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1 Introduction

We are giving a Tutorial to honor both Cholesky and Banachiewicz at PPAM
2011 in Toruń, Poland. Recently, Grcar [14, 15] presented two historical papers
on how common elimination became Gaussian Elimination. On pages 785 to
786 of [15] and on pages 15 to 23 [14] he discusses Gauss’s contributions to the
area of least squares; the latter [14] gives a more in depth treatment. Another
view was given by Stewart in [24–26]. We follow Stewart’s treatment here. [24]
gives a modern and lucid description of Gauss’s contributions. Hence we saw
no reason to rephrase a lot of what Stewart had translated or to change his
explanations thereof. Matrices were unknown in the early 1800’s but it is clear
from Gauss’s work that he understood the concepts and theory that matrix
usage would bring. So, one can make a strong case for giving Gauss credit for
definitively laying down the early theory and practice of solving Ax = b where
A is an order n matrix; see Stewart’s Afterword on pages 207-235 of [25]. This
paper is meant to supplement the PPAM 2011 tutorial given by the two authors;
the additional references not cited herein refer to the tutorial presentation. In
Section 2 we overview some early history about least squares. Section 3 to 5
are devoted to the contributions of Gauss, Cholesky and Banachiewicz to least
squares.

2 Overview of the early history of Least Squares

The principles of least squares arose from the problem of combining sets of
overdetermined equations to form a square system that could be solved for its
unknowns. Gauss kept a notebook in which he noted his important discoveries.
In June 1798 he writes: “The problem of elimination resolved in such a way that
nothing more can be desired”. Stewart thinks this entry to be the first reference
to Gaussian elimination. Also, see footnote c of Article 37, Section II of [6]. Here
Gauss solves the problem of computing Ax = b (mod m) where A is a matrix
of integers. In the footnote Gauss says that “... a similar paralgoism exists for
solving linear equations”. At the end of 1801 Gauss had predicted, using his Least
Square calculations, where the asteriod Ceres would be found! He was correct;
this made his reputation! Gauss, who was generally slow to publish, began work
in 1805 on his Theoria Motus Corporum Coelestrium, in which he described his
techniques for computing orbits and gave his first probablistic justification on the
principles of least squares; see [7]. He finished in 1806, but his publisher worried
by German losses to Napoleon, insisted he translate the treatise into Latin. In
the meantime, Legendre published and named the method of least squares in an
appendix to his memoir of 1805.

In the Theoria Motus, Gauss had assumed the errors in the observations
were normally distributed. In 1811, Laplace used his central limit theorem to
give an essentially different justification of least squares. Laplace showed that the
solutions of a combination of equations were asymptotically normal and from this
concluded that the least squares combination would minimize the mean absolute
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error in the solutions. Laplace’s approach does not readily extend beyond two
unknowns.

The final chapter occurred in the 1820’s when Gauss [10, 11, 13] published
two memoirs on least squares. The first, in two parts, contains yet another jus-
tification of least squares − Gauss’s famous minimum variance theorem. These
papers also contain some nice algorithms.

3 Matrix form of Gauss’s Theory Motus paper of 1809

Theory Motus [7] is a long paper. We start Section 3 well into it at Section 182
of [7]. We use matrices which had not been invented and proceed as follows: Let
y = Ab + e where A is n by m, y and e are n vectors, b is an m vector and
n > m. The distribution of the errors ei are assumed to be independent random
variables with common distribution φ(e). Gauss introduces the function

n
∏

i=1

φ(yi − aT

i
b) (1)

where aT

i
is row i of A. He uses a Bayesian argument with a uniform prior

to show the value of b that maximizes (1) is the most probable value of the
unknowns. Reverend Thomas Bayes (1702-61), English mathematician and the-
ologian, is responsible for his Theorem on conditional probability. We partly
describe Baysian inference: a parameter is assumed to have a prior distribution
reflecting the experimenters belief in the state of nature. An experiment is per-
formed, and the information from it, summarized by the likelihood, is combined
with the prior distribution to provide a posterior distribution for the parameter.

