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Abstract 
This article investigates the how the performance of SDRAM 
based packet buffering systems for high performance switches 
can be simulated using OPNET. In order to include the access 
pattern dependent performance of SDRAM modules in 
simulations, a custom SDRAM model is implemented in 
OPNET Modeller based on the specifications of a real-life 
DDR3-SDRAM chip. Based on this model the performance of 
different schemes for optimizing the performance of such a 
packet buffer can be evaluated. The purpose of this study is to 
find efficient schemes for memory mapping of the packet queues 
and I/O traffic shaping to provide the best performance in terms 
of latency and throughput.  
 
Introduction 
The rapid growth of internet traffic is setting higher and higher 
requirements for the throughput of the network nodes, which 
route the packets through the internet. As a consequence, 
significant strain is also put on the internal buffering systems, in 
terms of throughput, latency and capacity. Current memory 
technology such as static RAM (SRAM) and dynamic RAM 
(DRAM) cannot simultaneously satisfy the requirement for high 
throughput at low latency while providing the high memory 
capacity required to avoid packet loss under uneven traffic 
distribution. SRAM is fast enough, providing low access latency 
and high throughput, but current technology limits the practical 
size of these buffers to a few megabytes, which is not sufficient 
for high-end systems. Another drawback is the relatively high 
power requirements of such devices. DRAM chips on the other 
hand can have capacities in the gigabyte region with much lower 
power requirements, but have significant issues with access 
latency, especially for random access patterns. This is becoming 
a problem as modern line cards are moving from 10Gbps 
operation towards 100Gbps operation to accommodate new 
standards such as OTN4 and 100G Ethernet [6][7]. As a 
consequence a lot of research has gone into more advanced 
buffering architectures, which combines the two memory types 
to exploit their individual advantages [2]-[4].  
 
In this paper, we look into how OPNET can be used to simulate 
these buffering schemes, either by themselves or as part of a 
larger switch or router model. We put special focus on modelling 
the DRAM, which is a common component for all 
DRAM/SRAM based buffering systems. Unlike SRAM buffers, 
the performance characteristics of DRAM cannot be easily 
modelled by the build in OPNET functions such as lists and 
simple queues because the read/write latency and throughput is 
highly dependent on the access pattern to the memory. Hence we 
need a custom made process model, which take this into 
account.  
 
The rest of the article is divided into several subsections: First, 
we give a brief overview of the basic architecture and operation 
of the common DRAM type called Synchronous DRAM 
(SDRAM). Secondly, we will give an introduction to the basic 
idea behind hybrid SRAM/DRAM buffering architectures. 

Finally, we describe how this system can be modelled using 
OPNET Modeller with special emphasis on modelling the 
DRAM and show some results from our own model, based on a 
commercially available DDR3-SDRAM chip from Micron [1].  
 
SDRAM Overview 
Synchronous DRAM is a technology which is commonly found 
in personal computers around the world, usually just referred to 
as the computer’s “RAM” or “main memory”. Common types of 
SDRAM chips are DDR, DDR2 and DDR3 SDRAM, all of 
which have the same basic structure but operate at different 
speeds. In order to increase the bandwidth to the memory, 
modern computers use so called DIMM modules containing 
multiple SDRAM chips, which are accessed in parallel.  
 
The model presented in this paper is based on the MT41J256M8 
DDR3-SDRAM chip from Micron, but is easily modified 
represent other DRAM memory modules. The chip consists of 
eight memory banks, which can operate in parallel, but share the 
same control logic and I/O data path. The performance of the 
chip is highly dependent on the access pattern to the memory 
and the proper scheduling of requests from the memory 
controller, which interfaces with the SDRAM chip. Under 
optimal conditions full throughput can be maintained to and 
from the memory.  
 
The individual memory banks are divided into rows and columns 
as depicted in Figure 1. The distinction between rows and 
columns is very important in SDRAMs, since jumping between 
rows and jumping between columns have very different delay 
properties. The difference between these two operations will be 
explained in the following section.  
 
