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Summary

The advances seen in the semiconductor industry within the last decade have
brought the possibility of integrating evermore functionality onto a single chip
forming functionally highly advanced embedded systems. These integration
possibilities also imply that as the design complexity increases, so does the
design time and effort. This challenge is widely recognized throughout academia
and the industry and in order to address this, novel frameworks and methods,
which will automate design steps as well as raise the level of abstraction used
to design systems, are being called upon. To support an efficient system level
design methodology, a modelling framework for performance estimation and
design space exploration at the system level is required.

This thesis presents a novel component based modelling framework for system
level modelling and performance estimation of embedded systems. The frame-
work is simulation based and allows performance estimation to be carried out
throughout all design phases ranging from early functional to cycle accurate
and bit true descriptions of the system, modelling both hardware and software
components in a unified way. Design space exploration and performance es-
timation is performed by having the framework produce detailed quantitative
information about the system model under investigation.

The project is part of the national Danish research project, Danish Network
of Embedded Systems (DaNES), which is funded by the Danish National Ad-
vanced Technology Foundation. The project is carried out in collaboration with
the Danish company and DaNES partner, Bang & Olufsen ICEpower. Bang
& Olufsen ICEpower provides industrial case studies which will allow the pro-
posed modelling framework to be exercised and assessed in terms of ease of use,
production speed, accuracy and efficiency.

The framework allows a given embedded system to be constructed and explored
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before a physical realization is present and it can be used in the design of
completely new systems or for modification of legacy systems. The primary
benefits of the framework are the possibilities of exploring a large number of
candidate systems within a short time frame leading to better designs, easier
design verification through an iterative refinement of the executable system
description, and finally the possibility of a reduction of the time-to-market of
the design and implementation of the system under consideration.

In practice, however, additional time spent on software development in order to
provide commercial quality tools supporting the method is required.



Resumé

Inden for de sidste årtier har halv-lederindustriens fremskridt medført, at det
kan lade sig gøre at integrere mere og mere funktionalitet p̊a en enkelt chip,
hvilket har gjort det muligt at frembringe funktionelt stadigt mere avancerede
indlejrede systemer. Disse integrationsmuligheder har dog samtidig haft den
konsekvens, at n̊ar designkompleksiteten øges, s̊a øges designtiden og indsatsen
tilsvarende. Denne udfordring er bredt anerkendt i s̊avel den akademiske verden
som i industrien, og for at imødeg̊a denne kræves nye innovative værktøjer og
metoder, som vil gøre det muligt at automatisere de enkelte designfaser, og som
samtidig kan hæve det abstraktionsniveau, hvorved systemer designes. For at
understøtte effektive systemniveaudesign-metodologier kræves et modellerings-
framework, som muliggør performanceestimering og designrumsudforskning p̊a
systemniveau.

Denne afhandling præsenterer et nyt komponentbaseret modelleringsframework
til brug i systemniveaumodellering og performanceestimering af indlejrede sys-
temer. Frameworket er simuleringsbaseret og muliggør performanceestimer-
ing gennem alle designfaser, fra tidlige funktionelle beskrivelser til detaljerede
beskrivelser med korrekt datamodellering og tidsmæssig opførsel af systemet,
som modellerer b̊ade software og hardware i samme model. Designrumsud-
forskning og performanceestimering udføres ved at lade frameworket producere
detaljerede kvantitative informationer om den systemmodel, som betragtes.

Projektet er en del af det nationale danske forskningsprojekt, Danish Network
of Embedded Systems (DaNES), som støttes af Højteknologifonden. Projektet
er udført i samarbejde med den danske virksomhed og DaNES partner, Bang
& Olufsen ICEpower. Bang & Olufsen ICEpower har stillet industrielle cas-
estudies til r̊adighed, som har gjort det muligt at afprøve det præsenterede
modelleringsframework i praksis.

Frameworket gør det muligt at konstruere og udforske et givent indlejret system,
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før det bliver fysisk realiseret, og det kan bruges til design af nye systemer
s̊avel som til modifikation af eksisterende systemer. De primære fordele ved
frameworket er muligheden for at udforske et stort antal systemkandidater inden
for kort tid, hvilket gør det muligt at opn̊a bedre designs, nemmere verifikation
igennem en iterativ raffinering af systembeskrivelsen og, sidst men ikke mindst,
muligheden for at opn̊a en reduktion i den samlede tid, der bruges p̊a design og
implementering af et givent system.

Yderligere tid til udvikling af software, s̊aledes at der kan opn̊as værktøjer af
kommerciel kvalitet til understøttelse af frameworket i praksis er dog p̊akrævet.
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Chapter 1

Introduction

Embedded systems are found everywhere in our daily lives from mobile phones
and cars to home appliances. An embedded system is a dedicated computer sys-
tem, most often composed of a mixture of both hardware and software elements,
which are fully integrated in a given product, possibly hiding the actual com-
puter system but enabling advanced features to e.g. the user of the product. The
embedded system interacts with the environment and most often constraints on
the interaction are imposed, implying that the system must behave and respond
in a specific manner under one or more limiting factors such as the available
power budget, requirements on the response time, the total cost of the system,
etc.

The project presented in this thesis is part of the national Danish research
project Danish Network of Embedded Systems (DaNES) which is funded by
the Danish National Advanced Technology Foundation. DaNES is focusing on
compositional model driven design of embedded systems with a strong indus-
try oriented focus. DaNES is a joint research project between academia and
industry in which academia is represented by Aalborg University, the Technical
University of Denmark and the University of Southern Denmark. Industry is
represented by a number of Danish companies working within areas as different
as health care, automation and audio power conversion.

The current project presented in this thesis is carried out in collaboration with
the Danish company and DaNES partner, Bang & Olufsen ICEpower. Bang
& Olufsen ICEpower is a relatively young and innovative company, founded in
1999, focusing on audio power conversion within a number of markets ranging
from mobile over consumer to professional and automotive.



2 Introduction

1.1 Motivation

Since the 1960ies, the number of transistors in integrated circuits has grown
exponentially, as predicted by Gordon Moore in 1965 [75], and transistor counts
of an astonishing 3 billion in a single chip are now seen [90]. The advances of
the semiconductor industry seen within the last decades have had a tremendous
influence on embedded systems. A range of new opportunities have evolved such
as the possibility of having entire systems consisting of multiple (or many) pro-
cessors, memories and interfaces integrated onto a single chip. This has brought
the possibility of integrating evermore functionality in embedded systems under
constantly shrinking area and power budgets. The complexity of such systems
is inherently high and thus the design of these is far from trivial taking time-
to-market and development costs into consideration. As a consequence, the
advances of the semiconductor industry and the associated integration possi-
bilities have also had a strong impact on the design of embedded systems in
the sense that as the design complexity increases, so, does the design time and
effort.

Seen from the perspective of Bang & Olufsen ICEpower, the audio industry in
general is experiencing a shift in the functionality provided which means that
high-end functionality previously reserved for the professional market is now
being introduced in consumer products due to the new possibilities that have
evolved with the advances in the semiconductor industry. Thus mobile phones
can be used as music players and are equipped with equalizers, smart bass,
advanced dynamic protection systems and other traditionally advanced func-
tionalities. Therefore, Bang & Olufsen ICEpower is experiencing an increasing
demand for integrating digital audio processing capabilities in switching audio
power conversion systems. This allows the implementation of algorithms used
to e.g. improve the channel sound quality, protection of components or adding
different feature level algorithms delivering e.g. sound field control. The require-
ments which the implementations must meet depend on the field of application,
e.g. consumer, mobile, automotive etc., implying that a highly flexible design
methodology for designing audio digital signal processing systems is needed
offering an efficient implementation and a low design time due to tight time-to-
market constraints.

The mixture of tight time-to-market constraints and an increasing design com-
plexity associated with the design of embedded systems of today, not only at
Bang & Olufsen ICEpower but throughout the industry, has meant that the
majority of design methodologies have focused on reusability as a common de-
nominator, whether this is achieved through the reuse of efficient hardwired
function blocks with limited flexibility, or in the use of various flexible gen-
eral purpose or domain specific processors (e.g. digital signal processors) with
associated software tools which, in exchange for flexibility, sacrifice efficiency.
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Flexibility and reusability of the individual components are central issues be-
cause the growing complexity of the individual design blocks implies that more
time is needed to design each. To compensate for this, the designers strive to
amortize design time on the largest possible volume, i.e. use the same block in
as many products as possible.

Still, the tight time-to-market constraints coupled with the increasing design
complexity makes the risk of sub-optimal implementations inherently evident
as discussed for multi-processor system-on-chip systems in [70]. A major reason
for this is the difficulty of getting feedback on the consequences of a design choice
before the system has been realized physically or at least described at a very low
level of abstraction. This makes the experience of the designers of the system
a key element in the early design-phases and at the same time severely limits
the possibilities of exploring the design space. Hence there is a great need for
getting trustworthy feedback to the consequences of a design choice throughout
the development phases no matter what design methodology is used.

