresponding passive bearing. The passive bearing
is defined as a system with no orifices, i.e. the passive bearing is
purely hydrodynamic in nature. Apart from this, it shares all
parameters with the active bearing. Also, results for a rigid body
model will be presented and compared to results of a four mode
pseudo-modal reduction. The mode shapes for the four mode

pseudo-modal reduction are shown in Fig. 4. The rigid body model
utilises only the first of these modes. The orifices are placed
according to configuration #3. That is, each pad has six orifices.

Fig. 7 shows the pressure field for the P-regulated active
bearing under a static load in the x1 direction of 20 000 N,
producing a Sommerfeld number of 0.235. Half of the solid is cut
away to enable better inspection of the pressure in the fluid film.
Note how the pressure in the orifice regions is high on the loaded
pads and low on the unloaded pads. This is a consequence of the
response of the servo-valve.

Fig. 8 shows curves of fluid film thickness for a passive system
under the same conditions as well as the mentioned P-regulated
active system. The angle is measured from the x1-axis, meaning
that the loaded pads are in the intervals ½0;p=2� (pad #1) and
½3p=2;2p� (pad #4). The fluid film thicknesses are those of the
static equilibrium position, on which the P-regulator has an effect.
Even in the present (static) case we see an effect of pad
compliance; note the difference in fluid film thickness between
the four mode pseudo-modal reduction and the rigid body model.

Fig. 6. Schematic of the bearing, showing pad numbering and valve orientation.

Fig. 7. The pressure field at static equilibrium with a P-gain of 500 V/mm and a

static load of 20 000 N in the x1 direction. The state is identical to that of Fig. 8.

(a) The pressure field with the entire pads shown. (b) The top half of the pads is cut

away. The figure is generated with the Gmsh software [36].

Fig. 8. Curves of fluid film thickness normalised with respect to the assembled

clearance h0 ¼ 50mm. The state is that of static equilibrium at a static load on the

rotor of 20 000 N in the x1 direction. To illustrate the static effect of pad

compliance, the four mode pseudo-modal reduction is compared to a rigid body

model. The orifices are placed according to configuration #3. That is, each pad has

six orifices. Results are shown for a passive bearing as well as for a P-controlled

bearing with a P-gain of 500 V/mm.
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As explained in [15], the effect of pad compliance is generally felt
in dynamic analysis at higher frequencies. For a bearing like
the one we investigate here, this means from 50 Hz upwards.
This frequency is much lower than the eigenfrequencies of the
modes that involve deformation. Yet, keep in mind that the
eigenfrequencies are computed for the solid only system. The four
mode pseudo-modal reduction allows for an increase of the pad
effective radius, thus increasing the preload factor. This is
identified as increased fluid film thickness at the edges of the
loaded pads. Note the effect of the P-regulator. It resists static
rotor displacement, and as such it helps increase the minimum
film thickness.

6.2. Harmonic responses to dynamic loads

Now, dynamic analyses shall be performed. A pure propor-
tional regulator, or ‘‘P-regulator’’ as well as a pure derivative
regulator, or ‘‘D-regulator’’ will be implemented, and different
gains will be chosen. This will enable us to explore the influence
of a control system on the bearing, by comparison to results for
a passive bearing. Typically, control systems make use of a
combined PD regulator. In the present study, to keep the number
of computations to a reasonably low number, we choose to
investigate P-control and D-control separately. Furthermore most
control systems incorporate noise filters—one such has not been
modelled here. Also, note that many types of controllers exist. For
instance, in [33,34] a PID controller was investigated, and deemed
not suitable for application to tilting pad journal bearings. The
pure P-regulator responds to changes in the lateral rotor position
in the x1 direction. Proportional gains are set to six different
values from 50 to 500 V/mm. The pure D-regulator responds to
changes in the lateral rotor velocity in the x1 direction. Derivative
gains are set to six different values from 0.5 to 5 V s/mm. Thus we
have three configurations at 12 distinct sets of gains each,
amounting to 36 different analyses. Each analysis is run at a
range of frequencies between 0 and 400 Hz. The static load on
the bearing is 20 000 N as for the previous static analysis. This
results in a Sommerfeld number of 0.235. All perturbations are
performed about the static equilibrium state. This will depend
on the P gain, since the P regulator responds to static rotor
motion.

Bearing responses to unit rotor perturbations are presented
and discussed. All perturbations are in the x1 coordinate direction,
and all force responses are measured in the x1 coordinate
direction. Thus we denote the rotor force response simply as a
scalar Dfr . Since we perform a unit perturbation, the rotor force
response Dfr has unit [N/m]. It is normalised with jfjr=h0 , i.e. the
static rotor force (20 000 N) divided by the assembled clearance
ð50mmÞ.

Before the regulator is implemented, the corresponding
passive bearing reaction force in the x1 direction to a unit rotor
displacement in the x1 direction is computed for comparison.

6.2.1. Results presented as magnitude and phase of force response

The passive bearing performance is seen in Fig. 9. Fig. 9(a)
shows the magnitude of the force response and Fig. 9(b) shows
the phase of the force response in the x1 direction. What is meant
by the phase of the force response, is the time delay between
the harmonic displacement perturbation of the rotor, and the
harmonic resulting force on the rotor, both in the x1 direction.
After around 100 Hz the magnitude grows almost linearly. The
phase is that between displacement and force. It grows almost
linearly, and then levels out at roughly 3p=8. Both curves are
typical of a heavily damped system. Given the curves for the

passive bearing, we have a foundation on which to evaluate the
performance of the active bearing.

Note that there is no reason to believe that the coupled system
will have a resonance exactly at o¼ov . The servo-valve
parameters are similar to those used in [35,15]. The servo-valve
parameters are realistic in the sense that even under severe load
conditions, the assumed maximum injection pressure of 22 MPa is
not exceeded.

One may jump to the conclusion that more orifices are always
better, in that more orifices will produce a greater force. This is
not true for two reasons: Firstly, more orifices does not mean
more valves, the flow from a given valve is distributed among
the orifices. An excessive number of orifices may lead to an
insufficient flow to the individual orifice, thus reducing the
pressure. Secondly, passive effects are still important in active
bearings. When adding an orifice, one removes a small area where
the passive hydrodynamic effects would otherwise support the
rotor.

Fig. 10 shows amplitudes of the bearing response for a
proportional regulator. Figs. 10(a), (b) and (c) show results for
configurations #1, #2 and #3, respectively. There seems to be
little difference between the three configurations. In all three
cases, the response tends to drop until a frequency of 100–120 Hz
is reached, after which an almost linear increase is observed.
Note that the quasi-static response, i.e. the response at 0 Hz,

Fig. 9. Passive bearing force response in the x1 direction to unit movement of rotor

in x1 direction. (a) Magnitude, (b) phase.
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of configuration #2 is somewhat lower than that of the other
configurations. This is only true for the highest gains. As the
frequency increases, configuration #3 exhibits a slower increase
in response, although the difference is slight. Fig. 10(d) shows the
corresponding curve for a centre orifice configuration, and the
maximum P-gain of 500 V/mm. It is seen that all three multi-
orifice configurations outperform the centre orifice configuration.
That is, the amplitude of the force response from the bearing is
higher with any multi-orifice configuration than that of a centre
orifice configuration. Also, compare to Figs. 9(a) and (b) which
show the corresponding curves for a passive bearing: Clearly, for
lower frequencies, the P-regulated active bearing outperforms the
passive one in terms of force response.