 Column 0 ------------- Column M 
Row 0   0/M 
-    
Row N   N/M 

Figure 1 - Bank organization 

 
Bank functionality 
Each bank has an internal state machine as depicted in Figure 2. 
For simplicity, the power saving and self refresh features have 
been left out.  
 
Row Activation 
The banks are initially in the idle state waiting for instructions. 
Before a row of memory in a certain bank can be accessed, this 
row first needs to be activated. After the activation delay 
(tRCD), the bank is active and the selected row is ready to be 
manipulated by read or write commands.  
 
Read and write operations 
Once the correct row has been activated, the actual read or write 
operations can be performed on the columns of the row, which 
in this case holds a byte each. The operations are performed in 
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bursts of 8 bytes known as the “burst size”, which can be 
concatenated to form a continuous stream of data to or from the 
same row, given that the spacing between each request is small 
enough, and given that the direction (read/write) is the same. 
How closely the requests must be spaced depends on the 
individual design of the SDRAM chip. When changing 
direction, there is also a delay penalty, which must be taken into 
account.  
 
Precharging 
Once the required operations on the active row have been 
completed, the row has to be deactivated or precharged before 
another row can be activated. After the precharge delay (tRP), 
the bank enters the idle state and is ready to activate a new row. 
There is no requirement to perform precharging immediately 
after the last read/write operation, but the precharge delay will 
add to the total activation delay when accessing a row, if a 
previous row has been left active.  
 

 

Figure 2 - Simplified SDRAM Bank State Diagram [1] 

 
SRAM/DRAM hybrid system 
The basic idea behind the SRAM/DRAM buffering system 
depicted in Figure 3 is somewhat similar to the concept of 
caches commonly used in computer systems [2] [8]. When 
packets arrive, they are first stored in a small SRAM based FIFO 
queue (Tail FIFO). Once a sufficient amount of data has been 
collected, the content of the FIFO is moved to the DRAM in one 
consecutive write burst, thus freeing up the SRAM memory. In a 
similar fashion, the packets are moved in read bursts from the 
DRAM to the Head FIFO before departure. The purpose of this 
three step FIFO system is to keep the bulk of the buffered 
packets in the large low-cost DRAM memory, while maintaining 
just enough data in the Head FIFO to compensate for the access 
latency of the DRAM read bursts, thus reducing the amount of 
SRAM required for congestion handling.  

Figure 3 - SRAM/DRAM Packet Buffer 

 
SDRAM OPNET model 
The SRAM/DRAM packet buffer can be modeled in OPNET as 
depicted in Figure 4. To facilitate integration with existing 
switch and router models, such as the depicted line card, the 
head- and tail FIFOs are implemented as generic FIFO queues, 
which can be accessed from the top level process model as well 
as the underlying child processes. From here, the Packet Buffer 
Model (PBM) will control the flow of packets from the tail FIFO 
to the head FIFO through the SDRAM. Exactly how the PBM 
performs this task and how well it performs will depend on the 
modeled buffer design which is to be investigated.  
 

 

Figure 4 – Line card Model 

 
Communication with the SDRAM is done using a custom packet 
format, as depicted in Figure 5. These packets contain a 
command field specifying the type of operation (e.g. activate, 
precharge, read, write) as well as the bank, row and column 
number and an optional payload. The SDRAM model will then 
perform the operation with a latency corresponding to that of a 
physical SDRAM device and, in case of a read or write 
command, reply back to the parent process. The SDRAM model 
itself does not need to hold actual data packets (these could be 
stored elsewhere in the PBM), as long as the PBM generates the 
proper command sequence to the SDRAM and waits for a 
read/write reply to return before moving the actual packet.  
 

 

Figure 5 - SDRAM packet format 
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Figure 6 - Process Model of Simplified SDRAM Bank State 
Machine 

The SDRAM model is implemented as a root process called the 
“dispatcher” with eight child processes – one for each bank. The 
dispatcher forwards the requests to the relevant banks based on 
the bank number found in the request packet header. The shared 
I/O data bus, which limits the active read/write operation to one 
bank at the time is currently not implemented, but can be 
handled by either the dispatcher or its parent process.  
 