These challenges are widely acknowledged throughout academia and the indus-
try and, already a decade ago, were identified as the design productivity gap
in [9]. In order to address this, novel frameworks and methods which will both
automate design steps and raise the level of abstraction used to design systems
are being called upon. Especially system level design has gained at lot of atten-
tion and is believed to be one way to address the increasing design-productivity
gap. System level design is the design of complete systems based on a spec-
ification of the functional requirements to the system in combination with a
number of constraints which the system has to fulfil, basically limiting the de-
grees of freedom from which the designer can choose. Most often system level
design methods start out at a high level of abstraction, gradually refining the
individual parts until a level suitable for implementation is reached.

In order to support an efficient system level design methodology, a modelling
framework for performance estimation and design space exploration at the sys-
tem level is required. As a consequence, in recent years much work, both in
the industry and in academia, has focused on the development of frameworks
and methods for estimating the performance at the system level [11, 13, 63, 86].
Performance estimation at system level, however, is not a trivial task and the
level of accuracy obtained and the time used to produce the performance esti-
mates are highly dependent on the level of abstraction which is used to describe
the system. Intuitively, there is a trade-off between the speed at which perfor-
mance estimates can be produced and the level of accuracy which is obtained.
In general, the problem is tackled by many frameworks by allowing a gradual
refinement of models, using a high level of abstraction for the early estimates,
then lowering the level of abstraction, moving through the design space towards
more detailed estimates and in this way performing the trade-off.

The work presented in this thesis takes it point of departure in the challenges
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Figure 1.1: Abstraction of typical design flow.

faced by Bang & Olufsen ICEpower and there has been a strong focus on produc-
ing a modelling framework which will support performance estimation through-
out the design phases. However, the generality of the work presented implies
that it is by no means bound to the design methodology used at Bang & Olufsen
ICEpower and that general applicability is preserved.

As is the case in the general industry, Bang & Olufsen ICEpower shares a wish of
accomplishing lower design time for increasingly complex systems maintaining
the high performance of the systems developed with the existing design flow.
These goals must be met under a constantly shrinking area and power budget
- especially if mobile platforms are targeted. To make this discussion at bit
more concrete, a very condensed and overly simplified abstraction of the current
design flow used at Bang & Olufsen ICEpower for designing audio processing
applications is given in figure 1.1.

In general the functional requirements are translated into high level functional
executable specification in the form of implementations of algorithms in e.g.
Matlab or C/C++. These tools are excellent for capturing and exploring the
functional aspects of the application. However, already at this stage, it is cus-
tomary to have specific target architectures in mind, and thus critical design
choices are already being made which limits the possible candidate architec-
tures, in this way narrowing the system realization options significantly. Cur-
rently, reliable estimates of the performance of the system cannot be generated
before the system is realized at a very low level of abstraction such as assembly
level or C/C++ implementations of software parts executing on instruction set
simulators, or for the dedicated hardware parts, as register transfer level de-
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scriptions either through simulation or actual prototype implementations. This
implies that radical design changes such as a different partitioning of the ap-
plication is very hard to accomedate within the development cost budget and
time-to-market constraints imposed on the system at this late stage in the design
process.

For these reasons, the current design flow at Bang & Olufsen ICEpower has
been considered tedious and extremely time consuming due to a number of lim-
itations and barriers between the different layers of abstraction used to specify,
design and implement a given application. However, most troublesome, as illus-
trated in figure 1.1, is the partitioning of the system into hardware and software
parts, which is decided mainly based on experience and back-of-the-envelope
calculations because no means currently exists which can help make the deci-
sion on a sound and well founded basis in the early stages of the design flow.
The design flow used by Bang & Olufsen ICEpower and the problems faced is by
no means unique and can basically be categorized as an example of a classical
co-design problem found in a number of other companies as well. Today, the
scope of the classical co-design problem of deciding which elements are to be
implemented in hardware and which are to be implemented in software has been
heavily extended due to the very heterogeneous nature of embedded systems of
today.

1.2 Contributions

In order to address the lack of feedback to the consequence of a design choice
and to provide a framework which can aid designers of a system throughout
the development phases, this thesis presents, as one of the main contributions,
a novel compositional framework for system level modelling and performance
estimation of heterogeneous embedded systems. The framework is simulation
based and allows performance estimation to be carried out throughout all design
phases ranging from early functional to cycle accurate and bit true descriptions
of the system. The simulation of a system model makes it possible to produce
detailed information regarding the runtime properties of the specified system
and, so, it can direct the designer to the elements which ought to receive special
attention.

The framework presented, illustrated in figure 1.2, is related to what is known
as the Y-chart approach [12, 50] which dictates a separate specification of the
functional and implementation specific aspects, in our case represented by an ap-
plication model and a platform model respectively, and relating the two through
an explicit mapping step in order to allow these to be explored (partly) indepen-
dently. However, in our case the application model is refined in its own iteration
branch as step one, verifying the functionality of the application model only.
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Figure 1.2: Overview of the framework.

When this step has been performed, the application model is left unchanged,
and only the mapping and platform model is being refined in step two. If the
application model needs to be changed, it implies that the functionality of the
application has changed. Hence, a new iteration of step one is required in order
to verify the new functionality before repeating step two.

The key strengths of the framework are the flexibility and refinement possibili-
ties as well as the possibility of having components described at different levels
of abstraction to co-exist and communicate within the same model instance.
This is achieved by separating the specification of functionality, communica-
tion, cost and implementation (as advocated in [48]) and by using an interface
based approach combined with the use of abstract communication channels. The
interface based approach implies that component models can be seamlessly in-
terchanged in order to investigate different implementations, possibly described
at different levels of abstraction, constrained only by the requirement that the
same interface must be implemented. Additionally, the use of component models
allows the construction of component libraries with a high degree of reusability
as a result.

A key concept in the framework is the notion of services which plays an impor-
tant role in order to achieve a decoupling of the specification of functionality,
communication, cost and implementation. A service is defined as a logical ab-
straction which represents a specific functionality or a set of functionalities of-
fered by a component. In this way, services are used to abstract away the imple-
mentation details of the functionality which is offered by the component. Thus,
the service abstraction allows two different models to offer the same services,
having the same functional behaviour but with a different implementation, cost
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and/or latency associated and, so, allow different implementations of a model
to be investigated easily.

The notion of services allows a unified modelling approach for capturing system
components using service models. The service model is another main contribu-
tion of the work carried out in this project and is the fundamental modelling
component of the framework.

The functionality of the target application is captured by an application model.
Application models are composed of a number of tasks each represented by a
service model. The tasks of an application model serves as a functional spec-
ification of the application only specifying a partial order of service requests
needed in order to capture the functionality of the application. No assumptions
on who will provide the services required is made and, thus, the specification of
functionality and implementation is separated.

The target architecture is modelled by a platform model and is composed of
one or more service models. The service models of a platform model can be
described at arbitrary levels of abstraction implying that in one extreme they
only associate a cost with the execution of a service request or, in the other,
the service request is modelled in the platform model both cycle accurate and
bit true. Costs can be associated with service requests, either computed dy-
namically or pre-computed. It is the cost of the execution of a service which
differentiates different implementations of the particular service.

Quantitative performance estimation is performed at system level through the
simulation of a system model. A system model is constructed through an explicit
mapping of the service models of an application model to the service models of
a platform model. The service models of an application model, when executed,
request the services offered by the service models of the platform model onto
which they are mapped, modelling the execution of the requested functionality,
taking the implementation specific details and required resources into consider-
ation and associate a cost with each service requested. In this way, it becomes
possible to associate a quantitative measure with a given system model and,
hence, it becomes possible to compare systems and select the best suited one
from a well-defined criteria.

The remaining part of this section strives to identify the main contributions of
the work carried out during the course of this Ph.D. project and which will be
presented in this thesis. The main contributions of this thesis are the follow-
ing:

• A compositional service based framework for system level performance es-
timation. This includes the general concepts and a proof-of-concept imple-
mentation in Java [73], allowing the framework to be used for performance
estimation in practice.
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• The service model - a meta-model for unified hardware and software mod-
elling supporting components described at multiple levels of abstraction,
separation of behaviour and implementation, cost and communication as
well as support for multiple models-of-computation to co-exist.

• A service based model-of-computation for modelling synchronous hard-
ware components as an example of one model-of-computation which can
be used in the presented system level modelling and performance estima-
tion framework in order to capture synchronous hardware components.

• An industrial case study carried out at the Danish company Bang &
Olufsen ICEpower. Throughout the thesis, examples have been taken
from Bang & Olufsen ICEpower. Quite some time was spent on an indus-
trial case study in order to asses the quality of the presented framework.
In the case study, an audio processing platform for mobile devices was
in focus and the goal was to explore different implementation options for
a particular application. The case study provided valuable feedback and
gave rise to a number of ideas for improvements.

• Investigations on the foundation of an architecture description language
for describing synchronous hardware components and automatically gen-
erating fast simulation models based on the proposed service based model-
of-computation for modelling synchronous hardware.

