

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Qualitative and Quantitative Security Analyses for ZigBee Wireless Sensor Networks

Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Yuksel, E., Nielson, H. R., & Nielson, F. (2011). Qualitative and Quantitative Security Analyses for ZigBee
Wireless Sensor Networks. Kgs. Lyngby, Denmark: Technical University of Denmark (DTU). (IMM-PHD-2011;
No. 247).

http://orbit.dtu.dk/en/publications/qualitative-and-quantitative-security-analyses-for-zigbee-wireless-sensor-networks(2644440f-9dc8-482d-b13d-58be4decdab1).html

Qualitative and Quantitative
Security Analyses for ZigBee

Wireless Sensor Networks

Ender Yüksel

Kongens Lyngby 2011
IMM-PHD-2011-247

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

Wireless sensor networking is a challenging and emerging technology that will
soon become an inevitable part of our modern society. Today wireless sensor
networks are broadly used in industrial and civilian application areas includ-
ing environmental monitoring, surveillance tasks, healthcare applications, home
automation, and traffic control.

The challenges for research in this area are due to the unique features of wireless
sensor devices such as low processing power and associated low energy. On top
of this, wireless sensor networks need secure communication as they operate
in open fields or unprotected environments and communicate on broadcasting
technology. As a result, such systems have to meet a multitude of quantitative
constraints (e.g. timing, power consumption, memory usage, communication
bandwidth) as well as security requirements (e.g. authenticity, confidentiality,
integrity).

One of the main challenges arise in dealing with the security needs of such
systems where it is less likely that absolute security guarantees can be sustained
– because of the need to balance security against energy consumption in wireless
sensor network standards like ZigBee.

This dissertation builds on existing methods and techniques in different areas
and brings them together to create an efficient verification system. The overall
ambition is to provide a wide range of powerful techniques for analyzing models
with quantitative and qualitative security information.

We stated a new approach that first verifies low level security protocols in a

ii

qualitative manner and guarantees absolute security, and then takes these ver-
ified protocols as actions of scenarios to be verified in a quantitative manner.
Working on the emerging ZigBee wireless sensor networks, we used probabilistic
verification that can return probabilistic results with respect to the trade–off
between security and performance.

In this sense, we have extended various existing ideas and also proposed new
ideas to improve verification. Especially in the problem of key update, we believe
we have contributed to the solution for not only wireless sensor networks but
also many other types of systems that require key updates. Besides we produced
automated tools that were intended to demonstrate what kind of tools can
developed on different purposes and application domains.

Resumé

Tr̊adløse sensor netværk er en udfordrende og ny teknologi, der snart vil blive
en uundg̊aelig del af vores moderne samfund. I dag anvendes tr̊adløse sen-
sor netværk bredt i industrielle og civile anvendelsesomr̊ader, herunder miljø-
overv̊agning, tilsynsopgaver, sundhedsprodukter, home automation, og trafik
kontrol.

Udfordringerne for forskningen p̊a dette omr̊ade skyldes de unikke egenskab-
ber ved tr̊adløse sensor enheder, s̊asom lav processorkraft og tilhørende lavt
energiforbrug. Yderligere er tr̊adløse sensor netværk nødt til at understøtte
sikker kommunikation, da de opererer i åbne omr̊ader eller ubeskyttede miljøer
og kommunikerer vha. radio-teknologi. Som en følge heraf er disse systemer
nødt til at opfylde en lang række af de kvantitative begrænsninger (f.eks timing,
strømforbrug, hukommelsesforbrug, kommunikation b̊andbredde) s̊a vels som
sikkerhedsmæssige krav (f.eks autentifikation, fortrolighed, integritet).

En af hoved udfordringerne er at opn̊a det rette niveau af sikkerhed i s̊adanne
systemer, hvor det er usandsynligt, at absolutte sikkerheds garantier kan opret-
holdes – p̊a grund af behovet for at afbalancere sikkerhed mod energiforbruget
i tr̊adløse sensor netværk standarder som ZigBee.

Denne afhandling bygger p̊a eksisterende metoder og teknikker inden for forskel-
lige omr̊ader og bringer dem sammen med henblik p̊a at skabe et effektivt veri-
fikationssystem. Den overordnede ambition er at give en bred vifte af kraftfulde
teknikker til at analysere modeller med kvantitative og kvalitative sikkerhedso-
plysninger.

Vi præsenterer en ny tilgang, der først verificerer lav-niveau sikkerheds pro-

iv

tokoller p̊a en kvalitativ m̊ade og garanterer absolut sikkerhed, og derefter
tager disse verificerede protokoller som aktioner i scenarier, der derefter verifi-
ceres kvantitativt. Med udgangspunkt i de nye ZigBee tr̊adløse sensor netværk,
benytter vi probabilistisk verifikation – og dermed f̊ar vi et probabilistisk indblik
i et trade-off mellem sikkerhed og ydeevne.

Vi har s̊aledes udvidet forskellige eksisterende ideer og foresl̊aet nye ideer til
forbedring af verifikationen. Specielt mener vi at vi for problemet med nøgle-
opdatering har bidraget til en løsning for ikke blot tr̊adløse sensor netværk, men
ogs̊amange andre typer af systemer, der kræver nøgle-opdateringer. Derudover
har vi produceret automatiserede værktøjer, der har til form̊al at vise, hvad
slags værktøjer der kan udvikles for forskellige form̊al og anvendelsesomr̊ader.

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling, the Technical University of Denmark in partial fulfillment of the
requirements for acquiring the Ph.D. degree in Computer Science.

The Ph.D study has been carried out under the supervision of Professor Hanne
Riis Nielson and Professor Flemming Nielson in the period of September 2007
to January 2011 (excluding the leave of absence period from January 2010 to
May 2010).

Most of the work behind this dissertation has been carried out independently
and I take full responsibility for its contents. A part of the scientific work
in this thesis is based on our published work in [YNN08, YNN09a, YNN09b,
YNN10a, YNN11a] with my two supervisors as co-authors. Another part is
based on our published work in [YNN+10b, YNN11c] in collaboration with
Marta Kwiatkowska and Matthias Fruth from Oxford University. In addition,
a part from this thesis is under submission to a conference [YNN11b].

Lyngby, January 2011

Ender Yüksel

vi

Acknowledgements

First and foremost, my thanks go to my supervisors, Hanne Riis Nielson and
Flemming Nielson, without whose support, guidance and enthusiasm this work
would never have been completed. I consider myself very lucky to be working
with them since my master thesis, and I am grateful to them for providing
me with the opportunities to work on important research projects and teach
stimulating courses.

I would like to thank Marta Kwiatkowska, Matthias Fruth, Dave Parker, Gethin
Norman, and all other members of Quantitative Analysis and Verification at
Oxford University for their guidance and support during my stay in Oxford and
since then.

I would like to thank Gavin Lowe from Oxford University for good advice and
interesting discussions on my work with security protocols.

I would also like to thank Robert Cragie from ZigBee Alliance, for his generous
technical help in my work on ZigBee.

Thanks must go to Bo Friis Nielsen, Luz Esparza, and Kebin Zeng from Math-
ematical Statistics group at DTU, and all members of the MT-LAB project for
their close collaboration and comments on various parts of my work.

I am also indebted to MT-LAB and SENSORIA projects, together with FIRST
and ITMAN PhD schools since I was engaged to and supported by these bodies
during my PhD studies.

viii

I would like to thank Mehmet Bülent Örencik from Technical University of
Istanbul who has been my role model and inspiration to continue for an academic
carrieer.

I want to thank current and former members of the Language-Based Technology
group at DTU: Alejandro M. Hernandez, Carroline D.P.K. Ramli, Christian W.
Probst, Christoffer R. Nielsen, Eva Bing, Fan Yang, Fuyuan Zhang, Han Gao,
Henrik Pilegaard, Jose N.C. Quaresma, Jörg Kreiker, Lijun Zhang, Marian S.
Adler, Matthieu S.B. Queva, Michael J.A. Smith, Michal T. Terepata, Nataliya
Skrypnyuk, Piotr Filipiuk, Sebastian Nanz, Sebastian A. Mödersheim, Ye Zhang
for creating a friendly and stimulating working environment.

I am grateful to the members of my thesis assessment committee, Fabio Mar-
tinelli, Jan Madsen, and Stephen Gilmore for accepting to read and review this
thesis and for their valuable comments.

Special thanks go to my colleagues on the board of DTU PhD Association,
especially Zaza Nadja Lee Hansen, Lirong Yang, Ilka Hoof, Peter Larsen, Ar-
shad Saleem, Yu Chen and Yifan Hu, together with whom we have carried out
significant and at the same time exciting tasks.

I would also like to thank Michael Reibel Boesen from DTU Informatics for
helping me with Danish in this thesis.

Finally and most importantly, I would like to thank my family and my fiancée
Sanem for their never–ending love and support even from miles away. I would
like to devote this thesis to them, and hope that they would forgive me for
stealing the time for beloved ones and spend it for research instead.

Kongens Lyngby, January 2011

Ender Yüksel

ix

x Contents

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1

1.1 Motivation . 4

1.2 Background . 5

1.3 Related Work . 12

1.4 Outline . 15

I Qualitative Analysis 20

2 Modelling Protocols 21

2.1 From Specification To Procedures 22

2.2 From Procedures To Protocols 38

2.3 Vulnerabilities . 43

3 Analysing Protocols 45

3.1 An Overview of the Analysis Method 46

3.2 Modelling in LySa Process Calculus 47

3.3 Static Program Analysis . 51

3.4 Application on ZigBee Wireless Sensor networks 59

3.5 Discussion . 68

xii CONTENTS

II Quantitative Analysis 70

4 Preliminaries for Stochastic Model Checking 71
4.1 An Overview of Model Checking 72
4.2 Modelling . 73
4.3 Property Specification . 78
4.4 Model Checking . 84
4.5 Bisimulation . 92

5 Modelling Scenarios 95
5.1 Problem and Solution Approach 96
5.2 Setting the Scene . 97
5.3 Developing A Stochastic Model 101

6 Analysing Scenarios 121
6.1 Optimising Key Confidentiality 122
6.2 Optimising Recovery From Key Compromise 130
6.3 Optimising Efficiency of Key Updates 138

III Case Studies 144

7 Case Study: Optimal Key Update Strategy 145
7.1 Deriving Advice From Stochastic Model Checking 145
7.2 Improving Key Update Models and Their Quantitative Verification156

8 Case Study: Comparison of Key Update Methods 165
8.1 Purpose of the Study . 165
8.2 Constructing An Analysis . 167
8.3 Quantitative Analysis Results . 171
8.4 Evaluation of the Key Update Methods 184
8.5 A Proposal of An Adaptive Key Update Mechanism for Resource-

Critical Networks . 187

IV Automated Tools for Analyses 190

9 A Toolkit for LB Key Updates 191
9.1 Introduction . 192
9.2 Setting up the Scene . 193
9.3 Deriving the Stochastic Model . 196
9.4 Model Checking Computations 201
9.5 Specific Technicalities in Computation 203
9.6 Design of the Toolkit . 204
9.7 Demonstration . 207

CONTENTS xiii

10 Automated Tools Utilizing Present Technologies 215
10.1 Automating the Decision on Key Update: Key Update Assistant 216
10.2 Protocol Verifier . 223

11 Conclusion 231
11.1 Towards A Framework For Verification of Communication Stan-

dards . 232
11.2 Contributions . 237
11.3 Concluding Remarks And Future Work 238

A Protocol Narrations Derived From ZigBee Security Sublayer 241
A.1 Protocol Narrations . 241

B Key Update in ZigBee 249
B.1 The Gap in the ZigBee Specification 249
B.2 ZigBee Application Profiles . 250

C Key Update Models in PRISM 255
C.1 Models Considering Key Compromise By Leaving Devices Only . 256
C.2 Models Considering Key Compromise By Leaving Devices and

Sent Messages . 261
C.3 Reward Structures . 268
C.4 Stochastic Temporal Logic Formulae 270

D Key Update Strategies 271
D.1 Characteristics of Key Update Strategies 271
D.2 Fluctuations in Key Compromise 278

E Key Update Analysis in MATLAB 283
E.1 eexp . 283
E.2 eLBtra . 285
E.3 eqgen . 287
E.4 emc . 290
E.5 foxglynn . 291

xiv CONTENTS

Chapter 1

Introduction

Problems worthy of attack
prove their worth
by hitting back

Problems, Piet Hein

Information technologies has passed through a rapid sequence of phases since the
emergence of computers. Until late 1980s, information was processed in large
mainframe computers that used tape drives. Then came the era of personal
computers, which was propagated with the formation of computer networks.
The trend towards miniaturization continued with the introduction of embedded
systems which enabled information processing systems to be embedded into en-
closing products. In contrast to general–purpose computers, embedded systems
are dedicated to specific tasks and the examples of such systems range from
portable devices to large stationary installations.

Following the raise of low–powered wireless sensor networks (WSN), there has
been a shift on the emphasis of the information systems. In embedded sys-
tems, the emphasis is on computational elements. However, the link between
the computational elements and physical elements is missing. This led to a new
era in information technologies: cyber–physical systems (CPS). These systems

2 Introduction

integrate computing and communication capabilities with monitoring and con-
trol of entities in the physical world [CAS08], though they are often viewed as
networked embedded systems. Due to its scientific and technological impor-
tance, research on CPS is supported by governmental authorities such as the
National Science Foundation of the United States of America [NSF10]. Con-
sidering the emerging and already prominent CPS technology, we focused our
work on security of WSNs which constitute a key element of CPS technology
[RLSS10].

WSNs have unique characteristics that require novel security considerations.
For example, geographic distribution of sensor devices may allow a physical
attack that ends up with physical capture of the devices and extraction of the
secret keying material. Another example can be given in data aggregation, an
essential paradigm in WSNs where the idea is combining data coming from
different resources and saving energy by eliminating redundancy and reducing
transmissions. However, routing algorithm of such a system may reveal the
devices where the sensed data is aggregated thus allowing an attacker to attack
to a more mission–critical device in the network [AK96, DHHM05].

Ensuring security properties such as confidentiality and authentication in a net-
worked system is mainly achieved by small distributed programs called security
protocols. Even though security protocols rely on cryptographic primitives, they
are tremendously error-prone. However, identifying the errors is not trivial even
for moderate size protocols. For these reasons, the use of formal methods – a
combination of a mathematical model of a system and certain requirements,
together with an effective procedure for determining whether the system sat-
isfies the requirements – was initiated to verify security protocols. Following
this approach, there have been a large variety of formalisms to reason about
the correctness of security protocols and formal methods proved successful at
discovering flaws with existing protocols [Mea03].

On the other hand, the use of formal methods is still relatively rare in industry
which leads to severe flaws in even contemporary communication standards (we
will present a real case that we discovered, throughout the thesis). In a very
early industrial report, the need for improved integration of techniques based on
formal methods has been indicated as an open call to researchers [CGR92]. Over
the time, these techniques matured slowly but steadily and embraced a wide
perspective including modelling, verification and analysis of computer systems.
Nevertheless, the efforts at easing the transition of this technology to a broader
user base had been fairly limited.

An important aspect of formal verification is tool support which is necessary
for stimulating the use of formal methods. While numerous tools are developed
and adapted, there is no magical tool that takes a system and completes all the

3

phases from modelling to verification considering all necessary properties.

We believe that we can achieve an efficient verification system that brings qual-
itative and quantitative analyses together for the security of communication
technologies by using different powerful formalisms in different contexts. To-
wards achieving this goal, two significant approaches based on formal methods
are investigated in this dissertation. As we have mentioned before, we have
chosen a challenging environment to work on: WSNs, in particular ZigBee sen-
sor networks – a type of WSN that is less likely to sustain security guarantees
due to the need for balancing security against energy consumption. We make
use of static program analysis as a method for qualitative security analysis and
stochastic model checking as a method for quantitative security analysis. We
worked towards establishing a framework that consists of two phases linked
together:

• analysing protocols, in the sense that qualitative security properties are
verified using appropriate methods. In this phase, absolute security –
namely complete guarantee of a security property being satisfied – is nec-
essary.

• analysing scenarios, where each scenario contains a wise combination of
qualitatively verified protocols. In this phase, absolute security is often less
important than quantifiable trade-offs between security and other aspects
such as performance.

The thesis of the dissertation is:

Starting with a lower level of abstraction and applying a qualitative
analysis on protocols, then integrating these formally verified proto-
cols as components of scenarios in a higher level of abstraction fol-
lowed by a quantitative analysis, we can achieve an efficient analysis
scheme on information and communication systems.

Extending the verification to cover scenarios in addition to protocols is a key
component of our approach. As an example, classical verification of a security
protocol is generally based on certain assumptions such as perfect cryptography
and proper protection of keying material. However, compromise of a crypto-
graphic key would cause serious hazards even though running protocols are
formally verified. Analysis of scenarios provides invaluable information that, for
example, assists in finding out which protocols to use and when to change the
cryptographic keys in order to prevent attacks from the unknown environment.

4 Introduction

Extending protocol verification with quantitative analysis leads to more versa-
tile and efficient analyses. In addition to qualitative security properties such
as confidentiality and integrity, we can analyse properties such as timeliness
and energy efficiency. Such qualitative properties are getting more important
when we work on environments with strict resource constraints such as sensor
networks. In this thesis, we aim at making steps towards balancing security
against energy consumption. We see a huge potential in applying and tailoring
static program analysis and stochastic model checking.

The remainder of this chapter is organized as follows: we present details about
the motivation behind this work in Section 1.1, the background on the studied
subjects in Section 1.2, the related work in the literature in Section 1.3, and the
structure of the dissertation together with an overview on the contributions in
Section 1.4.

1.1 Motivation

In this section, we would like to express the problem we chose to attack rem-
iniscent of a rather high level overview. Together with a running story in a
user’s perspective, we would like to explain why we find the problem we work
on interesting and important.

In the near future tiny devices will keep track of our energy consumption and
CO2 emission. They will constantly measure the outdoor temperature and con-
trol the air conditioning of our homes. They will be essential in providing the
security we want: they will control the access to our homes at the same time
as they monitor the smoke and fire detectors in the various rooms. The devices
also enter the medical sector where they for example will monitor the health of
patients with chronic diseases. The number of application areas seems unlim-
ited.

The devices typically have one or more sensors and a microprocessor with low
power consumption. They communicate with one another in wireless networks.
A single network may contain just a handful of devices and up to several hundred
devices. Typically the network will change over time. We may want to add new
devices to the network or we may want to replace existing devices to get more
and even better services. A device may also leave the network because it has run
out of battery power or because it has lost the connection to the other devices.
The network contains a control unit that keeps track of the devices that are
currently in the network.

1.2 Background 5

Our modern society will depend on the correct operation of these devices. We
cannot accept that the metering of our energy consumption is erroneous. We
cannot accept that the security of our homes is jeopardized because these devices
do not function properly. We cannot accept that our patients are left on their
own because of ill functioning equipment. It is essential that the network is
secure – meaning that only devices that have properly registered with the control
unit can influence the behaviour of the network.

To achieve this, the devices communicate with one another using cryptographic
protocols. Due to limited resources and low power consumption requirements,
often it will be the case that all the devices in the network share a common
cryptographic key. The messages being exchanged between the devices are then
encrypted using this key meaning that all other devices knowing the key can
understand the message but no one else. It is the job of the control unit to make
sure that all the devices currently in the network know the shared cryptographic
key.

Obviously, we have to make sure that the devices and the network itself are
preserving certain security properties in addition to a guaranteed correct op-
eration. Following the good practices, we have to verify such properties before
implementation.

The initial motivation of this thesis is to develop improved methods for verifica-
tion of security properties of such devices and networks. Second motivation is
to facilitate the development and usage of automated tools that are empowered
by the formal methods in verification.

1.2 Background

In this section, we briefly present contextual background in a structural manner.
Starting with the wireless networks, and continuing with the notions of security
protocols and system verification, we will gradually describe background on ver-
ification of security protocols in wireless sensor networks. The relation between
the aforementioned topics – from this point of view – can be visualized as in
Fig. 1.1.

6 Introduction

Figure 1.1: Intersection of three main themes.

1.2.1 Wireless Networking

Wireless networking refers to a broad topic that in essence associated with
communication networks that use electromagnetic waves – such as radio waves
– as carrier and thus provides greater flexibility and convenience compared to
wired networks.

A common classification of the wireless networks is done by the range or the area
that is covered by the wireless network. Instead of going through details, we
will locate the position of ZigBee in wireless networking area using a top-down
approach.

• Wireless Wide Area Networks provide communication links across metro-
politan, regional, or national boundaries by using technologies such as
Universal Mobile Telecommunications System, General Packet Radio Ser-
vice, and 3G to carry voice and data traffic.

• Wireless Metropolitan Area Networks are a type of wireless network that
connects several Wireless Local Area Networks. A good example for such
networks is specified by the WiMAX standard which is built on the IEEE
802.16 standard and preserves connection in a whole city.

• Wireless Local Area Networks enable users to establish connection in a
local area setting (e.g. inside a building) and provide connection to wider
networks such as internet. These type of networks are widely used on a
worldwide scale, and Wi-Fi is a well-known technology certification that
belongs to WLANs which is based on IEEE 802.11 standard.

• Finally, Wireless Personal Area Networks (WPAN) connect net-
work devices within personal area, which is a low cost and short range

1.2 Background 7

type of connection. Bluetooth and ZigBee are both examples of WPANs,
based on the same Medium Access Control (MAC) layer family i.e. IEEE
802.15 standard.

ZigBee is at the same time a wireless sensor network (WSN) standard, in terms
of a classification based on the type of the devices that form the network. A
WSN is a network that is formed by a large number of sensor devices. A sensor
device is equipped with at least one sensor that detects physical occurrences
such as light, heat, motion, or sound.

WSNs are used in many different application areas including automation, mon-
itoring, security, entertainment, and asset tracking. Many of these applications
require large number of sensor devices, hence to limit the costs WSN devices
have severe resource constraints. These constraints are mainly in terms of com-
putation, memory, and energy. Therefore, security is difficult to achieve, and
many well-known methods and approaches become infeasible.

At this point we would like to mention the relation between WSN and CPS. A
CPS is generally composed by a set of networked agents, including sensors, actu-
ators, control processing units, and communication devices [CAS08]. In Fig. 1.2
a sample CPS is sketched where a corresponds to an actuator, s corresponds to
a sensor, as corresponds to a device with both actuator and sensor, and c being
a controller.

While some forms of CPS are already in use, the widespread growth of wireless
embedded sensors and actuators is stimulating several new applications – in
areas such as medical devices, autonomous vehicles, and smart structures – and
increasing the role of existing ones – such as Supervisory Control and Data
Acquisition (SCADA) systems.

WSN is one of the key technologies that enable the concept of CPS. Besides,
common applications of CPS typically fall under WSNs and autonomous sys-
tems.

1.2.2 Security Protocols

A security protocol is a protocol that is used for performing security functions
and generally incorporates cryptographic algorithms. The security protocols are
widely used for securing the data communication in application level. Those pro-
tocols are commonly used for data confidentiality, data integrity, security key

8 Introduction

Figure 1.2: A cyber-physical system composed of actuators, sensors, and con-
trollers.

establishment, security key exchange, entity authentication, message authenti-
cation, non-repudiation, etc.

Security protocols generally make use of cryptography, so that a virtual se-
cure channel can be established to provide secure communication over insecure
media. Cryptography requires cryptographic keys to be established and dis-
tributed among the sides of the communication, and such a sequence of message
exchanges for key establishment and distribution is a good example of a security
protocol.

As we mentioned, security protocols are usually executed in insecure media
where malicious users or software can be present. The adversaries are capable
of performing many different types of attacks, making it complex to design sound
security protocols. Even cryptography cannot save the protocol in most of the
situations, which is one of the reasons of security protocols being so error prone.
Security protocols are desired to maintain certain security properties. If these
security properties cannot be preserved, certain flaws are likely to take place.
Those flaws will cause serious attacks in the real implementations. Therefore,
both design and verification of the protocols are very important.

1.2.2.1 Security Protocols for Wireless Networks

The intersection of two main themes that we visualized in Fig. 1.1, wireless
networks and security protocols, is an important ingredient of this thesis.

1.2 Background 9

In present, there are many security technologies that were developed for the
wired networks. However, wireless networks have different characteristics and
face more challenges than the wired networks. The main challenge is the medium
being reachable to anybody within the transmission range. There is no wire to
be hidden inside protections and no physical access restriction. Having the
necessary antenna and assuming no security precaution is taken, an attacker
can easily interfere with a wireless network. Thinking the other way round, a
legitimate user can unintentionally connect to a malicious wireless network that
fakes the legitimate one. This so-called rogue access point problem doesn’t exist
in wired networks where a physical plug that is known to be trustworthy is used
to connect the network. Another important challenge is the computational and
power consumption constraints of wireless networking devices. Encryption is the
main way of providing security, whereas it is often a very expensive operation
in terms of computation and energy consumption.

At this point, we have to introduce the basic threat types that wireless networks
are likely to face. As we have mentioned above, an adversary can sniff the traffic
and capture the communication. This is called eavesdropping and may cause
problems with the help of traffic analysis and cryptoanalysis. In the first case,
the adversary may learn information that is plaintext or can be decrypted by
the knowledge of adversary. In the second case, the adversary may learn a col-
lection of partial encrypted information and apply cryptoanalysis to predict or
decrypt the eavesdropped information. The adversary can also inject messages
to the wireless network using sufficient equipment. This is called message in-
jection, and may lead to replay attacks. Message injection can also be used to
improve eavesdropping by injecting suitable messages that require certain kind
of responses to be sent by the victims. In addition, message deletion is also
possible by causing errors (e.g. checksum errors, errors due to noise) that will
make the receiver drop the packet. As we mentioned before, establishing a rogue
access point is another treat that will cause the leakage of confidential data.

From WSN security perspective, the use of computationally inexpensive cryp-
tographic techniques has been proposed to ensure confidentiality and authenti-
cation [WLSC06]. The complications in these two issues are mainly due to the
energy constraints imposed on sensors. In addition, each of the sensor devices in
such a network is subject to physical capture, hence such a system must tolerate
the compromise of sensors and their security keys. Rather than providing all–
or–nothing guarantees about security, there is a need for providing probabilistic
guarantees with respect to compromise. Defining models and metrics in this
line is an important challenge.

10 Introduction

1.2.3 System Verification

In networking area, system verification is in many cases seen as an activity that
involves testing and simulation. However, these two methods can not provide the
necessary guarantees for systems, such as being flawless or functioning correctly.
Therefore, we focus on formal verification and refer to the formal methods when
we refer to verification.

Formal verification of system correctness depends on the use of mathematical
logic. A system can be seen as a mathematical object with well-defined, although
possibly complex and intuitively incomprehensible behavior. Mathematical logic
can be used to describe precisely what constitutes correct behavior. This makes
it possible to mathematically establish that the system behavior conforms to a
correctness specification.

Verification of a system requires the formal specification of the system, so that
certain properties of the specification can be proved. Such a proof can be made
by either human-directed or automated proving. The former requires a hand-
written mathematical proof therefore it is bound to a high level of mathematical
sophistication. The latter is the one that we are interested in. Producing proofs
of properties of systems by automatic means fall into three general categories:

Theorem proving. The correctness of a system is determined by properties of
a mathematical theory, using deductive methods. Then, these properties are
proved using automatic tools such as theorem provers and proof checkers. As a
real life example, this method is used in [BMP03] to verify the SET protocol and
in [BDM98] for the automatic train operating system METEOR of the (first)
driverless metro-line in Paris.

State exploration / Model checking. A protocol is modelled as a finite-state sys-
tem and then the verification is evaluated by exploring each state in the protocol
and reporting if the protocol enters a state that violates certain properties. A
number of model checkers and state exploration methods have been applied to
the security protocols as well. Murphi is an early and a well-known example of
this group [MMS97, SS98].

Program analysis. An indispensable technique of language-based security which
has successfully detected errors in protocols [BBD+03, BBD+05]. Control flow
analysis is used to perform an over-approximation of the possible variable bind-
ings and message exchanges. Constructing reference monitor semantics, it is
possible to know whether the properties to be validated are violated or not.

1.2 Background 11

1.2.4 Verification of Security Protocols

Above we have briefly explained the background for three main themes that we
visualized in Fig. 1.1. We have also touched the intersection of wireless networks
and security protocols. In this section, we proceed to the intersection of all these
themes. In other words, we continue with the verification of security protocols
in wireless networking setting.

Security is a context-sensitive measure in the wireless networks realm. When
referring to security we need to identify the properties that we are mentioning.
The essential qualitative properties to be satisfied in our context, which are
sometimes referred to as CIA in the literature (e.g. ITSEC [Com91] – a successor
of Common Criteria), are listed below:

Confidentiality. A protocol that ensures confidentiality prevents the disclosure of
transmitted data to unauthorized parties, such that only the intended receiver is
able to read the confidential data. This is mostly established using cryptography.

Integrity. Messages cannot be changed by any malicious user when data integrity
is offered. Modification, insertion, deletion, or replay of transmitted data is
detected. Hashing is a well known solution for integrity. In addition, there are
some other properties related to integrity such as non-repudiation.

Authenticity. Communication over a protocol that offers authenticity means
that principals are communicating with the exact principals they believe to be
communicating with. To be authenticated means it is ensured that principals are
actually who they say they are. Authentication properties have been discussed
in many different levels of abstraction. The authentication property studied
in [BBD+05] describes authentication at the level of the individual messages
used in communication. The idea is to be sure that the messages always have
the intended destination and origin, no matter how an attacker interferes with
communication.

The abovementioned properties of security protocols are formally verified on
an abstract level. In the following paragraphs we will briefly describe the key
approaches in this area.

One of the earliest protocol analysis approaches was developed by Dolev and
Yao [DY81], who developed a formal model that allowed multiple executions
of a protocol running concurrently and including an attacker that could read,
modify, and destroy the messages. This work influenced a major amount of the
future developments in this area. As we have mentioned in the previous section,
inductive theorem proving, state exploration, and program analysis techniques

12 Introduction

were generally applied to Dolev-Yao model or its variants.

Later, a different approach which was based on belief logic received attention of
the community [BAN90]. It consisted of modal operators describing relations
between principals and data, possible beliefs such as owner of a key or sender
of a message, and a set of inference rules.

Afterwards different approaches such as type checking came into play, where
message and channels were assigned different types and flaws were identified as
type violations [Aba99]. Since then many researchers followed this line which
offered handling certain classes of infinte systems in contrast with model check-
ing.

However, there are also quantitative properties which were not taken into
account in the early verification methods. For instance, the approaches for the
qualitative security properties above do not take time into account (except some
further developments for the verification of mainly time-stamps e.g. [DG04]).
This ignorance is not because security protocols are time–insensitive, it is just
because ignoring such aspects simplify verification.

Continuing with quantitative temporal information example, an early approach
defined a temporal logic to reason about security protocols [Syv93]. Later, use of
time automata was suggested for modelling timeout and retransmission. Thus
model checkers could be extended to support time-sensitive protocols such as in
[BCP09].

Quantitative analysis in a security context has also been used in quantifying
security threats such as denial of service. An approach to be noted at this
point is studying the effectiveness of countermeasures, which can be applied in
potential protocol implementations [BKPA09]. Probabilistic verification tools
are heavily used in similar analyses.

1.3 Related Work

In this section, we present some of the related work that address similar objec-
tives with us. In Section 1.3.1, we present related work on automated verification
tools. In Section 1.3.2, we continue with the related work on key update. In
Section 1.3.3, we map the rest of the related work to various parts in the thesis.

1.3 Related Work 13

1.3.1 Automated Verification Tools

A major part of this thesis is about automatic verification tools. In literature
and in practice, a large number of automated tools are available for protocol
verification.

ProVerif [Bla01] and CryptoVerif [Bla08] are two automated tools that verify
security protocols in formal models, and computational models, respectively.
ProVerif is based on the representation of protocols by Horn clauses, and using
approximation it can handle unbounded number of messages with unbounded
message space. A disadvantage is the possible presence of false positives in the
verification results which is due to approximation. ProVerif can verify confi-
dentiality and authentication properties, in the presence of so called Dolev-Yao
attacker. CryptoVerif, on the other hand, is an automatic protocol prover that
can also evaluate the probability of success of an attack against the protocol as
a function of the probability of breaking each cryptographic primitive and of
the number of sessions.

SATMC [AC08] is a SAT–based model checker that verifies security protocols.
It generates Boolean formulae that are fed into a SAT–solver. The idea here
is building a propositional formula from a description of a protocol in a multi-
set rewriting formalism, thus reducing the protocol verification problem to a
satisfiability problem of a propositional formula.

Theorem prover Isabelle [NPW02] has been successfully used for the interac-
tive verification in various areas, including protocol verification [Bel07, Pau98].
Similar methods deriving a formal theory that faithfully represents the protocol
being analysed and prove one or more theorems (that correspond to properties to
be verified) in that theory can be illustrated as [Sch98, BNP02]. Even though
theorem provers partially automate the proving process, a certain amount of
human intervention is still needed and termination is not always guaranteed.

Tools based on state exploration methods systematically explore the states of the
model of the protocol of interest – a finite state model – and look for violations
of certain security properties. Brutus [CJM00], FDR/Casper [Low97], OFMC
[BMV05], and STA [BB02] make a not necessarily exhaustive list of examples
for such tools.

14 Introduction

1.3.2 Key Update

Another major part of contribution in this thesis is about key update. We
define key update to be the event of revoking valid security key in a network
and establishing a new key. We assume a setting where the network consists of
resource-constrained devices such as wireless sensor networks. Thus we assume
that symmetric cryptography is used, and the necessary keying material is the
network key. In other words, all the devices in the network are sharing the same
symmetric key. We also assume that the network has a controller, a rather
stronger device, that is responsible for key management such as the trust center
in ZigBee.

The need for key update is actually related to the risk of key compromise. While
key compromise might take place by a device leaving the network (or being
removed) with a valid network key, or a message that contains an unprotected
keying material, or a brute force attack, or any other reason, a serious source
of compromise in wireless sensor networks is physical attacks. Assuming that
sensor nodes are tamper-proof often turns out not to be true [AK96]. Based
on their real experiments, Deng et al. [DHHM05] showed that it is possible to
obtain copies of all the memory and data of a Mica2 mote in tens of seconds,
or minutes, after a node is captured, given the proper level of experience and
tools.

In the literature, our setting resembles to group key rekeying. Below we will be
classifying the related work into three categories.

First category is the group key theme. [GL10] proposes the key to be up-
dated when a malicious node is detected, or rekeying timer expires. [PST01,
BHRM09] propose a protocol that focuses on performance, e.g. reducing number
of rekeying messages. [CGPM05] focuses on how to establish node revocation.
[ASDO10] is a study on robustness property, it focuses in key loss and recovery.

Second category which is very closely related to our developments is rekeying.
The foundational work of Wallner et al. [WHA99] defines a strict and costly
policy: update the key in each membership changes. [PJ10] is focusing on the
costs of rekeying (i.e. reducing the number of messages), and trying to propose
a more efficient protocol than LKH which is the wide-known protocol in multi-
cast group rekeying. Their proposed protocol requires rekeying whenever group
membership changes or when a key of a member is compromised. [UBLC10] is
an interesting proposal that suggests changing the encryption key depending on
the energy level as a one-time key. However using one key per message is not
feasible for resource-limited networks.

1.4 Outline 15

The last category is sensor network security specifications where key update is
considered. MiniSec [LMPG07] proposes a balance between energy consumption
and security, inspired by TinySec and ZigBee. SPINS [PST+02] only claims that
using a master key and then deriving network keys from this key would be good
since a key compromise will not affect the master key. However, it does not
consider rekeying. LEAP+ [ZSJ03] is a well known key management protocol
for sensor networks. It considers rekeying, and proposes methods for different
key types, however still not going further then advising periodical key updates.

1.3.3 Related Work In Various Chapters

In addition to automated verification tools and key update topics above, we have
several other topics that we contributed on. However, remaining work related
to these topics are distributed throughout the thesis. In this section, we will
present a mapping from topics to corresponding related work.

ZigBee security is a backbone of this thesis, and we reserved almost a whole
chapter for that. The related work on ZigBee security is spread over Chapter 2.

Qualitative security analysis and static program analysis being our one of the
two key analysis domains has its related work in Chapter 3. The other key anal-
ysis domain, quantitive security analysis and stochastic model checking enjoys
related work in a fairly big preliminaries chapter: Chapter 4.

1.4 Outline

In this section, we provide an outline of the dissertation including the structure
and the contributions. We start by presenting a visual overview of the com-
ponents that build the thesis in Fig. 1.3. Each small box having a numbered
caption in Fig. 1.3 is actually representing a chapter, and each framing box
numbered with roman numerals and captioned in boldface fonts is representing
a part that contains multiple chapters.

In addition to the separation by parts, we have a separation by analysis do-
mains. As you can see in Fig. 1.3, the left hand side including Part I is the
qualitative domain whereas the right hand side including Part II and Part III is
the quantitative domain. Furthermore, in Automated Tools for Analyses part,
one of the chapters is totally related to quantitative analysis and other chapter
takes place on both of the domains.

16 Introduction

As you can see in the organization of domains we have a bias towards the
quantitative analysis, such that a stand-alone part of Case Studies and a stand-
alone chapter in Part IV are on this subject. This does not mean that we have
a discrimination between two domains, it is merely a result of our assumption
of targeted readers being experienced with qualitative analysis in particular
program analysis.

Figure 1.3: Outline of the dissertation

1.4.1 Organization of the Dissertation and Overview of
the Contribution

In this section, we present the organization of the dissertation. For each part
that we have presented in Fig. 1.3, we have included a short description that
links them to related published work, and a definition for each included chapter.
These chapter definitions are composed of two parts: a short description of the
chapter, and a short summary of the contribution of that chapter.

1.4 Outline 17

Part I: Qualitative Analysis
The first part of the dissertation is mainly concerned with qualitative analy-
sis of security protocols. This part is based on the papers [YNN08, YNN09b,
YNN10a].

• Chapter 2 introduces the WSN standard that we will use as a running
example throughout this dissertation: ZigBee. Focusing on the security
sublayer of ZigBee, Chapter 2 presents how to proceed from standard
specification to security procedures, and eventually security protocols.

Contribution. As a contribution to both ZigBee development and proto-
col verification communities, we clarified the security sublayer of ZigBee,
spotted important changes by comparing with the previous specification,
and derived protocol narrations from the specification which will be use-
ful for both implementations and security analyses. We also identified a
critical gap in the specification on key updates.

• Chapter 3 introduces our approach for protocol analysis together with
a real–world example where a significant flow in a security protocol is
discovered and fixed.

Contribution. We presented the usage of static program analysis tech-
nique, and we applied this technique on the contributions of Chapter 2.
As a result we discovered a critical flaw in the key establishment protocol
of ZigBee, which is a real protocol that is being used in ZigBee imple-
mentations. In addition, we proposed a fix that corrects the protocol and
showed another usage of this analysis technique also in verifying the fix.

Part II: Quantitative Analysis
The second part of the dissertation is mainly concerned with quantitative analy-
sis of security scenarios. This part is based on the papers [YNN09a, YNN+10b].

• Chapter 4 introduces the preliminaries for stochastic model checking
technique, covering the necessary foundations that we will need in the
following chapters.

• Chapter 5 defines the problem that we will attack using the approach pre-
sented in the previous chapter. In addition, it presents our work towards
developing a formal model that is both realistic, scalable, and convenient
for stochastic model checking.

Contribution. We produced a very compact and scalable model that re-
duces model checking costs in terms of time and memory, and allows model
checking of large WSNs.

18 Introduction

• Chapter 6 explains how stochastic model checking technique can be ap-
plied to a part of a wireless network standard’s security sublayer such that
we can reason about security properties and get quantitative answers to
our questions.

Contribution. We presented a methodology for determining optimal key
update policies and security parameters, considering the security needs for
realistic application scenarios. The contribution can be widely applicable
to other types of networks, as well.

Part III: Case Studies The third part of the dissertation consists of case
studies that utilize quantitative analysis. This part is based on the papers
[YNN11a, YNN11b, YNN11c].

• Chapter 7 demonstrates how to derive advice from quantitative analy-
sis results in three different case studies focusing on different application
domains of WSNs.

Contribution. We improved our formal models, so that we get more in-
sights in the analyses. We proposed new key update methods that con-
siders the nature of WSNs, but can also be used in various networking
schemes. We presented an application of quantitative analysis in the se-
curity of WSNs, focusing on three different application domains.

• Chapter 8 presents an application on different key update methods,
which allows us to asses the methods under changing network conditions.

Contribution. We constructed an analysis to observe how different key
update methods adapt to new environmental conditions in a network. We
evaluated the methods and presented the results as a set of guidelines for
network designers. We also proposed an adaptive mechanism to make a
more efficient use of key update methods, considering power consumption.

Part IV: Automated Tools for Analyses The fourth part of the dissertation
is describing the tools that we designed and implemented to demonstrate our
selected developments in the previous chapters in an automated way.

• Chapter 9 presents a toolkit that implements maximum risk analysis
and transient analysis on a certain key update method. In addition, it
demonstrates how to construct models in an analytical way, instead of a
compositional way.

Contribution. We developed an analytical model in a mathematical per-
spective, rather than a computer science perspective. In addition, we

1.4 Outline 19

implemented a toolkit that computes the maximum risk in transient se-
curity analysis, and applies a smart transient analysis which covers only
the necessary time period for security analysis.

• Chapter 10 presents automated tools designed and developed for solving
some of the problems discussed in the thesis.

Contribution. We have provided automated tools to be used by not only
security and verification experts but also network designers or even people
with a very limited knowledge on the topic. We have implemented a push–
button technology tool that implements all the analysis in determining
optimum key update method and parameter values for a given network.
We have also implemented a tool that bridges the gap between protocol
narrations and LySa models, and also automates qualitative verification
using LySa engine.

Part I

Qualitative Analysis

Chapter 2

Modelling Protocols

In Chapter 1, we classified wireless networks by their ranges and we defined
WPANs as the shortest range wireless networks. In this chapter, we introduce
ZigBee which is a type of WPAN and also a wireless sensor network. We de-
scribe the security structure of ZigBee in details, in order to form basis for our
developments in the forthcoming chapters.

As a solid contribution to both ZigBee and protocol verification communities,
we derive the protocol narrations from the specification which will be useful for
both implementations and security analyses.

We named this chapter as modelling protocols, yet we do not mean a formal
model. Instead, we model in a security protocol notation. We will make use
of the protocols we modelled in this chapter by converting them into formal
models and applying a qualitative analysis in the following chapter.

We survey ZigBee security in Section 2.1, where we define almost all the ZigBee
related terms that we will use in our developments. In Section 2.2, we define
the security protocols using the security procedures. In Section 2.3, we present
the vulnerabilities of ZigBee.

22 Modelling Protocols

2.1 From Specification To Procedures

Literally, a specification is an explicit set of requirements to be satisfied by a
material, product, or service. In the field of network standards, a specification
often specifies one or more layers of a network. In this thesis, we are working
on ZigBee networks, therefore we will start with the ZigBee Specification.

Again, literally a procedure is a specified series of actions which have to be ex-
ecuted in the same manner, in order to always obtain the same result under
the same circumstances. As we focus on security, we will work towards extract-
ing security procedures out of the specification. We will describe the security
procedures in details, after completing this section.

In this section, we present a high level self-contained overview and explain
the key security components of the latest ZigBee specification, ZigBee–2007
[Zig08d]. We explain the important points in indispensable protocols, algo-
rithms, and computations. In fact, we are constructing a knowledge base for
our developments in the following chapters.

2.1.1 ZigBee Wireless Sensor Networks

In this section, we first introduce ZigBee wireless sensor networks and then
discuss the reason of working on this wireless networking standard and using it
as an extensive running example for the whole thesis.

2.1.1.1 Introducing ZigBee Networks

ZigBee is a fairly new but promising WPAN standard for wireless networks that
consist of devices with very low resource requirements. The name ZigBee is
derived from the zigzag dance of the honey bees that guide their hive members
to flowers. Metaphorically, simplistic ZigBee devices work together to tackle
complex tasks.

ZigBee can be used in many different WSN applications such as wireless switches,
electrical meters, consumer electronics equipment, industrial control, embedded
sensing, medical data collection, intruder warning, home automation, and many
more. In the early considerations, ZigBee was merely seen as a technology that
could make life easier with various applications, a few of which were mentioned
in [ZLA06] such as “configuring a home network so that the light intensity is

2.1 From Specification To Procedures 23

lowered automatically when you turn on the TV, and the TV will mute itself
when the phone rings”. Thus security was not considered as a critical factor in
the implementations, and the trade-off between security and performance (might
be related to power consumption, cost, speed, etc.) was not even mentioned in
most cases. Indeed, ZigBee provides framework for such applications but cur-
rently it is wrong to consider ZigBee as a technology for just simple residential
applications. In fact today, ZigBee has a growing acceptance across different
markets that require high security such as Smart Energy [Zig08c] where wide
deployments are in progress in USA, Sweden, Canada, Korea, Australia, and
China. Such markets have very little tolerance in security flaws and therefore
ZigBee security sublayer is recently enhanced to provide high security on this
still low-rate wireless sensor networking standard.

ZigBee-2007 has different application profiles. An application profile is a com-
mon application level language for exchanging data in a given application do-
main. It specifies both a possible collection of devices, and a set of messages
used by the devices in communication. Current ZigBee public application pro-
files are Commercial Building Automation, Home Automation, Personal Home
and Hospital Care, Smart Energy, Telecom Applications, and Wireless Sensor
Applications.

2.1.1.2 What Makes ZigBee Interesting

In the context of protocol verification, there are several reasons to choose a
wireless networking standard like ZigBee. First of all, ZigBee is a fairly new
networking standard and thus very little research is conducted. Therefore we
can try many new ideas, improve many issues that are untouched, and pinpoint
new research problems for future research. In this thesis, indeed we have applied
both quantitative and qualitative analyses making use of the open problems of
this new networking standard, and along the way we succeeded to discover a
security flaw, fix the flawed protocol, proposed new key update schemes, and
decision algorithms for key update strategies.

Choosing a wireless standard is meaningful in the context of security, since
wireless networks face a lot more challenges than the wired networks. How-
ever, another important point in selecting ZigBee to work on is the low-rate
nature that makes implementing and preserving security requirements much
more challenging. Besides, as a sensor network standard, ZigBee devices have
long battery life expectations which is a tough restraint on the operations that
consume battery.

Following the trends in wireless communication, we found out that ZigBee is be-

24 Modelling Protocols

coming a more security-critical sensor network protocol suit since the application
areas are enlarging from less secure lighting/heating sensing to Smart Energy
where security is a must requirement. This fact forced the security designers
to strengthen the security sublayer, so that many new security components are
added lately. Obviously, the improvements raise the importance of verification
because adding new and more security components does not always mean that
the level of security is raised.

As we mentioned, ZigBee is designed for low-rate wireless networks which have
low costs, low power consumption, low range and low bandwidth. In parallel
with this, the devices that will operate in ZigBee networks have limited resources
in terms of memory, processor, storage, power, etc. Therefore implementing
the security guarantees is a great challenge and the verification of the security
properties is of paramount importance.

2.1.2 ZigBee Security Overview

In this section, we describe general security principles and present an overview
of ZigBee security. Throughout this thesis, ZigBee refers to the ZigBee-2007
Specification [Zig08d] unless otherwise stated.

A feature set is an agreement of configuration parameters, network settings and
policies. ZigBee-2007 contains two feature sets that interoperate network-wise:
ZigBee and ZigBee PRO. The ZigBee PRO feature set has two security modes
(Standard Security and High Security, to be explained in Section 2.1.3.3), and
three types of security keys (Network Key, Link Key, and Master Key, to be
explained in Section 2.1.3.1), whereas the ZigBee feature set has only Standard
Security mode and two types of security keys (Network Key, Application Link
Key). Both feature sets use symmetric encryption, the Advanced Encryption
Standard (AES-128) [Fed01], and apply authentication/encryption on Network
and Application layers.

Related to the device types, we have two different classifications: hardware
and logical. The hardware device type distinguishes the type of the hardware
platform and it may be either Full Function Device (FFD), or Reduced Function
Device (RFD) according to the relevant IEEE standard that we will explain in
a moment. A logical device type distinguishes devices in a specific network and
it may be Coordinator, Router, or End Device in a ZigBee network.

Before we start talking about ZigBee security architecture, we need to mention
that IEEE 802.15.4 standard [IEE03] defines low level specifications of ZigBee, as

2.1 From Specification To Procedures 25

Figure 2.1: ZigBee Stack Architecture

well as many other wireless sensor network standards1. Thus, ZigBee guarantees
to have a solid specification for both physical radio frequency (RF) transmission
and medium access.

The IEEE 802.15.4 provides reliable communication between a device and its
neighbours, addressing critical issues such as collision avoidance and improv-
ing efficiencies in the communication. It provides the interface to the physical
transmission medium, and handles assembly and decomposition of data packets.

ZigBee is built on a Physical layer (PHY) and a Medium Access Control layer
(MAC), both defined by the IEEE 802.15.4-2003 standard. The PHY layer
can operate in two separate frequency ranges: lower 868MHz (European) and
915MHz (United States, Australia, etc.) and higher 2.4 GHz (worldwide). The
MAC layer controls access to the radio channel using a carrier sense multiple
access with collision avoidance (CSMA-CA) mechanism. Upon this structure,
ZigBee builds the Network layer (NWK) and the Application layer (APL)
which consists of the Application Support sublayer (APS) and the ZigBee De-
vice Object (ZDO). Fig. 2.1 shows the ZigBee stack architecture, including
the end manufacturer defined part in dashed box. This kind of visualization is
useful for locating where we are in this study. We focus on the Security Service
Provider part of the ZigBee Specification, which interacts with the NWK and
APS layers.

The IEEE 802.15.4 allows two types of network topologies: Star and Peer–to–
peer. In star topology, each device talk directly to the Coordinator, whereas
in peer–to–peer topology each device can talk to any other device in its range.
ZigBee, making use of this, allows three topologies: Star, Tree, and Mesh.

1A common mistake that we observed in the literature is, ZigBee uses the 2003 version
of this standard, namely IEEE 802.15.4-2003, but not the more recent IEEE 802.15.4-2006
which actually superseded the former.

26 Modelling Protocols

Mesh topology enables high levels of reliability and scalability by providing more
than one path through the network. Tree topology utilizes a hybrid of star and
mesh topologies by combining the benefits of both high levels of reliability and
support for battery-powered nodes.

In this thesis, we will assume star topology since star networks are very common
and they provide very long battery life operation.

Below we discuss the basic security principles in ZigBee. We first introduce
the security service provider, then explain the open trust model, and then the
architectural design choices.

2.1.2.1 The Security Service Provider

The Security Services Specification is a chapter in the ZigBee specification which
specifies the security services available within the ZigBee stack. These services
include methods for key establishment, key transport, frame protection and de-
vice management. As shown in Fig. 2.1, ZigBee provides security mechanisms
for NWK and APS layers. Each layer is responsible for securing their frames.
In addition, the APS sublayer provides services for security relationship estab-
lishment and maintenance whereas ZDO manages the security policies and the
configuration of ZigBee devices. Throughout this chapter, we present the overall
security architecture and the security mechanisms in different layers.

2.1.2.2 Open Trust Model

The ZigBee security architecture depends on assumptions such as safekeeping
of the symmetric keys, proper implementation of the cryptographic mechanisms
and the associated security policies involved. Besides, ZigBee assumes that dif-
ferent applications using the same radio are not logically separated (e.g. by
firewall). Also, a device cannot verify whether cryptographic separation be-
tween different applications/layers on another device is properly implemented.
Therefore, it must be assumed that separate applications using the same radio
trust each other, which means that there is no cryptographic task separation.
In addition, the lower layers (i.e. APS, NWK, MAC) are fully accessible to the
applications. As a result, ZigBee has the notion of an open trust model that
is derived from these assumptions. This model states that the security services
only protect the interfaces between different devices, but not the interfaces be-
tween different layers nor the different applications on the same device. Here,
protection means cryptographic protection, and for the separation of the inter-

2.1 From Specification To Procedures 27

faces between the different stack layers on the same device non-cryptographic
mechanisms should be employed in the designs. As stated in the specification,
this model allows the reuse of the same keying material among different layers
on the same ZigBee device. The model also allows end-to-end security to be
realized on a device-to-device basis instead of layer-to-layer basis.

2.1.2.3 Architectural Design Choices

In this subsection we focus on the design choices listed in the current ZigBee
Specification. The main point in these choices is that any malevolent device
should not be able to use the network to transport frames across the network
without permission.

1. The layer that originates a frame is responsible for initially securing it.
A simple example from the specification: If a NWK command frame needs
protection, then NWK layer security must be used.

2. If protection from theft of service is required, then NWK layer security shall
be used for all frames. Only a device that joined the network and authenticated
(i.e. received the active network key) will be able to communicate using the
network. However, it is not possible to apply NWK layer security between a
router and an (joined but) unauthenticated device.

3. Security can be based on the reuse of keys by each layer. This is for reducing
the storage costs.

4. End-to-end security is enabled, based on a shared key between only two de-
vices. This actually limits the trust requirement to only two devices communi-
cating.

5. The security level used by all devices in a given network, and by all layers of
a device shall be the same. If an application requires more security, then it shall
form its own separate network with a higher security level.

The ZigBee specification states that other decisions such as key update/expire,
counter overflow, loss of synchronization, error conditions arising from securing
frames, etc. should be included in the application profiles and must be addressed
correctly in the real implementations. However, this way of delegating critical
issues to real implementations instead of defining in the specification creates
security hazards [YNN08].

28 Modelling Protocols

Table 2.1: Key Acquirement Schemes
Method \ Key Type NK MK LK
Key Transport Available Available Available
Key Establishment — — Available
Pre-installation Available Available Available

2.1.3 A Closer Look At The Security-Related Components

In this section, we introduce three main concepts in ZigBee security: security
keys, trust center, and security modes. We will make use of these three concepts
very often in not only this but also following chapters.

2.1.3.1 Security Keys

ZigBee devices use 128-bit symmetric encryption keys to provide security amongst
a network. A Link Key (LK) is shared by two ZigBee devices and it is used to
secure unicast communication between APL peer entities. LK is used as the ba-
sis of the security services (i.e. key transport, authentication) in High Security
mode. A Network Key (NK) is shared amongst all devices in a network and
it is used to secure broadcast communications in a network. NK is used as the
basis of the security services (i.e. authentication, frame security) in Standard
Security mode. A Master Key (MK) is used to establish a key and it is shared
pairwise between two ZigBee devices. The intended recipient is always aware of
the key type that is used in frame protection.

The security keys can be acquired in different ways depending on their types
as shown in Table 2.1. Key Transport is the case that the Trust Center of the
network sends the key to the device. Key Establishment is the method that
is used to establish a pairwise key (i.e. LK) between two devices. Note that
for this method, a pre-shared key (i.e. MK) is required between two devices.
Pre-installation is the case that the device acquires the key before joining the
network.

In ZigBee-2007, NKs have two different types: standard (SNK), and high-
security (HSNK). It is stated that NK distribution and initialization of the
Frame Counters (See Section 2.1.4.1) depend on the type of the NK, but in
both cases the messages are secured in the same way. The availability of the
security keys to the different layers and different security modes are given in
Table 2.2. Some key types are optional for some security modes and they are
indicated with “(O)” in the table. In addition, all ZigBee layers must share the

2.1 From Specification To Procedures 29

Table 2.2: Availability of Key Types

Keys
Layers Modes

NWK APL SS HS
NK Available Available Available Available
MK — Available — Available (O)
LK — Available Available (O) Available (O)

Table 2.3: Derived Key Types (0x: Hexadecimal)
Key Type Computation Explanation
Key-Transport Key HMAC(0x00)LK Protects transported NKs
Key-Load Key HMAC(0x02)LK Protects transported MKs and LKs
Data Key LK Equal to the LK

active NK and associated incoming/outgoing frame counters.

In order to avoid reuse of keys across different security services, it is possible to
derive different keys from the LK. Uncorrelated keys can be derived using a one-
way function so that execution of different security protocols can be logically
separated. Three types of secret keys can be derived from a LK as listed in
Table 2.3. The derivation of these keys, except Data Key, requires computation
of a Keyed-Hashing for Message Authentication Code (HMAC) [Fed02]. All
the derived keys must share the associated frame counters.

2.1.3.2 Trust Center

In each secure ZigBee network, there exists a unique Trust Center (TC) ap-
plication which is trusted by all the devices in the network. TC distributes
keys as part of network and end-to-end application configuration management.
In high-security (commercial) applications devices are using MK, whereas in
low-security (residential) applications devices are using NK to initiate secure
communication with TC. In parallel with the key acquirement schemes in Ta-
ble 2.1, MK and NK can be obtained by either pre-installation or a kind of
key transport which is called in-band unsecured key transport. Certainly, the
latter option is not tolerable in vulnerable situations. The interaction between
a ZigBee device and the TC for different purposes is given in Table 2.4.

As we mentioned before, there are three logical device types in a ZigBee network:
coordinator, router, and end device. TC is not a device type, but an application.
In a ZigBee network, the ZigBee Coordinator configures the security level (which

30 Modelling Protocols

Table 2.4: Key Distribution
Purpose Device receives Via
Trust Management Initial MK Unsecured Key Transport

or Active NK
Network Management Initial active NK Secured KeyTransport

and updated NKs
Configuration MK or LKs Secured Key Transport

can also be unsecured). The ZigBee Coordinator also configures the TC of the
network, which is by default the ZigBee Coordinator itself.

2.1.3.3 Security Modes

TC can be configured to operate in either Standard Security mode (SS) or
High Security mode (HS). In SS mode, which is designed for the residential
applications, the TC is required to maintain the SNK and control the policies
of network admittance. In HS mode, which is designed for the commercial
applications, the TC is required to maintain a list of all the devices in the
network (this is actually optional in SS mode), all the relevant keys (MKs, LKs,
HSNKs) and control the policies of network admittance. As a result, the required
memory of the TC grows with the number of the devices in the network in HS
mode, but not in SS mode. In addition, the implementation of the Symmetric-
Key Key Exchange (See Section 2.1.5.2) and the Mutual Entity Authentication
(See Section 2.1.5.3) protocols are mandatory in HS mode. Right now, among
the application profiles mentioned in the beginning of Section 2.1.2, only the
Commercial Building Automation profile uses the HS mode.

2.1.4 Security of Layers

In this section, we explain the security architecture of ZigBee in a layer-wise
fashion. We start with the network layer security in Section 2.1.4.1, and continue
with the application layer security in Section 2.1.4.2. Then we explain the
security of the application support sublayer in Section 2.1.4.3, which is very
important even though it is a sublayer.

