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Evolutionary Algorithms and Other Search Heuristics

Most famous search heuristic: Evolutionary Algorithms (EAs)

a bio-inspired heuristic

paradigm: evolution in nature,
“survival of the fittest”
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Evolutionary Algorithms and Other Search Heuristics

Most famous search heuristic: Evolutionary Algorithms (EAs)

a bio-inspired heuristic

paradigm: evolution in nature,
“survival of the fittest”

actually it’s only an algorithm, a
randomized search heuristic (RSH)

Initialization

Selection

Variation

Selection

Stop?

no

Goal: optimization

Here: discrete search spaces, combinatorial optimization, in
particular pseudo-boolean functions

Optimize f : {0, 1}n → ℝ

Carsten Witt Theory of RSH in Combinatorial Optimization1233
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Why Do We Consider Randomized Search Heuristics?

Not enough resources (time, money, knowledge)
for a tailored algorithm

Black Box Scenario
x f (x)

rules out problem-specific algorithms

We like the simplicity, robustness, . . .
of Randomized Search Heuristics

They are surprisingly successful.
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Why Do We Consider Randomized Search Heuristics?

Not enough resources (time, money, knowledge)
for a tailored algorithm

Black Box Scenario
x f (x)

rules out problem-specific algorithms

We like the simplicity, robustness, . . .
of Randomized Search Heuristics

They are surprisingly successful.

Point of view

Do not only consider RSHs empirically. We need a solid theory to
understand how (and when) they work.
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What RSHs Do We Consider?

Theoretically considered RSHs

(1+1) EA

(1+�) EA (offspring population)

(�+1) EA (parent population)

(�+1) GA (parent population and crossover)

GIGA (crossover)

SEMO, DEMO, FEMO, . . . (multi-objective)

Randomized Local Search (RLS)

Metropolis Algorithm/Simulated Annealing (MA/SA)

Ant Colony Optimization (ACO)

Particle Swarm Optimization (PSO)

. . .

First of all: define the simple ones

Carsten Witt Theory of RSH in Combinatorial Optimization
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The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximization problems

(1+1) EA

1 Choose x0 ∈ {0, 1}n uniformly at random.
2 For t := 0, . . . ,∞

1 Create y by flipping each bit of xt indep. with probab. 1/n.
2 If f (y) ≥ f (xt) set xt+1 := y else xt+1 := xt .

Carsten Witt Theory of RSH in Combinatorial Optimization1234
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The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximization problems

RLS

1 Choose x0 ∈ {0, 1}n uniformly at random.
2 For t := 0, . . . ,∞

1 Create y by flipping one bit of xt uniformly.
2 If f (y) ≥ f (xt) set xt+1 := y else xt+1 := xt .
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The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximization problems

MA

1 Choose x0 ∈ {0, 1}n uniformly at random.
2 For t := 0, . . . ,∞

1 Create y by flipping one bit of xt uniformly.
2 If f (y) ≥ f (xt) set xt+1 := y

else xt+1 := y with probability e(f (xt)−f (y))/T anyway
and xt+1 := xt otherwise.

T is fixed over all iterations.
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The Most Basic RSHs

(1+1) EA, RLS, MA and SA for maximization problems

SA

1 Choose x0 ∈ {0, 1}n uniformly at random.
2 For t := 0, . . . ,∞

1 Create y by flipping one bit of xt uniformly.
2 If f (y) ≥ f (xt) set xt+1 := y

else xt+1 := y with probability e(f (xt)−f (y))/Tt anyway
and xt+1 := xt otherwise.

Tt is dependent on t, typically decreasing

Carsten Witt Theory of RSH in Combinatorial Optimization
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What Kind of Theory Are We Interested in?

Not studied here: convergence, local progress, models of EAs
(e. g., infinite populations), . . .

Treat RSHs as randomized algorithm!

Analyze their “runtime” (computational complexity)
on selected problems

Carsten Witt Theory of RSH in Combinatorial Optimization1235
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What Kind of Theory Are We Interested in?

Not studied here: convergence, local progress, models of EAs
(e. g., infinite populations), . . .

Treat RSHs as randomized algorithm!

Analyze their “runtime” (computational complexity)
on selected problems

Definition

Let RSH A optimize f . Each f -evaluation is counted as a time
step. The runtime TA,f of A is the random first point of time such
that A has sampled an optimal search point.

Often considered: expected runtime, distribution of TA,f

Asymptotical results w. r. t. n

Carsten Witt Theory of RSH in Combinatorial Optimization
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How Do We Obtain Results?