• Initial work on a framework for automated, multi-objective, design space
exploration using evolutionary multi-objective algorithms. Fuelled by the
experiences of the manual design space exploration carried out in the in-
dustrial case study, initial work on a framework for automated design space
exploration based on multi-objective meta-heuristics, combined with the
use of the system level modelling and performance estimation framework
developed, shows very interesting perspectives.

1.3 Reading guideline

The body of information presented in this thesis is rather extensive and, so, this
section presents the structure of the thesis and provides reading guidelines. The
thesis is written in such a way that a linear path through the chapters should
be possible. In order to group related chapters, the thesis has been divided into
a number of parts.

Part I presents the system level modelling and performance estimation frame-
work and consists of the chapters 2 to 4.

Chapter 2 introduces the field of system level modelling and performance es-
timation with a focus on related work relevant for the framework presented in
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this thesis.

Before the actual framework is presented, the unified service based component
model, the service model, is presented in chapter 3. The service model is the
fundamental modelling component for capturing the elements of which a system
is composed.

Chapter 4 presents the compositional framework for system level modelling and
performance estimation of heterogeneous embedded systems which is among
the main contributions of the work carried out during the course of this project.
Through simulations of a system model the framework makes it possible to
produce detailed performance estimates of the specified system. Performance
estimation can be carried out throughout all design phases ranging from early
functional to cycle accurate and bit true descriptions of the system. The key
strengths of the framework are the flexibility and refinement possibilities as well
as the possibility of having components described at different levels of abstrac-
tion to co-exist and communicate within the same model instance.

Part II focuses on the realization and usage of the system level modelling and
performance estimation framework presented in part I. Part II is composed of
chapters 5 to 7.

Chapter 5 presents the current realization of the system level modelling and
performance estimation framework presented in chapter 4 and gives details on
the underlying simulation engine which has been implemented.

Chapter 6 introduces a model-of-computation for modelling synchronous hard-
ware components. The model-of-computation is based on Hierarchical colured
petri nets (HCPN) [44] and uses the notion of service to represent the function-
ality offered by a component, fitting into the service model concept described
in chapter 3. The chapter will introduce the basic concepts and describe how
a number of optimizations can be performed to obtain fast simulation of mod-
els.

Chapter 7 describes an industrial case-study used to illustrate the concepts and
the usage of the system level performance estimation framework presented in
detail.

Part III discusses extensions to the system level modelling and performance
estimation framework and consists of the chapters 8 and 9 only.

Chapter 8 introduces initial work on a architecture description language used
to generate fast simulations models using model-of-computation introduced in
chapter 6 for modelling synchronous hardware components.

Chapter 9 describes the initial investigations performed in order to extend the
system level performance estimation framework with an automated design space
exploration module. Through the use of a multi-objective optimization algo-
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rithm based on a well-known meta-heuristic, a framework is presented in which
design space exploration can be performed automatically.

Finally, in part IV, chapter 10 concludes the thesis and discusses the limitations
of the framework as well as giving pointers to future work.



Part I

System Level Modelling and
Performance Estimation





Chapter 2

Introduction to System Level
Modelling and Performance

Estimation

In this chapter an introduction to the field of system level modelling and per-
formance estimation of embedded systems which includes references to related
work will be given.

The diversity of elements of which an embedded system is most often com-
posed implies that multi-disciplinary knowledge is required in order to design
systems. In order to capture the behaviour of the complete system, including
both hardware and software, different models-of-computation are often better
suited for modelling the different parts of the system, possibly including the
environment with which the system interacts. Methods and frameworks, which
have support for multiple models-of-computation, are thus very beneficial, and
might even be a requirement, in order for a system level modelling framework
to become successful. However, system level modelling frameworks often target
specific application domains in order to simplify the challenge of allowing mul-
tiple models-of-computation to co-exist within the same model instance. Quite
a number of frameworks, e.g. target stream based applications only as seen
in [46, 47], for which very well suited models-of-computation exist, e.g. Kahn
process networks [45], Synchronous Dataflow [60], etc., and which cover the rel-
atively large class of multi-media applications. Ptolemy II [28], on the other
hand, is a framework developed specifically for supporting the co-existence of
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multiple models-of-computation and a hierarchical component based approach
is employed for modelling heterogeneous systems. Components are composed of
a director and a number of actors. Actors communicate using tokens and fire
regulated by a director. This approach allows different models-of-computation
to be implemented. However, Ptolemy II is not developed for performance esti-
mation of embedded systems specifically.

System level design typically starts with a decomposition of the application into
concurrent elements which allows a mapping onto possibly multiple process-
ing elements. Subsequently, a partitioning into hardware and software parts
is required in order to achieve the targeted performance requirements. Having
performed these challenging tasks, performance estimates of the resulting sys-
tem model can now be produced, either through simulation or analytically, and
the system can then be evaluated.

Figure 2.1: Illustration of the Y-chart [12, 50] appraoch, The figure is from [88],
modified from the original in [50].

In the Y-chart approach [12, 50], which is a general approach used in the de-
sign and exploration of embedded systems, the application and architecture are
specified individually, allowing both to be independent of each other. The ap-
plication is then mapped to the architecture through an explicit mapping step
relating the two descriptions. The result of the mapping step is a full sys-
tem description which can then be evaluated. The separate specification of the
application and candidate architecture allows the designer to experiment with
different mappings, restructure the application or add or remove elements from
the target architecture without imposing any impact on the remaining elements.
The clear separation of the specification, into application and architecture, is
a clear advantage and thus many frameworks and methods are based on varia-
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tions of this approach e.g. [12, 15, 63, 72, 101]. The MESCAL methodology [72]
e.g. presents a structured way of generating performance estimates of processor-
centric systems, using a framework called Teepee which is based on the Y-chart
methodology and uses Ptolemy II as the underlying simulation and analysis
framework.

The separate specification of functionality and implementation, as used in the
Y-chart methodology, is advocated even harder in [48], known as the concept
of separation of concerns, which dictates separate specification of functional be-
haviour, communication, cost and implementation and is the foundation of the
platform-based design paradigm [48, 92]. The concept of separation of concerns
provides maximum freedom in the exploration of the design space by allow-
ing applications to be mapped to arbitrary target architectures with the only
constraint being that they must implement the required functionality but with-
out restrictions on how this is implemented. In this way multiple architectures
can be evaluated simply by changing the architecture model, letting the cost
associated with the execution of the application on the particular platform be
the differencing factor and, in this way, allowing the best suited platform to be
selected.

The Metropolis [13] framework has been developed to support the platform
based design principle [48, 92]. The framework provides an infrastructure for
system level modelling by defining abstract semantics through the use of a meta-
model based on the tagged signal model [59]. The meta-model allows the in-
tegration of heterogeneous components at different levels of abstraction. Fun-
damental to the framework is the use of the concept of orthogonalization/sep-
aration of concerns. Through an explicit mapping of the components of the
functional model to the components of an architectural model, the framework
supports iterative refinements from an initial specification to implementation.
The Metropolis framework originates from the Polis [12] framework which was
one of the first frameworks to use a separation of the specification of function-
ality and implementation.

The Polis and Metropolis frameworks are now being used as the basis of a new
framework named Metro II [27]. The Metro II framework is similar to Metropolis
in the sense that it focuses on the concept of platform based design; however, it
is based on SystemC, and focuses especially on integrating third party IP blocks
as opposed to the Metropolis framework which uses a proprietary language for
specification of models.

The research within the field of system level design of embedded systems is
tightly coupled with the research carried out within the hardware/software co-
design domain, e.g. as described in [34, 71]. However, whereas early hard-
ware/software co-design research focused on splitting the implementation into
software running on a single processor and dedicated hardware functional units
used as accelerators, the scope of the problem today has been extended to cov-
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ering complex heterogeneous multi-processor platforms due to the constantly
growing transistor counts of embedded systems of today. The arrival of multi-
core systems years ago have already proved the big difficulty of utilizing such
systems efficiently and, now, already at the brink of the many-core era, the
problem seems not to be going away. Still the fundamental goal of the hard-
ware/software co-design research is valid, and seems to be even harder to reach
as the complexity of systems increase.

In general, the frameworks can be categorized as being based on simulation, an-
alytical evaluation or a combination of the two. Several frameworks use simula-
tions to obtain performance estimates and then use formal analysis for verifying
different properties such as the validity of a given mapping, e.g. preventing
deadlocks to occur.

Frameworks based on analytical methods of analysis are often very well suited for
pruning the design space in the early design phases. However, due to restrictions
on the level of abstraction used to model the components of a system, it often
requires the use of simulation based methods in the latter design stages.

Simulation-based methods, on the other hand, are capable of spanning all ab-
straction levels from high level functional to cycle accurate and bit true simula-
tions. This is the great strength of the simulation based methods; the Achilles
heel of these frameworks, however, is that no guarantees can be given with re-
spect to the performance estimates produced, i.e. they need not capture worst
case conditions.