Fig. 11 shows phases of the bearing force response for a
proportional regulator. The phase is defined as relative to the
displacement. Figs. 11(a), (b) and (c) show results for configurations
# 1, # 2 and # 3, respectively. All three configurations exhibit a
phase shift from 0, where the bearing response is in phase with the
movement of the rotor, to almost p=2. For configuration #3, the
value of the P-gain seems to have more influence on the phase,
although the effect is marginal. There is virtually no difference
between configurations #1 and #2. Fig. 11(d) shows the corres-
ponding curve for a centre orifice configuration, and the maximum
P-gain of 500 V/mm. Again, orifice placement seems to have very
little impact on the phase. Furthermore, the phase plots of
Figs. 11(a)–(d) resemble that of the passive system in Fig. 9(b).
This leads to the conclusion that a P-regulator on a tilting-pad
journal bearing will have little influence on the phase. This
knowledge can be useful in the design process of an active bearing.

Fig. 12 shows amplitudes of the bearing response for a
derivative regulator. Figs. 12(a), (b) and (c) show results for
configurations #1, #2 and #3, respectively. Here configuration #2
stands out, since it exhibits a large response at around 250 Hz,
which the other configurations do not. The effect is most
pronounced for the highest value of the gain. Note that there is

a non-linear relation between the value of the gain and the value
of the response. I.e. a slight increase from 4 to 5 V s/mm results in
a large impact on the amplitude of the force response. This
illustrates well, why active hybrid bearings cannot simply be
viewed as hydrodynamic bearings in parallel with hydrostatic
bearings; the coupling in the fluid film between hydrostatic and
hydrodynamic terms is not trivial. That is, we cannot simply view
the servo-valve as an actuator, applying a force somewhere on the
system. Rather, we should think of it as a generalised spring that
we build into the system; the state of this spring clearly depends
on the state of the rest of the system. Even though this is the case,
the bearing is virtually linear with respect to rotor load, for a
given value of the gain, as long as the gain is large enough. This is
demonstrated in [15]. Fig. 12(d) shows the corresponding curve
for a centre orifice configuration, and the maximum D-gain of
5 V s/mm. As for the P-gain case, it is seen that all three multi-
orifice configurations outperform the centre orifice configuration.
That is, the amplitude of the force response from the bearing is
higher with any multi-orifice configuration than that of a centre
orifice configuration. Again, compare to Figs. 9(a), (b) which show
the corresponding curves for a passive bearing. Under the given
conditions, the D-regulated bearing provides superior perfor-
mance. This is true in particular in the mid-frequency range above
50 Hz and below 300 Hz. Above 300 Hz the limited servo-valve
bandwidth is felt, and force response begins to drop to that of
a passive bearing.

Fig. 13 shows phases of the bearing force response for a
derivative regulator. The phase is defined as relative to the
displacement. Figs. 13(a), (b) and (c) show results for configura-
tions #1, #2 and #3, respectively. It seems that configuration #3
has a profound effect on the phase for the highest of gains, and at
very low and very high frequencies. Apart from this, the
configuration choice seems not to affect the system too much.
Compare Fig. 11 with Fig. 13. In Fig. 11 the phases intersect each
other along a line. Since the P-regulator changes the static

Fig. 10. Magnitude of the bearing force component in the x1 direction in response to a unit rotor perturbation in the x1 direction as a function of the excitation frequency.

Curves for configuration (a) #1, (b) #2 and (c) #3 and different values of proportional gain.
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equilibrium position of the system, the passive hydrodynamic
pressure response depends indirectly on the value of the P-gain.
On the other hand, the D-regulator has no influence on the
static equilibrium position, i.e. the passive hydrodynamic pres-
sure response does not depend on the value of the D-gain.

Therefore the curves in Fig. 13 intersect each other in a very well
defined point (around 140 Hz). In mathematical terms, D-control
only changes the right-hand side of Eq. (22) (since the rotor
motion is prescribed), where as P-control changes the system
matrix as well as the right-hand side. Fig. 13(d) shows the phase

Fig. 11. Phase of the bearing force component in the x1 direction relative to a unit rotor perturbation in the x1 direction as a function of the excitation frequency. Curves for

configuration (a) #1, (b) #2 and (c) #3 and different values of proportional gain.

Fig. 12. Magnitude of the bearing force component in the x1 direction in response to a unit rotor perturbation in the x1 direction as a function of the excitation frequency.

Curves for configuration (a) #1, (b) #2 and (c) #3 and different values of derivative gain.
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curve for a centre orifice configuration, and the maximum D-gain
of 5 V s/mm. It seems that a centre orifice configuration tends to
keep the phase between rotor displacement and rotor force, close
to p=4. That is, the large drop in phase that the multi-orifice
configurations experience after roughly 100 Hz is less pronounced
for the centre orifice configuration. Also, comparing Figs. 13(a)–(c)
to the corresponding curve for the passive bearing in Fig. 9(b) one
can conclude that for higher derivative gains, the phase of a
bearing of configuration #1, #2 or #3 will deviate substantially
from that of the passive bearing.

6.2.2. Results presented as dynamic coefficients

Data from the same computations as in Section 6.2.1 are here
presented as dynamic coefficients.

Fig. 14 shows bearing stiffness for a proportional regulator.
Figs. 14(a), (b) and (c) show results for configurations #1, #2
and #3, respectively. As concluded in Section 6.2.1, orifice
configuration has very little influence, for the P-regulated case.
As expected, the value of the P-gain has the biggest importance
for lower frequencies.

Fig. 15 shows bearing damping for a proportional regulator.
Figs. 15(a), (b) and (c) show results for configurations #1, #2 and
#3, respectively. Again, no significant influence from orifice
configuration is observed. The damping is observed to drop as
the P-gain is increased. This effect is most pronounced for lower
frequencies.

Fig. 16 shows bearing stiffness for a derivative regulator.
Figs. 16(a), (b) and (c) show results for configurations #1, #2 and
#3, respectively. The D-regulator has little influence for lower
frequencies. But for higher frequencies its influence increases
dramatically. As the servo-valve eigenfrequency of 320.16 Hz is
passed, the curves begin to converge, and the regulator looses
influence. It is observed that configuration #3 outperforms the
other configurations in terms of stiffness magnitude.

Fig. 17 shows bearing damping for a derivative regulator.
Figs. 17(a), (b) and (c) show results for configurations #1, #2 and
#3, respectively. The D-regulator dramatically affects the damp-
ing for lower frequencies. But as the frequency increases the
curves for different D-gain become hard to distinguish from each
other. Thus a derivative regulator can greatly influence damping
at lower frequencies.

6.2.3. Pad pivoting and deformation

Fig. 18 shows the responses of the pads at 1 Hz, for the case of a
D-gain of 5 V s/mm and four orifices on each pad. Snapshots are
taken at ot¼ 0, ot¼ p=2, ot¼ p and ot¼ 3p=2, i.e. four times in
a harmonic cycle. Because of the low frequency, the response is
dominated by tilting of the pads. Fig. 19 shows the responses of
the same system as Fig. 18, only the frequency is now 140 Hz.
There is still tilting motion, but the higher frequency means that
the response shows significant deformation of the pads. This is
apparent simply from looking at Fig. 19. The maximum deflection
is now 1.65, thus significantly higher than for the quasi-static
case. This is not surprising, since the higher frequency means that
the control system will react with a higher flow, producing high
pressure responses in the corners of the pads. This result clearly
confirms the assertion previously made in [15] that when
implementing control systems to tilting pad journal bearings,
pad compliance should be accounted for. At least this is true for
heavily loaded bearings, such as is the case here, where the
Sommerfeld number is 0.235.