We use (rarely in their pure form):

Coupon Collector’s Theorem

Principle of Deferred Decisions

Concentration inequalities:
Markov, Chebyshev, Chernoff, Hoeffding, . . . bounds

Markov chain theory: waiting times, first hitting times

Rapidly Mixing Markov Chains

Random Walks: Gambler’s Ruin, drift analysis (Wald’s
equation), martingale theory, electrical networks

Random graphs (esp. random trees)

Identifying typical events and failure events

Potential functions and amortized analysis

. . .
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How Do We Obtain Results?

We use (rarely in their pure form):

Coupon Collector’s Theorem

Principle of Deferred Decisions

Concentration inequalities:
Markov, Chebyshev, Chernoff, Hoeffding, . . . bounds

Markov chain theory: waiting times, first hitting times

Rapidly Mixing Markov Chains

Random Walks: Gambler’s Ruin, drift analysis (Wald’s
equation), martingale theory, electrical networks

Random graphs (esp. random trees)

Identifying typical events and failure events

Potential functions and amortized analysis

. . .

Adapt tools from the analysis of randomized algorithms;
understanding the stochastic process is often the hardest task.
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Early Results

Analysis of RSHs already in the 1980s:

Sasaki/Hajek (1988): SA and Maximum Matchings

Sorkin (1991): SA vs. MA

Jerrum (1992): SA and Cliques

Jerrum/Sorkin (1993, 1998): SA/MA for Graph Bisection

. . .

These were high-quality results, however, limited to SA/MA
(nothing about EAs) and hard to generalize.

Carsten Witt Theory of RSH in Combinatorial Optimization1236
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Early Results

Analysis of RSHs already in the 1980s:

Sasaki/Hajek (1988): SA and Maximum Matchings

Sorkin (1991): SA vs. MA

Jerrum (1992): SA and Cliques

Jerrum/Sorkin (1993, 1998): SA/MA for Graph Bisection

. . .

These were high-quality results, however, limited to SA/MA
(nothing about EAs) and hard to generalize.

Since the early 1990s

Systematic approach for the analysis of RSHs,
building up a completely new research area

Carsten Witt Theory of RSH in Combinatorial Optimization
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This Tutorial

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
(1+1) EA and minimum spanning trees
(1+1) EA and Eulerian cycles
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
SA beats MA in combinatorial optimization

3 End

Carsten Witt Theory of RSH in Combinatorial Optimization
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How the Systematic Research Began — Toy Problems

Simple example functions (test functions)

OneMax(x1, . . . , xn) = x1 + ⋅ ⋅ ⋅+ xn

LeadingOnes(x1, . . . , xn) =
∑n

i=1

∏i
j=1 xj

BinVal(x1, . . . , xn) =
∑n

i=1 2
n−ixi

polynomials of fixed degree

Goal: derive first runtime bounds and methods
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How the Systematic Research Began — Toy Problems

Simple example functions (test functions)

OneMax(x1, . . . , xn) = x1 + ⋅ ⋅ ⋅+ xn

LeadingOnes(x1, . . . , xn) =
∑n

i=1

∏i
j=1 xj

BinVal(x1, . . . , xn) =
∑n

i=1 2
n−ixi

polynomials of fixed degree

Goal: derive first runtime bounds and methods

Artificially designed functions

with sometimes really horrible definitions

but for the first time these allow rigorous statements

Goal: prove benefits and harm of RSH components,
e. g., crossover, mutation strength, population size . . .

Carsten Witt Theory of RSH in Combinatorial Optimization1237
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Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
(1+1) EA and minimum spanning trees
(1+1) EA and Eulerian cycles
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
SA beats MA in combinatorial optimization

3 End

Carsten Witt Theory of RSH in Combinatorial Optimization
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Example: OneMax

Theorem (e. g., Droste/Jansen/Wegener, 1998)

The expected runtime of the RLS, (1+1) EA, (�+1) EA,
(1+�) EA on OneMax is Ω(n log n).

Proof by modifications of Coupon Collector’s Theorem.
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Example: OneMax

Theorem (e. g., Droste/Jansen/Wegener, 1998)

The expected runtime of the RLS, (1+1) EA, (�+1) EA,
(1+�) EA on OneMax is Ω(n log n).

Proof by modifications of Coupon Collector’s Theorem.

Theorem (e. g., Mühlenbein, 1992)

The expected runtime of RLS and the (1+1) EA on OneMax is
O(n log n).

Holds also for population-based (�+1) EA and
for (1+�) EA with small populations.