Hybrid approaches, in which the better of two worlds can be combined, seem
to be the most interesting. However, in the future, as formal analysis methods
mature, they might reduce the need for simulations even further.

In the following, an overview of the elements of system level performance esti-
mation will be given, illustrated by references to existing research and practices.
First, abstraction levels will be discussed followed by an overview of different
approaches to capturing applications and architectures, how these are related
to each other through a mapping step and finally how performance estimates
can be generated.

2.1 Abstraction levels

As already stated, there is a close relationship between the level of abstraction
used to describe a system and the quality of the performance estimates which
can be produced. Also, the time and effort required to construct a system
model and the time required to obtain the performance estimates are directly
related to the level of abstraction used. This implies that choosing the right
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level of abstraction for capturing a system is vital, and highly dependent on the
goal of the modelling. When the final system is unknown, and designers are
interested in finding the best suited architecture from a given set of constraints
and requirements, it is often advantageous to have system descriptions at a
higher level of abstraction in order to be able to search a larger part of the
design space for the better solution. However, the main problem is to ensure the
correct level of accuracy of the performance estimates produced so it is actually
possible to base decisions on the generated performance estimates.

Generally, abstraction levels can be arbitrary and a mixing of abstraction levels
within different domains, e.g. computation, communication and data, is often
seen. In this discussion, the focus will be on timing accuracy of computation
and communication and on data accuracy because these quantities are used in
most design parameters and other quantities can often be derived in relation to
these, e.g. power models, resource utilization, etc.

The highest level of abstraction is the functional level in which the purpose is
to capture all functional requirements of the specification and allow these to
be verified. Depending on the specification, this can be achieved using various
models-of-computation suited for the specific domain or simply as a Matlab or
C/C++ specification. In the general case, descriptions at this level of abstrac-
tion have no timing information incorporated and data types are most often
standard generic data types offered by the host machine if defined at all.

Following the functional level of abstraction, a separation of the functional model
into parallelly executable components is often seen. In this way communication
requirements between components are becoming explicit. The partitioning of
the application into smaller blocks allows designers to start exploring different
implementation types for the individual components, performing initial hard-
ware/software co-design investigations with the target architecture in mind.
Quite often, this level of abstraction is based on abstract high level modelling
of communication between components whereas the computing components are
modelled purely functionally.

Gradually, refinements to various degrees of approximately timed models will
lead to cycle accurate models arriving at the traditional design flow entry point
of register transfer level models for the hardware parts.

In [82] an approach for system level design and performance estimation is pre-
sented targeted at processor-centric systems. The approach relies on an ana-
lytical evaluation of different configurations using neural networks in the early
design phase. It is assumed that trained neural networks are available for all
available processors that might be selected for the target architecture. As the
design is refined, the best candidates from the high level analysis are selected
and bus functional models are created and used for more detailed performance
analysis based on register transfer level simulations of the IP components used.
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These are assumed readily available in an IP library.

The concept of transaction level modelling (TLM) [16], have received severe
interest throughout the last decade. The details of communication between
computing components, is modelled not at signal level as done in register trans-
fer level models but instead as communication transactions only. In this way
e.g. a bus transfer can be modelled as a single transaction which can abstract
away hand shaking, access control scheduling, etc. Also, an explicit separation
of communication and computation is obtained. Channel models are used to
connect computing components and allow these to communicate. Transactions
are then implemented by requests to interface functions of the individual chan-
nel models. This abstraction, obviously, allow faster simulations to be obtained
compared to register transfer level simulations. In practice, both SystemC [81]
and SpecC [33] are languages which support the concept of transaction level
modelling and the concept of channels.

SystemC [81] has been widely adopted for system level modelling and perfor-
mance estimation throughout academia and industry. SystemC, however is
not a framework for performance estimation in itself but provides the com-
mon syntax and semantics for describing systems consisting of both hardware
and software at different levels of abstraction. Several groups are providing per-
formance estimation frameworks which are based on SystemC - and with great
success [27, 53, 68]. Also, with the introduction of the TLM 2.0 standard [80],
the Open SystemC Initiative (OSCI) community seems to have gained a lot of
support throughout industry and academia. TLM 2.0 defines common grounds
for model interoperability between different developers by defining a set of ab-
straction levels and semantics for communication between models to which TLM
2.0 models must adhere and, combined with a definition of temporal decoupling
of models, allows potential performance boosts in simulation speed.

In [52] a SystemC based design methodology is presented referred to as vir-
tual architecture mapping in which a top down refinement process is applied.
First, a functional model of the application is created and the functional proper-
ties verified. Then, the functional model is mapped onto a virtual architecture
model in order to annotate timing characteristics. The high level virtual ar-
chitecture model separates behaviour and timing by associating the behaviour
of the system with a number of functional modules, and timing information
with communication channels between modules. As a final step, co-verification
is supported, using adapters for translating communication between modules
described at different levels of abstractions.

In practice, many approaches rely on letting parts of the system be described at
lower levels of abstractions in order to ensure better accuracy of the results of
the vital components. In general, abstraction level refinement is an important
element to support, in order to ease the usage of a system level performance
estimation framework. Support for multiple levels of abstraction to co-exist
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within the same model instance and a gradual refinement is seen in [11, 13, 84].
One of the main challenges when mixing abstraction levels is how to ensure
correct communication between components described at different abstraction
levels with a minimal effort from the designer and without having to change
the component descriptions. One approach for automatic model refinement is
presented in [84]. Another, more general approach, is to use adaptors for cross-
abstraction level communication as suggested in [16].

In MESH [18], a framework is proposed focusing on modelling the execution of
software on processors at a high level of abstraction. The goal is to bridge the
gap between purely functional models and models based on the use of detailed
instruction set simulators. MESH uses a thread based model, similar to the
tagged signal model in [59] in which events are associated with a tag representing
the time of the event and a value. Threads are then defined as a sequence of
events. MESH distinguishes between physical and logical events. Logical events
are events which cannot be physically related to a specific point of time. During
runtime, logical events are resolved and associated with a physical point in time
for execution which is implementation specific.

2.2 Application Modelling

The objective of application modelling is to capture the functionality of the
application under investigation and obviously this can be done at many different
levels of abstraction. The chosen level of abstraction, of course, depends on the
level of accuracy targeted in the generated performance estimates.

In general, most frameworks follow the principle advocated in [16, 35, 48] of sep-
arating the specification of functionality, communication, implementation and
cost. This implies that the application model should only capture functionality
and communication requirements, leaving the implementation details and asso-
ciated cost to be modelled in the architecture model. If the application model
includes implementation specific details of the target platform, the application
is no longer fully portable and thus constraints the platform onto which the
application can be mapped. In general this should be avoided, but in many
practical cases where the target platforms are already known, fully or partially,
this imposes no problem and in some cases even simplify the mapping process
significantly.

At the highest level of abstraction, applications are modelled by e.g. task graphs
and only the execution time of the individual tasks is specified. This is the case
in ARTS [68] where application models are represented by tasks annotated with
an execution time only: i.e. no functional aspects are included.

In most cases, the application model also captures the actual functionality of the
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modelled application in order to ensure functional correctness. Several frame-
works use a model-of-computation suited for the targeted modelling domain.
Kahn process networks, for instance, are used for application modelling in sev-
eral frameworks targeting stream based applications e.g. [22, 46, 63, 86, 107]. In
Koski [46] the use of Kahn process networks is combined with State charts for
refinement purposes. In MILAN [11], application models are used to capture the
functional behaviour of the application using data flow models-of-computation
(ASDF/SDF [60]) only, limiting the applications which can be represented. In
Polis [12], Co-design Finite State Machines (CFSM) were used for application
modelling, targeted mainly at control-oriented applications seen in e.g. auto-
motive systems.

CASSE [91] is a SystemC TLM based framework and performance estimates are
generated through simulations. CASSE also uses a modelling method based on
Kahn process networks for modelling applications. Applications are described as
process networks in which processes, referred to as tasks, execute concurrently
and communicate through the use of point-to-point connections. The individual
processes execute sequentially and inter-task communication is synchronized
using a proprietary implementation-independent protocol named ITCP.

CHARMED [49] is a framework for automatic multi-objective design space ex-
ploration. Applications are represented by high level task graphs. As part of
the search process, the tasks of the task graphs are then automatically mapped
to the processing elements and communication resources available as specified
by the designer in the architecture model. For fitness evaluation, analytical cost
estimates are computed and used to evaluate the given solution. The result of
the search is a set of non-dominated solutions which describe the best found
trade-offs between the targeted design objectives.

