

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

SDRAM-based packet buffer model for high speed switches

Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert; Wessing, Henrik; Yu, Hao

Published in:
Proceedings of OPNETWORK 2011

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Rasmussen, A., Ruepp, S. R., Berger, M. S., Wessing, H., & Yu, H. (2011). SDRAM-based packet buffer model
for high speed switches. In Proceedings of OPNETWORK 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13753792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/sdrambased-packet-buffer-model-for-high-speed-switches(4d4101e6-bf20-4d42-934c-53669608be40).html

 1

SDRAM-based packet buffer model for high speed switches

A. Rasmussen, S. Ruepp, M. Berger, H. Wessing, H. Yu
DTU Department of Photonics, Technical University of Denmark

E-mail: {anras,srru,msbe,hewe,haoyu}@fotonik.dtu.dk
Abstract
This article investigates the how the performance of SDRAM
based packet buffering systems for high performance switches
can be simulated using OPNET. In order to include the access
pattern dependent performance of SDRAM modules in
simulations, a custom SDRAM model is implemented in
OPNET Modeller based on the specifications of a real-life
DDR3-SDRAM chip. Based on this model the performance of
different schemes for optimizing the performance of such a
packet buffer can be evaluated. The purpose of this study is to
find efficient schemes for memory mapping of the packet queues
and I/O traffic shaping to provide the best performance in terms
of latency and throughput.

Introduction
The rapid growth of internet traffic is setting higher and higher
requirements for the throughput of the network nodes, which
route the packets through the internet. As a consequence,
significant strain is also put on the internal buffering systems, in
terms of throughput, latency and capacity. Current memory
technology such as static RAM (SRAM) and dynamic RAM
(DRAM) cannot simultaneously satisfy the requirement for high
throughput at low latency while providing the high memory
capacity required to avoid packet loss under uneven traffic
distribution. SRAM is fast enough, providing low access latency
and high throughput, but current technology limits the practical
size of these buffers to a few megabytes, which is not sufficient
for high-end systems. Another drawback is the relatively high
power requirements of such devices. DRAM chips on the other
hand can have capacities in the gigabyte region with much lower
power requirements, but have significant issues with access
latency, especially for random access patterns. This is becoming
a problem as modern line cards are moving from 10Gbps
operation towards 100Gbps operation to accommodate new
standards such as OTN4 and 100G Ethernet [6][7]. As a
consequence a lot of research has gone into more advanced
buffering architectures, which combines the two memory types
to exploit their individual advantages [2]-[4].

In this paper, we look into how OPNET can be used to simulate
these buffering schemes, either by themselves or as part of a
larger switch or router model. We put special focus on modelling
the DRAM, which is a common component for all
DRAM/SRAM based buffering systems. Unlike SRAM buffers,
the performance characteristics of DRAM cannot be easily
modelled by the build in OPNET functions such as lists and
simple queues because the read/write latency and throughput is
highly dependent on the access pattern to the memory. Hence we
need a custom made process model, which take this into
account.

The rest of the article is divided into several subsections: First,
we give a brief overview of the basic architecture and operation
of the common DRAM type called Synchronous DRAM
(SDRAM). Secondly, we will give an introduction to the basic
idea behind hybrid SRAM/DRAM buffering architectures.

Finally, we describe how this system can be modelled using
OPNET Modeller with special emphasis on modelling the
DRAM and show some results from our own model, based on a
commercially available DDR3-SDRAM chip from Micron [1].

SDRAM Overview
Synchronous DRAM is a technology which is commonly found
in personal computers around the world, usually just referred to
as the computer’s “RAM” or “main memory”. Common types of
SDRAM chips are DDR, DDR2 and DDR3 SDRAM, all of
which have the same basic structure but operate at different
speeds. In order to increase the bandwidth to the memory,
modern computers use so called DIMM modules containing
multiple SDRAM chips, which are accessed in parallel.

The model presented in this paper is based on the MT41J256M8
DDR3-SDRAM chip from Micron, but is easily modified
represent other DRAM memory modules. The chip consists of
eight memory banks, which can operate in parallel, but share the
same control logic and I/O data path. The performance of the
chip is highly dependent on the access pattern to the memory
and the proper scheduling of requests from the memory
controller, which interfaces with the SDRAM chip. Under
optimal conditions full throughput can be maintained to and
from the memory.