Carsten Witt Theory of RSH in Combinatorial Optimization
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Proof of the O(n log n) bound

Fitness levels: Li := {x ∈ {0, 1}n ∣ OneMax(x) = i}

Carsten Witt Theory of RSH in Combinatorial Optimization1238
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Proof of the O(n log n) bound

Fitness levels: Li := {x ∈ {0, 1}n ∣ OneMax(x) = i}

(1+1) EA never decreases its current fitness level.
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Proof of the O(n log n) bound

Fitness levels: Li := {x ∈ {0, 1}n ∣ OneMax(x) = i}

(1+1) EA never decreases its current fitness level.

From i to some higher-level set with prob. at least

(
n − i

1

)

︸ ︷︷ ︸

choose a 0-bit

⋅

(
1

n

)

︸ ︷︷ ︸

flip this bit

⋅

(

1−
1

n

)n−1

︸ ︷︷ ︸

keep the other bits

≥
n − i

en

Expected time to reach a higher-level set is at most en
n−i

.

Expected runtime is at most

n−1∑

i=0

en

n − i
= O(n log n). □
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Later Results Using Toy Problems

Find the theoretically optimal mutation strength
(1/n for OneMax!).

Bound the optimization time for linear functions (O(n log n)).

optimal population size (often 1!)

crossover vs. no crossover → Real Royal Road Functions

multistarts vs. populations

frequent restarts vs. long runs

dynamic schedules

. . .

Carsten Witt Theory of RSH in Combinatorial Optimization
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RSHs for Combinatorial Optimization

Analysis of runtime and approximation quality on well-known
combinatorial optimization problems, e. g.,

sorting problems (is this an optimization problem?),
covering problems,
cutting problems,
subsequence problems,
traveling salesperson problem,
Eulerian cycles,
minimum spanning trees,
maximum matchings,
scheduling problems,
shortest paths,
. . .

Carsten Witt Theory of RSH in Combinatorial Optimization1239
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RSHs for Combinatorial Optimization

Analysis of runtime and approximation quality on well-known
combinatorial optimization problems, e. g.,

sorting problems (is this an optimization problem?),
covering problems,
cutting problems,
subsequence problems,
traveling salesperson problem,
Eulerian cycles,
minimum spanning trees,
maximum matchings,
scheduling problems,
shortest paths,
. . .

What we do not hope: to be better than the best
problem-specific algorithms

In the following no fine-tuning of the results

More details in the books (last slide)

Carsten Witt Theory of RSH in Combinatorial Optimization
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Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
(1+1) EA and minimum spanning trees
(1+1) EA and Eulerian cycles
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
SA beats MA in combinatorial optimization

3 End
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Minimum Spanning Trees

Problem

Given: Undirected connected graph G = (V ,E ) with n vertices
and m edges with positive integer weights.
Find: Edge set E ′ ⊆ E with minimal weight connecting all vertices.

Carsten Witt Theory of RSH in Combinatorial Optimization1240
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Minimum Spanning Trees

Problem

Given: Undirected connected graph G = (V ,E ) with n vertices
and m edges with positive integer weights.
Find: Edge set E ′ ⊆ E with minimal weight connecting all vertices.

Fitness function

Decrease number of connected components, find minimum
spanning tree:

f (s) := (c(s),w(s)).

Minimization of f with respect to the lexicographic order.
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Minimum Spanning Trees

Problem

Given: Undirected connected graph G = (V ,E ) with n vertices
and m edges with positive integer weights.
Find: Edge set E ′ ⊆ E with minimal weight connecting all vertices.

Fitness function

Decrease number of connected components, find minimum
spanning tree:

f (s) := (c(s),w(s)).

Minimization of f with respect to the lexicographic order.

Connected graph

Connected graph in expected time O(m log n)
(fitness level arguments)

Carsten Witt Theory of RSH in Combinatorial Optimization
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Combinatorial Argument to Approach MSTs

From arbitrary spanning tree T to MST T ∗ (Mayr/Plaxton, 1992):

e1

�(e3)

e3
e2

�(e1) �(e2)

k := ∣E (T ∗) ∖ E (T )∣

Bijection � : E (T ∗) ∖ E (T ) → E (T ) ∖ E (T ∗)

�(ei ) on the cycle of E (T ) ∪ {ei}

w(ei ) ≤ w(�(ei ))
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Combinatorial Argument to Approach MSTs

From arbitrary spanning tree T to MST T ∗ (Mayr/Plaxton, 1992):

e1

�(e3)

e3
e2

�(e1) �(e2)

k := ∣E (T ∗) ∖ E (T )∣

Bijection � : E (T ∗) ∖ E (T ) → E (T ) ∖ E (T ∗)

�(ei ) on the cycle of E (T ) ∪ {ei}

w(ei ) ≤ w(�(ei ))

=⇒ k accepted 2-bit flips that turn T into T ∗

Carsten Witt Theory of RSH in Combinatorial Optimization1241
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Upper Bound

Theorem (Neumann/Wegener, 2007)

The expected time until (1+1) EA constructs a minimum spanning
tree is bounded by O(m2(log n + logwmax)).