Several frameworks use a co-execution approach in which application models are
executed generating requests for functions offered by the target architecture; in
this way the application model is driving the simulation. This appraoch is taken
in e.g. Spade [63, 64, 62], in which the focus is on stream based applications
only. Here, applications are specified as Kahn Process Networks as illustrated
in figure 2.2. Applications are expressed functionally in C/C++. The appli-
cation is then annotated with calls from an API supplied by YAPI [24] which
implements the Kahn Process Network model of computation. This instrumen-
tation implies that when the C/C++ application is executed, a trace of high
level events is generated. The high level trace can then be converted into low
level architecture specific traces using a trace transformation technique in which
traces of events are re-written to match the features provided by the platform
onto which the application is mapped. The trace event instrumentation implies
that the application model must be executed on a processing element which
knows how to interpret the specified event.

The work of Spade has been continued in the Artemis framework [86, 88] in
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Figure 2.2: Figure from [64], illustrating the use of KPN for application mod-
elling.

which two frameworks for performance estimation at the system level have been
developed in parallel in order to investigate different methods. These are the
Sesame framework [22, 89, 99, 86, 85] and the Archer projects [107]. Sesame is
a framework which is closely related to the work of Spade. In this framework
applications are also modelled as Kahn Process Networks which are evaluated
during simulation through the generation of event traces which are used as the
input to an architecture model.

Archer [107] is also part of the Artemis research project and closely related to
Sesame due to the fact that both are derived from the Spade project. However,
in Archer, applications specified as Kahn Process Networks are converted into
symbolic programs in an attempt to mix the speed of trace driven representa-
tions with the accuracy of CDFG based representations which are evaluated on
the architecture model during simulation as opposed to the event trace based
approach which is taken in Spade.

The Artemis framework also includes Compaan [51] which is a tool capable of
converting a subset of sequential Matlab [2] code into Kahn Process networks
and the Laura tool [104] capable of converting Kahn Process Networks into
synthesizable hardware description language specifications. The Laura tool acts
as a backend for the Compaan tool [96].

A recent extension of the work of Spade and Artemis, including their sub-
projects, is the Daedalus design flow [79, 89, 100]. The Daedalus design flow
targets stream based applications mapped to MPSoC based platforms including
the modelling of the communication inter-connect fabric (NoC) and includes
automated mapping and high level synthesis tools. The Daedalus design flow
uses Compaan/Laura for application specification, Sesame for design space ex-
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ploration and ESPAM [77, 78] for automated synthesis of high level models into
RTL descriptions in hardware description languages.

The SystemCoDesigner [47] presents an approach which supports automated
design space exploration and implementation of stream based applications run-
ning on systems described as actor oriented behavioural SystemC descriptions
using the SystemMoC framework [29]. In this way processes in the application
model are described, using an actor, and actors communicate through explicit
communication channels. A commercial behavioural synthesis tool is then used
to generate RTL descriptions for detailed performance analysis. The designer
specifies an architecture model consisting of processing elements and their inter-
connection as well as the possible mappings and configurations of the individual
processing elements. This description is then used as input to an automated
design space exploration framework.

The frameworks targeting processor based architectures often specify the appli-
cation model directly in C/C++ and thus require the existence of compilers for
the targeted processors. The compiled applications are then executed on instruc-
tion set simulators. Frameworks based on this approach are having great success,
both in the industry [5, 4, 97] and in academia [7, 36, 72]. The use of C/C++ to
describe applications, however, already places severe constraints on the level of
abstraction which can be used to express applications. These frameworks rely
on tool chains for building application-specific instruction-set processors (ASIP)
including both hardware descriptions and software tools such as debuggers, com-
pilers, assemblers, linkers, etc. A vital element in these tool chains is what is
known as architecture description languages, such as LISA [108], nML [30], EX-
PRESSION [40], etc. These languages make it possible to describe application
specific processors at a relative high level of abstraction and then auto-generate
software tool chains and even RTL hardware descriptions for input to tradi-
tional synthesis flows. In [7], a framework for MPSoC performance estimation
is presented which combines a commercially available architecture description
language based CAD tool with the MPARM environment [14]. The combina-
tion is interesting and detailed information regarding a specific platform can be
extracted through simulations.

Frameworks supporting applications to be captured using multiple models-of-
computation has been seen as well in e.g. [11, 13, 101]. In these, applica-
tions are represented by a number of concurrent execution components which
are allowed to communicate through explicit communication channels allowing
the individual components to be described using almost arbitrary models-of-
computation.

In Metropolis [13] applications are represented as process networks which com-
municate through ports, which are specified with an interface, declared within
the process. Inter-process communication is then handled by connecting the
ports of the processes which need to communicate using a medium. The medium
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to which a port is connected must implement the interface specified by the port.
This allows an explicit separation of the functionality of the processes from
communication. The execution of a process is then represented by a sequence
of events and a network execution is then an execution of, at most, one event
from each process per iteration.

2.3 Architecture Modelling

As in the case of the approach to application modelling, the different approaches
to modelling of the actual target architecture are also numerous. The goal of
the architecture model is to capture the functionality offered by a specific target
architecture and allow a cost to be associated with the application executing on
the target architecture. It is the cost of the execution of the application on the
specific architecture which differentiates architectures.

In many frameworks, the architecture model is used solely to associate a cost
with the execution of the application on the given architecture. The architecture
model is thus only focused on capturing temporal aspects, access to resources
etc. and not on modelling the actual functionality offered, acting as a cost model
only.

In Spade [63], architecture models are constructed using generic blocks provided
in a component library. The functional behaviour is captured only in the appli-
cation model, implying that the architecture model is responsible of modelling
the cost of communication and computation only. In order to allow applica-
tion models to be executed on architecture models, Spade uses the concept of a
trace driven execution unit (TDEU). The TDEU accepts the high level events
from the application model and translates these into symbolic instructions as
input to the actual architecture model. TDEUs are allowed to communicate
which each other using a generic protocol. It is a manual task to specify the
symbolic instructions and their latency of each TDEU. If multiple application
tasks are mapped to the same TDEU, traces need to be scheduled which is done
as a round-robin scheduling by default. However, means for providing custom
schedulers are provided as well.

The architecture is modelled in Sesame [22] using a library of generic compo-
nents which can be parameterized. Architecture models do not include any
modelling of functional aspects; only the cost of communication and compu-
tation is captured because the functionality of an application is modelled in
the application model. Architecture components are modelled using Pearl - a
discrete-event simulation language [76] - or SystemC. Sesame has extended the
work of Spade and uses the concept of virtual processors, instead of the TDEU
of Spade, to execute the events generated from the application model. Events
from the application model are kept at a very high level of abstraction and a
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fundamental concept is that the application models need not to be changed dur-
ing evaluation of the application on different architecture models. Instead the
virtual processor is refined to reflect the model of the architecture so that they
are aligned. In practice this is done through the use of a trace transformation
technique in which the high level event generated by the application model is
transformed into a sequence of low level events fed into the architecture model.
The trace transformations are specified using Synchronous Data Flow or Integer
Controlled Data Flow specifications [89]. The benefit of this approach is that
the application model can be specified once and for all but as the architecture
model is being described at a lower level of abstraction, specification of the
trace transformations must also take place. Essentially, the implementation in-
dependence obtained at the application model simply moves the implementation
specific trace specification to the mapping layer.

In [101], a framework which also supports the modelling of functionality in the
architecture model is described. In this way, different functional implementation
specific details can be included in addition to the modelling of cost.

In many cases the focus is on processor based architectures for which high level
models of processing elements and abstract operating systems are used. This
is the approach taken in ARTS [68], and it allows for very fast performance
estimates to be generated. However, it is of course obvious that the accuracy
will be rather rough but, nevertheless, it might prove very useful in the early
stages of a system level design flow which targets processor based platforms.
A more recent approach, very similar to the one taken in ARTS for modelling
the target architecture, is presented in [19]. Here, again, high level models
of processors and abstract operating systems are also used to compose models
of an abstract target architecture. The abstract operating systems are simply
modelled as different types of scheduling policies in the case where multiple
tasks are mapped to the same processor.

Newer trends for processor-centric architecture modelling, which are referred
to as virtual platforms, are also seen. Quite often these models are based on
emulation [74] or native execution, possibly with some sort of timing annota-
tion [3, 6], allowing very fast execution times and near-to real-time execution of
applications on the modelled architecture.

At lower levels of abstraction, the processor-centric approaches often rely on cy-
cle accurate instruction set simulators which, unfortunately, impacts simulation
performance but produce very accurate results. In HySim [36] the performance
penalty is limited to some extent and at the same time provides reasonably
accurate estimates based on fast Instruction Set Simulators. HySim employs
a technique in which the application model is being profiled during the per-
formance simulation and the result is stored in a database. If the part of the
application being executed has already been profiled, the profiled result is taken
from the data base instead of doing the actual simulation of the block on the in-
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Figure 2.3: ARTS high level representation of tasks, represented by an execution
time only, and the possible states of the abstract processing elements used.
Figure from [68].

struction set simulator. This boosts the simulation speed significantly; however,
it also gives rise to problems when modelling dynamically changing elements
which impacts the execution time of a block, e.g. caches etc.