Gauss assumes the distribution of the errors ei to be normal; i.e., φ(e) ∝
e−h2e2

. The parameter h gives the precision of y. The function (1) now becomes
proportional to

e−h2Ω (2)

where
Ω = eTe = (y − Ab)T(y − Ab)

is the residual sum of squares. The normal equations are derived by taking partial
derivatives of Ω with respect to b. Gauss now turns to estimating the precision
of the least square estimates. He integrates all but the last unknown out of (2).
The precision can then be read off. However, to perform the required integrations
Ω =

∑n

i=1 e2
i where ei = yi − (Ab)i must be expressed in a special form, and the

tool for arriving at the form is describing Gaussian Elimination implicitly!
The procedure as given by Gauss is the following. Let

u1 =
1

2

∂Ω

∂b1
≡

m
∑

i=1

r1ibi − s1 (3)

and let

Ω1 = Ω −
u2

1

r11
(4)
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Note that r1j =
∑n

k=1 a1kajk and s1 =
∑n

k=1 a1kyk. Then clearly ∂Ω/∂b1 = 0
and so Ω1 is independent of b1. We give another step to illustrate Gauss’s general
procedure. Set

u2 =
1

2

∂Ω1

∂b2
≡

m
∑

i=2

r2ibi − s2

Then Ω2 = Ω1 − u2
2/r22 is independent of b1 and b2. Continuing this way we

arrive at the decomposition

Ω =

m
∑

k=1

u2
k

rkk

+ ρ

in which uk is independent of b1, . . . bk−1 and ρ is a constant.
Gauss now considers the expression

e−h2Ω ∝ exp(−h2 u2
1

r11
) × exp(−h2 u2

2

r21
) . . . exp(−h2 u2

m

rmm

).

and integrates with respect to b1 over the real line. Since the last m − 1 fac-
tors in this expression are free of b1, they remain unchanged by integration.
The first factor integrates to a constant. Thus Gauss is left with a distribution
proportional to

e−h2Ω1 ∝ exp(−h2 u2
2

r21
) . . . exp(−h2 u2

m

rmm

).

which is free of b1. Continuing this process of integrating out the parameters bi,
Gauss finds the distribution of bm is proportional to exp(−h2u2

m/rmm) where
um = rmmbm−sm. Gauss concludes that the most probable value of bm, obtained
by setting um = 0, is b̂m = sm/rmm and its precision is h/

√
rmm.

Gauss now goes on to show that if you write the normal equations in the
form

Bb = c (5)

where B = ATA and express b as a function of c in the form

b = Vc, (6)

then vmm = 1/rmm. Finally, since the resulting expression for the precision
clearly does not depend on the position of the unknown, Gauss concludes that
the precision of any of the estimates b̂i is h

√
vii.

This is what Gauss does in Theoria Motus. He does not describe Gaussian
elimination except implicitly! However, he gives a derivation of one of the most
important results of linear regression theory! He also promises to describe his
elimination procedure in another work. Gauss does point out that the normal
equations can be solved by ordinary elimination (eliminatio vulgaris). Today,
ordinary elimination is LU = PA or perhaps Gauss Jordan elimination. An
extension, which Gauss will later call general elimination (eliminatio indefinite),
can be used to pass from the normal equations (5) to the inverse system (6).



Gauss, Cholesky and Banachiewicz 5

3.1 The Notation that Gauss used

Few mathematicians in Gauss’s time used subscripts or superscripts. Gauss wrote
linear systems in the form

v = ax + by + cz + etc. + l

v
′

= a
′

x + b
′

y + c
′

z + etc. + l
′

v
′′

= a
′′

x + b
′′

y + c
′′

z + etc. + l
′′

etc.

Here x, y, z, etc. are the unknowns we have been denoting by bi and the
v’s are the errors. This notation seems to be based on the way “one counts
alphabetically” which is what subscripting does with integers. Gauss is quite
good at it. Here is how he writes (slightly edited) the normal equations.

0 = [aa]x + [ab]y + [ac]z + etc. + [al]
0 = [ab]x + [bb]y + [bc]z + etc. + [bl]
0 = [ac]x + [bc]y + [cc]z + etc. + [cl] etc.

Note the elegant way in which the notation [ab] suggests a dot product (a,b)
from the vectors of the a and b columns.

Gauss’s notation for elimination is equally well considered. The following is
from the Supplementum [13, 25] to the Theoria Combinationis (Article 13).

[bb, 1] = [bb] − [ab]
2
/[aa]

[bc, 1] = [bc] − [ab][ac]/[aa]
[bd, 1] = [bd] − [ad][ad]/[aa]
etc.