Sketch of proof:

w(s) weight current solution s; assume to be tree

wopt weight minimum spanning tree T ∗
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Upper Bound

Theorem (Neumann/Wegener, 2007)

The expected time until (1+1) EA constructs a minimum spanning
tree is bounded by O(m2(log n + logwmax)).

Sketch of proof:

w(s) weight current solution s; assume to be tree

wopt weight minimum spanning tree T ∗

set of n operations to reach T ∗

k 2-bit flips defined by bijection
n − k non accepted 2-bit flips

=⇒ average weight decrease (w(s)− wopt)/n

Carsten Witt Theory of RSH in Combinatorial Optimization
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Upper Bound

Concentrate on 2-bit flips:

Expected weight decrease by a factor 1− 1/n (or better)

Probability Θ(n/m2) for a good 2-bit flip

Expected time until r 2-steps O(rm2/n)
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Upper Bound

Concentrate on 2-bit flips:

Expected weight decrease by a factor 1− 1/n (or better)

Probability Θ(n/m2) for a good 2-bit flip

Expected time until r 2-steps O(rm2/n)

Method expected multiplicative distance decrease:

Have to bridge distance at most D := w(s)−wopt ≤ m ⋅wmax.

Distance after N steps: ≤ (1− 1/n)N ⋅ D

Find N such that (1− 1/n)N ≤ 1/(2D)
⇒ choose N := ⌈n ⋅ (lnD + 1)⌉

In expectation 2N = O(n(log n + logwmax)) 2-steps enough

Expected time: O(Nm2/n) = O(m2(log n + logwmax))

Carsten Witt Theory of RSH in Combinatorial Optimization1242
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Further Results

Lower Bound Ω(n4 log n)

2n22n2

3n2

2n2

3n2

2n2

3n2

2n22n2
Kn/2
weights 1
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Further Results

Lower Bound Ω(n4 log n)

2n22n2

3n2

2n2

3n2

2n2

3n2

2n22n2
Kn/2
weights 1

Related Results

Experimental investigations (Briest et al., 2004)

Biased mutation operators (Raidl/Koller/Julstrom, 2006)

O(mn2) for a multi-objective approach
(Neumann/Wegener, 2006)

Approximations for multi-objective minimum spanning trees
(Neumann, 2007)

SA/MA and minimum spanning trees (Later!)

Carsten Witt Theory of RSH in Combinatorial Optimization
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Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
(1+1) EA and minimum spanning trees
(1+1) EA and Eulerian cycles
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
SA beats MA in combinatorial optimization

3 End
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Eulerian Cycle Problem

Given: undirected connected Eulerian (degree of each vertex is
even) graph G = (V ,E ) with n vertices and m edges

Find: a cycle (permutation of the edges) such that each edge is
used exactly once.

Carsten Witt Theory of RSH in Combinatorial Optimization1243
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Eulerian Cycle Problem

Given: undirected connected Eulerian (degree of each vertex is
even) graph G = (V ,E ) with n vertices and m edges

Find: a cycle (permutation of the edges) such that each edge is
used exactly once.

Eulerian Cycle (Hierholzer)

Idea: “glue” small cycles together

1 Find a cycle C in G .

2 Delete the edges of C from G .

3 If G is not empty go to step 1; starting from a vertex on C .

4 Construct the Eulerian cycle by running through the cycles
produced in Step 1 in the order of construction.

Carsten Witt Theory of RSH in Combinatorial Optimization
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Eulerian Cycle Problem

Given: undirected connected Eulerian (degree of each vertex is
even) graph G = (V ,E ) with n vertices and m edges

Find: a cycle (permutation of the edges) such that each edge is
used exactly once.

