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This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete
framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular
attention, since this fault could lead to mooring line breakage and a high-risk abortion of an oil-loading operation. With
significant drift forces from waves, non-Gaussian elements dominate forces and the residuals designed for fault diagnosis.
Hypothesis testing need be designed using dedicated change detection for the type of distribution encountered. In addition
to dedicated diagnosis, an optimal position algorithm is proposed to accommodate buoyancy element failure and keep the
mooring system in a safe state. Furthermore, even in the case of line breakage, this optimal position strategy could be
utilised to avoid breakage of a second mooring line. Properties of detection and fault-tolerant control are demonstrated by
high fidelity simulations.

Keywords: Fault Diagnosis, Fault-tolerant Control, Position Mooring, Change Detection, Optimal Position Control, Non
Gaussian Detection.

1. Introduction

With oil and gas exploration going into deeper waters and
harsher environments, position mooring systems (PM) en-
counter more challenges with respect to mechanical reli-
ability, automatic control and associated safety aspects.
For thruster assisted position mooring, the main objec-
tive is to maintain the vessel’s position within a limited
region and keep the vessel at the desired heading such
that the external environmental load is minimised. In ex-
treme weather, the main objective changes to ensure that
mooring lines avoid breakage. Related literatures include
(Strand et al., 1998), (Aamo and Fossen, 2001), (Nguyen
and Sørensen, 2007), (Berntsen et al., 2008a).

Safety of dynamic positioning is a prime concern in
the marine industry and regulations are enforced to pre-
vent faults in equipment to cause accidents with the sys-
tem ((DNV, 2008b)). In position mooring system, ac-
cident limit status must be analysed in case of the line
breakage or the loss of one or more mooring line buoy-
ancy elements (MLBE). Such analysis is based on the re-
liability of mechanical structures, and studies of the sen-
sitivity to extreme values and associated risk for fatigue

damage or line breakage with the loads from environment
((Gao and Moan, 2007)). Recently, automatic control for
safety has received increased attention in marine research.
(Berntsen et al., 2006) proposed an nonlinear controller
based on a structural reliability index to prevent the moor-
ing line from getting into a low reliability zone. This algo-
rithm mainly considered the safety status with structural
reliability index. (Nguyen and Sørensen, 2009) treated a
switching controller for thruster-assisted position moor-
ing. This algorithm detected the change of varying envi-
ronment characteristics and switched the controller to pre-
vent mooring line breakage. Systematic fault tolerant con-
trol was studied for the station keeping of a marine vessel
by (Blanke, 2005) and a structure-graph approach for fault
diagnosis and control reconfiguration was validated by sea
tests. (Nguyen and Sørensen, 2007) extended this study to
the position mooring case and suggested an off-line fault
accommodation design based on switching between dif-
ferent pre-determined controllers. Mooring line buoyancy
elements were not considered in these previous studies.

The purpose of this paper is to widen fault tolerant
control design for position mooring systems to include
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loss of mooring line buoyancy elements and strengthen
the fault tolerant control strategy in the case of mooring
line breakage. Investigating control system topology by
structure-graph analysis, diagnosis system design is ex-
tended to include buoyancy elements on mooring lines.
Residuals are demonstrated to be non-Gaussian, due to the
nature of drift forces from waves, and a dedicated change
detection and hypothesis test is designed for the particu-
lar distributions. Fault accommodation is suggested to be
done by a novel algorithm that is shown optimal in avoid-
ing mooring line breakage. The safety status of a moor-
ing line is evaluated against the critical value of mooring
line tension for the fault-accommodating control and it is
illustrated, by simulations, how the optimal position algo-
rithm is activated and prevents mooring line tension from
exceeding the critical value after the loss of a buoyancy
element.

The remainder of this paper is organised as follows.
Section 2 addresses modeling of the position moored ves-
sel. Section 3 presents fault diagnosis and change detec-
tion. The optimal position algorithm in fault accommoda-
tion is presented at section 4. The proposed algorithm is
validated by simulations in Section 5 and conclusions are
drawn in section 6.