[cc, 2] = [cc] − [ac]
2
/[aa] − [bc, 1]

2
/[bb, 1]

[cd, 2] = [cd] − [ac][ad]/[aa] − [bc, 1][bd, 1]/[bb, 1]
etc.

[dd, 3] = [dd] − [ad]
2
/[aa] − [bd, 1]

2
/[bb, 1] − [cd, 2]

2
/[cc, 2]

etc. etc.

Here as above, a pair of letters indicates the position in the normal equations.
The appended numerals indicate the level of elimination. Gauss starts with
R = ATA and does a row by row UTDU = R factorization of the symmet-
ric matrix R. This is a preferred form for hand calculation, since one need only
record an array of m(m+1)/2 numbers. Since R is also positive definite one gets
Cholesky’s algorithm VTV where V =

√
DU. Note however, that this work was

done by Gauss in the 1820’s.

3.2 The Gaussian Elimination Algorithm of the Theoria Motus ...

paper

In 1810, in Disquisitio de Elementis Palladis, [8], Gauss gave the details of his
algorithm for [7] of Section 3 and illustrated it with an example. The usual scalar
formulas for the outer product form of Gaussian elimination of R = ATA can
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be obtained from Section 3 by starting with the second partial derivatives of Ω
with respect to b. Specifically, set

rij =
1

2

∂2Ω

∂bi∂bj

.

then we see from (4) that

Ω1 = Ω −
1

r11

(

1

2

∂Ω

∂b1

)2

.

It follow that

r
(1)
ij ≡

1

2

∂2Ω1

∂bi∂bj

= rij − ri1r1j/r11.

In the expression on the right, we recognize a rank one update or the outer
product form of Gaussian Elimination, in common practice today, on a matrix
whose elements are rij . This is essentially the algorithm Gauss describes in
Disquisitio, [7]. To complete the solution of the normal equations by Gaussian
Elimination, note that since

Ω =

m
∑

k=1

u2
k

rkk

+ ρ

the function Ω assumes it minimum value ρ when

u1 = u2 = . . . = um = 0

Since
0 = um = rmmbm − sm

is a linear equation involving only bm, it can be solved immediately for bm.
Having determined bm, one can solve for bm−1 from the equation

0 = um−1 = rm−1,m−1bm−1 + rm−1,mbm − sm−1.

Continuing in this manner, we can determine estimates for all the unknowns bi.
This of course is nothing more than the back substitution phase of Gaussian
elimination for a positive definite symmetric matrix.

The above description of the algorithm is incomplete, in the sense that it
does not contain the forward elimination part of Gaussian elimination. This
part comes from the formulas of Section 3, see (3) with i = 1, that give the
constant parts si of the functions ui. To see these connections it will be useful
to express the algorithm in terms of matrices. The function Ω can be written in
the form

Ω = (bT −1)

(

ATA ATy

yTA yTy

) (

b

−1

)

≡ (bT −1)

(

B c

cT η

)(

b

−1

)
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If we set

R =











r11 r12 . . . r1m

0 r22 . . . r2m

...
...

...
0 0 . . . rmm











and s =











s1

s2

...
sm











,

where the r’s and s’s are from the definitions of the function u, see again (3)
with i = 1, then it easy to verify that

(

B c

cT η

)

=

(

RT 0
sT ρ

) (

D−1 0
0 ρ−1

) (

R s

0 ρ

)

,

where
D = diag(r11, r22, . . . , rmm).

Thus, Gaussian elimination, as practiced by Gauss, amounts to factoring the
augmented cross-product matrix into the transpose of an upper triangular matrix,
a diagonal matrix and an upper triangular matrix. It is common practice today
to work with the augmented cross-product matrix.

The vector u whose components are the functions ui can be written in the
form

u = Rb − s.

The process sketched above of setting the ui to zero and back-solving amounts
to solving the triangular system

Rb = s.

3.3 The Computation of Variances

Writing in 1821, Gauss [9] summarized his and Laplace’s justifications of least
squares as follows:

– From the foregoing we that the two justifications each leave something to be
desired. The first depends entirely on the hypothetical form of the probability
of the error; as soon as that form is rejected, the values of the unknowns
produced by the method of least squares are no more the most probable
values than is the arithmetic mean in the simplest case mentioned above.
The second justification leaves us entirely in the dark about what to do
when the number of observations is not large. In that case the method of
least squares no longer has the status of a law ordained by the probability
calculus and has only the simplicity of the operations it entails to recommend
it.