Eulerian Cycle (Hierholzer)

Carsten Witt Theory of RSH in Combinatorial Optimization
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Fitness Function

Representation: permutation of edges

Fitness function

Consider the edges of the permutation after another and build up a
path p of length l .

path(�) := length of the path p implied by �

Example: � = ({2, 3}, {1, 2}, {1, 5}, {3, 4}, {4, 5}) =⇒ ∣p∣ = 3

Carsten Witt Theory of RSH in Combinatorial Optimization
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The (1+1) EA for the Euler Cycle Problem

(1+1) EA

1 Choose � ∈ Sm uniform at random.

2 Choose s from a Poisson distribution with parameter 1.
Perform sequentially s + 1 jump operations
to produce �′ from �.

Carsten Witt Theory of RSH in Combinatorial Optimization1244
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The (1+1) EA for the Euler Cycle Problem

(1+1) EA

1 Choose � ∈ Sm uniform at random.

2 Choose s from a Poisson distribution with parameter 1.
Perform sequentially s + 1 jump operations
to produce �′ from �.

Example: jump(2,4) applied to
({2,3},{1,2},{3,4},{1,5},{4,5}) produces
({2,3},{3,4},{1,5},{1,2},{4,5})
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The (1+1) EA for the Euler Cycle Problem

(1+1) EA

1 Choose � ∈ Sm uniform at random.

2 Choose s from a Poisson distribution with parameter 1.
Perform sequentially s + 1 jump operations
to produce �′ from �.

Example: jump(2,4) applied to
({2,3},{1,2},{3,4},{1,5},{4,5}) produces
({2,3},{3,4},{1,5},{1,2},{4,5})

3 Replace � by �′ if path(�′) ≥ path(�).

4 Repeat Steps 2 and 3 forever.

Carsten Witt Theory of RSH in Combinatorial Optimization
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Upper Bound, (1+1) EA

Theorem (Neumann, 2007)

The expected time until (1+1) EA working on the fitness function
path constructs an Eulerian cycle is bounded by O(m5).

Proof idea:

p is not a cycle:
1 improving jump ⇒ expected time for improvement O(m2)

p is a cycle (with less than m edges):
Show: expected time for an improvement O(m4)

O(m) improvements ⇒ theorem

Carsten Witt Theory of RSH in Combinatorial Optimization
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Proof Idea: How to Analyze Improvements

jump(1, l)

jump(l , 1)

each prob. 1/2

C C ′

Typical run:

k-step (accepted mutation with k-jumps that change p)

Only 1-steps: O(m4) steps for an improvement

No k-step, k ≥ 4, in O(m4) steps with prob. 1− o(1)

O(1) 2- or 3-steps in O(m4) steps with prob. 1− o(1)

Carsten Witt Theory of RSH in Combinatorial Optimization1245
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Proof Idea: How to Shift a Cycle

C C ′

Carsten Witt Theory of RSH in Combinatorial Optimization
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Proof Idea: How to Shift a Cycle

C C ′

Time O(m2) to move black vertex

Black vertex performs random walk

Length of cycle at most m

Fair random walk
→ O(m2) movements are enough to reach red vertex

Expected time for an improvement O(m4)

Carsten Witt Theory of RSH in Combinatorial Optimization
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Further Results

Lower bound Ω(m4)

Carsten Witt Theory of RSH in Combinatorial Optimization

29/48

Further Results

Lower bound Ω(m4)

Restricted jumps (always jump to position 1)

No random walk, but directed walk
Upper bound O(m3) (Doerr/Hebbinghaus/Neumann, 2007)

Carsten Witt Theory of RSH in Combinatorial Optimization1246
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Further Results

Lower bound Ω(m4)

Restricted jumps (always jump to position 1)

No random walk, but directed walk
Upper bound O(m3) (Doerr/Hebbinghaus/Neumann, 2007)

Use of more sophisticated representations
and mutation operators:

O(m2 logm) (Doerr/Klein/Storch, 2007)
O(m logm) (Doerr/Johannsen, 2007)

Carsten Witt Theory of RSH in Combinatorial Optimization
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Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
(1+1) EA and minimum spanning trees
(1+1) EA and Eulerian cycles
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
SA beats MA in combinatorial optimization

3 End
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(1+1) EA for the Maximum Matching Problem
The Behavior on Paths

A matching in a graph is a subset of pairwise disjoint edges.

Path: n + 1 nodes, n edges: bit string from {0, 1}n selects edges

Fitness function: size of matching/negative for non-matchings
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(1+1) EA for the Maximum Matching Problem
The Behavior on Paths

A matching in a graph is a subset of pairwise disjoint edges.