Fig. 1. Typical Position Mooring System

2. System Modeling
The purpose of the modeling is to obtain information to
design fault detection and isolation (FDI) modules for es-
sential faults and to give the prerequisites for the control
reconfiguration design when the faults occur.

The basic configuration of position mooring system
is shown in Fig. 2 according to the equipment demand
of DYNPOS-AUTR class DP (DNV, 2008a), which is the
most reliable system configuration according to the DNV
classes, shown in Table 1. There are redundant thrusters,
three position measurement systems (two GPS and one
hydro-acoustic position unit (HPS)), two wind sensors,

Table 1. Sensor Requirement of different DP classification
Sensor Number AUTS AUT AUTR

Npos 1 2 3
Nwind 1 1 2
Ngyro 1 1 3
Nvrs 1 1 3

three gyro compasses and three vertical reference sensors
(VRS). The relative velocity through water is measured by
the ship’s log and inertial measurement unit (IMU). Mean-
time, the mooring line tensions are monitored by tension
measurement equipment (TME).

Table 2 shows the list of symbols and the block dia-
gram in Fig. 2 illustrates the topology of function blocks
in a position mooring system. A typical position moor-
ing system is shown in Fig. 1, along with two reference
frames: the Earth fixed frame (EFF) and body fixed frame
(BFF) with the origin located at the centre of the turret
(COT), where all the mooring lines are attached to the ves-
sel.

Table 2. List of symbols
symbol Explanation

h1, h2, h3 yaw measurements
ψ, ψ̇ yaw angle and yaw rate

pG1,pG2,pH1 position measurements in EFF
p, ṗ vessel position and velocity in EFF

q1,q2,q3 vertical reference measurements
z, φ, θ vessel heave, roll and pitch

wm1,wm2, cm wind and current measurements
vw,vc wind and current velocity
Tmbi mooring line tension
Tmoi MLBE force
Tmomi mooring line tension measurement

v vessel velocity in BFF
vm velocity measurement in BFF

u1, u2, . . . uk thruster input
T1, T2, T3 thruster force

In structural analysis, the model of a system is con-
sidered as a set of constraints C = {a1, . . . , ai, c1, . . . ci,
d1, . . . , di, m1, . . . , mi} that are applied to a set of vari-
ables X = X ∪ K. X denotes the set of unknown vari-
ables, K = Ki ∪ Km known variables: measurements
(Km), control input (Ki) etc. Variables are constrained
by the physical laws applied to a particular unit. ai de-
notes the constraint of thruster input, ci denotes the alge-
braic constraint, di denotes the differential constraint, mi

are the measurements. With three thrusters and n mooring
lines, the constrains and variables for the PM are:

a1 : T1 = gt(u1, u2, . . . , uk)
a2 : T2 = gl(u1, u2, . . . , uk)
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Fig. 2. Ship Configuration

a3 : T3 = gl(u1, u2, . . . , uk)
c1 : Mv̇ = HxyT[T1, T2, T3]> + [gx

w(vw)

gy
w(vw)]> +

n∑

j=1

Axy
mo(p, ψ)

Txy
moi(Tmoi)−D[v ψ̇]>

c2 : Iψ̈ = HψT[T1, T2, T3]> + gψ
w(vw)

+
n∑

j=1

Aψ
mo(p, ψ)Tψ

moi(Tmoi)

c3 : ṗ = Ave(ψ)v + vc

c4 : pG1 = p + R(φ, θ, ψ)lG1

c5 : pG2 = p + R(φ, θ, ψ)lG2

c6 : pH1 = p + R(φ, θ, ψ)lH1

c2i+5 : Tmoi = gmo(p, ψ,Tmbi)
c2i+6 : Tmbi = gmb(p, ψ)

