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Seizure Onset Detection based on a Uni- or Multi-modal Intelligent

Seizure Acquisition (UISA/MISA) System

Isa Conradsen†∗, Sándor Beniczky∗, Peter Wolf∗, Jonas Henriksen†, Thomas Sams† and Helge B.D. Sorensen†

Abstract— An automatic Uni- or Multi-modal Inteligent
Seizure Acquisition (UISA/MISA) system is highly applicable
for onset detection of epileptic seizures based on motion data.
The modalities used are surface electromyography (sEMG),
acceleration (ACC) and angular velocity (ANG). The new
proposed automatic algorithm on motion data is extracting
features as “log-sum” measures of discrete wavelet components.
Classification into the two groups “seizure” versus “non-
seizure” is made based on the support vector machine (SVM)
algorithm.

The algorithm performs with a sensitivity of 91-100%, a
median latency of 1 second and a specificity of 100% on
multi-modal data from five healthy subjects simulating seizures.
The uni-modal algorithm based on sEMG data from the
subjects and patients performs satisfactorily in some cases.
As expected, our results clearly show superiority of the multi-
modal approach, as compared with the uni-modal one.

I. INTRODUCTION

More than 50 million people around the world suffer from

epilepsy and about 25% of them cannot become seizure

free. Patients dreading the next seizure onset has potential to

become socialy isolated. Severe and sometimes fatal injuries

can occur during seizures. An alarm system, capable of

detecting seizures, could alert relatives and caretakers and en-

sure help for the patient. Several groups [1], [2] have already

tried to develop such a system based on motion data, but

none of them is performing well enough to reach clinical use.

We therefore propose a new automatic detection algorithm

capable of capturing the seizures with motor manifestations,

without too many false alarms. It was decided in our previous

study [3] to work further with movement sensors and surface

electromyography (sEMG) registrations, as these provided

promising results. Our new approach on these multi-modal

motion data encompasses feature extraction with a discrete

wavelet decomposition and an automatic classification with

support vector machines (SVM). The MISA method includ-

ing motion and sEMG data, was tested on 5 healthy subjects

simulating seizures. However, due to impediments with the

recruitment of patients, at present time it was only possible

to test a uni-modal method on sEMG data alone, from 5

patients suffering from epilepsy.
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II. METHODOLOGY

A. Data Collection

Data were recorded at the Danish Epilepsy Center in

Dianalund, Denmark. The 5 healthy subjects were measured

with 16 movement sensors, containing 3D accelerometers,

3D gyroscopes and 3D magnetometers, and 14 bipolar sEMG

channels for 2-4 hours using our setup described in [3].

Each subject simulated 15 seizures in total, divided in the

three types, myoclonic, tonic-clonic and versive. These are

defined by epileptologists and described in details in [3]. The

healthy volunteers carefully watched a video-recording with

the movement pattern they had to imitate. An epileptologist

explained them the typical aspects of the seizures, and the

participants practised the movements before the recording.

It was difficult to find patients with enough seizures with

motor manifestations who could cooperate to wear all the

equipment, so for this study the patients have only been

measured with 4 sEMG channels with a sampling frequency

of 1024Hz. The sEMG electrodes were placed on deltoid and

tibialis anterior muscles on both sides of the body (active

electrode on the muscle bulk, reference electrode on the

tendon adjacent to it). The number and type of seizures along

with the sex and age of the patients are listed in Table I.

Furthermore the length of the signals for the testing phase

of the classification is listed.

TABLE I

THE PATIENTS GENDER, AGE AND THE AMOUNT AND TYPE OF SEIZURES

ALONG WITH THE LENGTH OF THE TEST FILE.

Gender Age
# of

Seizure Type
Length of

seizures Test File [h]

Pt 1 F 2 13 Tonic, Myoclonic 12
Pt 2 F 29 4 Tonic-clonic 27
Pt 3 M 5 14 Tonic, Spasm 31
Pt 4 M 48 10 Tonic 0.75
Pt 5 M 30 11 Tonic 8

B. Data Processing

The processing of data is split into three parts. The

first part is the data partitioning, followed by the feature

extraction and the last part is the classification into seizure

and non-seizure events.