Some frameworks use the notion of services to represent the functionality offered
by an architecture model originating from the Polis [12] and the later commercial
tool from Cadence, VCC [69] and the joint Philips/Cadence tool COSY [15]. In
Metropolis [13], a service is simply a method, representing some functionality,
and the efficiency is captured by decomposing each service into a sequence of
events. Each event is then annotated with a cost allowing the efficiency of
the architecture to be evaluated. Like the application model, the architecture
model is composed of processes and media. In this way a decomposition of
each service into events is obtained. Quantity managers are then used to model
the cost of an event. If an event has an associated cost, the event needs to
request the cost from the quantity manger. If the request can be fulfilled, the
event can be allowed to execute - if not, the event must wait until the cost
becomes available. In this way not only costs but also mutually exclusive access
to shared resources is handled by the quantity managers. The architectural
model, however, does not itself implement any functionality but is used solely
to provide a cost measure.

In [101], services are allowed to represent any piece of functionality offered by
both software and hardware components. Furthermore, services are allowed to
be composed of multiple sub-services. Costs are associated with services and
can be specified statically or computed dynamically at runtime. The cost of a
service can be broken down into the cost of sub-services and, in this way, the
different cost contributors can be easily identified.

MILAN [11] provides a framework in which a number of readily used simula-
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tors can be integrated into a unified environment. For architecture modelling,
resource models are used to represent the hardware components of the target
architecture. Resource models are specified as meta-models with a specific set
of parameters. A hierarchical structure is used which allows inheritance. In this
way resource models can inherit shared parameters from models higher in the
hierarchy.

In CASSE [91], target architectures are modelled using abstract components
much similar to ARTS. Support for processing elements including arbiters sup-
porting multiple tasks mapped to the same processing element, storage elements
and communication networks are provided. A proprietary protocol named ICCP
is used to handle communication between the components of the target archi-
tecture model. The ICCP is an abstract protocol capable of capturing a finite
set of real protocols. It is possible to include custom component descriptions
in SystemC however; it then requires support for the ICCP protocol to be
added.

2.4 Mapping

The partitioning and mapping of applications to a particular target architecture
is not a trivial task. This challenge is not addressed here, however, due to the
nature and importance of this task; it is interesting to note how the mapping and
partitioning process is captured in different system level performance estimation
frameworks.

The partitioning and mapping process is not always explicitly represented. In
many frameworks, the mapping of an application to the target architecture is
of great importance performance wise. Frameworks which expose the mapping
step to the user explicitly often allow fewer changes to the system model during
design space exploration.

In general, in order to facilitate an easier mapping process the application models
should:

• Expose task level parallelism

• Have explicit communication requirements.

• Be specified functionally only.

The exposure of the mapping step to the designer allows the designer to in-
vestigate the effect of different mappings. Suppose that the individual tasks of
an application requires functionality offered by several different components of
the target architecture; the mapping to the best suited components in terms of
a given cost metric, then, is dependent on several factors, some of which are
runtime specific.



2.5 Performance Estimation 27

In order to evaluate a given application on a given architecture in Metropo-
lis [13], an explicit mapping is performed. The mapping relates the events of
the functional model with the events of the architectural model. This is done by
specifying which events of the two models that must be synchronized. In this
way the actual execution of a given application model on a given architecture
can be modelled.

MILAN [11] uses constraint models to specify different constraints which a given
model must adhere to. Together with resource and application models, these are
used for composing the structural system model and in this sense the constraint
models are also used to specify valid mappings.

2.5 Performance Estimation

Performance estimation is the process of associating one or more quantitative
cost measures with the system and/or the individual parts of the system in order
to asses the quality of a given system. The cost metric of a given system will then
be the differentiating factor of systems which offer the same functionality. Cost
metrics can, of course, be associated with systems that are physically present.
However, in order to explore a large set of systems, it is of vital importance that
cost metrics can be associated with systems which are not necessarily physically
realized, and thus, allows estimates of the performance of a given system to be
produced, thereby permitting a cost to be associated with the system. In this
way designers can be allowed to choose the best suited system from well defined
criteria.

In most cases the objective space is multi-dimensional, and hence the process of
finding the best suited system can be categorized as a multi-objective optimiza-
tion problem. However, in order to start trying to solve this problem, which
is hard enough in it self, reliable performance estimates of the system must be
available.

Performance estimation of a system can be performed both analytically and/or
through simulations. Analytical methods are most often seen in high level per-
formance estimation methods, whereas simulation based methods are found at
all levels of abstraction. The big benefit of the formal analytical methods is
that these methods are very often exact under the given assumptions, whereas
simulation based methods need not find worst case execution paths.

Important general cost metrics in the domain of embedded systems are the
execution time, the power consumption, the total cost, the silicon area, etc. of
a given application on a given target architecture. Typically, however, there are
application specific cost measures of vital importance as well; thus, a framework
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providing the possibility of estimating performance should be very flexible and
support the possibility of having user defined cost models.

For higher levels of performance estimation, frameworks for the development of
virtual platforms exist. Although, the main focus is on providing means for al-
lowing early software development to take place, these frameworks are also used
for rough performance estimation. In general these frameworks are focusing on
providing a virtual platform for software developers to use in the early design
stages before a physical hardware platform has been realized. Mostly, these
platforms require that applications are already present as source code in e.g.
C/C++. Several of these frameworks are rooted in the instruction set simulator
community and are now being extended to be used in complete system level
designs. The approaches taken in these frameworks are often a combination
of emulation, interpretation and compiled simulation in order to achieve fast
simulation speeds. These approaches are very useful for early software devel-
opment which needs not to wait for the initial hardware bring-up. However,
despite being close to functionally equivalent to the target architecture, many
of the approaches which obtain fast execution times produce only very rough
estimates of the actual system performance.

Some frameworks [27, 36], suggest that costs of the execution of a specific block
should be computed once only and then retrieved when executed again which
will speed up the performance estimation process. In [102] a framework for per-
formance estimation at the system level is presented based on the profiling of a
high level system model described using SystemC. Data transfers are recorded
during the general profiling step and the collected trace is used to construct
a graph representing the execution order of the system. The execution order
graph is then used to generate what is called an architecture level dependency
graph, taking into account the actual execution on the target architecture, which
is specified by the designer as an architecture model. The graph representing
the execution order of the system is generated only once, whereas different ar-
chitecture level dependency graphs are constructed based on the given target
architecture. Using the information about the architectural level execution or-
der, it is possible to generate performance estimates of the system. Performance
estimates are calculated analytically based on information from an IP data base
which is assumed to be available. Only rough estimates can be generated using
this approach; however, this can be done relatively fast as shown in [102].

Trace-driven simulation methods for capturing workload and/or behaviour are
also seen. This is an approach which is inspired by the memory modelling
community in which trace-driven simulations of memory access have been in-
vestigated thoroughly [103]. From the simulation of an application model, a
trace is generated and then fed into the architecture model in order to associate
a quantitative cost measure with the execution of the application. However,
trace-driven simulation methods often experience problems when modelling dy-
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namic effects such as caches, interrupts etc. In [57] traces are also generated
from application models, but, in this case the objective is to statically analyse
the communication requirements of the application in order to design a commu-
nication architecture.

Figure 2.4: Figure from [64], illustrating the principle of trace-driven co-
simulation.

A number of frameworks uses a variation of the trace-driven simulation referred
to as trace-driven co-simulation[22, 63, 107], in which traces are generated and
evaluated dynamically, as illustrated in figure 2.4. Dynamic requests are gener-
ated to functions offered by the architecture by the application models. In this
way allowing e.g. implementation specific cost to be modelled, while still being
able to capture dynamic effects.

In [58] a hybrid trace-driven approach for system level performance estimation
based on a combination of simulation and static analysis of traces is presented.
The objective of the framework is to assess system level performance in com-
munication architecture design; thus, the main emphases is on capturing the
communication requirements of the application and then design an optimal
communication architecture through the application of iterative refinements.
Abstract traces are generated through co-simulation which is then used to es-
timate the performance of particular communication architectures through an
analytical transformation of the abstract trace; the co-simulation is only per-
formed once.

2.6 Summary

In this chapter an introduction to the field of system level modelling and per-
formance estimation was given. A number of frameworks and methods which
can be used partly, or fully, for performance estimation at the system level were
presented.
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As can be seen from this overview, the area of system level modelling and per-
formance estimation is a true multi disciplinary field which have been the focus
of much research for more than a decade under the name system level design
and even longer under different names or interpretations of the name. This
chapter categorized related work within the categories abstraction level, appli-
cation modelling, architecture modelling, mapping and performance estimation
because these are the main ingredients in the system level modelling and per-
formance estimation framework presented in this thesis.