d1 : v̇ =
∂

∂t
v

d2 : ṗ =
∂

∂t
p

d3 : ψ̇ =
∂

∂t
ψ

d4 : ψ̈ =
∂

∂t
ψ̇

m1..m3 : h1..3 = ψ

m4 : pm
G1 = pG1

m5 : pm
G2 = pG2

m6 : pm
H1 = pH1

m7..m9 : q1..3 = [z φ θ]
m10 : vm = v

m11,12 : wm1,m2 = vw

m13 : cm = vc

m13+i : Tmomi = Tmoi,

where M is mass matrix including added mass, D
is damping matrix, I is inertia moment for yaw, T is
thruster configuration matrix, Hxy is projection matrix
for surge and sway, Hψ is that for yaw, Axy

mo,A
ψ
mo is

transformation matrix for horizontal mooring line ten-
sion from the Earth fixed frame to the body fixed frame,
Ave(ψ) is a transformation matrix for vessel velocity
from the Earth fixed frame to body fixed frame, R(φ, θ, ψ)
is transformation matrix from the location of position ref-
erence system to the vessel coordinate origin, and gx

w(vw),
gy

w(vw),gψ
w(vw) are the wind force in surge, sway and yaw

directions.
Categorising into sets of unknown variables, input

variables and measurement variables, the variables on the
above constraints can be separated as:

X = {T1, T2, T3,Tmbi,Tmoi,pG1,pG2,

pH1,v, v̇, ψ, ψ̇, ψ̈, ,p, ṗ, θ, φ,vc,vw}
Ki = {u1, u2, . . . , uk}

Km = {h1, h2, h3,pm
G1,p

m
G2,p

m
H1,q1,

q2,q3,vm, ,wm1,wm2, cm,Tmomi}.

The above modeling of the moored system does not
include bifurcations that could occur when second order
wave forces interact with the dynamics of a moored sys-
tem. Analytical conditions for boundaries where static
and dynamic loss of stability occurs when a bifurcation
boundary is crossed were derived by (Garza-Rios and
Bernitsas, 1996). The modeling here presents the normal
behaviour, and diagnostic algorithms are designed to de-
tect deviation from normal (Blanke et al., 2006), hence
the onset of a bifurcation in the motion of the moored ves-
sel could be detected and counteracted by thruster assisted
position control.

3. Fault Diagnosis and Change detection

3.1. Analysis of Structure. The structure graph ap-
proach is usually employed to obtain the system analyt-
ical redundancy relations for FDI. With this technique,
the functional relations with measured and control vari-
ables need not be explicitly stated. SaTool is a soft-
ware developed for this technique and a structure graph
can be created based on implicit nonlinear constraints
(Blanke, 2005).

The structural analysis finds the over-determined
subsystem and a set of 10 + i parity relations where i is
the number of mooring lines. These parity relations can be
used as residual generators for fault detection in general in
the system. A deviation from normal of a constraint, i.e.
a fault, will affect a parity relation if this parity relation
is constructed using the constraint. Considering mooring
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line faults, the result is 2 + i such relations:

r1 = c1(a1(u1), a2(u2), c6(m3(h3),m9(q3),
m6(pm

H1)),m3(h3), c2i+5(c6(m3(h3),m9(q3),
m6(pm

H1)),m3(h3), c2i+6(c6(m3(h3),m9(q3),
m6(pm

H1)),m3(h3))),m12(wm2),m10(vm),
d3(m3(h3)))

r2 = c2(a3(u3), c6(m3(h3),m9(q3),m6(pm
H1)),

m3(h3), c2i+5(c6(m3(h3),m9(q3),
m6(pm

H1)),m3(h3), c2i+6(c6(m3(h3),
m9(q3),m6(pm

H1)),m3(h3))), m12(wm2),
m10(vm), d3(m3(h3)), d4(d3(m3(h3))))

r5+i = m13+i(Tmomi, c2i+5(c6(m3(h3),m9(q3),
m6(pm

H1)),m3(h3), c2i+6(c6(m3(h3),
m9(q3),m6(pm

H1)),m3(h3)))).

If a fault affects residual vector, the fault is
structurally detectable. If a particular fault has a
unique pattern in the residual vector’s elements,
it is structurally isolable. In the presence of
only one fault, structurally isolable constraints are
(d2,m1,m2,m3,m7,m8,m9,m10,m11,m12,m13+i).
The rest are only detectable.