1) Data Partitioning: Data are split in smaller parts of

seizure and non-seizure data to have more parts to choose

from for the different iterations in the training and testing

phases related to the classification. This provides a more

32nd Annual International Conference of the IEEE EMBS
Buenos Aires, Argentina, August 31 - September 4, 2010

978-1-4244-4124-2/10/$25.00 ©2010 IEEE 3269



reliable result. The data are partitioned based on which

subject is measured: healthy subject or patient, respectively.

For each subject several files are processed. A patient file

containing seizures is divided in subparts as shown in Fig.

1, where each data part between the seizures is split into

periods of 1 minute. This is long enough to ensure that

the movements within the period make sense, and short

enough to ensure that sufficiently many periods for training

and testing are obtained. Between each period a sequence

of 5 seconds is left unused to avoid correlation between

two successive periods. In the files containing simulated

seizures, the periods between these are left unused, since the

healthy subjects were practicing for the seizure simulations

in between seizure periods. A file without seizures is treated

equally, regardless of whether it is from a healthy subject or

a patient. The file is split into periods of 1 minute, with

5 seconds sequences left unused between each - just as

explained above for the patient file containing seizures.

Seizure
Unused (5 sec) Excess (unused)

Non-Seizure (60 sec)

Fig. 1. The segmentation of a patient file containing five seizures. Between
the seizures data are split into periods of 1 minute, with a sequence of 5
seconds left unused between successive periods.

2) Feature Extraction: Nijsen et al [1] showed that

the wavelet decomposition would be a better choice for

a feature than the short time Fourier transformation. The

inherent properties of the wavelet transformation compared

to the short time Fourier transformation gives a better time-

frequency (time-scale) representation of normal movements

versus seizures. As in [1] we have chosen to use the fifth

Daubechies as the mother wavelet. The features are extracted

from the discrete wavelet decomposition of windows of 1

second. The windows overlap by 50% and are filtered prior

to the wavelet decomposition using a Hann filter of the same

size as the window. This is done to smoothen the spectrum of

the signal before processing it. The wavelet decomposition

is performed through filtration with a high- and a low-pass

filter as given by [4]:

A = vlow[m] =
L−1

∑
l=0

u[l]g[2m− l] (1)

D = vhigh[m] =
L−1

∑
l=0

u[l]h[2m+1− l] (2)

where 2 is the downsampling factor, m and l are the sample

number in the signal, L is the number of samples in the

window and g and h are low- and high-pass filters, respec-

tively. For each filtration the signal is then divided in an

Approximation- (A) and a Detail- (D) signal. ylow is the

approximation signal, whereas yhigh is the detail signal. From

each approximation signal a new step with filtrations is made

by splitting as shown in Fig. 2. Each channel (ACC, ANG

or EMG) is applied in the wavelet decomposition as u(l).
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Fig. 2. The signal, u(l), is filtered and thereby split in approximation and
detail signals, each approximation signal is further filtered. This is done six
(seven) times. For the feature vector we only use the detail signals from the
fourth to the sixth (seventh) sub-band ( fs = 1kHz). The frequencies beneath
the squares state the bounds for the sub-band.

From a visual inspection based on a comparison of the

spectral content for seizure and non-seizure events, respec-

tively, the frequencies of interest were found to be in the

lower range. Based on this conclusion, only the detail signals

layer 4-6 (7) are further used for the feature extraction.

To decrease the amount of data entering the feature vector,

a “log-sum” measure is calculated for each sub-band used.

x j−3 = log(

M

2 j

∑
m=1

|D j(m)|), where j = 4,5,6(,7) (3)

where M is the number of samples in the signal u(l), j is the

sub-band number (4,5,6(,7)) and D(m) is the detail signal.

For our data M = 120 for ACC/ANG and M = 1024 for

EMG data. By applying the logarithm it is ensured that the

smaller and more essential details are enhanced, while the

larger and insignificant ones are reduced.

The feature vector, x, is then collected as:

a = [x1,ACC1
, ...,x3,ACC1

,D1,ACC2
, ...,x2,ACC69

,x3,ACC69
]

b = [x1,ANG1
, ...,x3,ANG1

,D1,ANG2
, ...,x2,ANG69

,x3,ANG69
]

c = [x1,EMG1
, ...,x4,EMG1

,D1,EMG2
, ...,x4,EMG14

]

xn = [an,bn,cn]
T
, (4)

where ACC1 means ACC channel 1 and so on and n is the

time index. For convenience the time index, n, is omitted in

the previous equations.