2.1 From Specification To Procedures 31

Figure 2.2: Secured ZigBee NWK Frame

2.1.4.1 Network Layer Security

The Network layer (NWK) provides functionality to ensure correct operation
of the MAC layer and also provides suitable service interface to the APL layer.
When a NWK layer frame needs to be secured, the NWK layer secures it by
using AES encryption/authentication in the Enhanced Counter with CBC-MAC
(CCM*) mode of operation (see Section 2.1.5.1). The NWK layer processes out-
going/incoming frames in order to securely transmit/receive them. The upper
layers control the security processing operations by setting up the security keys,
frame counters and the security level.

The structure of a secured NWK frame is given in Fig. 2.2. A secured NWK
frame is a NWK frame that has an Auxiliary Header (AuxHdr) and this is
indicated in the Frame Control field of the NWK Header. AuxHdr includes
the Frame Counter, which has the purpose of providing frame freshness and
preventing processing of duplicate frames. An important point here is that the
word “secured” does not necessarily mean that encryption is applied (i.e. in the
case of integrity-only protection). Therefore, a Secured Payload does not need
to have an encrypted payload.

Security Levels. The Security Level field in the Security Control part of the
AuxHdr indicates which security level is applied. The level can be:

• None: No security at all, in terms of confidentiality and integrity.

• MIC2: Integrity protection only, with three different Message Integrity
Code (MIC) lengths:

2MIC is actually the same as message authentication code (MAC). However, MIC is pre-
ferred by ZigBee (and IEEE) to distinguish between another MAC: Medium Access Control
Layer.

32 Modelling Protocols

– MIC-32: Message Integrity Code of 32-bits.

– MIC-64: Message Integrity Code of 64-bits.

– MIC-128: Message Integrity Code of 128-bits.

• ENC: Encryption only.

• ENC-MIC: Both encryption and integrity protection with three different
MIC lengths:

– ENC-MIC-32: Message Integrity Code of 32-bits.

– ENC-MIC-64: Message Integrity Code of 64-bits.

– ENC-MIC-128: Message Integrity Code of 128-bits.

The MIC is computed using the NWK header, the AuxHdr and the (encrypted)
payload.

Table 2.5: NWK Frame Security (||: Concatenation)
Processing Outgoing Frames Processing Incoming Frames
1. Retrieve active NK, outgoing
frame counter, key sequence number
and security level from the NWK
Layer Information Base (NIB).
2. Set AuxHdr using the parameters
in Step 1.
3. Execute CCM* mode encryp-
tion and authentication with the
parameters: length of MIC (ob-
tained from security level), NK,
and CCM* Nonce (CCM* Nonce
uses the values from AuxHdr and
constructed as “Source Address ‖
Frame Counter ‖ Security Control”.
4. Construct the outgoing frame,
depending on the encryption re-
quirement, as in Fig. 2.2.
5. Increase outgoing frame counter
in NIB.
6. Set the Security Level subfield of
AuxHdr as “000”.

1. Determine security level from
NIB and overwrite it to the Security
Level subfield.
2. Determine the key sequence
number, sender address, and the Re-
ceived Frame Count from AuxHdr.
3. Obtain the corresponding
(matching the key sequence num-
ber) security material from NIB. If
Received Frame Count is less than
Frame Count then FAIL.
4. Execute CCM* mode decryption
and authentication with the same
parameters as in outgoing frames.
5. Set Frame Count to “Received
Frame Count + 1”. Store Frame
counter and the Sender Address in
the NIB.

The processing of the incoming and outgoing frames are given in Table 2.5. An
interesting security precaution here is hiding the security level in the last step

2.1 From Specification To Procedures 33

of Outgoing Frames Processing. Although the rationale behind this action is
not defined in the specification, it is clear that it is not a significant protection
since there are only eight choices (as listed above) [YNN08].

2.1.4.2 Application Layer Security

As shown in Fig. 2.1, the Application layer (APL) is composed of the APS
sublayer, the ZDO and manufacturer defined application objects. A maximum
of 240 distinct application objects can be defined. ZDO is responsible for ini-
tializing APS, NWK, Security Service Provider, and assembling the information
from applications. ZDOs are applications that employ NWK and APS primitives
to implement ZigBee End Devices, ZigBee Routers and ZigBee Coordinators.
When an APL layer frame needs to be secured, the APS sublayer handles se-
curity. Therefore, APL security actually covers APS sublayer security which is
explained in Section 2.1.4.3.

2.1.4.3 Application Support Sublayer Security

The Application Support sublayer (APS) provides an interface between the
NWK and the APL layers through a general set of services (for use of ZDO
and Application Objects) provided by APS data and management entities. The
APS sublayer processes outgoing/incoming frames in order to securely trans-
mit/receive the frames and establish/manage the cryptographic keys. The upper
layers issue primitives to APS sublayer to use its services. APS Layer Security
includes the following services: Establish Key, Transport Key, Update Device,
Remove Device, Request Key, Switch Key, Entity Authentication, and Permis-
sions Configuration Table. Below we explain the current usage of these services,
keeping in mind that they can be extended in the future.

The Establish Key service is the mechanism for establishing a LK between
two ZigBee devices. In ZigBee-2007, Symmetric-Key Key Exchange (SKKE, to
be explained in Section 2.1.5.2) is the method for key establishment and MK
is the trust information used in key establishment. Recently, Public-Key Key
Establishment (PKKE) is also enabled in a ZigBee application profile [Zig08c].

The Transport Key service provides secure or insecure means to transport a
NK, LK, or MK.

The Update Device service provides secure means for a ZigBee Router to
inform the TC that a device changed its status (i.e. joined or left the network).

34 Modelling Protocols

The Remove Device service provides secure means for the TC to inform a
ZigBee Router that one of his children should be removed.

The Request Key service provides secure means for a device to request the
active NK or the end-to-end application MK from another device (i.e. TC).

The Switch Key service provides secure means for TC to inform a device to
switch to the alternate NK.

The Entity Authentication service, which was not present in the previous
ZigBee specification, ZigBee-2006 [Zig06], provides authenticity between two
devices based on a shared secret (i.e. NK).

The Permission Configuration Table (PCT) stores the information of which
devices have authorization to perform which commands. In addition, PCT
determines whether security based on LK is required or not. Maintaining a
PCT is optional.

The services of the APS sublayer are issued in APS Command Frames. The
structure of the APS Command Frames is given in Fig. 2.3. The first two
fields of all the frames, the Frame Counter and the APS Counter, form the
APS Header. The remaining fields form the APS Payload, whose first field
APS Command Identifier indicates the type of the command frame (SKKE,
Transport-Key, Update-Device, Remove-Device, Request-Key, Switch-Key, En-
tity Authentication, etc.), as shown in Fig. 2.3.

There are some important points regarding the APS command frames in Fig.
2.3. All Key Establishment (e.g. SKKE) command frames are sent unsecured.
The Status field of the Update-Device command indicates the security mode
(SS/HS), the security of the frame (Secured/Unsecured), and the type of the
join (Join/Rejoin); unless the device is leaving. Partner Address field of the
Request-Key command is not present when the key type is NK or TCLK (note
that TCLK means LK of the TC).

We have mentioned in Table 2.5 that the NKs are stored in the NWK Layer In-
formation Base (NIB). Likewise, the MK/LK pairs and the relevant information
is stored in the APS Layer Information Base (AIB).

The processing of the incoming and outgoing frames in APS layer is given in
Table 2.6. Note that the security level is hidden the same way as in the NWK
layer frame security.

2.1 From Specification To Procedures 35

Figure 2.3: APS Command Frames

Figure 2.4: Secured ZigBee APS Frame

2.1.5 Advanced Concepts in ZigBee Security

In this section, we will introduce some advanced concepts in ZigBee security that
both brings remarkable improvements to ZigBee specification and also relevant
to our developments. We start with a special encryption mode, and continue

36 Modelling Protocols

Table 2.6: APS Frame Security (||: Concatenation)
Processing Outgoing Frames Processing Incoming Frames
1. Obtain the security material
(from NIB or AIB), and the key
identifier. If the key identifier is ac-
tive NK, then either APS or NWK
layer will apply security (not both
of them).
2. Extract the outgoing frame
counter (and the key sequence num-
ber if the key identifier is active NK)
from the security material.
3. Obtain the security level from
NIB. Set the AuxHdr (using all
these parameters) as in Fig. 2.4.
4. Execute CCM* mode encryption
and authentication, construct the
CCM* nonce as “Source Address ‖
Frame Counter ‖ Security Control”
(using the values from AuxHdr).
5. Construct the outgoing frame,
depending on the encryption re-
quirement, as in Fig. 2.4.
6. Increment and store the outgoing
frame counter.
7. Set the Security Level subfield of
AuxHdr as “000”.

1. Determine the sequence number,
key identifier and received frame
counter value from the AuxHdr.
2. Obtain the appropriate secu-
rity material from NIB or AIB de-
pending on the key identifier. If
Received Frame Count is less than
Frame Count then FAIL.
3. Determine the security level from
NIB and overwrite it to the Security
Level subfield.
4. Execute CCM* mode decryption
and authentication with the same
parameters as in outgoing frames.
5. Unsecured APS frame will be
constructed using the output of
CCM*.
6. Set and store the Frame Count
as “Received Frame Count + 1”.

with two protocols that are inherited to the ZigBee standard.

2.1.5.1 CCM* Mode of Operation

Enhanced Counter with CBC-MAC (CCM*) is a generic encryption and au-
thentication block cipher mode which is defined for use with only block ciphers
having 128-bit block size. The AES-CCM* mode of operation is an extension of
the AES-CCM mode that is used in IEEE 802.14.5-2003 [IEE03] and provides
capabilities for authentication, encryption, or both. Securing a NWK or an
APS frame is actually based on AES-CCM* mode of operation in a particular
security level.

2.1 From Specification To Procedures 37

2.1.5.2 Symmetric-Key Key Establishment Protocol

In the Symmetric-Key Key Establishment (SKKE) protocol, an initiator device
U establishes a LK (or LKUV) with a responder device V using a shared secret
MK (or MKUV). This protocol is actually inherited from another standard,
ANSI X9.63:2001 [Ame01]. As we mentioned in Table 2.1, MK may either be
pre-installed or transported from the TC. We present the SKKE protocol with
computational details in Table 2.7. In the first two messages, the devices ex-
change their 16-byte challenges. In the last two messages, the devices exchange
the data they have computed using the challenges and the device identities.
Note that a device identity is the unique 64-bit device address, and kdf (de-
fined in [Ame01]) is the key derivation function that takes two parameters: the
shared secret bit string, and the length of the keying data to be generated. After
verifying that they received the correct values, they use another value as the
LK that both of them can compute.

All the SKKE messages use the frame format as shown in Fig. 2.3. The Data
field in a SKKE frame stores the value of either a challenge or a MAC (not the
MAC layer, but the Message Authentication Code) tag.

2.1.5.3 Mutual Entity Authentication Protocol

In the Mutual Entity Authentication (MEA) protocol, an initiator device U
and a responder device V mutually authenticate each other based on a secret
key (NK). The devices authenticate each other by using random challenges with
responses based on a NK. We present the MEA protocol with computational
details in Table 2.8. In the first two messages, the devices exchange their chal-
lenges. Note that, OFC stands for the Outgoing Frame Counter of the device.
In the last two messages, the devices exchange the data they have computed
using their information and their frame counter values. They use the frame
counter values they received and their previous knowledge to verify that they
received the correct values, and thereby authenticate each other.

The MEA protocol uses two different frame formats for the challenge and the
data, as shown in Fig. 2.3. The MAC, Data Type, and Data fields have the
values field is the MacTag, Frame Counter, and the field is the Frame Counter
Value, respectively.

38 Modelling Protocols

Table 2.7: SKKE Protocol (H: Hash Function, MAC: HMAC Function, ||: Con-
catenation, 0x: Hexadecimal)

SKKE-1 U→V QEU
SKKE-2 V→U QEV

Z = MAC{U‖V‖QEU‖QEV}MK

KKeyData = kdf(Z, 256)
Computation MacKey = Leftmost 128bits of KKeyData

in = H(Z‖0x00000001)
U KeyData = Rightmost 128bits of KKeyData

= H(Z‖0x00000002)
MacData2 = 0x03‖U‖V‖QEU‖QEV
MacTag2 = MAC(MacData2)MacKey

SKKE-3 U→V MacTag2
Verification MacData2 = 0x03‖U‖V‖QEU‖QEV

in V Verify MacTag2 using MacData2
Z = MAC{U‖V‖QEU‖QEV}MK

KKeyData = kdf(Z, 256)
Computation MacKey = Leftmost 128bits of KKeyData

in = H(Z‖0x00000001)
V KeyData = Rightmost 128bits of KKeyData

= H(Z‖0x00000002)
MacData1 = 0x02‖V‖U‖QEV‖QEU
MacTag1 = MAC(MacData1)MacKey

SKKE-4 V→U MacTag1
Verification MacData1 = 0x02‖V‖U‖QEV‖QEU

in U Verify MacTag2 using MacData2
U and V use KeyData as the new LK

LK = H(MAC{U‖V‖QEU‖QEV}MK‖0x00000002)

2.2 From Procedures To Protocols

In the beginning of this chapter we have introduced the notions of specification
and procedure, and up until now we have explained the specification that we are
interested. We have done this in a way that leads us to the security procedures.
A security procedure is applied in certain cases to achieve a defined goal. In
this case, it is between ZigBee devices, and are highly related to the services
that application layer provides as we have explained in Section 2.1.4.3.

Now, we need to define a protocol. Literally, a protocol is a set of guidelines
or rules. In our context, a security protocol is used for performing security
functions and generally incorporates cryptographic algorithms.

2.2 From Procedures To Protocols 39

Table 2.8: MEA Protocol (MAC: HMAC Function, ||: Concatenation, 0x: Hex-
adecimal)

MEA-1 U→V QEU
MEA-2 V→U QEV

Computation MacData2 = 0x03‖U‖V‖QEU‖QEV‖OFCU
in U MacTag2 = MAC{MacData2}NK

MEA-3 U→V MacTag2, OFCU
Verification MacData2 = 0x03‖U‖V‖QEU‖QEV‖OFCU

in V Verify MacTag2 using MacData2
Computation MacData1 = 0x02‖V‖U‖QEV‖QEU‖OFCV

in V MacTag1 = MAC(MacData1)NK
MEA-4 V→U MacTag1, OFCV

Verification MacData1 = 0x02‖V‖U‖QEV‖QEU‖OFCV
in U Verify MacTag1 using MacData1

This section presents our first main contribution in this dissertation. After
studying the ZigBee specification and the related documentation carefully, we
have extracted protocol narrations for each security procedure in ZigBee. This is
not a trivial step towards protocol verification, since ZigBee specification chose
to narrate procedures in a story-telling context where ambiguities exist and pos-
sibility of misunderstanding is very high. For example, authentication procedure
is explained in a total of eight pages of highly confusing story-telling. On the
other hand, both developers, implementors, and protocol verifiers need protocols
that are specified in an unambiguous and well-defined manner. The traditional
and simple Alice-Bob notation is never used in the ZigBee specification, which
would eliminate most of the problems.

We have comprehended the security procedures of ZigBee, and derived corre-
sponding security protocols to be used in both implementations and mostly in
verification. We have presented all the protocol narrations we derived in Ap-
pendix A, using a notation that we have extended from the classical Alice-Bob
notation. Besides, we have filled the fields of the protocol messages with the
possible values, where applicable.

In this section, we present a procedural description of how the security services
in ZigBee are used. The security procedures consist of joining a secured net-
work, authentication, NK update, end-to-end application key establishment, and
network leave. We tried to visualize the security procedures in a state machine
form in Fig. 2.5. The arrows in the figure symbolize the procedures, and the
boxes symbolize the states of a ZigBee device in the security context. Note that
the procedure End-to-End (abbreviated as E2E in the figure) Key Establishment
that is used for establishing pairwise keys, is only valid in the HS mode. Also

40 Modelling Protocols

Figure 2.5: Security Procedures

note that it is also possible to change states without using procedures, as in the
case of time outs, missed key updates, etc.

2.2.1 Joining A Secured Network

This procedure is applied when a joiner device communicates with a router to
join a secure network or when a device in a network has missed a key update
and wants to receive the latest NK. Hence, the state of the device is out of
the network as can bee tracted in Fig. 2.5. The joiner device may begin the
procedure by transmitting an unsecured beacon request frame. The joiner de-
vice receives beacons from routers and decides which network to join. After
that, the joiner device sends an association/rejoin request to the router. The
router, knowing the joiner device’s address and security capabilities (and in the
case of rejoin whether the NK was used to secure the rejoin request command),
will send an association/rejoin response command to the joiner device. If the
joiner device receives a positive association/rejoin response command, the joiner
is declared as joined but unauthenticated and the next phase shall be the Au-
thentication routine. The protocol narration for the Join procedure is given in
Appendix A.1.2.

2.2.2 Authentication

A ZigBee device that successfully finished the joining a secured network proce-
dure is declared as joined but unauthenticated and shall start the authentication
procedure. If the device is not a router, then after successful completion of the
authentication it will be declared as joined and authenticated. If the device is
a router, then after successful completion of the authentication followed by the
initiation of routing operations it will be declared as joined and authenticated.

A new feature of the ZigBee-2007 is that, not only the newly joined device but
also the neighbouring routers must be authenticated by using the MEA protocol.

Authentication depends on many different parameters such as the security mode

2.2 From Procedures To Protocols 41

(SS, HS), the presence of a router between TC and the device, the security level
(None, ENC, MIC, ENC-MIC), the preconfiguration of the device (Not precon-
figured, Preconfigured with NK/MK/LK), profiles, etc. We have visualized the
branching of authentication protocols in Fig. 2.6.

Figure 2.6: Authentication Protocols

In SS mode, there are three main scenarios:

NPK: Device is not preconfigured with a valid key: TC sends active NK
to the device in plaintext.

PK-NK: Device is preconfigured with active NK: TC sends fake NK (all
zeros) to the device in plaintext.

PK-TCLK: Device is preconfigured with TCLK: TC sends NK to the
device, encrypted by TCLK (LK of the TC).

In HS mode, there are two main scenarios:

NPK: Device is not preconfigured with a valid key: According to its
configuration, TC sends either TCLK or TCMK in plaintext (We separated
these cases as NPK-TCLK and NPK-TCMK, see Appendix A). If TC sends
TCMK, then it also makes key establishment to derive a TCLK.

42 Modelling Protocols

PK-TCMK: Device is preconfigured with TCMK: TC establishes TCLK
with the device, using key establishment service.

In case of HS, the joiner establishes entity authentication with the router to
complete the authentication procedure. In the case of a separate router existing
between the TC and the device, the communication between the router and the
TC is secured in APS layer using active NK in SS, TCLK in HS. The protocol
narrations for the Authentication procedure is given in Appendix A.1.3.

2.2.3 NK Update

We have mentioned that, maintaining a list of all the devices in the network is
optional in SS but mandatory in HS for a TC. In SS mode, TC broadcasts new
SNK to all the devices. In HS mode, TC sends new HSNK to each device using
unicast communication.

If the device is capable of storing an alternate NK (i.e. FFD), then it will replace
its alternate NK with the new key it received. If the device is not capable of
storing an alternate NK (i.e. RFD), then it will replace its current NK and
ignore any Switch-Key command. In any case, all incoming frame counters
and the outgoing frame counter of the appropriate NK shall be set to 0. The
sequence number of the new key will be the sequence number of the previous key
incremented by 1 in mod 256. The protocol narration for NK Update procedure
is given in Appendix A.1.4.

2.2.4 End-to-End Application Key Establishment

When End-to-End Application Security between two devices is required, the
devices will run this procedure which also requires the collabration of the TC.
Depending on the configuration of the TC, the devices can either receive an
application LK (appLK) or an application MK (appMK) from TC. In the case
of receiving an appMK, it is necessary to establish an appLK afterwards, using
the SKKE protocol. The protocol narration for the End-to-End Application Key
Establishment procedure is given in Appendix A.1.5.

2.3 Vulnerabilities 43

2.2.5 Network Leave

The Network Leave procedure actually works in two different ways: Remove-
Device and Device-Leave. In Remove-Device, the TC wants a ZigBee device to
be removed from the network. After TC informs the router about the situation,
the router sends a leave command to the relevant device. In Device-Leave, a
device decides to leave the network and sends a leave command to the router.
Then, the router informs the TC about the situation. In either case, TC shall
delete the device from its list (which is optional in SS mode). If TC and the
router share a LK, then the messages between the two will be secured with LK,
otherwise with NK. The messages between router and the leaving device will
be secured by NK. The protocol narration for the Network Leave procedure is
given in Appendix A.1.6.

2.3 Vulnerabilities

In this section, we explain main vulnerabilities of ZigBee by referring to some
of the related work that we found highly relevant. We have not only covered
the related work on ZigBee security, but also IEEE 802.15.4 security. The IEEE
802.14.5 standard and its potential security vulnerabilities are important since
it is the structure that ZigBee is built on.

In [SW04], Sastry and Wagner pinpoint the problems in IEEE 802.14.5 security
and classifies them as: (1) Initialization Vector (IV) Management Problems,
(2) Key Management Problems, and (3) Integrity Protection Problems. Since
the vulnerabilities may be avoided in different levels, the paper [SW04] also
classifies the advice for these levels. The advice for application designers include
avoiding usage of any security suite that does not have integrity protection
(e.g. ENC), and for implementing their own acknowledgement system. The
advice for hardware designers include improving Access Control List (ACL) and
nonce usage, and eliminating the implementations of the security suites without
integrity. Finally, the advice for specification/standard writers include necessary
support, requirements and explanations for the vulnerable points which are
pinpointed as problems.

In [ZLA06], Zheng et. al present an attack classification based on layers. Jam-
ming, capturing, tampering, exhaustion, collision, and unfairness are the at-
tacks that are possible in the PHY and MAC layers. Routing disruption and
resource consumption are the attack types that are possible in the NWK layer.
In [ZLA06] some of these attacks are modelled in the network simulation sys-

44 Modelling Protocols

tem NS-2 [MFF] and the results are presented. In addition, relying heavily on
the TC is an important criticism in the paper. Distributed or hierarchical key
management schemes are recommended especially for large scale networks.

We believe that key update is an important issue in ZigBee networks. When
a device is removed or leaving the network, it still knows the security key (i.e.
NK). However, updating the NK after each device leave will be costly, whereas
not updating the key will be insecure. Therefore, there is a trade-off between
security and performance. We have pinpointed this problem in [YNN08].

Burglary protection is an interesting topic in pervasive computing. The attacks
on security protocols are not the only threats in ZigBee networks, theft is also
a serious security threat.

In [PP07], Pedersen and Pagter propose a security policy which is an extension
of a more general model called “Resurrecting Duckling” [SA00]. The main idea
in [PP07] is to chain the devices in a network or in friendly networks in such a
way that a device will only function when it can see all of its friends. This idea is
realized with protocols defined for device association and presence verification,
and some real life scenarios are presented in the paper.

Chapter 3

Analysing Protocols

Computer networks or simply networks are the main means of information shar-
ing and communication in today’s IT infrastructure. Certain protocols are ex-
ecuted to facilitate communication in networks. However, such networks are
mostly insecure and the communication needs to be protected against attackers
that may influence network traffic and and communication parties that might
be either dishonest or compromised by attackers.

Cryptographic security protocols form an essential ingredient of network com-
munications by ensuring secure communication over insecure networks. These
protocols use cryptographic primitives to support certain security properties,
but ensuring this properties requires a lot more effort. Despite the relatively
small size of the security protocols it is very hard to design them correctly,
and their analysis is very complicated. One of the most well-known examples
is the Needham-Schroeder protocol [NS78], that was proven secure by using
Burrows–Abadi–Needham (BAN) logic [BAN90]. Seventeen years later G. Lowe
[Low95, Low96], found a flaw by using an automatic tool Failure–Divergence
Refinement (FDR). The flaw was not detected in the original proof because of
different assumptions on the intruder model. The fact that this new attack had
escaped the attention of the experts was an indication of the underestimation
of the complexity of protocol analysis. This example has shown that protocol
analysis is critical for assessing the security of such cryptographic protocols.

46 Analysing Protocols

In this chapter, we present our approach for protocol analysis together with
a real example where we found an important flow in a contemporary wireless
sensor network security protocol. We start by modelling protocols using a spe-
cific process algebraic formalism called LySa process calculus. We then apply
an analysis based on a special program analysis technique called control flow
analysis. As a real-world example, we apply this technique to the ZigBee-2007
End-to-End Application Key Establishment Protocol and with the help of the
analysis discover an unknown flaw. We suggest a fix for the example protocol,
and verify that the fix works by using the same technique.

3.1 An Overview of the Analysis Method

Static program analysis, in essence, examines a program statically, before any
attempt of execution. Although the finite amount of resources may limit the
information or the answers to important questions, the approximation based
approach of static program analysis makes it preferable on the area of protocol
analysis. Instead of facing undecidability problem, this technique sacrifices pre-
cision and gives approximate answers about a property of a certain program,
or a piece of code, or a protocol as in our case. However, the loss of precision
does not mean that we are missing the flaws, it merely means that the analysis
results may include false positives, such as a bug or a flaw that the program
does not contain.

Static program analysis was originally developed for generating codes and op-
timising compilers [LM69, BE69]. Nevertheless, the analysis technique have
recently been directed to the field of security. Encouraging results have been
obtained by the use of this approach where safe approximations to the set of
values or behaviours arising during protocol runs can be predicted.

Control flow analysis of processes formalised in the LySa process calculus suc-
cessfully computes an over-approximation of the run-time behaviour of a proto-
col [BBD+03, BBD+05]. This method is actually the protocol analysis method
that we present in this chapter. The roadmap of the analysis method is given in
Fig. 3.1, and we will present the steps of this roadmap in the following sections.

3.2 Modelling in LySa Process Calculus 47

Figure 3.1: The Roadmap of the Analysis

3.2 Modelling in LySa Process Calculus

The first step in the protocol analysis is to formalise the protocol narration
into a model that is suitable for the analysis. In our case, we formalize the
protocols using the LySa process calculus [BBD+05]. LySa is based on the π-
calculus [Mil99] and incorporates cryptographic operations using ideas from the
Spi-calculus [AG97]. However, LySa has two different properties compared to
spi/π calculus. First, LySa has one global ether, instead of channels. The reason
for this difference is that, in usual networking implementations (e.g. ethernet-
based, wireless, etc.), anyone can eavesdrop or act as an active attacker which
does not correspond to the channel-based communication. The second differ-
ence is in the pattern matching usage in the tests of the expressions associated
with input and decryption. Although LySa is a very powerful process calculus
which also supports asymmetric encryption, digital signatures, etc., in order
to make it simple we only illustrate the symmetric fragment. The symmetric
fragment suffices to prove our claims in the example that we will present the
flaw discovery since the protocol is designed for symmetric encryption only. The
reader interested in further details including the asymmetric fragment may refer
to [BBD+05].

In LySa, we have terms (E) that consist of names (keys, nonces, messages,
etc.), variables, and the compositions of them using symmetric encryption. The
syntax of terms is shown in Table 3.1. In the case of encryption, the tuples of
terms E1, . . . , Ek are encrypted under a term E0 which actually represents an
encryption key. Note that an assumption of perfect cryptography is adopted,
which means that decryption with the correct key is the only inverse function
of encryption. The annotation inside brackets in the end of encryption will be
explained later in this section.

48 Analysing Protocols

Table 3.1: LySa Terms - Symmetric Fragment
E ::=

x variable
| n name
| {E1, . . . , Ek}`E0

[destL] symmetric encryption

Table 3.2: LySa Processes - Symmetric Fragment
P ::=

0 nil
| P1 | P2 parallel comp.
| !P replication
| (ν n)P restriction
| 〈E1, . . . , Ek〉.P output
| (E1, . . . , Ej ;xj+1, . . . , xk).P input
| decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}`E0

[origL] inP symm. decryption

The syntax of the processes (P) which is mostly alike to the polyadic Spi-calculus
[AG97] is shown in Table 3.2. At this point, we prefer to skip the syntax for
simple ones in the table, but explain the more interested and complicated two:
output and input processes. The output process 〈E1, . . . , Ek〉.P sends the k-
tuple E1, . . . , Ek to the network and continues as process P . Similarly, the
input process (E1, . . . , Ej ;xj+1, . . . , xk).P receives a k-tuple E′1, . . . , E

′
k and if

conditions are satisfied, removes the k-tuple from the network. Here, the input
operation uses pattern matching which will only succeed if the prefix of the
input message matches the terms specified before the semi-colon. In a simple
manner, we can say that for some input E′ the input process (E;x).P means
that if E′ can be separated into two parts such that first part pairwise matches
to the values E, then the remaining part of the input will be bound to the
variables x. As you can see in Table 3.2, the number of tuples in E′ is k so that
this is the total number of tuples in E and x. This kind of pattern matching is
also used in decryption.

Example 3.1 (Restriction and Output) The example LySa code below is a
new (created - restriction) encryption key (K) followed by an output which in-
cludes three plaintext elements (A, B, KA) and an encrypted element ({K}KA

).

(ν K) 〈A,B,KA, {K}KA
〉

Example 3.2 (Input) The example LySa code below is an input that binds

3.2 Modelling in LySa Process Calculus 49

the last two elements of the input to the variables xKA and x as long as the first
two elements are A and B.

(A,B;xKA, x)

Example 3.3 (Decryption) The example LySa code below is a decryption
that decrypts the value bound to variable x using the encryption key bound to
variable xKA and binds the resulting plaintext value to the variable xK . Note
that this decryption always succeeds without any need of pattern matching, as
long as the correct key exists in the receiver.

decrypt x as {; xK}xKA

In order to describe the message authentication intentions of the protocols, we
also have annotations for origin and destination. Encryptions can be annotated
with fixed labels called crypto-points that define their positions in the pro-
cess, and with assertions that specify the origin and destination of encrypted
messages. A crypto-point ` is an element of some set C and used when encryp-
tions/decryptions occur. The LySa term for encryption:

{E1, . . . , Ek}`E0
[destL]

means that the encryption happened at crypto-point ` and the assertion [dest
L] means that corresponding (valid) decryption is to happen at a crypto-point
that belongs to the set L such that L ⊆ C. Similarly, in the LySa term for
decryption:

decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}`E0
[origL] inP

[orig L] specifies the crypto-points L ⊆ C that E is allowed to have been en-
crypted.

Example 3.4 (Annotations and Parallel Composition) The example LySa
code below is the composition of the three separate parts given in Example 3.1,

50 Analysing Protocols

Example 3.2, Example 3.3, and the necessary annotations in such a way that
now we have two separate processes running in parallel.

/* a */ (ν K) 〈A,B,KA, {K}`AKA
[dest {`B}]〉.0

|
/* b */ (A,B;xKA, x).
/* c */ decrypt x as {; xK}`BxKA

[orig {`A}] in .0

The example we constructed step by step is actually the LySa model of the
single-message protocol below:

1. A → B: KA, {K}KA

The upper part (line a) of the parallel composition is the code for principal A,
and the lower part (lines b and c) is for principal B. In this example, annotations
state that the encryption at crypto-point `A is intended to be decrypted only at
`B. In a corresponding manner, the decryption at `B should originate from the
encryption at `A.

3.2.1 Specifying Protocols in LySa

In the beginning, we have a protocol narration like the one in Table 3.3. The
protocol consists of three messages, exchanged between principles A, B, and TC.
The notation we have used in Table 3.3 is the well-known Alice-Bob notation
which has three parts in each message: message number, message origin and
destination, message fields. In this little example, the principal A asks the
principle TC to create and send a pairwise key for using in secure communication
with another principle B. As a response, TC sends the link key that it has
established, LK, to both A and B in two separate messages. The communication
between A and TC is secured (encrypted) by their pairwise key KA (in messages
1 and 2), and similarly the communication between B and TC is secured by their
pairwise key KB (in message 3).

Table 3.3: Protocol Narration Example
1. A→TC: {TC, B}KA
2. TC→A: {A, LK}KA
3. TC→B: {B, A, LK}KB

3.3 Static Program Analysis 51

Then we extend the narration to specify the internal actions to be performed in
principals when receiving those messages. The reason for this kind of extension
or conversion is to completely state the actions internal to the principals, which
are normally left implicit in the narration of security protocols.

As an example, the extended protocol narration of the sample protocol in Ta-
ble 3.3 is given in Table 3.4. For each message in the original protocol narration
that has message number n, we have a corresponding output message n and a
corresponding input message n′ in the extended protocol narration. Input mes-
sage n′ presents the variable (those written in italics) bindings and necessary
checks in the receiver side. If a variable is a ciphertext and the receiver has the
correct encryption key, then we have another message (i.e. n′′) for each of those
variables. In addition, we explicitly write the internal actions as annotations
between square brackets, in order to bridge the gap between informal and for-
mal specification of the protocol. Note that when analysing protocols we add
an extra message to the end, where a principal attempts to communicate the
other through the new shared key, LK. For example, the message

1. B → A: {MSG}LK

does not change the protocol nor bring any (nor bring any additional cost to
the implementations), it is just a sample message that will be sent using the
new LK and thus it will ease the validation which is done by checking attackers
knowledge.

In the next phase, we convert the extended protocol narration into a LySa
model. We use the LySa syntax that we explained earlier in this section and
configure the necessary settings. As an example, a regular LySa model of
the protocol that we have used to demonstrate extended protocol conversion is
given in Table 3.5. Further details of specifying protocols in LySa are present
in [BBD+05].

3.3 Static Program Analysis

Static Analysis is a formal method that enables the security analysis of crypto-
graphic communication protocols which are modelled as LySa processes. Mes-
sages communicated on the network are tracked with the possible values of
the variables in the protocol. Besides, the potential violations of the destina-
tion/origin annotations are also recorded. The aim of static analysis is to effi-
ciently compute the safe approximations to the behaviour of the models without

52 Analysing Protocols

Table 3.4: Extended Protocol Narration Example

1. A → :A, TC, {TC, B}KA
[dest TC]

1’. →TC :xinitiator, xTC , xmessage

[check xTC=TC]

1”. TC :decrypt xmessage as {x′TC , xresponder}KA
[orig xA][check x′TC=TC]

2. TC→ : [new LK]

TC, xinitiator, {xinitiator, LK}KA
[dest xinitiator]

2’. →A :yTC , yA, ymessage

[check yTC=TC, yA=A]

2”. A :decrypt ymessage as {y′A, yLK}KA
[orig TC][check y′A=A]

3. TC→ :TC, xresponder, {xresponder, xinitiator, LK}KB
[dest xresponder]

3’. →B :zTC , zB , zmessage

[check zTC=TC, zB=B]

3”. B :decrypt zmessage as {z′B , zinitiator, zLK}KB
[orig TC][check z′B=B]

4. B → : [new MSG]

B, zinitiator, {MSG}zLK

[dest zinitiator]

4’. →A :yB , y′′A, ymessage2

[check yB=B, y′′A=A]

4”. A :decrypt ymessage2 as {ymsg}yLK

[orig B]

actually running them. In Fig. 3.2 we can see the approximation approach. In
general, it is impossible to compute the precise answer so we make a choice

3.3 Static Program Analysis 53

Table 3.5: LySa Model Example
let X ⊆ N s.t. bNc = {1, 2, 3} in
(νi∈X KAi) (νj∈X KB j)
|i∈X |j∈X∪{0} !

/* 1 */ 〈Ai,TC , {TC , Bj}KAi
[at a1 ij dest {tc1 ij}]〉.

/* 2’ */ (TC , Ai; yij).
/* 2” */ decrypt yij as {Ai; xLK ij}KAi [at a2 ij orig {tc2 ij}] in
/* 4’ */ (Bj , Ai; y2 ij).
/* 4” */ decrypt y2 ij as {; xmsg ij}xLK ij [at a4 ij orig {b4 ij}] in 0

|
|j∈X |i∈X∪{0} !

/* 3’ */ (TC , Bj ; zij).
/* 3” */ decrypt zij as {Bj , Ai; yLK ij}KBj

[at b3 ij orig {tc3 ij}] in
/* 4 */ (ν MSG ij) 〈Bj , Ai, {MSG ij}yLK ij

[at b4 ij dest {a4 ij}]〉. 0
|
|i∈X∪{0} |j∈X∪{0} !

/* 1’ */ (Ai,TC ; xij).
/* 1” */ decrypt xij as {TC , Bj ; }KAi

[at tc1 ij orig {a1 ij}] in
/* 2 */ (ν LK ij) 〈TC , Ai, {Ai,LK ij}KAi

[at tc2 ij dest {a2 ij}]〉.
/* 3 */ 〈TC , Bj , {Bj , Ai,LK ij}KBj [at tc3 ij dest {b3 ij}]〉. 0

between over-approximation and under-approximation. Static analysis over-
approximates the set of possible operations that the LySa process describes.
The nature of over-approximation may cause the analysis to investigate a trace
which is impossible at all. However, over-approximation is needed to make a
safe approximation since under-approximation could miss some traces.

Figure 3.2: Approximation and Precise Behaviour

54 Analysing Protocols

3.3.1 Analysis Method

The static analysis we use in this study is specified as a Flow Logic [BBD+03,
BBD+05], which is based on the control flow analysis and the data flow analysis
techniques that allow us to make it fully automatic [NNH99].

Control flow analysis is a program analysis technique that is used to compute
approximations of the result of a program execution without running the pro-
gram. Such an analysis helps us in determining the sets of values that may be
generated by communication using a specific protocol, which is beneficial for
validating certain security properties. Especially when used in conjunction with
a model of possible malicious activity (i.e. attacker), the analysis provides a
safe approximation of all events that may happen.

Flow Logic is a notational style for specifying analyses across programming
paradigms, introduced by Nielson and Nielson [NN97, NN98, NN02], and with
Hankin [NNH99]. By abstracting from domain specific formalisms and instead
using standard mathematical notations, the Flow Logic constitutes a meta-
language that can present an analysis without requiring additional knowledge
about particular formalisms. Deriving an analysis estimate from the resulting
analysis specification is then left as a separate activity, usually involving orthog-
onal considerations and tools. This approach allows the designer to focus on the
specification of analyses without making compromises dictated by implementa-
tion considerations. Similarly, implementation is simplified and improved, as
the implementer is always free to choose the best available tool. In the next
sections, we will present control flow analysis of LySa in the style of flow logic.

The control flow analysis that we use in protocol analysis is specified using the
flow logic framework as a predicate

ρ, κ, ψ |= P

that holds precisely when ρ, κ, and ψ form an analysis result that correctly
describes the behaviour of the process P .

The main components of the analysis are:

• The variable environment ρ, an over-approximation of the potential values
of each variable that it may be bound to.

• The network component κ, an over-approximation of the set of messages
that can be communicated over the network.

3.3 Static Program Analysis 55

Table 3.6: Analysis for Terms, ρ |= E:ϑ

(AName)
bnc ∈ ϑ
ρ |= n:ϑ

(AVar)
ρ(bxc) ⊆ ϑ
ρ |= x:ϑ

(AEnc)
∧ki=0ρ |= Ei:ϑi ∧

∀V0, V1, . . . , Vk: ∧ki=0 Vi ∈ ϑi ⇒ {V1, . . . , Vk}`V0
[destL] ∈ ϑ

ρ |= {E1, . . . , Ek}`E0
[destL]:ϑ

• The error component ψ, the set of error messages in the form (`, `′), in-
dicating that something encrypted at ` was unexpectedly decrypted at
`′.

The analysis is judgments of the form ρ, κ, ψ |= P which express that ρ, κ, ψ
compose a valid analysis for the process P . We also need to introduce the
auxiliary judgment ρ |= E:ϑ at this point. This expresses that ϑ, the set of
values, is an acceptable estimate of the values that the term E may evaluate in
ρ, the abstract environment.

To keep the analysis component finite, we partition all the names that are
generated by a LySa process into finitely many equivalence classes. A canonical
value is a representative for each of these equivalence classes. Names from the
same equivalence class are assigned a common canonical name and instead of
the actual names, we use the names of those equivalence classes. For example,
the canonical representative of a name n is denoted by bnc. Since it allows
us to analyse an infinite number of principals, canonical value is an important
analysis element [BRNN04].

The analysis of terms is listed in Table 3.6. The rule for analysing names
(AName) states that ϑ is an acceptable estimate for a name n if the canonical
representative of n belongs to ϑ. The rule for analysing variables (AVar) states
that ϑ is an acceptable estimate for a variable x if it is a superset of ρ(bxc).
The rule for analysing symmetric encryption (AEnc) finds the set ϑi for each
term Ei, collects all k-tuples of values (V0, . . . , Vk) taken from ϑ0× . . .×ϑk into
values of the form {V1, . . . , Vk}`V0

[destL] and requires that these values belong
to ϑ.

The analysis of processes is listed in Table 3.7. The idea of the analysis is very
similar to the analysis of terms, therefore instead of explaining all the rules we
explain only one interesting rule. The rule for analysing output (AOut) uses the

56 Analysing Protocols

Table 3.7: Analysis for Processes, (ρ, κ) |= P :ψ
(ANil) (ρ, κ) |= 0:ψ

(APar)
(ρ, κ) |= P1:ψ ∧ (ρ, κ) |= P2:ψ

(ρ, κ) |= P1 | P2:ψ

(ARep)
(ρ, κ) |= P :ψ
(ρ, κ) |= !P :ψ

(ANew)
(ρ, κ) |= P :ψ

(ρ, κ) |= (ν n)P :ψ

(AOut)
∧ki=1ρ |= Ei:ϑi ∧
(ρ, κ) |= P :ψ ∧

∀V1, . . . , Vk: ∧ki=1 Vi ∈ ϑi ⇒ 〈V1, . . . , Vk〉 ∈ κ
(ρ, κ) |= 〈E1, . . . , Ek〉.P :ψ

(AIn)
∧kj=1ρ |= Ei:ϑi ∧

(ρ, κ) |= P :ψ ∧
∀V1, . . . , Vk ∈ κ: ∧kj=1 Vi ∈ ϑi ⇒ ∧ki=j+1Vi ∈ ρ(bxic)

(ρ, κ) |= (E1, . . . , Ej ; xj+1, . . . , xk).P :ψ

(ADec)

ρ |= E:ϑ ∧
∀ ∧ji=0 ρ |= Ei:ϑi ∧

(ρ, κ) |= P :ψ∧
((` /∈ L′ ∨ `′ /∈ L)⇒ (`, `′) ∈ ψ) ∧

∀{V1, . . . , Vk}`V0
[destL] ∈ ϑ: ∧ji=0 Vi ∈ ϑi ⇒ ∧ki=j+1Vi ∈ ρ(bxic)

(ρ, κ) |= decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}`
′

E0
[origL] inP :ψ

analysis for terms to find the estimate ϑi for each term Ei and requires that all
all k-tuples of values 〈V1, . . . , Vk〉 taken from ϑ1 × . . . × ϑk are in κ (i.e. they
may flow on the network). The rule also requires that the components ρ, κ, ψ
compose a valid analysis for process P .

Example 3.5 (Static Analysis Results) Static analysis of the LySa model
given in Example 3.4 will lead to the following results:

3.3 Static Program Analysis 57

〈A,B,KA, {K}`AKA
[dest `B]〉 ∈ κ

KA ∈ ρ(xKA)

{K}`AKA
[dest `B] ∈ ρ(x)

K ∈ ρ(xK)

Looking at the results above, it is easy to see that the first line is related to line
a in Example 3.4. Likewise, next two lines derived from line b and the last line
derived from line c in Example 3.4. Note that, the details on how the analysis
works and thus how Example 3.4 leads to Example 3.5 is present in [BBD+05].

3.3.2 Attacker Model

In practice, network protocols are vulnerable to attacks. Unfortunately it is
even easier to attack wireless networks since any computer within range that is
equipped with a wireless client card can pull the signal and access the data. In
this study, LySa processes are analysed in parallel with the Dolev-Yao attacker
[DY81]. The operations that this attacker model can perform are listed below,
but before this we have to introduce new canonical (see Section 3.3.1) names and
variables for the attacker. All the canonical names of the attacker are mapped
to n• and all the canonical variables of the attacker are mapped to z•. We also
have `• which is a crypto-point in the attacker.

The descriptions of the Dolev-Yao conditions are:

• The attacker initially has the knowledge of the canonical name n• and
all free names of the process P but he can improve his knowledge by
eavesdropping on all messages sent on the network.

• The attacker can improve his knowledge by decrypting messages with the
keys he already knows. Unless the intended recipient of the message was
an attacker, an error (`,`•) should be added to the error component ψ
which means that something encrypted at ` was actually decrypted by the
attacker at `•.

• The attacker can construct new encryptions using the keys he already
knows. If this message is received and decrypted by a principal, then an
error (`•,`) should be added to the error component ψ which means that

58 Analysing Protocols

something encrypted at the attacker was decrypted by the attacker by a
process P at `.

• The attacker can send messages on the network using his knowledge and
thus forge new communications.

These conditions enable the attacker to establish scenarios including eavesdrop-
ping, modification, man-in-the-middle and replay attacks. The soundness of the
Dolev-Yao condition is proved in [BBD+05].

As shown in Fig. 3.1, the LySa model of a protocol is analysed in parallel
with the attacker model and processed by the LySa-tool (see Section 3.4.4)
which implements the static analysis [LyS]. The results of the analysis are used
to validate destination/origin authentication and confidentiality properties of
the protocols. If no violation is detected, namely the error component ψ is
empty, then it is guaranteed that the protocol satisfies the destination/origin
authentication properties. Furthermore, the potential values that are learned
by the attacker help us in validating the confidentiality properties. The details
as well as the proof of the soundness of the analysis are presented in [BBD+03].

Example 3.6 (Presence of Attackers) In Example 3.5, we analysed Exam-
ple 3.4 in an attack-free setting. Now we add the attacker model and get the
following results in addition to the results in Example 3.5. Since the attacker is
able to learn everything sent on the network we have:

KA, {K}`AKA
[dest `B] ∈ ρ(z•)

Therefore, the attacker can decrypt the encrypted part of the message which
leads to the violation:

(`A, `•) ∈ ψ

Thus we conclude that the encryption at crypto-point `A which was intended
to be decrypted at `B can be decrypted by the attacker and hence the example
protocol is flawed.

3.4 Application on ZigBee Wireless Sensor networks 59

3.4 Application on ZigBee Wireless Sensor net-
works

In this section, we present an application of the static program analysis method
that we explained in this chapter. This application has many features that make
it interesting. First of all, it pinpoints an undiscovered and non-trivial flaw in
a real cryptographic security protocol. Another key issue is that the protocol is
being used in one of the latest wireless sensor network standards, ZigBee, that
is promising and emerging in the sensor networks field. Therefore, the protocol
includes components that are known to be secure when they are individually
used and some of them are industry standards such as SKKE (see details in
Chapter 2, Section 2.1.5.2). Still we show that combining proven to be secure
components is not sufficient for guaranteeing security properties. Last feature
of this application is that we use protocol analysis not only to discover flaws but
also to verify our fixing proposals.

3.4.1 ZigBee-2007 End-to-End Application Key Establish-
ment Protocol

As we explained in Chapter 2, ZigBee is a fairly new but promising WPAN
standard for wireless sensor networks that have very low resource requirements.
In parallel with this, the devices that operate in ZigBee networks have limited
resources in terms of memory, processor, storage, power, etc. Therefore imple-
menting the security guarantees is a great challenge and the verification of the
security properties is of paramount importance.

We start by reminding some of the key points that are necessary for a clear
understanding of the development, and we omit all the details which are not
directly relevant to this study. However, in addition to Chapter 2 a detailed
survey on ZigBee security can be suggested as [YNN08] and surely the ultimate
source is the ZigBee documentation [Zig08d, Zig08e, Zig08b, Zig08a, Zig08c]
which is a rather difficult read with hundreds of pages including references to
several other standards.

End-to-End Application Key Establishment is the protocol to be used when
establishing a Link Key (LK) between two ZigBee devices, which are running
in High Security Mode (which was called Commercial Mode in the previous
standard, ZigBee-2006 [Zig06]). We will call the devices as initiator (A) and
responder (B). Note that there is also a Trust Center (TC), which shares a
pairwise secret key with each principal in the network. TC is actually an ap-

60 Analysing Protocols

Figure 3.3: ZigBee Network Model

plication that runs on a preferably more powerful ZigBee device referred to as
ZigBee Coordinator which is unique in the network; whereas the remaining de-
vices might be of type ZigBee Router or ZigBee End Device, as shown in Fig.
3.3. For a better understanding we should mention that for two ZigBee devices
to establish a (pairwise) secure communication, they must share a symmetric
key (LK) which they either receive from a trusted server (TC) or create mutually
using a temporary key received from the trusted server.

ZigBee-2007 End-to-End Application Key Establishment Protocol has two dif-
ferent cases according to the configuration of TC, we will call them as Case 1
and Case 2. In Case 1, TC creates the LK itself and sends it to each principal.
Therefore, the initiator and the responder have no role in the creation of the LK.
In Case 2, TC creates a temporary shared key called Master Key (MK) and
sends it to each principal. Using this MK, A and B initiate a Symmetric-Key
Key Establishment (SKKE) procedure to establish an LK. This case allows
principals to create an LK mutually. SKKE is actually a key agreement scheme
employed in the ZigBee End-to-End Application Key Establishment mechanism,
and its components are defined in the ANSI X9.63-2001 standard [Ame01]. We
have explained the necessary details of the SKKE protocol in the previous chap-
ter. At the end of (a successful run of) either case, two ZigBee devices will be
able to establish secure communication using their pairwise encryption key, LK.

3.4 Application on ZigBee Wireless Sensor networks 61

Figure 3.4: ZigBee-2007 End-to-End Application Key Establishment Protocol

The two cases of the End-to-End Application Key Establishment protocol are
visualized in Fig. 3.4. The solid lines represent the already secure communica-
tion paths, labeled by corresponding symmetric encryption keys. The dashed
lines represent the resulting secure communication paths after a successful pro-
tocol run, again labeled by corresponding encryption keys. Finally, the dotted
lines are the messages in the protocol labeled by their sequence numbers and
the encryption keys they deliver.

3.4.1.1 Case 1: Nonmutual Key Establishment

In Case 1, the initiator begins the procedure of establishing an LK with the
responder by sending TC the first message, request key, which includes desti-
nation address (=TC), requested key type (=Application Key), and partner address
(=B). Then TC creates an LK for two principals, and sends it to each principal
in two similar transport key messages. Since TC is configured to send an LK
directly in this case, the key type value in the last two messages will be Appli-
cation Link Key (AppLK). The only difference between these two messages is a
boolean value that indicates the initiator (TRUE: message recipient is the initia-
tor, FALSE: message recipient is the responder), and also the principal address’.
All the messages in this case are encrypted with the sender/receiver principal’s
key that is shared with TC (assuming that the security suite is Encryption-only).
The type of this key can either be Trust Center Link Key (TCLK) or Trust
Center Master Key (TCMK), as defined in the ZigBee specification [Zig08d],
but for simplicity we will call it KA for principal A, and KB for principal B.
The protocol narration of Case 1 is given in Table 3.8.

As a side note, we have used a simplified version of this protocol previously in
this chapter to demonstrate how a protocol narration is converted into first an
extended protocol narration, then a LySa model in Table 3.3, Table 3.4, and

62 Analysing Protocols

Table 3.8: Protocol Narration - Case 1
1. A→TC: {TC, AppKey, B}KA
2. TC→A: {A, AppLK, B, TRUE, LK}KA
3. TC→B: {B, AppLK, A, FALSE, LK}KB

Table 3.9: Protocol Narration - Case 2
1. A→TC: {TC, AppKey, B}KA
2. TC→A: {A, AppMK, B, TRUE, MK}KA
3. TC→B: {B, AppMK, A, FALSE, MK}KB
4. A→B: {B, FALSE, Zero, SKKE}MK

5. B→A: {A, TRUE}MK

6. A→B: {NA}MK

7. B→A: {NB}MK

8. A→B: MAC{3,A,B,NA,NB}H(MAC{A,B,NA,NB}MK ,1)

9. B→A: MAC{2,B,A,NB,NA}H(MAC{A,B,NA,NB}MK ,1)

Table 3.5, respectively.

3.4.1.2 Case 2: Mutual Key Establishment

In Case 2, the first three messages are almost the same as in Case 1, except in
this case TC is configured to send MK, and therefore key type is the Application
Master Key (AppMK). The rest of the messages are between the initiator and
the responder. In the fourth message, establish key, A sends B his request
to start SKKE. The values, False and Zero, indicate that there is no parent
(router, TC, etc.), and no parent address, respectively. The fifth message is the
response of B to A’s SKKE request. Note that these two messages are encrypted
by MK, which was received in the previous two messages. The remaining four
messages are actually the SKKE protocol itself. Messages 6 and 7 include the
challenges (NA, NB) of the principals. Messages 8 and 9 are the complex mes-
sages which can be computed by both parties to verify each other. A and B
create two message authentication codes (MAC) using their knowledge, be-
sides the MAC key itself is a hash (H) of another MAC which they produce
using the same knowledge [Fed02]. After the verification, the new LK will be
H(MAC{A,B,NA,NB}MK , 2), which is a minor variation of the MAC key that
was used in the last two messages. The protocol narration of Case 2 is given in
Table 3.9.

3.4 Application on ZigBee Wireless Sensor networks 63

3.4.2 The Flaw

In wireless networks, it is easy to intercept, forge and inject messages. Without
any formal analysis, an experienced eye can see that all the messages in ZigBee-
2007 End-to-End Application Key Establishment Protocol can be replayed when
the same long-term encryption keys (KA, KB) are still being used. The reason
is the lack of freshness elements like nonces, timestamps, etc. This flaw can lead
to serious replay attacks, denial of service (DoS) attacks, etc. Even worse, when
an old session key is compromised, an attacker can decrypt all the messages
by replaying that old session key. In other words, lack of freshness can cause
failures in authenticity (in the case that principals accept an old session key
from a rogue TC) and confidentiality (in the case that principals start using a
compromised session key).

As can be seen in the narration of the protocol, no freshness indicator is used
in the distribution of either LK (in Case 1) or MK (in Case 2, the first three
messages). Therefore, all the messages can be replayed. Replay of a message
that includes a key is very critical. An attacker can store a message including
a key from a previous run of this protocol, and then send the old message to
make principals communicate using this old key. If the old key is compromised,
then the attacker will be able to decrypt all the messages between two victim
principals.

The significance of the security risk that is caused by this flaw may require more
explanation. Indeed, the flaw does not disclose any session key but allow reuse of
a former key. Besides, brute force attacks or other types of known cryptographic
attacks for obtaining the key do not seem practical for the current specification
(i.e. the keys are 128-bits). However, disclosure of a key might still be possible
without dealing with cryptography, and reuse of an old session key can cause
serious risks. An example scenario is given below:

Scenario 1 A and B established a link key, and had secure communication
with the help of that pairwise key. Than B left the network and disclosed the
key, which might be by means of hardware (e.g. local key extraction from the
chipset such as connecting a debugger, erasing the chip, then freely reading the
contents of RAM), or software (e.g. a bug in the implementation that discloses
the key after the session expires or terminates with the natural assumption that
a new session key will be used for a future session) defects. If B rejoins the
network, and run the key establishment protocol with A (no matter which case
or security level is chosen), the disclosed key may be replayed by the attacker
who can decrypt all the communication using the disclosed key.

In the ZigBee Specification, the notion of frame counter is emphasized as the

64 Analysing Protocols

Table 3.10: Attack Scenario - Case 1
1. A→TC: {TC, AppKey, B}KA
2. TC→A: {A, AppLK, B, TRUE, LK}KA
3. TC→B: {B, AppLK, A, FALSE, LK}KB
1’. A→TC: {TC, AppKey, B}KA
2’. M(TC)→A: {A, AppLK, B, TRUE, LK}KA
3’. M(TC)→B: {B, AppLK, A, FALSE, LK}KB

freshness protection. This approach is not a strong one for several reasons. First
of all, a frame counter uses incrementing values rather than random values and
rejects frames with a smaller counter value. Second, regardless of the length
(which is 32-bits in ZigBee) it is easy to cause overflow to frame counters. As
indicated in [SW04], if an adversary forges a frame with the maximum value (i.e.
0xFFFFFFFF) any further frame will be rejected. In addition, using counters
is not a novel approach, since in such layered architectures lower layers also used
similar counters.

3.4.2.1 Flaw in Case 1

The attack scenario for Case 1 is given in Table 3.10. The first run (messages 1
to 3), is an old run which is intercepted by an attacker. Here, it is appropriate
to mention that LK is used like a session key and KA/KB are used like master
keys. Therefore, KA and KB are possibly the same in two different runs. The
second run in the attack scenario (messages 1’ to 3’) is initiated regularly, but
the last two messages are replayed by the attacker using the messages that are
captured from the old run. Furthermore, the attacker does not necessarily need
to wait for a message like 1’ since he can already replay it, too.

3.4.2.2 Flaw in Case 2

The attack for Case 1 is also possible for Case 2, in which MK is sent without
any freshness indicator. Even though LK is created mutually by the use of
SKKE in Case 2, a compromised old MK that is replayed to principals before
SKKE will allow an attacker to create the LK as well. The attack scenario for
Case 2 is given in Table 3.11. The first run (messages 1 to 9) is the old run and
it is sufficient for an attacker to capture messages 2 and 3. Then the attacker
replays these messages in the new run (messages 1’ to 9’). Although the nonce’s
used in SKKE (exchanged in messages 6 and 7) are different, as long as MK is
compromised the attacker can decrypt these messages and learn the nonces as

3.4 Application on ZigBee Wireless Sensor networks 65

Table 3.11: Attack Scenario - Case 2
1. A→TC: {TC, AppKey, B}KA
2. TC→A: {A, AppMK, B, TRUE, MK}KA
3. TC→B: {B, AppMK, A, FALSE, MK}KB
4. A→B: {B, FALSE, Zero, SKKE}MK

5. B→A: {A, TRUE}MK

6. A→B: {NA}MK

7. B→A: {NB}MK

8. A→B: MAC{3,A,B,NA,NB}H(MAC{A,B,NA,NB}MK ,1)

9. B→A: MAC{2,B,A,NB,NA}H(MAC{A,B,NA,NB}MK ,1)

1’. A→TC: {TC, AppKey, B}KA
2’. M(TC)→A: {A, AppMK, B, TRUE, MK}KA
3’. M(TC)→B: {B, AppMK, A, FALSE, MK}KB
4’. A→B: {B, FALSE, Zero, SKKE}MK

5’. B→A: {A, TRUE}MK

6’. A→B: {NA’}MK

7’. B→A: {NB’}MK

8’.A→B:MAC{3,A,B,NA’,NB’}H(MAC{A,B,NA′,NB′}MK ,1)

9’.B→A:MAC{2,B,A,NB’,NA’}H(MAC{A,B,NA′,NB′}MK ,1)

well. As a result, the attacker can still compute the new LK which is actually
H(MAC{A,B,NA’,NB’}MK , 2) (see Section 3.4.1). Therefore, we may conclude
that the flaw is critical in both cases.