Considering a fault on a mooring line, the depen-
dency matrix is shown in Table 3. Violations of constraints
c2i+5 and c2i+6 are only detectable but their residual vec-
tors are unique from those of the other cases. This shows
that the fault on the buoy can be distinguished from the
fault of the mooring line itself. The constrains m13+i

are isolable and thus the fault on the tension measure-
ment equipment can be distinguished from the fault on
the mooring line, if only a single fault is present. When
faults are only group-wise isolable, active fault diagno-
sis techniques could be applied. This was pursued for
a position moored tanker without buoyancy elements in
(Nguyen and Blanke, 2010).

Table 3. Dependency Matrix
c2i+5 c2i+6 m13+i

r1 1 1 0
r2 1 1 0

r5+i 1 1 1

3.2. Change Detection. After design of the residual
generators, hypothesis testing needs to be designed to de-
tect the change of the residual. For violation of constraints
c2i+5, c2i+6, changes will be structurally visible on resid-
uals r1, r2 and r5+i.

The design intention of the mooring line buoyancy
element (MLBE) is to reduce the static force and dynamic
motion of the mooring system (Mavrakos et al., 1996).

Buoyancy elements need be designed suitably, otherwise
adverse effects could occur. The loss of a buoyancy ele-
ment would cause deviation of static forces on the moor-
ing line and a similar effect would also occur in case of the
line breakage. This deviation is reflected on the residuals
r5+i while the acceleration deviation of PM is reflected
on the residuals r1 and r2. The detection algorithm of the
static force deviation in r5+i could be found in (Nguyen
et al., 2007) with a fault that one mooring line is broken,
while the focus of the change detection here is for the de-
viation of residual r1 and r2 in the case that a buoyancy
element is lost.

However, all of these residuals are non-Gaussian
distributed due to nonlinear vessel dynamics and nature
of wave drift forces. First order wave forces will gen-
erally give Gaussian distributions and the slowly vary-
ing drift forces can be calculated to give Rayleigh dis-
tributed forces, if one just assumes that forces arise as
the amplitude of a sum of gaussian elements. More accu-
rate assessment of the distribution of forces on a moored
tanker was the subject of studies including (Wang and
Xu, 2008) where forces and moments affecting an FPSO
were computed by the near-field method based on direct
pressure integration. (Wang and Tan, 2008) modeled the
response of a moored vessel excited by slowly varying
non-Gaussian wave drift forces as a continuous Markov
process. (Næss, 1986) studied the statistical distribution
of slowly varying drift forces and moments. The distri-
bution of these forces and moments enter into the expres-
sions of the residual we generate for fault diagnosis, but
since residual generation involves dynamics and filtering
by the residual generator, amplitude distribution of residu-
als are not the same as the amplitude distributions of wave
drift forces and moments, although they off course are re-
lated. The problem of finding the distribution of residuals
by analytical means is not within the scope of the present
paper. Instead we turn to simulations and an approxima-
tion to observed distributions with and without faults be-
ing present.

The distribution of residual r1 is shown in Fig. 3
that also shows an approximating Rayleigh distribution.
The approximation is not a perfect match to the residual as
obtained from simulations but for detection of change, it is
clearly better than commonly applied detection algorithms
for Gaussian distributed residuals (Kay, 1998).