6.2.4. Results in the time domain

A few combinations of parameters are selected for non-linear
time domain analysis. This type of analysis is computationally
heavy. Also, it is relatively time demanding to interpret the large
amounts of data that it produces. On the other hand, time domain
analysis handles non-linearities easily. Also, in a time domain
analysis, any system will eventually end in a stable limit cycle or

Fig. 13. Phase of the bearing force component in the x1 direction relative to a unit rotor perturbation in the x1 direction as a function of the excitation frequency. Curves for

configuration (a) #1, (b) #2 and (c) #3 and different values of derivative gain.
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static equilibrium, if these exist and the forcing is not too hard.
Bearing stability is not the focus of this study, but is relegated to
future research.

Eqs. (8) are solved in the time domain by explicit Newmark
time integration. Orifice configuration #2 is chosen for the
analysis. All the bearing, lubricant and servo-valve parameters
are as in the previous sections. The rotor mass is set to 2000 kg.

This would be representative of, e.g. a steam turbine. As before,
the static load is set to 20 000 N in the x1 direction. In addition, a
low static load of 2000 N in the x1 direction is investigated. In all
the time domain analyses the initial condition is that of a static
equilibrium with the rotor fixed in ðx1; x2Þ ¼ ð10mm;0Þ. At t=0 the
rotor is set free. In addition to the static load, the rotor is loaded
by a rotating asynchronous harmonic load with a magnitude of

Fig. 14. Bearing stiffness as a function of the excitation frequency for configuration (a) #1, (b) #2 and (c) #3. Different values of proportional gain.

Fig. 15. Bearing damping as a function of the excitation frequency for configuration (a) #1, (b) #2 and (c) #3. Different values of proportional gain.
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10 000 N. For the high static load case, the harmonic load
frequency is set to 200 Hz. For the low static load case, two cases
of harmonic load frequencies are investigated: 200 and 55.21 Hz,
respectively. The latter frequency is the first undamped natural
frequency of the passive system. Thus the total rotor load in the

high static load case is given as

fr1 ¼ 20 000 Nþ10 000 N cos 400pt

fr2 ¼ 20 000 Nþ10 000 N sin 400pt ð29Þ

Fig. 16. Bearing stiffness as a function of the excitation frequency for configuration (a) #1, (b) #2 and (c) #3. Different values of derivative gain.

Fig. 17. Bearing damping as a function of the excitation frequency for configuration (a) #1, (b) #2 and (c) #3. Different values of derivative gain.
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and in the low static load case as

fr1 ¼ 2000 Nþ10 000 N cos 400pt

fr2 ¼ 2000 Nþ10 000 N sin 400pt ð30Þ

or

fr1 ¼ 2000 Nþ10 000 N cos 110:42pt

fr2 ¼ 2000 Nþ10 000 N sin 110:42pt ð31Þ

Figs. 20(a)–(d) show orbits of the rotor centre for the high
static load case. In Fig. 20(a) the bearing is passive, in Fig. 20(b)
the bearing is purely P-controlled with a P-gain of 100 V/mm, in
Fig. 20(c) the bearing is purely D-controlled with a D-gain of 1 V s/
mm, and finally in Fig. 20(d) the bearing is PD-controlled with the
combination of the mentioned gains. Fig. 21 shows the limit
cycles of the rotor centre for all four cases. Generally, one cannot
simply superimpose the responses of controllers. However, here,
this is almost the case: The P-controller has little influence on the
radius of the limit cycle as compared to the passive case, however,
it moves the centre of the limit cycle closer to the origo. On the
other hand, the D-controller does not move the centre of the
limit cycle, as compared to the passive case, but it reduces the
radius. The PD-controller seems to be very close to the linear
superposition of the P- and D-controllers, i.e. it moves the centre
of the limit cycle closer to the origo, and reduces the radius.

Even with the fairly modest control gains, a significant increase in
the minimum film thickness is observed, since the extreme of the
rotor eccentricity is moved closer to the origo. The benefit is
shown in Fig. 21.

Figs. 22(a)–(d) show orbits of the rotor centre for the low static
load case, excited harmonically at 200 Hz. In Fig. 22(a) the bearing is
passive, in Fig. 22(b) the bearing is purely P-controlled with a P-gain
of 100 V/mm, in Fig. 22(c) the bearing is purely D-controlled with
a D-gain of 1 V s/mm, and finally in Fig. 22(d) the bearing is
PD-controlled with the combination of the mentioned gains. Fig. 23
shows the corresponding limit cycles. One can make the same
conclusions as for the high load case, except that the low static load
means that the P-controller has a relatively small effect.

Generally, stability related problems for tilting pad journal
bearings are most severe at low static loads. A theoretical
investigation of this requires an eigenvalue analysis, which will
not be performed here, rather it will be covered in future work.
However, a hint of the stability of a bearing can be obtained by
observing its transient behaviour, since this is governed by the
eigenvalues. Compare the orbit of the passive bearing under low
static load in Fig. 22(a) with the corresponding orbit for high static
load in Fig. 20(a). In the low static load case, the rotor cycles three
times before reaching the limit cycle; in the high static load case
this is reduced to one and a half. Let us compare the passive
bearing to the PD- and the D-controlled bearing. At high static
load, the controller has little positive effect on transient

Fig. 18. Pad linear harmonic response to a unit movement of the rotor in the x1 direction at 1 Hz. Snapshots at (a) 0, (b) p=2, (c) p and (d) 3p=2. Maximum deflection is 1.04.

Note that the motion is dominated by rigid body motion.
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Fig. 19. Pad linear harmonic response to a unit movement of the rotor in the x1 direction at 140 Hz. Snapshots at (a) 0, (b) p=2, (c) p and (d) 3p=2. Maximum deflection is

1.65. Note that the motion is heavily influenced by pad deformation.

Fig. 20. Rotor orbits for a counter clockwise rotating load of magnitude 10 000 N and frequency 200 Hz. The initial orientation of the rotating load is in the x1 direction. The

static load is high at 20 000 N and oriented in the x1 direction.
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behaviour. At low load, the number of transient cycles is reduced
from the three cycles of the passive bearing to roughly two cycles
for the D- and PD-controlled bearing.

At this frequency P-term has only little effect on the radius of
the limit. This can also be realised by comparing Fig. 10(b) to
Fig. 9(a): Clearly, at 200 Hz there is little difference between the
pure P-controlled bearing and the passive bearing.

Figs. 24(a)–(d) show orbits of the rotor centre for the low static
load case, excited harmonically at 55.21 Hz. In Fig. 24(a) the
bearing is passive, in Fig. 24(b) the bearing is purely P-controlled
with a P-gain of 100 V/mm, in Fig. 24(c) the bearing is purely
D-controlled with a D-gain of 1 V s/mm, and finally in Fig. 24(d)
the bearing is PD-controlled with the combination of the
mentioned gains. Fig. 25 shows the corresponding limit cycles.

Non-linear behaviour can be identified in the passive case in
Fig. 24(a), as the limit cycle is not perfectly circular. The passive
system is already highly damped, which limits its vibration
amplitude at resonance. In spite of this, a large reduction in vibra-
tion amplitude is achieved with application of the control system.
With the PD-controlled system, the amplitude is reduced to
roughly half of that of the passive system.