The individual memory banks are divided into rows and columns
as depicted in Figure 1. The distinction between rows and
columns is very important in SDRAMs, since jumping between
rows and jumping between columns have very different delay
properties. The difference between these two operations will be
explained in the following section.

 Column 0 ------------- Column M
Row 0 0/M
-
Row N N/M

Figure 1 - Bank organization

Bank functionality
Each bank has an internal state machine as depicted in Figure 2.
For simplicity, the power saving and self refresh features have
been left out.

Row Activation
The banks are initially in the idle state waiting for instructions.
Before a row of memory in a certain bank can be accessed, this
row first needs to be activated. After the activation delay
(tRCD), the bank is active and the selected row is ready to be
manipulated by read or write commands.

Read and write operations
Once the correct row has been activated, the actual read or write
operations can be performed on the columns of the row, which
in this case holds a byte each. The operations are performed in

 2

bursts of 8 bytes known as the “burst size”, which can be
concatenated to form a continuous stream of data to or from the
same row, given that the spacing between each request is small
enough, and given that the direction (read/write) is the same.
How closely the requests must be spaced depends on the
individual design of the SDRAM chip. When changing
direction, there is also a delay penalty, which must be taken into
account.

Precharging
Once the required operations on the active row have been
completed, the row has to be deactivated or precharged before
another row can be activated. After the precharge delay (tRP),
the bank enters the idle state and is ready to activate a new row.
There is no requirement to perform precharging immediately
after the last read/write operation, but the precharge delay will
add to the total activation delay when accessing a row, if a
previous row has been left active.

Figure 2 - Simplified SDRAM Bank State Diagram [1]

SRAM/DRAM hybrid system
The basic idea behind the SRAM/DRAM buffering system
depicted in Figure 3 is somewhat similar to the concept of
caches commonly used in computer systems [2] [8]. When
packets arrive, they are first stored in a small SRAM based FIFO
queue (Tail FIFO). Once a sufficient amount of data has been
collected, the content of the FIFO is moved to the DRAM in one
consecutive write burst, thus freeing up the SRAM memory. In a
similar fashion, the packets are moved in read bursts from the
DRAM to the Head FIFO before departure. The purpose of this
three step FIFO system is to keep the bulk of the buffered
packets in the large low-cost DRAM memory, while maintaining
just enough data in the Head FIFO to compensate for the access
latency of the DRAM read bursts, thus reducing the amount of
SRAM required for congestion handling.

Figure 3 - SRAM/DRAM Packet Buffer

SDRAM OPNET model
The SRAM/DRAM packet buffer can be modeled in OPNET as
depicted in Figure 4. To facilitate integration with existing
switch and router models, such as the depicted line card, the
head- and tail FIFOs are implemented as generic FIFO queues,
which can be accessed from the top level process model as well
as the underlying child processes. From here, the Packet Buffer
Model (PBM) will control the flow of packets from the tail FIFO
to the head FIFO through the SDRAM. Exactly how the PBM
performs this task and how well it performs will depend on the
modeled buffer design which is to be investigated.

Figure 4 – Line card Model

Communication with the SDRAM is done using a custom packet
format, as depicted in Figure 5. These packets contain a
command field specifying the type of operation (e.g. activate,
precharge, read, write) as well as the bank, row and column
number and an optional payload. The SDRAM model will then
perform the operation with a latency corresponding to that of a
physical SDRAM device and, in case of a read or write
command, reply back to the parent process. The SDRAM model
itself does not need to hold actual data packets (these could be
stored elsewhere in the PBM), as long as the PBM generates the
proper command sequence to the SDRAM and waits for a
read/write reply to return before moving the actual packet.

Figure 5 - SDRAM packet format

 3

Figure 6 - Process Model of Simplified SDRAM Bank State
Machine

The SDRAM model is implemented as a root process called the
“dispatcher” with eight child processes – one for each bank. The
dispatcher forwards the requests to the relevant banks based on
the bank number found in the request packet header. The shared
I/O data bus, which limits the active read/write operation to one
bank at the time is currently not implemented, but can be
handled by either the dispatcher or its parent process.