3.4.3 Proposed Fixed Protocols

We propose fixed protocols that use nonces to ensure freshness of the messages
and at the same time the keys. We make use of the vital principles defined on
[AN94]. The narrations of our proposed solution are given in Table 3.12 and
Table 3.13 for Case 1 and Case 2, respectively.

In Case 1, we added the nonce of the initiator (NA) to the first two messages.
This will ensure that when receiving the second message, A will believe that
she is communicating with the TC who knows her nonce and also her private
key. Note that message 1 can still be replayed but it will be ignored if A does
not verify message 2. We inserted two more messages before the last message,
so that we use nonces of the TC (NTC) and the responder (NB) to avoid
replay attacks. This will ensure that when receiving the fifth message, B will
believe that he is communicating with TC who knows his nonce. Also note that
message 3 can still be replayed but the process will be ignored if B does not

66 Analysing Protocols

Table 3.12: Proposed Fix - Case 1
1. A→TC: {TC, AppKey, B, NA}KA
2. TC→A: {A, AppLK, B, TRUE, NA, LK}KA
3. TC→B: {B, A, NTC}KB
4. B→TC: {TC, A, NTC, NB}KB
5. TC→B: {B, AppLK, A, FALSE, NB, LK}KB

Table 3.13: Proposed Fix - Case 2
1. A→TC: {TC, AppKey, B, preNA}KA
2. TC→A: {A, AppMK, B, TRUE, preNA, MK}KA
3. TC→B: {B, A, NTC}KB
4. B→TC: {TC, A, NTC, preNB}KB
5. TC→B: {B, AppMK, A, FALSE, preNB, MK}KB
6. A→B: {B, FALSE, Zero, SKKE}MK

7. B→A: {A, TRUE}MK

8. A→B: {NA}MK

9. B→A: {NB}MK

10. A→B: MAC{3,A,B,NA,NB}H(MAC{A,B,NA,NB}MK ,1)

11. B→A: MAC{2,B,A,NB,NA}H(MAC{A,B,NA,NB}MK ,1)

verify message 5.

Our solution is also applicable to the leaked MK problem in Case 2. Similar to
our solution for Case 1, we change the first three messages of Case 2 with five
messages that are also given in Table 3.13. Not to confuse with the nonces used
in SKKE, the nonces we added are called (preNA) and (preNB) in Case 2.

The fix that we propose is a mechanism that suffices to fix the flaws in the
original protocol. There might be other ways to fix, but this is a solution that
simply works and has proven (by formal verification) to be secure.

Obviously, the proposed solution would come at a particular cost. Particularly,
the number of messages in each protocol is increased by two, and the usage of
nonces are required. Transmission of more messages means more power con-
sumption, but for security critical applications (e.g. in Smart Energy, Com-
mercial Building Automation, etc.) this kind of fix which ensures that TC is
authenticated to both A and B (i.e. the new LK is not replayed) is necessary,
so the additional messages are inevitable. Besides the original protocol in Case
2 already has nine messages (whereas the primitive version, Case 1, only has
three), which is a proof that in order to have a sound protocol ZigBee may have
longer protocols for the same purpose. The usage of nonces is not a new cost

3.4 Application on ZigBee Wireless Sensor networks 67

since it is already in SKKE which is employed by Case 2. However, the freshness
is preserved for only SKKE but not the protocol itself due to the design mistake
of the wrapping protocol.

As we mentioned before, the flaw in End-to-End Application Key Establishment
protocol may be visible to an experienced eye but to claim that a fix is flawless,
verification using formal methods is crucial. Static analysis with LySa is one
of the methods that can be used, which has many advantages such as scalability
and the guarantee of termination.

3.4.4 Formal Verification Details

Analysing security protocols without any formal verification method is not a
reliable way to find flaws, nor to guarantee that there are no flaws. To make
our assertions and arguments sound, we use static analysis to analyse protocols.
To be finite, this method is computing over-approximations rather than exact
answers, and therefore may lead to false positives. However, when the analysis
results tell that the protocol is error-free, then it really is. In other words, no
simulation or verification is necessary when the protocols successfully passes
static analysis.

The base protocols in Section 3.4.1 are modelled using LySa process calculus
and analysed using the LySa-tool [LyS]. The result supports our claims in
Section 3.4.2. The base protocols are prone to replay attacks which will cause
serious problems in the case of a leaking key.

The proposed protocols in Section 3.4.3 are also modelled analysed in the same
way with the base protocol. The result is successful, namely the proposed
protocols do not have any flaws.

The settings that we use to implement the LySa model and verify in the LySa-
tool are listed below:

• we check for the origin and destination addresses in each message (by
adding them as prefixes such as in IPv4 or IPv6)

• we have the necessary annotations for the encryptions and decryptions

• we allow legitimate attackers in addition to the illegitimate attackers (by
adding appropriate zero indices, namely attacker also shares master key
with TC)

68 Analysing Protocols

• we model three groups of (infinite) principals so that we can model man-
in-the-middle attacks

• we add an extra message that is encrypted using the session key (to see
whether the compromised key can be used)

• we check all the fields in the messages to have proper values (by pattern
matching), except session keys which are newly created (and bound to
variables in inputs)

To distinguish between old rounds and new rounds of the protocol we apply a
new technique in LySa. We add round indicators to the end of pattern-matched
fields in messages and match them in a smart way to distinguish old runs. Using
this technique, we can investigate replay attacks successfully.

3.5 Discussion

Analysing protocols is not a trivial issue, and in this chapter we presented an
analysis method with a detailed application on a new and so called enhanced
security protocol that uses secure components.

In this approach, we have solid benefits in mainly:

• solutions always exist and are computed in polynomial time. This is an
important advantage because approaches based on model checking cannot
always guarantee termination, and besides prone to state space explosion
problem. Besides the analysis is correct with respect to formal operational
semantics, which may be hard to establish in different approaches such as
the ones based on modal logic of beliefs (BAN) where the completeness
property does not generally hold.

However, those benefits come with a particular cost:

• lack of trace and counter-example. Due to the nature of the analysis, there
is no trace and no produced counter-example to help flaw discovery. As
a result of the over-approximation, false positives may occur and manual
inspection is required to match the reported violations to actual flaws.

Another thing we have presented was the usage of protocol analysis in suggest-
ing a secured version of a flawed protocol. Fixing the flaws and proposing secure

3.5 Discussion 69

protocols is another non-trivial job. In this manner, we made use of prudent
engineering practices of Gordon and Abadi [AN94], and benefited fruitful dis-
cussions with Gavin Lowe. One of the points we emphasized was the importance
of freshness, and the importance of proper usage of freshness indicators such as
nonces, challenges, etc.

We can recapitulate as encryption is not synonymous with security, and its
improper use can lead to errors. The proper use should be verified by protocol
analysis methods that focus on certain security properties.

Part II

Quantitative Analysis

Chapter 4

Preliminaries for Stochastic
Model Checking

Stochastic Model Checking is a powerful method that is used for computing the
likelihood of the occurrence of certain events in a system. As in conventional
model checking, a description of a model together with a specification is taken as
inputs, then it is checked whether or not the model satisfies the specification. In
addition to this, in stochastic model checking calculation of actual probabilities
is involved via numerical and analytical methods [KNP07].

In this chapter, we introduce the necessary background material for the following
chapters of this thesis. Although the topic is rather extensive, we chose a subset
that we will use in the following chapters.

The chapter is organized as follows: In Section 4.1, we introduce the concept of
model checking and how it evolved. In Section 4.2, we introduce how systems
can be modelled in order to be suitable for model checking. Then in Section 4.3,
we focus on how to model the properties that we would like to verify using model
checking. Following is Section 4.4, where we mention the algorithms and explain
the model checking implementation that we will use in the following chapters.

72 Preliminaries for Stochastic Model Checking

4.1 An Overview of Model Checking

Model checking is an eminent formal verification technique for assessing prop-
erties of systems. This technique provides algorithmic means of determining
whether an abstract model of a system satisfies a formal specification expressed
as a temporal logic formula. In case of violation of a property, model checking
also identifies a counterexample execution that shows the problematic point.

As the name suggests, model of a system should be developed, and desired
properties should be specified for model checking. Typically, the systems under
consideration are hardware or software systems, and properties to be checked
are absence of deadlocks, invariants, request-response and timing properties,
etc. Model checking systematically checks if a given model satisfies specified
properties, by exploring all possible system states in a brute-force manner.

In early 1980s, Edmund M. Clarke and E. Allen Emerson from USA, and Jean
Pierre Quielle and Joseph Sifakis from France, independently authored seminal
papers proposing essentially the same method, what has become the highly
successful field of model checking [CJ97], [QS82]. Through years, the field of
model checking has evolved and finally the method was awarded the 1998 ACM
Paris Kanellakis Award for Theory and Practice, and its founders were awarded
the 2007 Turing Award given by the Association for Computing Machinery.

Model checking can be described as a process involving three phases [BK08].
First phase is the modelling phase, where the system under consideration is
modelled using a model description language and the property under consid-
eration is formalized using a property specification language. Then comes the
running or checking phase, where a model checker runs for checking the validity
of the property in the model of the system. This is where an intelligent exhaus-
tive search of the state space is done to determine if the specification is true or
not. Last phase is the analysis phase, where a counterexample can be generated
if the property is violated, and the design will be revised to fix the flaw. Then,
model checking process will be restarted with a refined model until the property
is satisfied.

At this point, we need to clarify the distinction between verification and valida-
tion using the definitions from [BK08]. Validation is the judgement of whether
the formalized problem statement, i.e. the model and the properties, is an ade-
quate description of the verification problem. Thus, it helps us checking that we
are verifying the right thing. On the other hand, verification is the process of
checking that the design satisfies identified requirements, as we explained above.

One of the main advantages in using model checking is, it provides useful diag-

4.2 Modelling 73

nostic information when a property is validated, i.e. relevant counterexample
is generated. Another advantage is, model checking provides a push-button, i.e.
automated, method for verification. Generally speaking, both bug detection, as
well as correctness verification is offered.

The major problem in model checking is the state-space explosion, that is num-
ber of global states in a concurrent system getting enormous. Another weak
point is that since model checking verifies the abstract model of a system, the
results will be incorrect if the model is not faithful to to the original system.

Examples of the use of model checking include verification of hardware circuits,
communication protocols, software device drivers, real-time embedded systems,
and security algorithms, etc.

4.2 Modelling

A model is the main input to model checking, where the behaviour of the system
under consideration is described in an accurate and unambiguous manner. In
general, the concept of finite-state machine that consists of a finite set of states
and a set of transitions is employed. States of a model stores information about
the current values of the variables, and transitions between states describe how
the system evolves from one state into another.

The importance of the model in model checking is elegantly summarized by
[BK08] as:

Any verification using model-based techniques is only as good as the
model of the system.

In the rest of this section, we will start from the simplest mathematical models
and proceed to the models that we use in this study.

4.2.1 Labelled Transition Systems

A simple way of characterising systems is by using the notion of labelled tran-
sition systems. A labelled transition system LTS = (S, sinit,−→, Act, AP,L),
consists of:

74 Preliminaries for Stochastic Model Checking

• a set of states S

• an initial state sinit ∈ S

• a labelled transition relation −→⊆ S ×Act× S

• a set of actions Act

• a set of atomic propositions AP , and

• a labeling function L : S −→ 2AP

Traditionally and for convenience, we write s
α−→ t to mean that (s, α, t) ∈−→.

Example 4.1 (Labelled Transition System) The labelled transition system

LTS = ({s1, s2, s3}, s1, {(s1, a, s2), (s2, a, s3), (s3, b, s2), (s2, b, s1)}, {a, b}, AP, L)

abstractly describes a system with three states, two labels, and four distinct la-
belled transitions. The state-transition diagram of the system can be drawn as
follows:

s1 s2 s3

a a

bb

Here we can imagine that this is a very simple network model and define first
atomic propositions as AP = {one device, two devices}, then labeling function
as L(s1) = ∅), L(s2) = {one device}, L(s3) = {two devices}. By doing that, we
labelled the states with meaningful labels. We can also replace the action a with
join, and action b with leave to represent the actions of the system neatly.

4.2.2 Markov Chains

Up to now, we have introduced modelling for traditional model checking, that is
forming labelled transition systems. However, in the probabilistic setting we use
models which also incorporate information about the likelihood of transitions
occurring. In this section, we introduce Markov chains as the formalism we will
employ in the probabilistic settings. We will focus on Discrete-Time Markov
Chains (DTMC) and Continuous-Time Markov Chains (CTMC) as necessary
for the following chapters.

4.2 Modelling 75

Markov chains are the most suitable operational model for the evaluation of
performance and dependability. In the simplest definition, Markov chains are
transition systems that have probability distributions for the successor states.
In other words, being in a certain state, the next state is chosen probabilistically
rather than nondeterministically. Note that nondeterministic choice can also be
included in models such as Markov Decision Processes (MDP) or Continuous-
Time Markov Decision Processes (CTMDP), but not in Markov chains.

The major property of Markov chains, is the system evolution does not de-
pend on the history. The probability distribution to choose the next state only
depends on the current state. This property is known to be the memoryless
property.

Below we introduce discrete-time and continuous-time Markov chains in turn.
Note that we explain DTMC even though we only use CTMC in this thesis.
The reason for including DTMC is that in certain cases (such as computing
transient probabilities) CTMCs are uniformised to DTMCs to allow efficient
model checking.

4.2.2.1 Discrete-Time Markov Chains

A discrete-time Markov chain (DTMC) M = (S, sinit,P, AP, L), consists of:

• a countable, non-empty set of states S

• an initial state sinit ∈ S

• a transition probability matrix P : S × S −→ [0, 1]
such that

∑
s′∈S P(s, s′) = 1

• a set of atomic propositions AP , and

• a labeling function L : S −→ 2AP

In a DTMC, the system changes state at each time step in accordance with
the transition probability matrix P. The transition probability matrix is an
n × n matrix P, n being the number of the states. The row P(s, ·) specifies
the probabilities of moving from state s to its successor states. This matrix
specifies, for each state s, the probability P(s, s′) of moving from s to s′ by
a single transition. Obviously, P(s, s′) ∈ [0, 1], in addition we further demand
that

∑
s′∈S P(s, s′) = 1 in order for the system to be well-formed.

76 Preliminaries for Stochastic Model Checking

In this situation it is meaningful to choose the set of labels to be the set of
permissible probabilities, i.e. p ∈ [0, 1], and the resulting notion of labelled
transition system is exactly the class of discrete-time Markov chains.

Example 4.2 (Discrete-time Markov chain) Consider a simple communi-
cation channel such that not all the messages sent can reach the destination.
Model of the channel is given as a DTMC below:

start send

success

lost

1

0.9

0.1

1
1

A message is generated in the start state, and sent in the sent state. With
probability of 0.9 the transmission will be successful, however with probability
of 0.1 the message will be lost. In the latter case, the message will be sent
again until it is successfully received by the destination. After the message gets
delivered, the system will return to the start state.

The transition probability matrix P of this example is:

P =


0 1 0 0
0 0 0.1 0.9
0 1 0 0
1 0 0 0



For the sake of simplicity, we often specify DTMCs as a tuple of (S,P, L).

A path through a DTMC is a sequence of states σ = s0s1s2 . . . with P(si, si+1) >
0 for all i ≥ 0. The expression σ[i] is used to denote the (i+ 1)th state of σ, i.
e., σ[i] = si. We write Paths(s) to be the set of paths such that σ[0] = s.

4.2.2.2 Continuous-Time Markov Chains

The main type of model that we use for model checking throughout this thesis,
continuous-time Markov chain (CTMC), extends DTMC models. In DTMCs,

4.2 Modelling 77

each transition corresponds to a discrete-time step, while in CTMCs transitions
can occur in real time. Each transition is labelled with a rate, which defines the
delay that occurs before the transition is taken. The delays are sampled from
an exponential distribution that uses this rate as a parameter.

Using our simplified definition of DTMC, we define A CTMC as a tuple C =
(S, sinit,R, AP, L) which consists of:

• a countable, non-empty set of states S

• an initial state sinit ∈ S

• a transition rate matrix R : S × S −→ R≥0

• a set of atomic propositions AP , and

• a labeling function L : S −→ 2AP

The elements S, sinit, AP , and L are as in DTMC. However, the transition
rate matrix R gives the rates as opposed to the probabilities. The probability
of taking a transition from state s to state s′ within t time units equals 1 −
e−R(s,s′)·t. In the case of the origin state s having more than one successor states
s′ such that R(s, s′) > 0, there exists a race condition. Namely, the transition
taken will be the one which is enabled first. Therefore, the probability P(s, s′)
of moving from state s to state s′ in a single transition is R(s, s′)/E(s) where
E(s) is called the exit rate and calculated as

∑
s′∈S R(s, s′). Notice that, in the

case of no outgoing transitions from s, P(s, s′) = 1 for s = s′ and P(s, s′) = 0
for s 6= s′.

The time spent in a state s before any transition happens (namely the mean
sojourn time) is exponentially distributed with rate E(s).

The probabilistic information of a CTMC is actually captured by an embedded
DTMC emb(C) = (S, sinit,P, AP, L) where S, sinit, AP , and L are identical to
the CTMC and P(s, s′) is as described above.

We also need to define another matrix which will be used in the analysis of
CTMC. The (infinitesimal) generator matrix Q : S × S −→ R of a CTMC
C = (S, sinit,R, AP, L) is defined as:

Q(s, s′) =

{
R(s, s′) ifs 6= s′

−
∑
s′′ 6=s R(s, s′′) otherwise.

78 Preliminaries for Stochastic Model Checking

A path through a CTMC is a sequence of states and sojourn times (durations)
σ = s0t0s1t1 . . . where R(si, si+1) > 0 and ti ∈ R≥0 for all i ≥ 0. The ti value
represents the amount of time spent in the state si. As for DTMCs, σ[i] denotes
the (i+ 1)th state of σ, i. e., σ[i] = si. In addition, we define δ(σ, i) = ti as the
time spent in state s1, and we define σ@t = σ[i] as the state occupied at time t

i.e. where i is the smallest index for which t <
∑i
j=0 tj

Example 4.3 (Continuous-time Markov chain) Consider a simple model
of a queueing system that can have maximum two jobs in the queue. CTMC
model of the system can be given in the graphical notation as:

s1 s2 s3

1.5 1.5

66

where in the initial state s1 no jobs are waiting in the queue, in state s2 one
job arrived and finally in s3 two jobs are in the queue. The jobs arrive with the
rate 1.5 and leave the queue with the rate 6.

The transition rate matrix R and (embedded) probability matrix P of this ex-
ample are:

R =

 0 1.5 0
6 0 1.5
0 6 0

 P =

 0 1 0
0.8 0 0.2
0 1 0


Note that, the generator matrix Q of this example can be given by modifying
R’s diagonal to be R1,1 = −1.5, R2,2 = −7.5, and R3,3 = −6.

As an additional note, this kind of models are known as birth–death processes, a
special kind of CTMC where the states represent the current size of a population
and the transitions are limited to births and deaths.

4.3 Property Specification

In order to make accurate and reliable verification, properties should be de-
scribed in a precise and unambiguous manner. Although we can describe specific

4.3 Property Specification 79

properties in a suitably rich mathematical logic such as first order logic, we need
to limit this expressiveness if we are to automatically verify a property. More
specifically, the challenge is to find a logic that is both expressive enough for the
properties we are interested in, and admits efficient model checking algorithms.

Temporal Logic is a form of modal logic that is suitable to specify properties of
information systems. It is actually an extension of traditional propositional logic
with operators that refer to the behaviour of systems over time. Temporal logic
allows specification of a wide range of system properties such as correctness,
reachability, safety, liveness, fairness, etc. Below we briefly explain the main
properties that can be specified:

• A correctness property states that system does what it is supposed to do.

• A reachability property states that it is possible to end up in a desired
state.

• A safety property states that some bad things never happens.

• A liveness property states that some good things eventually happens.

• A (strong) fairness property states that something is recurrent.

As we mentioned, temporal logic is a formalism for describing change over time,
and was suggested to be used for reasoning about concurrent programs by Pnueli
in [Pnu77]. If a program can be specified in temporal logic, then it can be
realized as a finite state system. This actually suggested the idea of checking if
a finite state graph is a model of a temporal logic specification, which is actually
the idea of model checking.

Pnueli used a temporal logic with basic temporal operators F (Finally, some-
time) and G (Globally, always). Augmented with X (neXt) and U (Until), this
is today known as Linear Temporal Logic (LTL) [MP92].

Another widely used logic is the Computation Tree Logic (CTL) [CJ97]. The
basic temporal modalities in CTL are A (All, for all futures) or E (Exists, for
some future) followed by one of F , G, X , and U . Compound formulae of CTL
are built up from nesting and propositional combination of CTL subformulae.

CTL is a branching time logic as it can distinguish between AFp (along all
futures, p eventually holds and is thus inevitable) and EFp (along some future,
p eventually holds and is thus possible). The difference between CTL and LTL is
in the treatment of time, i.e. an LTL formula refers to a specific execution path

80 Preliminaries for Stochastic Model Checking

p p p p

p p

p

(a) AGp

p

(b) EFp

p p

p

(c) AFp

Figure 4.1: Example Usage of Temporal Operators

in the model, whereas a CTL formula refers to a tree of possible computations.
Examples for the use of temporal operators are given in Fig. 4.1.

Temporal logic formulae are traditionally interpreted over a given Kripke struc-
ture, that is basically a finite state graph. A Kripke structure M = (S, I,R, L)
is a 4-tuple that consists of:

• a finite set of states S

• a set of initial states I ⊂ S

• a binary transition relation R ⊆ S × S

• a labeling function (states to atomic propositions) L : S → 2AP

Then, we may write M, s0 |= p to state that in Kripke structure M , at state s0,
formula p is true.

For a model with n states and m transitions, and a property Φ, the complexity
of CTL model checking is O((n+m)|Φ|), whereas LTL model checking is O((n+
m)2|Φ|). On the other hand, it is generally considered to be more intuitive to
specify properties in LTL.

4.3 Property Specification 81

The logics LTL and CTL have turned out to be very powerful and influential,
both in academic and industrial use. Examples of prominent industrial logics,
mostly used in hardware verification, include IBM Sugar based on CTL, Intel
ForSpec based on LTL, etc.

A number of logics have been developed that extends CTL. The fact that branch-
ing time was favoured over linear time is most likely because of the lower com-
plexity of the model checking problem.

The semantics and model checking algorithms of both CTL and LTL can natu-
rally be extended to a probabilistic setting. Since there are an infinite number
of computation paths in any non-trivial model, we need to assign probabilities
to measurable sets of paths. In CTL, computation trees naturally form measur-
able sets of paths (so-called cylinder sets), and since either the satisfaction or
violation of a given LTL formula can be demonstrated by a finite prefix of a
path, we have a similar construction in both cases.

Both explicit state and symbolic model checking algorithms have been extended
to probabilistic systems. In the case of explicit state model checking, graph
reachability algorithms are essentially modified to solve probabilistic reachability
problems. In the case of symbolic model checking, Binary Decision Diagrams
(BDD) are extended to Multi-Terminal Binary Decision Diagrams (MTBDD),
which are efficient data structures for representing real-valued functions (i.e.
those that map to a probability), rather than just Boolean functions.

In the following sections, we will describe merely the logics which are both
relevant to our study and also widely used in practice. We start with continuous
stochastic logic in Section 4.3.1. Then, we describe CSRL as the variant of CSL
augmented with rewards in Section 4.3.2.

4.3.1 CSL

Continuous Stochastic Logic (CSL) [ASSB96, BHHK00] is a logic for expressing
properties of CTMCs, and has the following syntax:

Φ ::= true | a | Φ ∧ Φ | ¬Φ | P�p(ϕ) | S�p(Φ)
ϕ ::= X Φ | ΦU Φ | ΦUI Φ

We start with the distinction between state formulae and path formulae. A state
formula holds of states in the model, whereas a path formula holds of (possibly
infinite) sequences of states, namely paths. We use Φ to denote state formulae,
and ϕ to denote path formulae.

82 Preliminaries for Stochastic Model Checking

Then comes a propositional fragment where a ∈ AP is an atomic proposition,
or label of a state.

The probability measure formula P�p(ϕ) states that the probability measure
over paths that satisfy ϕ is � p, where � ∈ {<,≤,≥, >}.

The formula S�p(Φ) asserts that the steady-state probability of being in a state
satisfying Φ meets the bound �p.

X Φ is the untimed next operator, which holds for a path σ if the next state
satisfies Φ. Φ1 U Φ2 is the untimed until operator, which holds for a path σ if
some state in the future satisfies Φ2, and all states before this point satisfy Φ1.

Note that various commonly-used operators (and also used in this thesis) can
be derived using until formula as follows:

F Φ = true U Φ
G Φ = ¬(true U ¬Φ)

Before proceeding to semantics, we need to formally define a path. A path σ
in a CTMC is a (possibly infinite) alternating sequence of states and durations
s0, t0, s1, t1, . . ., such that si ∈ S, ti ∈ R>0, and for all i < |σ|−1, P (si, si+1) > 0
and r(si) > 0. We write σ[i] = si and define Paths(s) to be the set of all (infinite
and finite) paths of a CTMC starting in state s, i.e σ[0] = s. We additionally
define δ(σ, i) = ti as the time spent in state si, and σ@t = σ[i] as the state
occupied at time t.

The semantics of CSL is as follows. s |= Φ means that a state s satisfies a state
formula Φ, and σ |= ϕ means that a path σ satisfies a path formula ϕ.

s |= true for all s ∈ S
s |= a iff a ∈ L(s)
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= ¬Φ iff s 6|= Φ
s |= P�p(ϕ) iff Pr{σ ∈ Paths(s) | σ |= ϕ }� p
s |= S�p(Φ) iff lim

t→∞
Pr{σ ∈ Paths(s) | σ@t |= Φ }� p

σ |= X Φ iff σ[1] |= Φ
σ |= Φ1 UI Φ2 iff ∃t ∈ I. σ@t |= Φ2 and ∀t′ < t. σ@t′ |= Φ1

Since CSL is a continuous time logic, the intervals on the path operators can be
real-valued.

4.3 Property Specification 83

As an example of the sort of properties we can express, consider the following
CSL formula, for AP = { breakdown, recovery }:

P≥0.75(¬breakdown U [0,10] recovery)

which specifies that when a breakdown occurs, the probability of system being
recovered in the first 10 minutes is at least 0.75. Note that the time unit is
implicit to the model.

4.3.2 CSRL

We can add reward structures to CTMCs such that the reward assigned to a
state is not a fixed reward that is given for each time step we occupy that state,
but a rate of reward acquisition.

To reason about reward-structured CTMCs, the Continuous Stochastic Reward
Logic (CSRL) [CKKP05] was developed as an extension of CSL. It has the
following syntax:

Φ ::= tt | a | Φ ∧ Φ | ¬Φ | P�p(ϕ) | S�p(Φ)
ϕ ::= X IJ Φ | ΦUIJ Φ

Before explaining the extension to CSL, we would like to extend the next oper-
ator since we would use the extended version in CSRL. We additionally define a
time-bounded next operator as presented in [BKHW05]. The path formula X I Φ
requires that the next state satisfies Φ, and that the transition will take place
in the time interval I. The semantics of the timed next operator is as follows:

σ |= X I Φ iff σ[1] |= Φ and δ(σ, 0) ∈ I

The only extension to CSL is the addition of the time-bounded and reward-
bounded next and until operators. X IJ Φ states that the next state satisfies Φ,
and the transition is made at some time t ∈ I, and the accumulated reward until
time t is in the interval J . The until operator Φ1 UIJ Φ2 means that Φ2 holds
within a time interval n ∈ I, that all states before this satisfy Φ1, and that the
accumulated reward before satisfying Φ2 is in the interval J . Note that we use
a superscript to talk about time, and a subscript to talk about rewards.

The semantics of CSRL is interpreted over a Continuous time Markov Reward
Model (CMRM). This is a tuple (S, sinit,R, AP, L, ρ, ι), where (S, sinit,R, AP, L)
is a CTMC, ρ : S → R≥0 is a reward structure describing the rate per time unit
at which a reward is accumulated in each state, and ι : S×S → R≥0 is a reward

84 Preliminaries for Stochastic Model Checking

structure describing the impulse reward accumulated when a transition is made
between two states. It must be the case that for all s ∈ S, ι(s, s) = 0. We define
the accumulated reward along a path σ at time t to be:

yσ(t) = ρ(σ@t).

t− i−1∑
j=0

δ(σ, j)

+

i−1∑
j=0

ρ(σ[j]).δ(σ, j) +

i−1∑
j=0

ι(σ[j], σ[j + 1])

The semantics of the new operators in CSRL is then as follows:

σ |= X IJ Φ iff σ[1] |= Φ and δ(σ, 0) ∈ I and yσ(δ(σ, 0)) ∈ J
σ |= Φ1 UIJ Φ2 iff ∃t ∈ I. σ@t |= Φ2 and ∀t′ < t. σ@t′ |= Φ1

and yσ(t) ∈ J

4.4 Model Checking

In this section, we first present algorithms for CSL model checking and then
present a well-established model checker that we use in the following chapters
and implements CSL model checking algorithms. Thus we will complete the
last phase of model checking, after modelling and property specification.

4.4.1 CSL Model Checking over CTMCs

In this section, we consider a CSL model checking algorithms over CTMCs from
[KNP07].

The algorithms take a CTMC C = (S, sinit,R, AP, L) and a CSL formula Φ,
and output a set of states Sat(Φ) = {s ∈ S | s |= Φ} that satisfies Φ.

First, a parse tree of Φ is constructed. Then, the set of states that satisfying
each subformula is recursively computed upwards towards the root of the tree.
In the end, for each state it is determined whether it satisfies Φ or not.

4.4.1.1 Probability Measure

In Section 4.3.1 we have defined path measures, now we should define the prob-
ability measure that we will use in the following sections. Sticking to the def-

4.4 Model Checking 85

initions from [KNP07] and omitting all the details, we define the probability
measure Prs as a unique measure such that Prs(C(s)) = 1 and
Prs(C(s, I, . . . , In−1, sn, I

′, s′)) is computed as:

Prs(C(s, I, . . . , In−1, sn)) ·P(sn, s
′) ·
(
e−E(sn).infI′ − e−E(sn).infI′

)
where C(σ) is a cylinder set i.e. the set of all infinite paths with the finite path
σ as prefix. Notice that, P is the transition probability matrix of the embedded
DTMC and E(s) is the exit rate of state s as we defined in Section 4.3.1.

4.4.1.2 Transient and Steady–state Probabilities

At this point, we would like to discuss two traditional properties of CTMCs:
transient behaviour and steady-state behaviour.

The transient behaviour relates to the state of the model at a particular time
instant. The transient probability on a CTMC

πs,t(s
′) = Prs{σ ∈ Paths(s) | σ@t = s′}

is defined as the probability of being in state s′ at time instant t. Notice that
s is the starting state, σ@t is the state occupied at time t for the path σ, and
Paths(s) is the set of all paths of the considered CTMC starting from state s,
as we defined in Section 4.3.1.

The steady-state behaviour relates to the state of the model in the long run.
The steady-state probability on a CTMC

πs(s
′) = lim

t−→∞
πs,t(s

′)

is defined as the probability of having started in state s, being in a state s′ in
the long run.

The values πs(s
′) for all s ∈ S describe the steady-state probability distribution,

which can be used for inferring the percentage of time that is spent in each state
in the long run.

4.4.1.3 Uniformisation

In this section, we introduce uniformisation method which is used for computing
transient probabilities, and relied on in the CSL model checking algorithms over
CTMCs.

86 Preliminaries for Stochastic Model Checking

The key idea in this technique is, to compute the transient probabilities we work
on the uniformised DTMC of the CTMC, where each step corresponds to one
exponentially distributed delay. Now we introduce the transition probability
matrix Punif for the uniformised DTMC as

Punif = I + Q/q

such that the uniformisation rate q should satisfy

q ≥ max{E(s)|s ∈ S}

At this point, we introduce another matrix that we will use in our computations.
The matrix of all transient probabilities for time t is defined as Πt , such that
Πt(s, s

′) is the probability, having started in state s, of being in state s′ at
time instant t. In [Ste94], it is shown that Πt can be expressed as a matrix
exponential such that Πt = eQ.t and therefore can be evaluated as a power
series:

Πt =

∞∑
i=0

(Q.t)i

i!

where Q is the generator matrix that we defined in Section 4.2.2.2.

However, this computation tends to be unstable, therefore the probabilities are
computed through the uniformised DTMC Punif instead of CTMC. This brings
us to the equality:

Πt =

∞∑
i=0

γi,qt (Punif)i where γi,qt = e−qt
(qt)i

i!

where (Punif)i is the probability of jumping between each pair of states in i
steps, and γi,qt is the (Poisson) probability of i such steps occurring in time t,
given that the delay is exponentially distributed with rate q. The computation
of the infinite sum above is out of our scope for preliminaries. Note that, (unlike
Q) the matrix Punif is stochastic, i.e. all entries are in the range [0,1] and all
rows sum to 1.

4.4 Model Checking 87

4.4.1.4 Algorithms

Algorithms for stochastic model checking derive from conventional model check-
ing techniques, together with mathematical techniques from linear algebra and
Markov chains. In this thesis, we consider model checking algorithms for CSL
property specification over CTMC models. Model checking problem for CSL
was shown to be decidable (for rational time bounds) in [ASSB96]. Approxi-
mate model checking algorithms have been studied in [BKH99] where the satis-
faction of time-bounded until formulas is shown to be based on solving a type
of integral equation system. The probabilistic model checker that we use in
this thesis, PRISM, implements algorithms based on this work and further im-
provements in [KKNP01, BHHK03]. The details on the CSL model checking
algorithms used in PRISM are present in [KNP07] and they are out of our scope
for preliminaries.

However, we should mention that the overall time complexity for model checking
a CSL formula against a CTMC C is linear in the logic formula, polynomial in
the set of states and linear in the product of the uniformisation rate (defined as
q in the previous section) and the maximum t value found in the parameter of
a time-bounded until operator. Note that the size of a logic formula is equal to
the number of logical connectives and temporal operators in the formula plus
the sum of the sizes of the temporal operators.

4.4.2 PRISM

The probabilistic symbolic model checker PRISM [KNP07, Pria] is being main-
tained and developed by Marta Kwiatkowska’s research group at Oxford Uni-
versity. PRISM provides direct support for various Markov models, yet we will
only cover the necessary fragment of PRISM that we need in our developments
in the next chapters (i.e. CTMC models and CSL model checking).

PRISM is a symbolic model checker since in the sense that it uses data structures
based on binary decision diagrams (BDDs). BDDs provide compact represen-
tations by exploiting regularity. More specifically, PRISM uses multi–terminal
BDDs (MTBDDs) which is an efficient way of representing very large models
with numerical values.

The numerical computation of model checking algorithms are based around
three numerical engines:

• The sparse engine is using sparse matrix representations of the model, and

88 Preliminaries for Stochastic Model Checking

corresponds to explicit state model checking. Typically, sparse engine is
faster than MTBDD engine but requires more memory.

• The MTBDD engine is using MTBDDs to represent a model, and corre-
sponds to probabilistic symbolic model checking.

• The default engine, hybrid engine, uses a combination of the above two
representations [KNP04]. The transition matrix of the model is stored in
an MTBDD, whereas the iteration vector that recording the probability
of each state satisfying a given property is stored as a full array. This
gives better results than the MTBDD engine for most models, since the
majority of states have different probabilities of a satisfying a given prop-
erty, meaning that the iteration vector cannot be stored efficiently as an
MTBDD.

We will first give an overview of modelling using PRISM language, that maps
onto a CTMC in our case and enriched with reward structures. We will then
describe the PRISM property specification language.

4.4.2.1 Modelling in PRISM

The PRISM modelling language [Prib] is a state-based language based on the
Reactive Modules formalism [AH96]. It has two main components: variables
and modules. A PRISM model consists of a number of modules that run in par-
allel. Each contains local variables that constitute its state and a set of guarded
commands that describe its behaviour. Global variables are also allowed, which
can be read and modified by all modules.

The behaviour of a PRISM module is described by a set of guarded commands.
A guarded command has the following general form:

[] g → λ1 : u1 + · · ·+ λn : un

The guard g is a condition on the state of the variables, i.e. it determines a set
of states in which the command can execute. If g is true, then with probabilistic
information λi (which is a rate in CTMC), update ui is performed. An update
specifies how the state of the local variables changes (we write x to refer to the
old state of a variable and x′ to refer to the new state).

As a primitive example, consider the simple CTMC that we sketched in Ex-
ample 4.3. This CTMC that we visualized in state-transition diagram can be
modelled in PRISM as listed in Table 4.1. There, we have a single module

4.4 Model Checking 89

ctmc

module example_queue_system

s: [1..3] init 1;

[arrive] s < 3 -> 1.5 : (s’=s+1);

[serve] s > 1 -> 6 : (s’=s-1);

endmodule

Table 4.1: PRISM model of Example 4.3

example queue system with a single local variable s, and two guarded com-
mands.

PRISM builds models by taking composition of the modules, such that com-
mands synchronise over actions. Actions are placed between the square brackets
at the beginning of the commands. In Table 4.1 we defined two actions arrive
and serve and in Table 4.2 we defined a client module that can synchronise
over those actions. Notice that, we did not specify an arrival rate nor a leave
rate for the client, so that those rates will be equal to 1 (default) and multiplied
with the rates on the corresponding actions in example queue system. Besides,
we skipped the model type ctmc at the beginning since it is not a model but a
module only.

module client_1

c1_queued: bool init false;

[arrive] c1_queued = false -> (c1_queued’=true);

[serve] c1_queued = true -> (c1_queued’=false);

endmodule

Table 4.2: PRISM model of a client

A naive parallel composition of the modules example queue system and client 1

would yield six states since we have three possible values for the variable s, and
two possible values for the Boolean variable c1 queued. However, only two of
those states are reachable: {s = 1, c1 queued = false} (the initial state), and
{s = 2, c1 queued = true}.

90 Preliminaries for Stochastic Model Checking

However, if we add another client client 2 to the system, such that it is iden-
tical to client 1 but has the variable c2 queued instead of c1 queued, and we
synchronise each clients with the queue system things will change. Below is the
line of code that we need to add to our module in order to provide synchronous
parallel composition of clients and the queue, and asynchronous parallel com-
position of clients:

system (client 1 ||| client 2) || example queue system endsystem

Now there will be four reachable states out of twelve:
{s = 1, c1 queued = false, c2 queued = false} (the initial state),
{s = 2, c1 queued = false, c2 queued = true},
{s = 2, c1 queued = true, c2 queued = false},
and {s = 3, c1 queued = true, c2 queued = true}.

For a CTMC model, the commands take place at a particular rate, rather than
with a certain probability. When PRISM takes the composition of the modules,
every enabled command in a state of the system is allowed to proceed at the
specified rate. Intuitively, this means that the exit rate from a state of the
system is the sum of the exit rates of the individual states, and the probability
of one command proceeding over another depends on the relative exit rate.

Another important PRISM feature in modelling is the reward structures. Each
model can be extended with reward structures, such that each reward structure
is defined separately outside any module definitions. A reward item has the
following general forms:

g : r; for state rewards

[a] g : r; for transition rewards

where g is a predicate, a is an action, and r is a real-valued expression.

As a simple example, the reward structure reward 1 below assigns a transition
reward of 1 to transitions labelled serve from states satisfying c1 queued =

true.

rewards "reward 1"

[serve] c1 queued = true : 1

endrewards

4.4 Model Checking 91

4.4.2.2 Property Specification

In this section, we will consider the properties in PRISM that are based on two
logics we described in Section 4.3.2 and Section 4.3.1.

There are three operators that PRISM provides for state formulae — P for
the probability of satisfying a path formula, S for the long-run or steady-state
probability of being in a certain set of states, and R for reward properties. The
P and S operators have the following syntax, where Φ is a state formula and ϕ
is a path formula:

P �p [ϕ] S �p [Φ] R �r [ρ]

P =? [ϕ] S =? [Φ] R =? [ρ]

As you can see above, not only the bounds �p and �r can be used with the
operators, but also a query can be specified using =?. This way we can directly
specify properties which evaluate to a numerical value. since the model checking
algorithms proceed by computing the actual probabilities and then composing
it to the bound, no additional computation is needed for the operators with =?.
Besides, numerical values are very useful from a practical standpoint.

The reward property, ρ, has four different types:

• Reachability reward: F Φ
Reachability reward property specifies the expected reward accumulated
along a path until a state satisfying Φ is reached.

• Cumulative reward: C <= t
Cumulative reward property specifies the expected reward accumulated
along a path until a time bound t, which is a real number for CTMC
models.

• Instantaneous reward: I = t
Instantaneous reward property specifies the expected reward of the model
at a time instant t.

• Steady-state reward: S.
Steady-state reward property specifies the reward per time unit in the long
run.

92 Preliminaries for Stochastic Model Checking

4.5 Bisimulation

Bisimulation is a binary relation between state-transition systems, that asso-
ciates systems which behave in the same way. In other words, we can find
out if a system simulates the other and vice-versa. Intuitively two systems are
bisimulation-equivalent or bisimilar if they match each other’s moves. In this
sense, the systems cannot be distinguished from each other by an observer.

In this section, we will mostly follow the definitions and notation from [KKZJ07]
and [BK08] and build the definitions in a coherent way with the previous sec-
tions.

4.5.1 Bisimulation Equivalence – as a relation between
transition systems

We will start by defining bisimulation for labelled transition systems. Let
LTS1 = (S1, I1,−→1, Act1, AP, L1) and LTS2 = (S2, I2,−→2, Act2, AP, L2) be
two labelled transition systems over a set of atomic propositions AP . A bisim-
ulation for (LTS1, LTS2) is a binary relation R ⊆ S1 × S2 such that:

• ∀s1 ∈ I1(∃s2 ∈ I2.(s1, s2) ∈ R) and ∀s2 ∈ I2(∃s1 ∈ I1.(s1, s2) ∈ R)

• for all (s1, s2) ∈ R it holds:

– L1(s1) = L2(s2)

– if s′1 ∈ σ(s1) then there exists s′2 ∈ σ(s2) with (s′1, s
′
2) ∈ R

– if s′2 ∈ σ(s2) then there exists s′1 ∈ σ(s1) with (s′1, s
′
2) ∈ R

LTS1 and LTS2 are bisimulation-equivalent or shortly bisimilar, denoted by
LTS1 ∼ LTS2, if there exists a bisimulation R for LTS1 and LTS2.

Thus, we required that every initial state of the two LTSs be related to each
other, states s1 and s2 in a pair (s1, s2) ∈ R are equally labelled, and every
outgoing transition of s1 must be matched by an outgoing transition of s2 and
vice versa.

4.5 Bisimulation 93

4.5.2 Bisimulation Equivalence – as a relation on states

An alternative perspective on bisimulation is to consider bisimulation relation
between states in a single transition system, rather than a relation between
transition systems. This sense of bisimulation can be used in obtaining smaller
models out of large models. Let LTS = (S, I,−→, Act, AP,L) be a labelled
transition system, a bisimulation for LTS is a binary relation R on S such that
for all (s1, s2) ∈ R:

• L(s1) = L(s2)

• if s′1 ∈ σ(s1) then there exists an s′2 ∈ σ(s2) with (s′1, s
′
2) ∈ R

• if s′2 ∈ σ(s2) then there exists an s′1 ∈ σ(s1) with (s′1, s
′
2) ∈ R

The states s1 and s2 are bisimulation-equivalent or shortly bisimilar, denoted
by s1 ∼ s2, if there exists a bisimulation R for LTS with (s1, s2) ∈ R.

These two definitions of bisimulation reveals that, a bisimulation on the states
for an LTS is a bisimulation on transition systems for the pair (LTS,LTS) except
that the first condition (for bisimulation as a relation between transition sys-
tems), i.e. ∀s1 ∈ I1(∃s2 ∈ I2.(s1, s2) ∈ R) and ∀s2 ∈ I2(∃s1 ∈ I1.(s1, s2) ∈ R),
is not required.

4.5.3 Bisimulation In Probabilistic Context

In the purely probabilistic context, the study of strong bisimulation was initiated
by Larsen and Skou [LS91], and an equivalence notion was developed, similar to
the queuing theory notion of lumpability [KS60]. We will start with a definition
of strong bisimulation for DTMCs taken from [KKZJ07]. Let D = (S,P, L) be
a DTMC, and R be an equivalence relation on S.

Let D = (S,P, L) be a DTMC and R an equivalence relation on S. The quotient
of S under R is denoted S/R. R is a strong bisimulation on D if for s1Rs2:

L(s1) = L(s2) and P(s1, C) = P(s2, C) for all C in S/R.

s1 and s2 in D are strongly bisimilar, denoted s1 ∼d s2, if there exists a strong
bisimulation R on D with s1Rs2.

94 Preliminaries for Stochastic Model Checking

Strong bisimulation for CTMCs [BRNN04], that implies ordinary lumpability,
is a mild variant of the notion for the discrete-time probabilistic setting: in
addition to the above, it is also required that the exit rates of bisimilar states
are equal: E(s1) = E(s2).

The standard model checking algorithm for the CSL time-bounded until op-
erator is based upon uniformisation — we have to consider the three cases of
[0, t], [t,∞], and [t1, t2] for the time interval, but the algorithm is essentially a
first passage time analysis [BHHK03]. For the timed next operator, the model
checking algorithm boils down to a matrix-vector multiplication.

One problem we face with CTMCs is that uniformisation does not preserve the
validity of all CSL formulae. This is a problem if we perform lumpability based
abstractions, since these are typically based on a uniformised CTMC [KKLW07].
We write CSL\X to mean the subset of CSL without the next operator. If
two CTMCs are weakly bisimilar, then the validity of all CSL\X formulae is
preserved [BKHW05]. A consequence is that the uniformisation of a CTMC
preserves CSL\X equivalence.

Chapter 5

Modelling Scenarios

Protection of data in transit, such as in networks, is often provided by encryption
algorithms that rely on cryptographic keys. Algorithms are assumed to be
known by the attackers, whereas only secrecy of the key provides security as
stated in Kerckhoffs’ principle [Ker83]. However, keys may get compromised
over the time, therefore networks secured by encryption usually have the notion
of key update where the current key is revoked and a new key is established.

Today it is a well-known precaution that the cryptographic keys should be
updated over time, while it is still not clear how and when the keys should
be updated. In this chapter, we model key update strategies on the running
example of ZigBee wireless sensor networks.

In Section 5.1, we define the problem that we want to solve and give clues on our
approach. In Section 5.2, we explain the basics of the scenarios to be modelled,
which include network security details, key update strategies, and application
profiles in our running example. In Section 5.3, we present our work towards
developing a formal model that is both realistic and scalable. We gradually refine
and improve the model to be suitable for analyses in the following chapters.

96 Modelling Scenarios

5.1 Problem and Solution Approach

We start by describing a generic scenario on ZigBee wireless sensor networks.
We consider a network where devices can leave the network (e.g. having a
breakdown, drained batteries, relocation etc.), and new devices can join the
network (e.g. enlarging the network to benefit from more services, device re-
placement, etc.). The communication within the network is secured by sym-
metric encryption, such that each device in the network shares the same key
because of low-resource nature of the sensor networks.

When a new device joins a ZigBee network it will register with the trust cen-
ter and store the current valid cryptographic key in its memory (regardless of
possessing the key before joining). But what happens when a device leaves the
network? There is a risk that its memory still contains the key. In the worst case
this means that in the hands of a dishonest principal the key may be used to
manipulate the records of our energy consumption, it may be used to break the
security of our homes or it may be used to interfere with the medical equipment
of our patients. Surely we want to avoid that!

There seems only one way to achieve this, so the answer seems straightforward:

Change the cryptographic key whenever a device leaves the network!

The problem, however, is that the devices are designed to have low power con-
sumption and therefore have very small batteries. Changing the cryptographic
key is relatively demanding on power and if done too often it is likely to drain
the batteries of the devices. At the same time replacing the batteries is a costly
operation - if at all possible - so one would like to avoid that. Thus from this
point of view we would argue:

Avoid changing the cryptographic key of the devices to save power!

How can we balance these two viewpoints? When should we update the crypto-
graphic key? Should we update it at regular time intervals, as e.g. once a year?
Or should we update it whenever a fixed number of devices, e.g. 10, have left
the network? And what difference does it make?

It is essential to strike an acceptable balance: changing the cryptographic key
too seldom might jeopardize our homes whereas changing it too often will be a
waste of resources in a setting where energy consciousness is a must.

5.2 Setting the Scene 97

Our approach for solving this problem is as follows: We first build a model of
the system – in this case a network with a number of sensor devices that with a
rate may join and leave the network, as well as send messages over the network.
In the cases of leave and message event, there is a risk that the cryptographic
key might be compromised. The model also implement a number of strategies
for updating the key so that we can investigate the consequences of different
choices.

The model should be nicely reflecting and formalizing the properties of the
system – i.e. key update in ZigBee networks – and also be scalable to allow
quantitative analysis. Having the model the next step is to analyse it by posing
a number of questions shedding light on its behaviour. We have no way of
knowing exactly when the cryptographic key is compromised so we can only
investigate the probability for it being compromised.

Throughout this chapter we describe how we develop efficient models for anal-
ysis, and we leave the analysis itself to the next chapter.

5.2 Setting the Scene

As we have explained in previous chapters, ZigBee-2007 specifies a suite of
security services that includes methods for key establishment, key transport,
etc. Although each revision and supporting specifications (such as stack and
application profiles) roll out improvements, key update strategies and proper
determination of related security parameters still remain as gaps in the standard
[YNN08].

Naturally, we want to ensure that the risk of using a compromised security key
in a ZigBee network is as small as possible – and this calls for updating the key
fairly often. On the other hand, this operation is computationally expensive and
we would not like to perform it too often. Unfortunately, the ZigBee specification
does not give any advice on this (i.e. how and when the key shall be updated)
– it merely states that the security key shall be updated (see Appendix B for
details).

Given the usual resource limitations in the ZigBee networks, absolute security
is often less important than quantifiable trade-offs between security and per-
formance. As security is a qualitative concept, realistic analyses require results
that are valid with respect to the full behaviour of the systems considered.

We start by reminding the key points that are necessary for a clear under-

98 Modelling Scenarios

standing of the development, and we omit all the details which are irrelevant
to this part of study. ZigBee uses symmetric encryption, the Advanced Encryp-
tion Standard (AES – 128) [Fed01], therefore all the cryptographic security keys
are symmetric keys and 128 bits in length. A Network Key (NK) is the mere
mandatory key in a ZigBee network, which is shared amongst all the devices
and used to secure broadcast communications. A Trust Center (TC), creates
and distributes the NKs. TC is an application running on a ZigBee device, that
is unique in every ZigBee network. As a key component of ZigBee security, the
TC is assumed to run on a more powerful device (e.g. a coordinator) rather
than a regular ZigBee end device. Two more types of security keys may exist
in a ZigBee network depending on the security configuration: Master Key and
Link Key. Unlike NK, those keys are pairwise shared.

Network keying scheme (i.e. using NK) has advantages over pairwise keying
schemes (i.e. using MK and LK). It uses minimum resources, besides it is
simple and easy to manage. There exists benefits in also self-organization and
accessibility since neighbouring devices can interpret each other’s data. Finally,
scalability and flexibility are very high since keying material is the same for all
devices.

On the other hand, pairwise keying is not scalable and requires too much storage,
energy and computation abilities for low-resource devices. However, using NK
is challenging since compromise of one device compromises the entire network.
In this study we focus on NK as the key type and refer to it as the key, and we
assume if a device is in the network then it has already acquired the key.

The details of the NK update protocol (which is not about any key update
strategy but about how to transport the updated key to the devices) is given in
the specification and explained in [YNN08]. TC is fully responsible of creating
and distributing the NK, and we assume that when TC updates the key, all
the devices in the network successfully update their keys. Compromise of a NK
affects all the devices in a network.

5.2.1 Key Update Strategies

In the network security area, key update is often seen as a periodical event. As
such, the ZigBee-2007 specification uses the word “periodically” when referring
to the key update issue but gives no further guidelines or clues about alterna-
tives. We propose new key update methods for ZigBee wireless sensor networks.
Although our starting point is wireless sensor networks, the key update prob-
lem exists in almost all kinds of networks that are using encryption, and our
methods can be applied in different types of networks as well. In this section we

5.2 Setting the Scene 99

present the first two methods we propose, together with the classical periodical
key update method:

Time-based key update. The time-based key update strategy is built on the
traditional concept of updating the key after a certain amount of time elapsed.
The key is updated after a predefined key expire time.

Leave-based key update. The leave-based key update strategy is considering
the leave events in the network. The key is updated after a predefined number
of devices leave the network. In practice, when a device leaves the network
it may still own a valid key, hence a device leave presents a security risk. To
the best of our knowledge, this is a novel key update strategy that we propose
in [YNN+10b]. A counter in the TC keeps the number of the devices left (or
removed from) the network. When this number reaches the predefined threshold
value, all the keys in the network are updated and the counter is reset to zero.
The idea here is to have a key update strategy that is inspired by the nature of
the wireless sensor networks where number of exchanged messages can be very
low but the number of join and leave events can be relatively higher compared
to the conventional networks.

Join-based key update. The join-based key update strategy is considering
the join events in the network. The key is updated after a predefined number of
new devices joins the network. A new device that joins the network presents a
security risk since it may become a legitimate attacker. This strategy is also our
own proposal, and the idea is very similar to the Leave-based key update. The
key point here is, even though a device leaving the network with valid key is a
risk itself, the bigger risk is when a new device joins after such a leave. Because
the new device could have somehow captured the key from a previously left
device. In this case, the counter would keep the number of joining devices, and
the threshold would be set as a limit for this value.

5.2.2 Application Profiles

As we aim to estimate system dimensions and other parameter values (or value
ranges) for different applications, we use application profiles that are defined
by ZigBee wireless sensor networks. ZigBee has six different application profiles
and up to now only two of them are finalized: Home Automation [Zig08a] and
Smart Energy [Zig08c]. The remaining application profiles that are expected to
be finalized and released soon are Commercial Building Automation, Personal,
Home and Hospital Care, Telecom Applications, and Wireless Sensor Applica-
tions. Rather than presenting the details of these profiles, we will explain the
properties that are relevant to our work on key updates. This will lead us to

100 Modelling Scenarios

assumptions that we will use in stochastic model checking.

Below we explain the settings for one of the application profiles that we focus on
in this study. We leave the explanations for the rest of the application profiles
to Appendix B. We first summarize the scope and the purpose of the profile for
a better understanding of the design criteria. Then in the second paragraph, we
present the information gathered from a professional ZigBee expert that once
led the design of ZigBee security sublayer [Cra08], and finally present the param-
eters that we used in our models with the values that we determined from that
information. Specifically, we present the technical details in terms of maximum
network size, rate of join, rate of leave, and key compromise probability.

The Home Automation (HA) Profile: This profile covers applications for
the residential automation market to allow equipment manufacturers to produce
products that will meet the needs of customers ranging from do-it-yourself home-
owners to professional installers. Home automation profile has a vast amount of
device types such as on/off switch, level control switch, remote control, shade
controller, heating cooling unit, various sensors (temperature, pressure, light),
intruder alarm system equipments etc.

In this profile, the network is fairly static such that it is likely that devices such
as light switches and luminaries, once commissioned, would remain in place
for a longer period. The network size is in general less than 50 devices. The
environment is relatively insecure, and to reflect this we shall say the key is
compromised in 1% of the cases. A device may leave the network for reasons
such as a break down or flat battery, and most likely, it will be replaced shortly
after. We shall assume that each device leaves the network once a year but
it will be replaced within a week. Based on these assumptions we specify the
remaining constants as follows:

maximal size of the network: 20 devices (excluding the trust center)

average number of joining devices: 1 device every week

average number of leaving devices: 1 device per year

risk of key compromise: 1/100

Obviously, application profiles can be customized easily and so the models can
also be used for different type of networks.

5.3 Developing A Stochastic Model 101

5.3 Developing A Stochastic Model

Developing a formal model for any system is not a trivial step in model checking
since a tiny flaw in the model would cause incorrect results in the end. In
addition, a slight redundancy in the model can cause a huge increment in the
state space which would make model checking infeasible in terms of either time
or memory or both.

Our aim for the construction of the model is to make it as simple, modular, and
generic as possible, yet detailed enough to allow realistic analysis and optimi-
sation of different security measures: such as key confidentiality, recovery time,
network size, update efficiency, etc.

In the following subsections we will be working on a specific key update strategy
and a specific application profile, that is the Leave-Based key update on ZigBee
Home Automation application profile as a running example to show how we lead
to a smart model. Below we list the assumptions for this example:

• Network size. The network is initialized to its maximum capacity. TC
is not counted as a device in the model, and exists even when there is no
device in the network.

• Join. A device can join the network if the network capacity is not fully
utilized.

• Leave. A device can leave the network if there is at least one device
other than the TC

• Compromising leave. When a device leaves, the key might get com-
promised with a certain probability

• Key updating leave. The counter for leaving devices in initialized to
zero, incremented by one in each device leave. Assuming that the threshold
is T , right after the leave of the T th device the key will be updated.

Note that we excluded messaging and key compromise caused by messages for
the sake of simplicity.

We first take a classical approach and construct the fundamental model in details
in Section 5.3.1. The idea in the classical approach is to represent each device
with a unique component. Then we improve the model to be a compact repre-
sentation of the network such that it will be more scalable and less error-prone
in Section 5.3.2. In this phase, we represent the whole network in one single

102 Modelling Scenarios

component. We present the huge difference in number of states and transitions
even for moderate instances of classical and compact models. Furthermore, we
instantiate minimal instances of the two models and investigate thoroughly to
show that not only states and transitions, but also the rates of transitions are
one-to-one the same in these models in Section 5.3.3. There we also show that
the differences in the number of states and transition are caused by the dupli-
cates of the states and transitions in the classical model. In Section 5.3.4, we
discuss the bisimilarity of the models, and in Section 5.3.5 we explain how the
running example can be extended to support different key update strategies and
different network settings.