7. Conclusions

The static and stationary linear harmonic responses of tilting-
pad journal bearings have been investigated. Also transient and
post-transient non-linear time domain computations have been

Fig. 21. Rotor limit cycles for a counter clockwise rotating load of magnitude

10 000 N and frequency 200 Hz. The static load is high at 20 000 N and oriented in

the x1 direction.

Fig. 22. Rotor orbits for a counter clockwise rotating load of magnitude 10 000 N and frequency 200 Hz. The initial orientation of the rotating load is in the x1 direction. The

static load is low at 2000 N and oriented in the x1 direction.

Fig. 23. Rotor limit cycles for a counter clockwise rotating load of magnitude

10 000 N and frequency 200 Hz. The static load is low at 2000 N and oriented in the

x1 direction.

A.M. Haugaard, I.F. Santos / Tribology International 43 (2010) 1374–1391 1389



ARTICLE IN PRESS

performed. Different orifice configurations have been investigated
to explore potential differences in performance. It seems that a
four orifice configuration is more powerful in a proportional
regulated system, while a six orifice configuration is more
powerful in a derivative regulated system. Thus one cannot
advocate any orifice configuration over the other as long as the
orifices are placed far from the pivot line. It has been proven that
orifices placed far from the pivot line can increase the effective
static preload factor of a tilting-pad journal bearing. Since pad
compliance increases in importance for increasing frequency, this
result extends to the dynamic case. This is reflected by the fact
that any of the three orifice configurations tested in this study
outperforms a single orifice placed in the centre of the pad.
Clearly, the recommendation of this study is to place orifices far
from the pivot line, when designing tilting-pad journal bearings

under active elastohydrodynamic lubrication. This is where
greatest impact will be achieved.
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a b s t r a c t

The stability properties of actively lubricated tilting-pad journal bearings are investigated theoretically.

The bearing preload factor and control system gains are varied, and stable and unstable regions are

identified. It is seen, that the control system influences bearing stability, and that the nature and

magnitude of this influence depends on the rotor mass, preload factor and rotational speed.

Furthermore, it is shown that assuming the bearing pads to be rigid can produce a substantial error.

A rigid pad model will overpredict the stable range of the bearing, thus it may lead to failure if trusted.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

As is the general consensus, and stated by Nicholas in [1], Lund
pioneered the work with frequency domain analysis of tilting-pad
journal bearings with his seminal 1964 paper [2]. Nicholas [1]
goes on to state that ‘‘prior to 1964, tilting-pad journal bearing
studies consisted of static analyses which were limited to
determining load capacity and power loss. For many years, the
only analysis available was the one detailed by Boyd and
Raimondi [3,4]’’.

Previously, use of models involving many degrees of freedom,
to carry out harmonic steady-state and stability analyses of rotors,
was generally avoided due to two main reasons: firstly, because of
the number of parameters and degrees of freedom involved are
many and secondly, because the rotordynamic community was
and is used to perform vibration analyses of rotors supported by
fluid film bearings using the eight oil film stiffness and damping
coefficients, as in the pioneer works of Stodola [5] and Hagg and
Sankey [6]. These eight coefficients capture the steady-state
harmonic forced vibration response of the bearing. The oil film
coefficients are easily used as input data in rotordynamic
programmes.

In most steady-state and stability analysis of rotor-bearing
systems, reduced analytical models are used, as is mentioned by
Brockett and Barrett [7]. They proceed to introduce an ‘‘exact’’
approach to reduce the pad dynamical model. What is meant by
exact is simply that no assumption is made with regard to the pad
motion in time, since the equations are written in the frequency

domain through a Laplace transform. Thus their model can be
used for stability analysis, if desired. For stability analysis, they
truncate the solution to low powers of the Laplace variable. This is
applicable to situations where the potentially unstable modes are
those of low frequency, since this places the Laplace variable close
to origo of the complex plane. This is most often the case with
tilting pad journal bearings, if not always.

Often, in order to simplify the steady-state and stability analysis,
both shaft and pads are restricted to synchronous motion with the
same frequency of vibration around their static equilibrium
positions. This reduces the number of degrees of freedom to eight
synchronous oil film coefficients [8–11], similar to the other cases of
fluid film bearings (without moving parts). Usually, these
coefficients are thought of as equivalent stiffness and damping
coefficients, calculated as functions of pad mass and excitation
frequency. Nevertheless, these coefficients have no direct physical
significance [12] when compared to mechanical springs and
dampers and should not be used to perform stability analysis. In
fact, the frequency of free vibration of the system, which needs to be
determined by the complex eigenvalues computed from the
differential equations of the system, is not equal to the forced
frequency of vibration. Thus, by employing synchronous reduced oil
film coefficients engineers cannot effectively predict the stability of
tilting-pad bearing systems [13–15]. Employing synchronous re-
duced oil film coefficients allows engineers to properly predict the
amplitude of the steady-state responses only. For example, pad
fluttering [16,17] is a typical phenomenon which cannot be
accurately predicted using synchronous coefficients. The vibration
frequency of the unloaded fluttering-pad is normally different from
the rotor angular velocity.

Tilting-pad journal bearings are much more stable than other
types of fluid film bearings, which is one of the main reasons why
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they are nowadays one of the most used journal bearing types for
high speed applications. Although tilting-pad journal bearings are
considered stable, instabilities may occur depending on the
operational conditions, i.e. for a low pre-load factor or low static
loading. Also, external influences, coming from e.g. a compressor
or a turbine, may cause instability. Tilting pad journal bearing
stability is thoroughly investigated, theoretically as well as
experimentally, by different authors [18–23]. The main original
contribution of the present paper is of theoretical nature. It
descends from the work done previously by a number of authors:
(i) in [2] a conventional rigid-pad hydrodynamic (HD) bearing
was studied, (ii) in [24–26] bearing pad compliance was included,
thus making the analysis elastohydrodynamic (EHD), (iii) in [27]
thermal effects were accounted for, pushing the state of the
art to thermoelastohydrodynamic (TEHD) analysis, (iiii) in [28,29]
thermal effects were neglected but active hybrid lubrication was
introduced to influence the behaviour of the bearing. There, the
analysis focused on the forced harmonic steady-state response of
the bearing. The present investigation focuses on bearing stability,
and uses a model similar to the one in [29]. The influence of active
hybrid lubrication on bearing stability is studied. Furthermore,
the importance of including pad compliance is highlighted by
direct comparison to results for an active hybrid bearing with
rigid-body pads.

A journal bearing with four elastic tiling-pads is modelled using a
finite element approach, somewhat similar to the approach
presented by Earles [24,25] and closely resembling that of [26].
Two servo-valves are used to control the radial oil injection through
orifices machined on the pad surfaces. The servo-valve dynamics are
governed by second order differential equations, in an approach
similar to that of Santos and Russo [30]. The system of equations
describing the fluid flow in the bearing gap and orifices is coupled
to the deformable tilting-pads, then linearised and written in
the state-space form to facilitate the calculation of the system
eigenvalues, which are necessary for stability analysis. It is
important to stress that no assumption of synchronous movements
between rotor and pads are made. Insights into tilting-pad journal
bearing stability with focus on controllable lubrication are reported.
Advantages and drawbacks related to the use of active lubrication in
terms of bearing stability are thoroughly addressed.