For the ACC/ANG data, six steps of filtration are made,

but only the detail signals from sub-band four to six are used

further on. The sEMG data are filtered in seven steps and the

detail signals from sub-band four to seven are used further

on. These are also the sub-bands outlined in Fig. 2. These

numbers of filtrations mean that we only use the frequencies

0.94-7.5 Hz for the ACC/ANG data and the frequencies from

4-64 Hz of the sEMG signals. The frequencies are chosen

based on a visual inspection of the spectra of the signals.

The feature vector is now complete and can be submitted

to a classifier.

3) Classification: The problem is to solve a binary clas-

sification problem with the classes Seizure and Non-seizure.

The class Seizure contains all the seizures in the measure-

ments, whereas the class Non-seizure contains everything

else. This means that the class Non-seizure contains much
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more data than the class Seizure. As a classifier SVM is

used, since it has proven to be better (than other complex

algorithms such as artificial neural network) at handling data

with very dissimilar amounts of data in the classes [5]. Data

are divided into two groups, “train” and “test”, whereas the

classifier is trained on data from the “train” group. The

data from the “test” group can then be classified with the

classifier trained for the purpose. The classifier will return a

positive or negative value for each ”‘test”’ vector, dependent

on whether it is estimated as belonging to a seizure period

or not. The divisions into these groups of the healthy subject

data are made randomly, for both seizure and non-seizure

data, ensuring close to equal amounts of each data type in

each group. For the patients, the first couple of seizures along

with non-seizure data are used for training and the rest of

the seizures with non-seizure data for testing. The division

is made in this way to keep it causal and thereby imitate a

real-time situation.

For the training, data is labeled:

{xn,yn} ,n = 1, ..., l,yn ∈ {−1,1} ,xn ∈ ℜd
, (5)

where l is the number of training examples, xn is the feature

vector (n is the time index) and yn the matching target,

indicating which of the classes the feature vectors belong

to, -1 for non-seizure and 1 for seizure.

A two-class linearly separable data set (where d > 2) can

be separated by a hyperplane described by:

f (xn) = w ·xn +b = 0, (6)

where w is the normal to the hyperplane and b is a shifting

constant. The hyperplane is computed based on support

vectors, which are the feature vectors that are placed closest

to the hyperplane separating the two classes. These feature

vectors from the two classes must satisfy:

yn · (w ·xn +b) ≥ 1−ξn, where ξn ≥ 0∀n, (7)

where ξn, a positive slack variable, is introduced to handle

data, due that most classification problems are not completely

separable. Data points assigned to the wrong side of the

margin (defined by (7)) thereby have a penalty that increases

with the distance to the margin.

To separate the two classes the problem of finding the

optimal parameters, w and b, can be reduced to minimizing

the performance function (8):

1

2
‖w‖2 +C

l

∑
n=1

ξn subject to yn ·(w ·xn +b)≥ 1−ξn, (8)

where C is a factor which sets the trade-off between the size

of the margin and the penalty of the slack variable, ξn [6].

For (8) to be minimized, each term should be minimized.

Minimizing the first term means maximizing the margin be-

tween the support vectors of the two classes. The second term

which encompass the slack variable is minimized by keeping

the distance from incorrectly classified feature vectors to

the margin as small as possible. When a feature vector is

correctly classified ξn is set to 0, whereby the second term

in (8) will be 0. For a feature vector correctly classified, but

placed on the wrong side of the margin, ξn is between 0 and

1. Whereas it is above 1, if the feature vector is wrongly

classified. In the two latter cases the margin is attempted

placed as close to these incorrectly classified feature vectors

as possible to minimize the second term in (8).

To solve (8) Lagrange multipliers are multiplied and the

equation is transformed from its primary form to the dual

form, whereby it is possible to identify the parameters for

the hyperplane which best separates the two classes. These

steps are all performed in MATLAB by the SVMlight package

specified in [7]. The package returns a classification-model

based on the given training set, which can then be used to

classify a test set.

III. RESULTS AND DISCUSSION

The results are presented as sensitivity (the amount of the

seizures that are detected), specificity (the amount of non-

seizures that are not detected) and latency (the time it takes to

detect the seizures after seizure onset). The specificity might

not be the best measure for the number of false alarms, but

for the healthy subjects the measurements were very compact

and every movement was planned beforehand, so no other

measure would provide a more reliable value. On the other

hand, we have further chosen to calculate the false detection

rate (FDR) for the epilepsy patients, which is the amount

of false detections per hour. An optimal result has 100%

sensitivity and specificity, a latency of 1 second (due to the

window length) and an FDR of 0.