5.3.1 A Classical Modelling Approach

We start by taking a classical approach that would be a familiar way of modelling
such concurrent systems. We consider a realistic model where there is a trust
center in the network that regulates key update, and a number of devices that
can be either in the network (joined and authenticated) or out of the network.

As you can see in Table 5.1, first we start by defining the model type as ctmc,
i.e. the model will result in a continuous-time Markov chain (CTMC).

CTMCs are frequently used in modelling continuous real time and probabilistic
choice. Using CTMCs we can specify the rate of making a transition from one
state to another. Probabilistic choice in CTMCs, arises through race conditions
when two or more transitions in a state are enabled.

Then we define the constants that we will use throughout the model, which
include rates, a probability, and a threshold value. Since this is a CTMC model,
obviously we have rates for waiting times or delays such as in join and leave

actions. Key compromise has a probability therefore we have a way of combin-
ing rates with probability. Below we define our constants to be free from any
ambiguity.

• A device leaves the network with rate R leave.

• A device joins the network with rate R join.

• A device leaves the network while compromising the key with probability
P comp.

The values that we assigned to these constants in Table 5.1 are taken from
the ZigBee Home Automation application profile (see details in Appendix B).

5.3 Developing A Stochastic Model 103

ctmc

const double R_join = 1/7;

const double R_leave = 1/365;

const double P_comp = 1/100;

const int T_leave;

module TRUSTCENTER

Comp: bool init false;

C_leave: [0..T_leave] init 0;

[joini] true -> true;

[leavei] C_leave<T_leave-1 -> (C_leave’=C_leave+1);

[leaveCi] C_leave<T_leave-1 ->

(Comp’=true) & (C_leave’=C_leave+1);

[leaveRi] C_leave=T_leave-1 ->(Comp’=false)&(C_leave’=0);

endmodule

module DEVICEi

Statusi: [0..1] init 1; // 0: outside, 1: inside network

[joini] Statusi=0 -> R_join: (Statusi’=1);

[leavei] Statusi=1 -> R_leave*(1-P_comp):(Statusi’=0);

[leaveCi] Statusi=1 -> R_leave*P_comp: (Statusi’=0);

[leaveRi] Statusi=1 -> R_leave: (Statusi’=0);

endmodule

Table 5.1: Leave based key update - classical approach

Finally, a threshold value is required to trigger the key update, that is the
threshold T leave for leave actions in this strategy.

Next, we have modules representing the entities in real life. As each ZigBee
network has a trust center to coordinate security-related and administrative ac-
tivities of the network, we model that with a unique module called TRUSTCENTER.
The trust center is the authority when a device joins the network, leaves the
network, and when the network key should be updated. It keeps a separate
counter, C leave that keeps the track of the left devices. When the value of
this counter reaches the threshold the network key is updated by trust center.
Besides, the trust center is dealing with the key compromise issues by the help
of a Boolean variable in the model which reflects the security status of the key.
Of course, in real life it is hard to be immediately aware of any key compromise
situation, however this is an advantage of modelling, we can see when a key gets
compromised depending on our input values such as number of devices, rates,

104 Modelling Scenarios

probabilities, etc.

Before talking about how the entities interact, let us skip to the next module,
DEVICEi. As a classical modelling attitude in concurrent systems, we need to
have the same number of modules as the number of devices. Therefore, the
indices, appended as i to the end of the module name, local variable, and
transitions should actually be substituted by numbers. This actually is a big
cumbersome when the number of devices in the module is large. For instance,
if we have two devices in the model other than the Trust Center, than we need
to have three modules in the model: TRUSTCENTER, DEVICE1, and DEVICE2.
However, this is not enough, we need to have unique transitions that would
make a device and the trust center interact. Therefore, we need to have unique
commands per device, that is for this example join1, join2, leave1, leave2,
leaveC1, leaveC2, leaveR1, and finally leaveR2. Notice that, a device module
would only have the relevant commands indicated with proper indices, whereas
the Trust Center should have all the commands for that transitions. Also notice
that, what we present in Table 5.1 should be unfolded with the proper indices
(i.e. having numbers instead of is, and having n number of device modules) to
be a proper PRISM source code. As a last note on the device modules, each
device is aware of its engagement with the network via the local variable Status.

As we started explaining the command labels for transitions, we can now talk
about how those entities interact with each other. In real life, joining and leaving
the network, also updating the network key, is a pairwise process between a
device and the trust center of the network. Similarly, in our model each device is
interacting with the trust center over unique transitions. Since we are modelling
merely the key update protocols and not the inter-device communication, the
devices are supposed to synchronize with the trust center, not any other device.

In the model, the modules have actions of join type, and leave type. The
difference between different leave actions is that, a leave does not compromise
the key, a leaveC compromises the key, and a leaveR causes the key to be up-
dated (i.e. reset). These actions are fired when the guards of the synchronising
modules are satisfied, which are related to the leave counter, the leave threshold,
and the status of the device. A very important feature of our modelling is that,
each action has a delay with a computed rate. However, the key update action
should not be delayed. We achieve this by merging the key update action with
the last device leave, which resulted into the action leaveR. A more naive ap-
proach would be having a separate action for the key update, e.g. keyupdate

or reset, but then it would not be realistic since we would be missing any join,
leave or more seriously any key compromise in the delay before the key update
and the last leave that causes the key to be updated.

Before advancing to further developments, let us talk about the possible modi-

5.3 Developing A Stochastic Model 105

fications and the criticism on this classical model. To have a realistic model, we

ctmc

const int Max;

const double R_join = 1/7;

const double R_leave = 1/365;

const double P_comp = 1/100;

const int T_leave;

module TRUSTCENTER

Size: [0..Max] init Max;

Comp: bool init false;

C_leave: [0..T_leave] init 0;

[join] Size<Max -> (Max-Size): (Size’=Size+1);

[leave] Size>0 & C_leave<T_leave-1 -> Size:

(Size’=Size-1) & (C_leave’=C_leave+1);

[leaveC] Size>0 & C_leave<T_leave-1 -> Size:

(Size’=Size-1) & (Comp’=true) &(C_leave’=C_leave+1);

[leaveR] Size>0 & C_leave=T_leave-1 -> Size:

(Size’=Size-1) & (Comp’=false) &(C_leave’=0);

endmodule

module DEVICE1

Status1: [0..1] init 1; // 0: outside , 1: inside network

[join] Status1=0 -> R_join: (Status1’=1);

[leave] Status1=1 -> R_leave*(1-P_comp):(Status1’=0);

[leaveC]Status1=1 -> R_leave*P_comp: (Status1’=0);

[leaveR]Status1=1 -> R_leave: (Status1’=0);

endmodule

module DEVICE2 = DEVICE1 [Status1=Status2] endmodule

system (DEVICE1 ||| DEVICE2) || TRUSTCENTER endsystem

Table 5.2: Leave based key update - classical approach revisited

refrain from having a variable that sets the maximum number of devices in the
network, and another variable that keeps the current number of devices that are
in the network (notice that being in the network, is different than being in the
system; a device should be engaged by join operations to be in the network).
In addition, we could have a slightly different model by exploiting the module
renaming feature and system endsystem construct in PRISM, which allow us
to clone modules with a single line of code and have CSP-style parallel compo-
sition with process algebra operators, respectively. We present such a modified

106 Modelling Scenarios

model for a network of maximum two devices in Table 5.2, where you can see
how we can save from code by cloning DEVICE1 and then naming the cloned
module as DEVICE2 where all the local variables and actions are automatically
renamed by PRISM. In the end of this revisited model you can see the synchro-
nisation which works in a way that enables the synchronization between each
module and trustcenter (using operator ||) but not the synchronization within
modules (using operator |||). This kind of construction is actually mimicing
the previous model which achieves synchronisation by distinctive actions that
are unique for each device.

Observations on the classical modelling approach:

The classical approach is unfortunately inefficient when the model gets bigger
(i.e. having more devices). The required coding is growing as the number of
devices grow. The model becomes more and more error-prone since any typo in
encoding can risk the sanity of the model. Ironically, the classical approach is
much more convincing people in the reliability of the model. That is because,
the model is easy to follow, and we are sure that it is doing what we want. In
our humble opinion, we can refer to the classical model as modelling in computer
science perspective.

5.3.2 A Compact Modelling Approach

At this point, we would like to introduce our new modelling approach where we
have many improvements in terms of modelling effort and the resulting state
space. The nature of the wireless sensor networks leads us to think of a more
compact model such that we can have vast number of devices in the network.
The classical approach has scalability problems, therefore we need to come up
with an idea that is not only easy to model but also produces much smaller state
space. We have introduced a naive version of this idea in [YNN+10b], here we
explain an improved version. We start by modelling the whole network, i.e.
the devices, in a single module. Thus we don’t need to have separate modules
per device. Then we let this module to be running in parallel with the trust
center, similar to the classical approach. The two modules in the model will be
synchronising with four different actions, on join, leave and key update purposes.
The PRISM code for our model is given in Table 5.3.

As we use more or less the same constants, variables, and actions we refrain from
repeating the explanations of those reused components. Instead, we explain
what is different in this approach starting with the TRUSTCENTER module. We
only keep the counter for leaving devices in TRUSTCENTER. In other words, Trust
Center is merely responsible for implementation and enforcement of the key

5.3 Developing A Stochastic Model 107

ctmc

const int Max;

const double R_join = 1/7;

const double R_leave = 1/365;

const double P_comp = 1/100;

const int T_leave;

module TRUSTCENTER

C_leave: [0..T_leave] init 0;

[join] true -> true;

[leave] C_leave<T_leave-1 -> (C_leave’=C_leave+1);

[leaveC] C_leave<T_leave-1 -> (C_leave’=C_leave+1);

[leaveR] C_leave=T_leave-1 -> (C_leave’=0);

endmodule

module NETWORK

Size: [0..Max] init Max;

Comp: bool init false;

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size:

(Size’=Size-1) & (Comp’=true);

[leaveR]Size>0->R_leave*Size:(Size’=Size-1)&(Comp’=false);

endmodule

Table 5.3: Leave based key update - new approach

update strategy. We leave the information keeping for key compromise and
network size to the NETWORK module.

The NETWORK module is dealing with the join and leave (including the ones that
compromise the key and reset the key) actions. In addition, the status of the
key in terms of key compromise is also known by this module. Here we can
think of network size and network key as attributes of the NETWORK module. As
we keep the size of the whole network, there is no need to maintain a status
variable for device presence as in the classical models.

Our new approach is very simple yet powerful. It can be scaled up and down
by just changing the values of the constants, especially the maximum number
of devices (Max). There is no need to modify the code unless the key update
strategy is changed. Many of the new key update strategies can be integrated
by just replacing the trust center module with a new one. Some of the strategies

108 Modelling Scenarios

may of course require modification in network module as well. For example we
will show how to implement a precise time-based key update later.

One of the points that should be emphasized again is that key update itself is
not a single transition. Modelling key update as a separate action, as it was
done in [YNN+10b] would also be fine but causing delay (that is exponentially
distributed with a specific rate) on the key update. Instead, we merge the key
update action with the leave action that causes the key update. Therefore,
the model is more realistic (compared to [YNN+10b]) as the update happens
instantaneously.

Since we have shown how we save from coding and benefit from easy modelling,
now let us come up with a comparison to show how we save from the state
space. In Table 5.4, we present number of states and number of transitions
for the three models we have explained so far. We instantiate the models for
different maximum network sizes and different threshold values, and observe the
changes in the number of state and transitions of the CTMC. In the first half
of the table, we are considering a network that has maximum two devices at a
time, and built the model for threshold values ranging between 1 and 4. We
observe that compact model has % 50 less transitions and %25 less states for
all threshold values. Obviously, a network of two sensor devices is not realistic
for ZigBee networks, therefore we repeat our comparison for more devices. In
the second half of the table, we consider maximum 20 devices at a time in
the network, and set the threshold value to be 5, 10, 15, and 20. We observe
%99.9979973 reduction in the number of states, and %99.9998093 reduction in
the number of transitions regardless of the threshold value.

Observations on the compact modelling approach:

The number of states and the number of transitions are extremely reduced in
our new and compact approach, and the difference is so big for even a modest
network that is up to 20 devices (e.g. some ZigBee application profiles such
as WSA and PHHC expect to have around 500 devices in a network, see Ap-
pendix B). In fact, the number of states in the classical approach will not be
feasible to apply model checking when the number of devices increase. As our
aim is to run hundreds of subsequent model checkings (a.k.a. experiments in
PRISM jargon), the compact model looks very promising with minimum num-
ber of states and transitions. The two classical approaches we described above
clearly gives the same number of states and numbers for each threshold, as they
are two slightly different codings of the same model.

Remember that we have referred to the classical model as a way of modelling
in computer science perspective. At this point, we would like to claim that a
compact model can be seen as a way of modelling in mathematics perspective.

5.3 Developing A Stochastic Model 109

Table 5.4: CTMC comparison

Size Thres. classical classical rev. compact

2 1 States 4 4 3

Transitions 8 8 4

2 2 States 12 12 9

Transitions 28 28 14

2 3 States 20 20 15

Transitions 48 48 24

2 4 States 28 28 21

Transitions 68 68 34

20 5 States 9437184 9437184 189

Transitions 230686720 230686720 440

20 10 States 19922944 19922944 399

Transitions 492830720 492830720 940

20 15 States 30408704 30408704 609

Transitions 754974720 754974720 1440

20 20 States 40894464 40894464 819

Transitions 1017118720 1017118720 1940

Arguably, different disciplines tend to use different models however the results
should be the same.

5.3.3 A Closer Look At The Models

After comparing the two approaches in terms of number of states and transi-
tions, we need a more closer look to get more insights. To achieve this, we will
instantiate the models for a small number of devices, and examine the resulting
CTMCs carefully.

We start by giving a detailed example and showing the relation between those
three different models. We instantiate the models for 2 devices in the network,
and enforces leave-based key update with update threshold 2. In Table 5.5, we
present the reachable states for three different models. As you can see, the two
classical models which we name as classical (and refer to as A), and classical rev.
(end refer to as B) have the same number of reachable states: 12. However, the

110 Modelling Scenarios

compact model (which we refer to as C) has only 9 reachable states. In Table
5.5, we have also given the values of the variables in the states in parenthesis.
The format of the variable ordering is given on the top of each column. For
example, we call the first state of model A as a0, and showed that in a0 state,
the values of the variable Comp, C leave, Status1, and Status2 are false, 0, 0,
and 0, respectively.

Table 5.5: Reachable states
A: classical B: classical rev. C: compact

(Comp,C leave,Status1,Status2) (Size,Comp,C leave,Status1,Status2) (Size,Comp,C leave)

0 a0:(false,0,0,0) b0:(0,false,0,0,0) c0:(0,false,0)

1 a1:(false,0,0,1) b1:(0,false,1,0,0) c1:(0,false,1)

2 a2:(false,0,1,0) b2:(0,true,1,0,0) c2:(0,true,1)

3 a3:(false,0,1,1) b3:(1,false,0,0,1) c3:(1,false,0)

4 a4:(false,1,0,0) b4:(1,false,0,1,0) c4:(1,false,1)

5 a5:(false,1,0,1) b5:(1,false,1,0,1) c5:(1,true,1)

6 a6:(false,1,1,0) b6:(1,false,1,1,0) c6:(2,false,0)

7 a7:(false,1,1,1) b7:(1,true,1,0,1) c7:(2,false,1)

8 a8:(true,1,0,0) b8:(1,true,1,1,0) c8:(2,true,1)

9 a9:(true,1,0,1) b9:(2,false,0,1,1)

10 a10:(true,1,1,0) b10:(2,false,1,1,1)

11 a11:(true,1,1,1) b11:(2,true,1,1,1)

An important result of Table 5.5 is all the states in the classical model also exist
in the revised classical model decorated with a Size prefix varying between 0, 1,
and 2. In fact, we can precisely point which state in model A is similar to which
state in model B. That would actually result in an injective (or one-to-one)
mapping function, as we present in Table 5.6. These two models, A and B, also
has a relation to model C. However, since model C has less reachable states, as
an analogy to functions, the relation from A (and B) to C is not injective but
surjective (or onto). For example, the states c3, c4, and c5 correspond to more
than one states in models A and B.

As we have presented the reachable states, now we can continue with the tran-
sitions in the models. In Table 5.7, we listed all the transition in three models.
There exists a separate column for each model, and within each column we have
follow a format where each row is a unique transition that we write as a triple:
origin state, destination state, and rate. Note that we omitted the prefixes (i.e.
A, B, or C) in the state numbers to save space. As an example, the first line

5.3 Developing A Stochastic Model 111

Table 5.6: Similarity between the states

A: classical B: classical rev. C: compact

a0 b0 c0

a1 b3 c3

a2 b4 c3

a3 b9 c6

a4 b1 c1

a5 b5 c4

a6 b6 c4

a7 b10 c7

a8 b2 c2

a9 b7 c5

a10 b8 c5

a11 b11 c8

of the last column tells us that there is a transition in model C that is from
state c0 to state c3 with a rate of 0.285714285714. As in the sates, we have less
transitions in model C, that is only 14. The models A and B has 28 transitions
for each.

As shown in Table 5.7, model B includes all the transitions in model A, even
though there is no Size variable in A. This fact does not mean that we can
remove the Size variable from model B, because we use it to limit oversize
and undersize (leave and join) actions in the network. Besides, the order of
transitions are not the same in A and B, just because of the different state
numbering in the reachable states (see Table 5.5). To help the reader to follow
the example, we list the similarity in the transitions in Table 5.8. Note that,
in order to distinguish between the states and the transitions we use different
prefixes in Table 5.8, i.e. TrA, TrB, and TrC.

The similarity between C and the other model is now even more interesting since
there are two transitions in A and B for each transition in C. Thus, we can say
that classical models include all the transitions in our compact model and all of
them are duplicated. The reason of the duplicates is the number of devices, or
more technically the local variables Status 1 and Status 2 duplicating each
transition in model C.

The Tables 5.7 and 5.8 show that for the same transitions, all three models have

112 Modelling Scenarios

Table 5.7: Transitions
A: classical B: classical rev. C: compact

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

0 1 0.142857142857
0 2 0.142857142857
1 3 0.142857142857
1 4 0.00271232876712
1 8 2.7397260274e-05
2 3 0.142857142857
2 4 0.00271232876712
2 8 2.7397260274e-05
3 5 0.00271232876712
3 6 0.00271232876712
3 9 2.7397260274e-05
3 10 2.7397260274e-05
4 5 0.142857142857
4 6 0.142857142857
5 0 0.0027397260274
5 7 0.142857142857
6 0 0.0027397260274
6 7 0.142857142857
7 1 0.0027397260274
7 2 0.0027397260274
8 9 0.142857142857
8 10 0.142857142857
9 0 0.0027397260274
9 11 0.142857142857
10 0 0.0027397260274
10 11 0.142857142857
11 1 0.0027397260274
11 2 0.0027397260274

0 3 0.285714285714
0 4 0.285714285714
1 5 0.285714285714
1 6 0.285714285714
2 7 0.285714285714
2 8 0.285714285714
3 1 0.00271232876712
3 2 2.7397260274e-05
3 9 0.142857142857
4 1 0.00271232876712
4 2 2.7397260274e-05
4 9 0.142857142857
5 0 0.0027397260274
5 10 0.142857142857
6 0 0.0027397260274
6 10 0.142857142857
7 0 0.0027397260274
7 11 0.142857142857
8 0 0.0027397260274
8 11 0.142857142857
9 5 0.00542465753425
9 6 0.00542465753425
9 7 5.47945205479e-05
9 8 5.47945205479e-05
10 3 0.00547945205479
10 4 0.00547945205479
11 3 0.00547945205479
11 4 0.00547945205479

0 3 0.285714285714
1 4 0.285714285714
2 5 0.285714285714
3 1 0.00271232876712
3 2 2.7397260274e-05
3 6 0.142857142857
4 0 0.0027397260274
4 7 0.142857142857
5 0 0.0027397260274
5 8 0.142857142857
6 4 0.00542465753425
6 5 5.47945205479e-05
7 3 0.00547945205479
8 3 0.00547945205479

the same rates.

It is now easier to match the transitions in CTMCs with our corresponding
PRISM models. For example the transitions c7, c9, c13, and c14 all correspond
to the leaveR (a.k.a reset or update) action in the PRISM model. The reason
of having four different transitions is obviously the guard of the command can
be satisfied in four different ways depending on the values of the variables in
the guard.

Using the results in Table 5.5 and Table 5.6, we can show that models A and
B (i.e. classical and classical revised models) actually have the same states.
Using the results in Table 5.7 and Table 5.8, we can show that models A and
B actually have the same transitions with exactly the same rates. Now, using
these four tables we can conclude that the models A and B produce exactly the
same continuous-time Markov Chain for the instantiation of maximum 2 devices
and leave threshold of 2. From now on, we will continue with only two models:
B classical rev., and C compact.

5.3 Developing A Stochastic Model 113

Table 5.8: Similarity between the transitions
A: classical B: classical rev. C: compact

TrA1 TrB1 TrC1

TrA2 TrB2 TrC1

TrA3 TrB9 TrC6

TrA4 TrB7 TrC4

TrA5 TrB8 TrC5

TrA6 TrB12 TrC6

TrA7 TrB10 TrC4

TrA8 TrB11 TrC5

TrA9 TrB21 TrC11

TrA10 TrB22 TrC11

TrA11 TrB23 TrC12

TrA12 TrB24 TrC12

TrA13 TrB3 TrC2

TrA14 TrB4 TrC2

A: classical B: classical rev. C: compact

TrA15 TrB13 TrC7

TrA16 TrB14 TrC8

TrA17 TrB15 TrC7

TrA18 TrB16 TrC8

TrA19 TrB25 TrC13

TrA20 TrB26 TrC13

TrA21 TrB5 TrC3

TrA22 TrB6 TrC3

TrA23 TrB17 TrC9

TrA24 TrB18 TrC10

TrA25 TrB19 TrC9

TrA26 TrB20 TrC10

TrA27 TrB27 TrC14

TrA28 TrB28 TrC14

Compact model (C) Classical (revised) model (B)

Figure 5.1: The state-transition diagrams

114 Modelling Scenarios

At this point, our aim is to show that the compact model is not only efficient,
scalable, and compact but also behaving no different than the classical model.
In Fig. 5.1, we present the state-transition diagrams of the models. Instead of
having labels on the transitions, we classify them with line patterns.

• A dashed line is a leave action

• A dashed-and-dotted line is a leaveC action

• A dotted line is a leaveR action

• A solid line is a join action

In the classical model, we also have color coding such that the duplicated states
and transitions are in red. Since there are two devices in the network, whenever
an action (variants of leave, or join) is fired, it might either be device1 or
device2. These two combinations cause the red states and transitions.

So if we continue our prefixed fashion of naming the states, we can say that

• states (b2, b7, b8, b11) and (c2, c5, c8) are where the key is compromised,

• states (b0, b3, b4, b9) and (c0, c3, c6) are where the number of leaving de-
vices in the network is (set as) 0,

• states (b0, b1, b2) and (c0, c1, c2) are where the number of devices in the
network is 0,

• states (b0, b1, b2) and (c3, c4, c5) are where the number of devices in the
network is 1,

• states (b9, b10, b11) and (c6, c7, c8) are where the number of devices in the
network is 2.

In conclusion, we can say that the states c3, c4, and c5 are duplicated as (b3,
b4), (b5, b6), and (b7, b8), respectively. Besides the transitions from and to all
these states are also exactly duplicated. We show for this minimal model and
claim that compact model is modelling the same system as classical model but
with less states and less transitions.

All the statements above are verifiable using the states in Table 5.5. Note that,
the figures are CTMCs where the self loops and rates are omitted for the sake
of simplicity.

5.3 Developing A Stochastic Model 115

5.3.4 A Discussion on Bisimilarity of the Models

As we have explained in Section 4.5 of the preliminaries chapter, bisimulation is a
binary relation between state-transition systems, that associates systems which
behave in the same way. Intuitively two systems are bisimulation-equivalent or
bisimilar if they match each other’s moves. In this sense, the systems cannot
be distinguished from each other by an observer.

Although in the previous section we have shown that for a network of maximum
two devices, and a key update threshold of two leaving devices, our two different
models have a huge similarity in terms of states, transitions, and rates; bisimu-
lation can help us in verifying if these two models can simulate each other in a
more theory-driven way.

In this section, we present a small discussion on the bisimilarity of our models
until now. We will first make use of the definition of bisimulation equivalence
as a relation between two transition systems in Section 4.5. The equivalence of
the compact model and the classical model for two devices and threshold of two
follows the fact that the relation

R = {(c6, b9), (c4, b5), (c4, b6), (c5, b7), (c5, b8), (c7, b10),

(c0, b0), (c8, b11), (c3, b3), (c3, b4), (c1, b1), (c2, b2)}

is a bisimulation, which can easily be verified on Fig. 5.1.

An alternative perspective on bisimulation is to consider bisimulation relation
between states in a single transition system, rather than a relation between
transition systems. This sense of bisimulation can be used in obtaining smaller
models out of large models. Thus, this time we will make use of the definition
of bisimulation equivalence as a relation on states in Section 4.5.

To show bisimilarity, first we will decorate the transition systems in Fig. 5.1
with the rates. Since we continue with our two simple models we will take the
rates from Table 5.7. Remember that the two transition matrices had exactly
the same rates for corresponding transitions. In Table 5.9, we label the rates
(not the actions) in order to increase readability of the transition diagram. Thus,
we lead to Fig. 5.2 where each transition has a rate that is marked with a letter,
and an action that causes the transition that is shown with a line pattern. As
an example, taking a look at the compact model in Fig. 5.2 we can say that
state 2 and state 3 (or C2 and C3, to be in accordance with Table 5.5) both
have a transition that is shown with a solid line, i.e. a join action. However
these two solid lines have different labels on them, a and d, meaning that the
rates of those transitions are different and can be looked up in Table 5.9.

116 Modelling Scenarios

Table 5.9: Labeling transitions

Label Rate Computation

a 0.285714285714 R join * Size, Size=2

b 0.00271232876712 R leave * (1-P comp) * Size, Size=1

c 2.7397260274e-05 R leave * P comp * Size, Size=1

d 0.142857142857 R join * Size, Size=1

e 0.0027397260274 R leave * Size, Size=1

f 0.00542465753425 R leave * (1-P comp) * Size, Size=2

g 5.47945205479e-05 R leave * P comp * Size, Size=2

h 0.00547945205479 R leave * Size, Size=2

As we have our finite continuous-time Markov chain now we can define an equiv-
alence relation ≈ on our state set (S) such that for any equivalence class A, it
does not matter which state within the equivalence class we are in. When we run
the Markov chain, we only care about the sequence of the equivalence classes
entered. Then, as explained in [LS91], we can form a quotient Markov chain
S/≈ whose states are the equivalence classes of ≈, if and only if ≈ is a proba-
bilistic bisimulation. Namely, the probability of going (in one step) from a state
a in a class A to some state b in a class B is independent of a:∑

b∈B

pab =
∑
b∈B

pa′b

where pab is the transition probability from state s to state t.

As shown in Fig. 5.2, we formed equivalence classes of ≈, that is A, B, and
C denoted by dashed boxes. You can consider the rest of the states as unique
equivalence classes, for instance 0 ∈ D , 1 ∈ E, 2 ∈ F , 9 ∈ G, 10 ∈ H, and
11 ∈ I. In this case, ≈ is a probabilistic bisimulation because all the states in
the same equivalence class have the same rates of going in one step to another
equivalence class. For instance, state 6 from class A, can go to state 10 (class
H) and 0 f(class D) with rates d, and e, respectively. The same rates hold for
state 7, which is the other state in the same source class (A) when going to the
same destination classes (D and H). Besides, the incoming transitions to states
5 and 6 have the same rate, f, from the class G.

5.3 Developing A Stochastic Model 117

Compact model (C) Classical (revised) model (B)

Figure 5.2: The state-transition diagrams, revisited

5.3.5 Extending Model with Different Key Update Strate-
gies

Up to now, we developed our model for the running example of the leave-based
key update on the ZigBee Home Automation application profile. However, dif-
ferent key update strategies (and of course differently configured models to fit
various application profiles) can be implemented and those should be verified
and analysed using stochastic model checking as well. In fact, the mere key
update strategy that is suggested in the ZigBee specification is what we name
as the time-based strategy, and the leave-based one is actually our proposal.

Time-based key update. We start modelling the time-based key update
similar to the model in [YNN+10b], presenting the result in Table 5.10. You
will notice that the difference with the leave-based (compact) model is very
limited. Instead of T leave, we have T time that corresponds to the threshold
in time-based model (also known as the key expire time). This threshold is
actually an integer constant, the number of months that the key is valid. An
important difference is, instead of a type of leave action that causes the update
we model a reset action whose only purpose is the key update. We define the
rate of the reset action as R reset and define it as 1/(30*T time), note that

118 Modelling Scenarios

we designed our time unit to be a day therefore a period needs to be multiplied
by 30 to be converted as a month.

ctmc

const int Max;

const double R_join = 1/7;

const double R_leave = 1/365;

const double P_comp = 1/100;

const int T_time;

const double R_reset = 1/(30*T_time);

module TRUSTCENTER

[join] true -> true;

[leave] true -> true;

[leaveC] true -> true;

[reset] true -> R_reset: true;

endmodule

module NETWORK

Size: [0..Max] init Max;

Comp: bool init false;

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size:

(Size’=Size-1) & (Comp’=true);

[reset] true->1:(Comp’=false);

endmodule

Table 5.10: Time based key update - a naive approach

The time-based key update model in Table 5.10 is also very compact, and very
effective. However, as a CTMC model the key update period is exponentially
distributed with a rate of R reset (more precisely, the product of R reset from
module TRUSTCENTER and 1 from module NETWORK. This kind of modelling does
not cause a burden on computing steady-state probabilities, but it is not very
accurate indeed. In other words, the key updates does not exactly happen every
T time months.

In a sense, a periodical event is not fitting a continuous-time Markov chain.
However, event such as join and leave are perfectly modelled with that. We
have to add deterministic time delays to the CTMC model. At this point we
try to approximate deterministic delays with phase-type distribution. We im-
plement Erlang distribution, a special case of a phase-type distribution, that

5.3 Developing A Stochastic Model 119

is the distribution of the sum of k independent identically distributed random
variables each having an exponential distribution. The rate of the Erlang dis-
tribution is the rate of this exponential distribution. By doing that, we are able
to continue with our CTMC model that we developed up to now, and also use
PRISM to compute probabilistic model checking results.

Erlang distribution has two parameters, a non-negative integer shape parameter
k and a non-negative real number rate parameter λ. When the shape parameter
k equals 1, the distribution simplifies to the exponential distribution. In Table
5.11, we present the modifications to convert our naive model to the improved
time-based key update model. Notice that, NETWORK module remains the same
and R reset is no more needed. In order to implement the Erlang distribution
we introduced the shape and the reciprocal of the rate (mean = 1/λ) parameters
as constants k and mean, respectively. We compute the sum of k independent
identically distributed random variables each having an exponential distribution
in the TRUSTCENTER using the local counter i and a transition that does not
synchronise with the NETWORK module.

const int k;

const double mean = 30*M;

module TRUSTCENTER

i : [1..k+1];

[join] true -> true;

[leave] true -> true;

[leaveC] true -> true;

[] i<k -> k/mean : (i’=i+1);

[reset] i = k -> k/mean : (i’=1);

endmodule

Table 5.11: Time based key update - using phase-type distribution

The improved version of the time-based key update is more accurate on the
time of key updates, however quite costly. Increasing the value of the shape
parameter gives us more accurate results in modelling deterministic time delays
i.e. the key update periods. However, there is a trade-off here between the
accuracy and the size (state space) of the model. Roughly, the model size is
increased by a factor of k.

Join-based key update. This key update strategy is very similar to the leave-
based key update in the implementation. Technically, the key update will be
triggered when a certain number (i.e. number of update threshold) of devices
joined the network. Since the changes in the model are trivial we don’t list the

120 Modelling Scenarios

model details here but in Appendix C, as we did for all other methods.

Message-based key update. Here we mention a new key update method
that was proposed by [MAK08], which is built on the idea that the messages
communicated over the network are actually increasing the risk of an attack.
We will refer to this method as message-based key update (MB) throughout this
thesis. This approach counts the number of communicated messages and issues
a key update after a certain number of messages communicated.

Implementing various application profiles. As we have explained before,
different application profiles can mainly be characterized by their join/leave
rates, key compromise probabilities, and maximum network size. To embody
this information we don’t need to make significant changes in the models. All
we need to do is to initialize the constants Max, R join, R leave, and P comp

with proper values.

Implementing costs and rewards. As we have explained in Chapter 4,
the probabilistic model checker we use gives the possibilities of using multiple
reward structure in a model, and regards costs also as rewards. We make use
of this and specify both state and transition rewards in our models. We inves-
tigate cumulative, instantaneous, and steady-state reward properties. By doing
so, we can compute expected total time that a compromised key was used, ex-
pected number of key compromise cases, expected number of key updates in
each strategy, expected number of useful and useless key updates, and more.
Therefore, reward structures are vey useful in the verification of security and
security-related protocols. We present the usage of reward structures and rele-
vant property specification in the following sections. Besides, present the listing
of the reward structures and logic formulae in Appendix C.

Chapter 6

Analysing Scenarios

In this chapter, we try to explain how stochastic model checking technique can
be applied to a part of a wireless network standard’s security sublayer such
that we can reason about security properties and get quantitative answers to
our questions. We present a methodology for determining optimal key update
policies and security parameters, considering the security needs for realistic
application scenarios.

Our analysis is in three key aspects: confidentiality, recovery, and efficiency. In
Section 6.1, we introduce our analysis in key confidentiality both in the long
run and in single time instants. In Section 6.2.1, we introduce our analysis in
recovery of a key compromise such that the mean time to recover would be min-
imized and maximum recovery period would be limited. Finally, in Section 6.3
we introduce our analysis in efficiency which considers both costs and usefulness
of the updates.

Our running example throughout this chapter is: leave-based key update versus
time-based key update. Thus we also show that stochastic model checking can
be efficiently used in determining the most appropriate key update strategy for
an intended security level. What we mean by key update strategy is a defined
key update method with a defined update threshold value, and we stick to this
definition throughout the chapter.

122 Analysing Scenarios

6.1 Optimising Key Confidentiality

Confidentiality of communication over a network where cryptography is em-
ployed is strictly bound to the confidentiality of the keys that are used for
encryption and decryption, as stated in Kerckhoffs’s principle. Therefore, in
this section we are actually optimising the confidentiality of the network com-
munication by optimising the confidentiality of the network key.

Using our models with proper configurations (either using the constants that we
derived for specific ZigBee application profiles in Appendix B, or using custom
values for specific network designs), we can obtain the probability of being in a
state where the key is compromised. We can compute this probability not only
for the long run, but also for a specific time instant.

6.1.1 Risk of Key Compromise in the Long Run

One of the fundamental concerns in security is the preservation of confidentiality
in the long-run. Given the properties of a network such as estimated risk of each
device and the environment, we can compute the steady-state probability of the
occurrence of an event. Thus we are able to answer the question:

What is the probability of the key being compromised in the long run?

Using stochastic model checking, we can obtain the steady-state probability
of key compromise for different key update methods and different key update
thresholds. Below is the continuous stochastic logic (CSL) [ASSB96] formula
that formally specifies the question above in PRISM notation:

S=? [Comp]

The S operator is used for reasoning about the steady-state probability of the
occurrence of an event. In this case, we are asking what is the probability of Comp
being true in the long run (or equilibrium). Since Comp is the Boolean variable
that is true when the key is compromised, we actually ask the probability of the
key being compromised.

As an example, we present the results for the Home Automation (HA) ap-
plication profile, using the time-based (TB) and leave-based (LB) key update

6.1 Optimising Key Confidentiality 123

strategies in Fig. 6.1. The x-axis shows the values of the thresholds of the key
update strategies: M denotes the threshold for TB (short form of T time) and N

denotes the threshold for LB (short form of T leave). On the y-axis we have
the steady-state probability (or risk) that the key is compromised. The curves
represent the results for the two key update strategies, such that each point
gives the steady-state probability of the key being compromised when that key
update method is implemented with the corresponding threshold value in the
x-axis.

Since the experiments shown here are for the Home Automation application pro-
file of ZigBee standard, the parameter values are: R join=1/7, R leave=1/365,
P comp=1/100, Max=20. For the sake of simplicity, we consider the models that
the key gets compromised by only compromising leave actions, but not by the
communication over the network. The time unit is taken as 1 day, and phase-
type distribution is employed for the deterministic delays in TB such that the
shape parameter k for the probability distribution is taken as 1000.

Figure 6.1: Probability of key compromise in the long run in Home Automation
using a) time-based (threshold M) b) leave-based (threshold N) key update.

Fig. 6.1 tells us that, if we use TB strategy picking a threshold between 1 and
12 (months) then the risk of key compromise will be between 0.8% and 9% for
the specified application profile above. Similarly, if we use LB strategy picking
a threshold between 1 and 20 (leaving devices) then the risk of key compromise
will be between 0% and 8.9%. As a more concrete example, if we update the
key every three months in HA application profile, then we expect average key
compromise risk to be 2.38% according to the results. On the other hand, if we
update the key after every 5th device leaving the network, then the risk will be
1.98%.

124 Analysing Scenarios

At this point we would like to mention that, if we model the network to face key
compromise only by leaving devices, then updating the key after each leave –
i.e. LB with threshold value 1 – will result in zero risk which is also observable
in Fig. 6.1. We would also like to point out that even though the results seem
to produce two lines in reality they are not. The results graphically exhibit
a concave function’s behaviour. In other words, the results have a decreasing
slope, i.e. the derivative of the function is decreasing. Practically speaking, the
difference between the steady-state probabilities when the threshold is T and
T+1 is getting smaller as T value grows.

The results also reveal which strategy can be substituted for another. In other
words, we can conclude that, for example, TB with a threshold of m is equiva-
lent/substitutable with, for example, LB with a threshold of n in terms of key
compromise probability in the long run.

In terms of comparison, steady-state probabilities are very useful since they
allow us to find comparable strategies. This way we can refine the strategies to
be analysed, and save time and memory.

Benefiting from this reasoning, we are also able to answer the question:

What is the optimum key update threshold value I should set, if I am
able to enforce X key update strategy and I would like to have the
probability of the key being compromised in the long run less than Y
percent?

As such, it is very useful to know the risk in the long run when comparing
different strategies and different threshold values. We will use this property in
our case studies in the following chapter.

6.1.2 Maximum Risk of Key Compromise

Estimating the risk of key compromise is no doubt important when optimising
the key confidentiality. However, the risk is not the same at each time instant
and surely we would like to know more about the maximum risk that we could
face, and the pattern of the encountered risk over time.

As a starting point, we would like to be able to answer questions such as:

What is the probability that the key is compromised 6 months from
now?

6.1 Optimising Key Confidentiality 125

Obviously the answer depends on how often we are changing the key and we
shall therefore pose the questions for different replacement strategies. Below is
the CSL formula that formally specifies the question above in PRISM notation:

P=? [F[30*T,30*T] Comp]

The P operator is used for reasoning about the probability of the occurrence of
an event, and in this case it is the transient probability that we are interested
in. We are asking what is the probability of Comp eventually being true at time
instant 30*T. Since Comp is the Boolean variable that is true when the key is
compromised and assuming that the time unit is a day in our models, the formula
can be translated as “what is the probability of the key being compromised T

months after the network starts operation?”.

Continuing with our previous example, we present the results again for the
Home Automation scenario, using TB and LB key update strategies but this
time for the transient probability in Fig. 6.2. The x-axis shows the month T of
interest and spans two years period. On the y-axis we have the probability that
the key is compromised. The curves represent different thresholds (i.e. M and
N) for resetting the key such that each point gives the probability of the key
being compromised at that time instant

The dotted lines represent the leave-based key update strategy for different
threshold values (i.e. update takes place after in total of N devices left the
network). The solid lines represent the time-based key update strategy for
different period values (i.e. update takes place every M months).

For the TB key update strategy where the key is updated at fixed time intervals,
we analyse scenarios of resetting the key every 3 months, every 6 months, etc.
up to every 12 months. As an example we see that if we replace the key once
every 6 months then the green curve (in fact not a curve but a sawtooth form)
shows that the probability of the key being compromised 6 months from now
is 4.8%; if we replace it every 12 months then the corresponding probability is
9.2%.

For the LB key update strategy where the the key is changed whenever a fixed
number of devices has left the network, the curves show the results for threshold
of 5, 10, 15 and 20 devices. As an example we see that if we replace the key
whenever 10 devices have left the network then the green curve shows that the
probability of the key being compromised after 6 months is 4.5%; if we replace
it after 20 devices have left the network then the corresponding probability is
9.2%.

126 Analysing Scenarios

Figure 6.2: Transient probability of key compromise in Home Automation using
a) time-based (threshold M) b) leave-based (threshold N) key update.

The results show us that the leave-based key update strategy provides a fairly
stable risk for especially low threshold values. Besides we learn that in terms
of the maximum key compromise probability, the two key update strategies are
comparable for (M=9,N=20), (M=6,N=15), and (roughly) (M=3,N=5).

Benefiting from this reasoning, we are also able to answer the question:

What is the optimum key update strategy I should enforce, if the
maximum key compromise probability we can tolerate is less than X
percent at any time?

Besides it is very useful to know the pattern of the instant risk before employing
a key update strategy. Some networks may tolerate instant high risks for the
sake of relatively low risk in the long run, whereas some could prefer a more
stabile risk pattern. We present more details on the fluctuations in the results
of LB (and also other similar key update methods) in Appendix D.2.

6.1 Optimising Key Confidentiality 127

6.1.3 Methodology for Optimising Key Confidentiality

In the previous two sections, we have explained how to analyse key confidential-
ity from two different points of view. In this section, we present our methodology
for determining optimum key update strategy concerning key confidentiality.

In Table 6.1, we present the methodology as an algorithm of six steps. The idea
is to find a solution satisfying networks key confidentiality requirements. The
solution is computed in two sequential steps, making use of the developments
we have explained above. Since the methodology in Table 6.1 is almost self-
contained, we would like to express additional points in the methodology. First
point is the observation details in transient analysis, which could be defined
in STEP 1.b and used in STEP-V. The observation period and observation
frequency should be specified for transient analysis. The second point is the
solutions returned by the method. Obviously, the method can return empty
set, or multiple results. In any of these cases, the requirements maybe refined
and/or reset in order to achieve a better solution.

Surely the results on Fig. 6.1 and Fig. 6.2 shed some light on how the key
update strategy influences the risk of key compromise. But offhand they do not
really give exact answers to our questions. So let us try to ask a more direct
question, and make use of both of the previous results:

What is the best replacement strategy if it the acceptable probability
of key compromise in the long run should be between 5% and 9%,
and acceptable probability of maximum key compromise at any time
should be between 8.5% and 10%?

In this case, the question sets the requirements clearly. We can start by applying
the first step in our methodology such that

amin = 0.05, amax = 0.09, bmin = 0.085, and bmax = 0.1

Then, complying with the previous examples, we can set our capabilities in
STEP–II as

KU = {TB,LB}
TS = {TSTB , TSLB}
TSTB = {TSTB [1], . . . , TSTB [12]}
TSLB = {TSLB [1], . . . , TSLB [20]}

128 Analysing Scenarios

STEP I: Set the requirements
1.a) average risk should be between amin and amax

1.b) maximum risk should be between bmin and bmax

STEP II: Set the capabilities
2.a) the set of key update methods that can be implemented:

KU = {KU1, . . . ,KUn}
2.b) the multiset of threshold sets that includes

an implementable threshold set composed of positive
integers for each key update method in KU :

TS = {TS1, . . . , TSn}

STEP III: Initialize the solution set as:
SS = ∅

STEP IV: Compute the solution set that satisfies 1.a

For all i in KU do
For all j in TS do

For all k in TSj do
1. compute the steady-state prob. STSj [k][Comp]
2. if STSj [k][Comp] |= 1.a then

SS = SS ∪ TSj [k]

STEP V: Refine the solution set such that it also satisfies 1.b

For all i in SS do
1. compute the transient prob. PSS[i][Ft Comp]
2. if PSS[i][Ft Comp] 6|= 1.b then

SS = SS \ SS[i]

STEP VI: Return the solution set SS.

Table 6.1: Methodology for optimising key confidentiality

Starting with an empty solution set, we need to compute the solution that satis-
fies the requirement in STEP–I.a, as explained in STEP–IV of the methodology.
Notice that we can safely reuse the results in Fig. 6.1 and compute the satisfying
threshold values as {7, 8, 9, 10, 11} for TB and {12, 13, 14, 15, 16, 17, 18, 19, 20}
for LB. Thus the solution set has 14 elements, the union of the satisfying strate-
gies.

In the next step, we need to refine the solution set by removing the threshold
values that do not satisfy the requirement in STEP–I.b. This time we can

6.1 Optimising Key Confidentiality 129

make use of the results in Fig. 6.2 and find out that in TB threshold values
M < 6 and M > 9, in LB threshold values N < 15 and N > 20 does not satisfy
the requirements in STEP–I.b. This actually reduces our effort for STEP–V,
namely we can apply model checking for a refined set of threshold values:

TSTB [7], TSTB [8], TSLB [16], TSLB [17], TSLB [18], TSLB [19]

To make another refinement before computing the solutions, we should choose
the maximum T value such that large enough to cover largest periodic oscillation
(to be able to see the maximum probability), and small enough to complete the
model checking in a reasonable time (and memory). The clue we get is, instead
of 24 months we can run the checking for less than 16 months. This will save
us 54 (9 T values times 6 threshold values) which actually amounts to 37% of
the model checkings.

Figure 6.3: Probability of key compromise in Home Automation using a) time-
based (threshold M) b) leave-based (threshold N) key update - focusing around
10% key compromise.

We present the results for the set of threshold values in two update strategies
that will lead to the answer we are looking for in Fig. 6.3. Indeed the graphs
give us guidelines here: If we replace the key at regular intervals then we should
do it (at least) every 7 months. Alternatively, we could replace the key whenever
(at most) 17 devices have left the network.

But which of these two strategies should we prefer? How can we compare them?
These questions wait to be answered in the following sections.

130 Analysing Scenarios

6.2 Optimising Recovery From Key Compromise

In networking area, the term key recovery is often used for transportation of the
valid key to a device which somehow lost its key. In wireless sensor networks, a
failure in the battery could easily require a key recovery in this sense. However,
we would like to define another type of key recovery that we will use in this
thesis. Briefly, we define the action of issuing a key update when the network
key was compromised as recovering the key. In this section, we define two
measures to optimise key recovery.

6.2.1 Mean Time to Recover

A security key may get compromised for several reasons, and eventually it will be
updated (or reset). However, the time needed to recover from a compromise case
needs to be optimized in such a way that the network is not without protection
for a long time period. Thus, we are interested in the (expected) mean time to
recover (MTTR) from a compromise of the key. Rather than formally defining
it, we will illustrate by an example in Fig. 6.4.

Assume that we design a ZigBee network, with a number of devices and each
device in the network has a valid network key for secure communication. Inde-
pendent of the key update strategy, we can safely assume that the network key
will be updated after some time. In fig. 6.4, we label the starting time of the
network as start and a solid line following the start corresponds to the time
where the network key is safe, i.e. not compromised. Then, we observe a thick
cross on the solid line that represents a key compromise, we label this time point
as C1. After point C1, the line is no more solid but dotted which means that the
valid network key is compromised, therefore the communication might not be
secure anymore. Note that any key comprising event won’t make any changes
because the key is already compromised. After some triggering event depending
on the type of the key update strategy (e.g. a fixed amount of time for the
time-based strategy, or a fixed number of leaving devices for the leave-based
strategy) we will have a key update event. The first key update event in our
little example in Fig. 6.4 is labelled as update and also KU1. Here it is necessary
to mention that in the figure we don’t have two different time lines, we just
wanted to make the figure more readable by duplicating the timelines. At the
point KU1, the compromised key is revoked and devices start using a new and
fresh network key. As we have labelled as R1 in Fig. 6.4, we refer to the time
period between the time point that a fresh key become compromised, and the
time point that it is recovered by a key update a recovery time. In the example,
we have two key updates KU1 and KU2 which are followed by two recovery periods

6.2 Optimising Recovery From Key Compromise 131

R1 and R2.

Figure 6.4: Mean Time to Recover

It is important to have an optimum key update strategy and threshold such that
MTTR value is as small as possible. However, very small MTTR value requires
very high power consumption which might not be acceptable for networks that
have devices with limited power. Having this trade-off in mind, now we can start
computing the expected MTTR value for our running example: leave-based key
update versus time-based key update.

First of all, we need to find the expected total compromised time. This amounts
to computing the total time where the key is compromised. Of course, we need
a time bound so that we can measure the time from the start of the system (i.e.
network) and up to a specified time bound. We can do this measurement by
assigning rewards (we don’t distinguish between rewards and costs, as in Prism)
to the states where the key is compromised. We will call this measured time as
recovery time, because it is the period where the key waits for recovery (that
is a key update). Note that, ironically at the same time it is the period where
the communication in the network is insecure. Here is the reward structure for
recovery:

rewards "Recovery" Comp: 1; endrewards

Now that we have computed the total compromised time, the next thing to
do is to compute the number of key compromise events in the same period of
time where we observe the network. This time we will use a transition reward
instead of a state reward. We try to capture all the key compromising transi-
tion, technically it requires the key to be fresh (i.e. not compromised) and a
key compromising leave transition. Here is the reward for what we call a new
compromise:

132 Analysing Scenarios

rewards "Compromise" [leaveC] !Comp: 1; endrewards

The nuance of a new compromise will result in different cumulative rewards for
different key update thresholds, even though the probability distribution is the
same. It seems obvious that, smaller threshold values would result into smaller
numbers of (new) key compromises. However, that is a delusion, a false belief
that we shed light on Section 6.2.4.

Thus, we have assigned a reward of 1 to each state where the key is compromised,
and each transition that causes a fresh key to be compromised, and we are able
to store them using the reward structures Recovery and Compromise above.
Now we can proceed to specify the property to compute the rewards that will
return us the MTTR value. Below is the CSL formula that we use for this series
of experiments:

R{"Recovery"}=? [C<=30*T] /

R{"Compromise"}=? [C<=30*T]

Actually, the CSL formula above is a combination of two CSL formulas. In the
first line, we specify the cumulative reward property for recovery up to the time
bound of T months, and in the second line we do so for key compromise. We
can make the division operation at once to get the MTTR immediately, but it is
also useful to use the CSL formulas separately to get insight about the recovery
times and number of key compromises for a specific setting.

We present the results for two different key update strategies in Fig. 6.5. Once
again, the x-axis shows the month T of interest and spans two years period. On
the y-axis we have the expected mean time to recover value in terms of days.
The solid lines represent different intervals M (or T time) for resetting the key in
the time-based strategy, whereas the dotted lines represent different thresholds
N (or T leave) for resetting the key in the leave-based strategy.

Although the results for the time-based strategy are no surprise (i.e. it is always
half the key expiry period in days), the ones for the leave-based strategy are
not easy to guess without the help of this graph. In terms of recovery, there is
a fight between M=1-N=2 (time-based wins!), M=2-N=3 (leave-based wins!),
and M=3-N=5 (draw!). We see that for N=4 comparison does not make sense,
since M=2 is performing too good and M=3 too bad against N=2.

Another interesting point is, the time-based key update for M=3 follows the
leave-based key update for N=5 so closely. As can be seen on top of Fig. 6.5,

6.2 Optimising Recovery From Key Compromise 133

Figure 6.5: Comparison of Mean Time to Recover

time-based key update alternates below and above values of the leave-based key
update, for specified thresholds.

6.2.2 Maximum Recovery Time

No doubt, the time needed to recover from this needs to be optimized in such a
way that the network is not without protection for a long time period. Therefore,
we have explained our approach of MTTR above. However, it is also important
that a network does not face a key compromise situation that is longer than a
specified time bound. If this is a short time then a potential malicious attacker
will not have long time to launch the attack whereas if it is for a long time then
the risk will be considerable higher for a successful attack. Thus, we are also
interested in the risk that it takes more than a specific amount of time to recover
from a compromise of the key. So, for example we may ask the question:

What is the probability that the key has not been replaced 3 months
after it was compromised?

Even though the question seems simple, implementing or specifying it in logic
is not trivial. Below is the CSL formula that we use to compute the probability
that the key recovery takes more than T months:

P=? [Comp U>=(30*T) !Comp {Comp}{max}]

The formula above translates to the question: what is the probability of Comp
remaining true up until at least T months elapsed, and eventually being false

134 Analysing Scenarios

after that. From the two curly brackets atn the end of the formula, {Comp} is
known as a filter in Prism jargon and used to specify a starting state for the
path property (in this case Comp U>=(30*T) !Comp {Comp}{max}). However,
{Comp} satisfies more than one state therefore we specify a second filter {max}
which allows us to compute the maximum probability of the path property from
all the states satisfying {Comp}.

Fig. 6.6 shed light on the maximum recovery time of selected key update sce-
narios. Now the y-axis shows the probability of the key still being compromised
after the number of months shown on the x-axis and as above the curves show
the result for various choices of parameters.

Figure 6.6: The probability that the key recovery takes more than T months.

If the key is replaced every 6 months then the green curve on the figure show
that the probability of it still begin compromised after 3 months is 99%. On the
other hand, the figure also shows that it is 96.3% if we replace the key whenever
10 devices have left the network. So at this observation point the leave-based
approach is the clear winner. However, things change a lot when the observation
point changes. Indeed we see that if we change the time frame of interest to be
4 months rather than 3 months then the time-based approach is a clear winner.

The lesson we learned from Fig. 6.6 is, for comparable key update settings
(e.g. M=3 N=5, M=6 N=10, etc.), there is a T point where before this time
point of interest leave-based key update performs better, and after that point
time-based key update performs better. Therefore, a security requirement such
as a key recovery should never take more than T months results in different key
update strategy and threshold value selection, depending on the value of T.

6.2 Optimising Recovery From Key Compromise 135

6.2.3 Methodology for Optimising Recovery

In the previous sections, we have explained how to analyse recovery from com-
promised key from two different perspectives. In this section, we present our
methodology for determining optimum key update strategy concerning key re-
covery.

In Table 6.2, we present the methodology as an algorithm of six steps. The
idea is to find a solution satisfying networks key recovery requirements. The
solution is computed in two sequential steps, making use of the developments
we have explained above. Note that the order of the optimisations in STEP-IV
and STEP–V can be reversed depending on the priority of either STEP–1.a or
STEP–1b.

Similar to the methodology for optimising confidentiality, this methodology is
also self-contained. Once again, the requirements maybe refined and/or reset in
order to avoid null or too large result sets.

6.2.4 Weakness of Periodical Key Updates

In this section, we would like to point out a weakness in periodical key updates
that we relate to the key compromise and recovery.

As we have previously mentioned, expecting less key compromises for smaller
key update thresholds is not always the case. Our analysis finds out that in the
time-based key update, or so called periodical key update, a network can have
decreasing number of key compromises even though the key update threshold,
or the period is increased.

In Fig. 6.7, we count the number of key compromises using the reward structure
and the logic formula that we have previously explained. Our aim is to compare
the number of key compromises a) for two different key update strategies b) for
different threshold values in a key update strategy. We again use the ZigBee
Home Automation application profile that we have mentioned in Section 5.2.2,
with 50 devices instead of 20 just to magnify the results. And to be in parallel
with our running example, we compare the time-based and leave-based key
update strategies that we have introduced in Section 5.2.1. To be more realistic,
we will use the phase-type probability distribution implementation of the time-
based update, as we have done up to now. The value of the shape parameter k is
taken as 100. For each strategy, we run the model checkings for twelve different
threshold values ranging from 1 to 12; and in each case the observation period

136 Analysing Scenarios

STEP I: Set the requirements
1.a) average time to recover from key compromise should be

between amin and amax time units
1.b) the risk that key compromise takes more than T time units

should be between bmin and bmax

1.c) the observation time as OT time units

STEP II: Set the capabilities
2.a) the set of key update methods that can be implemented:

KU = {KU1, . . . ,KUn}
2.b) the multiset of threshold sets that includes

an implementable threshold set composed of positive
integers for each key update method in KU :

TS = {TS1, . . . , TSn}

STEP III: Initialize the solution set as:
SS = ∅

STEP IV: Compute the solution set that satisfies 1.a

For all i in KU do
For all j in TS do

For all k in TSj do

1. compute MTTR =
R{Recovery}TSj [k][C≤OT]

R{Compromise}TSj [k]=?[C≤OT]

2. if MTTR |= 1.a then
SS = SS ∪ TSj [k]

STEP V: Refine the solution set such that it also satisfies 1.b

For all i in SS do
1. compute the probability of recoveries longer than T

2. if PSS[i][Comp U≥T !Comp {Comp} {max}] 6|= 1.b
then SS = SS \ SS[i]

STEP VI: Return the solution set SS.

Table 6.2: Methodology for optimising recovery

is 5 years.

Fig. 6.7 teaches us two important lessons: a) leave-based key update strategy
causes less number of key compromises than time-based key update for threshold
values less than 9 b) we can expect increase of key compromises when we increase

6.2 Optimising Recovery From Key Compromise 137

Figure 6.7: Comparison of number of key compromises for time-based and leave-
based key update strategies. ZigBee Home Automation profile, 50 devices, 5
years period.

update thresholds in leave-based key update but NOT in time-based key update.
The first lesson might be very misleading because as the threshold values get
larger, a key compromise event takes much much longer to recover. In other
words, for large key update periods the network will remain insecure for long
time periods. Therefore, number of key updates won’t be an important criterion.
Besides, even though they share the same axis the key update thresholds are
not comparable. For example, we have previously shown that M=3 and N=5
are comparable in terms of key compromise probability and MTTR. The second
lesson is very important, since it is a kind of discovery which would not be easy
to find out without formal verification. Intuitively, updating less frequently will
be less secure. That still holds, however stochastic model checking shows that
number of key compromises in time-based update decreases monotonically as
we apply less key updates.