2. Governing equations

Index notation will appear in certain places. To avoid
confusion, while retaining a consistent nomenclature, summation
of repeated indices is not employed, thus all summations are
stated explicitly. Underlined indices are part of variable names
and indices without underline are used for numbering, e.g. qvi

is the valve flow of servo-valve number i. A nomenclature is
provided in Tables 1–3.

Fig. 1 illustrates the different coordinate frames and domains
used to describe the elastic behaviour of the pads, and the journal
pressure distribution among the rotor and the pads. The
curvilinear coordinates ðw1,w2Þ are used for the fluid film and
the Cartesian coordinates (x1,x2,x3) are used for the pads.

The solid is taken to be linearly elastic and isotropic. Small
strains and rotations suffice for the description of the deformed
state. The governing equation is traditionally given directly in
integral form as the principle of virtual work

X3

i,j,k,l ¼ 1

Z
P

Lijklekldeij dP¼
X3

i ¼ 1

Z
P
r €uidui dPþ

X3

i ¼ 1

Z
L

Tidui dL ð1Þ

where ekl is the strain tensor, r is the density of the solid, Ti

denotes the surface traction, ui is the displacement vector d

denotes an increment and Lijkl is the constitutive tensor for the
material. The solid is considered isotropic, homogenous and
linearly elastic, thus the constitutive tensor is given by

Lijkl ¼
E

2ð1þnÞ dikdjlþdildjkþ
2n

1�2n dijdkl

� �
ð2Þ

Table 1
Nomenclature—upper-case Latin letters.

A Pressure system matrix

Ca Assembled clearance

D Generalised damping matrix

Dq�q Flow damping matrix

E Young’s modulus

GP Proportional gain

GD Derivative gain

K Generalised stiffness matrix

Kpq Flow-pressure constant

Kq�q Flow stiffness matrix

Ks Solid stiffness matrix

Kv Valve static amplification

Lijkl Solid constitutive tensor

M Generalised mass matrix

Mq�q Flow mass matrix

Mr Rotor mass matrix

Ms Solid mass matrix

U Tangential rotor speed

Vs Matrix of solid modes of vibration

V Reduction matrix

Table 2
Nomenclature—lower-case Latin letters.

b Modal coordinate vector

dg Generalised displacement vector

f Nodal force vector

fg Generalised force vector

fr Rotor force vector

gi Orifice flow shape function

h Fluid film thickness

l0 Orifice inlet length

p Fluid pressure

p Generalised pressure vector

pinj i Injection pressure

qL Leak flow

qv Valve flow

r Pressure right hand side

t Time

ui Displacement

uv Valve input signal

xi Inertial coordinates

Table 3
Nomenclature—Greek letters.

G Fluid boundary

L Solid boundary

Ls Diagonal matrix of eigenvalues

P Solid domain

F Fluid domain

O Fundamental frequency

eij Strain tensor

n Poisson’s ratio

xv Valve damping ratio

r Solid density

wi Curvilinear coordinates

ov Valve eigenfrequency
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where E is Young’s modulus, n is Poisson’s ratio and dij is
Kronecker’s delta. From equations Eqs. (1) and (2) the stiffness
and mass matrices of the solid can be derived, refer to [28,29].

The pressure field in the fluid is described by the modified
Reynolds equation

1

12

X2

i ¼ 1

@

@wi

h3

m
@p

@wi

� �
¼

U

2

@h

@w2

þ _hþ
X

i
giðp�

pinjiÞ

4ml0i
ð3Þ

where p is the pressure, h is the oil film thickness, U is the relative
tangential speed of the rotor, gi is a shape function describing
a laminar flow profile in orifice i, pinj i is the injection pressure
in orifice i, l0i is the length of the orifice inlet tube i and m is
the dynamic viscosity of the lubricant. The w2 coordinate is aligned
with the direction of rotation.

We introduce the fundamental frequency of the system as

O¼U=Rr ð4Þ

where Rr is the radius of the rotor.
The flow in servo-valve i is described by the second order

ordinary differential equation

€qviþ2xviovi _qviþovi2qv i
¼ov i2Kv uv i

ð5Þ

where ov i is the servo-valve eigenfrequency, Kv i is the valve flow
voltage coefficient, xvi is the valve damping ratio and qvi is the
valve flow—all of valve i.

The injection orifice arrays (pads) are connected by
servo-valves as pairs. Thus the flows in a pad pair are coupled.
We define the positive direction of orifice flow as going from the
valve and into the gap. The linearised 2�2 system of equations
for a servo-valve connecting, e.g. pad i and j is

qi

qj

( )
¼

�Kpq Kpq

Kpq �Kpq

" #
pinji

pinjj

( )
þ

qv

�qv

( )
þ

qL

qL

( )
ð6Þ

where Kpq is the valve flow-pressure coefficient, qL is the valve
leak flow, qi is the flow to pad i and pinj i is the injection pressure at
pad i. Here we have selected a positive direction of flow for the
servo-valve. The pad associated with positive valve flow, in this
case pad i, is denoted the master pad. The pad associated with
negative valve flow, in this case pad j is denoted the slave pad.

The flow through a given orifice can be written in terms of the
pressure difference field over the orifice as

qi ¼

Z
F

gi
1

4ml0
ðpinj i�pðw1,w2ÞÞdF ð7Þ

Now, with application of the constitutive pressure-flow relation in
Eq. (7), we can eliminate qi ¼ [q1 q2]T from Eq. (6). So, given qv

and the fluid film thickness field h, we can solve for the injection
pressures and the nodal pressures. That is, we have now coupled
the flow to the pressure field. To couple the displacement field
to the flow and the pressure field we invoke two conditions.
Firstly, the field of fluid film thickness h is a function of the
displacement field ui and the rotor position. Secondly the field of
traction on the surface of the pads Ti is a function of the fluid film
pressure field p. With these conditions, we can write the complete
set of equations compactly in discrete form as

Ms
€dþKs d¼ fðpÞ

Mr
€dr ¼ fr ðpÞ

Aðd, _d,dr , _dr Þp¼ rðd, _d,dr , _dr ,qÞ

Mq�q €qvþDq�q _qvþKq�q qv ¼ uv ðdr , _dr , . . .Þ ð8Þ

where Ms and Mr are the solid mass matrix and rotor mass
matrix, respectively, Ks is the solid stiffness matrix and A is the
system matrix for the pressure problem, derived from
the modified Reynolds equation. For discretisation in 3-D space,
we employ 20-node 3-D serendipity elements. For discretisation
in 2-D curvilinear space, we employ 8-node 2-D serendipity
elements. Note that the generalised pressure vector p contains the
nodal values of the pressure field, as well as the pad injection
pressures pinji. The nodal force vector f(p) depends linearly on the
fluid film pressure p. This also applies to the rotor force vector
f(r). The servo-valve signal vector uv can be any functional of any
measurable quantity. In the present investigation we shall let it be
a functional of lateral rotor velocity and displacement, i.e. we will
implement a PD-regulator.

The bearing has four pads. The bearing pads are numbered
consecutively in the counter clockwise direction from the x1 axis.
Thus we have pad #1 (x140 and x240), pad #2 (x1o0 and
x240), pad #3 (x1o0 and x2o0) and pad #4 (x140 and x2o0).
Fig. 2 shows a schematic of the bearing with indication of pad
numbering.