Only a few of the frameworks discussed can be compared directly to the frame-
work presented in this thesis within all categories. However, many frameworks
share similarities within some aspects e.g. with regards to application mod-
elling or platform modelling. However, the frameworks which are most closely
related to the one which is presented in this thesis are the Metropolis [13] and
Artemis [88], Spade [63] and Sesame [22] frameworks. Table 2.1 summarizes
some chosen parameters for a number of the more elaborate frameworks and
tools which have been discussed in this chapter in order for these to be com-
parable. It has been chosen to use parameters which express how systems are
represented as either being Y-chart supported or not, if they can represent ar-
bitrary application types, i.e. not being targeted a specific application domain,
whether multiple models-of-computation can be used and allowed to co-exist
for capturing the behaviour of both the application and the targeted architec-
ture. Finally, parameters such as whether the tool or framework is simulation
based, supports formal analysis and automated design space exploration are
presented.

Metropolis [13] is one of the most comprehensive and theoretically well-founded
frameworks publically available. However, due to a number of limitations espe-
cially regarding the practical mapping of applications onto platform, as discussed
in [27], the framework is not widely adopted. The vast amount of research and
experience, however, is now continued in Metro II [27] which addressed these
exact limitations. Spade [63] and related projects are also very comprehensive
works which allow performance estimation at the system level. However, these
frameworks only target stream based applications limiting the scope of the use
to the class of multimedia applications.

As already stated in chapter 1, this thesis presents a framework for system level
modelling and performance estimation using a unified modelling approach for
capturing both hardware and software parts, supporting a gradual refinement
of components and allowing multiple models-of-computation to co-exist and
communicate.
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On the other hand, the framework presented here, lacks the support for for-
mal analysis which is found in Metropolis and currently only automatic de-
sign space exploration is provided at a level which is mostly meant as proof-of-
concept.



Chapter 3

Service Models

This chapter introduces the service model which is the fundamental modelling
component of the system level modelling and performance estimation framework
presented in this thesis. Service models are used for modelling the individual
components of which an embedded system is composed using a unified modelling
approach capable of capturing both hardware and software elements.

The service model can be viewed as a meta-model capable of capturing the be-
haviour of the components of which the application and the target architecture
are composed at arbitrary levels of abstraction. The meta-model allows differ-
ent models-of-computation to co-exist and provides semantics for inter-model
communication across abstraction levels and provides a clean and simple solu-
tion for separating the specification of functionality, cost, communication and
implementation following the principles advocated in [48].

In the following, the basic properties of service models will first be introduced.
The means for separating the modelling of functionality, implementation, com-
munication and cost will be presented and the composition of service models
will be explained. Finally, it will also be discussed how the existence of multi-
ple abstraction levels are supported within the same model instance and how
abstraction level refinement can be performed.
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3.1 Service Models

A service model captures the functional behaviour of a component through the
notion of services. Services are used to represent the functionality offered by
a given component without making any assumptions about the actual imple-
mentation. Concrete examples of services are functions of a software library,
arithmetic operations offered by a hardware functional unit or the instructions
offered by a processor depending on the level of abstraction used to model the
component.

The functionality offered by a service model, represented as services, can be
requested by other service models through requests to the offered services. The
detailed operation of a service model, i.e. the implementation of the services
offered, is hidden to other models. In that sense a service model can be viewed
as a black box component and it is only the services offered which are visible and
not their implementation. Service models can be described at multiple levels of
abstraction and need not be described at the same level in order to communicate.
The clear separation of functionality and implementation through the concept
of services implies that there is no distinction between hardware or software
components seen from the point of view of the modelling framework. It is the
cost associated with each service which eventually dictates whether a component
is modelling a hardware or software component.

SERVICE MODEL

IMPLEMENTATION

PASSIVE 

INTERFACE

ACTIVE 

INTERFACE

REQUIRED 

SERVICES

OFFERED 

SERVICES

SERVICE

REQUESTS

SERVICE

REQUESTS

Figure 3.1: The service model basics.

A service model is composed of one or more service model interfaces and a
service model implementation as illustrated in figure 3.1. Interfaces are used
to connect models, allowing models to communicate through the exchange of
service requests. In this way, there is a clear separation of how behaviour and
communication of a component is described. The service model interfaces pro-
vide a uniform way of accessing the services offered as well as enabling service
models to communicate and facilitate structural composition by specifying the
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sets of services which are offered and are required by the model. It is the ac-
tive interfaces which specify required services and the passive interfaces which
specify the offered services. In this way, structural composition is dictated by
the interfaces each service model implements and subsequently by the services
offered and required. Only models fulfilling the required-provided service con-
straints can be connected together. Whereas it is the interfaces which dictate
the compositional rules, it is the service model implementation which is respon-
sible for specifying the actual behaviour of the service model by implementing
the functionality of each of the services offered and possibly associate a cost
with these.

The use of services allows a decoupling of the functionality and of the imple-
mentation of a component. In this fashion, several service models can offer
the same service, implemented differently, however, and thus having different
costs associated. In this way different implementations can be compared and
evaluated based on a specific, preferred cost metric.

Inter-model communication is handled through service requests which have the
benefit of allowing the initiator model to request one of the services specified,
as required by the model, without knowing any details about the model which
provides the required service or how it is implemented. When the service is
requested, the service model providing the required service will execute the
requested service according to the specification of the model. When the service
has been executed, the initiator model is notified that the execution of the
service requested is done.

3.2 Service Model Interfaces

In order to facilitate structural composition of models and to allow commu-
nication between models, possibly described at different levels of abstraction,
interfaces are used. The interfaces directly impose the compositional rules which
specify how models can be connected by allowing only interfaces fulfilling the
required-provided service constraints to be connected.

The use of interfaces also implies that multiple implementations of a service
model can be constructed and be seamlessly interchanged allowing different im-
plementations to be investigated and described at different levels of abstraction,
constrained only by the requirement that the service model implementations
considered must implement the same interfaces.

Two types of interfaces are defined:

• The Passive service model interface specifies a set of services that the
model which implements the interfaces offers to other models. The passive
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interface also includes structural elements allowing the interface to be
connected to an active interface as well as provide means for requesting
the services offered.

• The Active service model interface specifies a set of services which are
required to be available for the model which implements the interface. The
set of required services becomes available for the model which implements
the active interface, when the active interface is connected to the passive
interface of a service model which offers a set of services in which the
required set of services is a subset.

Active service model interfaces can only be connected to passive service model
interfaces in which the set of services required by the active service model inter-
face is a subset of the services offered by the passive service model interface. In
essence, the compositional rules, which specify which active service model inter-
faces can be connected to which passive service model interfaces, is dictated by
the services required and services offered by the two connecting interfaces.

3.3 Service Model Implementations

In order to capture the behaviour of a service model, the service model im-
plementation must be defined. It is the service model implementation which
captures the actual behaviour of a service, possibly taking implementation spe-
cific details into consideration. A service model must provide an implementation
of all services offered by the passive interfaces implemented and optionally spec-
ify the latency, resource requirements and cost of each service. There are no
restrictions on how the implementation of a service should be made. The ab-
stract representation of the functionality, using services, implies that there is
no immediate distinction between the representations of hardware or software
components. Whether a service model represents a hardware or software com-
ponent is determined solely by its implementation and, eventually, its cost and
thus a very elegant unified modelling approach can be achieved.

IDLE

ACTIVE BLOCKED

Figure 3.2: The possible states of a process of a service model.
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Service models use concurrently executing processes as the general execution se-
mantics. The service model implementation can contain one or more processes
which each have the possibility of executing concurrently. A process executes
sequentially and inter-process communication within a service model is done
through events communicated via channels in which the order of events is pre-
served. All inter-model communication between processes residing in different
service models is done using service requests via the service model interfaces
defined by the model in which the processes reside.

A process can be in one of three states: Idle, active or blocked as shown in
figure 3.2 which also shows the valid transitions between the possible states. If
a process is idle, it indicates that it is inactive but ready for execution upon
activation. If the process is active, it is currently executing. If a process is
blocked, it is currently waiting for a condition to become true and will not
resume execution until this condition has been fulfilled.

In order to overcome the problem of finding a single golden model-of-computation
for capturing all parts of an embedded system, the service model concept sup-
ports the existence of multiple different models-of-computation within the same
model instance. Figure 3.3 shows an example of a system composed of ser-
vice models, each described by a different model-of-computation. The service
model concept allows these to co-exist and communicate through well defined
communication semantics in the form of service requests being exchanged via
active-passive interface connections.

SERVICE MODEL

PASSIVE INTERFACE

SERVICE MODEL SERVICE MODEL

IActiveInterface aif = ..

whlie(true){

// DO SOME PROCESSING

// REQUEST EXECUTION

aif.request(”EXE”,..);  

}

ACTIVE INTERFACE ACTIVE INTERFACE

PASSIVE INTERFACE

Figure 3.3: The service model concept provides support for heterogeneous
models-of-computation to co-exist.

Interesting work on supporting multiple different models-of-computation within
a single model instance is presented in the theoretically very well founded tagged
signal model [59] and in the absent-event approach [43]. Both approaches show
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that it is possible to allow models-of-computation, defined within different do-
mains, to be coupled together and allowed to co-exist within the same model
instance. In principle, the service model concept does not impose a particu-
lar model-of-computation; the individual models can be described using any
preferred model-of-computation as long as communication between models is
performed using service requests.