The state diagram for the bank processes model is depicted in 
Figure 6.  Aside from some extra logic for queuing arriving 
requests, which cannot be handled right away it is virtually 
identical to the state diagram from the SDRAM documentation 
(Figure 2). The process model stays in the idle state after 
initialization. Once it receives a request packet containing an 
“activate” command, it activates the specified row by moving on 
to the “Activating” state. It stays there for a number of 
nanoseconds determined by the specified activation delay 
(tRCD) before moving to the “Bank Active” state. The process 
model is now ready to manipulate the activated row according to 
the subsequent requests received from the parent process by 
moving between the five other states. When the required 
operations have been performed, the row can be closed again by 
issuing a “precharge” request (PreReq). This puts the process 
model in the “Precharge” state, which automatically moves back 
to the “Idle” state after the precharge delay (tRP) has expired. 
Precharging can also be performed by issuing a Write-Precharge 
(WrpReq) or a Read-Precharge (RdpReq) request, which is 

simply a write or read command, which automatically 
precharges the bank once the write/read operation is completed.  
 
When ever the system changes its state (e.g. from Reading to 
Writing), it will delay further action until the operation is 
completed. This delay is implemented as simple self-interrupts 
and is completely dependent on the current and the next state of 
the system. Hence, moving from “Bank Active” to “Writing” has 
a different latency than moving from “Reading” to “Writing” as 
is also the case for the physical SDRAM chip. The different 
delays when moving between states is listed in Table 2 in terms 
of the chip dependent delay constants listed in Table 1.   
 
Shorthand Name Description 
tRCD Activation delay Time it takes to activate a 

row from idle 
tRP Precharge delay Time it takes to deactivate 

a row and return to idle 
CL CAS Latency Time from read/write 

request until first byte is 
ready on the input/output 

tTurnRD Turnaround delay 
(rd-to-write) 

Delay penalty when 
changing I/O direction 

tTurnWR Turnaround delay 
(write-to-rd) 

Delay penalty when 
changing I/O direction 

tRDWR Read/Write delay Time it takes to actively 
read/write 8B of data 

tRTP Read-to-Precharge 
delay 

Time from a read 
command has been issued 
to a precharge command 
can be issued.  

tWR Write recovery 
delay 

Delay from last byte has 
been written until 
precharging can start 

Table 1 - List of delay types 

 
From To Delay 
Idle Bank Active tRCD 
Bank Active Idle tRP 
Bank Active Read/Write CL 
Read Read/ReadPre tRDWR 
Write Write/WritePre tRDWR 
Read Write tTurnRD 
Write Read tTurnWR 
Write/WritePre Idle tRDWR+tWR+tRP 
Read/ReadPre Idle tRTP+tRP 

Table 2 - Path delays 

 
Results and Verification 
In order to verify and validate the SDRAM model, a simple 
client model has been developed, which consists of a request 
source and a reply sink as depicted in Figure 7. The request 
source transmits a repetitive pattern of requests to the memory 
module (e.g. activate, write, read, precharge). The corresponding 
replies from the memory is then received by the reply sink and 
validated based on the bank/row/column address and the 
payload, which is a function of the address fields.  
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Figure 7 - Verification node model 

 
By changing the traffic pattern generated by the request source, 
the functionality of the model i.e. whether the system jumps 
correctly between states and performs the correct read/write 
operations is easily verified. Furthermore, the time accuracy of 
the model can be verified by comparing the measured maximum 
throughput with the expected maximum throughput for various 
traffic patterns. Since the sharing of the I/O data bus used for 
reading and writing is not yet implemented, the verification and 
results described below are based on accessing a single memory 
bank.  
 