The way we implement the regulator is to connect the pads in
pairs with servo-valves. Pad #1 is connected to pad #3 with
a servo-valve. Also, pad #4 is connected to pad #2 with a servo-
valve. Pads #1 and #4 are chosen as master pads, with pads #3

Fig. 1. Overview of the different domains, the fluid film curvilinear coordinate

system ðw1 ,w2Þ and the Cartesian coordinate system (x1,x2,x3). The subdomain

where gi a0 is that of a orifice. The solid domain is denoted by P and its boundary

by L. Note that all external surfaces are part of the solid boundary. The fluid

domain is denoted by F and its boundary by G.

Fig. 2. Schematic of bearing and pad numbering. The figure shows four pads

supporting a rotor and indicates the radius of curvature of the rotor Rr , the radius

of curvature of the pads Rp , and the assembled clearance Ca . The assembled

clearance Ca is measured as the minimum gap between rotor and pad, when the

pads are undeformed. Since the gap is small compared to the radii of curvature, it

can be defined as perpendicular to either the rotor or the pad. The difference is

negligible. The pivoting motion of the pads is indicated. A detailed description of

pad boundary conditions is given in [28].

A.M. Haugaard, I.F. Santos / Tribology International 43 (2010) 1742–17501744



ARTICLE IN PRESS

and #2 as their respective slave counterparts. Both servo-valves
respond to rotor movement in the x1 direction and x2 direction.
The software written for the bearing analysis takes a vector as
input, so as to define what direction of rotor movement, that each
servo-valve shall respond to. This vector is normalised inside the
programme. Here, we set the first valve to respond to (1, 1) and
the second valve to respond to (1, �1). Thus, after normalisation,
the two servo-valve signals are computed as

uv1 ¼ GD ð
_dr1þ

_dr2Þ=
ffiffiffi
2
p
þGP ðdr1þdr2Þ=

ffiffiffi
2
p

ð9Þ

uv2 ¼ GD ð
_dr1�

_dr2Þ=
ffiffiffi
2
p
þGP ðdr1�dr2Þ=

ffiffiffi
2
p

ð10Þ

where GD is the derivative gain and GP is the proportional gain.
This makes for an active bearing which still almost decouples
the x1 and x2 coordinate directions, just as a passive tilting-pad
journal bearing. An explanation of why this is the case is
given in [29].

The rotor is assumed to move laterally only, i.e. the axis of
symmetry is assumed to align with x3 at all times, also its centre
of mass is assumed to coincide with its axis of rotation at all
times. The rotor is assigned a mass, but no stiffness. This means
that the only static support of the rotor is that of the bearing.
Now, after elimination of the pressures p, the linear part of the
Eqs. (8) at the state dg ¼ dg0 can be written as

MD €dgþDðdg0 ÞD _dgþKðdg0 ÞDdg ¼Dfg ð11Þ

where dg and fg are the vectors of generalised displacements and
forces, respectively. The vector dg contains all nodal displace-
ments of the solid (d), as well as the lateral displacement of the
rotor ðdr Þ and the flow in each servo-valve ðqv Þ. The vector fg

contains the corresponding forces, and the servo-valve signal.
As such

dg ¼

d

dr

qv

8>>>><
>>>>:

9>>>>=
>>>>;

, fg ¼

f

fr

uv

8>>>><
>>>>:

9>>>>=
>>>>;

ð12Þ

The vector of nodal displacements will typically contain
thousands of degrees of freedom, and so contributes with the
bulk of the computational workload. The vector of lateral rotor
displacements contains only the two components of lateral rotor
movement, i.e. dr ¼ ½dr1 dr2�

T . Finally, the vector of flows contains
as many components as there are servo-valves. In the present
investigation, this means two. The derivation of the governing
equations is explained in more detail in [28,29].

2.1. Pseudo modal reduction

If the force from perturbing a node comes mainly from the
solid, then the mode shapes of the solid only system will be very
similar to those of the combined fluid–solid system. In other
words: Given the assumption that the deformation forces from
the solid are larger than those from the fluid, the system of
equations Eq. (11) can be condensed spectrally as

VT MVD €bþVT Dðb0 ÞVD _bþVT Kðb0 ÞVDb¼ VT fg ð13Þ

where

V¼
Vs

h i
0
� �

0
� �

I
� �

2
4

3
5 ð14Þ

That is, dg is approximated as

dg ¼ Vb ð15Þ

The matrix Vs contains in its columns some of the eigenmodes of
vibration of the solid, thus it satisfies

Ks Vs ¼Ms VsLs ð16Þ

where Ls contains the squares of the corresponding solid
eigenfrequencies in its diagonal and zeros elsewhere. The identity
matrix in the lower right corner of Eq. (14) transfers the rotor and
servo-valve degrees of freedom untransformed. I.e. the purpose of
V is to reduce the workload associated with the large number of
degrees of freedom in the pads. The rotor and valves cannot and
will not be reduced any further. In the present investigation, two
modes of vibration have been considered for each pad. The system
has four pads, one rotor and two servo-valves. Thus the size of the
reduced system Eq. (13) is 12�12, which is manageable by any
modern computer. Fig. 3 shows the two modes considered for
each pad. These figures also give an impression of the mesh
refinement used in the analyses, as the meshes shown are used
throughout the investigation. As mentioned, the elements are
20-node serendipity elements, see e.g. [31]. Since we include only
two mode shapes, the mesh is more than adequate in terms of
refinement.

3. Analyses

The influence of derivative and proportional feedback control
will be investigated by a parameter study. Four key parameters
will be varied: (i) The proportional gain GP , (ii) the derivative gain
GD , (iii) the preload factor mp and (iiii) the rotational speed U. The
preload factor is well known in the tribology community, and is
an important bearing parameter. It is defined as

mp ¼ 1�
Ca

Rp�Rr
ð17Þ

where Ca is the assembled clearance of the bearing, Rr is the
radius of curvature of the rotor and Rp is the radius of curvature of
the pads. Refer to Fig. 2 for a schematic showing these measures.
For given bearing and rotor dimensions, increasing the preload
corresponds to pushing the pads closer to the rotor. Preload
factors typically range from 0.1 to 0.7.

Now, omitting the argument ðb0 Þ let us rewrite Eq. (13)
compactly as

MmD €bþDmD _bþKmDb¼ VT fg ð18Þ

Fig. 3. Eigenmodes of the solid part of the system. (a) The first mode, which is a

rigid body mode. (b) The second, bending, mode. Given that E¼100 GPa, the

eigenfrequencies for the modes are 0 and 7.29 kHz, respectively.
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where the definitions of the new pseudo modal system matrices
follow directly from comparing to Eq. (13). The transient part of
the solution for Db is defined by

MmD €bþDrD _bþKmDb¼ 0 ð19Þ

which has the solution

_b

b

( )
¼ velt ð20Þ

where v and l are the eigenvectors and eigenvalues of the
generalised eigenvalue problem

0 Km

Mm 0

" #
v¼ l

�Mm �Dm

0 Mm

" #
v ð21Þ

The stability of a given equilibrium of the system is examined by
solving Eq. (21) for the eigenvalues. For realistic system
parameters, there are typically two static equilibria of the system
of Eqs. (13) (and (8)), but only one which is physically meaningful.
Thus only one that should be checked for stability. In Fig. 4 is
seen the pressure profile for the physically meaningful static
equilibrium of a bearing with a preload factor of 0.5 and a
rotational speed of 6000 rpm. The corresponding displacements
are shown in Fig. 5. Primarily, note two things. (i) Firstly, the pads
tilt in the same direction as the rotor rotation. This creates the
well known wedge effect [32]. (ii) Secondly, the pressure on the
entire surface of the pads is positive. The physically meaningless
equilibrium is characterised by pads that tilt in the opposite
direction of the rotor rotation, resulting in negative pressures.