From Fig. 3, the mean value of the residual r1 is
shifted away from zero, both with and without faults be-
ing present. A shifted Rayleigh density function replicates
this behaviour. Considering that relationship between the
variance of Rayleigh-distributed signal σR and the vari-
ance of underlying Gaussian signal σ is σ2

R = (2− π
2 )σ2,

the shifted Rayleigh density function is expressed as:

p(z(k)) =
(4− π)(z(k)− µR +

√
σ2

Rπ√
4−π

)

2σ2
R
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Fig. 3. Distribution Approximation of r1

exp[− (
√

4− π(z(k)− µR) +
√

σ2
Rπ)2

4σ2
R

]

for z(k) ≥ µR −
√

σ2
Rπ√

4− π
,

where σ2
R is the variance of the Rayleigh distributed

signal and µR is its mean value.
Detection of a change is suitably done using a Rao-

test (Kay, 1998), which is the suitable detector for the
mean value change in a Non-Gaussian noise. The hypoth-
esis for this case is therefore given by:

H0 : z(k) = µ0 + w(k) k = 0, 1, . . . , N − 1
H1 : z(k) = µ1 + w(k) k = 0, 1, . . . , N − 1.

where the signal w(k) is Rayleigh, µ0 and µ1 are
the mean values before and after a change. Then the test
statistics for the Rao-Test can be written as:

TR(z) =
(∂In(p(z,µR))

∂µR
|µR=µ̂)2

I(µ̂)
> γ (1)

where µ̂ is an estimate of the signal’s mean value,
I(µ̂) is the Fisher information and the probability density
function p(z, µR) is:

p(z, µR) =
(4− π)N (z(k)− µR +

√
σ2

Rπ√
4−π

)N

2Nσ2N
R

exp(−
∑N−1

k=0 (
√

4− π(z(k)− µR) +
√

σ2
Rπ)2

4σ2
R

)

The partial derivative of the logarithm of probability

density function is found as:

∂In(p(z, µR))
∂µR

=
4− π

2σ2
R

N−1∑
n=0

(z(k)− µR +

√
πσ2

R

4− π
)− 2σ2

R

4− π

N−1∑
n=0

1

z(k)− µR +
√

πσ2
R

4−π

(2)

The Fisher information with the Rayleigh distribu-
tion is found to be:

I(µR) =
N(4− π)

2σ2
R

√
πσ2

R

4− π
+

2σ2
R

(4− π)2

N−1∑
n=0

1
(
√

4− π(z(k)− µR) +
√

πσ2
R)2

(3)

where µR is estimated online as µR = µ̂ and σR is
assumed to be unchanged. Finally the test statistics TR(z)
can be deducted based on Equation (1) with Equations (2)
and (3).

Fig. 4. Time history of test statistics

The above detector derived from Equation (1)-(3)
is only available for the data larger than zero and the
Rayleigh density function is shifted to have the mean
value µR. Then the data need to satisfy:

ε(k) = max(z(k)− µR +

√
σ2

Rπ

4− π
, 0). (4)

In order to be able to use the same threshold for all
tests, data are normalised and the result of the test statis-
tics is shown in Fig. 4.

As shown in Fig. 4, test statistics is quite fluctuating
in the first 2500 s while the system comes to a steady state.
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The loss of one buoy is simulated to happen at time 2500
s and the event is rapidly detected.

The change detection method applied here is based
on the residuals generated in symbolic form through struc-
tural analysis, and subsequently deduced in analytical
form using the system constraints. Some faults will not
be isolable through this approach but active fault isola-
tion can help isolate faults by applying dedicated test sig-
nals on thrusters once a fault has been detected. Ac-
tive fault diagnosis was analysed for Gaussian residuals
by (Poulsen and Niemann, 2008) and references herein.
The structural conditions were obtained by (Blanke and
Staroswiecki, 2006) and a detailed design and test on a
position moored tanker was presented in (Nguyen and
Blanke, 2010) making use of active diagnosis.

4. Fault Tolerant Control
4.1. Controller design. The control objective is to
maintain the vessel’s position in a limited region and keep
the vessel at the desired heading such that the external en-
vironmental load is minimised. Another objective is to
avoid line breakage and keep the mooring system at a safe
state. An optimal position algorithm is designed to meet
the second objective. For the controller design, it is com-
mon to use multi-variable PID control in PM systems with
the structure:

τ thr = −KiRT (ψ)
∫

η̂edt−KpRT (ψ)η̂e −Kdν̂e (5)

where η̂e = η̂−ηd , ν̂e = ν̂−νd are the position and
velocity errors; ηd and νd the desired position and veloc-
ity vectors; Kd, Ki and Kd ∈ R3×3 are the non-negative
controller gain matrices. ψ is the measured heading angle
and R(ψ) is the rotation matrix from Body-fixed Frame to
Earth-fixed Frame, which can be found in (Fossen, 2002).
However, in case of certain faults, this controller can not
provide sufficiently good control.