The state diagram for the bank processes model is depicted in
Figure 6. Aside from some extra logic for queuing arriving
requests, which cannot be handled right away it is virtually
identical to the state diagram from the SDRAM documentation
(Figure 2). The process model stays in the idle state after
initialization. Once it receives a request packet containing an
“activate” command, it activates the specified row by moving on
to the “Activating” state. It stays there for a number of
nanoseconds determined by the specified activation delay
(tRCD) before moving to the “Bank Active” state. The process
model is now ready to manipulate the activated row according to
the subsequent requests received from the parent process by
moving between the five other states. When the required
operations have been performed, the row can be closed again by
issuing a “precharge” request (PreReq). This puts the process
model in the “Precharge” state, which automatically moves back
to the “Idle” state after the precharge delay (tRP) has expired.
Precharging can also be performed by issuing a Write-Precharge
(WrpReq) or a Read-Precharge (RdpReq) request, which is

simply a write or read command, which automatically
precharges the bank once the write/read operation is completed.

When ever the system changes its state (e.g. from Reading to
Writing), it will delay further action until the operation is
completed. This delay is implemented as simple self-interrupts
and is completely dependent on the current and the next state of
the system. Hence, moving from “Bank Active” to “Writing” has
a different latency than moving from “Reading” to “Writing” as
is also the case for the physical SDRAM chip. The different
delays when moving between states is listed in Table 2 in terms
of the chip dependent delay constants listed in Table 1.

Shorthand Name Description
tRCD Activation delay Time it takes to activate a

row from idle
tRP Precharge delay Time it takes to deactivate

a row and return to idle
CL CAS Latency Time from read/write

request until first byte is
ready on the input/output

tTurnRD Turnaround delay
(rd-to-write)

Delay penalty when
changing I/O direction

tTurnWR Turnaround delay
(write-to-rd)

Delay penalty when
changing I/O direction

tRDWR Read/Write delay Time it takes to actively
read/write 8B of data

tRTP Read-to-Precharge
delay

Time from a read
command has been issued
to a precharge command
can be issued.

tWR Write recovery
delay

Delay from last byte has
been written until
precharging can start

Table 1 - List of delay types

From To Delay
Idle Bank Active tRCD
Bank Active Idle tRP
Bank Active Read/Write CL
Read Read/ReadPre tRDWR
Write Write/WritePre tRDWR
Read Write tTurnRD
Write Read tTurnWR
Write/WritePre Idle tRDWR+tWR+tRP
Read/ReadPre Idle tRTP+tRP

Table 2 - Path delays

Results and Verification
In order to verify and validate the SDRAM model, a simple
client model has been developed, which consists of a request
source and a reply sink as depicted in Figure 7. The request
source transmits a repetitive pattern of requests to the memory
module (e.g. activate, write, read, precharge). The corresponding
replies from the memory is then received by the reply sink and
validated based on the bank/row/column address and the
payload, which is a function of the address fields.

 4

Figure 7 - Verification node model

By changing the traffic pattern generated by the request source,
the functionality of the model i.e. whether the system jumps
correctly between states and performs the correct read/write
operations is easily verified. Furthermore, the time accuracy of
the model can be verified by comparing the measured maximum
throughput with the expected maximum throughput for various
traffic patterns. Since the sharing of the I/O data bus used for
reading and writing is not yet implemented, the verification and
results described below are based on accessing a single memory
bank.

Verification
Figure 8, Figure 9 and Figure 10 shows the throughput of one
memory bank for two different access patterns emulating
random access (red line) and bursty access (blue line)
respectively as the request rate (packets/s) increases. As
expected, the bursty access pattern yields a significantly higher
maximum throughput compared to the random access pattern.
The reason becomes clear when we look at the request patterns
and their respective delay listed in Table 3 and Table 4.

Table 3 - Random Access Pattern

Request Delay Delay

(additive)
Activate tRCD=15 ns 15ns
49x Write 1x CL(5ns) + 49x tRDWR(4ns) =

201ns
216ns

49x Read tTurnWR(4ns) + 49x tRDWR(4ns) =
196ns

416ns

Read-Pre tRTP(8) - tRDWR(4ns) + tRP (10ns)
= 14ns

 430ns

Table 4 - Bursty Access Pattern

Based on the cycle time of the access patterns and the amount of
read (or write) operations performed in each cycle, we can
calculate the theoretical maximum throughput of the two
patterns:

Random Access Pattern
Cycle time: = 134ns
Cycles per second: 1s/134ns = 7,462,687
Read bits/cycle: 3x64bit = 192 bits
Throughput (bps): 192bits x 7,462,687 = 1,433 Mbps