Here we are outside the domain of validity of our mathematical
model. Any negative pressure is an artefact of the Reynolds
equation, which assumes an incompressible fluid; it has nothing
to do with physics. The model could be generalised by accounting
for fluid cavitation in the lubricant, and contact between rotor and
pads. In the present investigation, however, we shall focus on the
local behaviour around the nominal operating condition. Here,
neither cavitation nor contact occurs. Returning our attention to
Fig. 4 we note the area around the orifices where the pressure is
all but constant in space [30]. Furthermore, a very close look at
Fig. 5 reveals a slight deformation of the pads. But, generally, the
static equilibrium of the pads is dominated by tilting.

To examine the stability, we evaluate (18) at the physically
meaningful static equilibrium b0 . Then we write the correspond-
ing eigenvalue problem (21) and evaluate the sign of the real parts
of the eigenvalues. If any real part is greater than zero, the
nominal operating state is unstable. For simplicity, we shall use
the term ‘‘bearing stability’’ as synonymous to the stability of the
physically meaningful static equilibrium.

4. Results

Let us examine the stability of the bearing for different
combinations of relevant parameters. As mentioned, this inves-
tigation focuses on the bearing. Thus the description of the rotor is
as simple as possible. However, what tilting-pad journal bearings
often have to ‘‘fight’’ is the destabilisation coming from other
system components. A good example is aerodynamic instability in
a steam turbine. Instead of complicating our model even further,
we push the bearing to its limits by means of adjusting the
preload factor. It is well known that a high preload factor will
make the bearing stable [33]. There are some negative effects
associated with a high preload factor, mainly increased frictional
loss and wear. However, our motivation for varying the preload
factor in this study, is merely to investigate the influence of the
controller on the stability of the bearing. Since the preload factor
is important for the stability of the bearing, it seems prudent to
tune control system gains at different preload factors, before
jumping to any conclusions with regard to the controller. Bearing
and valve data is given in Tables 4 and 5. The rotational speed of
the rotor is 6000 rpm, corresponding to a surface relative velocity
of U¼31.4 m/s for the given rotor diameter. Rotational speeds of
this order of magnitude are common in industrial applications.
Assuming a gap of 100mm and a lubricant density of 900 kg/m3

the Reynolds number is approximately 150. Thus there is no need
to account for the inertial forces from the lubricant. The static
radial load of the rotor is nil. Thus the rotor remains in the centre
of the bearing, i.e. at zero eccentricity. We choose a configuration
with four orifices on each pad—one in each corner.

Fig. 6 shows the real parts of the system eigenvalues as a
function of the derivative gain of the controller. The proportional
gain is nil. Rotor mass is 200 kg. In Fig. 6(a) the preload factor is
0.01 and in Fig. 6(b) is 0.5. Note the effect of the increase of the
preload factor from 0.01 to 0.05. The large negative eigenvalues
drop to even larger negative numbers. The fastest modes of a

Fig. 4. The pressure field over the pads at static equilibrium for 6000 rpm and nil

radial rotor load. Maximum pressure is 4.33 MPa. Post processing was done with

Gmsh [34].

Fig. 5. Displacement field of the pads at static equilibrium for 6000 rpm and nil

radial rotor load. Displacement is dominated by rigid body tilting, but also note the

slight deformation of the pads. Maximum displacement is 28:9mm.

Table 4
Servo-valve constants.

Property Unit Value(s)

Valve flow-pressure coefficient m3/(s Pa) 1.13 �10�12

Valve flow-voltage coefficient m3/(s V) 33.4 �10�6

Valve damping ratio – 0.48

Valve eigenfrequency Hz 320.16

Valve leak flow m3/s 6 �10�6
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tilting pad journal bearing are the ones related to pure pad
motion. So the increase in preload factor has the principal effect of
damping pad motion. From studying Fig. 6 it seems that the real
parts of the system eigenvalues are independent of the derivative
gain, but this is not true. Consider Fig. 7. It is a zoom of Fig. 6, and
shows the real parts of eigenvalues that are close to zero, and thus
are possibly relevant for stability. These eigenvalues are related to
the slower modes of the system—these typically involve rotor
motion as well as motion of the pads. It is clearly seen that the
controller has a significant impact on these eigenvalues as they

vary a great deal with derivative gain. In Figs. 7(a) and (b) the
preload is 0.01 and 0.5, respectively. A bifurcation at a derivative
gain of roughly �0.7 Vs/mm is identified in Fig. 7(b), indicating
the merging of two overdamped modes into one underdamped
mode when increasing the derivative gain. However, the bearing
is not stable in this region, so these modes will likely not be
identified in an experiment. The preload of 0.01 only offers a small
stable region in the range of positive but small derivative gains.
Increasing the preload to 0.5 allows for a much wider range of
gains to be chosen, before the bearing becomes unstable.

Fig. 8 shows the stable domain of the bearing with a ‘‘light’’
rotor, weighing 200 kg, that is, the diagonal entries of Mr are
200 kg, all others being nil. The proportional gain is nil. The
marginally stable boundary is drawn as a black line. As expected,
very low preload factors tend to destabilise the bearing. However,
increasing the derivative gain to roughly 0.9 V s/mm will almost
eliminate instability. Clearly, negative derivative gains will
destabilise the bearing. It is somewhat surprising that if the
derivative gain is too large, the bearing will become unstable too.
This is particularly true for low preload factors. This result is
of high importance, when designing and calibrating an active
bearing: When tuning a bearing for minimum stationary response
at a given driving frequency, it may be desirable to choose a high
derivative gain. Thus, it is important to beware of too high
derivative gains, as they may lead to bearing instability and

Fig. 6. Eigenvalues of the system at the static equilibrium normalised with respect

to the rotational frequency. The preload factor is (a) 0.01 and (b) 0.5.

Fig. 7. Zoom of Fig. 6. Again the preload factor is (a) 0.01 and (b) 0.5.

Table 5
Bearing data.

Property Unit Value(s)

Pad radius of curvature mm 50

Rotor radius mm 49.9

Rotor mass kg 200.0 or 2000.0

Static radial load N 0.0

Pad extension 1 69.3

Angular pivot locations 1 45, 135, 225 and 315 (at pad centres)

Radial pivot location mm 64

Pad length mm 100

Nominal pad thickness mm 14

Pad Young’s modulus GPa 100.0

Pad Poisson’s ratio – 0.3

Pad density kg/m3 8400

Lubricant dynamic viscosity N s/m2 0.019
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potentially to catastrophic failure. With knowledge of the stable
operating region of the bearing, the bearing designer can tune it to
optimum harmonic forced steady state behaviour, while making
sure that the stability threshold is not crossed.