4.2. Optimal position chasing. To maintain all moor-
ing lines at a safe state, an optimal position algorithm
is proposed here. A position mooring system is re-
stricted to a safety region, which is normally defined from
considering the static mooring line tension (Nguyen and
Sørensen, 2007). A reliability index was also used to
evaluate this region (Berntsen et al., 2008a). This sec-
tion proposes a new optimal position algorithm based on
the mooring line tension for use in on-line fault-tolerant
control.

First, a reference model is used for obtaining smooth
transitions in the chasing of the optimal position set-point.
This reference model refers to (Fossen, 2002) and it pro-
duces a smooth position reference which is the input to the
position control law in Equation (5).

Optimal set-point is achieved through a quadratic ob-
ject function based on each mooring line horizontal ten-
sion as:

L(Tm1, Tm2, . . . , Tmn) =
n∑

i=1

αiT
2
mi (6)

where Tmi is the ith horizontal mooring line tension
and αi a weighting factor. For the mooring system fixed
on a turret, motion of a mooring line is shown in Fig. 5.
The ith mooring line is fixed on the sea floor with an an-
chor at point (xa

i , ya
i ). At the other end, the mooring line

is connected to the turret at terminal point (TP) (xio, yio)
and centre of the turret is at point (xo, yo). From the point
(xio, yio) to the point (xi, yi), the terminal point moves
with distance ∆r and the direction β. Meanwhile, length
of the mooring is changed from hio to hi and angle of
the mooring in the Earth-fixed frame is changed from βio

to βi. For the mooring system connected to a turret, the
terminal point is assumed to be connected in the turret’s
centre and the body-fixed frame is set on the centre of the
turret. Thus ∆r also denotes the vessel’s change in posi-
tion and β in direction.

EX
EY

EX
EY

ioβ

iβ

Anchor ( , )a ai ix y

TP ( , )io iox y

( , )i ix yhix

hiy×( , )o ox y
Turret

r∆

β

ioh
ih

Fig. 5. Motion of one mooring line

The horizontal mooring line tension Ti at the point
(xi, yi) can be expressed as a function of the in-plane in-
crement of surface vessel position ∆r and the direction β
as:

Ti = Toi + ci∆h = Toi − ci∆r cos(90◦ − β − βoi)
= Toi − ci∆r sin(β + βio),

where Toi is the tension in the working point (xo, yo)
and ci is the incremental stiffness tension at the present
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instantaneous working point according to (Strand et al.,
1998).

The optimal position algorithm adjusts the optimal
vessel set-point with the variation of the mooring line ten-
sions. One application is that mooring lines lie in a zone
where there is risk of breakage. Then evaluation for hori-
zontal mooring line tension could be Tmi = Tci−Ti once
the ith mooring line has a risk to be beyond the critical
tension Tci. Or the weighting coefficient wi is adjusted to
emphasise the importance of a certain mooring line. In the
case of the faulty condition, for an example, lost MLBE
and subsequent mooring line breakage, this algorithm is
very useful. In addition, according to the regulation in the
class society (DNV, 2008b), even the case that the moor-
ing lines applied on the vessel are different, the safety of
which can also utilise this approach. Thus with this algo-
rithm, not only prevention of mooring line breakage can
be analysed, but the control action is also used on-line to
obtain safe behaviour in a real implementation.

