View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

Sloppy Addition and Multiplication

Nannarelli, Alberto

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nannarelli, A. (2011). Sloppy Addition and Multiplication. Kgs. Lyngby, Denmark: Technical University of
Denmark (DTU). (IMM-Technical Report-2011; No. 14).

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://core.ac.uk/display/13753655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/sloppy-addition-and-multiplication(23485f16-f002-4323-b871-5f96e151e207).html

Sloppy Addition and Multiplication

IMM-Technical Report-2011-14

Alberto Nannarelli

Dept. Informatics and Mathematical Modelling
Technical University of Denmark
Kongens Lyngby, Denmark
Email: an@imm.dtu.dk

Abstract

Sometimes reducing the precision of a numerical processor, by introducing errors,
can lead to significant performance (delay, area and power dissipation) improvements
without compromising the overall quality of the processing. In this work, we show how
to perform the two basic operations, addition and multiplication, in an imprecise manner
by simplifying the hardware implementation. With the proposed ”sloppy” operations, we
obtain a reduction in delay, area and power dissipation, and the error introduced is still
acceptable for applications such as image processing.

1 Introduction

In common language the adjective ”arithmetical” usually indicates something very precise or
error-free. However, also arithmetic operations have to be put in the “context’. There are
several fields of application of computer arithmetic that can tolerate some imprecision. For
example, in audio and image processing or in wireless communication, it might be desirable to
get better performance (faster, smaller, less power-hungry systems) at expenses of some quality
degradation.

Recently, a few papers have addressed this issue of designing imprecise hardware to save power
1, 2, 3, 4].
In this work, we introduce a systematic way of having imprecise arithmetic operations for
the two most common operations: addition and multiplication. We liked the term ”sloppy”
introduced in [5], and we will use this term in the paper to refer to imprecise arithmetic
operations.

2 Sloppy Addition

The idea is very simple. Do we need to propagate the carry for the whole word?

Assuming that we are operating on positive integers, and defining position k as the bit of weight
2% in a n-bit word, we can ignore the carry up to position & when implementing the addition.

The bit-level algorithm to implement this sloppy adder is the following:

c=0 // carry
if (i < k) then
s_i = a_i XOR b_i;
else
s_i = a_i XOR b_i XOR c;
¢ = (a_i AND b_i) OR (a_i AND c¢) OR (b_i AND c);
endif

For example, addition 103+ 70 (n = 8, k = 4):

sloppy exact
A 0110 0111 + 0110 0111 +
B : 0100 0110 + 0100 0110 +
c : 100- ———= = 0100 110- =
S 1010 0001 1010 1101

That is, the sloppy adder computes 161 (exact value is 173) introducing an error ¢ = 12.

By looking at the bits of weight < 2*, we notice that the XOR of two ones produces a zero sum
bit (1® 1 = 0). Because the carry is not computed (or propagated), in position k an error 2~+1
is generated. The error can be halved to 2¥ by computing the OR of the two bits in place of
the XOR. For the example above we have:

sloppy (OR-ing)

A 0110 0111 +
B : 0100 0110 +
c : 100- -—— =
S 1010 0111

and the error is reduced from ¢ = 12 to € = 6 (halved).

By simulating all possible combinations of the operands for the 8-bit addition (k = 4), we
found that by obtaining the sum by OR-ing the k least-significant bits the average error is
€Emean = 3.75, while by XOR-ing, it is €,,c0n = 7.5.

We show in Figure 1 the comparison of the hardware implementation of the sloppy adder used
in the above example (n = 8, k = 4) and an error-free 8-bit carry-propagate adder (CPA). The
data on delay, area and power are reported in Table 1.

In a rough evaluation, we considered lowering the supply voltage Vpp in the sloppy adder to
match the delay of the error-free adder (1.0 ns). In our library, when Vpp is lowered from 1.0 V

=
—a O
=l

—a O

E
¢

-

e

a0 Q@

—a T

O Q@

—a O

S
ab
il

L
2\,

L L
9; ;pi ;
carry — network
il |Pi il |Pi
=] a a =] a
s s

Figure 1: Implementation of 8-bit error-free (top) and sloppy k& = 4 (bottom) adders.