Fig. 9 shows the stable domain of the bearing with a ‘‘heavy’’
rotor, weighing 2000 kg, that is, the diagonal entries of Mr are
2000 kg, all others being nil. The proportional gain is nil. As before,
the marginally stable boundary is drawn as a black line. Compare
to the light rotor in Fig. 8. For the passive bearing with GD ¼ 0 the
onset of instability occurs somewhat before in the heavy rotor
case, i.e. at a higher preload factor. So a heavy rotor will make the
bearing less tolerant of very low preload factors. On the other
hand, the rotor mass seems to have only very little influence on
the onset of instability for negative derivative gains, as the left
hand boundaries of the stable domains in Figs. 8 and 9 are very
similar. Consider the right hand side of the stable domain in Fig. 9.
A low preload factor demands a high derivative gain for the
bearing to remain stable. This result is the converse of what is
seen for the light rotor. Thus, controllers for active tilting-pad
journal bearings must be tuned to the weight of the specific piece
of rotating machinery that they support.

To illustrate the importance of including pad compliance in the
model, an analysis is performed, where only the first mode shape
of each pad is included in the pseudo modal reduction. The first
mode shape is the rigid body tilting motion of the pads. The
resulting stable domain is depicted in Fig. 10. The boundary of
the stable domain for the flexible pad case is shown as a broken
line for comparison. The rotor is light, weighing 200 kg, and the
proportional gain is nil. For low D-gains, where passive effects are
important, the results are quite similar; the bearing is stable until
very low values of the preload factor. Though, when the D-gain is
increased, profound differences begin to appear. The rigid body
model predicts a stable bearing for even the highest of D-gains, as
long as the preload factor is large. This is in contrast to what
is identified for the compliant two-mode model. Thus the error is
significant.

Consider the gain plane. It is the plane, which contains all
combinations of P and D gains. Let us define a sub domain inside
this plane called the ‘‘stable domain’’. This is the domain in which
the combinations of P and D gains make the rotor-bearing system
stable. The boundary of the stable domain is the curve of marginal
stability, where the maximum real part of any eigenvalue is nil.
Generally, for all practical purposes, there is only one stable
domain inside the gain plane. This holds for reasonable
parameters and operating conditions, as shall be demonstrated
in the following. This is significant, since it means that all
combinations of gains, leading to a stable rotor-bearing system,
can be mapped by trial and error from a stable starting point,
without the need of crossing an unstable region in the gain plane.
This kind of information would be useful during experiments.

Figs. 11(a)–(d) show stable domains in the gain-plane. In
addition to the curve of marginal stability, there are curves where
the maximum real part of any eigenvalue is equal to 0.1 and
�0:1O. The distance between the curve of marginal stability, and
these curves, gives an impression of the bearings sensitivity to
changes in the gains. The closer the curves are, the more
significant is the influence of changes in gains on the rotor-
bearing stability. The point where the gains are both zero is
marked by a cross. This point indicates the passive hybrid
bearing—or open loop controlled bearing. Fig. 11(a) shows the
stable domain for a rotational speed of 6000 rpm and a preload
factor of 0.25, Fig. 11(b) shows the stable domain for a rotational

Fig. 8. Stability diagram of the bearing at the static equilibrium for a light rotor.

Rotor mass is 200 kg. The bearing is stable in the shaded region and unstable

outside of it. The boundary of the region is where the maximum real part of any

eigenvalue is nil.

Fig. 9. Stability diagram of the bearing at the static equilibrium for a heavy rotor.

Rotor mass is 2000 kg. The bearing is stable in the shaded region and unstable

outside of it. The boundary of the region is where the maximum real part of any

eigenvalue is nil.

Fig. 10. Stability diagram of the bearing at the static equilibrium for a light rotor.

Here, the pads are assumed rigid. Rotor mass is 200 kg. The bearing is stable in the

shaded region and unstable outside of it. The boundary of the region is where the

maximum real part of any eigenvalue is nil. The boundary of the stable domain for

the flexible pad case is shown as a broken line for comparison.

A.M. Haugaard, I.F. Santos / Tribology International 43 (2010) 1742–17501748



ARTICLE IN PRESS

speed of 6000 rpm and a preload factor of 0.05, Fig. 11(c) shows
the stable domain for a rotational speed of 12000 rpm and a
preload factor of 0.25 and Fig. 11(d) shows the stable domain for a
rotational speed of 12000 rpm and a preload factor of 0.05. In all
cases the rotor mass is 200 kg.

Compare Figs. 11(a) and (b). The comparison illustrates the
effect of reducing the preload factor at a rotational speed of
6000 rpm. The low preload factor makes the bearing less
tolerant of negative gains, as the south-west boundary of stability
lies quite close to the origin. This is due to the loss of passive
hydrodynamic effects associated with a preload reduction. As the
gains are increased, the effect of reduced preload on the boundary
of the stable domain becomes less pronounced. This is because
active hydrostatic effects tend to dominate for high gains. The
same observations apply to comparison between Figs. 11(c) and
(d). So, with respect to this particular investigation, the effect
reducing the preload is largely independent of rotational speed.

The general conclusion from Figs. 11(a)–(d) is that the lower
bound of the proportional gain is largely independent of the
derivative gain, since the left hand boundary of the stable domain
is close to a vertical line in all cases. Also, it seems to be
independent of the preload factor. However, the upper bound of
the proportional gain depends on the derivative gain, the
rotational speed and the preload factor. If the rotational speed is
high, the dependence on the preload factor decreases. Both the
lower and upper bound of the derivative gain depend on
the proportional gain, the rotational speed and the preload factor.
Again, if the rotational speed is high, the dependence on the
preload factor decreases.

5. Conclusions

The stability of active hybrid tilting-pad journal bearings has
been investigated. Active hybrid lubrication can act to widen the
range of preload factors within which the bearing is stable, but

can also narrow it. In all cases, negative derivative gains tend to
destabilise the bearing. Large positive derivative gains will
likewise destabilise the bearing, but the threshold gain and the
shape of the marginally stable boundary depends on the rotor
mass. Also, it is seen that pad compliance plays a role, as rigid
body models will tend to overestimate the stable region of the
bearing. Thus, when tuning active hybrid tilting pad journal
bearings, rotor mass and pad compliance should be taken into
account. The lower bound of the proportional gain is seen to be
largely independent of the value of derivative gain. However, all
other bounds of the stable domain depend on both the derivative
and proportional gain, hence curve in the PD-plane.
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[26] Desbordes H, Fillon M, Frêne J, Chan C. The effects of three-dimensional pad
deformations on tilting-pad journal bearings under dynamic loading. ASME
Journal of Tribology 1995;117:384–9.

[27] Monmousseau P, Fillon M. Frequency effects on the TEHD behavior of a
tilting-pad journal bearing under dynamic loading. ASME Journal of Tribology
1999;121(2):321–6.

[28] Haugaard AM, Santos IF. Elastohydrodynamics applied to active tilting-pad
journal bearings. ASME Journal of Tribology, 2010;132(2), in press.

[29] Haugaard AM, Santos IF. Multi orifice active tilting-pad journal bearing-
s—harnessing of synergetic coupling effects. Tribology International, in print.

[30] Santos IF, Russo FH. Tilting-pad journal bearings with electronic radial oil
injection. ASME Journal of Tribology 1998;120:583–94.

[31] Cook R, Malkus D, Plesha M, Witt R. Concepts and applications of finite
element analysis. New York, USA: J. Wiley & Sons.; 2001.

[32] Hamrock BJ. Fundamentals of fluid film lubrication. New York, USA:
McGraw-Hill Higher Education; 1994.

[33] Glienicke J. Sem-Nr.111107, Stabilitätsprobleme bei Lagerung Schnelllaufen-
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