Now let us illustrate the hidden point behind those two lessons. In Fig. 6.8, we
give an example including three instances using time-based key update where
we keep everything else but the update threshold constant. The time-line on
top labelled as M=1 which means the key is updated monthly. Key updates
are denoted by little bars, and since each update is after a month we can see
that the observation period is 6 months. Similarly, the time-line below shows
key updates every two months, and the last every three months. Since the
distributions are the same, we have the key compromise event in the same
time point regardless of the key update threshold. The first key compromise is
common to all three instances, named as C1, happens before one month passes
after network (or observation of the network) starts. Following the same fashion

138 Analysing Scenarios

as in our previous example, we notice that the dotted part of the time line for this
compromise lasts longer as the update threshold increases. In other words, the
network key remains compromised for a long time when M=2 and M=3, compared
to M=1. Then in the second month, we observe another key compromise only
in M=1. This key compromise is not visible in the other cases since their keys
are already compromised. In the end of the second month, we observed two key
compromise events in M=1, and only one event in M=2 and M=3. Now can we claim
that M>2 is more secure because they have less number of key compromises?

Figure 6.8: Demonstrative number of key compromise for different thresholds
in time-based key update

Continuing with the example in Fig. 6.7, we can conclude that in the end of six
months

• the total time of possible insecure communication is increasing when the
update period is increased

• number of key compromises may decrease (but never increase) as the
update period increases

• mean recovery time, or the time that the network is insecure is increasing
as the threshold value is increasing

6.3 Optimising Efficiency of Key Updates

In this section we optimise the efficiency of the key updates. Below we define
two measures related to the power consumption and recovery from key compro-
mise. Considering the low-resource nature of wireless sensor networks, we aim
to avoid unnecessary key updates as much as possible.Besides, efficiency is a
very important criterion to be used with the previous criteria – confidentiality
and recovery – when determining the optimum key update strategy in networks.

6.3 Optimising Efficiency of Key Updates 139

6.3.1 Power consumption

One of the many important issues related to the key updates is the power con-
sumption. Whenever we are replacing the key we are consuming power, and it
is certainly interesting to compare the number of key updates performed over a
certain period in different settings. Clearly, if we replace the key every 6 months
then it is easy to see that we are updating the key twice a year. But how many
times are we updating the key a year if we replace it whenever 10 devices have
left the network? We can pose this question to our analysis:

How many key replacements can we expect to have we performed a
year from now?

In order to compute the number of key updates, a.k.a. replacements, we need
to capture all the transitions that cause key update and assign them a reward.

We will call this reward replacement and below is the structure needed for the
leave-based key update:

rewards "Replacements" [leaveC] true: 1; endrewards

Notice that, even though it is completely unnecessary, the only change we need
to do is to change the action label as reset if we need to count the replacements
rewards in the time-based model. After the reward structure we can present the
CSL (in fact CSRL) formula to compute the expected accumulated number of
replacements:

R{"Replacements"}=?[C<=30*T]

The result of the analysis is shown on Fig. 6.9, for T values varying from 0
to 24 months. As above the curves show the result for different thresholds
for replacing the key. The y-axis shows the expected number of key updates
accumulated over the number of months shown on the x-axis. We can now see
that if we replace the key whenever 10 devices have left the network then we can
expect to perform 1.5 key replacements the first year. Rather than concluding on
which approach is more power-aware than the other, we present which thresholds
of which approach is comparable with another. Clearly, Fig. 6.9 shows that
the pairs (M=3,N=5), (M=6,N=10), (M=9,N=15), (M=12,N=20) are of the

140 Analysing Scenarios

Figure 6.9: Expected number of key updates for leave-based (and time-based)
key update strategy. ZigBee Home Automation profile.

comparable settings in terms of key update counts for ZigBee Home Automation
application profile.

To demonstrate how this analysis can tighten the bounds of thresholds when
looking for the best strategy, we will pose the question:

What is the best strategy if we on average can afford 1 key update
per year?

Assuming that we have the input sets as M={3,6,9,12} and N={5,10,15,20} and
reusing our analysis in Fig. 6.9, we can eliminate the values that do not satisfy
the requirements and choose the lower values of the thresholds and conclude
that either M=9 or N=15 is the answer.

However, we have not chosen the best strategy out of this two. In fact, the
specific answer depends on the other requirements of the network. For instance,
if key confidentiality being strictly below than a percentage is a key require-
ment then we can use Fig. 6.2 and conclude that leave-based key update for
N=15 is better than time-based key update for M=9 because the maximum key
compromise is considerably lower (12% for time-based, and 8% for leave-based).

6.3 Optimising Efficiency of Key Updates 141

6.3.2 Useful versus Useless Key Updates

In this section, we investigate the extent to which the key updates triggered by
the various threshold values are indeed needed, that is, will the key really be
compromised when the resets occur. We shall classify the key updates as useful
and useless updates. A useful update is a key update that is applied after a
key gets compromised, therefore recovering the key. Similarly, a useless update
is a key update that was not necessary because the key was not compromised.
Naturally, we want the percentage of useless updates to be as small as possible
because a key update is a costly action for ZigBee devices. We keep the scenarios
and the settings of the previous sections, and find out how efficient were our
values. To answer this question we shall introduce three transition rewards in
our PRISM model as:

rewards "All Resets" [reset or leaveR] true: 1;

endrewards

rewards "Useful Resets" [reset or leaveR] Comp: 1;

endrewards

rewards "Useless Resets" [reset or leaveR] !Comp: 1;

endrewards

Note that in the reward structures above the name of the reset action depends
on the model type, e.g. reset for time-based and leaveR for leave-based. Next,
below are the CSL formulae that we use for specifying steady-state reward prop-
erties in this series of experiments:

(100 * R{"Useful Resets"}=? [S]) /

(R{"All Resets"}=? [S])

(100 * R{"Useless Resets"}=? [S]) /

(R{"All Resets"}=? [S])

Our approach is instead of using plain rewards, we calculate the percentage
of the useful and useless key updates. To manage this we divide the selected
update count to all key updates. We get the results for the equilibrium, thus
we don’t reason about a specific time instant or time bound, but the long run.

As an application, we present the results for the two key update strategies that
we have been working on for Home Automation scenario In Fig. 6.10. The y

142 Analysing Scenarios

Figure 6.10: Expected number of key updates for leave-based (and time-based)
key update strategy. ZigBee Home Automation profile.

axis represents the percentage of resets, and the x axis represents the threshold
values (i.e. M in months and N in devices) for key update. First of all, we
must clearly explain that even though thresholds M and N share the same axis,
they are not one-to-one comparable. Namely, M=5 is very different than N=5

and no conclusion can be made on which one has more useful. However the
results are still very informative and assisting any decision on a set of threshold
values. For instance, if we couldn’t decide between time-based key update with
a threshold of 6 months (TB-6) and leave-based key update with a threshold
of 12 leaving devices (LB-12), we can use this analysis and find out that LB-12
has less useless key updates (89.53% vs. 90.77%) and more useful key updates
(10.46% vs 9.23%) than TB-6, therefore it is more power-aware. However, if
the decision is between TB-6 and LB-10 then the winner is TB-6 with 0.58%
difference.

6.3.3 Methodology for Optimising Efficiency of Key Up-
dates

We have explained how to analyse the efficiency of key updates from two different
perspectives above. In this section, we present our methodology for determining
optimum key update strategy concerning key update efficiency.

In Table 6.3, we present the methodology as an algorithm of six steps. The
idea is to find a solution satisfying networks key update efficiency requirements.
The solution is computed in two sequential steps, making use of the develop-

6.3 Optimising Efficiency of Key Updates 143

STEP I: Set the requirements
1.a) number of tolerated key updates per year should be

between amin and amax

1.b) the percentage of efficient key updates
should be between bmin and bmax

STEP II: Set the capabilities
2.a) the set of key update methods that can be implemented:

KU = {KU1, . . . ,KUn}
2.b) the multiset of threshold sets that includes

an implementable threshold set composed of positive
integers for each key update method in KU :

TS = {TS1, . . . , TSn}

STEP III: Initialize the solution set as:
SS = ∅

STEP IV: Compute the solution set that satisfies 1.a

For all i in KU do
For all j in TS do

For all k in TSj do
1. compute R{Replacements}TSj [k][C≤365]
2. if R{Replacements}TSj [k][C≤365] |= 1.a then

SS = SS ∪ TSj [k]

STEP V: Refine the solution set such that it also satisfies 1.b

For all i in SS do
1. compute the percentage of the efficient updates

2. if
100×R{Useful}TSj [k][S]

100×R{Useless}TSj [k][S]
6|= 1.b

then SS = SS \ SS[i]

STEP VI: Return the solution set SS.

Table 6.3: Methodology for optimising update efficiency

ments we have explained above. Similar to the methodologies for optimising
confidentiality and recovery, this methodology is also self-contained.

Part III

Case Studies

Chapter 7

Case Study: Optimal Key
Update Strategy

In this chapter, we present a case study on determining optimal key update
strategy for custom networks. For three different application domains of WSNs,
we demonstrate our method of deriving advice from quantitative analysis that
we introduced in the previous chapter.

Besides presenting a case study, we extend our previous models with key com-
promise by communication over the network. In addition, we propose new key
update methods that can compete with the previous ones.

7.1 Deriving Advice From Stochastic Model Check-
ing

Obviously, it is not trivial to derive conclusion from the stochastic model check-
ing results on the key update regarding confidentiality, recovery, and efficiency.
For instance, the most efficient configuration is not the most secure one. To
overcome such dilemma, designers should decide on the priorities of the system
and select appropriate security parameters. In this chapter, we give examples on

146 Case Study: Optimal Key Update Strategy

how to decide on the optimum key update strategy and key update threshold.
We start by choosing the application scenario, which depends on the type of
the sensor devices and the objectives of the network. To choose the application
scenario is fairly easy because ZigBee specification already has specialized ap-
plication profiles that the designers and developers are supposed to make use
of. Then comes the requirements which can be about security, i.e. confidential-
ity, and performance, i.e. power consumption. Certainly, an extra key update
causes an unwanted power consumption and therefore would drain the batter-
ies earlier than expected. After carefully specifying the requirements, we can
exploit stochastic model checking on finding answers to our questions. At this
point, picking a collection of different key update strategies and a set of thresh-
old values would make everything easier. Model checking results will point us
the appropriate threshold values if they exist, and of course different behaviours
of different key update strategies. Getting all this information, the rest is eval-
uating all the solutions for all the requirements and conclude on the solution
that satisfies all the requirements.

In the rest of this section, we have two case studies that show how we can
get advice from stochastic model checking. In addition, it might be seen as a
competition between different key update methods and we see how a method
can beat another when different environment conditions and requirements exist.

7.1.1 Case Study I: Personal Area Network

We start by a simple case study, where we can show the power of stochastic
model checking in figuring out the best strategy, and also parameter selection
for that strategy. In this case study, we assume that we have a personal sensor
network that is formed to sense health information from a patient and transmit
the information to the computer in the nurse station as illustrated in Fig. 7.1.
The devices on the patient may vary during the time, since different types of
information and monitoring may be needed. Besides, the devices might be
replaced because of calibration and battery changing issues. Actually, all these
changes correspond to stochastic leave and join events in our models. Such
networks can be both used for patients in the hospital or elderly people that
needs intensive care. Average life of such a network can be assumed as 6 months
to a year. Even though it is a pretty small size sensor network, the information
is critical and secure communication is vital.

In three steps we will determine the settings that fit to our requirements:

Step I: We first determine our application scenario. In this case, it is a straight-
forward and relatively easy task to make the selection of the profile that our

7.1 Deriving Advice From Stochastic Model Checking 147

Figure 7.1: Wireless Sensor Network used in Patient Monitoring. Illustration:
courtesy of Phil Jamieson, ZigBee Alliance, 2007.

application fits into. The application scenario is clearly the Personal, Home
and Hospital Care scenario (PHHC) as we have mentioned in Section 5.2.2, and
derived its features in Appendix B. We will revise the information that is typical
to this profile to be customized for this specific patient monitoring case study
as below:

• maximum number of devices: 10 devices (though the profile allows up to
500).

• average join: 1 device per week.

• average leave: 1 device per week (though the profile says 1 device per
month).

• risk of key compromise: 0.01%.

Step II: Now, we determine our requirements regarding the security parame-
ters. For the sake of simplicity, we only define one requirement numerically in
this case study and it would be about key compromise. The remaining require-
ments will not include any numerical constraints:

148 Case Study: Optimal Key Update Strategy

Figure 7.2: Steady-state probabilitiy of key getting compromised in TB, MB,
LB, JB strategies having different threshold intervals

• R1 - the probability that the key is compromised must be lower than 0.25%,
at any time.

• R2 - when a key gets compromised, the average time for revoking and
updating the key should be as small as possible

• R3 - since the devices run on battery and too many key updates would
drain the battery too quickly, number of key updates should not be more
often than what is necessary

Together with the requirements, we also explain our capabilities. Namely, we
need to specify which key update strategies we can implement in the network
(specifically in trust center running at the coordinator, and in the devices) and
which threshold values we can support. Below are our capabilities for this case
study:

• C1 - Time-based key update (TB) can be implemented using monthly thresh-
olds (M) from 1 to 12.

• C2 - Message-based key update (MB) can be implemented using thresholds
(MSG) from 5 to 300.

• C3 - Leave-based key update (LB) can be implemented using thresholds (N)
from 2 to 100.

• C4 - Join-based key update (JB) can be implemented using thresholds (J)
from 2 to 100.

7.1 Deriving Advice From Stochastic Model Checking 149

Step III: Then, we can determine the parameter values that would satisfy the
requirements in the previous steps. To do this, all we need is the results of
stochastic model checking. For this simple case study, first we need to check
the long run behaviour of the candidate key update mechanisms and then we
check the results for specific time instants. We present graphical results for
the first part using four different key update strategies and proper (to keep the
case study simple we restrict the set of threshold values) threshold value sets in
Fig. 7.2. Using this results we can limit the threshold values to {1,2,3} for TB,
{5,10} for MB, {25,45} for LB, and again {25,45} for JB, since the rest of the
threshold values does not satisfy R1..

As a technical detail, we chose shape parameter k as 1000 in the time-based
key update, and rate of messages R message as 1/30 meaning that each device
sends a message to the network in average once a month. The network in the
case study is consisted of devices which are all directly or indirectly connected
to the coordinator device (e.g. nurses station in Fig. 7.1) which runs the trust
center application that is responsible of key updates and can count the number
of messages sent, number of leaving and joining devices, time elapsed, etc.

Next thing to do is to going from long-run to transient probabilities and checking
if the requirement is violated at specific time instants. To achieve this, we
will continue our work with our restricted set of threshold values and find key
compromise probabilities in a reasonable time period. We present the results for
this graphically in Fig. 7.3 where the time instant T is in months and lines are
grouped such that TB (M=1 and M=2) have circle points, MB (MSG=5 and
MSG=10) have triangle points, LB (N=25 and N=45) have square points, and
JB (J=25 and J=45) have no points on their lines. In fact, Fig. 7.3 tells us that
even though in the long run key compromise probability is below 0.25%, transient
probabilities may exceed that limit for settings JB-45 and LB-45. Although we
observe very close probabilities to 0.25% MB-10 (reaches up to 24.85%) and
TB-2 (reaches up to 23.9%) are not eliminated in this phase.

Our next focus will be on the mean time to recovery among the remaining key
update settings. In Fig. 7.4, we present the expected mean recovery times
in days for our set of thresholds. The results reveal that, two of the settings
have clearly unacceptable MTTR values, compared to the others. So, we also
eliminate the tup two curves, MSG=10 and M=2 from our solution set. After
this refinement, we have only one threshold value from each key update strategy.

So far we have touched the key confidentiality, and recovery from a key compro-
mise issues; in other words pure-security related ones. Now we will also consider
the power consumption. Up to now, we have eliminated certain settings gradu-
ally and now we have a refined set of strategy/threshold values all of which have
very close key confidentiality properties. Now, we will evaluate the remaining

150 Case Study: Optimal Key Update Strategy

Figure 7.3: Transient probabilitiy of key getting compromised in selected thresh-
olds of different strategies

Figure 7.4: Mean time to recover in selected thresholds of different strategies

four settings on how much power they consume when doing this security up-
dates. We will abstract the notion of power consumption in a way that each
key update operation cost a certain amount. We will assume that all strategies
consume the same amount of energy, and therefore we will consider a setting
where we have less number of key updates as the most power-aware setting. We
present our related analysis results in Fig. 7.5, where we have expected number
of key updates in a cumulative way on y-axis and observation time points as
months in the x-axis. We have only given the results for one year of operation,
which is already sufficient to derive a conclusion. The top two lines, MSG=5
and M=1, has clearly more key update operations in one year of time and for

7.1 Deriving Advice From Stochastic Model Checking 151

sure the difference will be growing as the time passes. Therefore, time-based
and message-based key updates are totally eliminated.

Figure 7.5: Expected number of cumulative key updates at specific time points,
in selected thresholds of different key update strategies

As a result, join-based key update with a threshold of 25 devices is the winner
key update setting for our scenario. To tell the truth, the difference between
leave-based key update with the same threshold value is almost negligible, there-
fore it is also a winner in this case study.

7.1.2 Case Study II: Marine Asset Tracking system

We can continue with a bit more complicated case study in terms of input values.
At the same time, it is more easy and direct to find the solution since the criteria
and requirements are set more strictly. This time we will keep the explanations
less, and instead stress the data and findings.

In this case study, we have a wireless sensor network that forms a marine as-
set tracking system in a container ship as in Fig. 7.6. Specific containers in a
ship that carries sensitive shipments have a sensor device for each, that sends
information to the controller computer on the ship. The information is consist-
ing of temperature, intrusion, and location date. We assume that each device
sends one information package every day. Such a network is used to provide a
permanent and freight-specific supervision of each transport package along the
supply chain. We assume that a freighter journey can take up to two months,
which is the maximum life of the network. Along the way, the container stops at
many ports where new containers are shipped and/or old containers are ported.

152 Case Study: Optimal Key Update Strategy

Figure 7.6: Emma Maersk, largest container ship built until 2006. Courtesy of
A.P. Moller - Maersk Group

In other words, we have stochastic device leaves and joins. Network security is
crucial for the containers that contain sensitive goods and thus having a sensor
device, besides a breakdown or power loss in a sensor device is not very tolerable
since it is hard to replace it. Depending on the sensitivity of the carried stuff,
insider and outsider attacks are expected.

Step I: We choose the Wireless Sensor Application (WSA) scenario since asset
tracking is clearly specified in this scenario, see Section 5.2.2. The information
that we need for model checking is given below:

• maximum number of devices: 200 devices (though the profile allows up to
500).

• average join: 1 device per week.

• average leave: 1 device per week (though the profile says 1 device per 6
months).

• risk of key compromise: 0.1%.

Step II: Then, we define our requirements.

• R1 - the tolerated number of key updates in a journey is strictly less than
10.

7.1 Deriving Advice From Stochastic Model Checking 153

• R2 - the long run probability of a key getting compromised should be lower
than 5%.

• R3 - the maximum transient probability that the key is compromised must
be lower than 10%, at any time.

After that we present the capabilities in terms of key update mechanisms below:

• C1 - Time-based key update (TB) can be implemented using daily thresh-
olds (M) from 1 to 12.

• C2 - Message-based key update (MB) can be implemented using thresholds
(MSG) from 100 to 2000 (incrementals by 100 only).

• C3 - Leave-based key update (LB) can be implemented using thresholds (N)
from 2 to 20 (incrementals by 2 only).

• C4 - Join-based key update (JB) can be implemented using thresholds (J)
from 2 to 20 (incrementals by 2 only).

Step III: This time we start from the power consumption requirement which
is the first requirement. Also, instead of presenting graphical results we will
mention the numerical results as inline text.

To satisfy R1(we make use of the optimising update efficiency approach):

• Time-based: In time-based key update, no need for formal verification,
the only unaccepted thresholds are 1, 2, 3, 4, 5 and 6 since more than
10 updates would be performed in two months. Therefore we decide to
add the three minimum threshold choices to our solution set: TB-7 (8
updates), TB-8 (7 updates), and TB-9 (6 updates).

• Message-based: Using simple arithmetic, we can calculate that if each
device sends a message a day, and there are 200 devices, than the thresh-
old value should be bigger than 1200 to satisfy R1. However, this result
wouldn’t hold because 200 is the maximum number of devices not the
average. In order to verify the threshold bound we use Replacement re-
wards. As a result, we learn that expected number of key updates after 60
days of operation is 8.62 for MB-700, and 10.04 for MB-600. Therefore,
our solution set for threshold value is composed of: MB-700, MB-800, and
MB-900.

154 Case Study: Optimal Key Update Strategy

• Leave-based: In this case, expected number of replacements are higher
than 10 after 60 days of operation when the threshold is less than 88 de-
vices. Therefore, we can choose the minimum acceptable threshold and its
two adjacent values: LB-88 (9.90 updates expected according to stochastic
model checking results), LB-90 (9.64 updates expected), and LB-92 (9.28
updates expected).

• Join-based: In join-based key update, expected number of replacements
are higher than 10 after 60 days of operation when the threshold is less than
78 devices. Therefore, we can choose the minimum acceptable threshold
and its two adjacent values: JB-78 (9.91 updates expected according to
stochastic model checking results), JB-80 (9.64 updates expected), and
JB-82 (9.27 updates expected).

To satisfy R2 (we make use of the optimising key confidentiality approach, using
steady-state probabilities):

• Time-based: Unfortunately none of the TB thresholds satisfy R2 since
in the long run TB-7 has 68%, TB-8 has 72%, and TB-9 has 75% key
compromise probability. In fact, the first requirement on number of key
updates caused TB to produce very high key compromise percentages.

• Message-based: In this case, only one of the thresholds satisfy R2 since
in the long run MB-700 has 4.87%, MB-800 has 5.55%, and MB-900 has
6.19% key compromise probability. Thus, MB-800 and MB-900 are elimi-
nated.

• Leave-based: All LB thresholds satisfy R2 since they have 4.2%, 4.3%,
and 4.4% steady-state probability for LB-88, LB-90, and LB-92, respec-
tively.

• Join-based: All JB thresholds satisfy R2 since they have 3.8%, 3.9%,
and 4% steady-state probability for JB-78, JB-80, and JB-82, respectively.

To satisfy R3 (we make use of the optimising key confidentiality approach again,
this time using transient probabilities):

• Message-based: The maximum probability at a time instant that the
key being compromised can reach to is: 8.5% for MB-700, satisfying R3.

• Leave-based: The maximum probability at a time instant that the key
being compromised can reach to is: 6.80% for TB-88, 6.86% for TB-90,
and 6.89% for TB-92. Therefore, all these three threshold values satisfy
R3 as well.

7.1 Deriving Advice From Stochastic Model Checking 155

• Join-based: The maximum probability at a time instant that the key
being compromised can reach to is: 12.6% for JB-78, 13.3% for JB-80,
and 13.8% for JB-82. Since all this probabilities exceed 10% limit of R3,
join-based key update can not qualify for the solution

In Fig. 7.7, we present the competition between three different key update
strategies that qualified until R3. We pick the most promising threshold value
for each strategy, and show the key compromise probabilities at different time
instants (lines with dots) and also in equilibrium (lines without dots, but having
the same color with the corresponding transient probability lines). The most
interesting conclusion of Fig. 7.7 is, even though the best performance in the
long run is achieved by JB-78 shown by the dotted line with blue color, in the
first 10 days it is exceeding the probability limits on the transient probability
requirements, therefore it is disqualified at the requirement R3. In the end of the
timeline (note that in this figure time unit is a day), none of the strategies has
stabilized yet; however we observe that the probabilities are converging to the
equilibrium. In the comparison of MB-700 and LB-88, which are the remaining
settings that qualified all the requirements, the winner is obvious as LB-88 has
lower long run probability and the peak value is less than MB-700.

Figure 7.7: Transient and steady-state probabilities of MB-700, LB-88, and
JB-78 in Case Study 2

156 Case Study: Optimal Key Update Strategy

7.2 Improving Key Update Models and Their
Quantitative Verification

In this section, first we will round up the key update strategies and the quan-
titative verification, then we will suggest considerable improvements. The im-
provements will be on both formal models and key update methods.

7.2.1 Extending the Models with Messaging

Up to now, we used the conventional key update technique that periodically
updates the key, we suggested two novel key update strategies that takes the
join and leave events in a network into account, and implemented a key update
strategy that considers the messages communicated over the network which was
proposed by [MAK08].

In the quantitative verification of all these models, we did many abstraction
as needed for formal verification. The most important abstraction in terms of
security was the key compromise events were only caused by devices leaving or
being removed from the network. Of course, this is a very key event and in real
life the network will be under serious threat if the same key is being used after
a device leave. However, we have excluded the key compromise events caused
by communication on the network. Such events could be arising from various
reasons such as misuse of key, unintended key transportation, or even attacks
based on cryptoanalysis.

Briefly, our first improvement will be on extending all the models to support
key compromising (and of course not compromising) messaging. As we have two
distinct action labels for leave events, leave and leaveC, we will have two for
messaging events: message and messageC (and of course if the update is done
by message-based strategy then there is also messageR action). In Section 5.3
we defined P comp such that a device leaves the network while compromising
the key with probability P comp. Both to be compact in the model and not to
confuse the developers with too many parameters, we will reuse this probability
in compromised messaging events. The idea is, we were assigning probability of
P comp to a device leave that tends to be malicious or easily seized by malicious
principals; and now we align this to be also the probability of a communicating
device that may cause malicious activity. Note that it is trivial to add a new
probability parameter and use it in the messaging transitions instead of P comp,
and could be done if needed. For example, instead of defining a new probability
parameter and significantly increasing the state space, one can use a proportion

7.2 Improving Key Update Models and Their Quantitative Verification 157

of P comp to be the probability of key compromise by messaging:

[leave] Size>0 -> R leave*(1-P comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R leave*P comp*Size: (Size’=Size-1);

[message] Size>0 -> R message*(1-(P comp/100))*Size: true;

[messageC] Size>0 -> R message*(P comp/100)*Size: true;

In the example snippet above, the probability of key compromise by a leaving
device is P comp, however the probability of key compromise by a message of a
device is P comp/100. Similarly, any product or division of P comp can be reused
with no redundant coding or states. Complete listings of improved models are
available in Appendix C.2.

7.2.2 New Key Update Methods

Our next improvement will be on directly key update strategies. We will propose
two more brand new update strategies. First, we will make use of join and
leave based strategies and merge them into a combined strategy that does not
distinguish between join and leave events. We name this strategy as join-leave-
based (JLB) key update. Then we will propose the most powerful strategy ever:
the hybrid key update (Hy). In hybrid strategy we will employ all the key update
strategies we considered before, and issue the update whenever any of the update
counters reach its threshold. All the counters will be reset as the key is updated.
In this way, we will be able to benefit from all key update strategies. Naturally,
each key update strategy has a different strength e.g. performing good when
too many leaves happen, too many messages communicated, environment has
less malicious activity, etc.

Join-Leave-based key update. The join-leave-based key update strategy is
a smart combination of JB and LB, such that there is one counter for joining
and leaving devices and a key update is issued when a predefined number of
devices has joined or left the network. In other words, we consider each join and
leave event as a suspicious event, and do not distinguish between them. JLB
offers a better precision on the key compromise probability by adjustment of
the update threshold. Besides, the implementation of JLB is not much different
nor much costly than the models that inspired it, both in networking-wise and
verification-wise.

Hybrid key update. In hybrid key update strategy we will have all this
strength, with the cost of more computational power. Therefore we will suggest

158 Case Study: Optimal Key Update Strategy

the hybrid key update to the networks where the coordinator device has suf-
ficient resources. For example, if the coordinator device is a mobile computer
or a powerful handheld then we can implement the hybrid strategy. Besides,
we implement the first improvement on messaging to both new strategies that
we suggest. we explained above. Basically, we modelled two versions of hy-
brid strategy: one consisting of LB, JB, MB; and other consisting of LB, JB,
MB, TB. Notice that the first one is implementable by pure counters which
could benefit from hardware and software optimizations. On the other hand,
the other version has four different strategies in it therefore we consider that
more powerful and use in our case study below. Note that we did not include
JLB in Hy, since it is limiting a real hybrid phenomenon and in Hy we want to
observe leave and join events separately. Besides, JLB and Hy are two discrete
strategies we propose and would like to compare with others.

Characteristics of the key update strategies. In this chapter we have
presented a total of six different key update methods that could be used in wire-
less (sensor) networks. We started by the classical and conventional key update
strategy, TB. We used the new method focusing on the number of messages and
suggested by [MAK08], MB. We proposed our own key update methods focusing
mainly on the joining and leaving devices, JB, JLB, LB, and Hy. Other than
the studies in this chapter, we also worked on the characteristics on these key
update methods to shed light on how and when to choose and configure them
[YNN11a]. We present the characteristics in graphics, and explain the strength
and weakness of each method in two different perspectives – networking and
verification – in Appendix D.

Below you will read our third case study where we compare the improved models
of key update strategies. Again, complete listings of models that realize new
key update strategies are available in Appendix C.2.

7.2.3 Case Study III: Commercial Building Automation

In this case study, we focus on a commercial building automation, specifically ho-
tel security management. In the past, hotels with metal room keys routinely lost
more than one keys per room every month, leading to an underground market in
keys and an increase in theft. Although dramatic advances in technology such
as smart cards converted the hotel door locks into intricate electronic systems,
those locks and cards are stand alone such that a card needs to be physically
transported to the computer in the reception to make any change on its con-
figuration. Besides, theft of the cards or finding lost cards is not considered in
classical systems. Using wireless sensors embedded in the locking card, we can
benefit from remote cancellation of cards, remote report of door lock status,

7.2 Improving Key Update Models and Their Quantitative Verification 159

remote report of door ajar alarms, etc.

The technical details of such a system in our perspective includes maximum 50
devices in the network, aiming to keep the network in maximum size as much
as possible, replacing stolen or broken cards in average two days, each device
having non-stop operation for a year in average, each device sending in average
one message a day, and probability of a compromise action by either leaving
devices or caused by sent messages is one in ten thousand.

Step I: Such a scenario fits in the Commercial Building Automation (CBA)
scenario however we need to adjust the input parameters since they are specified
clearly above. The information that we need for model checking is given below:

• maximum number of devices: 50 devices.

• average join: 1 device per two days.

• average leave: 1 device per a year.

• average messaging: 1 message a day per device.

• risk of key compromise: 0.01%.

Step II: In this case study, instead of defining requirements and checking how
the strategies satisfy those, we will compare the strategies directly. As we men-
tioned before, in this case study key compromise not only happens by leaving
devices but also the communication over the network. Therefore, all models
are different than the ones in previous case studies. Below are the key update
strategies that we will compare:

• TB - Time-based key update with monthly threshold M.

• MB - Message-based key update with threshold MSG - since there will be
plenty of messaging, we expect good results.

• LB - Leave-based key update with threshold N.

• JB - Join-based key update with threshold J.

• JLB - Join-Leave-based key update with threshold JL - new proposal, we
want to see its performance.

• Hy/mb - Hybrid key update excluding MB with threshold H as a triple
(N-J-M) - new proposal, we want to see its performance.

160 Case Study: Optimal Key Update Strategy

Step III: We will compare the key update strategies in Step II in two main
criteria:

• Cr1 - probability of a key getting compromised in the long run.

• Cr2 - number of key updates in the end of a year.

Key compromise in the long run: We start by computing the steady-
state probabilities for a moderate set of thresholds. As can be seen in Fig.
7.8, we used the first five threshold values that we can use in the strategies
which is {1,2,3,4,5} for TB, LB, JB, JLB; {500,1000,1500,2000,2500} for MB;
and {(1-1-500),(2-2-1000),(3-3-1500),(4-4-2000),(5-5-2500)} for Hy/mb. To keep
the graphical results more readable, the x-axis is shared by all the key update
strategies such that for MB and Hy/mb it is used like index to real threshold
value. For example, the point 2.0 in the x-axis means threshold value of 2 for
JLB, 1000 for MB, and (2-2-1000) for Hy/mb.

Figure 7.8: Key compromise probability in the long run

Interpretation of Fig. 7.8 is: a) TB has very high key compromise probability,
b) JLB has the best results with only one exception where the threshold values
are minimum (and number of key updates are boosted), c) the results of JB
and LB are so close that green colored line of JB is not visible under LB’s blue
line; however LB performs slightly better (approximately 0.015% difference in
the graph), d) JB, LB, MB, and Hy/mb are in a competition where Hy/mb is
winning and MB is losing as the threshold values get larger.

Number of key updates: In this criteria, we compute the expected number
of key updates after 12 months. We present the results in Fig. 7.9. On the

7.2 Improving Key Update Models and Their Quantitative Verification 161

y-axis we have the expected number of updates, and as expected the number of
key updates should decrease as the thresholds increase.

Figure 7.9: Number of key updates in one year of time

Interpretation of Fig. 7.9 is: a) JLB has high key update numbers, b) TB has
the best results, off course we exclude JB in this judgement, c) again JB and
LB perform very similar, and as expected this time JB performs slightly better,
d) and again JB, LB, MB, and Hy/mb are in a competition but their results
tend to converge as the threshold values get larger.

Minimum key compromise with minimum key updates: Since there
is a though trade-off between number of key updates and probability of key
compromise, it is not an easy task to find a setting that meets the criteria of
minimum key compromise and minimum number of key updates. To keep the
case study tractable, we will set two solid requirements here:

• R1: The key compromise probability should be below 5% in the long run.

• R2: Maximum allowed number of key updates is 35 per year.

Now that we have our specific limits and results above, we can compute the
solution sets for each requirement:

SR1={ LB-1, SR2={ LB-2, LB-3, LB-4, LB-5,
JB-1, JB-2, JB-3, JB-4, JB-5,
JLB-1, JLB-2, JLB-3, JLB-3, JLB-4, JLB-5,
MB-1, MB-2, MB-2, MB-3, MB-4, MB-5,
Hy-1, Hy-2} Hy-3, Hy-4, Hy-5,

TB-1, TB-2, TB-3, TB-4, TB-5}

162 Case Study: Optimal Key Update Strategy

Each key update strategy has a solution inside both R1 and R2, except TB
which can not satisfy R1 at all. Then it is easy to find the intersection of the
solution sets such that:

SR1&R2={JLB-3, MB-2}

As seen above, only two settings satisfied our requirements in the end: Join-
Leave-based key update with a threshold of 2, and Message-based key update
with threshold of 1000 (remember that MB-2 was actually using threshold of
2x500=1000). Now we can investigate further details, such as transient key
compromise probability. In Fig. 7.10, we present the results for key compromise
at monthly time instants for JLB-3 and MB-2. This time, we know the steady-
state probabilities of these two setting from Fig. 7.8 (0.044 for JLB-3, and 0.048
for MB-2), but we don’t know the behaviour of those settings before they get
stabilized. Fig. 7.10 supplies good insight and interesting results indeed, such as
MB-2 has an alternating pattern where the maximum points increase for almost
a year and then start to decrease; at the same time the minimum probabilities
decrease for almost two years and then start to increase. In contrast with that,
JLB-3 has a very consistent result and seems as the best choice considering that
the deviation from the steady-state probability is almost negligible.

Figure 7.10: Key compromise probability at monthly time instants - comparison
of MB-2 and JLB-3

Although we are happy with the results of JLB-3 where we don’t see jumps in the
probability, we would like to investigate more thoroughly. Instead of checking
monthly time instants, we want to check daily time instant to see more detailed
results. In Fig. 7.10, we present the key compromise probabilities at daily time
instants. Our concern was to check if there are jumps in the days of a month
when using JLB-3. The results verify that even in day level JLB-3 does not

7.2 Improving Key Update Models and Their Quantitative Verification 163

allow peaks, and still very consistent. Besides we can see the details for MB-2,
where the probability increases for almost 20 days and exhibits a sharp drop
afterwards.

Figure 7.11: Key compromise probability at daily time instants - comparison of
MB-2 and JLB-3

Conclusion: In this case study, we presented a more complex problem that
includes key compromise by also communication, and using our approach con-
cluded that Join-Leave-based key update strategy with threshold value 3 is the
optimum solution for the key update problem. Another conclusion to be derived
from this case study is that both JLB and Hy – our proposed update strate-
gies in this section – perform better than the rest of the update strategies in
the sense of key compromise probability. As a side note, we have not seen the
power of Hy yet, since we used Hy/mb – a subset of Hy – in case study 3.

164 Case Study: Optimal Key Update Strategy

Chapter 8

Case Study: Comparison of
Key Update Methods

In this chapter, we apply quantitative analysis and get insights on the behaviour
of different key update methods under changing network conditions. As the
methods are not bound to any type of network but can be implemented for all
networks that employ cryptography, the results we present in this chapter are
very useful in assessing a key update method.

We start by explaining the purpose of this study in Section 8.1. Then we built
a systematic analysis in Section 8.2. We present the quantitative results and
interpret them in Section 8.3. We evaluate the considered key update methods
based on our analysis results in Section 8.4. Finally, we propose a novel adaptive
key update mechanism that would improve the usage of the key update methods
in Section 8.5.

8.1 Purpose of the Study

In this section, we explain the purpose of the work in this chapter and describe
the questions that we would like to be able to answer at the end of this study.

166 Case Study: Comparison of Key Update Methods

Our basic aim is to observe how different key update methods behave when the
settings of the network they are used is changing in different ways. Assuming
that we designed and formed a network (e.g. a ZigBee network, as we have
used in the whole thesis), and since we needed a secure network we have also
designed and implemented necessary security-related protocols and policies.

In order to keep the analysis tractable we have to make some assumptions.
First of all, we assume that we are working on a network where symmetric
cryptography is used, and the essential key is the network key which is shared
by all the members of the network. We assume that the network is dynamic
in the sense that new devices can join the network, and present devices can
leave the network. Besides the devices can communicate with each other by
sending messages over the network. We assume a star topology where all the
devices are connected to a main device that controls the network. Hence, all the
messages actually pass through the controller. Then comes our assumptions on
the key update methods. We work on six different key update methods which
we have used up to now: Join-based (JB), Join-Leave-based (JLB), Leave-based
(LB), Message-based (MB), Time-based (TB), and Hybrid (Hy) key updates.
We formed the hybrid method to be a proper synthesis of JB, LB, MB, and TB.

Next step is the network dynamics that we are going to feed our analysis. We
will base our work on different dynamics such as trustworthiness of the devices,
communicativeness of the devices, size of the network, and tendency of the
devices to be engaged or disengaged to the network. Considering positive and
negative changes in all the dynamics, we will have ten different analysis to
answer the questions below:

Q1: What happens when the members of the network become less reliable?

Q2: What happens when the members of the network become more reliable?

In the two questions above, we query the cases where suddenly devices
start to cause more/less key compromises by either leaving the network
with a valid keying material, or by sending vulnerable messages. There-
fore the devices are more/less reliable in the sense of keeping the keying
material secret.

Q3: What happens when the members of the network communicate more?

Q4: What happens when the members of the network communicate less?

In the two questions above, we question the cases where suddenly devices
start to send messages more/less frequently then they used to.

Q5: What happens when the members of the network tend to leave the network
more frequently?

8.2 Constructing An Analysis 167

Q6: What happens when the members of the network tend to leave the less more
frequently?

In the two questions above, we question the cases where the devices start
to leave the network in a higher/lower rate then expected or planned.

Q7: What happens when new devices tend to join the network more frequently?

Q8: What happens when new devices tend to join the less more frequently?

In the two questions above, we question the cases where new devices start
to join the network in a higher/lower rate then expected or planned.

Q9: What happens when we have to expand the network?

Q10: What happens when we have to shrink the network?

In the two questions above, we question the cases where for some reason
we must enlarge the network more than we have planned and vice-versa.
Here we mean the maximum size of the network, which will implicitly
effect the average size of the network as well.

8.2 Constructing An Analysis

As we have specified the key update methods we are interested in and the
questions we would like to be able to answer, the next task is to construct
an analysis. Assuming that we will make use of our stochastic models that we
developed for each of the key update strategy in Appendix C, we will first define
the parameter values that we will use in the analysis. This will be in two steps:
first we will define the values for the network-related parameters, then we will
define the parameters for the key update methods.

Starting with the network-related part, we first defined three levels for param-
eters: High, Low, and Medium. We present the values that we assign to the
parameters for those three levels in Table 8.1. We chose the values aiming a
generic scenario where maximum 50 devices exist in the network but this can be
extended to 100 devices or narrowed down to 10 devices in special cases. Each
device on average leaves the network in 6 months (because of failure, drained
battery, replacement, mobility, etc.), however leaving once a month or once a
year is also considered. Similarly each device joins the network with the same
rate, however joining once a week and once a year is also considered. Each de-
vice sends two messages in a month on average, but in the Low case this could
be once a month and in the High case once a day. Finally, each device can
compromise the key with a probability of 0.001. Key compromise may happen

168 Case Study: Comparison of Key Update Methods

either when the device leaves the network or the device sends a message over the
network, for simplicity the probability is the same for both cases. We determine
the Low and High values of this probability as 0.0001 and 0.01, respectively.

When we work on the effect of a parameter, we will isolate it by keeping the
other parameters constant (that is we assign the Medium values to them), and
then analyse the parameter we are interested in by using High and Low values
separately.

Table 8.1: Parameters – value sets
Parameter Description Low High Medium

Max Maximum network size 10 100 50
R join Rate of join per device 1/365 1/7 1/180
R leave Rate of leave per device 1/365 1/30 1/180
R message Rate of messaging per device 1/30 1 1/15
P comp Compromise probability per device 0.0001 0.01 0.001

Then we defined a set of analyses, where we isolated each parameter by keeping
others constant and analyse the effects of the High and Low values assigned to
that parameter. We enumerated our analyses from A1 to A10, such that every
pair focuses on a single parameter as seen in Table 8.2.

Table 8.2: Analyses – parameters
Max R join R leave R message P comp

A1 Medium Medium Medium Medium High
A2 Medium Medium Medium Medium Low
A3 Medium Medium Medium High Medium
A4 Medium Medium Medium Low Medium
A5 Medium Medium High Medium Medium
A6 Medium Medium Low Medium Medium
A7 Medium High Medium Medium Medium
A8 Medium Low Medium Medium Medium
A9 High Medium Medium Medium Medium
A10 Low Medium Medium Medium Medium

Now that we have constructed the backbone of the analyses and the values
for the network-related parameters, the next job is to determine key update
parameters. Actually, the only parameter that we consider in key update is
the update threshold. To preserve the fairness, we try to find threshold values
that produce very close key compromise probabilities in different key update
strategies. To find this value for each key update strategy, we compute the
probability of the network key being compromised in the long run. Using the

8.2 Constructing An Analysis 169

models of the key update methods, configured with the parameter values spec-
ified as medium above (see Table 8.1) we can easily find the thresholds for a
fair comparison. The numerical values of the thresholds, and the steady-state
probabilities they produce are given in Table 8.3. Note that it is not easy to
get exactly the same steady-state probabilities since a minimum increment (or
decrement) in the threshold values result in different magnitudes of increments
(or decrements) in the probability. For example decreasing LB by 1 will result
in 0.018, on the other hand increasing by 1 will result in 0.03. Even though the
difference between the results in Table 8.3 may be up to 0.003, we will balance
the results by analyzing the difference with the original probabilities.

Another point is, we wrote the threshold for Hy as a set because it is actually a
combination of thresholds of JB = 5, LB = 5, MB = 75, and TB = 1.5. Thus,
hybrid key update model is composed of all other methods in this analysis except
JLB. As we have explained in earlier chapters, the reason for this exclusion is
to be able to distinguish between leaving and joining devices, and also not to
overload hybrid method.

Table 8.3: Thresholds
Method Threshold S=?[Comp]

JB 3 0.025
JLB 7 0.025
LB 3 0.024
MB 50 0.026
TB 1 0.026
Hy {5, 5, 75, 1.5} 0.027

The next task is to define the dimensions of the analyses, in the sense that
what kind of results we will try to get. We chose three dimensions: steady–state
behaviour, transient behaviour, and performance as we present in Table 8.4.

The first dimension, is highly related to the confidentiality of the network in
the long run. We emphasize the network instead of network key because, as
we have previously explained, in the network keying scheme a compromise of a
key or a device actually compromises the whole network. This dimension gives
very important and very fundamental results, and but it should be assisted by
the second dimension, transient behaviour, to allow more thorough analysis. In
this dimension, we question time instants instead of the long run. The reason
for applying transient analysis is, even though we know the probabilistic results
in the long run, we still would like to know about the behaviour before the
network reaches a steady–state. At this point, we have to remind the reader
that since the time unit in our models is one day, and we would like to check
for instance monthly time instants, than we have to substitute T in the logic

170 Case Study: Comparison of Key Update Methods

Table 8.4: Dimensions of the Analysis
Dimension Logic formula Description

What is the probability of
Steady–state S=? [Comp] network being compromised,

in the long run?
What is the probability of

Transient P=? [F[T,T] Comp] network being compromised,
at time instant T
What is the expected

Performance R{Updates}=?[C<=T] number of key updates
until time instant T?

formulae with 30*T. Then comes the performance dimension, which is highly
related to power consumption caused by a key update. In this dimension we
accumulate the expected key updates in a reward structure that we named
Updates and embedded in the formal models depending on the key update
method. The details of Updates for each key update method is given in Table 8.5.

Table 8.5: Reward Structure Updates
Method Reward Structure

JB [joinR] true: 1;
JLB [leaveR] true: 1;

[joinR] true: 1;
LB [leaveR] true: 1;
MB [messageR] true: 1;
TB [reset] true: 1;
Hy [joinR] true: 1;

[leaveR] true: 1;
[messageR] true: 1;
[reset] true: 1;

One last thing to do before starting stochastic model checking work is to define
the period of observation for the dimensions except steady-state. We defined the
period of observation as 16 months, since we discovered in our pre–analysesthat
over this period no significant (e.g. visible) change occurs in the probability
graphs. Therefore, we will have 16 different model checkings for each key update
strategy in each analysis.

8.3 Quantitative Analysis Results 171

8.3 Quantitative Analysis Results

In this section we present the quantitative results of our work. We will categorize
analyses in alterations, and for each alteration we will discuss three dimensions
as we have introduced earlier.

8.3.1 Alteration of Reliability

In this part of analysis, we observe how an alteration in the reliability of the
devices impacts the results of key updates. In practice, we observe the effect
of key compromise probability of the devices. This part actually consists of
analyses A1 and A2 in Table 8.2, and we are working towards answering the
questions Q1 and Q2 that we defined in Section 8.1.

We assume that we have a network that we have formed and configured in some
certain configuration. We have set the key update method and key update
threshold according to our plans and policies. However, after some point a char-
acteristic of the network changed: the devices started to behave less/more reli-
able. Namely, the probability of causing a key compromise became higher/lower.
Therefore, we want to know how our key update strategy (i.e. key update
method and key update threshold) will handle this situation. We are interested
in the magnitude of the change in steady–state behaviour, transient behaviour,
and performance.

Steady–state behaviour. We start our analysis on the alteration of relia-
bility by computing the steady–state probability of the network being compro-
mised. The alteration can be in two ways as we have described before: devices
becoming less reliable so key compromise probability per device takes the Low
value, or devices becoming more reliable so key compromise probability per
device takes the High value. Since our initial (namely taking Medium values)
steady–state probabilities were not uniform for all the key update methods,
we will present the difference in the steady–state behaviour, instead of giving
exact probabilities. Though, computing the exact probabilities is as easy as
adding these values to the medium values in Table 8.3. We present the results
in Fig. 8.1, where the bars indicate the difference in the steady–state behaviour
of each strategy, and the y-axis gives the magnitude as probability. Obviously,
a positive difference means that the alteration caused the network to be less
secure and a negative difference means that the network became more secure.

Interpretation of the steady–state behaviour results: Fig. 8.1 shows that, if the
reliability gets lower per device, then LB would adapt very nicely and allow

172 Case Study: Comparison of Key Update Methods

A1: High key compromise probability A2: Low key compromise probability

Figure 8.1: The steady–state behaviour – Alteration of Reliability

minimum raise in the overall key compromise probability. However, MB and
TB will be the worst performers and cause a rather high key compromise. But if
the direction of the alteration is the other way round, namely devices get more
reliable, then the scene is reversed making TB and MB the best and LB the
worst in adapting the alteration in terms of probability of the network getting
compromised in the long run.

Transient behaviour. As we know the steady–state behaviour now we can
investigate the transient behaviour of the system and thus get more insight. In
Fig. 8.2, we present the results for all strategies including monthly time instants
for sixteen months. We observe a stabilisation phase of up to 8 months before
converging to the steady–state.

Interpretation of the transient behaviour results: In the steady–state behaviour
we observed that different key update strategies adapt differently to the alter-
ation, however the difference is not very big. In other words, there was no jump
between the results and the results were limited in the short intervals {0.20,
0.23} for A1, and {0.0024, 0.0027} for A2. In Fig. 8.2, we present that indeed
after a stabilization phase the strategies converge to these intervals. However,
this stabilization phase is very risky for JB strategy where the overall risk be-
comes almost three times higher for A1 and almost five times higher for A2.
Even though not as risky as JB, the methods TB and JB are also very insecure
in the stabilization phase.

Performance. In this dimension, we compute the change in the expected
number of key updates in each strategy. For this specific analysis, we are not
presenting any graphical results since we have observed the same number of key
update as the one before alteration.

Interpretation of the performance results: As the number of key updates in

8.3 Quantitative Analysis Results 173

A1: High key compromise probability

A2: Low key compromise probability

Figure 8.2: The transient behaviour – Alteration of Reliability

the methods we are interested in are triggered by either number of leaves, joins,
messages, time, or all of them, it is no surprise that we will have the same number
of key updates after alteration. This means that the power consumption and
as a result performance won’t be affected by the alteration. In fact, we assume
that no key update method can be aware of a key compromise before an attack
happens.

174 Case Study: Comparison of Key Update Methods

8.3.2 Alteration of Communication

In this part of analysis, we observe how an alteration in the communication of
the devices impacts the results of key updates. In practice, we observe the effect
of message rate of the devices. This part actually consists of analyses A3 and
A4 in Table 8.2, and we are working towards answering the questions Q3 and
Q4 that we defined in Section 8.1.

As we have done in the previous section, we analyse the network after a certain
alteration happened: the devices started to send (and receive) less/more number
of messages. Below we present tour analysis in three dimensions in turn.

Steady–state behaviour. As we have done previously, we compute the
steady–state probability of the network being compromised. This time the al-
teration can be in two ways as: devices communicating more so message rate
per device takes the High value, or devices communicating less so message rate
per device takes the Low value. Once again, we will present the difference in the
steady–state behaviour, instead of giving exact probabilities. We present the
results in Fig. 8.12, reminding a positive difference means that the alteration
caused the network to be less secure and a negative difference means that the
network became more secure.

A3: High message rate A4: Low message rate

Figure 8.3: The steady–state behaviour – Alteration of Communication

Interpretation of the steady–state behaviour results: Fig. 8.12 shows that, if the
devices start to communicate more frequently, then MB would adapt very nicely
and will provide an even more secure network in terms of key compromise prob-
ability. Hy also adapts very well, though slightly increasing the risk. However,
all the rest will be the worst performers and causing a very high probability of
key compromise. But if the direction of the alteration is the other way round,
namely devices start to communicate less than it was before, then the results
are very different. This time MB adapts badly and all the rest of the strategies
perform very well, and make the network more secure in the long run.

8.3 Quantitative Analysis Results 175

Transient behaviour. We present the transient behaviour of the key update
strategies in Fig. 8.4. Again we observe a remarkable stabilisation phase before
the probability of compromise converges to the steady–state.

A3: High message rate

A4: Low message rate

Figure 8.4: The transient behaviour – Alteration of Communication

Interpretation of the transient behaviour results: When the message rate is
high, Hy and MB have the best results for all the period and all the rest of
the key update methods converge to a very close result which is much higher
compared to Hy and MB. Besides, JB, JLB, and TB has high key compromise
probability before the stabilisation. LB is very consistent and produces no jumps
at all.

When the message rate is low, all the methods except MB converge to a close
result. The worst strategy in this case is MB which is no surprise when number

176 Case Study: Comparison of Key Update Methods

of messages is low. Again, the stabilization phase is risky in many update
strategies but mostly in JB.

Performance. In this dimension, we compute the change in the expected
number of key updates in each strategy. We present the graphical results, as a
difference from the performance before alteration in Fig. 8.5. The observation
period is one year.

A3: High message rate A4: Low message rate

Figure 8.5: The performance – Alteration of Communication

Interpretation of the performance results: In the case that the communica-
tion is altered in a way that devices send more messages, Hy and MB start to
produce much higher number of key updates. As we present in Fig. 8.12, Hy
produces 135 more key updates and MB produces 210 more key updates. Not
presented in the figure but can easily be computed that the number of key up-
dates before alteration was only 14 in total in a year for both MB and Hy, thus
the performance is very negatively affected. Obviously, in this case the battery
of any sensor device will be drained far too quickly. In the rest of the update
methods, we don’t observe significant changes in the number of key updates.

In the case that the communication is altered in a way that devices send less
messages, MB starts to produce much less number of key updates. In the
perspective of power consumption, it is very good and will prolong the battery
life. Hy also performs well, though not as remarkable as MB. All the remaining
methods are neutral in terms of performance.

8.3.3 Alteration of Leave Rate

In this part of analysis, we observe how an alteration in the leave rate of the de-
vices impacts the results of key updates. This part actually consists of analyses
A5 and A6 in Table 8.2, and we are working towards answering the questions
Q5 and Q6 that we defined in Section 8.1.

8.3 Quantitative Analysis Results 177

As we have done in the previous section, we analyse the network after a cer-
tain alteration happened: the devices started to leave the network less/more
frequently. Below we present tour analysis in three dimensions in turn.

Steady–state behaviour. In parallel with the previous alteration analyses,
we present the results for the steady–state behaviour in Fig. 8.6. In both cases
of alteration, we observe both positive and negative changes in the results.

A5: High leave rate A6: Low leave rate

Figure 8.6: The steady–state behaviour – Alteration of Leave Rate

Interpretation of the steady–state behaviour results: Fig. 8.6 shows that, if
the devices leave the network more frequently than they were doing before, all
the methods except MB would provide a more secure network in terms of key
compromise probability. But if the direction of the alteration is the other way
round, namely devices start to leave the network less than it was before, then the
results are very different. This time all the methods that include key updates
triggered by leaving devices (i.e. JB, JLB, and LB) cause much higher risk. TB
and Hy also causes more risk, but much less compared to JB, JLB, and LB. MB
surprisingly performs even better when the leave rate of the devices decrease.

Transient behaviour. We present the transient behaviour of the key update
strategies in Fig. 8.7. Again we observe a remarkable stabilisation phase be-
fore the probability of compromise converges to the steady–state, however the
duration of this phase is very much dependent on the type of the alteration.

Interpretation of the performance results: When the leave rate is high, all the
methods except MB and TB converge to an acceptable result and since the
difference in the results are minimum they can all be considered as winners. TB
is still acceptable but MB is definitely not a good choice in this case.

When the leave rate is low, MB is the winner followed by TB and Hy. Then
rest of the methods converge to a very close number.

178 Case Study: Comparison of Key Update Methods

A5: High leave rate

A6: Low leave rate

Figure 8.7: The transient behaviour – Alteration of Leave Rate

In both cases, stabilisation phase reveals out that even though in the long run
the probability of the key being compromised will be low, JB will have high
probabilities before the stabilisation. The same goes for TB for high leave rate,
and JLB for low leave rate.

Performance. In this dimension, we compute the change in the expected
number of key updates in each strategy. We present the graphical results, as a
difference from the performance before alteration in Fig. 8.8. The observation
period is one year.

Interpretation of the performance results: In the case that the network is
altered in a way that devices leave more frequently, all the methods except MB

8.3 Quantitative Analysis Results 179

A5: High leave rate A6: Low leave rate

Figure 8.8: The performance – Alteration of Leave Rate

and TB start to produce much higher number of key updates. TB does not have
change in the number of key updates, whereas MB produces fewer updates.

The results are almost opposite in the case when devices leave less frequently.
LB is the best adapting method, and has fewer key updates, followed by JB,
JLB, and Hy. MB is producing more updates than before, in contrast with all
other methods.

8.3.4 Alteration of Join Rate

In this part of analysis, we observe how an alteration in the join rate of the de-
vices impacts the results of key updates. This part actually consists of analyses
A7 and A8 in Table 8.2, and we are working towards answering the questions
Q7 and Q8 that we defined in Section 8.1.

As we have done in the previous section, we analyse the network after a certain
alteration happened: the devices started to join the network less/more frequently.
Below we present tour analysis in three dimensions in turn.

Steady–state behaviour. As we have done previously, we compute the
steady–state probability of the network being compromised. We present the
difference after alteration in Fig. 8.9.

Interpretation of the steady–state behaviour results: When the network is al-
tered such that the devices started to join with a higher rate, JB is is the best
performer as expected. Still, the rest of the strategies perform well i.e. not
causing significant changes, except TB. Behaving very different than others, TB
cause high risk for the network.

180 Case Study: Comparison of Key Update Methods

A7: High join rate A8: Low join rate

Figure 8.9: The steady–state behaviour – Alteration of Join Rate

In the case of low join rate alteration, the picture changes dramatically. This
time TB is the winner, followed by Hy. These two strategies provide higher
security than before. Moreover, all the remaining strategies are also adapting
nicely, none of them cause increase in the risk.

Transient behaviour. In Fig. 8.10, we present the transient behaviour results
when all the parameters are constant except the join rate for a single device. We
investigate the effect of high R join value in the upper figure and low R join

value in the lower one.

Interpretation of the transient behaviour results: When the join rate is high,
all the strategies except TB give very similar results. The method to be avoided
is TB this time, which is significantly risky at all times.

When the join rate is low, all methods produce similar results after the phase
of stabilisation. However, in this case stabilization takes a long time compared
to the previous case.

In both alterations, JB causes very high risk until it reaches steady–state.

Performance. In this dimension, we compute the change in the expected
number of key updates in each strategy. We present the graphical results in
Fig. 8.11

Interpretation of the performance results: When the alteration is towards high
join rate, than TB does not bring any additional cost which makes it the best
performer. Rest of the strategies require many more key updates than before.
Especially the strategies based on join events are the most costly one.

When the alteration is towards low join rate, than the order is absolutely re-

8.3 Quantitative Analysis Results 181

A7: High join rate

A8: Low join rate

Figure 8.10: The transient behaviour – Alteration of Join Rate

versed. TB is the worst, even though it does not require any additional cost
than before. JLB and JB are the winners since they issue less key updates than
before.

8.3.5 Alteration of Network Size

In this part of analysis, we observe how an alteration in the network size impacts
the results of key updates. In practice, we observe the effect of the maximum
network size which is aimed to be preserved in many cases. This part actually
consists of analyses A9 and A10 in Table 8.2, and we are working towards

182 Case Study: Comparison of Key Update Methods

A7: High join rate A8: Low join rate

Figure 8.11: The performance – Alteration of Join Rate

answering the questions Q9 and Q10 that we defined in Section 8.1.