F

2e

-

to 0.7 V the delay doubles. Because the power dissipation is

N
Pl.OV = V[%Df . ZCI,ZCZ = 20 = (10)2 - KC

we assume that the switching activity does not change when scaling Vpp. Therefore, K = 20

is constant:
Poqv = (0.7)%-20 ~ 10 uW

That is, with the sloppy adder the power is reduced to 1/4 at same adder speed.

2.1 Example: sloppy adder in image filtering

We use the sloppy adder defined above (k = 4) to process two grayscale (each pixel is an
unsigned 8-bit integer) images for the following bidimensional filters:

1. an averaging (low-pass) filter;
2. a sharpening filter;

CPA 8-bit | sloppy | ratio
max. delay [ps] 999 495 | 2.00
Area [um?] 191 112 1.70
Power [pW] 42 20| 2.10

Table 1: Synthesis data of adders in Figure 1.

smoothing | sharpening | edge det.
€maz € | €max € | €max €
uma 26 7.2 60 18.9 64 9.0
huse 28 7.8 59 17.5 68 9.2

Table 2: Error analysis of processed images.

3. an edge-detection unit.

The visual results are shown in Figure 2.

The maximum error (absolute value) €,,,, and the average error € are reported in Table 2 for
the different types of filtering. The results show that the degradation is independent of the
image (uma is a portrait, while huse has greater detail). Depending on the filter mask, we can
change the design of the sloppy adder to obtain larger savings. For example, for edge-detection,
a sloppy adder with £ = 6 has an average error € = 28.

3 Sloppy Multiplication

Parallel multiplication p = x - y can be divided into three steps:

1. generation of Partial Products (PPs);
2. carry-free reduction from n PPs to 2 operands;
3. carry-propagate two operands addition.

We use a sloppy approach for step 1 only, as step 2 is quite delay-efficient (no carry propagation)
and step 3 has been addressed in the previous section.

We consider radix-4 multiplication as for n x n bit operands § PPs are generated and the unit
is smaller. In radix-4 multiplication, the radix-4 digits of the multiplier y are recoded into
signed-digit representation to avoid multiples of 3 and carry propagation as explained in [6].
The resulting architecture (for one digit) recoder plus PP generation (rec+PPgen) is sketched
in Figure 3 (top).

Similarly to what was done for the addition, we have a sloppy rec+PPgen for the least-significant
digits of y. The recoding is performed as shown in Table 3.

The resulting implementation is greatly simplified as shown in Figure 3 (bottom).

Clearly, a competitor of the sloppy multiplier is the truncated multiplier. To compare perfor-
mance and error introduced, we implemented a 8 x 8-bit multiplier (two’s complement) in the
following schemes:

1. Smoothing filter

(uma) original error-free sloppy-adder error map

(hue

2. Sharpening filter

(uma) original error-free error map

sloppy-adder error map

=

3. Edge-detection
(uma) original error-free

€rror map

€rror map

5
Figure 2: Visual result of sloppy addition in filtering.

PP,
Yok+1 Yor | std. | sloppy €k
0 0 0 0 0
0 1 -4k | 2p AR | p . 4F
1 0 | 2z-4F | 22 - 4% 0
1 1 |3x-4F | 22 -4F | —x - 4F

Table 3: Sloppy radix-4 recoding.

unit delay | power | area error
ps] | (W] | [pm?] | [&] lemasl

r2-mult | 900 70 2612 0 0

rd-mult | 850 84 1842 0 0

r2-trunc | 870 32 1426 | 256 897
r4-trunc | 820 26 847 | 304 640
sloppy 490 21 1195 | 145 657

Table 4: Summary of result for 8 x 8-bit multiplier.

r2-mult a radix-2 standard multiplier;

r4-mult a radix-4 standard multiplier (with PPs generation as in Figure 3-top);
r2-trunc a r2-mult with k; truncated bits;

r4-trunc a r4-mult with k; truncated bits;

ARl S

sloppy a radix-4 multiplier with PPs generation as in Figure 3-bottom for £, digits.

We estimated a comparable error for k, = 2 sloppy digits and k; = 8 truncated bits. The results
of the simulations on all 2'¢ combinations are reported in Table 4. The data do not include the
contributions of the final carry-propagate adder.