In the Pars Prior of his memoir Theoria Combinationis Observationum Erroribus

Minimus Obnoxiae [12], Gauss resolved the dilemma by introducing the notion
of mean square error as a measure of variance and showing that among all linear
combinations of the observations that produced exact estimates in the absence
of error the least square estimates have the least mean square error.
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In the Pars Posterior of Theoria Combinationis [11], Gauss addresses the
problem of computing variances. He points out that his elimination method gives
only the variance of the last unknown. Since (he continues) a general elimination
to invert the normal equations is expensive, some calculators have adopted the
practice of performing the elimination with another unknown placed last 2. Gauss
says that he will give a better way.

Gauss actually gives two solutions to the problem. In the first he shows that
if one inverts the system Rb = s to get Ts = b, then the matrix V obtained by
passing from (5) to (6) can be written

V = TDTT.

Thus the diagonal elements of V can be computed as weighted sum of squares
of the row of T. Gauss gives two algorithms for Computing T, one of them
particularly advantageous when only a few variances are to be computed.

The second method is a very general result for computing the variance of an
arbitrary linear combination

t = gTb + κ

of the unknowns b. Specifically, if we pass from the variables b to the variables
u, so that t assumes the form

t = hTu + t̂,

then t̂ is the value of t at the least squares estimate of the unknowns 3, and its
variance is proportional to

hTDh.

Moreover, h may be obtained by solving the triangular system

RTh = g.

Thus Gauss reduces the problem of computing a variance to that of solving a
triangular system.

A modern practice in numerical linear algebra is to compute a matrix de-
composition and then use it in a variety of computations. The results of Gauss’s
elimination here serve as a computational platform from which both estimates
and variances can be obtained.

4 Cholesky, 1875-1918 and his Algorithm

In [3] Brezinski gives a short history of the life of Andre Marie Cholesky. He was
killed on a battle field of World War I which indeed was a tradegy! Cholesky’s

2 Laplace, for example, recommended a similar procedure in the first supplement to
his paper Théorie Analytique des Probabilités.

3 It has been asserted by H. L. Seal in Biometrika, 54:1-24, 1967 that Gauss estab-
lished that t̂ enjoyed the same minimum variance properties as the components of
b̂. Although the result is true, Gauss never proved it.
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algorithm was written down by him on December 2, 1910. We review it here
as detailed in [3, 1, 14]. Nearly 100 years transpired before Cholesky’s original
manuscript was studied and reported by Brezinski. However, Cholesky’s col-
league was Commander Benoit and he, in [1], in 1924 published a description
of Cholesky’s algorithm. Cholesky’s algorithm was used for geodesy applications
and it appears to have been developed for pinwheel type calculating machines;
e.g., Cholesky used the Dactyle machine. Cholesky calculated Gauss’s angle ad-
justments; these were formulated as an underdetermined least squares problem.
Cholesky did not use matrices even though matrices were known before he was
born. So, his invention is perhaps better understood in algebraic notation. How-
ever, we shall also carry along a matrix description to help modern readers. We
will therefore use a slightly different notation than either Cholesky and Benoit
used but also use their scalar notation so as to be compatible with their descrip-
tions. We write the so called condition equations as

a11x1 + a12x2 + . . . + a1nxn + K1 = 0
a21x1 + a22x2 + . . . + a2nxn + K2 = 0

...
...

...
...

am1x1 + am2x2 + . . . + amnxn + Km = 0

(7)

The condition equations (7) have the form Ax + K = 0 where A is a m by n
matrix, x is a n vector, K is a m vector and m < n.

b11y1 + b12y2 + . . . + b1mym + K1 = 0
b21y1 + b22y2 + . . . + b2mym + K2 = 0

...
...

...
...

bm1y1 + bm2y2 + . . . + bmmym + Km = 0

(8)

The above normal equations (8) have the form By + K = 0 where B = AAT is
a m by m positive definite symmetric matrix, and y = Ax is a m vector. Thus
bij = bji and bij is the dot product (sum of products of coefficients in the ith

and jth conditions of (7).
Cholesky’s remarkable insight was that, because many underdetermined sys-

tems share the same normal equations, for any normal equations there may be
some condition equations that can be directly solved more easily; see page 70
of [1]. He found his alternate equations in the convenient triangular form (in-
troducing new unknowns, z in place of x, and new coefficients, cij in place of
bij . The b’s come from matrix B of equations (8) above and the c’s come from
matrix C in equations (9) below.

c11z1 + + K1 = 0
c21z1 + c22z2 + K2 = 0

...
...