As we have done in the previous section, we analyse the network after a certain
alteration happened: the size limits of the network is raised/lowered. Below we
present tour analysis in three dimensions in turn.

Steady–state behaviour. We computed the probability of the network being
compromised in the long run after the network is altered. We present the results
on the steady–state behaviour in Fig. 8.13.

A9: High maximum network size A10: Low maximum network size

Figure 8.12: The steady–state behaviour – Alteration of Network Size

Interpretation of the steady–state behaviour results: We observe that all the
key update strategies except TB can very effectively deal with the raise in the
maximum network size. The increase in the steady–state probability is negligible
for in MB, JLB, JB and very small in Hy and LB (0.0004 for both). However,
TB cannot protect the network as effective as it was doing before.

When the alteration is as lowering the maximum network size, TB and Hy
provide a better protection. The remaining strategies do not have significant

8.3 Quantitative Analysis Results 183

change in the steady–state behaviour, performing as they were before.

Transient behaviour. In Fig. 8.13, we present the results in transient
behaviour such that the effect of high Max value is shown in the upper figure
and low Max value in the lower one.

A9: High maximum network size

A10: Low maximum network size

Figure 8.13: The transient behaviour – Alteration of Network Size

Interpretation of the transient behaviour results: When the maximum size
is high, all the methods except TB converge to a very close probability. TB
performs poorly compared to the others, and JB has a high peak value in the first
month. MB, Hy, and especially LB perform very well even in the stabilisation
phase.

When the maximum size is low, there is a big difference in the behaviours.

184 Case Study: Comparison of Key Update Methods

Hy and TB are the obvious winners, then comes LB but not very close to the
winners. The third group, is JB, JLB, and MB produces very close results
however they all have problems in stabilisation.

Performance. In this dimension, we compute the change in the expected
number of key updates in each strategy. We present the graphical results in
Fig. 8.14.

A9: High maximum network size A10: Low maximum network size

Figure 8.14: The performance – Alteration of Network Size

Interpretation of the performance results: When the network is altered to be
larger in size, all the methods except TB are more costly than they were before.
Among them, LB is the most expensive one.

When the network is altered to be smaller in size, the results turn upside down
i.e. all the methods except TB are less costly than they were before. Among
them, LB provides the biggest saving in terms of number of key updates and
thus power consumption.

As a result an alteration in the maximum size of a network affects the perfor-
mance of all the key update methods that are not periodical.

8.4 Evaluation of the Key Update Methods

In this section we evaluate all the key update methods based on our analyses. We
tabulate the results of our analyses such that for each dimension a checkmark in
the table indicates that the method can be safely used, and a bullet means that
though the results are not as good as the ones having checkmark the method
can still safely be used. In the end, we merge all the results and present the
methods that satisfy all the dimensions.

8.4 Evaluation of the Key Update Methods 185

Dimension 1: Steady–state behaviour.

We start with the first dimension: probability of network being compromised in
the long run. We have ten rows indicating different alterations in the network
dynamics, and six columns indicating different key update methods. We use
two symbols to denote the security level after alterations:

• Checkmark: After alteration the network has even better protection
than before, in the long run. In practice, this corresponds to a negative
difference between the new steady–state probability and the old one.

• Bullet: After alteration the risk that the network will be higher, but the
difference will be negligible. In our analyses, we assumed the differences
less than 0.0001 as negligible.

We present the results of the evaluation in Table 8.6.

Table 8.6: Analyses – compromise of network in the long run
if the devices become JB JLB LB MB TB Hy

less reliable
more reliable X X X X X X

communicate more X
communicate less X X X X X

leave more X X X X X
leave less X
join more X X
join less • X X • X X
expand • • X
shrink X X X X X

Dimension 2: Transient behaviour.

We continue with the second dimension: transient probability of network being
compromised . In this dimension, we are investigating the variation of the risk
in the network. We are interested in the period starting from the alteration
and lasting until again reaching a steady–state, which we call the stabilisation
period. The symbols we use have completely different meanings:

• Checkmark: The maximum probability of network compromise is not
significantly different than the steady–state probability. In other words,
we don’t observe peaks in the transient behaviour. In our analysis, we

186 Case Study: Comparison of Key Update Methods

assumed the results where the ratio of maximum probability and steady–
state probability was below 1.1.

• Bullet: The maximum probability of network compromise is different
than the steady–state probability but this difference is limited so the usage
of the method is still safe. In our analysis, we assumed the results where
the ratio of maximum probability and steady–state probability was below
1.5.

We present the results of the evaluation in Table 8.7.

Table 8.7: Analyses – compromise of network before reaching steady–state
if the devices become JB JLB LB MB TB Hy

less reliable X • •
more reliable X • •

communicate more X X • X
communicate less X • •

leave more • • •
leave less X • •
join more • X • • X
join less X • •
expand X • •
shrink X •

Dimension 3: Performance.

We continue with the third dimension: expected number of key updates after
alteration. Again we have ten rows indicating different alterations in the network
dynamics, and six columns indicating different key update methods. Again we
use two symbols to denote the security level after alterations, but with slightly
different meanings:

• Checkmark: After alteration the number of key updates will not be
more than it was before. There can even be less number of key updates
than before. In practice, this corresponds to a negative or zero difference
between the new expected number of key updates than the old one.

• Bullet: The alteration will cause more key updates, however the incre-
ment is limited and negligible. In our analyses, we assumed the increments
less than 0.0001 per year as negligible.

We present the results of the evaluation in Table 8.8.

8.5 A Proposal of An Adaptive Key Update Mechanism for
Resource-Critical Networks 187

Table 8.8: Analyses – performance
if the devices become JB JLB LB MB TB Hy

less reliable X X X X X X
more reliable X X X X X X

communicate more X X X
communicate less X X X X X X

leave more X X
leave less X X X X X
join more X
join less X X X X X X
expand X
shrink X X X X X X

3-D: The methods satisfying all dimensions.

Finally, we combine all the results and find the intersection such that the key
update methods which perform well in all dimensions. In conclusion, only a few
of the strategies can survive in inly certain alterations in the network dynamics.
We present the results in Table 8.9.

Table 8.9: Analyses – intersection of all dimensions
if the devices become JB JLB LB MB TB Hy

less reliable
more reliable X • •

communicate more
communicate less X •

leave more
leave less
join more
join less X • •
expand
shrink X

8.5 A Proposal of An Adaptive Key Update Mech-
anism for Resource-Critical Networks

In this chapter, we have shown how alteration in network dynamics can affect the
performance of a network. As we have presented in our analysis, non-periodical

188 Case Study: Comparison of Key Update Methods

key update methods are very effective in preserving security in changing condi-
tions. However, this nice adaptation in terms of security often comes with the
cost of extra key updates.

Considering an extreme case that we have visualized in Fig. 8.5, when the com-
munication in the network is altered to be more intensive, the two key update
methods Hy and MB will issue a lot more key updates. The increase is so signifi-
cant that can easily drain the battery of a device. As you can see in the previous
chapters, in many alterations we observe increasing number of key updates in
not only these two but all nonperiodical key update methods. Therefore, we
claim that a comparison should consider both security and performance as we
have tabulated in Table 8.9. As an example, we might be conservative on the
level of security but then all the sensor devices in the network will be out of
order due to excessive power consumption.

The aim of this proposal is to adapt the key update strategies to the battery
level of resource-critical devices (e.g. sensor networks). As we have explained
above, a key update strategy that does not consider the battery level is not very
useful in the long run. Below we introduce our proposal,

First of all, we have to define battery levels. We assume that the trust center
is able to query the battery status of the devices in the network. Trust center
can receive this information as a percentage per device, and then calculate the
average battery status of the network. We will divide this battery status into
levels. For example, we will call level 1 as the level where battery is either full
or close to full, and level 2 as less than half of the battery capacity available. In
order to be more clear, we will define intervals that would correspond to levels.

Next, we define an update factor as the nonnegative real number that would
control the number of key updates depending on the battery level. For exam-
ple, a factor of 1 would allow the key update method to operate without any
limitations, but a factor of 2 would only allow roughly a half of the key updates.
Of course, we should also define a decision on rounding the new threshold value
up or down. We can have options such as floor and ceiling functions. We can
even make this choice flexible, such that for each level a different rounding can
be applied.

We continue with an example where we narrate how such a mechanism can be
implemented. Assume that we form a network and configure it to use a key
update mechanism, with a certain key update threshold. At some point, we
extended the network size by adding more devices. However, we kept the key
update strategy unchanged. Of course, this caused an increase in the power
consumption since we started to issue key updates more frequently to preserve
the level of security as much as possible. Here comes the trade–off, if we do not

8.5 A Proposal of An Adaptive Key Update Mechanism for
Resource-Critical Networks 189

Table 8.10: Battery levels and update factors
Battery Level Battery Interval Update Factor Rounding

Level 1 76% - 100% 1 None
Level 2 51% - 75% 1.25 Floor
Level 3 26% - 50% 1.5 Floor
Level 4 5% - 25% 1.75 Ceiling

employ this adaptive mechanism that we explained above, then we will have a
relatively secure network but life of the network will be shorter.

Defining the battery levels and update factors in Table 8.10, we can continue
our example. As you can see, we have four battery levels, and we employed
generic update factors to be used with proper roundings. Using the adaptive
mechanism, the first precaution will be issued when switching from level 1 to
level 2. That is, when the remaining battery is less than 76% we change our
update threshold to be approximately a quarter greater. Assuming that we
use any of the six key update methods with the threshold values we set in this
chapter, our mechanism will adjust the threshold values for each battery level
as given in Table 8.11.

Table 8.11: Adapted threshold values
Method Level 1 Level 2 Level 3 Level 4

JB 3 3 5 6
JLB 7 8 11 13
LB 3 3 5 6
MB 50 62 75 88
TB 30 37 45 53
Hy {5,5,75,90} {6,6,93,112} {8,8,13,135} {9,9,132,158}

We leave the assessment of the savings in terms of power consumption and losses
in terms of security as a future work.

Part IV

Automated Tools for
Analyses

Chapter 9

A Toolkit for LB Key Updates

Up until this chapter, we have presented qualitative and quantitative verification
methods and developed techniques in employing them for verification of com-
munication technologies, especially resource–critical networks such as ZigBee.
We have developed models, metrics, and analyses, eventually applied on case
studies. In this chapter, we intend to demonstrate some of our developments
as automated tools that solve specific problems. In particular, we designed and
implemented tools that can already be used by network designers and security
experts. In addition, this is not a solely software development chapter since we
present new developments such as building analytical model in a mathematical
perspective as an alternative to what we did in Chapter 5.

In this chapter, we present a toolkit that we designed and developed that imple-
ments maximum risk analysis and transient analysis on the fluctuations in LB
key update method. This toolkit is a demonstration of how to construct models
in an analytical way, instead of a compositional way. Besides we have several im-
provements in the computations, such as eliminating redundant model checkings
by terminating when maximum risk is found or when fluctuations disappeared.
The toolkit can be generalized to other key update methods by replacing the
analytical model construction. The toolkit is available online [Yük10].

192 A Toolkit for LB Key Updates

9.1 Introduction

It is an important precaution to foresee the results of a system or a component
before actually implementing it. As we have been discussing on the network
systems, we have mentioned that in networking area it is often the case that
dedicated or generic simulators are employed before implementing a new compo-
nent such as routing protocol, collision detection method, efficiency of delivery
etc. However, we encourage using formal methods that would guarantee the
verification of the component such as model checking and static analysis. Based
on this phenomena, we will present a simple design and development example
by implementing a very useful toolkit for a specific key update strategy that can
easily be used by network designers, developers, security engineers, and even ed
users with a minimum knowledge. We keep the toolkit limited since this is just
a demonstration of applying techniques based on formal methods in real life,
especially in an area where reasoning is difficult.

In this chapter, we will present a design and implementation of a dedicated
verifier that employs stochastic model checking and assists solving the problem
of setting the parameters for leave based key updates in ZigBee wireless sensor
networks. Even though we design the tool for a very specific purpose, it will be
generic for all types of networks that use this specific key update method. We
implemented the tool in MATLAB [Mat09], and benchmarked with one of the
state-of-the-art stochastic model checkers: PRISM.

We are shifting from computer science perspective to mathematical perspective;
namely we will build stochastic model working at a lower level, using parame-
terization to compactly specify a model. In this sense, MATLAB is a widely
used programming language and tool in mathematics, since it natively supports
vectors and matrices and various standard mathematical operations. Although
MATLAB lacks the compositionality of higher level language-based formalisms,
it is in many ways closer to the parametric specification of models preferred by
mathematicians.

The purpose of designing and developing such a tool can be summarized as:

• computing the maximum risk in transient security analysis, which is not
possible in generic tools

• applying a smart transient analysis which covers only the necessary time
period

We can summarize the potential benefits of such a toolkit below. A dedicated
toolkit:

9.2 Setting up the Scene 193

• will highly increase usability, and require no expertise

• will eliminate the overhead in generic tools

• will be much faster and customized

• can also be used in benchmarking other tools

At this point we would like to mention that we limited this tool to be used in
LB key update method for practical reasons, but it can be generalized to cover
other methods as well. The analytical model construction stage is the mere part
to be customized per method type.

In the following sections we will explain the purpose and the benefits in more
details. Besides we will reuse one of our running examples, and allow comparison
with PRISM.

9.2 Setting up the Scene

We are focusing on the transient behaviour of the LB key update method in
the context of key confidentiality. For the sake of simplicity, we omitted the
messaging between the devices. We present the related code snippet in PRISM
description language in Table 9.1, slightly rearranged to increase readability.

NETWORK LB

Y : [0 . . . N] init N ; Z : [0 . . .M] init 0;
C : bool init false;

[join] Y < N → λ.(N−Y) : (Y ′ = Y +1); Z ≤M → tt;
[leave] Y > 0→ µ.Y : (Y ′ = Y − 1); Z < M → (Z′ = Z + 1);
[leaveC] Y > 0→ γ.Y : (Y ′ = Y − 1) & (C′ = tt); Z < M → (Z′ = Z + 1);
[leaveR] Y > 0→ (µ+ γ).Y : (Y ′=Y −1) & (C′=ff); Z = M → (Z′ = 0);

Table 9.1: Network model with its key update environment

Now let us briefly explain the details of the model before presenting the results.
We start by clearly defining the constants and variables of the model, which will
lead to the full state description.

The constants of the model are:

194 A Toolkit for LB Key Updates

• N: the maximum number of devices in the network

• M: the number of leaves required to trigger key update

• λ: the rejoin intensity

• µ: the safe leave intensity

• γ: the compromised leave intensity

The variables of the model are:

• C(t): boolean variable that indicates if the key is compromised or not

• Z(t): number of leaves since last key update

• Y (t): number of active devices at time t

The full description of the state at time t is:

• X(t) = (C(t), Z(t), Y (t))

Now we can introduce the stochastic model checking results obtained from
PRISM. Defining a network of maximum 20 devices, we have model checked
P=?[F[t,t] C] for t ranging from 0 to 3600 days with increment of 30 days each
time. This corresponds to observing each month for a period of 10 years, and
to increase the readability we use the letter T which is actually 30 ∗ t. Notice
that our selection of time unit is actually in parallel with the selection of the
rates we used in the model, which are specified such as (e.g. λ = 1/7 ,i.e. once a
week. We could also get the same results if we set the time unit as a week, and
reset the rate values accordingly. It is just a matter of design, with a condition
of being used coherently.

Then comes the selection of threshold, where we used four different values rang-
ing from 5 to 20. The values are chosen arbitrarily, yet covering a selection wide
enough to observe different behaviours. It is a good practice to start with a
wide range, and then narrow the threshold set until a convenient threshold is
found.

The character of the network we are considering is defined with the rates as we
explained before. In this example we set the rates as λ = 1/7, µ = 99/(365*100),
γ = 1/(365*100).

9.2 Setting up the Scene 195

The resulting figure is shown in Fig. 9.1, where one can see the probability of
the network key being compromised at a certain time. We plotted the result
of P=?[F[t,t] C] for N = 20, λ = 1/7, µ = 99/(365*100), γ = 1/(365*100), and
M ={5,10,15,20}. As you can see, the result has some interesting fluctuations
which is the main reason that we chose the leave-based key update as the running
example.

Figure 9.1: Probability of the network key being compromised at a certain time.

What we learned from this series of stochastic model checking operations is:
increasing the threshold

• increases the risk that the network faces

• increases the period until reaching steady–state

• increases the quantity and also amplitude of the peaks in the result

• increases the number of model checking that is sufficient to see the be-
haviour of the key update method

• increases the time and memory that is needed to compute the result for a
time instant

9.2.1 Problem

We now explain what is the problem we want to solve, namely what is not
possible in the generic tools like PRISM in details.

In this specific key update method (as well as in similar methods such as JB,
JLB, Hy, etc.) we observe fluctuations in the graphical results of transient
analysis. However, current property specification formalisms are not able to

196 A Toolkit for LB Key Updates

Figure 9.2: The points that we want to capture in the analysis. Horizontal ar-
rows: maximum risk for a specific threshold, Vertical arrows: end of fluctuations
for a specific threshold.

capture the peaks in the results. Thus we need to observe a sufficient time
period, and manually find the time instants of peak values. In Fig. 9.2, we
pointed these maximal points that we are concerned using horizontal arrows.
For each of the four different threshold values, we have the maximum risk at a
different time instant.

Another problem is, determining the period of transient analysis. In the example
that we have been demonstrating, we have 120 time instants (excluding T=0) for
each threshold. This is a safe time period, sort of an over approximation, since
it covers the time before system is stabilized in terms of risk, and reached to
steady–state. However, this safe approach costs 480 separate model checkings
which is a lot for even such a small example. Besides, there was no guarantee
that 120 time units would be sufficient per each method. Probably, it would not
be sufficient if we checked for much higher threshold values. Just by looking at
the graphical results, we can find out that we could save both time and memory
by eliminating unnecessary model checkings and stopping model checking for a
threshold roughly around the vertical arrows in Fig. 9.2.

9.3 Deriving the Stochastic Model

In this section, we derive the stochastic model for the CTMC in the previous
section. The way PRISM constructs the model is basically taking the parallel
composition of the modules written in the description language and computing
the set of the reachable states from the initial state and mapping the model to
the transition rate matrix.

9.3 Deriving the Stochastic Model 197

The states of our model are encoded in a way that they reflect the values of the
variables C, Z, and Y . The variable C may have the values 0 or 1 (0: the key
is not compromised, 1: the key is compromised), Z may have the values from 0
to M, Y may have the values from 0 to N. We shall assume that M>0 and N>1.
In our model, the key may only get compromised after a leave action, and since
the model is continuous there is no need to consider multiple joins/leaves at a
time.

Construction of E and Q. The first part of the model checking work is the
construction of E (exit rates vector) and Q (infinitesimal generator matrix).
Examining the transition system that arises from our key update model we find
out that the pattern of transition is always the same. We can parametrize the
system on N and M so that we can easily scale the model up and down, in other
words we can exploit the regularity in the models. A very simple example of a
generator matrix and corresponding state transition diagram that gives insight
on the nature of the model is given in Table 9.2 and Fig. 9.3, respectively. Note
that, the values for N and M are chosen small to keep the table and figure in
manageable and that we wrote rate1 =-(λ+µ+γ) and rate2 =-2(µ+γ).

In order to ease the understanding of a conversion from a PRISM description to
a generator matrix (and/or a transition state diagram), we will give examples
from a very simple instance of our model where N=2 and M=2. As you can see in
Table 9.1, the initial state is 002 reminding that this is the concatenation of the
values of the variable C, Z, and Y . In the NETWORK module, all the actions are
available except join. Mathematically, it is because the value of Y is greater
than 0 but less than the value of N . Literally, it is because no new device can
join when the network capacity is full. In the ENV leave module, the actions
leave, leaveC, and join are available. This case, the available functions are
determined by the value of Z, namely the number of key updates after the
system runs is 0. Thus, the parallel composition leads to two available actions,
leave and leaveC, where the rates for the parallel actions are the same rates as
in the all the actions are available except NETWORK module (since multiplication
of the rates in the two modules will make no change, due to model design).
The selection of the action is actually a race condition in PRISM, where the
rates are used as parameters of the probability distribution as we mentioned
earlier. Before moving our focus from the Prism model to the corresponding
rate matrix, we should also explain that the resulting states after those actions
will be 001 for leave, and 101 for leaveC.

Now we can view the same case in the transition rate matrix and the transition
state diagram, presented in Table 9.2 and Fig. 9.3, respectively. In fact, we will
use the generator matrix instead of the rate matrix where the only difference
is in the diagonals, namely no transition to another state. In fact, from now
on we will only refer to the infinitesimal generator matrix Q in order to avoid

198 A Toolkit for LB Key Updates

confusion. Since we have chosen a simple instance of the model, the diagram
is easier to generate and understand. Notice that for the sake of simplicity
we omitted all the self loops which should be present in all the states. The
initial state is now easily identified by the incoming transition arrow that does
not originate from any of the other states. Then you can see two outgoing
transitions as dotted arrows, and the corresponding rates on top of te arrows.
This, actually is the same transitions we explained in the previous paragraph,
and in the matrix representation you can see the originating states in the rows
(the third row in this case) and the resulting states in the columns (the fifth
and the eleventh in this case, excluding the self loops of course).

Table 9.2: Infinitesimal Generator Matrix Q for N=2 and M=2
CZY 000 001 002 010 011 012 020 021 022 110 111 112 120 121 122

000 -2λ 2λ

001 rate1 λ µ γ

002 rate2 2µ 2γ

010 -2λ 2λ

011 rate1 λ µ γ

012 rate2 2µ 2γ

020 -2λ 2λ

021 µ+γ rate1 λ

022 -rate2 rate2

110 -2λ 2λ

111 rate1 λ µ+γ

112 rate2 -rate2

120 -2λ 2λ

121 µ+γ rate1 λ

122 -rate2 rate2

Obviously, we want to construct the Q matrix which is convenient for computa-
tions, and also E vector which will be used in this construction (and also later
computations).

We start our computations with E, which is the vector of exit rates for all
the states. It is trivial by inspecting the matrices or the transisiton diagrams
that, the number of states can be parametrized by N and M such that there are
(M+1)∗(N+1)∗2 states depending on the possible values of the variables, however
the states where C=1 and Z=0 are not reachable so we have (2M + 1)(N + 1)
states in total. Actually, E can be constructed by vertically concatenating 2M+1
identical little vectors (E0). Since E0 has N+1 rows, E will have (2M+1)(N+1)
rows.

We derive the formulation of the terms of the E0 vector as:

E0(i) = (N− 1).λ+ i.(µ+ γ) i = 0, .., N

9.3 Deriving the Stochastic Model 199

Figure 9.3: State-Transition Diagram for N=2 and M=2

Using E0, we can easily construct the E vector as:

E =

E0

...
E0



After computing the E vector which will also be used in uniformisation to be
explained later, we can start describing a smart way of constructing the Q
matrix. By inspecting the instances for the Q matrix, we perform a divide and
conquer approach where we first deal with the submatrices. Below are the four
matrices that we name as Aλ, Aµ, Aγ , and Aµγ (for the sake of readability we
omitted the zeros in the matrices):

Aλ =


−E(1) N.λ

−E(2) (N− 1).λ
. . .

. . .

−E(N) 1.λ
−E(N + 1) 0.λ



200 A Toolkit for LB Key Updates

Aµ =

1.µ
. . .

N.µ

 Aγ =

1.γ
. . .

N.γ



Aµγ =

1.(µ+ γ)
. . .

N.(µ+ γ)


Using the similarity in the matrices Aµ, Aγ and Aµγ , we come up with a single
matrix as a substitute, Au:

Au =

1
. . .

N


The relation between Au and the matrices that it substitutes can be defined as:

Aµ = µ.Au (9.1)

Aγ = γ.Au (9.2)

Aµγ = (µ+ γ).Au (9.3)

Now we can rebuild our Q matrix by using the little matrices above:

Q =

[
Q1 Q2

Q3 Q4

]

Q1 =


Aλ µ.Au

. . .
. . .

Aλ µ.Au

(µ+ γ).Au Aλ

 Q2 =


γ.Au

. . .

γ.Au



9.4 Model Checking Computations 201

Q3 =


(µ+ γ).Au

 Q4 =


Aλ (µ+ γ).Au

. . .
. . .

Aλ (µ+ γ).Au

(µ+ γ).Au Aλ


At this point, we can state the dimensions of the matrices that we use in the
construction of Q, such that

• ((m+ 1).(n+ 1))× ((m+ 1).(n+ 1)) for Q1,

• ((m+ 1).(n+ 1))× (m.(n+ 1)) for Q2,

• (m.(n+ 1))× ((m+ 1).(n+ 1)) for Q3, and

• (m.(n+ 1))× (m.(n+ 1)) for Q4

Thus we have presented our first contribution in constructing the generator
matrix. We implemented all these constructions in MATLAB (see Appendix E).

9.4 Model Checking Computations

As we have explained in the preliminaries chapter, stochastic model checking of
a CTMC model requires a conversion to an embedded DTMC in order to obtain
(more) numerically stable computations and to avoid round-off errors that are
caused by the positive and negative values in Q.

An important issue is uniformisation, a technique that is used for computing
transient probabilities of CTMCs and relied on in the CSL model checking
algorithms.

As we have introduced earlier, the transition probability matrix for the uni-
formised DTMC as Punif = I + Q/q such that the uniformisation rate q ≥
max{E(s)|s ∈ S}. PRISM implements q as 1.02 ∗ max{E(s)|s ∈ S}, and in
order to be able to benchmark our results we also use this calculation1.

At this point, we need to remind a matrix that we will use in our computations.
The matrix of all transient probabilities for time t was defined as Πt, and can be

1The usual approach is to take q = max(E(s)), which is also observed in some other
probabilistic model checkers (e.g. MRMC) [Ste94, BHHK00].

202 A Toolkit for LB Key Updates

expressed as a matrix exponential such that Πt = eQ.t. However, computing this
(as power series) tends to be unstable, therefore the probabilities are computed
through the uniformised DTMC Punif instead of CTMC. This brings us to the
equality:

Πt =

∞∑
i=0

γi,qt (Punif)i where γi,qt = e−qt
(qt)i

i!
(9.4)

where (Punif)i is the probability of jumping between each pair of states in i
steps, and γi,qt is the (Poisson) probability of i such steps occurring in time t,
given that the delay is exponentially distributed with rate q. Note that, (unlike
Q) the matrix Punif is stochastic, i.e. all entries are in the range [0,1] and all
rows sum to 1.

After introducing the necessary conversions and computations, we can continue
with the core part of CTMC model checking.

The logic formula P=?[F[t,t] C] can be rewritten as an until formula as

P=?[trueU[t,t]C]. This enables us to determine the probability using the formula
from [KNP07]:

ProbC(Φ U[t,t′] Ψ) =

∞∑
i=0

(
γi,qt · (Punif(C[¬Φ]))i · ProbCΦ(Φ U[0,t′−t] Ψ)

)
(9.5)

where obviously Φ is true, Ψ is C, and t is equal to t′ in our case. Inside
the infinite summation we have three parts to be multiplied, the first one of
which, , namely γi,qt, was explained in the formula (9.4). The second part is
the ith power of the Punif of the CTMC C[¬Φ], that is C[false] (note that
C is the variable that indicates whether the key is compromised, whereas C is
the CTMC). At this point, we should remind the reader that for any CTMC C
and CSL formula Φ, CTMC C[Φ] is obtained by replacing R by R[Φ] such that
R[Φ](s, s0) = R(s, s0) if s 6|= Φ and 0 otherwise.

Now we instantiate this equation with the details that are specific to the ZigBee
key update model. It is trivial to derive that the last part is actually a vector
for Ψ.

Integrating the equations above, we get our specific equation that we need to

9.5 Specific Technicalities in Computation 203

solve in order to get the model checking results, that is:

ProbC(trueU[t,t] C) =

∞∑
i=0

(
e−qt

(qt)i

i!
· (I + Q/q)i · C

)
(9.6)

Improving the model checking time. Here we have another improvement
that occurs from engineering the process. Instead of going through the complete
model checking formula and applying the substitutions, we directly use the
simplified formula in (9.6) and gain time.

In addition, we have a considerable improvement in the model checking time
for the type of problem in this running example. Even though PRISM allows
computing a series of model checkings and produce the result in graphical form
(and of course numerical data as well) which is called experiments in PRISM
jargon, it computes the uniformisation and the Q matrix everytime from scratch.
Since the uniformisation and the generator (or rate) matrix is always the same
for all model checkings in an experiment, doing it only once is a considerable
improvement in model checking time.

We should note that our implementation is based on sparse matrices, there-
fore competing with the sparse matrice engine of PRISM. In fact, PRISM is a
symbolic model checker that also uses data structures based on binary decision
diagrams (BDD). This feature of PRISM provides compact representation and
efficient manipulation of probabilistic models by exploiting regularity.

9.5 Specific Technicalities in Computation

In the previous section we presented the formula to be computed in order to get
stochastic model checking results. However, solving that formula is not always
straightforward and may require mathematical tricks. In this section we will
explain some key points of the successful implementations.

One hard problem we faced in the implementation was the infinite summation.
Before inspecting how the existing model checkers deal with the problem, we
figured out that the summation has a specific pattern that is a sequence of three
phases such that the first and the last phases have negligible values. Therefore
we chose a naive way of skipping the computation in these phases where the
probabilities were insignificant. After that we realized that we were close to re-
discover a well-known result dating more than twenty years back: the Fox/Glynn

204 A Toolkit for LB Key Updates

Method [FG88]. This technique actually allows efficient computation of Poisson
probabilites (i.e. the first part of the infinite summation in equation (9.6)) and
furthermore produces upper and lower bounds for the point where below and
above the probabilities are insignificant. This operation is also known as trun-
cation of the infinite summation and the bounds are called the left and right
truncation points. As a result, the number of the iterations that are necessary
to compute the probabilities are supplied by the Fox/Glynn Method.

An interesting fact that is revealed by most of the designers of such tools is
iterative squaring is not attractive for sparse matrices due to fill-in.

9.6 Design of the Toolkit

We illustrate the structure of the toolkit in Fig. 9.4. Each colored box represent
a different tool, blue ones being the front end tools and purple ones being the
back end tools. The front end tools can be used with the inputs given on
top of them, which is a network specification including size and rates, and an
LB strategy specification including a threshold or a threshold set. These tools
return results of transient analysis and the maximum risk that the network can
face. The back end tools are implementing the stochastic model checking for
the desired property. One of them constructs the necessary matrices and sets
the variables to be used in model checking, and the other actually implements
model checking. Back end tools can also be used by expert users to experiment
various scenarios, and compute model checking results.

Figure 9.4: The structure of the toolkit.

In the following two sections we present the components of the toolkit, namely

9.6 Design of the Toolkit 205

the tools we designed.

9.6.1 Front End Tools

We have two different front end tools, eexp and eLBtra, both focusing on
assisting the user to calculate the risk for a scenario. This two tools have
different perspectives that we explain below.

eexp(N, M, λ, µ, γ, t0, t1, [SC], [SCpar]): model checks the CSL Time-bounded
Until formula for the ZigBee Leave-based key update method. This tool is for
expert users, reveals more information on the computations and allows more
detailed adjustments in the whole process.

• computes number of states and matrix sizes automatically, without con-
structing the actual state space.

• constructs the CSL formula as a vector, B.

• computes A (Punif) and q by calling eqgen.

• computes model checking for time instants between t0 and t1 by calling
emc as many times as needed.

• depending on the [optional] stopping criteria switch and parameter, allows
choosing a stopping criteria between

1. [SC = 0] limited number of iterations, SCpar being the limit
(similar to TERMINATION MAX ITERATIONS in PRISM)

2. [SC = 1] convergence, SCpar being the epsilon
(similar to TERMINATION EPSILON in PRISM)

• computes the elapsed times of:

1. E, q, Q, A, B generation

2. Time bounded CSL Until Model Checking

Returns: risk of key compromise for

• a network specified with maximum size N, and rates λ, µ, γ,

• employing LB key update strategy with a threshold of M devices,

• in the time period between t0 and t1.

206 A Toolkit for LB Key Updates

eLBtra(N, Minit, Mstep, Mend, λ, γ): Automated tool for computing maximum
risk in LB Key Update. This tool is the main tool in the toolkit, and can be
used by end users as well as the experts. Below we summarize the features that
this tool differs from the expert tool eexp.

• eLBtra computes results for a set of thresholds (starting with Minit, in-
crementing with step Mstep, until reaching Mend), whereas eexp works on
a specific threshold (M).

• eLBtra has fewer input parameters in order to make it easier to use (elim-
inating time inputs, safe leave intensity, and optional stopping criteria).

• eLBtra does not output any unnecessary detail for an end user.

• instead of entering the time period for stochastic model checking, eLBtra
finds the point where the results are close enough to the steady–state.
Therefore, it saves time and memory, and avoids trials for finding the
correct time period.

• if the user is only interested in the maximum risk, then eLBtra stops the
stochastic model checking sequences when the peak value is reached (ex-
ploiting the nature of LB key update method, and in general the methods
where we observe fluctuations).

• uses the convergence method as the stopping criteria.

9.6.2 Back End Tools

We have two different back end tools, eqgen and emc, that will compute the
desired results when called sequentially. We also have an auxiliary tool foxg-
lynn which is not our design but our implementation of a well known method,
Fox-Glynn.

eqgen(N, M, λ, µ, γ): Constructs the infinitesmal generator matrix for the leave-
based key update scenario, focusing on efficiency. Called by eexp or eLBtra.

• computes E (by first computing E0).

• computes auxiliary matrices for Q (Au, Aγ , Aλ, Aµ).

• computes Q (by first computing the quadrants Q1, Q2, Q3, Q4).

• computes uniformisation rate q, and probability matrix for the uniformised
DTMC Punif .

9.7 Demonstration 207

Returns: q and Punif (renamed as A in parameter lists).

emc(A, B, q, t, SC, SCpar): Computes model checking result for a specific
time instant. Called by eexp or eLBtra.

• implements model checking for time bounded CSL Until formula
P=?[true U[t,t] C], which amounts to P=?[F[t,t] C].

• depending on the stopping criteria switch (SC), uses either a limited num-
ber of iterations or truncated summation assisted by Fox-Glynn method
(calling foxglynn).

Returns: stochastic model checking result for P=?[F[t,t] C].

foxglynn(qtmax, underflow, overflow, accuracy): Computes poisson probabili-
ties for uniformisation, implementing Fox-Glynn method. Based on the PRISM
implementation by Joachim Meyer-Kayser. Called by emc.

• computes left and right truncation points for the computation of poisson
probabilities.

• to allow benchmarking with PRISM, we set precisely the same values to
underflow, overflow, and accuracy parameter.

Returns: truncation points computed by Fox-Glynn method.

9.7 Demonstration

In this section, we demonstrate the usage of the front end tools. The complete
code listings are provided in Appendix E.

Tool eexp. We start by using the tool eexp for a small set of values. We
investigate the security of a network of maximum two devices, and LB threshold
of two devices. This is exactly the same model that we used extensively in
Section 5.3.3. We present the output of the tool in Fig. 9.5, where we input
(2,2,0,0,0,1,5) that is {2,2} for N and M, {0,0,0} to use the default values for
rates (i.e. λ = 1/7, µ = 99/(365*100), γ = 1/(365*100)), and {1,5} to issue
model checking at five consecutive time instants starting from t=1.

We observe exactly the same value for the uniformisation factor as in PRISM,
which is no surprise because we are implementing the same algorithm. However,
we compute this uniformisation factor and all the model construction only once

208 A Toolkit for LB Key Updates

Figure 9.5: Computing the risk in the first five time units for N=2, M=2.

9.7 Demonstration 209

whereas PRISM repeats the computation for each time point. Even for comput-
ing once, our MATLAB model is much faster since we exploit the stochastics
by constructing the generator matrix using our analytical method that we de-
veloped in Section 9.3. Of course we also compute the same truncation points
from Fox-Glynn (excluding the shifting in our indexing), and eventually we get
the same probability results. At the end, we also present the maximum risk for
the time period given in input.

Unfortunately the server that we run MATLAB was not as powerful as the
personal computer that we ran PRISM, which prevented us from making a
comparison. Besides as a programming language MATLAB is much slower than
C++ which is the language that PRISM engine is coded with. As a result, we
cannot claim being faster in model checking computations.

Tool eLBtra – maximum risk analysis. Our next example will be using
the user–friendly front end tool eLBtra which requires minimum knowledge to
operate and sheds light on a wider series of questions: which threshold has which
maximum risk, at which time instant, and when is the risk reaching steady–state.
In Fig. 9.6, we present a simple run of eLBtra for a network of up to 20 devices,
exactly the same example that we explained in Section 9.2. Using the tool we
can find the maximum risk for a set of threshold values, together with the time
instants for the maximum risk. Thus, we instead of having a long series of
model checking we can easily foresee what will a network come up against as
highest risk, and when will be this critical period. In this example, eLBtra
only computes 28 model checkings in total which is much less compared to 480
model checkings in Fig. 9.1. We will explain the logic behind this improvement
in details below, in Section 9.7.1.

Tool eLBtra – transient analysis covering all fluctuations. After getting
the maximum risk for a certain set of threshold values, we can choose a threshold
value and let eLBtra continue the transient analysis until a steady–state is
reached. Doing so, we can get more insight on the fluctuations in the risk
and exploit the tools capability of automatically stopping when the results are
sufficiently close — determined by a convergence epsilon — to a steady–state.
In Fig. 9.7, we present the output for the transient analysis of M=5 where the
analysis continues until t=16.

In addition, we may ask eLBtra to compute results for a single threshold value,
rather than a set of values. Continuing with our example where we explained
the problem, for the threshold value of 15 eLBtra computes results for 33 time
instants and outputs that these model checkings are sufficient to fully observe the
behaviour of the network. Hence, again we saved time and memory compared
to our results in PRISM. The corresponding output of eLBtra is presented in
Fig. 9.8.

210 A Toolkit for LB Key Updates

Figure 9.6: Computing the maximum risk for different threshold values.

9.7.1 Discussion on the termination of the model check-
ings

In this section, we give a more concrete answer on how we found a solution
for the problems that we explained in Section 9.2.1 and visualized in Fig. 9.2.
As we designed a dedicated tool for a specific key update method, we can per-
fectly exploit the characteristics of the method (which can actually be reused in
similar methods with a slight modification). As we have explained earlier, we
constructed the generator with the same approach and improved the computa-
tion of the model. Now we explain how we benefit in number of model checkings
based on our front end tool eLBtra.

In Fig. 9.9, we reissue the results that we presented when setting the scene
and defining the problem focusing on the maximum risk. In this reissue, we
highlighted the points that eLBtra computed to find the maximum risk for
each threshold and shaded the rest of the points. In LB method, the risk
monotonically increases until each reaches the first local maximum which is also
the global maximum. It is simple to check if we reached the global maximum
by comparing two consecutive values. For instance, taking the case M=15 where
we listed the probabilistic values in Fig. 9.8 the tool will start computing from
t=1 (the first highlighted point in the figure) and when t=8 (the last highlighted

9.7 Demonstration 211

Figure 9.7: Transient analysis for M=5.

point in the figure) it will find out that the difference with the predecessor is
negative and stop computations.

We follow a similar approach in the transient analysis to find the time instant to
stop computations. In Fig. 9.10, we present another reissue of the results where
the points of transient analysis in eLBtra is highlighted. This time we are
checking the absolute difference between the consecutive probabilistic results.
We have a predefined convergence epsilon, that can easily be adjusted in the
cases where precision is crucial, and when the difference is no more greater than
this epsilon value the computation is terminated. In Fig. 9.10 we presented the
necessary computations that are issued by eLBtra.

As eLBtra initially computes the maximum risk, we reuse the points that are
already computed there and continue the transient analysis with the remaining

212 A Toolkit for LB Key Updates

Figure 9.8: Transient analysis for M=15.

points. As a solid example, for the case of M=15 in Fig. 9.10, the points from
t=1 to t=8 are already computed for the maximum risk, therefore if we request
a transient analysis covering all the fluctuation then eLBtra only computes the
remaining points until t=33.

9.7 Demonstration 213

Figure 9.9: Analysing the maximum risk in different thresholds.

Figure 9.10: Analysing the period before reaching steady–state.

214 A Toolkit for LB Key Updates

Chapter 10

Automated Tools Utilizing
Present Technologies

In this chapter, we present automated tools that we designed and developed
to solve some of the problems we discussed throughout the thesis. Once again
we provide solutions in an automated manner and eliminate the necessity of an
expertise for the users of the tools. As a difference from the previous chapter,
we intended to employ state-of-the-art verification tools which require expertise
to use.

In Section 10.1, we designed and developed a software that automates the deci-
sion of key update method and parameters for a specific network. We created a
push-button technology – powered by stochastic model checking – that network
designers and even consumers can easily benefit from. Key Update Assistant,
as we named it, runs necessary model checking operations and determines the
optimum key update strategy that satisfies the requirements of its users.

In Section 10.2, we designed and developed a protocol verifier that bridges the
gap between protocol narrations and LySa models, and also automates quali-
tative verification using LySa engine. This tool allows verification of a protocol
in various encapsulation forms involving integrity and encryption as in IEEE
802.15.4 and ZigBee.

216 Automated Tools Utilizing Present Technologies

Both of the tools presented in this chapter are available online [Yük10].

10.1 Automating the Decision on Key Update:
Key Update Assistant

In this section, we design and develop a software that automates the decision of
the key update method and threshold parameter. Our aim is to create a push-
button technology that will find the optimum key update strategy – formed by
a method and an update threshold – for network designers and consumers by
verifying security and performance properties of a custom network.

We will make use of our developments in the quantitative analysis domain and
provide solution for any specific network design. We start by presenting a rather
shallow flowchart of Key Update Assistant – the program that we designed – in
Fig. 10.1.

Key Update Assistant – in a blackbox perspective – takes the requirements of
the user as input, and returns the satisfying key update strategy and key update
threshold. In the background, the program runs a probabilistic model checker
(abbreviated as MC in the flowchart) to verify the configurations and to find
the optimum solution. This process may require refining the set of thresholds
sent to the model checker and repeating the middle steps.

In the following sections, we will explain each box of the flowchart in Fig. 10.1.
Section 10.1.1 contains details on the first box, Section 10.1.2 contains the in-
ner loop namely the computation of the threshold values, Section 10.1.3 is on
the involvement of probabilistic model checking engine, and Section 10.1.4 con-
tains details on the outer loop, namely deciding on the solution. Finally, in
Section 10.1.5 we present a little demonstration of the tool.

10.1.1 Input

The input to the program consists of three types of information:

• security and performance requirements

• network parameters, and

• key update methods

10.1 Automating the Decision on Key Update: Key Update Assistant 217

get input from the user

for each
selected key

update
method:

determine the maximum
threshold that satisfies R1

determine the minimum
threshold that satisfies R3

determine a set of threshold
values that also satisfy R2

MC

refine
the

set of
thresh-

olds

is the solution
set empty or
multiple or

different than
previous?

return the solution

yes

no

Figure 10.1: Flowchart of Key Update Assistant

218 Automated Tools Utilizing Present Technologies

Security and performance requirements are the main requirements that would
identify the what is requested from the network in terms of security and perfor-
mance guarantees. For the sake of simplicity, we restrict this part of input with
three fields (all fields are necessary):

R1 Maximum tolerated probability of the network key being compromised in
the long run.

R2 Maximum tolerated probability of the network key being compromised in
any time instant.

R3 Maximum tolerated number of key updates in a year

Network parameters describe the characteristics of the network and application
scenario. This information helps in reasoning about how dynamic/stationary is
the network, how frequently the devices in the network communicate, how safe
is the environment, etc. Again, for the sake of simplicity we restrict this part of
input with two options (choose one out of two options):

O1 Select one of the six ZigBee Application Profiles, or

O2 Customize your network scenario by entering the parameters below:

O2.a Rate of join per device

O2.b Rate of leave per device

O2.c Rate of message per device

O2.d Probability of compromising the key when leaving per device

O2.e Probability of compromising the key when messaging per device

O2.f Initial size of the network

O2.g Maximum size of the network

Key update methods define allowed key update methods for the network in con-
sideration. This input is limited by the models we have in the program, however
new key update methods can be added afterwards. We restrict this part of input
with six options (multiple choice):

Hy Hybrid key update

JB Join-based key update

10.1 Automating the Decision on Key Update: Key Update Assistant 219

JLB Join-Leave-based key update

LB Leave-based key update

MB Message-based key update

TB Time-based key update

After the input is taken from the user correctly, formal models of the key update
methods will be configured to reflect the desired network settings and will be
ready for model checking. Note that property specification is always the same
since the requirement questions (R1, R2, and R3) are constant.

10.1.2 Identifying The Thresholds

The three consecutive boxes in the inner loop are the core parts of the software.
In this section, we will present the logic behind those modules.

The first box is identifying the maximum threshold for a certain key update
method according to R1 requirement. Here we will take a refinement strategy
to determine maximum threshold value for each selected key update method.
We designed this strategy to avoid redundant and resource consuming model
checking operations. We present our methodology for doing so in Table 10.1.

Basically we are exploiting the fact that, the difference between steady–state
probabilities for successive threshold values would be decreasing but still useful
for skipping many model checking operations. As an example, instead of model
checking for 100 different threshold values starting from 2 to 101, we can com-
pute first two and then jump to a threshold value that is close to 101 (depending
on the rest of the parameters) and then continue iterating by successively in-
crementing the threshold value. Thus we can omit a huge amount of model
checking which would save us time and memory.

The second box is determining the minimum key update threshold according
to R3 requirement. Making use of our results in the previous box, namely the
maximum threshold, we iterate through threshold values starting from maxi-
mum and decrementing by one in each iteration. Obviously, the iteration does
not start if the model already violates R3. A selected key update method will
be eliminated if no threshold values satisfies R1 in the previous stage, or no
threshold values satisfies R3 in this stage. After successful computation of the
second box we have a maximum threshold MAX and a minimum threshold MIN.

220 Automated Tools Utilizing Present Technologies

STEP I: Compute the probability difference between two successive
threshold values:

1.a) Compute steady-state probability for threshold value thr = 2,
and save the result as ss2

1.b) Increment the threshold by one (i.e. thr = 3) and compute
steady-state probability and save the result as ss3

STEP II: Find the offset value to start model checking iterations:

2.a) Compute the value of offset as:

offset = (int)
R1− ss3
ss3 − ss2

where R1 is the first requirement
2.b) Compute steady-state probability for threshold value
thr = 4 + offset, and save as ssthr

STEP III: Start model checking iterations by gradually adjusting the
threshold value:

3.a) Set difference as diff = R1− ssthr
3.b) while |diff | > convergence epsilon set threshold as:

new threshold = old threshold∓ old threshold

2

∓ being + if diff is positive, and − otherwise.
Compute the result for the new threshold, and recompute diff

STEP IV: Return the result that either converged to a specified epsilon
value or a threshold increment that is no more meaningful (i.e. less than
1):

4.a) If the value of diff is non-negative then return the current
threshold value

4.b) Otherwise (i.e. diff < 0), decrement threshold by one and
return it

Table 10.1: Methodology for determining maximum threshold value depending
on requirement R1

The third box actually produces a solution set by making use of previous three
stages. Starting from MIN and ending in MAX, all the threshold values are
actually a solution for the given problem. Surely, the minimal part of this set

10.1 Automating the Decision on Key Update: Key Update Assistant 221

will serve as a better solution in security perspective and also will not violate
performance requirements. Therefore, we limit the number of threshold values
in solution set as 10.

10.1.3 Model Checker

In principle, any probabilistic model checker would work in this program pro-
vided that we supply the model formalized in the model checkers description
language or input method. So to speak, MRMC [KKZ05], E`MC2 [HKMKS00],
VESTA [SVA04], YMER [You05] are some of the alternatives one can choose. In
our case, we will stick to PRISM probabilistic model checker that we explained
and used in this thesis. We have provided the models and property specification
in the Appendix C that can directly be used for this program.

10.1.4 Deciding On The Solution

In the outer loop of the flowchart, we consider the solution which is a collection
of the solution sets – threshold sets – for each selected key update method. If
we have one unique pair of solution such that a pair p is a tuple (ku, th) where
ku is the key update method and th is the threshold for that method, then we
are happy and we return the solution as the output of the program. Else if we
have no solutions, that we have to refine the threshold set to the model checker
by coarsening. Else if we have more than one pairs in the solution, then we
refine the threshold set by tightening. We terminate the tightening if we do not
get better results.

10.1.5 Demonstration

In this section, we present a demonstration of the tool we implemented. Above
we explained the design of the tool and now we will add technical details on
the implementation. We implemented the Key Update Assistant in Java, and
tested in Mac OS X platform. The tool has a graphical user interface, that
allows its user to easily enter the input and see the results. In the background,
the tool runs probabilistic model checker which is PRISM in this case. The user
does not need to know about how many times and with which arguments the
model checker engine is called, or how the properties are expressed. However,
necessary information is produced and presented in the Details section of the

222 Automated Tools Utilizing Present Technologies

interface. All the implementation actually complies with our developments and
algorithms in the previous chapters.

Figure 10.2: Key update assistant at work.

In Fig. 10.2, we present a screenshot of the tool running for a sample problem.
We will demonstrate the tool with the help of this figure. The interface has five
separate panels, three of them are for input and the rest is about the results.
In the first panel, Network parameters, the user enters network information by
either choosing an application profile (which makes things easy for ZigBee net-
works) or manually specifying the information as it is the case in Fig. 10.2. The
next panel, Requirements, is for specifying the requirements to be verified. As
we have explained in the design, the requirements have three different types
regarding security and performance. The third panel, Key Update Methods,

10.2 Protocol Verifier 223

enables the user to select the key update methods to be involved in the verifi-
cation. For the sake of simplicity, only the methods mentioned and proposed in
this dissertation are implemented.

After filling the first three panels, the user runs the assistant and the verification
process starts. In the fourth panel, Results, the user can see the progress of the
tool and the numerical values of satisfying thresholds for the methods being
verified in corresponding boxes. For instance, in Fig. 10.2 TB is already verified
and only threshold value of 2 is a solution for TB in the given case. The last
panel, Details, is giving more information abut the process. For each selected key
update method, maximum and minimum threshold values, satisfying threshold
values, and any error is shown in this panel. For example, in Fig. 10.2 the tool
has finished TB and continuing with LB and at the moment of screenshot the
maximum threshold for LB is computed as 2 for the given case.

10.2 Protocol Verifier

In this section, we present our automated tool for analyzing certain qualitative
security properties of protocols. Similar to the key update assistant, this tool
also makes use of current techniques – in this case static program analysis – and
makes formal verification to be useful for users with very limited or no expertise
at all.

In Section 10.2.1 we explain the purpose of this tool, in Section 10.2.2 we present
the details in the design of the tool, in Section 10.2.3 we detail the implemen-
tation phase, and finally in Section 10.2.4 we demonstrate the tool usage.

10.2.1 Purpose

Having a clear goal of verifying qualitative security properties and powerful
technique of static program analysis, we pointed out distinct gaps in making
use of formal verification in real protocols. Below we identify our purpose in
developing a protocol verifier tool.

• It is not trivial to generate LySa processes out of protocol narrations.
This task is normally done by hands and it is very much error–prone, and
even worse any mistake in the LySa model cannot easily be spotted.

224 Automated Tools Utilizing Present Technologies

• A security protocol can be implemented in various settings. For example,
implementing the bare protocol narration, implementing protocol narra-
tion after applying encryption or integrity or both to all messages, etc.
This process should be automated to prevent modelling errors, and allow
batch processing.

• Protocol narrations in so-called Alice-Bob notation still have ambiguities
unless they are converted to extended protocol narrations as we have ex-
plained in Chaper 3. However, this conversion is also error-prone. Thus
we need a more precise protocol narration format.

10.2.2 Design

In this section, we detail the design of the Protocol Verifier tool. In Sec-
tion 10.2.2.1 we explain our protocol narration format, In Section 10.2.2.2 we
explain the conversion from protocol narration to LySa process is achieved,
and in Section 10.2.2.3 we explain the specific needs of different implementation
policies depending on confidentiality and integrity requirements.

10.2.2.1 Protocol Narration Format

We start by extending the Alice–Bob notation to comply with our goals. Our
first concern is in specifying elements of a message as to be matched and to be
bound. We establish this by using semicolon instead of comma, similar to the
LySa process calculus syntax. Thus, each message should have a semicolon to
identify the two parts of the message.

Our second concern is in specifying pattern matching and variable binding with
an encrypted component. An encrypted component may consist of at least one
message elements. We establish this again by using semicolon in the proper
position. Thus, each encrypted element should have a semicolon.

Even though there is no element to be matched, nor to be bound, there should
be a semicolon inside each encrypted element and inside each message. We list
usage examples of our new format below:

• message with no elements to be matched:
1. A → B: ; element1

• message with no elements to be bound:
2. A → B: element1;

10.2 Protocol Verifier 225

• message with one element to be matched and one element to be
bound:
3. A → B: element1 ; element2

• message with two encrypted components:
4. A → B: element1 ; element2, {element3 ; element4}key1, { ;

element5}key2

10.2.2.2 LySa Process Generation

As we have mentioned before, a protocol narration should be extended to remove
ambiguities so that it can be specified as a LySa process. We automate LySa
process generation by focusing on the information of principals accumulated
with each message, and optional annotations for each encryption decryption.
These two points are the main points that can cause flaws in the model which
will probably not be detected as long as the comply with LySa syntax. In other
words, as this generation was done by hand, a smallest typo could cause a flawed
protocol to pass the verification, or a secure protocol to fail the verification.

Below we list the issues that we focus in this phase of the design:

• A LySa model can be configured to have four different settings depending
on the usage of identities and keys.

• A LySa model can be configured to have n number of groups to model
different scenarios. Making n = 3 to be sufficient for a strong verification
that covers man-in-the-middle attacks as well.

• User should be able to add any knowledge to any of the principals.

• A message should comply with the protocol narration format that we set
in the previous section.

• The program should be able to identify a message element that is in the
knowledge base of the principals and should replace that element with the
corresponding variable if it is in the knowledge base.

• Using the knowledge base, program should detect which encrypted com-
ponent can be decrypted by the receiver, and should issue proper decrypt
clauses.

• Any encrypted component should come after the semicolon of a message.

226 Automated Tools Utilizing Present Technologies

We would like to note that, even though current tools (e.g. LyTe [O’S09]) can
derive Alice-Bob notation from a given LySa process, deriving LySa process
from a protocol narration is novel. Besides it is challenging in many cases such
as Otway-Rees [OR87] protocol since received but not decrypted (due to lack of
proper key) message components need to be saved and forwarded as intended
in the design of the protocol.

10.2.2.3 Confidentiality and Integrity Implementations

Contemporary communication standards such as IEEE 802.15.4 allow different
implementations of a security protocol, depending on security requirements. For
example, a protocol having n messages can be implemented as it is specified, or
by encrypting all the messages separately, or adding a message authentication
code to the end of each message.

Based on our experience in ZigBee and IEEE 802.15.4., we decided to include
four different protocol implementation policies. Doing so, a user will be able to
verify different implementations of the same protocol with respect to confiden-
tiality and integrity requirements.

• Bare protocol: The protocol narration is analyzed without any change.

• Encryption: Each message of the protocol is encrypted with the speci-
fied key.

• Integrity: For each message of the protocol, a message authentication
key is computed and added to the message.

• Encryption and Integrity: Each message of the protocol is secured
by both encryption and integrity.

As you may have noticed, the implementation choices above are sufficient to
model all the protocol implementations in ZigBee and IEEE 802.15.4.

10.2.3 Implementation

We have implemented the protocol verifier as a tool that allows its users to
specify a protocol easily and eliminating any user based errors in the resulting
LySa model. The tool has a graphical user interface that a user can specify
and add messages, configure both verification details (e.g. LySa settings on

10.2 Protocol Verifier 227

identities, keys, etc.) and network details (e.g. confidentiality and integrity
implementations, knowledge base of each principal etc.).

The tool uses LySa engine to apply static program analysis and pretty prints
LySa verification results. The user will not be worried about the LySa model,
and will have the opportunity to quickly revise the protocol itself or other con-
figuration parameters. However, advanced users will also have the chance to
modify the generated LySa models. Besides, the user can quickly establish a
series of verifications as a batch process.

10.2.4 Demonstration

In this section, we present a demonstration of the tool we implemented. In
addition to the design details above, we will present implementation details. We
implemented the Protocol Verifier in Java, and tested in Mac OS X platform.
The tool has a graphical user interface that allows its user to easily enter the
input and see the results. In the background, the tool runs static program
analysis which is implemented in LySa-tool in this case. The user does not
need to know about how the program analysis engine is called, or how the
LySa model is constructed. However, necessary information is produced and
presented in the interface and besides all the technical details can be found
in the log produced by non-verbose mode of the tool. All the implementation
actually complies with our developments in the previous chapters.

Translating classical protocols such as Wide Mouthed Frog (WMF) in [BAN90]
or Needham-Schroeder protocol [NS78] is fairly straightforward however many
security protocols are more complicated to model in process algebra. As we have
mentioned earlier, Otway-Rees is a difficult example that requires more effort
to precisely model in LySa therefore we will perform our tool demonstration
using this protocol. In Fig. 10.3, we present a screenshot of protocol verifier
done with Otway-Rees protocol.

As seen in the figure, the graphical user interface of protocol verifier has four
panels. Starting with the small panels at the left hand side, the Principals panel
is where the user sets which principals (and attacker) are involved and similarly
the Configuration panel is where the user configures LySa-tool to do verification
for specified cluster numbers and encapsulation method.

The main and actually the largest panel is the Messages panel where the user
is expected to enter the protocol to be verified as a narration that we described
above. Each message of the protocol is entered one by one, and any message
can be deleted easily. In Fig. 10.3, you can see that we have embedded some

228 Automated Tools Utilizing Present Technologies

Figure 10.3: Protocol Verifier running Otway-Rees protocol.

well-known protocols for demonstration purposes. In the figure a specific version
of Otway-Rees protocol is entered in our notation.

The Pre-knowledge panel is the next step in describing a protocol, although it
is optional to add pre-knowledge. Any message element which is not defined as
pre-knowledge is created by the new construct of LySa, in practice making it
an unknown information for the attacker. For example, in our demonstration in
Fig. 10.3 every legitimate principle knows M and server knows the keys of the
principals.