For notation simplification, the object function of all
mooring lines in a region of risk is:

L(Tm1, Tm2, . . . , Tmn) =
n∑

i=1

αiT
2
mi

=
n∑

i=1

αi(Tci − Ti)2 (7)

By solving the equations where the partial derivative
of Equation (7) with respect to the optimal increment of
the vessel position and the optimal direction of this incre-
ment are set to zero, the minimum value of the object func-
tion is hence identified. The optimal increment of vessel
position ∆r and the optimal direction of this increment βo

is found to be:

∆r =
K11 sin βo + K12 cosβo

K21 sin2 βo + 2K22 sin βo cosβo + K23 cos2 βo

βo = tg−1 K11K23 −K12K22

K21K12 −K11K22
,

where:

K11 = α1(Tc1 − To1)c1 cosβ1o + α2(Tc2 − To2)c2

cos β2o + · · ·+ αn(Tcn − Ton)cn cosβno

K12 = α1(Tc1 − To1)c1 sin β1o + α2(Tc2 − To2)c2

sin β2o + · · ·+ αn(Tcn − Ton)cn sin βno

K21 = α1c
2
1 cos2 β1o + α2c

2
2 cos2 β2o + . . .

+αnc2
n cos2 βno

K22 = α1c
2
1 sin β1o cos β1o + α2c

2
2 sin β2o cos β2o

+ · · ·+ αnc2
n sin βno cos βno

K23 = α1c
2
1 sin2 β1o + α2c

2
2 sin2 β2o + · · ·+

αnc2
n sin2 βno.

Finally in the general three-dimensional case, the updated
vessel position and heading set-point become:

η = ηo + ∆r[cos βo sin βo 0]>. (8)

5. Simulation

The purpose of this simulation is to validate the proposed
fault tolerant control strategy for the PM vessel subjected
to loss of an MLBE and demonstrate that mooring line
breakage is prevented.

5.1. Overview. The simulation is carried out using the
Marine System Simulator (MSS) developed at the Norwe-
gian University of Science and Technology (NTNU).

A turret-moored floating production, storage and of-
floading vessel model (FPSO) from the MSS library is
used here. The turret mooring system consists of four
mooring lines with buoys shown in Fig. 6. The mooring
length is L = 2250m, the diameter is D = 0.08m, the
cable density is ρc = 5500kg/m3, the added mass coeffi-
cient Cmn = 1.5, the normal drag coefficient is Cdn = 1,
the tangential drag coefficient is Cdt = 0.3. A buoy is
connected at the position s = 750m along un-stretched
mooring line from the terminal point. The buoy is 8 ×104

kg with the volume V = 120m3. The added mass of
the buoy is 5.8 ×104 kg and the drag force coefficient
is Cdx = 0.7. The working water depth is 1000 m and
the mooring lines are simulated from finite element model
with RIFLEX software (MARINTEK, 2003). Each moor-
ing line consists of 300 finite elements. From the touch
point to the buoy, 100 elements are made and there are
200 from the buoy to the terminal point.

Fig. 6. Initial condition of simulation
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For the external force, a JONSWAP wave spectrum
is used with the significant wave height Hs = 2m and the
wave period Tp = 5s. The current is vc = 1m/s at the top
and decreases to 0.2 m/s at the depth 500 m. At the bot-
tom of sea floor, the current is 0 m/s. Wind speed is vw =
8m/s and the direction is 45 deg. The environmental sim-
ulation on the vessel refers to (Fossen, 2002) and the cur-
rent profile simulation refers to (MARINTEK, 2003).

Fig. 7. No.1 and No.2 mooring line tension with line breakage

Fig. 8. No.3 and No.4 mooring line tension with line breakage

5.2. Simulation with line breakage. In the presence
of strong sea current, the mooring line has a high risk of

breaking if not adequately assisted by thrusters. (Nguyen
et al., 2007) recommended to evaluate the external envi-
ronment and off-line determine a critical level of slowly-
varying drift forces and switch to appropriate controls to
compensate the increasing environmental forces accord-
ing to change of environment. The PM is limited in the
region evaluated by a certain critical position that did not
consider the influence of current on the mooring lines.
The optimal position algorithm proposed here utilise the
mooring line tension for evaluation of external environ-
mental effects and performs an online calculation of an
optimal position to avoid line breakage.