. . .
...

cm1z1 + cm2z2 + . . . + cmmzm + Km = 0

(9)

To get equations (9) above we let y = Cz where C is a lower triangular matrix.
Thus we find the matrix identity of CCT = B. What this says is that the positive
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definite symmetric matrix B has the provable LU matrix decomposition LLT.
Gauss gave this decomposition as UT DU = B in [13]. Cholesky discovered that
the coefficients in equation (9) are given by straightforward formulas (10); see
page 72 of [1].

cii =
√

bii −
∑i−1

k=1 c2
ik 1 ≤ i ≤ m

cji = (bji −
∑i−1

k=1 cjkcik)/cii i < j ≤ m
(10)

The solution y of the normal equations expresses the solution of the condition
equations as a linear combination of the (transposed) coefficients in the condition
equations. For Cholesky, these combinations become a system of equations to be
solved for y; see Eq. 7 of [1].

z1 = c11y1 + c21y2 + . . . + cm1ym

z2 = c22y2 + . . . + cm2ym

...
. . .

...
zm = cmmym

(11)

Because the original condition equations (7) and Cholesky’s equations (9) have
the same normal equations (8), the quantities yi are the same for both problems.
Once obtained, the yi can be used to evaluate the xi from the transpose of the
original coefficients and thereby solve the original condition equations (7). Thus
Cholesky’s method was first to form his new coefficients cij using his formulas
(10) and simultaneously solve Cz+K = 0 (equation (9)) by forward substitution
for zi. Next he solves z = CTy (equation (11)) by backward substitution for yi,
and finally he evaluates xi using equations (12) below:

x1 = a11y1 + a21y2 + . . . + am1ym

x2 = a12y1 + a22y2 + . . . + am2ym

...
...

...
...

xn = a1ny1 + a2ny2 + . . . + amnym

(12)

Above we have followed Benoit’s [1] paper as described by Grcar [14]. We have
changed their notation as follows. For our equation (7) Benoit’s equation (1) used
coefficients ai, bi, li for i = 1 to n for rows one, two and m. For our equation
(8) Benoit’s equation (5) used coefficients aj

i and vector λ for our vector y. For
our transformation (9), z = Cy, Benoit’s transformation was y = βλ.

4.1 Some Details of Cholesky’s Original Algorithm

His algorithm was given exactly like the one Benoit gave. He gave explicit de-
tails about equations (7-12) so that soldiers (they had little mathematical back-
ground) could easily follow and perform its steps using the Dactyle mechanical
caculating machine. In particular, he gave his soldiers a method for computing
a square root: xi+1 = (xi +a/xi)/2 for

√
a. This formula can be obtained by the

Newton Raphson general formula; however, it is due to Hero of Alexandria.
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5 Cracovians and Tadeusz Banachiewiez, 1882-1954

Tadeusz was born in Warsaw (Russia occupied Poland). We fast forward his life
until 1919 when Poland regained her independence. Banachiewicz then moved
to Cracow (Poland), becoming a professor at the Jagiellonian University and the
director of Cracow Observatory. In 1925, he invented a theory of ”cracovians”
(a special kind of matrix algebra) which brought him international recognition.
Cracovians introduced the idea of using AT, and multiplying the columns of AT

by the column vector x to form the matrix vector product y = Ax. Thus Cra-
covians adopted a column-row convention for designating individual elements as
opposed to the standard row-column convention of matrix analysis. This made
manual multiplication easier, as one needed to follow two parallel columns (in-
stead of a vertical column and a horizontal row in the matrix notation.) It also
sped up computer calculations, because both factors’ elements were used in a
similar order, which was more compatible with the sequential access memory in
computers of those times − mostly magnetic tape memory and drum memory.
Use of Cracovians in astronomy faded as computers with bigger random access
memory came into general use.

Using the cracovians Banachiewicz discovered general formulae of spherical
polygonometry, and like Cholesky he considerably simplified the algorithm of the
least squares method and the practice of finding solutions the systems of linear
equations. The cracovian calculus has found numerous applications in spherical
astronomy, celestial mechanics, determining orbits, and geodesy. The first orbit
of Pluto was determined at the Cracow Observatory.
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