4 Putting Everything Together

Now we combine the sloppy multiplier and adder in a multiply-add (and accumulate) unit
(Figure 4) which can be used for the trivial implementation of the Inverse Discrete Cosine
Transform (IDCT), which is part of the JPEG decompression algorithm.

We implemented the unit of Figure 4 with regular (R) and sloppy (S) operations as shown
in Table 5. The multiplier is 12x12 bit, the adder is 24 bits. By C simulation, we found a
sloppiness limit of k,, = 3 digits (6 bits) for the multiplier and k, = 8 bits for the adder. The
results in Table 5 are obtained by implementation in a 90 nm standard cells library (clock rate is
100 MHz). The errors are computed with respect to a floating-point software implementation.
The visual results are shown in Figure 5.

The results show that the larger reduction in power is obtained when the sloppy multiplier
is used. The contribution of the sloppy adder is little with respect to the power, but it is

Y. Yo, Y.
21 P2k “2k-1 -‘ X X, X,
ﬁD one | by by 7
7 o r
two } [[
\
\
\
recoding } PP generation
neg |
; ______
RSN
\
\
\
' k k k K
PP! PP, PPk PPK
Yaker Yok You Y X4 X X,
‘ =] =] a
\
\
\
two |
} _______
Y \
sloppy recoding } PP generation
\
\
} logic 0
\
\
3 k k k
PPK PPE, PPK PPX

Figure 3: Implementation of error-free (top) and sloppy (bottom) rec+PPgen.

significant in delay reduction! (about 40% faster) and the slack can be used for low power
design.

The degradation due to the sloppy adder, in addition to that of the sloppy multiplier, is
marginal.

5 Conclusions and Future Work

We have presented simple ways of performing addition and multiplication in an imprecise
manner with the aim to get better performance (delay, area and power) at expenses of an
increased error which can be tolerated in some applications. This is preliminary work, just the
idea, which is going to be further developed.

References

[1] K. He, A. Gerstlauer, and M. Orshansky, “Controlled Timing-Error Acceptance for Low
Energy IDCT Design,” Proc. of 2011 Design, Automation and Test in Furope Conference

IThe synthesis was done with the minimum area constraint. Therefore, the adder is synthesized as a carry-
ripple adder.

Unit delay | area uma huse power
MULT | ADD | [ps] | [1m?] | Pue 0] el lemasl | Pave [10W) [el lemas] | ratio
R R 3500 | 5580 128 3.7 9 185 3.8 10| 1.00
S R 3400 | 5090 107 5.0 34 155 6.0 39| 0.84
R S 3090 | 5440 125 3.8 18 181 5.0 21| 0.98
S S 2930 | 4950 106 5.0 35 153 6.6 36 | 0.83

Table 5: Summary of result for IDCT implementation.

X

Y

MULT

—

CSA 3:2

A

DD

>register

S

Figure 4: Scheme of multiply-accumulate used for IDCT.

(DATE), Mar. 2011.

[2] A. Lingamneni, J.-L. N. C. Enz, K. Palem, and C. Piguet, “Energy Parsimonious Circuit

Design through Probabilistic Pruning,” Proc. of 2011 Design, Automation and Test in

Europe Conference (DATE), Mar. 2011.

[3] P. Krause and I. Polian, “Adaptive Voltage Over-Scaling for Resilient Applications,” Proc.

of 2011 Design, Automation and Test in Europe Conference (DATE), Mar. 2011.

[4] D. Mohapatra, V. Chippa, A. Raghunathan, and K. Roy, “Design of Voltage-Scalable Meta
Functions for Approximate Computing,” Proc. of 2011 Design, Automation and Test in
Europe Conference (DATE), Mar. 2011.

[5] L. Hardesty. ”The surprising usefulness of sloppy arithmetic”. MIT News Office. [Online].
Available: http://web.mit.edu/newsoffice/2010/fuzzy-logic-0103.html

[6] M. Ercegovac and T. Lang, Digital Arithmetic.

Morgan Kaufmann Publishers, 2004.

sloppy decompressed

Figure 5: Original pictures (top) and after decoding by sloppy (S-S) IDCT (bottom).