Path: n + 1 nodes, n edges: bit string from {0, 1}n selects edges

Fitness function: size of matching/negative for non-matchings

Theorem (Giel/Wegener, 2003)

The expected time until the (1+1) EA finds a maximum matching
on a path of n edges is O(n4).
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(1+1) EA for the Maximum Matching Problem
The Behavior on Paths (2)

Proof idea:

Consider a second-best matching.

Is there a free edge? Flip one bit! → probability Θ(1/n).

Else 2-bit flips → probability Θ(1/n2).
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Proof idea:

Consider a second-best matching.
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(1+1) EA for the Maximum Matching Problem
The Behavior on Paths (2)

Proof idea:

Consider a second-best matching.

Is there a free edge? Flip one bit! → probability Θ(1/n).

Else 2-bit flips → probability Θ(1/n2).

Shorten augmenting path

Then flip the free edge!

(1+1) EA follows the concept of an augmenting path!

Length changes according to a fair random walk
→ Expected runtime O(n2) ⋅ O(n2) = O(n4).
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(1+1) EA for the Maximum Matching Problem
A Negative Result

Worst-case graph Gh,ℓ (Sasaki/Hajek, 1988)

h ≥ 3

ℓ = 2ℓ′ + 1
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(1+1) EA for the Maximum Matching Problem
A Negative Result

Worst-case graph Gh,ℓ (Sasaki/Hajek, 1988)

h ≥ 3

ℓ

Augmenting path can get shorter
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(1+1) EA for the Maximum Matching Problem
A Negative Result

Worst-case graph Gh,ℓ (Sasaki/Hajek, 1988)

h ≥ 3

ℓ

Augmenting path can get shorter but is more likely to get longer.

Theorem

For h ≥ 3, the (1+1) EA has exponential expected runtime 2Ω(ℓ)

on Gh,ℓ.

Proof by drift analysis
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(1+1) EA for the Maximum Matching Problem
(1+1) EA is a PRAS

Insight: do not hope for exact solutions but for approximations

Theorem (Giel/Wegener, 2003)

For " > 0, the (1+1) EA finds a (1 + ")-approximation of a
maximum matching in expected time O(m2⌈1/"⌉) and is a
polynomial-time randomized approximation scheme (PRAS).
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(1+1) EA for the Maximum Matching Problem
(1+1) EA is a PRAS

Insight: do not hope for exact solutions but for approximations

Theorem (Giel/Wegener, 2003)

For " > 0, the (1+1) EA finds a (1 + ")-approximation of a
maximum matching in expected time O(m2⌈1/"⌉) and is a
polynomial-time randomized approximation scheme (PRAS).

Proof idea:

Look into the analysis of the Hopcroft/Karp algorithm.

Current solution worse than (1 + ")-approximate → many
augmenting paths, in partic. a short one of length ≤ 2⌈"−1⌉

Wait for the (1+1) EA to optimize this short path.
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Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
(1+1) EA and minimum spanning trees
(1+1) EA and Eulerian cycles
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
SA beats MA in combinatorial optimization

3 End
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(1+1) EA and the Partition Problem

What about NP-hard problems? → Study approximation quality
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What about NP-hard problems? → Study approximation quality

For w1, . . . ,wn, find I ⊆ {1, . . . , n}
minimizing

max

{
∑

i∈I

wi ,
∑

i /∈I

wi

}

.
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(1+1) EA and the Partition Problem

What about NP-hard problems? → Study approximation quality

For w1, . . . ,wn, find I ⊆ {1, . . . , n}
minimizing

max

{
∑

i∈I

wi ,
∑

i /∈I

wi

}

.

This is an “easy” NP-hard problem:

not strongly NP-hard,

FPTAS exist,

...
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(1+1) EA for the Partition Problem
Worst-Case Results

Coding: bit string {0, 1}n encodes I

Fitness function: weight of fuller bin

Theorem (Witt, 2005)

On any instance for the partition problem, the (1+1) EA
reaches a solution with approximation ratio 4/3
in expected time O(n2).
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(1+1) EA for the Partition Problem
Worst-Case Results

Coding: bit string {0, 1}n encodes I

Fitness function: weight of fuller bin

Theorem (Witt, 2005)

On any instance for the partition problem, the (1+1) EA
reaches a solution with approximation ratio 4/3
in expected time O(n2).

Theorem

There is an instance such that the (1+1) EA needs with
prob. Ω(1) at least nΩ(n) steps to find a solution with a better
ratio than 4/3− ".