After entering the protocol information to the mentioned panels in the user
interface, we can proceed to the Analysis panel. Here the first thing before

10.2 Protocol Verifier 229

creating a model is to set annotations switch, which is ON by default. Then
by pushing the Create Model button the tool starts constructing LySa model
for the given protocol with given verification configurations. If the messages
were correctly entered and configuration was properly set the model will be
created and VERIFY MODEL button will be available which is accompanied
by a SUCCESS sign right below the Create Model button.

The last stage is the analysis, which is started by the Verify Model button. This
is the moment where LySa-tool is called and static program analysis comes into
play. As a result, the protocol is verified successfully if NO VIOLATIONS text
appears. In case of possible violations detected, the user can see the details by
pressing the Show violations button which will return LySa violation reporting.

230 Automated Tools Utilizing Present Technologies

Chapter 11

Conclusion

We shall have to evolve
problem-solvers galore —
since each problem they solve
creates ten problems more.

The Only Solution, Piet Hein

In this dissertation we have investigated the use of verification techniques pow-
ered by formal methods.

Our main thesis was:

Starting with a lower level of abstraction and applying a qualitative
analysis on protocols, then integrating these formally verified proto-
cols as components of scenarios in a higher level of abstraction fol-
lowed by a quantitative analysis, we can achieve an efficient analysis
scheme on information and communication systems.

Our goal was to demonstrate that current techniques in formal verification can
be combined in a smart way to be useful in the verification of communication

232 Conclusion

technologies, especially where limited–resources come in play and make things
harder. In this dissertation we have taken a step towards achieving this goal,
starting from qualitative analysis in order to verify discrete properties of the low
level protocols and continuing with the quantitative analysis in order to verify
quantitative aspects of the security-related scenarios where achieving absolute
security is just impossible due to severe resource constraints and other factors
depending on the type of the communication technologies.

In Section 11.1, based on our developments throughout this thesis we discuss
our idea on building a framework for verification of communication standards.
In Section 11.2, we summarize the contributions in this dissertation by relating
them to our publications along the way. We conclude with final remarks followed
by directions to future work in Section 11.3.

11.1 Towards A Framework For Verification of
Communication Standards

In this section, we would like to discuss our idea on building a framework for
verification of communication standards.

Assumption. We have a design for communication of devices, documented as
a specification. A solid example can be given as network standards that define
various layers of communication.

Problem. We want to be able to verify the design before actually implementing
or running it. We have a property to be verified, which is often a security
property such as secrecy, authenticity, or integrity.

Status. We are able to perform verification in two different abstraction levels.
In High Level abstraction, we analyse the protocols using qualitative analysis
and we verify that the protocols are confidentially secure or not. In Low Level
abstraction, we analyse the scenarios using qualitative analysis and we verify
the scenarios preserving secrecy with a probability satisfying our requirements.

In this dissertation, we have decided to set the abstraction levels as:

• Verification in Low Level abstraction: checking each protocol using static
program analysis.

• Verification in High Level Abstraction: checking each scenario — com-
posed of the protocols verified in the low level — using stochastic model

11.1 Towards A Framework For Verification of Communication Standards233

checking.

Below we present an example of our approach in verifying communication stan-
dards.

Notation. In the low level of abstraction we have protocols, which are trans-
lated into actions of scenarios in the high level abstraction. We denote an
action as Act{action name} and a scenario as Scen{scenario name}. A sce-
narios is a concurrent system of modules synchronizing over certain actions.

We will denote the property to be verified as Prop{property name} In this
example we will focus on secrecy property. An action that is verified in secrecy
will be denoted as Act{action name} |=spa Prop{secrecy}. Notice that spa

stands for the static program analysis, and will be replaced by smc in the case
of scenarios where stochastic model checking is employed.

Example 11.1 (Secrecy in ZigBee Wireless Sensor networks) In this ex-
ample, we will first remind the state machine that we derived for the ZigBee
security procedures in Section 2.2. In order to keep the example simple, we will
cover a simple subset of it as shown below:

out in

Join

Update

Leave

This is a state machine for a single ZigBee device. When a device is out of the
network, its state is out. A successful run of join protocol (with the trust center)
will change the device’s state as in. In this state, device can either update its key
or leave the network (or may be removed). We focus on the security protocols
which are shown as the transitions, and apply static program analysis to them.
The results are:

• Act{Join} |=spa Prop{secrecy}

• Act{Leave} |=spa Prop{secrecy}

• Act{Update}1 |=spa Prop{secrecy}
1Update protocol (in terms of rekeying, not recovery) does not exist in ZigBee, as we have

identified in Chapter 3 and explained the details in Appendix B. However, we assume that an
update protocol is developed, for example one of the six key update methods that we described
in this thesis.

234 Conclusion

Then we proceed to a scenario where we have two modules: Network and Up-
dateStrategy. Network module is a type of birth-death process extended with the
key update. UpdateStrategy is one of the key update methods we have proposed
in this dissertations (i.e. LB, JB, JLB, Hy).

• Scen{Mod{Network} || Act{Join, Leave, Update} ||Mod{UpdateStrategy}}
|=smc Prop{secrecy}

Since we have formally verified the scenario which is composed of formally veri-
fied protocols, we can conclude that secrecy property is preserved if this scenario
is employed.

In Fig. 11.1, we sketched the flow of our approach. We labelled the boxes to
depict the stages, and below we will bind them to the relevant parts of this
thesis:

• ExtProc: At this stage, we extract procedures out of a specification. In
Chapter 2, we showed how to do this for ZigBee security sublayer.

• FormProt: At this stage, we formalize the protocols that will be used as
building bricks for the scenarios. We presented a process algebraic way of
doing this in Chapter 3.

• LLAVer: This is the stage where we apply Verification in Low Level
Abstraction. In Chapter 3, we showed static program analysis as the
verification method. We require qualitative analysis and 100% verification
to pass this stage, and if we spot any flaw we go back to FormProt stage
by correcting the protocols in stage FixProt.

– FixProt: At this stage, we have to correct the flawed protocols.
Since it is not a simple task and there is no solid method but good
practices for fixing the protocols, we followed the guidelines from
[AN94] and presented a real application in Chapter 3.

• ConSce: At this stage, we construct scenarios using fully verified pro-
tocols and formalize them allowing quantitative security analysis. We
presented how to formalize a scenario in Markov chains in Chapter 5.

• HLAVer: This is the stage where we apply quantitative analysis to the
scenarios we constructed. Instead of requiring strong verification, we ex-
pect quantitative guarantees as a result of this stage. We have given de-
tailed examples for such qualitative analyses in Chapter 6. If the required
guarantee levels are not satisfied then we have to correct or reconstruct
the problematic scenarios in stage FixSce.

11.1 Towards A Framework For Verification of Communication Standards235

– FixSce: At this stage, we have to correct the flawed scenarios. Again
it is not a simple task and there is no solid method, yet we gave
examples on key update scenarios in Chapter 7 and Chapter 8 such
that in case one key update method does not satisfy the requirements
correction should be made as changing the key update method.

236 Conclusion

extract procedures
from the specification

ExtProc

formalize the
protocols

FormProt

all the
protocols are

verified?
LLAVer

construct and
formalize scenarios

ConSce

all the
scenarios are

verified?
HLAVer

done with verification

correct the
flawed protocols

FixProt

correct the
flawed scenarios

FixSce

yes

no

yes

no

Figure 11.1: Verification in different abstraction levels

11.2 Contributions 237

11.2 Contributions

In this section, we will recapitulate the contributions that we presented in this
dissertations.

• [YNN08, YNN09b, YNN10a] We presented how to employ quantitative
analysis techniques in verification of discrete security properties like confi-
dentiality, integrity, and authenticity by picking a static program analysis
approach. Along the way we contributed in a better understanding of the
security layer of ZigBee, discovered a flaw in one of its critical protocols,
and proposed a correction that is formally verified.

– We investigated a wireless sensor network standard, ZigBee, from se-
curity perspective. Proceeding from specification to security proce-
dures, and finally to security protocols, we clarified the security sub-
layer and derived protocol narrations for qualitative security analyses.
We identified the gap in the ZigBee specification on key updates.

– We presented the usage of static program analysis techniques in se-
curity protocol verification. We discovered a critical security flaw in
a ZigBee security protocol which is currently in use. We fixed the
protocol, and verified the fix also with static program analysis.

• [YNN09a, YNN+10b] We proposed using quantitative analysis techniques
in the verification of security protocols where trade–off between perfor-
mance and security is inevitable. Along the way we contributed in key
update area by developing methods, metrics, algorithms and analyses that
are empowered by stochastic model checking.

– We investigated the key update problem in ZigBee which is getting
more difficult when the performance requirements are involved. We
developed compact and scalable models that allow realistic quantita-
tive analyses.

– We developed metrics and methodologies for determining the opti-
mum key update method and parameters.

– We proposed new key update methods to be used with not only
ZigBee but also in other resource-critical networking standards.

– We analyzed various key update methods quantitatively and under
different conditions. We proposed mechanisms in obtaining more
efficient key updating schemes.

• [YNN11a, YNN11b, YNN11c] We presented case studies that realize our
methodologies for determining optimum key update strategy for custom
applications.

238 Conclusion

– We demonstrated how to derive advice from quantitative analysis
results in three different case studies focusing on three different ap-
plication domains of wireless sensor networks.

– We constructed an analysis to observe how different key update meth-
ods adapt to new environmental conditions in a network. We evalu-
ated the methods and presented the results as a set of guidelines for
network designers.

– We proposed an adaptive mechanism to make a more efficient use of
key update methods, considering power consumption.

• [Yük10] We designed and developed tools for improving security analyses
and making them available to a wider range of users.

– We designed and implemented a toolkit for LB key update method
that computes the maximum risk in transient security analysis, and
applies a transient analysis which covers only the necessary time pe-
riod. The tool can be generalized for other key update methods, as
well.

– We designed and implemented a a software that automates the de-
cision of key update method and parameters for a specific network.
We created a push-button technology – powered by stochastic model
checking – that network designers and even consumers can easily
benefit from. Key Update Assistant, as we named it, runs necessary
model checking operations and determines the optimum key update
strategy that satisfies the requirements of its users.

– We designed and implemented a protocol verifier that bridges the gap
between protocol narrations and LySa models, and also automates
qualitative verification using LySa engine. This tool allows verifica-
tion of a protocol in various encapsulation forms involving integrity
and encryption as in IEEE 802.15.4 and ZigBee.

11.3 Concluding Remarks And Future Work

In this thesis, we focused on the verification of the communication standards
from a point of view that is close to the implementation and realisation. We
used a real communication standard to demonstrate our developments. We
stated a new approach that first verifies the low level protocols in a qualitative
manner and guarantees absolute security, and then takes these verified protocols
as actions of scenarios to be verified in a quantitative manner. Based on the
emerging cyber–physical systems and resource–critical systems such as wireless

11.3 Concluding Remarks And Future Work 239

sensor networks, we used probabilistic verification that can return probabilistic
results with respect to the trade–off between security and performance.

We had a vision in the beginning of the thesis: we should bridge the gap between
the theoretical developments and the practical implementations. We believe that
we succeeded in this way, by showing how to employ the state–of–the–art veri-
fication techniques in specific problems related to communication technologies.
In this sense, we have extended various existing ideas and also proposed new
ideas to improve verification. Especially in the problem of key update, we be-
lieve we have contributed to the solution for not only wireless sensor networks
but also many other types of systems that require key updates. Besides we pro-
duced automated tools that were intended to demonstrate what kind of tools
can developed on different purposes and application domains, however resulting
tools can already be used in many types of networks. For example our tool
key update assistant provides a push–button technology that can be used by
people that has very limited knowledge or no knowledge at all in verification
technology.

At this last section of the dissertation we would like to discuss directions for
the future work. Since verification is a broad topic, many aspects remain to be
addressed even if we limit it to the verification of security protocols. Based on
our discussion on a framework including two layers of abstraction, we consider
future work to take place in this direction. In the qualitative analysis of security
protocols, two powerful methods program analysis and model checking can be
combined in a way to benefit from the advantages of both of the methods. Thus,
the state space explosion problem in model checking and lack of trace problem
in program analysis can be eliminated. In the quantitative analysis, beyond
all theoretical problems in modelling and computation, we face a complication
in supplying the realistic input to the tools (e.g. reliability value per device,
messaging frequency per device, etc.). Developing an approach in determining
the proper set of input data, and eventually getting a set of results is one of the
points that needs attention.

240 Conclusion

Appendix A

Protocol Narrations Derived
From ZigBee Security

Sublayer

A.1 Protocol Narrations

A.1.1 Guide For Reading Narrations

Protocol Narration Convention Extending the classical Alice-Bob protocol
narration style, we used message (primitive) titles in boldface fonts, and message
fields inside angle brackets. The protocol narration convention is given below:

242 Protocol Narrations Derived From ZigBee Security Sublayer

Format: A. B→C: D-E.F
<M>

A: Message Number (1,2,3,...)
B and C: Sender and Receiver

(Trust Center: TC, Router: R, All Routers: Rn,
Device: D, All Devices: Dn, Initiator: I, Responder: Res)

D: Message Layer and Entity
(APS Management Entity: APSME,
NWK Management Entity: NLME)

E: Command Type (SWITCH-KEY, ESTABLISH-KEY, etc.)
F: Primitive Type (request, response)
M: Message structure, including field names

(Accept, SrcAddress, etc.) and possible values (True, Raddr, etc.)

Example:

3. D→TC: APSME-ESTABLISH-KEY.response

<InitiatorAddress(=TCaddr), Accept(=TRUE)>

This is the third message of the protocol, sent by a device to the TC, the mes-
sage is an APS layer management entity message, the command type is establish
key, the primitive type is response. The message has two fields, the first field
InitiatorAddress has the value TCaddr, and the second field Accept has the value
TRUE.

Cryptographic Notation We used three different cryptographic operations:
Encryption, HMAC, and Hash. The notation is given below:

{Message}:Key : Message is encrypted with Key
MAC{Message}:MacKey : HMAC of Message, computed using MacKey
H(Message) : Hash of Message

A.1.2 Join

The Join procedure depends on the MAC layer command frames that are defined
in the IEEE 802.15.4 standard, and being the only exception in this appendix,
we omitted the message details.

A.1 Protocol Narrations 243

1. D → Rn: Beacon request command (unsecured)

2. Rn → D: Beacon (unsecured)

3. D → R: Association request command

4. R → D: Association response command

A.1.3 Authentication

Protocol Naming Convention In order to have a shorter and a systematic
way of naming protocols, we created the protocol naming convention below for
the Authentication protocols:

Format: G-H-I[-J]
G: Security Mode (Standard Security: SS, High Security: HS)
H: Presence of a separate router

(A separate router exists between TC and D: R,
TC serves as the router: NR)

I: Key knowledge of the device
(Preconfigured with a key: PK, Not preconfigured: NPK)

J: Preconfigured or “to be configured” key type
(None, Network Key: NK, Trust Center Link Key: TCLK,
Trust Center Master Key: TCMK)

Example: SS-R-PK-TCLK means:
Standard Security Mode,
TC is not the router,
Device is preconfigured with TCLK

The protocols in the Authentication part can be summarized as in Fig. A.1. In
order to save space, we present the narrations in the case that TC is the router.

SS-NR-NPK

1. TC→D: APSME-TRANSPORT-KEY.request (send active SNK)

<DestAddress(=Daddr), Keytype(=SNKtype), KeySeqNumber(=activeKeySeqNo), NetworkKey(=activeSNK),

UseParent(=FALSE), ParentAddress(=No need to set)>

244 Protocol Narrations Derived From ZigBee Security Sublayer

Figure A.1: Authentication Protocols

SS-NR-PK-NK

1. TC→D: APSME-TRANSPORT-KEY.request (send active SNK)

<DestAddress(=Daddr), Keytype(=SNKtype), KeySeqNumber(=Zero), NetworkKey(=Zero), Use-
Parent(=FALSE),

ParentAddress(=No need to set)>

SS-NR-PK-TCLK

1. TC→D: APSME-TRANSPORT-KEY.request (send active SNK)

<{DestAddress(=Daddr), Keytype(=SNKtype), KeySeqNumber(=activeKeySeqNo), NetworkKey(=activeSNK),

UseParent(=FALSE), ParentAddress(=No need to set)}:TCLK>

HS-NR-NPK-TCMK

1. TC→D: APSME-TRANSPORT-KEY.request (send TCMK)

<DestAddress(=Daddr), Keytype(=TCMKtype), ParentAddress(=TCaddr), Key(=TCMK)>

2. TC→D: APSME-ESTABLISH-KEY.request (establish TCLK)

<ResponderAddress(=Daddr), UseParent(=FALSE), ResponderParentAddress(=No need to set),

KeyEstablishmentMethod(=SKKE)>

A.1 Protocol Narrations 245

3. D→TC: APSME-ESTABLISH-KEY.response (establish TCLK)

<InitiatorAddress(=TCaddr), Accept(=TRUE)>

4. TC↔D: SKKE (See Subsection 2.1.5.2 for details)

5. TC→D: APSME-TRANSPORT-KEY.request (send active HNK)

<DestAddress(=Daddr), Keytype(=HNKtype), KeySeqNumber(=activeKeySeqNo), NetworkKey(=activeHNK),

UseParent(=FALSE), ParentAddress(=No need to set)>

6. D→TC: APSME-AUTHENTICATION.request (entity auth.)

<PartnerAddress(=TCaddr), Action(=INITIATE), RandomChallenge(=Drandom)>

7. TC→D: APSME-AUTHENTICATION.request (entity auth.)

<PartnerAddress(=Daddr), Action(=RESPOND ACCEPT), RandomChallenge(=TCrandom)>

8. D↔TC: MEA (See Subsection 2.1.5.3 for details)

HS-NR-NPK-TCLK

1. TC→D: APSME-TRANSPORT-KEY.request (send TCLK)

<DestAddress(=Daddr), Keytype(=TCLKtype), ParentAddress(=TCaddr), Key(=TCLK)>

2. TC→D: APSME-TRANSPORT-KEY.request (send active HNK)

<DestAddress(=Daddr), Keytype(=HNKtype), KeySeqNumber(=activeKeySeqNo), NetworkKey(=activeHNK),

UseParent(=FALSE), ParentAddress(=No need to set)>

3. D→TC: APSME-AUTHENTICATION.request (entity auth.)

<PartnerAddress(=TCaddr), Action(=INITIATE), RandomChallenge(=Drandom)>

4. TC→D: APSME-AUTHENTICATION.request (entity auth.)

<PartnerAddress(=Daddr), Action(=RESPOND ACCEPT), RandomChallenge(=TCrandom)>

5. D↔TC: MEA (See Subsection 2.1.5.3 for details)

HS-NR-PK-TCMK

1. TC→D: APSME-ESTABLISH-KEY.request (establish TCLK)

<ResponderAddress(=Daddr), UseParent(=FALSE), ResponderParentAddress(=No need to set),

KeyEstablishmentMethod(=SKKE)>

246 Protocol Narrations Derived From ZigBee Security Sublayer

2. D→TC: APSME-ESTABLISH-KEY.response (establish TCLK)

<InitiatorAddress(=TCaddr), Accept(=TRUE)>

3. TC↔D: SKKE (See Subsection 2.1.5.2 for details)

4. TC→D: APSME-TRANSPORT-KEY.request (send active HNK)

<DestAddress(=Daddr), Keytype(=HNKtype), KeySeqNumber(=activeKeySeqNo), NetworkKey(=activeHNK),

UseParent(=FALSE), ParentAddress(=No need to set)>

5. D→TC: APSME-AUTHENTICATION.request (entity auth.)

<PartnerAddress(=TCaddr), Action(=INITIATE), RandomChallenge(=Drandom)>

6. TC→D: APSME-AUTHENTICATION.request (entity auth.)

<PartnerAddress(=Daddr), Action(=RESPOND ACCEPT), RandomChallenge(=TCrandom)>

7. D↔TC: MEA (See Subsection 2.1.5.3 for details)

A.1.4 NK Update

We have two different NK Update protocols for SS and HS modes.

SS

1. TC→Dn: APSME-TRANSPORT-KEY.request

<DestAddress(=Broadcastaddr), KeyType(=SNKtype), KeySeqNumber(=newKeySeqNumber), Net-
workKey(=newSNK),

UseParent(=FALSE), ParentAddress(=No need to set)>

2. TC→Dn: APSME-SWITCH-KEY.request

<DestAddress(=Broadcastaddr), KeySeqNumber(=newKeySeqNumber)>

HS

1. TC→D: APSME-TRANSPORT-KEY.request

<DestAddress(=Daddr), KeyType(=HSNKtype), KeySeqNumber(=newKeySeqNumber), NetworkKey(=newHSNK),

UseParent(=FALSE), ParentAddress(=No need to set)>

2. TC→D: APSME-SWITCH-KEY.request

A.1 Protocol Narrations 247

<DestAddress(=Daddr), KeySeqNumber(=newKeySeqNumber)>

A.1.5 End-to-End Application Key Establishment

This procedure depends on the configuration of the TC. Therefore, we have two
different protocols.

TC is configured to send AppLK

1. I→TC: APSME-REQUEST-KEY.request

<DestAddress(=Resaddr), KeyType(=AppKeytype), PartnerAddress(=Resaddr)>

2. TC→I: APSME-TRANSPORT-KEY.request

<DestAddress(=Iaddr), KeyType(=AppLKtype), PartnerAddress(=Resaddr), Initiator(=TRUE),
Key(=newAppLK)>

3. TC→Res: APSME-TRANSPORT-KEY.request

<DestAddress(=Resaddr), KeyType(=AppLKtype), PartnerAddress(=Iaddr), Initiator(=FALSE),
Key(=newAppLK)>

TC is configured to send AppMK

1. I→TC: APSME-REQUEST-KEY.request

<DestAddress(=Resaddr), KeyType(=AppKeytype), PartnerAddress(=Resaddr)>

2. TC→I: APSME-TRANSPORT-KEY.request

<DestAddress(=Iaddr), KeyType(=AppMKtype), PartnerAddress(=Resaddr), Initiator(=TRUE),
Key(=newAppMK)>

3. TC→Res: APSME-TRANSPORT-KEY.request

<DestAddress(=Resaddr), KeyType(=AppMKtype), PartnerAddress(=Iaddr), Initiator(=FALSE),
Key(=newAppMK)>

4. I→Res: APSME-ESTABLISH-KEY.request (establish TCLK)

<ResponderAddress(=Resaddr), UseParent(=FALSE), ResponderParentAddress(=No need to set),

KeyEstablishmentMethod(=SKKE)>

5. Res→I: APSME-ESTABLISH-KEY.response (establish TCLK)

<InitiatorAddress(=Iaddr), Accept(=TRUE)>

248 Protocol Narrations Derived From ZigBee Security Sublayer

6. I↔Res: SKKE

A.1.6 Network Leave

This procedure has different protocols, depending on the initiator of the proce-
dure.

Remove-Device

1. TC→R: APSME-REMOVE-DEVICE.request

<ParentAddress(=Raddr), ChildAddress(=Daddr)>

2. R→D: NLME-LEAVE.request

<DeviceAddress(=Daddr), RemoveChildren(=TRUE/FALSE), Rejoin(=FALSE)>

Device-Leave

1. D→R: NLME-LEAVE.request

<DeviceAddress(=Daddr), RemoveChildren(=TRUE/FALSE), Rejoin(=FALSE)>

2. R→TC: APSME-UPDATE-DEVICE.request

<SrcAddress(=Raddr), DeviceAddress(=Daddr), Status(=DeviceLeft), DeviceShortAddress(=Dshortaddr)>

Appendix B

Key Update in ZigBee

B.1 The Gap in the ZigBee Specification

The latest ZigBee Specification (ZigBee-2007) [Zig08d], states that “policy
decisions to expire and periodically update keys, if desired must be ad-
dressed correctly by any real implementation”. In addition, it is stated that “the
application profiles1 should include these policies”2.

The latest published ZigBee application profile is the Smart Energy Application
Profile (ZigBee-SE) [Zig08c], which is curently the most critical and important
ZigBee application profile. ZigBee-SE states that “Periodically the trust center
shall update the network key (NK)” and “Periodically the trust center may
update the link key associated with a particular device.”3.

In addition to the specification documents (i.e. ZigBee-2007) and application
profiles (e.g. ZigBee-SE), one should also consider the Stack Profiles. Stack

1An Application Profile is defined as “a collection of device descriptions, which together
form a cooperative application.” in the ZigBee Specification. Application profiles provide
standard interfaces and device definitions to allow interoperability among ZigBee devices pro-
duced by various manufacturers, in a specific application domain.

2[Zig08d], Section 4.2.1.2 Security Design Choices, page 422.
3[Zig08c], Section 5.4 Smart Energy Profile Security, page 20. As a note on conformance

levels, may equals is permitted, and shall equals is required to in the ZigBee-SE Specification.

250 Key Update in ZigBee

profiles are intended to support the Application Profiles, since most of the pa-
rameters that are defined in the application profiles are set by the stack profiles.
The latest published ZigBee-PRO Stack Profile [Zig08b] states that “it is rec-
ommended that the trust center change the network key if it is discovered that
any device has been stolen or otherwise compromised, ...” and “there is no ex-
pectation that the network key be changed when adding a new device.”.

As seen clearly from our explanations with precise references above, all the
specification documents of ZigBee leave the important key update issue to the
implementations.

B.2 ZigBee Application Profiles

Currently, ZigBee has six different application profiles and up to now only two
of them are finalized, Home Automation [Zig08a] and Smart Energy [Zig08c].
The remaining application profiles that are expected to be finalized and released
soon are Commercial Building Automation, Personal, Home and Hospital Care,
Telecom Applications, and Wireless Sensor Applications.

In this section, we explain the settings for the application profiles that we focused
on in this thesis. For each application profile, we first summarize the scope and
the purpose of the profile for a better understanding of the design criteria. Then
in the second paragraph, we present the information gathered from a professional
ZigBee expert that once led the design of ZigBee security sublayer [Cra08], and
finally present the parameters that we used in our models with the values that
we determined from that information. Specifically, we present the technical
details in terms of maximum network size, rate of join, rate of leave, and key
compromise probability.

The Home Automation (HA) Profile: This profile covers applications for
the residential automation market to allow original equipment manufacturers
(OEM) to produce products that will meet the needs of customers ranging
from do-it-yourself homeowners to professional installers. Home automation
profile has a vast amount of device types such as on/off switch, level control
switch, remote control, shade controller, heating cooling unit, various sensors
(temperature, pressure, light), intruder alarm system equipments etc.

In this profile, the network is fairly static such that it is likely that devices such
as light switches and luminaries, once commissioned, would remain in place
for a longer period. The network size is in general less than 50 devices. The

B.2 ZigBee Application Profiles 251

environment is relatively insecure, and to reflect this we shall say the key is
compromised in 1% of the cases. A device may leave the network for reasons
such as a break down or flat battery, and most likely, it will be replaced shortly
after. We shall assume that each device leaves the network once a year but
it will be replaced within a week. Based on these assumptions we specify the
remaining constants as follows:

maximal size of the network: 20 devices (excluding the trust center)

average number of joining devices: 1 device every week

average number of leaving devices: 1 device per year

risk of key compromise: 1/100

The Smart Energy (SE) Profile: This profile covers applications for two-
way communications of metering data and energy management to provide more
efficient and reliable energy usage. Smart Energy profile goes beyond automated
meter reading to demand-response systems for real-time pricing and voluntary
load shedding. Example devices include but not limited to energy services por-
tal, metering end device, in-premise display, etc.

In this profile, the network is static, so the devices rarely leave the network.
The network size is in general 3-5 devices, including an Energy Service Portal
in a meter, a Programmable Communicating Thermostat, and a display. The
environment is highly secure, and to reflect this the risk of key compromise is
very low. Once a device has left the network, it will be replaced shortly. Based
on these assumptions we specify the remaining constants as follows:

maximal size of the network: 5 devices (excluding the trust center)

average number of joining devices: 1 device every week

average number of leaving devices: 1 device per five years

risk of key compromise: 1/10000

The Commercial Building Automation (CBA) Profile: This profile cov-
ers applications targeted at a commercial building environment such that: hav-
ing a coverage area of up to 100,000 square feet or more, typically professionally
managed, may have unrestricted access with attendant security implications,
inter-working with an installed base of existing products on other networks, etc.
Example devices include but not limited to ballast unit, commissioning tool,
occupacy and light sensors, thermostat, etc.

Also in this profile, the network is fairly static but its size is somewhat higher
than in the previous profiles although it is in general less than 200 devices.
The environment is relatively secure, and also here left devices will be replaced

252 Key Update in ZigBee

within a short period. Based on these assumptions we specify the remaining
constants as follows:

maximal size of the network: 100 devices (excluding the trust center)

average number of joining devices: 1 device every week

average number of leaving devices: 1 device per year

risk of key compromise: 1/1000

The Personal, Home and Hospital Care (PHHC) Profile: This profile
will be used by all the devices which jointly cooperate to fulfill the requirements
of a non-invasive health care application. The devices involved in a health
care application could be classified as medical devices (blood pressure monitor,
oxygen saturation monitor, EEG, etc.) and non-medical devices (gateway, cell
phone, light system, etc.). The health care application use cases can be logically
separated into the following categories: Chronic disease monitoring, Personal
wellness monitoring (ensuring an individual’s wellness and safety), and Physical
fitness.

In this profile, the network is dynamic such that it is likely that devices join
and leave the network regularly. The network size is in general less than 1000
devices. The environment is very secure, still the key updates are needed to be
rather frequent. Based on these assumptions we specify the remaining constants
as follows:

maximal size of the network: 500 devices (excluding the trust center)

average number of joining devices: 1 device every week

average number of leaving devices: 1 device per month

risk of key compromise: 1/10000

The Telecom Applications (TA) Profile: This profile will be applied in
telecom value-added services and supplementary services to enhance and fulfill
the telecom network functions, and it also includes some applications integrated
with some mobile terminals and plug-in modules. Example devices using this
profile can be mobile terminals, SIM cards, and Point-of-Sale (PoS) devices.

In this profile, the network is dynamic such that the nodes are joining and
leaving frequently. The network size is in general less than 50 devices. The
environment is highly secure, therefore key updates are needed to be rather
infrequent. Based on these assumptions we specify the remaining constants as
follows:

maximal size of the network: 20 devices (excluding the trust center)

B.2 ZigBee Application Profiles 253

average number of joining devices: 1 device every week

average number of leaving devices: 1 device per month

risk of key compromise: 1/100000

The Wireless Sensor Applications (WSA) Profile: This profile is designed
to enable wireless sensor network applications such as environmental monitor-
ing of either indoor or outdoor areas, asset tracking of mobile tagged-things
or persons, and structural or machine monitoring. Installation profiles may in-
clude areas with little or no infrastructure such as networks that are deployed
outdoors, or temporary installations. In such situations, the assumption of a
powered backbone is no longer tenable. The nodes themselves should be capable
of battery powered routing or forwarding of their neighbors’ data to one or more
centralized collection points. Note that with sensor data, the key assumption is
that the data must be collected and pulled out of the network. Example devices
that could be based on this profile include acoustic/ultrasonic output device,
binary output device, and relevant sensors to measure related parameters.

In this profile, the network is fairly dynamic though it depends on the partic-
ular application. The network size is in general less than 1000 devices. The
environment is secure, still the key updates are needed to be rather frequent.
Based on these assumptions we specify the remaining constants as follows:

maximal size of the network: 500 devices (excluding the trust center)

average number of joining devices: 1 device every week

average number of leaving devices: 1 device per 6 months

risk of key compromise: 1/1000

Obviously, application profiles can be customized easily and the models can also
be used for different type of networks.

254 Key Update in ZigBee

Appendix C

Key Update Models in PRISM

In this appendix, we will list the PRISM models that we implemented various
key update strategies. We have used these models mostly in Chapters 5, 6, 7,
8 and also in Chapters 9, 10. Besides we will list the stochastic temporal logic
(CSL, CSRL, etc.) formulae that we used for property specification.

256 Key Update Models in PRISM

C.1 Models Considering Key Compromise By
Leaving Devices Only

C.1.1 Join-based Key Update - model-L-join.sm

ctmc

const int J; // threshold for number of joins

// time unit: 1 day

const double R_join = 1/7; // average join: 1 every week

// Custom values!

const int Max=200;

const double R_leave = 1/7;

const double P_comp = 1/1000;

module DEVICES

Size: [0..Max] init Max;

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[joinR] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size: (Size’=Size-1);

endmodule

module COORDINATOR

Comp: bool init false;

C_join: [0..J] init 0;

[join] C_join<J-1 -> (C_join’=C_join+1);

[joinR] C_join=J-1 -> (C_join’=0) & (Comp’=false);

[leave] true -> true;

[leaveC] true -> (Comp’=true);

endmodule

C.1 Models Considering Key Compromise By Leaving Devices Only 257

C.1.2 Join-Leave-based Key Update - model-L-joinleave.sm

ctmc

const int N; // threshold for number of leaves

// time unit: 1 day

const double R_join = 1/7; // average join: 1 every week

// values for ha

const int Max=20;

const double R_leave = 1/365; // average leave: 1 per year

const double P_comp = 1/100; // risk of key leakage

module DEVICES

Size: [0..Max] init Max;

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[joinR] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size: (Size’=Size-1);

[leaveR] Size>0 -> R_leave*Size: (Size’=Size-1);

endmodule

module COORDINATOR

Comp: bool init false;

C_joinleave: [0..N] init 0;

[join] C_joinleave<N-1 -> (C_joinleave’=C_joinleave+1);

[joinR] C_joinleave=N-1 -> (C_joinleave’=C_joinleave+1);

[leave] C_joinleave<N-1 -> (C_joinleave’=C_joinleave+1);

[leaveC] C_joinleave<N-1 -> (C_joinleave’=C_joinleave+1) & (Comp’=true);

[leaveR] C_joinleave=N-1 -> (C_joinleave’=0) & (Comp’=false);

endmodule

258 Key Update Models in PRISM

C.1.3 Leave-based Key Update - model-L-leave.sm

ctmc

const int N; // threshold for number of leaves

// time unit: 1 day

const double R_join = 1/7; // average join: 1 every week

// Custom values

const int Max=200;

const double R_leave = 1/7;

const double P_comp = 1/1000;

module DEVICES

Size: [0..Max] init Max;

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size: (Size’=Size-1);

[leaveR] Size>0 -> R_leave*Size: (Size’=Size-1);

endmodule

module COORDINATOR

Comp: bool init false;

C_leave: [0..N] init 0;

[join] true -> true;

[leave] C_leave<N-1 -> (C_leave’=C_leave+1);

[leaveC] C_leave<N-1 -> (C_leave’=C_leave+1) & (Comp’=true);

[leaveR] C_leave=N-1-> (C_leave’=0) & (Comp’=false);

endmodule

C.1 Models Considering Key Compromise By Leaving Devices Only 259

C.1.4 Message-based Key Update - model-L-message.sm

ctmc

const int MSG; // threshold for number of messages

// time unit: 1 day

const double R_join = 1/7; // average join: 1 every week

// Custom values

const int Max=200;

const double R_leave = 1/7;

const double P_comp = 1/1000;

const double R_message = 1; // average communication per device

module DEVICES

Size: [0..Max] init Max;

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size: (Size’=Size-1);

[message] Size>0 -> R_message*Size: true;

[messageR] Size>0 -> R_message*Size: true;

endmodule

module COORDINATOR

Comp: bool init false;

C_msg: [0..MSG] init 0;

[join] true -> true;

[leave] true -> true;

[leaveC] true -> (Comp’=true);

[message] C_msg<MSG-1 -> (C_msg’=C_msg+1);

[messageR] C_msg=MSG-1 -> (C_msg’=0) & (Comp’=false);

endmodule

260 Key Update Models in PRISM

C.1.5 Time-based Key Update - model-L-time.sm

ctmc

const int M; // number of months between resets

// time unit: 1 day

const double R_join = 1/7; // average join: 1 every week

const int k;

const double mean = 30*M;

//values for ha

const int Max=20;

const double R_leave = 1/365; // average leave: 1 per year

const double P_comp = 1/100; // risk of key leakage

module DEVICES

Size: [0..Max] init Max;

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size: (Size’=Size-1);

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[reset] true -> 1: true;

endmodule

module COORDINATOR

Comp: bool init false;

i : [1..k+1];

[join] true -> true;

[leave] true -> true;

[leaveC] true -> (Comp’=true);

[] i < k -> k/mean : (i’=i+1);

[reset] i = k -> k/mean : (i’=1) & (Comp’=false);

endmodule

C.2 Models Considering Key Compromise By Leaving Devices and Sent
Messages 261

C.2 Models Considering Key Compromise By
Leaving Devices and Sent Messages

C.2.1 Join-based Key Update - model-LM-join.sm

ctmc

const int N; // threshold for number of leaves

// time unit: 1 day

//const double R_join = 1/7; // average join: 1 every week

// TEST PARAMETERS

const int Max=50;

const double R_leave = 1/365; // average leave: 1 per year

const double R_join = 1/2; // average join: replacement in two days

const double R_message = 1; // average communication: 4 times a day

const double P_comp = 1/10000; // risk of key leakage

module DEVICES

Size: [0..Max] init Max;

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[joinR] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size: (Size’=Size-1);

[message] Size>0 -> R_message*(1-P_comp)*Size: true;

[messageC] Size>0 -> R_message*P_comp*Size: true;

endmodule

module COORDINATOR

Comp: bool init false;

C_join: [0..N] init 0;

[join] C_join<N-1 -> (C_join’=C_join+1);

[joinR] C_join=N-1-> (C_join’=0) & (Comp’=false);

[leave] true -> true;

[leaveC] true -> (Comp’=true);

[message] true -> true;

[messageC] true -> (Comp’=true);

endmodule

262 Key Update Models in PRISM

C.2.2 Join-Leave-based Key Update - model-LM-joinleave.sm

ctmc

const int N; // threshold for number of leave and joins

// time unit: 1 day

//const double R_join = 1/7; // average join: 1 every week

// TEST VALUES

const int Max=50;

const double R_leave = 1/365; // average leave: 1 per year

const double R_join = 1/2; // average join: replacement in two days

const double R_message = 1; // average communication: 4 times a day

const double P_comp = 1/10000; // risk of key leakage

module DEVICES

Size: [0..Max] init Max;

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[joinR] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size: (Size’=Size-1);

[leaveR] Size>0 -> R_leave*Size: (Size’=Size-1);

[message] Size>0 -> R_message*(1-P_comp)*Size: true;

[messageC] Size>0 -> R_message*P_comp*Size: true;

endmodule

module COORDINATOR

Comp: bool init false;

C_joinleave: [0..N] init 0;

[join] C_joinleave<N-1 -> (C_joinleave’=C_joinleave+1);

[joinR] C_joinleave=N-1 -> (C_joinleave’=0) & (Comp’=false);

[leave] C_joinleave<N-1 -> (C_joinleave’=C_joinleave+1);

[leaveC] C_joinleave<N-1 -> (C_joinleave’=C_joinleave+1) & (Comp’=true);

[leaveR] C_joinleave=N-1 -> (C_joinleave’=0) & (Comp’=false);

[message] true -> true;

[messageC] true -> (Comp’=true);

endmodule

C.2 Models Considering Key Compromise By Leaving Devices and Sent
Messages 263

C.2.3 Leave-based Key Update - model-LM-leave.sm

ctmc

const int N; // threshold for number of leaves

// time unit: 1 day

//const double R_join = 1/7; // average join: 1 every week

// TEST PARAMETERS

const int Max=50;

const double R_leave = 1/365; // average leave: 1 per year

const double R_join = 1/2; // average join: replacement in two days

const double R_message = 1; // average communication: 4 times a day

const double P_comp = 1/10000; // risk of key leakage

module DEVICES

Size: [0..Max] init Max;

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size: (Size’=Size-1);

[leaveR] Size>0 -> R_leave*Size: (Size’=Size-1);

[message] Size>0 -> R_message*(1-P_comp)*Size: true;

[messageC] Size>0 -> R_message*P_comp*Size: true;

endmodule

module COORDINATOR

Comp: bool init false;

C_leave: [0..N] init 0;

[join] true -> true;

[leave] C_leave<N-1 -> (C_leave’=C_leave+1);

[leaveC] C_leave<N-1 -> (C_leave’=C_leave+1) & (Comp’=true);

[leaveR] C_leave=N-1-> (C_leave’=0) & (Comp’=false);

[message] true -> true;

[messageC] true -> (Comp’=true);

endmodule

264 Key Update Models in PRISM

C.2.4 Message-based Key Update - model-LM-msg.sm

ctmc

const int MSG; // threshold for number of messages

// time unit: 1 day

// TEST PARAMETERS

const int Max=50;

const double R_leave = 1/365; // average leave: 1 per year

const double R_join = 1/2; // average join: replacement in two days

const double R_message = 1; // average communication: 4 times a day

const double P_comp = 1/10000; // risk of key leakage

module DEVICES

Size: [0..Max] init Max;

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size: (Size’=Size-1);

[message] Size>0 -> R_message*(1-P_comp)*Size: true;

[messageC] Size>0 -> R_message*P_comp*Size: true;

[messageR] Size>0 -> R_message*Size: true;

endmodule

module COORDINATOR

Comp: bool init false;

C_msg: [0..MSG] init 0;

[join] true -> true;

[leave] true -> true;

[leaveC] true -> (Comp’=true);

[message] C_msg<MSG-1 -> (C_msg’=C_msg+1);

[messageC] C_msg<MSG-1 -> (C_msg’=C_msg+1) & (Comp’=true);

[messageR] C_msg=MSG-1 -> (C_msg’=0) & (Comp’=false);

endmodule

C.2 Models Considering Key Compromise By Leaving Devices and Sent
Messages 265

C.2.5 Time-based Key Update - model-LM-join.sm

ctmc

const int M; // number of months between resets

// time unit: 1 day

const int k;

const double mean = 30*M;

// TEST PARAMETERS

const int Max=50;

const double R_leave = 1/365; // average leave: 1 per year

const double R_join = 1/2; // average join: replacement in two days

const double R_message = 1; // average communication: 4 times a day

const double P_comp = 1/10000; // risk of key leakage

module DEVICES

Size: [0..Max] init Max;

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size: (Size’=Size-1);

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[message] Size>0 -> R_message*(1-P_comp)*Size: true;

[messageC] Size>0 -> R_message*P_comp*Size: true;

[reset] true -> 1: true;

endmodule

module COORDINATOR

Comp: bool init false;

i : [1..k+1];

[join] true -> true;

[leave] true -> true;

[leaveC] true -> (Comp’=true);

[] i < k -> k/mean : (i’=i+1);

[message] true -> true;

[messageC] true -> (Comp’=true);

[reset] i = k -> k/mean : (i’=1) & (Comp’=false);

endmodule

266 Key Update Models in PRISM

C.2.6 Hybrid Key Update - model-LM-hybrid.sm

ctmc

const int J; // threshold for number of joins

const int N; // threshold for number of leaves

const int MSG; // threshold for number of messages

const int M; // number of months between resets

const int k;

const double mean = 30*M;

// TEST PARAMETERS

const int Max=50;

const double R_join = 1/2; // average join: 1 every week

const double R_leave = 1/365; // average leave: 1 per year

const double P_comp = 1/10000; // risk of key leakage

const double R_message = 1; // average communication

module DEVICES

Size: [0..Max] init Max;

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[joinR] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size: (Size’=Size-1);

[leaveR] Size>0 -> R_leave*Size: (Size’=Size-1);

[message] Size>0 -> R_message*(1-P_comp)*Size: true;

[messageC] Size>0 -> R_message*P_comp*Size: true;

[messageR] Size>0 -> R_message*Size: true;

[reset] true -> 1: true;

endmodule

module COORDINATOR

Comp: bool init false;

C_join: [0..J] init 0;

C_leave: [0..N] init 0;

C_msg: [0..MSG] init 0;

i : [1..k+1];

[join] C_join<J-1 -> (C_join’=C_join+1);

[joinR] C_join=J-1-> (C_join’=0)&(C_leave’=0)&(C_msg’=0)&(i’=1)&(Comp’=false);

[leave] C_leave<N-1 -> (C_leave’=C_leave+1);

[leaveC] C_leave<N-1 -> (C_leave’=C_leave+1) & (Comp’=true);

[leaveR] C_leave=N-1-> (C_join’=0)&(C_leave’=0)&(C_msg’=0)&(i’=1)&(Comp’=false);

[message] C_msg<MSG-1 -> (C_msg’=C_msg+1);

[messageC] C_msg<MSG-1 -> (C_msg’=C_msg+1) & (Comp’=true);

[messageR] C_msg=MSG-1 -> (C_join’=0)&(C_leave’=0)&(C_msg’=0)&(i’=1)&(Comp’=false);

[] i < k -> k/mean : (i’=i+1);

[reset] i=k -> k/mean:(C_join’=0)&(C_leave’=0)&(C_msg’=0)&(i’=1)&(Comp’=false);

endmodule

C.2 Models Considering Key Compromise By Leaving Devices and Sent
Messages 267

C.2.7 Hybrid Key Update excluding MB - model-LM-
hybrid—mb.sm

ctmc

const int J; // threshold for number of joins

const int N; // threshold for number of leaves

const int M; // number of months between resets

const int k;

const double mean = 30*M;

// TEST PARAMETERS

const int Max=50;

const double R_join = 1/2; // average join: 1 every week

const double R_leave = 1/365; // average leave: 1 per year

const double P_comp = 1/10000; // risk of key leakage

const double R_message = 1; // average communication

module DEVICES

Size: [0..Max] init Max;

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[joinR] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size: (Size’=Size-1);

[leaveR] Size>0 -> R_leave*Size: (Size’=Size-1);

[message] Size>0 -> R_message*(1-P_comp)*Size: true;

[messageC] Size>0 -> R_message*P_comp*Size: true;

[reset] true -> 1: true;

endmodule

module COORDINATOR

Comp: bool init false;

C_join: [0..J] init 0;

C_leave: [0..N] init 0;

i : [1..k+1];

[join] C_join<J-1 -> (C_join’=C_join+1);

[joinR] C_join=J-1-> (C_join’=0) & (C_leave’=0) & (i’=1) & (Comp’=false);

[leave] C_leave<N-1 -> (C_leave’=C_leave+1);

[leaveC] C_leave<N-1 -> (C_leave’=C_leave+1) & (Comp’=true);

[leaveR] C_leave=N-1-> (C_join’=0) & (C_leave’=0) & (i’=1) & (Comp’=false);

[message] true -> true;

[messageC] true -> (Comp’=true);

[] i < k -> k/mean : (i’=i+1);

[reset] i = k -> k/mean : (C_join’=0)&(C_leave’=0)&(i’=1)&(Comp’=false);

endmodule

268 Key Update Models in PRISM

C.2.8 Hybrid Key Update excluding TB- model-LM-hybrid/tb.sm

ctmc

const int J; // threshold for number of joins

const int N; // threshold for number of leaves

const int MSG; // threshold for number of messages

// values for ha

const int Max=20;

const double R_leave = 1/365; // average leave: 1 per year

const double R_join = 1/7; // average join: 1 every week

const double P_comp = 1/100; // risk of key leakage

const double R_message = 1/30; // average communication

module DEVICES

Size: [0..Max] init Max;

[join] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[joinR] Size<Max -> R_join*(Max-Size): (Size’=Size+1);

[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size’=Size-1);

[leaveC] Size>0 -> R_leave*P_comp*Size: (Size’=Size-1);

[leaveR] Size>0 -> R_leave*Size: (Size’=Size-1);

[message] Size>0 -> R_message*(1-P_comp)*Size: true;

[messageC] Size>0 -> R_message*P_comp*Size: true;

[messageR] Size>0 -> R_message*Size: true;

endmodule

module COORDINATOR

Comp: bool init false;

C_join: [0..J] init 0;

C_leave: [0..N] init 0;

C_msg: [0..MSG] init 0;

[join] C_join<J-1 -> (C_join’=C_join+1);

[joinR] C_join=J-1-> (C_join’=0)&(C_leave’=0)&(C_msg’=0)&(Comp’=false);

[leave] C_leave<N-1 -> (C_leave’=C_leave+1);

[leaveC] C_leave<N-1 -> (C_leave’=C_leave+1) & (Comp’=true);

[leaveR] C_leave=N-1-> (C_join’=0)&(C_leave’=0)&(C_msg’=0)&(Comp’=false);

[message] C_msg<MSG-1 -> (C_msg’=C_msg+1);

[messageC] C_msg<MSG-1 -> (C_msg’=C_msg+1) & (Comp’=true);

[messageR] C_msg=MSG-1 -> (C_join’=0)&(C_leave’=0)&(C_msg’=0)&(Comp’=false);

endmodule

C.3 Reward Structures

All rewards structures actually end with endrewards, however they are omitted
below for saving space.

C.3 Reward Structures 269

rewards "time"

true : 1;

rewards "Compromise FOR C.1.*"

[leaveC] !Comp: 1;

rewards "Replacements FOR C.*.1"

[joinR] true: 1;

rewards "Replacements FOR C.*.2"

[leaveR] true: 1;

[joinR] true: 1;

rewards "Replacements FOR C.*.3"

[leaveR] true: 1;

rewards "Replacements FOR C.*.4"

[messageR] true: 1;

rewards "Replacements FOR C.*.5"

[reset] true: 1;

rewards "Leaves FOR C.*.1, C.*.4,

C.*.5, C.2.6, C.2.7, C.2.8"

[leave] true: 1;

[leaveC] true: 1;

rewards "Useful_Resets FOR C.*.1"

[joinR] Comp: 1;

rewards "Useful_Resets FOR C.*.2"

[leaveR] Comp: 1;

[joinR] Comp: 1;

rewards "Useful_Resets FOR C.*.3"

[leaveR] Comp: 1;

rewards "Useful_Resets FOR C.*.4"

[messageR] Comp: 1;

rewards "Useful_Resets FOR C.*.5"

[reset] Comp: 1;

rewards "Useless_Resets FOR C.*.1"

[joinR] !Comp: 1;

rewards "Useless_Resets FOR C.*.2"

[leaveR] !Comp: 1;

[joinR] !Comp: 1;

rewards "Useless_Resets FOR C.*.3"

[leaveR] !Comp: 1;

rewards "Useless_Resets FOR C.*.4"

[messageR] !Comp: 1;

rewards "Useless_Resets FOR C.*.5"

[reset] !Comp: 1;

rewards "Recovery"

Comp: 1;

rewards "Compromise FOR C.2.*"

[leaveC] !Comp: 1;

[messageC] !Comp: 1;

rewards "Replacements FOR C.2.6"

[joinR] true: 1;

[leaveR] true: 1;

[messageR] true: 1;

[reset] true: 1;

rewards "Replacements FOR C.2.7"

[joinR] true: 1;

[leaveR] true: 1;

[reset] true: 1;

rewards "Replacements FOR C.2.8"

[joinR] true: 1;

[leaveR] true: 1;

[messageR] true: 1;

rewards "Leaves FOR C.*.2, C.*.3"

[leave] true: 1;

[leaveC] true: 1;

[leaveR] true: 1;

rewards "Useful_Resets FOR C.2.6"

[joinR] Comp: 1;

[leaveR] Comp: 1;

[messageR] Comp: 1;

[reset] Comp: 1;

rewards "Useful_Resets FOR C.2.7"

[joinR] Comp: 1;

[leaveR] Comp: 1;

[reset] Comp: 1;

rewards "Useful_Resets FOR C.2.8"

[joinR] Comp: 1;

[leaveR] Comp: 1;

[messageR] Comp: 1;

rewards "Useless_Resets FOR C.2.6"

[joinR] !Comp: 1;

[leaveR] !Comp: 1;

[messageR] !Comp: 1;

[reset] !Comp: 1;

rewards "Useless_Resets FOR C.2.7"

[joinR] !Comp: 1;

[leaveR] !Comp: 1;

[reset] !Comp: 1;

rewards "Useless_Resets FOR C.2.8"

[joinR] !Comp: 1;

[leaveR] !Comp: 1;

[messageR] !Comp: 1;

270 Key Update Models in PRISM

C.4 Stochastic Temporal Logic Formulae

const double T;

P=? [F[30*T,30*T] Comp]

S=? [Comp]

P=? [Comp U>=(30*T) !Comp {Comp}{max}]

R{"Useful_Resets"}=? [S]

R{"Useless_Resets"}=? [S]

R{"Replacements"}=? [C<=30*T]

R{"Leaves"}=? [C<=30*T]

P=? [F[T,T] Comp]

R{"Recovery"}=? [C<=30*T]

R{"Compromise"}=? [C<=30*T]

R{"Recovery"}=? [C<=30*T]/R{"Compromise"}=? [C<=30*T]

R{"Recovery"}=? [I=30*T]

(100*R{"Useful_Resets"}=? [S])/(R{"All_Resets"}=? [S])

(100*R{"Useless_Resets"}=? [S])/(R{"All_Resets"}=? [S])

Appendix D

Key Update Strategies

D.1 Characteristics of Key Update Strategies

In this appendix, we will discuss the characteristics of the key update strategies
that we have been working on. We will describe some guidelines on when to
choose which strategy. Indisputably, it is hard to come up with a direct solution
for a scenario but we will at least explain the strengths and the weaknesses of the
key update strategies we considered. We presented the pros and cons of the key
update strategies in two different perspectives: networking and verification. We
arranged this discussion in a separate table for each update strategy as follows:
JB in Table D.1, LB in Table D.2, JLB in Table D.3, MB in Table D.4, TB in
Table D.5, and Hy in Table D.6.

Under each table, we added two figures that would illustrate the general be-
haviour of the key update strategy on transient probability of the network key
being compromised. The figure above always shows the characteristics when
LM (key compromise by both device leave and communication) models are used,
and the figure above always shows the characteristics when L (key compromise
with leaving devices only) models are used. We configured all the model check-
ings with the same common parameters, i.e. R join=1/180, R leave=1/180,
R message=1/15, P comp=1/1000, and Size=10. The threshold values vary in
order to get more different results, and are available on the figures.

272 Key Update Strategies

Table D.1: Join-based Key Update - Strength & Weakness
Networking Perspective Verification Perspective

Strong In a network where number of join
events is reasonably high, JB will per-
form better and have more control on
the key compromise probability ad-
justment. Minimum threshold values
can offer very high security, provided
that compromises mostly happen by
joining and leaving devices.

JB is very compact in model size,
therefore one of the strongest strate-
gies against state-space explosion.

Weak Naturally, a join event can only hap-
pen whenever there is room for a new
device. If a network is fully utilized,
then a join event is strictly bound to a
leave event. Therefore, in such cases
not only the rate of join but also rate
of leave should be considered when
assigning thresholds.

JB does not exhibit a significant
weakness in terms of verification.

Figure D.1: Join-based Key Update - Characteristics

D.1 Characteristics of Key Update Strategies 273

Table D.2: Leave-based Key Update - Strength & Weakness
Networking Perspective Verification Perspective

Strong LB was inspired by the leaving de-
vices who still possessed the valid net-
work key. Therefore is very useful
when a network is not stationary but
dynamic.

LB is a very compact model, like JB;
therefore can successfully be used in
verifying very large networks.

Weak Whenever a network is stationary, LB
will fire less key updates which might
be insufficient for high security con-
cerns.

LB does not exhibit a significant
weakness in terms of verification.

Figure D.2: Leave-based Key Update - Characteristics

274 Key Update Strategies

Table D.3: Join-Leave-based Key Update - Strength & Weakness
Networking Perspective Verification Perspective

Strong JLB is powered by both JB and LB
key update strategies therefore em-
ploys the strong parts of these two.
Since both join and leave events are
considered, a threshold value is twice
more sensitive than JB or LB. In
other words, we have more precision
on the key update thresholds.

JLB is larger than JB and LB as a
model but still produces less state
space than TB, MB, and Hy key up-
date strategies.

Weak If the majority of the key compro-
mise events occurs from the commu-
nication over the network, then JLB
might not be the optimum strategy
or the threshold should be minimized
to deal with this problem.

JLB is not as compact as the models
that inspired it, namely JB and LB.

Figure D.3: Join-Leave-based Key Update - Characteristics

D.1 Characteristics of Key Update Strategies 275

Table D.4: Message-based Key Update - Strength & Weakness
Networking Perspective Verification Perspective

Strong MB is very strong when majority of
the key compromise events are caused
by the messages over the network.

MB is only better than Hy, in terms
of state-space and model checking
time.

Weak MB does not consider leaving (and
joining) devices, therefore is not
aware of a device left with a valid key.
Thus, in dynamic environments MB
itself is not strong.

Number of messages that are com-
municated in a network for a cer-
tain time amount is directly propor-
tional to the network size and mes-
saging activity per device, therefore
can quickly reach to very large num-
bers. This causes a big burden on the
stochastic model checking since large
numerical threshold values quickly
exceed time and memory limits. We
easily observed situations like state-
spaces of 108, required memory of
3GB and more than an hour for a sim-
ple model checking.

Figure D.4: Message-based Key Update - Characteristics

276 Key Update Strategies

Table D.5: Time-based Key Update - Strength & Weakness
Networking Perspective Verification Perspective

Strong This classical key update strategy
is strong because it is periodical.
Namely, it is easy to foresee how
many key updates will take place, and
it is easy to guess the impact of a
change on the threshold value.

If implemented with exponential
probability distribution then it is a
very compact model. However, this is
not a real strength since exponential
distribution is not good at determin-
istic delays e.g. periodical updates.
Still, it can be useful for steady-state
probability computations.

Weak TB does not consider any source of
key compromise, its mere concern
is the time passed. Therefore can-
not easily be fitted to a specific net-
work that has properties related to
number of messages, number of join-
ing/leaving devices etc.

We implement the TB model with
phase-type distribution therefore the
model size has grown at least by fac-
tor of 100 (depending on the shape
parameter, which we decided to take
either 100 or 1000). This makes TB
not very feasible for verifying large
networks. However, produced state-
space and model checking times are
still better than MB.

Figure D.5: Time-based Key Update - Characteristics

D.1 Characteristics of Key Update Strategies 277

Table D.6: Hybrid Key Update - Strength & Weakness
Networking Perspective Verification Perspective

Strong This strategy incorporates the
strengths of all the other strategies
excluding JLB, therefore we consider
it to be the strongest one. An update
is issued by considering the time
passed, the number of devices joined,
the number of devices left, and the
number of messages sent.

Hy is very modular, it is easy to add
a new key update strategy, or remove
an unwanted key update strategy.

Weak Implementing this strategy on real
devices require much more resource
than implementing only one of the
strategies above. Therefore, if the co-
ordinator device (that is running the
trust center application) that is re-
sponsible of key updates is not strong
enough, then Hy won’t be feasible to
choose.