Verification 
Figure 8, Figure 9 and Figure 10 shows the throughput of one 
memory bank for two different access patterns emulating 
random access (red line) and bursty access (blue line) 
respectively as the request rate (packets/s) increases. As 
expected, the bursty access pattern yields a significantly higher 
maximum throughput compared to the random access pattern. 
The reason becomes clear when we look at the request patterns 
and their respective delay listed in Table 3 and Table 4.  
 

Table 3 - Random Access Pattern 

 
Request Delay Delay 

(additive) 
Activate tRCD=15 ns 15ns 
49x Write 1x CL(5ns) + 49x tRDWR(4ns) = 

201ns 
216ns 

49x Read tTurnWR(4ns) + 49x tRDWR(4ns) = 
196ns 

416ns 

Read-Pre tRTP(8) - tRDWR(4ns) + tRP (10ns) 
= 14ns 

 430ns 

Table 4 - Bursty Access Pattern 

Based on the cycle time of the access patterns and the amount of 
read (or write) operations performed in each cycle, we can 
calculate the theoretical maximum throughput of the two 
patterns:  
 

Random Access Pattern 
Cycle time:  = 134ns 
Cycles per second: 1s/134ns =   7,462,687 
Read bits/cycle: 3x64bit =   192 bits 
Throughput (bps): 192bits x 7,462,687 =  1,433 Mbps 
 
Bursty Access Pattern 
Cycle time:  = 430ns 
Cycles per second: 1s/430ns =   2,325,581 
Read bits/cycle: 50x64bit  =   192 bits 
Throughput (bps): 3.200bits x 2,325,581 = 7,442 Mbps 
 
 

 

Figure 8 - Throughput vs. Request rate with two different 
access patterns 

 

 

Figure 9 - Zoom of “Bursty Access Pattern” 

 
 

Request Delay Delay 
(additive) 

Activate tRCD=15 ns 15ns 
2x Write CL(5ns) + 2x tRDWR(4ns) = 13ns 28ns 
Read tTurnWR(4ns) + tRDWR(4ns) = 8ns 36ns 
Read-Pre tRTP(8ns) + tRP (10ns) = 18 ns 54ns 
Activate tRCD = 15 ns 69ns 
Write-Pre CL(5ns) + tRDWR(4ns) + tWR(8ns) 

+ tRP(10ns) = 27ns 
96ns 

Activate tRCD = 15ns 111ns 
Read CL(5ns) + tRDWR(4ns)  = 9ns 120ns 
Precharge tRTP(8) + tRP (10ns) - tRDWR(4ns) 

= 14ns 
 134ns 
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Figure 10 - Zoom of " Random Access Pattern" 

By visual inspection of the throughput statistics on the previous 
page, it can be verified that the model accurately reproduces the 
delay found in a physical memory bank, which limits the 
maximum obtainable throughput.  
 
Conclusion 
In this paper, we have shown how a SRAM/DRAM buffering 
system can be modelled using OPNET with special emphasis on 
modelling the access pattern dependent performance of the 
DRAM. To this end, we have successfully implemented and 
verified a DRAM model based on a DDR3-SDRAM chip from 
Micron, which is easily modified to simulate other DRAM 
memory chips if needed. The emphasis has been on accurately 
reproducing the access pattern dependent delay inside the 
memory chip and hence, the penalty in terms of lower 
throughput and higher latency which is encountered for non-
optimal access patterns. The model is designed to emulate a 
memory module with eight memory banks, but since the sharing 
of the I/O data bus between the banks is yet to be accurately 
implemented, the verification and results presented in this report 
is based on access to a single memory bank. The performance 
profile for this bank has been tested using two different access 
patterns and it has been verified, that the throughput the matches 

the expected values derived by manual calculation from the 
datasheet. The next step is to include the I/O sharing and 
perform the same verification using multiple banks. Once the 
complete model is verified, the SDRAM process model can be 
used as part of larger packet buffer models aimed at measuring 
the performance of different SDRAM-based buffering schemes 
for network nodes operating at 100Gbps and beyond.  
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