Proof ideas: study effect of local steps and local optima
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(1+1) EA for the Partition Problem
Worst Case – PRAS by Parallelism

Theorem

On any instance, the (1+1) EA with prob. ≥ 2−c⌈1/"⌉ ln(1/") finds a
(1 + ")-approximation within O(n ln(1/")) steps.
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(1+1) EA for the Partition Problem
Worst Case – PRAS by Parallelism

Theorem

On any instance, the (1+1) EA with prob. ≥ 2−c⌈1/"⌉ ln(1/") finds a
(1 + ")-approximation within O(n ln(1/")) steps.

2O(⌈1/"⌉ ln(1/")) parallel runs find a (1 + ")-approximation
with prob. ≥ 3/4 in O(n ln(1/")) parallel steps.

Parallel runs form a PRAS!
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(1+1) EA for the Partition Problem
Worst Case – PRAS by Parallelism (Proof Idea)

Set s :=
⌈
2
"

⌉
and w :=

∑n
i=1 wi .

Assuming w1 ≥ ⋅ ⋅ ⋅ ≥ wn, we have wi ≤ "w2 for i ≥ s.

︸ ︷︷ ︸

s−1 large objects

︸ ︷︷ ︸

small objects
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(1+1) EA for the Partition Problem
Worst Case – PRAS by Parallelism (Proof Idea)

Set s :=
⌈
2
"

⌉
and w :=

∑n
i=1 wi .

Assuming w1 ≥ ⋅ ⋅ ⋅ ≥ wn, we have wi ≤ "w2 for i ≥ s.

︸ ︷︷ ︸

s−1 large objects

︸ ︷︷ ︸

small objects

Analyze probability of distributing

large objects in an optimal way,

small objects greedily ⇒ additive error ≤ "w/2,

This is the algorithmic idea by Graham (1969).

Carsten Witt Theory of RSH in Combinatorial Optimization1254



40/48

(1+1) EA for the Partition Problem
Average-Case Analyses

Models: each weight drawn independently at random, namely

1 uniformly from the interval [0, 1],

2 exponentially distributed with parameter 1
(i. e., Prob(X ≥ t) = e−t for t ≥ 0).

Approximation ratio no longer meaningful, we investigate:
discrepancy = absolute difference between weights of bins.
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(1+1) EA for the Partition Problem
Average-Case Analyses

Models: each weight drawn independently at random, namely

1 uniformly from the interval [0, 1],

2 exponentially distributed with parameter 1
(i. e., Prob(X ≥ t) = e−t for t ≥ 0).

Approximation ratio no longer meaningful, we investigate:
discrepancy = absolute difference between weights of bins.

How close to discrepancy 0 do we come?
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(1+1) EA for the Partition Problem
Partition Problem - Known Averge-Case Results

Deterministic, problem-specific heuristic LPT

Sort weights decreasingly,
put every object into currently emptier bin.

Analysis in both random models:

After LPT has been run, additive error is O((log n)/n)
(Frenk/Rinnooy Kan, 1986).
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(1+1) EA for the Partition Problem
Partition Problem - Known Averge-Case Results

Deterministic, problem-specific heuristic LPT

Sort weights decreasingly,
put every object into currently emptier bin.

Analysis in both random models:

After LPT has been run, additive error is O((log n)/n)
(Frenk/Rinnooy Kan, 1986).

Can RLS or the (1+1) EA
reach a discrepancy of o(1)?
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(1+1) EA for the Partition Problem
New Result

Theorem

In both models, the (1+1) EA reaches discrepancy O((log n)/n)
after O(nc+4 log2 n) steps with probability 1− O(1/nc).

Almost the same result as for LPT!
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(1+1) EA for the Partition Problem
New Result

Theorem

In both models, the (1+1) EA reaches discrepancy O((log n)/n)
after O(nc+4 log2 n) steps with probability 1− O(1/nc).

Almost the same result as for LPT!

Proof exploits order statistics:

W. h. p.
X(i) − X(i+1) = O((log n)/n)
for i = Ω(n).

}X(i) − X(i+1)
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Agenda

1 The origins: example functions and toy problems
A simple toy problem: OneMax for (1+1) EA

2 Combinatorial optimization problems
(1+1) EA and minimum spanning trees
(1+1) EA and Eulerian cycles
(1+1) EA and maximum matchings
(1+1) EA and the partition problem
SA beats MA in combinatorial optimization

3 End
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Simulated Annealing Beats Metropolis
in Combinatorial Optimization

Jerrum/Sinclair (1996)

“It remains an outstanding open problem to exhibit a natural
example in which simulated annealing with any non-trivial cooling
schedule provably outperforms the Metropolis algorithm at a
carefully chosen fixed value” of the temperature.
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Simulated Annealing Beats Metropolis
in Combinatorial Optimization

Jerrum/Sinclair (1996)

“It remains an outstanding open problem to exhibit a natural
example in which simulated annealing with any non-trivial cooling
schedule provably outperforms the Metropolis algorithm at a
carefully chosen fixed value” of the temperature.