Bursty Access Pattern
Cycle time: = 430ns
Cycles per second: 1s/430ns = 2,325,581
Read bits/cycle: 50x64bit = 192 bits
Throughput (bps): 3.200bits x 2,325,581 = 7,442 Mbps

Figure 8 - Throughput vs. Request rate with two different
access patterns

Figure 9 - Zoom of “Bursty Access Pattern”

Request Delay Delay
(additive)

Activate tRCD=15 ns 15ns
2x Write CL(5ns) + 2x tRDWR(4ns) = 13ns 28ns
Read tTurnWR(4ns) + tRDWR(4ns) = 8ns 36ns
Read-Pre tRTP(8ns) + tRP (10ns) = 18 ns 54ns
Activate tRCD = 15 ns 69ns
Write-Pre CL(5ns) + tRDWR(4ns) + tWR(8ns)

+ tRP(10ns) = 27ns
96ns

Activate tRCD = 15ns 111ns
Read CL(5ns) + tRDWR(4ns) = 9ns 120ns
Precharge tRTP(8) + tRP (10ns) - tRDWR(4ns)

= 14ns
 134ns

 5

Figure 10 - Zoom of " Random Access Pattern"

By visual inspection of the throughput statistics on the previous
page, it can be verified that the model accurately reproduces the
delay found in a physical memory bank, which limits the
maximum obtainable throughput.

Conclusion
In this paper, we have shown how a SRAM/DRAM buffering
system can be modelled using OPNET with special emphasis on
modelling the access pattern dependent performance of the
DRAM. To this end, we have successfully implemented and
verified a DRAM model based on a DDR3-SDRAM chip from
Micron, which is easily modified to simulate other DRAM
memory chips if needed. The emphasis has been on accurately
reproducing the access pattern dependent delay inside the
memory chip and hence, the penalty in terms of lower
throughput and higher latency which is encountered for non-
optimal access patterns. The model is designed to emulate a
memory module with eight memory banks, but since the sharing
of the I/O data bus between the banks is yet to be accurately
implemented, the verification and results presented in this report
is based on access to a single memory bank. The performance
profile for this bank has been tested using two different access
patterns and it has been verified, that the throughput the matches

the expected values derived by manual calculation from the
datasheet. The next step is to include the I/O sharing and
perform the same verification using multiple banks. Once the
complete model is verified, the SDRAM process model can be
used as part of larger packet buffer models aimed at measuring
the performance of different SDRAM-based buffering schemes
for network nodes operating at 100Gbps and beyond.

Acknowledgment
This work has been partially supported by the Danish Advanced
Technology Foundation (Højteknologifonden) through the
research project ”The Road to 100 Gigabit Ethernet”.

References
[1] Micron MT41J256M8 DDR3 SDRAM datasheet:

http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR
3_SDRAM.pdf, 2006.

[2] F. Wang, M. Hamdi, “Memory Subsystems In High End Routers”,

IEEE Micro, vol. 29, pp. 52-63, 2009.

[3] S. Iyer, R. Kompella, and N. McKeown,” Designing Packet
Buffers for Router Line Cards IEEE/ACM Transactions on
Networking, Volume 16, Issue 3, pp. 705-717, 2008

[4] J. Garcìa-Vidal, Llorenç¸ Cerdà , J. Corbal, M. Valero, ‘‘A
DRAM/SRAM Memory Scheme for Fast Packet Buffers,’’ IEEE
Trans. Computers, vol. 55, no. 5, pp. 588-602, May 2006.

[5] C. Hermsmeyer, H. Song, R. Schlenk, R. Gemelli,,S. Bunse,
”Towards 100G Packet Processing: Chalenges and Technologies”,
Bell Labs Technical Journal vol. 14, issue. 2, pp. 57–80, 2009.

[6] LAN/MAN Standards Committee of the IEEE Computer Society,
“IEEE p802.3ba D2.1 - Amendment: Media Access Control
parameters, physical layers and management parameters for 40
gb/s and 100 gb/s operation,”, 2009.

[7] ITU-T Recommendation G.709/Y.1331 (12/09), Interfaces for the
optical transport network (OTN), ITU-T, Geneva, December,
2009.

[8] D. A. Patterson, J. L. Hennessy, “Computer Organization and
Design – The Hardware/Software Interface”, Third Edition, ISBN:
1-55860-604-1, 2005.