Fig. 9. The variation of position with line breakage
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Fig. 10. Commanded thruster force with line breakage

If one of the mooring lines break, another equilib-
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rium point will exist, depending on external forces. The
new equilibrium has a high possibility of getting beyond
the critical tension for other mooring lines, however, and
in turn this could cause further breakage of lines. A simu-
lation of an abrupt line breakage is shown in Figures 7 to
8 where number 4 mooring line encounters a breakage at
t = 2500s. From Fig. 7 and 8, the no.1 and no.3 moor-
ing line tensions rapidly afterwards get beyond the critical
mooring line tension Tm = 2.6e6 N. This is avoided by
the optimal position algorithm. With the optimal position
algorithm, the NO.2 mooring line tension is higher than
that of the case without the optimal position algorithm,
but its value is kept below critical tension.
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Fig. 11. Horizontal Motion with line breakage

Position deviation from the origin is shown in Fig-
ures 9 and 11 when line no. 4 breaks and the thruster
force demand in Fig. 10. The thrusters compensate part
of restoring force of mooring system with optimal posi-
tion algorithm and the PM comes into an optimal set-point
denoted ’with FTC’. There is a large transient in thruster
force when the line breaks since the controller shortly has
to compensate for the force component that disappeared.
The thrusters attempt to compensate part of mooring sys-
tem restoring force and then drive the PM to a new opti-
mal point, will necessarily give rise to a transient. A rapid
change in system dynamics over a short time, after the
breakage, also has an effect.

The case was chosen to also illustrate two mooring
lines getting beyond the critical tension almost simulta-
neously. The optimal position algorithm can handle this
situation. This is an improvement from the first struc-
tural reliability based nonlinear controller by (Berntsen
et al., 2008b) that could handle only one critical mooring
line.

It is a salient feature of the new algorithm that there
is no limit to the number of mooring lines that can be han-
dled by the optimal position algorithm although, accord-
ing to the class regulation (DNV, 2008b), the PM system
is only required to be fully operational with one mooring

line breakage. This feature of the algorithm requires that
sufficient thruster forces are available.

5.3. Simulation with lost MLBE. A buoy lost is an-
other event where mooring lines could come beyond crit-
ical tension. A simulation with this event is shown in Fig.
12-14. In the simulation, No.2 mooring line tension in-
creases after the buoy is lost at t = 2500 s and the mooring
system comes into a new equilibrium where No.2 moor-
ing line is still within safe range. The tension analysis for
mooring line with MLBE must be done before employ-
ing the MLBE and thus in the structural view, the moor-
ing line with or without buoy should be safe. However,
the mooring line 4 tension increases to beyond its criti-
cal value with the loss of MLBE in NO.2 mooring line.
Mooring lines 1 and 3 are not critical as their tensions are
well below the limit.

Fig. 12. No.1 and No.2 mooring line tension with lost MLBE

With the optimal position algorithm, PM moves to
the optimal position shown in Fig. 14 after the loss of
MLBE in NO.2 mooring line. Mooring line 4 comes close
to critical tension, but the mooring system remains safe
with all lines below critical tension. This algorithm could
also be extended to simultaneous faults and protect PM
for more than one mooring line in danger.

6. Conclusion
Fault tolerant control for position mooring was analysed
in this paper with specific emphasis given to the case of
loss of a mooring line buoyancy element and line break-
age. Position mooring control was analysed with the dy-
namics of mooring line buoys attached. Structural anal-
ysis was employed to get residuals to detect changes that
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Fig. 13. No.3 and No.4 mooring line tension with lost MLBE

Fig. 14. Time variation of x and y positions with lost MLBE
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Fig. 15. Commanded thruster force with lost MLBE

could indicate faults in the system. An optimal position al-
gorithm was suggested that could avoid that critical safety
levels of mooring line tension were exceeded. The pro-
posed algorithm monitored the influence from external
environment directly from mooring line tension, and the
control algorithm was able to simultaneously control ten-
sion of more than one mooring line, even when this was
close to critical levels, provided sufficient thruster forces
are available.
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