Solution (Wegener, 2005): MSTs are such an example.

A bad instance for MA

1 1 1 1

n3

n2 n2n2 n2

n3

n2n2

n3nn

1 1

n

︸ ︷︷ ︸

light triangles

︸ ︷︷ ︸

heavy triangles
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Simulated Annealing Beats Metropolis
in Combinatorial Optimization
Results

1 1 1 1

n3

n2 n2n2 n2

n3

n2n2

n3nn

1 1

n

︸ ︷︷ ︸

light triangles

︸ ︷︷ ︸

heavy triangles

Theorem (Wegener, 2005)

The MA with arbitrary temperature computes the MST for this
instance only with probability e−Ω(n) in polynomial time. SA with
temperature Tt := n3(1−Θ(1/n))t computes the MST in
O(n log n) steps with probability 1− O(1/poly(n)).
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1 1 1 1

n3

n2 n2n2 n2

n3

n2n2

n3nn

1 1

n

︸ ︷︷ ︸

light triangles

︸ ︷︷ ︸

heavy triangles

Theorem (Wegener, 2005)

The MA with arbitrary temperature computes the MST for this
instance only with probability e−Ω(n) in polynomial time. SA with
temperature Tt := n3(1−Θ(1/n))t computes the MST in
O(n log n) steps with probability 1− O(1/poly(n)).

Proof idea: need different temperatures to optimize all triangles.
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Simulated Annealing Beats Metropolis
in Combinatorial Optimization
Proof Idea

Concentrate on wrong triangles:
one heavy, one light edge chosen

lightlight

heavy
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in Combinatorial Optimization
Proof Idea
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lightlight

heavy

Soon after initialization Ω(n) wrong triangles,
both in heavy and light part of the graph

To correct such triangle, light edge must be flipped in.
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Such flip leads to a worse spanning tree
→ need high temperature T ∗ to correct wrong heavy triangles.
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Concentrate on wrong triangles:
one heavy, one light edge chosen

lightlight

heavy

Soon after initialization Ω(n) wrong triangles,
both in heavy and light part of the graph

To correct such triangle, light edge must be flipped in.

Such flip leads to a worse spanning tree
→ need high temperature T ∗ to correct wrong heavy triangles.

Light edges of heavy triangles still much heavier than heavy
edges of light triangles → at temperature T ∗ almost random
search on light triangles → many light triangles remain wrong.
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Simulated Annealing Beats Metropolis
in Combinatorial Optimization
Proof Idea

Concentrate on wrong triangles:
one heavy, one light edge chosen

lightlight

heavy

Soon after initialization Ω(n) wrong triangles,
both in heavy and light part of the graph

To correct such triangle, light edge must be flipped in.

Such flip leads to a worse spanning tree
→ need high temperature T ∗ to correct wrong heavy triangles.

Light edges of heavy triangles still much heavier than heavy
edges of light triangles → at temperature T ∗ almost random
search on light triangles → many light triangles remain wrong.

SA first corrects heavy triangles at temperature T ∗.

After temperature has dropped, SA corrects light triangles,
without destroying heavy ones.
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Summary and Conclusions

Analysis of RSHs in combinatorial optimization

Starting from toy problems to real problems

Surprising results

Interesting techniques

Analysis of new approaches
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Summary and Conclusions

Analysis of RSHs in combinatorial optimization

Starting from toy problems to real problems

Surprising results

Interesting techniques

Analysis of new approaches

→ Altogether, an exciting research direction.

Carsten Witt Theory of RSH in Combinatorial Optimization

48/48

Suggested Reading
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Anne Auger, Benjamin Doerr:
Theory of Randomized Search Heuristics – Foundations and
Recent Developments, World Scientific Publishing, 2011

Frank Neumann, Carsten Witt:
Bio-Inspired Computation in Combinatorial Optimization –
Algorithms and Their Computational Complexity, Springer, 2010
Book homepage: www.bioinspiredcomputation.com
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Recent Developments, World Scientific Publishing, 2011

Frank Neumann, Carsten Witt:
Bio-Inspired Computation in Combinatorial Optimization –
Algorithms and Their Computational Complexity, Springer, 2010
Book homepage: www.bioinspiredcomputation.com

Thank you!
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