Technically, the maximum state-
space is produced in Hy models, and
in parallel with that the time needed
to complete one model checking is
larger than in any other strategy.
However, we can exclude some of the
heavy strategies such as TB or MB
(just like we did in the Case Study 3)
to customize Hy to have more perfor-
mance.

Figure D.6: Hybrid Key Update - Characteristics

278 Key Update Strategies

D.2 Fluctuations in Key Compromise

In this section, we discuss the fluctuations that we observe in the nonperiodical
key update methods (e.g. LB, JB). We will work on a small instantiation of JB
model to find out more details about this behaviour.

We start our work with configuring the simple JB model, where the only source
of key compromise is leaving devices. We will keep the state space minimal
in order to visually see the transitions and manually verify the computations.
As we have done previously, we will set the basic parameters that are needed
to construct the state space as: Max=2 and C leave=2. Then we will assign
arbitrary values for the rates: R leave=0.5, R join=0.5, P comp=0.01. These
values are sufficient to observe fluctuations in the transient probabilities of the
network key getting compromised. We present the graphical results for the
transient behaviour of this model in Fig. D.7, where x-axis represent the time
in days and we computed the transient probability every 0.25 day.

Figure D.7: Fluctuations in the transient behaviour of a simple LB model.

Even though not very significant, we can still observe the fluctuations in Fig. D.7.
The probabilistic result increases after the start of the system, but then enters
a decreasing period before completing the first day. After that, it starts increas-
ing again until it reaches the steady–state. We present the precise results in
Table D.7.

Now we can start to analyze the source of these transient probabilities. We first
sketch the state-transition diagram of the resulting CTMC and decorate it with
the transition probabilities instead of rates. We present the resulting diagram

D.2 Fluctuations in Key Compromise 279

Table D.7: Fluctuations in transient probability
Time Prob. Time Prob. Time Prob. Time Prob.

0 0 0.25 0.00207 0.5 0.00342 0.75 0.00425
1 0.00471 1.25 0.00493 1.5 0.00500 1.75 0.00499
2 0.00494 2.25 0.00488 2.5 0.00484 2.75 0.00480
3 0.00479 3.25 0.00479 3.5 0.00480 3.75 0.00482
4 0.00484 4.25 0.00486 4.5 0.00489 4.75 0.00491
5 0.00493 5.25 0.00495 5.5 0.00497 5.75 0.00498
6 0.00498 6.25 0.00499 6.5 0.00499 6.75 0.00500

in Fig. D.8.

Figure D.8: Fluctuations in the transient behaviour of a simple LB model.

We have named the states as s0 . . . s10 and below them we have added the

280 Key Update Strategies

values of the variables in a concatenated format: <Size Comp C leave>. For
example the initial state is labelled as s0 and it is where Size=2, Comp=False,
and C leave=0.

Besides, we distinguished between the transitions as we did before, namely
dashed line for leave, dashed-and-dotted line for leaveC, dotted line for leaveR,
and solid line for join actions.

We computed the transition probabilities as we have explained in the prelimi-
naries chapter, namely we divided the rate of a transition to the exit rate of the
origin state. For example, the transition from state s0 to state s1 which is a
leave has the probability:

R leave.(1− P comp).Size

(R leave.(1− P comp).Size) + (R leave.P comp.Size)
= 1− P comp

which will evaluate to 0.99 if we substitute the value of P comp we defined above.

Notice that, this example is a very special case where the transition probabilities
are unintentionally equal to the transition rates. For instance, state s0 has two
outgoing transitions which have rates 0.99 (s0 −→ s1, computed by R leave.(1-
P comp).Size) and 0.01 (s0 −→ s2, computed by R leave.P comp.Size). The
exit rate makes 1, thus division by exit rate result in probabilities that are equal
to the rates. This situation arises from the selection of the individual rates
as 0.5. If we have chosen different individual rates, for instance R leave=0.1
(instead of 0.5), then the rates of transitions s0 −→ s1 and s0 −→ s2 would
change as 0.198 and 0.002, whereas the transition probabilities would remain
the same.

Now the question is what is the probability of reaching the states where the key
is compromised. We have colored those states in red, in Fig. D.8.

Table D.8: Simulations
Time State Sojourn Time State Sojourn Time State Sojourn

0.0 s0 0.5 0.0 s0 0.7 0.0 s0 0.3
0.5 s2 0.5 0.7 s1 0.2 0.3 s1 0.6
0.8 s4 1.2 0.9 s4 2.2 0.9 s4 1.5
2.0 s7 1.0 3.1 s7 1.3 2.4 s7 1.8
3.0 s0 0.4 4.4 s8 0.6 4.2 s0 1.3
3.4 s1 1.2 5.0 s2 1.3 5.5 s1 0.6
4.6 s3 1.0 6.3 s4 0.7 6.1 s4 0.8
5.6 s7 0.1 6.9 s7 0.1
5.7 s0 1.3

D.2 Fluctuations in Key Compromise 281

In PRISM we are able to simulate the model to have a sort of sanity check.
We present the details of three arbitrary simulations in Table D.8. All the
simulations cover the first seven days, as in Fig. D.7. We have provided the
Time that we have reached a state, and the Sojourn time on that state, both
in days. The red colored states are where the key is compromised for again red
colored sojourn times. The green time instants are where the key is updated. In
the first simulation in Table D.8, the key remained compromised for a total of 0.5
days and it was updated twice, in the first seven days. In the second simulation,
the key remained compromised for a total of 1.9 days and it was updated twice,
as well. In the third simulation, we don’t observe any key compromise but again
we have two key updates.

Then we would like to know about the probability of being in a certain state at
a certain time. We can query that using PRISM (e.g. P=? [F[T,T] (Size=2)

& (!(Comp)) & (C leave=0)] for state s0), and if we repeat this for each state
in the model then we can get the results in Fig. D.9. The results are in parallel
with probabilities (and rates) in the model in Fig. D.8.

Figure D.9: Probability of being in a state at time T.

We can filter the results such that we query the probability of being in a com-
promised state at a specific time instant. As shown in Fig. D.10, the results tell
us that if we are in a compromised state then it is most likely that we are in
s2. Besides, after the initial phase the probability of being in state s8 increases
and this causes a drop in the probability of being in s2.

For a deeper analysis we can compute the probability of reaching a compro-
mised state from a safe state, at a specific time. To do this, we consider each
safe state and find the results for reaching a compromised state such as P=?

[F[T,T] (Comp & (C leave=1)) {Size=1 & !Comp & C leave=1}] for s1 as

282 Key Update Strategies

Figure D.10: Probability of being in a compromised state at time T.

the originating state. We present the results in Fig. D.11. Here we get inter-
esting results, in the first part of the time period the risk in maximum if we
are coming from state s0. and then the risk is descending as s7, s3, s1, and s6.
Besides we observe fluctuations until a steady–state is reached.

Figure D.11: Probability of reaching a compromised state from a safe state at
time T.

Appendix E

Key Update Analysis in
MATLAB

In this appendix, we present our MATLAB models that we used in the toolkit
for LB key updates.

E.1 eexp

% Main function for CSL Time-bounded Until MC

% Input parameters:

% n,m,lambda,mu,gamma -> passed to eqgen

% if the rates are all 0 then predefined rates are used

% t0,t1 -> set of values to be passed to emc one by one

% varargin -> the optional parameters (SC,SCpar) passed to emc

% if no optional parameters are given: SC=1 SCpar=10^=28

% Example: eexp(20,5,0,0,0,1,10)

function eexp(n,m,lambda,mu,gamma,t0,t1,varargin)

clc;

fprintf(’\n***\n’);

fprintf(’* This program model checks the CSL Time-bounded Until *\n’);

fprintf(’* formula for the ZigBee Leave-based Key Update Scenario *\n’);

fprintf(’* *\n’);

fprintf(’* Ender Yuksel, DTU Informatics, ey@imm.dtu.dk, Dec. 2009 *\n’);

284 Key Update Analysis in MATLAB

fprintf(’***\n’);

% predefined values for rates and stopping criterion

if(mu==0 && lambda==0 && gamma==0)

lambda=1/7; mu=99/36500; gamma=1/36500;

end

if(nargin==7)

SC=1;

SCpar=10^-28;

end

fprintf(’\nMODEL DETAILS\n--\n’);

fprintf(’ Num. of devices: %d, Key update threshold: %d\n’,n,m);

fprintf(’ Rejoin intensity (lambda): %f\n’, lambda);

fprintf(’ Safe leave intensity (mu): %f\n’, mu);

fprintf(’ Comp. leave intensity (gamma): %f\n’,gamma);

global GLOBALQ

% GLOBALQ will be computed in eqgen

tic;

global NUMOFSTATES

NUMOFSTATES=(n+1)*(2*m+1);

%% construct phi (Comp)

B=zeros(NUMOFSTATES,1);

unsafe=(m+1)*(n+1);

for i=unsafe+1:NUMOFSTATES

B(i,1)=1;

end

fprintf(’\nUNIFORMISATION AND CREATION OF MATRICES\n-------------------\n’);

A=eqgen(n,m,lambda,mu,gamma);

fprintf(’ E,q,Q,A, and B are computed. ’);

toc;

% compute the probabilities for a set of t values

fprintf(’\nMODEL CHECKING\n-----------------\n’);

Results=zeros(t1-t0,2);

ElapsedTime=0;

TotalTime=0;

fprintf(’ Termination Criterion: ’);

if(SC==0)

fprintf(’Limited number of iterations, limit: %d\n’,SCpar);

elseif(SC==1)

fprintf(’Convergence, Epsilon: %e\n’,SCpar);

end

for t=t0:t1

tic;

Temp=emc(A,B,GLOBALQ,t,SC,SCpar);

ElapsedTime=toc;

TotalTime=TotalTime+ElapsedTime;

fprintf(’, Time: %fsec.\n’,ElapsedTime);

Results(t,1)=t;

E.2 eLBtra 285

Results(t,2)=Temp(n+1,1);

end

fprintf(’All model checkings are computed. Total time: %fsec.’,TotalTime);

fprintf(’\n\nRESULTS\n-----------------\n t\t probability\n’);

for j=t0:t1

fprintf(’ %d \t %1.24f \n’, j, Results(j,2));

end

[maxResult,indexMaxResult]=max(Results(:,2));

fprintf(’\n Max: %f Index: %.1f \n’,maxResult, indexMaxResult);

E.2 eLBtra

% Automated tool for computing maximum risk in LB Key Update

% Using CSL Time-bounded Until MC

%

% Input parameters:

% n: maximum size of the network

% m_init, m_step, m_end: set of threshold values

% IMPORTANT: m_step CANNOT BE ZERO

% TO CHECK SINGLE THRESHOLD WRITE A NONZERO STEP

% lambda, gamma: rates of join and cleave

% if the rates are all 0 then predefined rates are used

% t0,t1 -> set of values to be passed to emc one by one

%

% Example: elbtra(20,5,0,0,0)

function elbtra(n,m_init,m_step,m_end,lambda,gamma)

clc;

fprintf(’\n***\n’);

fprintf(’* eLBtra Key Update Assistant for LB method *\n’);

fprintf(’* *\n’);

fprintf(’* This program computes the maximum risk that a network *\n’);

fprintf(’* employing the Leave-based Key Update strategy can face *\n’);

fprintf(’* *\n’);

fprintf(’* Ender Yuksel, DTU Informatics, ey@imm.dtu.dk, Dec. 2009 *\n’);

fprintf(’***\n’);

% predefined values for rates

if(lambda==0 && gamma==0)

lambda=1/7; mu=99/36500; gamma=1/36500;

else

mu=1-gamma;

end

%stopping criteria

SC=1; % convergence

SCpar=10^-28; % epsilon

286 Key Update Analysis in MATLAB

global GLOBALQ

% q will be computed in eqgen

global NUMOFSTATES

% print the results

fprintf(’\n\nRESULTS for a network of maximum %d devices\n--------------’,n);

fprintf(’\n Threshold\t Maximum Risk\t At Time Instant\n’);

% SAVE ALL THE RESULTS

% Pre allocating memory is much more efficient than a growing matrix

maxThresholds=50;

maxTimeInstants=100;

Thresholds=zeros(maxThresholds, 2);

ThresholdsRowIndex=1;

Results=zeros(maxThresholds, maxTimeInstants);

ResultsRowIndex=1;

% for all threshold values

for m=m_init:m_step:m_end

Thresholds(ThresholdsRowIndex,2)=m;

ThresholdsRowIndex = ThresholdsRowIndex + 1;

NUMOFSTATES=(n+1)*(2*m+1);

%% construct phi (Comp)

B=zeros(NUMOFSTATES,1);

unsafe=(m+1)*(n+1);

for i=unsafe+1:NUMOFSTATES

B(i,1)=1;

end

% compute A and GLOBALQ

%A=eqgen(n,m,lambda,mu,gamma);

[Screenoutput, A]=evalc(’eqgen(n,m,lambda,mu,gamma)’);

prevResult=-1;

currResult=0;

t=1; % time instant of model checking

while prevResult < currResult

prevResult = currResult;

%Temp=emc(A,B,GLOBALQ,t,SC,SCpar);

[ScreenOutput,Temp]=evalc(’emc(A,B,GLOBALQ,t,SC,SCpar)’);

currResult = Temp(n+1,1);

% save all the results

Results(ResultsRowIndex,t)=currResult;

t=t+1;

end

fprintf(’ %d \t\t %1.5f \t %1.1f\n’, m, prevResult, t-2);

E.3 eqgen 287

% save all the results

ResultsRowIndex = ResultsRowIndex + 1;

end

% Continue with transient analysis

reply = input(’Continue with transient analysis for specific threshold?

Y/N [Y]: ’, ’s’);

if strcmp(reply, ’Y’) | strcmp(reply, ’y’)

thress = input(’Enterthe threshold?: ’);

% check if we already computed a part of the results for that threshold

thressindex = find(Thresholds(:,2) == thress);

if ~ isempty(thressindex)

t=1;

ssepsilon=10^-4; % epsilon for reaching the steady--state

% print the results

fprintf(’\n\nTransient Analysis for threshold %d (until difference %f) \n

--------------’,thress, ssepsilon);

fprintf(’\n Time\t Risk \n’);

% print the already computed results

while Results(thressindex,t) ~= 0

fprintf(’ %d \t %1.10f \n’, t, Results(thressindex,t));

t = t + 1;

end

% continue with remaining t values UNTIL WE GET EQUAL RESULTS (EPSILON)

prevResult=-1;

currResult=0;

while abs(currResult - prevResult) > ssepsilon

prevResult = currResult;

[ScreenOutput,Temp]=evalc(’emc(A,B,GLOBALQ,t,SC,SCpar)’);

currResult = Temp(n+1,1);

fprintf(’ %d \t %1.10f \n’, t, currResult);

t=t+1;

end

% user selected a different threshold

% same computation but starting from t=1

else

fprintf(’\n You chose a different thresholds than above,

please restart the program’);

end

end

E.3 eqgen

% This function generates the infinitesmal generator matrix

% for the specific leave based key update scenario

% therefore expecteed to be more efficient than Prism’s

% INPUTS: n: number of devices

% m: leave threshold

288 Key Update Analysis in MATLAB

function A=eqgen(n,m,lambda,mu,gamma);

% compute E0

E0=zeros(n+1,1); mpg=mu+gamma;

for i=0:n E0(i+1,1)=(n-i)*lambda + i*mpg; end

% compute E (repeat E0, vertically, that many times)

E=repmat(E0,(2*m+1),1);

% construct the submatrices

% construct Au

Au=zeros(n+1,n+1);

for j=1:n Au(j+1,j)=j; end

% construct Alambda

Alambda=zeros(n+1,n+1);

for k=1:n

Alambda(k,k)=-E0(k,1);Alambda(k,k+1)=(n-(k-1))*lambda;

end

Alambda(n+1,n+1)=-E0(n+1,1);

% construct Amu

Amu=Au*mu;

% construct Agamma

Agamma=Au*gamma;

% construct Ampg

Ampg=Au*mpg;

% construct Q1

zero=zeros(n+1,n+1);

% nonzero portion

tempnon=horzcat(Alambda,Amu);

% create the rows

for i=1:m+1

%% create prezeros

if(i==2) temppre=zero;

elseif(i>2 && i<m+1) temppre=zero; for j=1:i-2

temppre=horzcat(temppre,zero); end

elseif(i==m+1) temppre=zero; for j=1:m-2

temppre=horzcat(temppre,zero); end

end

%% create postzeros

if(i==m-1) temppos=zero;

elseif(i>0 && i<m-1)

if(n-i==1) temppos=zero;

else temppos=zero; for k=1:m-i-1

temppos=horzcat(temppos,zero); end

end

end

%% concat

if(i==1)

temprow=horzcat(tempnon,temppos);

tempcol=temprow;

elseif(i>1 && i<m)

E.3 eqgen 289

temprow=horzcat(temppre,tempnon,temppos);

tempcol=vertcat(tempcol,temprow);

elseif(i==m) temprow=horzcat(temppre,tempnon);

tempcol=vertcat(tempcol,temprow);

else % i = m+1

temprow=horzcat(Ampg,temppre,Alambda);

tempcol=vertcat(tempcol,temprow);

end

end

Q1=tempcol;

% construct Q2

Q2=zeros((m+1)*(n+1),m*(n+1));

for outerow=1:m

for row=1:n+1

for col=1:n+1

Q2((outerow-1)*(n+1)+row,(outerow-1)*(n+1)+col)=Agamma(row,col);

end

end

end

% construct Q3

Q3=zeros(m*(n+1),(m+1)*(n+1));

for row=1:n+1

for col=1:n+1 Q3((m-1)*(n+1)+row,col)=Ampg(row,col); end

end

% construct Q4

Q4=zeros(m*(n+1),m*(n+1));

zero4=zeros(n+1,n+1);

% nonzero portion

tempnon4=horzcat(Alambda,Ampg);

% create the rows

for i=1:m

%disp(i);

%% create prezeros

if(i==2) temppre4=zero4;

elseif(i>2 && i<m+1) temppre4=zero4;

for j=1:i-2 temppre4=horzcat(temppre4,zero4); end

end

%% create postzeros

if(i==m-2) temppos4=zero4;

elseif(i>0 && i<m-2) temppos4=zero;

for k=1:m-(i+2) temppos4=horzcat(temppos4,zero4); end

end

%% concat

if(i==1)

if(m==2) temprow4=tempnon4; tempcol4=temprow4;

else temprow4=horzcat(tempnon4,temppos4);

tempcol4=temprow4;

end

elseif(i>1 && i<m-1)

temprow4=horzcat(temppre4,tempnon4,temppos4);

tempcol4=vertcat(tempcol4,temprow4);

elseif(i==m-1)

290 Key Update Analysis in MATLAB

temprow4=horzcat(temppre4,tempnon4);

tempcol4=vertcat(tempcol4,temprow4);

else % i = m

temprow4=horzcat(temppre4,Alambda);

tempcol4=vertcat(tempcol4,temprow4);

end

end

Q4=tempcol4;

% concatenate Qs and construct Q

Q=horzcat(vertcat(Q1,Q3),vertcat(Q2,Q4));

%%

% compute q for uniformisation

global GLOBALQ

GLOBALQ=1.02*max(E);

fprintf(’ Uniformisation factor (q): %f\n’,GLOBALQ);

% compute Punif (A)

%%find the size first

%%%% secure half

sechal=(m+1)*(n+1);

%%%% unsecure half

unsechal=m*(n+1);

A=(Q/GLOBALQ)+eye(sechal+unsechal);

E.4 emc

% Either Stopping Criterion or Limited Number of Iterations

% can be used by setting the SC switch (0 or 1)

% the last input parameter (SCpar) is:

% epsil for SC if SC=1

% lim for iterations if SC=0

function Res=emc(A,B,q,t,SC,SCpar)

global NUMOFSTATES % defined in eexp()

global LEFTTRUNC % defined in foxglynn()

global RIGHTTRUNC % defined in foxglynn()

% CONSTANTS PRECISELY AS IN PRISM DEFAULTS

TERMINATION_MAX_ITERATIONS=15000;

TERMINATION_EPSILON=10^(-6);

% constants for Fox/Glynn

underflow=1.0e-300;

overflow=1.0e+300;

accuracy=TERMINATION_EPSILON/8.0;

% compute qt

E.5 foxglynn 291

qt=q*t*30;

% create the matrices

Res=zeros(NUMOFSTATES,1);

Iter=zeros(NUMOFSTATES,1);

expqt=exp(qt);

%%% compute using fox-glynn instead

foxglynn(qt, underflow, overflow, accuracy)

fprintf(’\n Fox-Glynn: qt= %.3f,

underflow= %.1e, overflow= %.1e’,qt,underflow,overflow);

fprintf(’\n accuracy= %.2e, LEFT-TRUNC= %d,

RIGHT-TRUNC= %d\n\n’,accuracy,LEFTTRUNC-1,RIGHTTRUNC);

if(isinf(expqt)==1) fprintf(’ WARNING: exp(qt) is infinity!!!’); end

Iter=(1/expqt)*B;

% MODEL CHECKING

% case j=0

%Res=Res+(eye(NUMOFSTATES)*Iter);

% TERMINATION CRITERION SELECTION

% Case 0: Limited number of iterations, specified by SCpar

if(SC==0)

for j=1:SCpar

Iter=(qt/j)*A*Iter;

Res=Res+Iter;

if j>TERMINATION_MAX_ITERATIONS, break, end

end

% Case 1: Stopping Criterion

elseif(SC==1)

j=1;

AjB=B; % The last 2 parts of the inf sum when j is 0

while(j<LEFTTRUNC-1 && j<TERMINATION_MAX_ITERATIONS)

AjB=A*AjB;

j=j+1;

end

fprintf(’ T=%d, Iterations part1:%d ’,t,j);

while(j<=RIGHTTRUNC && j<TERMINATION_MAX_ITERATIONS)

AjB=A*AjB;

Res=Res+(poisspdf(j,qt)*AjB);

j=j+1;

end

fprintf(’total:%d’,j);

% improper SC switch

else

fprintf(’Improper SC switch!’);

end

E.5 foxglynn

292 Key Update Analysis in MATLAB

% Compute poisson probabilities for uniformisation (Fox-Glynn method)

% Based on the PRISM implementation by Joachim Meyer-Kayser

function foxglynn(q_tmax, underflow, overflow, accuracy)

global LEFTTRUNC

global RIGHTTRUNC

m = uint32(floor(q_tmax));

m2 = m;

if (q_tmax == 0.0)

fprintf(’Overflow: TA parameter qtmax = time * maxExitRate = 0.’);

end

if (q_tmax < 25.0) fgw_left = 0; end

if (q_tmax < 400.0) % Find right using Corollary 1 with q_tmax=400

sqrt2 = sqrt(2.0);

sqrtl = 20;

a = 1.0025 * exp (0.0625) * sqrt2;

b = 1.0025 * exp (0.125/400); %exp (0.0003125)

startk = 1.0/(2.0 * sqrt2 * 400);

stopk = sqrtl/(2*sqrt2);

k=startk;

while(k<=stopk)

d = 1.0/(1 - exp ((-2.0/9.0)*(k*sqrt2*sqrtl + 1.5)));

f = a * d * exp (-0.5*k*k) / (k * sqrt (2.0 * 3.1415926));

if f <= accuracy/2.0, break, end

k=k+3.0; end

if (k > stopk) k = stopk; end

fgw_right = uint32(ceil(m2 + k*sqrt2*sqrtl + 1.5));

end

if (q_tmax >= 400.0)

% Find right using Corollary 1 using actual q_tmax

sqrt2 = sqrt (2.0);

sqrtl = sqrt (q_tmax);

a = (1.0 + 1.0/q_tmax) * exp (0.0625) * sqrt2;

b = (1.0 + 1.0/q_tmax) * exp (0.125/q_tmax);

startk = 1.0/(2.0 * sqrt2 * q_tmax);

stopk = sqrtl/(2*sqrt2);

k=startk;

while(k<=stopk)

d = 1.0/(1 - exp ((-2.0/9.0)*(k*sqrt2*sqrtl + 1.5)));

f = a * d * exp (-0.5*k*k) / (k * sqrt (2.0 * 3.1415926));

if f <= accuracy/2.0, break, end

k=k+3.0; end

if (k > stopk) k = stopk; end

fgw_right = uint32(ceil(m2 + k*sqrt2*sqrtl + 1.5));

end

if (q_tmax >= 25.0)

% Find left using Corollary 2 using actual q_tmax

sqrt2 = sqrt (2.0);

sqrtl = sqrt (q_tmax);

a = (1.0 + 1.0/q_tmax) * exp (0.0625) * sqrt2;

b = (1.0 + 1.0/q_tmax) * exp (0.125/q_tmax);

startk = 1.0/(sqrt2*sqrtl);

E.5 foxglynn 293

stopk = (m2 - 1.5)/(sqrt2*sqrtl);

k=startk;

while(k<=stopk)

if (b * exp(-0.5*k*k)/(k * sqrt (2.0 * 3.1415926))

<= accuracy/2.0),break,end

k=k+3.0; end

if (k > stopk) k = stopk; end

fgw_left = uint32(floor(m2 - k*sqrtl - 1.5));

end

%%%

if (fgw_left < 0) fgw_left = 0; end

q = overflow / ((10.0^10.0) * (fgw_right - fgw_left));

%%%

LEFTTRUNC=fgw_left;

RIGHTTRUNC=fgw_right;

fgw_weights=zeros(fgw_right-fgw_left+1,1);

fgw_weights(m-fgw_left+1,1) = q;

%%%

% down

j=m;

while(j>fgw_left)

fgw_weights(j-fgw_left,1) = (j/q_tmax) * fgw_weights(j-fgw_left+1,1);

j=j-1; end

%%%

%up

if (q_tmax < 400)

if (fgw_right > 600) fprintf(’Overflow: right truncation point > 600.’);

end

j=m;

while(j<fgw_right)

q = q_tmax / (j+1);

if (fgw_weights(j-fgw_left+1,1) > underflow/q)

fgw_weights(j-fgw_left,1) = q * fgw_weights(j-fgw_left+1,1);

j=j+1;

else fgw_right = j;

end

end

else

j=m;

while(j<fgw_right)

fgw_weights(j-fgw_left,1) = (q_tmax/(j+1)) * fgw_weights(j-fgw_left+1,1);

j=j+1; end

end

%%%

l = fgw_left;

r = fgw_right;

fgw_total_weight = 0.0;

while (l < r)

if (fgw_weights(l-fgw_left+1,1) <= fgw_weights(r-fgw_left+1,1))

fgw_total_weight = fgw_total_weight + fgw_weights(l-fgw_left+1,1);

l=l+1;

else

fgw_total_weight = fgw_total_weight + fgw_weights(r-fgw_left+1,1);

r=r-1; end

end

294 Key Update Analysis in MATLAB

fgw_total_weight = fgw_total_weight + fgw_weights(l-fgw_left+1,1);

%%%

if (fgw_right < 0)

fprintf(’Overflow in Fox-Glynn computation (time bound too big?)’);

end

for i = fgw_left:fgw_right

fgw_weights(i-fgw_left+1,1) = fgw_weights(i-fgw_left+1,1) / fgw_total_weight;

end

Bibliography

[Aba99] M. Abadi, “Secrecy by typing in security protocols,” J. ACM,
vol. 46, pp. 749–786, September 1999. [Online]. Available:
http://doi.acm.org/10.1145/324133.324266

[AC08] A. Armando and L. Compagna, “Sat-based model-checking for
security protocols analysis,” Int. J. Inf. Secur., vol. 7, pp.
3–32, January 2008. [Online]. Available: http://portal.acm.org/
citation.cfm?id=1341131.1341135

[AG97] M. Abadi and A. D. Gordon, “A calculus for cryptographic pro-
tocols: The spi calculus,” Fourth ACM Conference on Computer
and Communications Security, pp. 36–47, 1997.

[AH96] R. Alur and T. A. Henzinger, “Reactive modules,” in Formal Meth-
ods in System Design. IEEE Computer Society Press, 1996, pp.
207–218.

[AK96] R. Anderson and M. Kuhn, “Tamper resistance: a cautionary
note,” in Proceedings of the 2nd conference on Proceedings
of the Second USENIX Workshop on Electronic Commerce -
Volume 2. Berkeley, CA, USA: USENIX Association, 1996, pp.
1–1. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1267167.1267168

[Ame01] Public Key Cryptography for the Financial Services Industry - Key
Agreement and Key Transport Using Elliptic Curve Cryptography,
American National Standards Institute Std. ANSI X9.63:2001,
2001.

http://doi.acm.org/10.1145/324133.324266
http://portal.acm.org/citation.cfm?id=1341131.1341135
http://portal.acm.org/citation.cfm?id=1341131.1341135
http://portal.acm.org/citation.cfm?id=1267167.1267168
http://portal.acm.org/citation.cfm?id=1267167.1267168

296 BIBLIOGRAPHY

[AN94] M. Abadi and R. Needham, “Prudent engineering practice for
cryptographic protocols,” Technical report, SRC DIGITAL, June
1994.

[ASDO10] S. T. Ali, V. Sivaraman, A. Dhamdhere, and D. Ostry, “Secure key
loss recovery for network broadcast in single-hop wireless sensor
networks,” Ad Hoc Netw., vol. 8, pp. 668–679, August 2010.
[Online]. Available: http://dx.doi.org/10.1016/j.adhoc.2010.01.
003

[ASSB96] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton, “Verifying con-
tinuous time markov chains,” in CAV ’96: Proceedings of the 8th
International Conference on Computer Aided Verification. Lon-
don, UK: Springer-Verlag, 1996, pp. 269–276.

[BAN90] M. Burrows, M. Abadi, and R. Needham, “A logic of authentica-
tion,” ACM Trans. Comput. Syst., vol. 8, no. 1, pp. 18–36, 1990.

[BB02] M. Boreale and M. G. Buscemi, “Experimenting with sta, a tool
for automatic analysis of security protocols,” in Proceedings of the
2002 ACM symposium on Applied computing, ser. SAC ’02. New
York, NY, USA: ACM, 2002, pp. 281–285. [Online]. Available:
http://doi.acm.org/10.1145/508791.508847

[BBD+03] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. R. Nielson,
“Automatic valication of protocol narration,” Procceeding of Com-
puter Security Foundations Workshop XVI, pp. 126–140, 2003.

[BBD+05] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. R. Niel-
son, “Static validation of security protocols,” Journal of Computer
Security, vol. 13(3), pp. 347–390, 2005.

[BCP09] M. Benerecetti, N. Cuomo, and A. Peron, “Tpmc: A model checker
for time-sensitive security protocols,” JCP, vol. 4, no. 5, pp. 366–
377, 2009.

[BDM98] P. Behm, P. Desforges, and J.-M. Meynadier, “MÉtÉor: An in-
dustrial success in formal development,” in B ’98: Proceedings of
the Second International B Conference on Recent Advances in the
Development and Use of the B Method. London, UK: Springer-
Verlag, 1998, p. 26.

[BE69] V. A. Busam and D. E. Englund, “Optimization of expressions in
fortran,” Commun. ACM, vol. 12, no. 12, pp. 666–674, 1969.

[Bel07] G. Bella, Formal Correctness of Security Protocols (Information
Security and Cryptography). Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2007.

http://dx.doi.org/10.1016/j.adhoc.2010.01.003
http://dx.doi.org/10.1016/j.adhoc.2010.01.003
http://doi.acm.org/10.1145/508791.508847

BIBLIOGRAPHY 297

[BHHK00] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen, “Model
checking continuous-time markov chains by transient analysis,”
in CAV ’00: Proceedings of the 12th International Conference on
Computer Aided Verification. London, UK: Springer-Verlag, 2000,
pp. 358–372.

[BHHK03] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “Model-
checking algorithms for continuous-time markov chains,” IEEE
Trans. Softw. Eng., vol. 29, no. 6, pp. 524–541, 2003.

[BHRM09] S. Biswas, M. M. Haque, S. Rashwand, and J. Misic, “Fast,
seamless rekeying in wireless sensor networks,” in Proceedings
of the 2009 29th IEEE International Conference on Distributed
Computing Systems Workshops, ser. ICDCSW ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 166–171. [Online].
Available: http://dx.doi.org/10.1109/ICDCSW.2009.78

[BK08] C. Baier and J.-P. Katoen, Principles of Model Checking (Repre-
sentation and Mind Series). The MIT Press, 2008.

[BKH99] C. Baier, J.-P. Katoen, and H. Hermanns, “Approximate symbolic
model checking of continuous-time markov chains,” in Proceedings
of the 10th International Conference on Concurrency Theory,
ser. CONCUR ’99. London, UK: Springer-Verlag, 1999, pp.
146–161. [Online]. Available: http://portal.acm.org/citation.cfm?
id=646734.701464

[BKHW05] C. Baier, J.-P. Katoen, H. Hermanns, and V. Wolf, “Comparative
branching-time semantics for markov chains,” Inf. Comput., vol.
200, no. 2, pp. 149–214, 2005.

[BKPA09] S. Basagiannis, P. Katsaros, A. Pombortsis, and N. Alexiou,
“Probabilistic model checking for the quantification of DoS se-
curity threats,” Computers & Security, 2009.

[Bla01] B. Blanchet, “An efficient cryptographic protocol verifier based
on prolog rules,” in Proceedings of the 14th IEEE workshop on
Computer Security Foundations, ser. CSFW ’01. Washington,
DC, USA: IEEE Computer Society, 2001, pp. 82–. [Online].
Available: http://portal.acm.org/citation.cfm?id=872752.873511

[Bla08] B. Blanchet, “A computationally sound mechanized prover for
security protocols,” IEEE Trans. Dependable Secur. Comput.,
vol. 5, pp. 193–207, October 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1477074.1477550

http://dx.doi.org/10.1109/ICDCSW.2009.78
http://portal.acm.org/citation.cfm?id=646734.701464
http://portal.acm.org/citation.cfm?id=646734.701464
http://portal.acm.org/citation.cfm?id=872752.873511
http://portal.acm.org/citation.cfm?id=1477074.1477550

298 BIBLIOGRAPHY

[BMP03] G. Bella, F. Massacci, and L. C. Paulson, “Verifying the set regis-
tration protocols,” IEEE Journal of Selected Areas In Communi-
cations, vol. 21, no. 1, pp. 77–87, 2003.

[BMV05] D. A. Basin, S. Mödersheim, and L. Viganò, “Ofmc: A symbolic
model checker for security protocols,” Int. J. Inf. Sec., vol. 4, no. 3,
pp. 181–208, 2005.

[BNP02] M. Boreale, R. D. Nicola, and R. Pugliese, “Proof techniques for
cryptographic processes,” SIAM J. Comput., vol. 31, pp. 947–986,
March 2002. [Online]. Available: http://portal.acm.org/citation.
cfm?id=586840.586871

[BRNN04] M. Buchholtz, H. Riis Nielson, and F. Nielson, “A calculus for
control flow analysis of security protocols,” Int. J. Inf. Secur.,
vol. 2, no. 3, pp. 145–167, 2004.

[CAS08] A. Cardenas, S. Amin, and S. S. Sastry, “Secure control:
Towards survivable cyber-physical systems,” in First International
Workshop on Cyber-Physical Systems (WCPS2008). IEEE, June
2008. [Online]. Available: http://www.truststc.org/pubs/345.html

[CGPM05] H. Chan, V. D. Gligor, A. Perrig, and G. Muralidharan,
“On the distribution and revocation of cryptographic keys in
sensor networks,” IEEE Trans. Dependable Secur. Comput.,
vol. 2, pp. 233–247, July 2005. [Online]. Available: http:
//dx.doi.org/10.1109/TDSC.2005.37

[CGR92] D. Craigen, S. L. Gerhart, and T. Ralston, “An international
survey of industrial applications of formal methods,” in
Proceedings of the Z User Workshop. London, UK: Springer-
Verlag, 1992, pp. 1–5. [Online]. Available: http://portal.acm.org/
citation.cfm?id=647280.722639

[CJ97] J. A. Clark and J. L. Jacob, “A survey of authentication protocol
literature,” Technical Report 1.0, 1997.

[CJM00] E. M. Clarke, S. Jha, and W. Marrero, “Verifying security
protocols with brutus,” ACM Trans. Softw. Eng. Methodol.,
vol. 9, pp. 443–487, October 2000. [Online]. Available:
http://doi.acm.org/10.1145/363516.363528

[CKKP05] L. Cloth, J.-P. Katoen, M. Khattri, and R. Pulungan, “Model
checking markov reward models with impulse rewards,” in DSN
’05: Proceedings of the 2005 International Conference on Depend-
able Systems and Networks. Washington, DC, USA: IEEE Com-
puter Society, 2005, pp. 722–731.

http://portal.acm.org/citation.cfm?id=586840.586871
http://portal.acm.org/citation.cfm?id=586840.586871
http://www.truststc.org/pubs/345.html
http://dx.doi.org/10.1109/TDSC.2005.37
http://dx.doi.org/10.1109/TDSC.2005.37
http://portal.acm.org/citation.cfm?id=647280.722639
http://portal.acm.org/citation.cfm?id=647280.722639
http://doi.acm.org/10.1145/363516.363528

BIBLIOGRAPHY 299

[Com91] Information Technology Security Evaluation Criteria (ITSEC):
Preliminary Harmonised Criteria, Commission of the European
Communities Std. Document COM(90) 314, 1991.

[Cra08] R. Cragie, “Former chairman of the zigbee security working
group,” personal communication, October 2008.

[DG04] G. Delzanno and P. Ganty, “Automatic verification of time sen-
sitive cryptographic protocols.” in TACAS, ser. Lecture Notes in
Computer Science, K. Jensen and A. Podelski, Eds., vol. 2988.
Springer, 2004, pp. 342–356.

[DHHM05] J. Deng, C. Hartung, R. Han, and S. Mishra, “A practical study of
transitory master key establishment for wireless sensor networks,”
in In 1st IEEE/CreateNet Conference on Security and Privacy in
Communication Networks (SecureComm 2005, 2005, pp. 289–299.

[DY81] D. Dolev and A. C. Yao, “On the security of public key proto-
cols,” in SFCS ’81: Proceedings of the 22nd Annual Symposium
on Foundations of Computer Science. Washington, DC, USA:
IEEE Computer Society, 1981, pp. 350–357.

[Fed01] Advanced Encryption Standard (AES), Federal Information Pro-
cessing Standards Std. FIPS Pub 197, 2001.

[Fed02] The Keyed-Hash Message Authentication Code (HMAC), Federal
Information Processing Standards Std. FIPS Pub 198, 2002.

[FG88] B. L. Fox and P. W. Glynn, “Computing poisson probabilities,”
Commun. ACM, vol. 31, pp. 440–445, April 1988. [Online].
Available: http://doi.acm.org/10.1145/42404.42409

[GL10] S. Guo and V. C. M. Leung, “A compromise-resilient group rekey-
ing scheme for hierarchical wireless sensor networks,” in WCNC,
2010, pp. 1–6.

[HKMKS00] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle, “A
markov chain model checker,” in TACAS, 2000, pp. 347–362.

[IEE03] Wireless Medium Access Control and Physical Layer Specifications
for Low Rate Wireless Personal Area Networks, IEEE Std. IEEE
Std. 802.15.4-2003, 2003.

[Ker83] A. Kerckhoffs, “La cryptographie militaire,” Journal des sciences
militaires, vol. IX, pp. 5–83, January 1883.

http://doi.acm.org/10.1145/42404.42409

300 BIBLIOGRAPHY

[KKLW07] J. P. Katoen, D. Klink, M. Leucker, and V. Wolf, “Three-valued
abstraction for continuous-time markov chains,” in CAV’07: Pro-
ceedings of the 19th international conference on Computer aided
verification. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 311–
324.

[KKNP01] J.-P. Katoen, M. Z. Kwiatkowska, G. Norman, and D. Parker,
“Faster and symbolic ctmc model checking,” in Proceedings
of the Joint International Workshop on Process Algebra and
Probabilistic Methods, Performance Modeling and Verification,
ser. PAPM-PROBMIV ’01. London, UK: Springer-Verlag, 2001,
pp. 23–38. [Online]. Available: http://portal.acm.org/citation.
cfm?id=645776.668418

[KKZ05] J.-P. Katoen, M. Khattri, and I. S. Zapreev, “A Markov reward
model checker,” in Quantitative Evaluation of Systems (QEST).
Los Alamos, CA, USA: IEEE Computer Society, 2005, pp. 243–
244.

[KKZJ07] J.-P. Katoen, T. Kemna, I. Zapreev, and D. N. Jansen, “Bisimula-
tion minimisation mostly speeds up probabilistic model checking,”
in TACAS’07: Proceedings of the 13th international conference on
Tools and algorithms for the construction and analysis of systems.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 87–101.

[KNP04] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic sym-
bolic model checking with PRISM: A hybrid approach,” Interna-
tional Journal on Software Tools for Technology Transfer (STTT),
vol. 6, no. 2, pp. 128–142, 2004.

[KNP07] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model
checking,” in Formal Methods for the Design of Computer, Com-
munication, and Software Systems, ser. Lecture Notes in Computer
Science, M. Bernardo and J. Hillston, Eds., vol. 4486. Springer,
2007, pp. 220–270.

[KS60] J. Kemeny and J. Snell, Finite Markov Chains. Springer Verlag,
1960.

[LM69] E. S. Lowry and C. W. Medlock, “Object code optimization,”
Commun. ACM, vol. 12, no. 1, pp. 13–22, 1969.

[LMPG07] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “Minisec:
a secure sensor network communication architecture,” in
Proceedings of the 6th international conference on Information
processing in sensor networks, ser. IPSN ’07. New York,

http://portal.acm.org/citation.cfm?id=645776.668418
http://portal.acm.org/citation.cfm?id=645776.668418

BIBLIOGRAPHY 301

NY, USA: ACM, 2007, pp. 479–488. [Online]. Available:
http://doi.acm.org/10.1145/1236360.1236421

[Low95] G. Lowe, “An attack on the needham-schroeder public-key authen-
tication protocol,” Inf. Process. Lett., vol. 56, no. 3, pp. 131–133,
1995.

[Low96] G. Lowe, “Breaking and fixing the needham-schroeder public-key
protocol using fdr,” in TACAs ’96: Proceedings of the Second In-
ternational Workshop on Tools and Algorithms for Construction
and Analysis of Systems. London, UK: Springer-Verlag, 1996, pp.
147–166.

[Low97] G. Lowe, “Casper: A compiler for the analysis of security pro-
tocols,” Proceedings of the 10th Computer Security Foundations
Workshop, 1997.

[LS91] K. G. Larsen and A. Skou, “Bisimulation through probabilistic
testing,” Inf. Comput., vol. 94, no. 1, pp. 1–28, 1991.

[LyS] The lysa website. [Online]. Available: http://www.imm.dtu.dk/
English/Research/Language-Based Technology/Research/LySa.
aspx

[MAK08] J. V. Misic, F. Amini, and M. Khan, “Performance implications
of periodic key exchanges and packet integrity overhead in an
802.15.4 beacon enabled cluster,” Int’l Journal of Sensor Net-
works, vol. 3, no. 1, pp. 33–42, 2008.

[Mat09] (2009) Matlab version 7.3. the mathworks inc. [Online]. Available:
http://www.mathworks.com

[Mea03] C. Meadows, “Formal methods for cryptographic protocol analysis:
emerging issues and trends,” Selected Areas in Communications,
IEEE Journal on, vol. 21, no. 1, pp. 44 – 54, Jan. 2003.

[MFF] S. Mccanne, S. Floyd, and K. Fall, “ns2 (network simulator
2),” http://www-nrg.ee.lbl.gov/ns/. [Online]. Available: http:
//www-nrg.ee.lbl.gov/ns

[Mil99] R. Milner, Communicating and Mobile Systems: The π-calculus.
Cambridge University Press, 1999.

[MMS97] J. Mitchell, M. Mitchell, and U. Stern, “Automated analysis of
cryptographic protocols using mur/spl phi/,” Security and Pri-
vacy, IEEE Symposium on, vol. 0, p. 0141, 1997.

http://doi.acm.org/10.1145/1236360.1236421
http://www.imm.dtu.dk/English/Research/Language-Based_Technology/Research/LySa.aspx
http://www.imm.dtu.dk/English/Research/Language-Based_Technology/Research/LySa.aspx
http://www.imm.dtu.dk/English/Research/Language-Based_Technology/Research/LySa.aspx
http://www.mathworks.com
http://www-nrg.ee.lbl.gov/ns
http://www-nrg.ee.lbl.gov/ns

302 BIBLIOGRAPHY

[MP92] Z. Manna and A. Pnueli, The temporal logic of reactive and con-
current systems. New York, NY, USA: Springer-Verlag New York,
Inc., 1992.

[NN97] H. R. Nielson and F. Nielson, “Infinitary control flow analysis: a
collecting semantics for closure analysis,” Proceeding of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of Program-
ming Languages, pp. 332–345, 1997.

[NN98] F. Nielson and H. R. Nielson, “Flow logics and operational seman-
tics,” Electronic Notes of Theoretical Computer Science, vol. 10,
pp. 150–169, 1998.

[NN02] H. R. Nielson and F. Nielson, “Flow logic: A multi-paradigmatic
approach to static analysis. the essence of computation - complex-
ity, analysis, transformation,” Lecture Notes in Computer Science,
pp. 223–244, 2002.

[NNH99] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Springer Verlag, 1999.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, ser. LNCS. Springer,
2002, vol. 2283.

[NS78] R. Needham and M. Schroeder, “Using encryption for authenti-
cation in large networks of computers,” Communications of the
ACM, vol. 21(12), December 1978.

[NSF10] “Cyber-physical systems (cps) – program solicitation, nsf 10–
515,” 2010. [Online]. Available: http://www.nsf.gov/pubs/2010/
nsf10515/nsf10515.htm

[OR87] D. Otway and O. Rees, “Efficient and timely mutual authentica-
tion,” SIGOPS Oper. Syst. Rev., vol. 21, pp. 8–10, January 1987.
[Online]. Available: http://doi.acm.org/10.1145/24592.24594

[O’S09] N. O’Shea, “Protocol analysis in a new lyte,” in Proceedings of the
21st Nordic Workshop on Programming Theory, M. R. Hansen and
A. W. Brekling, Eds. DTU Informatics at the Techincal University
of Denmark, 2009, pp. 83–94, presented at: Nordic Workshop on
Programming Theory, NWPT ; 21, 2009.

[Pau98] L. C. Paulson, “The inductive approach to verifying cryptographic
protocols,” J. Comput. Secur., vol. 6, pp. 85–128, January
1998. [Online]. Available: http://portal.acm.org/citation.cfm?id=
353677.353681

http://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm
http://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm
http://doi.acm.org/10.1145/24592.24594
http://portal.acm.org/citation.cfm?id=353677.353681
http://portal.acm.org/citation.cfm?id=353677.353681

BIBLIOGRAPHY 303

[PJ10] A. R. Pais and S. Joshi, “A new probabilistic rekeying
method for secure multicast groups,” Int. J. Inf. Secur.,
vol. 9, pp. 275–286, August 2010. [Online]. Available: http:
//dx.doi.org/10.1007/s10207-010-0108-z

[Pnu77] A. Pnueli, “The temporal logic of programs,” in SFCS ’77: Pro-
ceedings of the 18th Annual Symposium on Foundations of Com-
puter Science. Washington, DC, USA: IEEE Computer Society,
1977, pp. 46–57.

[PP07] J. I. Pagter and M. O. Pedersen, “The all-or-nothing anti-theft
policy–theft protection for pervasive computing,” in AINAW ’07:
Proceedings of the 21st International Conference on Advanced In-
formation Networking and Applications Workshops. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 626–631.

[Pria] The PRISM model checker website. [Online]. Available: http:
//www.prismmodelchecker.org/

[Prib] The PRISM manual, oxford university. [Online]. Available:
http://www.prismmodelchecker.org/manual

[PST01] A. Perrig, D. Song, and J. D. Tygar, “Elk, a new protocol
for efficient large-group key distribution,” in Proceedings of the
2001 IEEE Symposium on Security and Privacy. Washington,
DC, USA: IEEE Computer Society, 2001, pp. 247–. [Online].
Available: http://portal.acm.org/citation.cfm?id=882495.884429

[PST+02] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E.
Culler, “Spins: security protocols for sensor networks,” Wirel.
Netw., vol. 8, pp. 521–534, September 2002. [Online]. Available:
http://dx.doi.org/10.1023/A:1016598314198

[QS82] J.-P. Queille and J. Sifakis, “Specification and verification of con-
current systems in cesar,” in Proceedings of the 5th Colloquium
on International Symposium on Programming. London, UK:
Springer-Verlag, 1982, pp. 337–351.

[RLSS10] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical
systems: the next computing revolution,” in Proceedings of
the 47th Design Automation Conference, ser. DAC ’10. New
York, NY, USA: ACM, 2010, pp. 731–736. [Online]. Available:
http://doi.acm.org.globalproxy.cvt.dk/10.1145/1837274.1837461

[SA00] F. Stajano and R. J. Anderson, “The resurrecting duckling: Se-
curity issues for ad-hoc wireless networks,” in Proceedings of the
7th International Workshop on Security Protocols. London, UK:
Springer-Verlag, 2000, pp. 172–194.

http://dx.doi.org/10.1007/s10207-010-0108-z
http://dx.doi.org/10.1007/s10207-010-0108-z
http://www.prismmodelchecker.org/
http://www.prismmodelchecker.org/
http://www.prismmodelchecker.org/manual
http://portal.acm.org/citation.cfm?id=882495.884429
http://dx.doi.org/10.1023/A:1016598314198
http://doi.acm.org.globalproxy.cvt.dk/10.1145/1837274.1837461

304 BIBLIOGRAPHY

[Sch98] S. Schneider, “Verifying authentication protocols in csp,” IEEE
Trans. Softw. Eng., vol. 24, pp. 741–758, September 1998. [Online].
Available: http://portal.acm.org/citation.cfm?id=287870.287882

[SS98] V. Shmatikov and U. Stern, “Efficient finite-state analysis for
large security protocols,” in Proceedings of the 11th IEEE
workshop on Computer Security Foundations. Washington, DC,
USA: IEEE Computer Society, 1998, pp. 106–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=794198.795105

[Ste94] W. J. Stewart, Introduction to the numerical solution of Markov
chains. Princeton University Press, 1994.

[SVA04] K. Sen, M. Viswanathan, and G. Agha, “Statistical model checking
of black-box probabilistic systems,” in CAV, 2004, pp. 202–215.

[SW04] N. Sastry and D. Wagner, “Security considerations for ieee 802.15.4
networks,” in WiSe ’04: Proceedings of the 3rd ACM workshop on
Wireless security. New York, NY, USA: ACM, 2004, pp. 32–42.

[Syv93] P. F. Syverson, “Adding time to a logic of authentication,”
in Proceedings of the 1st ACM conference on Computer
and communications security, ser. CCS ’93. New York,
NY, USA: ACM, 1993, pp. 97–101. [Online]. Available:
http://doi.acm.org/10.1145/168588.168600

[UBLC10] A. S. Uluagac, R. A. Beyah, Y. Li, and J. A. Copeland, “Ve-
bek: Virtual energy-based encryption and keying for wireless sen-
sor networks,” IEEE Transactions on Mobile Computing, vol. 9,
pp. 994–1007, 2010.

[WHA99] D. Wallner, E. Harder, and R. Agee, “Key management for mul-
ticast: Issues and architectures,” United States, 1999.

[WLSC06] J. P. Walters, Z. Liang, W. Shi, and V. Chaudhary, “Wireless
sensor network security: A survey,” in Security in Distributed,
Grid, and Pervasive Computing, Yang Xiao (Eds.). CRC Press,
2006.

[YNN08] E. Yüksel, H. R. Nielson, and F. Nielson, “Zigbee-2007 security
essentials,” in Proceedings of the 13th Nordic Workshop on Secure
IT Systems, 2008, pp. 65–82.

[YNN09a] E. Yüksel, H. R. Nielson, and F. Nielson, “Quantitative security
analysis of zigbee key updates,” in Proceedings of the 21st Nordic
Workshop on Programming Theory, M. R. Hansen and A. W. Brek-
ling, Eds. Technical University of Denmark, 2009, pp. 14–16.

http://portal.acm.org/citation.cfm?id=287870.287882
http://portal.acm.org/citation.cfm?id=794198.795105
http://doi.acm.org/10.1145/168588.168600

BIBLIOGRAPHY 305

[YNN09b] E. Yüksel, H. R. Nielson, and F. Nielson, “A secure key establish-
ment protocol for zigbee wireless sensor networks,” in Proceedings
of the 24th International Symposium on Computer and Informa-
tion Sciences (ISCIS 2009). IEEE, 2009, pp. 340–345.

[YNN10a] E. Yüksel, H. R. Nielson, and F. Nielson, “A secure key establish-
ment protocol for zigbee wireless sensor networks,” The Computer
Journal, Oxford University Press, 2010.

[YNN+10b] E. Yüksel, H. R. Nielson, F. Nielson, M. Fruth, and
M. Kwiatkowska, “Optimizing zigbee security using stochastic
model checking,” DTU Informatics, Tech. Rep. IMM-Technical
Report-2010-08, 2010.

[YNN11a] E. Yüksel, H. R. Nielson, and F. Nielson, “Characteristics of key
update strategies for wireless sensor networks,” in Proceedings
of the International Conference on Network Communication and
Computer (ICNCC 2011). IEEE, 2011, p. to appear.

[YNN11b] E. Yüksel, H. R. Nielson, and F. Nielson, “Comparison of key up-
date methods for resource-constrained networks,” in Under sub-
mission, 2011.

[YNN+11c] E. Yüksel, H. R. Nielson, F. Nielson, M. Fruth, and
M. Kwiatkowska, “Optimizing key updates in sensor networks,”
in Proceedings of the IEEE Sensors Applications Symposium (SAS
2011). IEEE, 2011, pp. 82–87.

[You05] H. L. S. Younes, “Ymer: A statistical model checker,” in CAV,
2005, pp. 429–433.

[Yük10] E. Yüksel. (2010) Verification tools website. [Online]. Available:
http://www2.imm.dtu.dk/ey/tools

[Zig06] ZigBee Specification, ZigBee Alliance Std. ZigBee-2006,
053 474r13, 2006.

[Zig08a] ZigBee Home Automation Profile Specification, ZigBee Alliance
Std. ZigBee-2007-HA, r25, 2008.

[Zig08b] ZigBee-PRO Stack Profile Specification, ZigBee Alliance Std.
ZigBee-PRO-2007-Stack, r05, 2008.

[Zig08c] ZigBee Smart Energy Profile Specification, ZigBee Alliance Std.
ZigBee-2007-SE, r14, 2008.

[Zig08d] ZigBee Specification, ZigBee Alliance Std. ZigBee-2007,
053 474r17, 2008.

http://www2.imm.dtu.dk/ey/tools

306 BIBLIOGRAPHY

[Zig08e] ZigBee Stack Profile Specification, ZigBee Alliance Std. ZigBee-
2007-Stack, r09, 2008.

[ZLA06] J. Zheng, M. J. Lee, and M. Anshel, “Toward secure low rate
wireless personal area networks,” IEEE Transactions on Mobile
Computing, vol. 5, no. 10, pp. 1361–1373, 2006.

[ZSJ03] S. Zhu, S. Setia, and S. Jajodia, “Leap: efficient security
mechanisms for large-scale distributed sensor networks,” in
Proceedings of the 10th ACM conference on Computer and
communications security, ser. CCS ’03. New York, NY,
USA: ACM, 2003, pp. 62–72. [Online]. Available: http:
//doi.acm.org/10.1145/948109.948120

http://doi.acm.org/10.1145/948109.948120
http://doi.acm.org/10.1145/948109.948120

	Summary
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Related Work
	1.4 Outline

	I Qualitative Analysis
	2 Modelling Protocols
	2.1 From Specification To Procedures
	2.2 From Procedures To Protocols
	2.3 Vulnerabilities

	3 Analysing Protocols
	3.1 An Overview of the Analysis Method
	3.2 Modelling in LySa Process Calculus
	3.3 Static Program Analysis
	3.4 Application on ZigBee Wireless Sensor networks
	3.5 Discussion

	II Quantitative Analysis
	4 Preliminaries for Stochastic Model Checking
	4.1 An Overview of Model Checking
	4.2 Modelling
	4.3 Property Specification
	4.4 Model Checking
	4.5 Bisimulation

	5 Modelling Scenarios
	5.1 Problem and Solution Approach
	5.2 Setting the Scene
	5.3 Developing A Stochastic Model

	6 Analysing Scenarios
	6.1 Optimising Key Confidentiality
	6.2 Optimising Recovery From Key Compromise
	6.3 Optimising Efficiency of Key Updates

	III Case Studies
	7 Case Study: Optimal Key Update Strategy
	7.1 Deriving Advice From Stochastic Model Checking
	7.2 Improving Key Update Models and Their Quantitative Verification

	8 Case Study: Comparison of Key Update Methods
	8.1 Purpose of the Study
	8.2 Constructing An Analysis
	8.3 Quantitative Analysis Results
	8.4 Evaluation of the Key Update Methods
	8.5 A Proposal of An Adaptive Key Update Mechanism for Resource-Critical Networks

	IV Automated Tools for Analyses
	9 A Toolkit for LB Key Updates
	9.1 Introduction
	9.2 Setting up the Scene
	9.3 Deriving the Stochastic Model
	9.4 Model Checking Computations
	9.5 Specific Technicalities in Computation
	9.6 Design of the Toolkit
	9.7 Demonstration

	10 Automated Tools Utilizing Present Technologies
	10.1 Automating the Decision on Key Update: Key Update Assistant
	10.2 Protocol Verifier

	11 Conclusion
	11.1 Towards A Framework For Verification of Communication Standards
	11.2 Contributions
	11.3 Concluding Remarks And Future Work

	A Protocol Narrations Derived From ZigBee Security Sublayer
	A.1 Protocol Narrations

	B Key Update in ZigBee
	B.1 The Gap in the ZigBee Specification
	B.2 ZigBee Application Profiles

	C Key Update Models in PRISM
	C.1 Models Considering Key Compromise By Leaving Devices Only
	C.2 Models Considering Key Compromise By Leaving Devices and Sent Messages
	C.3 Reward Structures
	C.4 Stochastic Temporal Logic Formulae

	D Key Update Strategies
	D.1 Characteristics of Key Update Strategies
	D.2 Fluctuations in Key Compromise

	E Key Update Analysis in MATLAB
	E.1 eexp
	E.2 eLBtra
	E.3 eqgen
	E.4 emc
	E.5 foxglynn