The results for the healthy subjects on multi-modal data

are shown in Fig. 3. The mean sensitivity and specificity

are calculated for 30 iterations, whereas for the latencies the

median is provided. It is clearly seen that for subject 1-4 the

system has the highest sensitivity when all modalities are

used. For the fifth subject the algorithm performs better with

respect to sensitivity, if the EMG data is left out. Almost

the same is seen concerning the specificity. The algorithm

performs best for most subjects when all modalities are used,

with exception of subject 2 where it is better if the EMG data

is left out. With respect to the latency of the detections of the

simulated seizures the result is also dependent on the subject,

but most subjects have the best - or at least a very acceptable

result when all modalities are used. There are a few outliers,

but one should remember that it is the maximum latency that

is depicted.

For the patients where only the sEMG data are provided,

the results are shown in Fig. 4. This shows that the algorithm

detects only half of the seizures for patient 1. The reason is

that the other half is myoclonus, which is very short lasting

(< 0.5 seconds) and only happening in one muscle. This

means that the muscles included in these seizures might not

be the ones, which we have measured. It should be noticed

that the seizures are detected at onset. Further it can be seen

that there are only very few false positives (0.08/h). For

patient 2 all seizures are detected, but most of them with

a delay. The false positives are very few (0.07/h), which
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Fig. 3. The sensitivity, specificity and latency is showed for the results on
the data from the five healthy subjects. For each subject the result is given
for each modality alone and combinations of them. For the sensitivity and
specificity the mean for 30 iterations (bars) and the standard deviation (blue
lines) are shown. For the latency the median is shown by the bars (a bit
difficult to see) and the blue line indicate maximum latency.

is important for an alarm system. For the third patient the

algorithm is only able to detect one seizure, but neither

does it capture any false positives. Notice that 50% of the

seizures in the test data are spasms which the algorithm is not

directly intended for. For the fourth patient all the seizures

are detected at onset, but it has too many false alarms, the

FDR might however be high due to the fact that we have

less than an hour of data to test the algorithm on. For the

last patient the algorithm is not able to detect all seizures,

but those detected are however detected at onset. No post-

processing has yet been applied, which might lower the FDR

for some patients. A change in the window size might be

able to increase the sensitivity for patients with very short

lasting seizures. Comparing the healthy subjects and the

patients show equally well results using the UISA system

on sEMG data. The better results on the healthy subjects

using the MISA algorithm imply that better results might be

achieved on patients using our multi-modal approach, which

is the focus for our future experiments. The movements

simulated by the healthy volunteers closely resembled those

occurring during the seizures, therefore it is reasonable to

assume that the signals recorded by the movement sensors

are similar to what we would have recorded from patients

with epilepsy. However the muscle-signals depend on the

recruitment of the motor nerve cells. In the case of volunteers

the motor cells are physiologically activated, while in the

case of ”real” seizures the recruitment is a pathological one.

Thus we cannot exclude that the EMG signal recorded during

the simulated seizures have different characteristics than the

epileptic ones.

IV. CONCLUSION

The automatic MISA system implemented is a new ap-

proach for motion data with feature extraction from discrete
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Fig. 4. The sensitivity, specificity, latency and false detection rate (FDR)
are showed for the results on the EMG data from the five patients. The
sensitivity, specificity and the FDR are shown as bars for each patient.
For the latency the median is shown by the bars and the largest latency is
indicated by the black line.

wavelet components. Data are classified with an SVM algo-

rithm into the classes seizure and non-seizure. On the multi-

modal data from the healthy subjects the algorithm performs

as intended, with a sensitivity of 91-100%, a median latency

of 1 second and a specificity of 100%. Analysis of the sEMG

data performed satisfactorily for both some of the patients

and some of the healthy subjects imitating seizures. Our data

on healthy subjects show the superiority of the multi-modal

approach as compared to the unimodal one. At the moment,

the device is a prototype for research use only. We have

experienced that some patients feel uncomfortable wearing

the suit containing the sensors. As a consequence suit and

device setup is being modified for future experiments.
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