Currently, the focus of the framework is the modelling of the discrete elements of
an embedded system only, i.e. hardware and software parts which can be repre-
sented by untimed, synchronous or discrete time based models-of-computation.
Most embedded systems also contain elements of an analogue nature either in
the form of analogue electronics or if parts of the environment need to be mod-
elled in order to generate accurate performance estimates. In such cases, the
service model approach could most likely be used as well. To be conclusive,
this requires more in-depth investigations. The idea, however, is that one would
have the analogue element described by a continuous time model-of-computation
which would then be evaluated at discrete time instances defined by the arrival of
a service request to the model representing an analogue element. Care should be
taken in order to obtain correct behaviour, as this would correspond to perform-
ing an A/D or D/A conversion depending on the direction of the communication
which includes a number of pitfalls which will not be disused here.

In order to synchronize models described using different models-of-computation
and ensure a correct execution order, the underlying simulation engine is as-
sumed to be based on a global notion of time which is distributed to all pro-
cesses, no matter which model-of-computation is used, as opposed to both the
tagged signal model and the absent event approach which distributes time to
the different processes through events and the special absent event respectively.
The drawback of using a global notion of time is that processes cannot inde-
pendently execute which impacts simulation performance - it is very hard to
parallelize such a simulation engine - however great expressiveness can be ob-
tained. The simulation engine also tags all events with a simulation time value
so that the event can be related to a particular point of simulation time no
matter which model-of-computation was used to describe the process that gen-
erated the event. However, this does not mean the individual service models
need to use this time tag and it is merely a practical requirement in order to
schedule the execution order of the processes of the individual service models.
A realization of such a simulation engine will be described in more detail in
section 5.2 in which a delta-delay based notion of time is used.

Service models which have processes described using untimed models-of-computation
obviously have no notion of time and perform computation and communication
in zero time. This implies that a process of a service model described using an
untimed model-of-computation is activated on the request of services offered by
the model only.
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Service models having processes described using synchronous models-of-computation
do not use an explicit notion of time; instead a notion of time slots are used.
In order for such models-of-computation to be used, the service model using
a model-of-computation within this domain must specify the frequency of how
often the processes of the model should be allowed to execute. The simulation
engine will then ensure that the processes are evaluated at the specified fre-
quency, in this way implicitly defining the actual time of the current time slot
of the model.

Timed models-of-computation are supported directly by the simulation engine
which provides a global notion of time which can be accessed from all processes.
In this way, a process can describe behaviours which use timing information
directly.

The generality of service models impose only a few restrictions on the model-of-
computation used to capture the behaviour of the component being modelled.
New models-of-computation can be added freely under the constraint that they
must implement inter-model communication through the exchange of service
requests and they must fit under the general execution semantics defined - i.e.
it must be possible to implement the preferred model-of-computation as one or
more concurrently executing processes. It is the implementation of the service
models which determines their actual behaviour and thus it is the designer of
the service model implementation who determines the model-of-computation
used.

3.4 Service Requests

As mentioned, all inter-model communication is modelled using service requests
exchanged via active-passive interface connections. A service request can be
viewed as a communication transaction between two components, similar to the
concept of transaction level modelling [16]. However, it is the implementation
of the two service models which will determine if the service request will be
implemented as a function call from e.g. a sequential executing piece of code to
a function library or if it will be a bus transfer. Communication refinement is
supported in several ways. Service requests can include arbitrary data structures
as preferred by the designer of the model. If a communication channel needs to
be modelled, an extra service model can be inserted between the two primary
communicating service models as illustrated in figure 3.4. The extra service
model inserted will be transparent to the two communicating service models.
In this way e.g. simple properties such as the reliability of the communication
channel can be modelled. More elaborate communication inter-connects such as
buses; network-on-chips etc. can also be modelled.

A service request specifies the requested service, a list of arguments (which can
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MODEL A

ACTIVE
INTERFACE

MODEL B

PASSIVE 
INTERFACE

(a) Model A is the active model, initiating com-
munication with model B.

MODEL A

ACTIVE
INTERFACE

MODEL B

PASSIVE 
INTERFACE

INTER-CONNECT STRUCTURE/
COMMUNICATION CHANNEL

ACTIVE
INTERFACE

PASSIVE 
INTERFACE

(b) The communication medium is now modelled
explicitly using a seperate service model

Figure 3.4: Inter-model communication.

be empty) and a unique request number used to identify the service request, e.g.
in order to annotate it with a cost. The argument list can be used to provide
input arguments to the implementation of a service, e.g. to allow the modelling
of dynamic dependencies or arithmetic operations on actual data values. De-
pending on the implementation of the service model, an arbitrary number of
service requests can be processed in parallel, e.g. modelling operating system
schedulers, pipelines, VLIW, SIMD, and super scalar architectures.

A service request can be requested as either blocking or non-blocking. It is the
designer of a model who determines whether a service request is requested as
a blocking or non-blocking request. The request of a blocking service request
implies that the process of the source model which requested the service request
is put into its blocked state until it has been executed, indicated by the des-
tination model, as illustrated in figure 3.5. A non-blocking service request, on
the other hand, will be requested and the process of the source model, which
requested the service request, will carry on - not waiting for the execution of
the request to finish.

A number of events are associated with a service request in order to notify
the requester and receiver model of different phases of the lifetime of the ser-
vice request. The lifetime and corresponding events of a service request is as
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Figure 3.5: A process of model M1 requests a blocking service request from M2.
M1 is blocked until the completion of the request.

follows:

1. The service request is being requested, indicated by a service request
requested event.

2. The service request is being accepted for processing of the model by which
it is requested, indicated by a service request accepted event.

3. The service request might be blocked, indicated by a service request
blocked event

4. The service request has been executed, indicated by a service request
done event.

When a service request is being requested at a model interface, the receiver
model has the possibility of receiving a notification in order to change its status
to active. The requesting service model will similarly have the possibility of
being notified when the request is accepted for processing in the receiver model,
i.e. prior to the actual execution of the service request, as well as when it
has finished executing the service request. During the evaluation of a service
request, the request itself can become blocked due to one or more requirements
not being fulfilled, e.g. due to mutually exclusive access to resources, missing
availability of data operands, etc. When a service request is being blocked during
evaluation, the source model is notified in order to allow it to take appropriate
actions, if any. However, the author of the requesting service model need not
be interested in receiving these notifications and, hence, the model is allowed to
ignore these. In this way it is the designer who chooses event sensitivity for the
individual processes of the service model implementation.
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In order to handle multiple simultaneous service requests, the designer of a
service model must incorporate a desired arbitration scheme. The arbitration
scheme may be an integrated part of the model or it may be a separate service
model itself. The latter is often advantageous if different arbitration schemes
are to be investigated.

3.4.1 Composition

In order to tackle complexity, the service model concept supports both hierar-
chy and abstraction level refinement. In this case, the term abstraction level
refinement covers the process of going from a high level of abstraction to a lower
level through gradual refinements of a given component, in this way replacing
one component with a more detailed version as illustrated in figure 3.6.

SERVICE MODEL

SERVICE MODEL

IPassiveInterface pif =...

whlie(true){

// WAIT FOR REQUEST

IServiceRequest sr = pif.wait();

// DO SOME PROCESSING

// SIGNAL DONE

sr.done();  

}

PASSIVE INTERFACE

PASSIVE INTERFACE

SERVICE MODEL

PASSIVE INTERFACE

Q

Q
SET

CLR

D

REFINE

REFINE

Figure 3.6: Abstraction level refinement.

This type of refinement is supported quite easily by the service model concept
because of the fundamental property of the service model in which the func-
tionality offered by a model is separated from the implementation. Two service
models implementing the same set of interfaces, and thus offering the same set
of services, can be freely interchanged even though they differ in the level of
detail used to model the functionality offered.
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Furthermore, service models can be constructed hierarchically in order to inves-
tigate different implementations of a specific subpart of the model or in order
to hide model complexity. One service model can be composed of several sub-
service models. However, it will then be only the interfaces implemented by the
topmost model in the hierarchy which dictate which services are offered to other
models. The hierarchical properties, combined with the use of interfaces, imply
that designers who are using a model need only know the details of the interfaces
implemented by the model and need not be concerned about the implementation
details at lower levels in the model hierarchy.

3.5 Summary

A service model can be viewed as a black-box component. The behaviour of a
service model is determined by the services requested via its active interfaces.
The use of interfaces and service requests implies that there are no restrictions
on the service model implementation which is the part of the service model that
actually determines the behaviour.

The simplicity of the unified model for capturing both hardware and software
is one of the strongest properties of the service model concept. There is a clear
separation of the specification of functionality and implementation, and design-
ers need not think about how a component will be implemented, nor if it will
be implemented in hardware or software until a desired point in the refinement
process. This allows a broader search of the design space because the decision
of how to implement a given component will be based on the system model
which has the best performance in terms of a well-defined cost-metric based on
quantitative performance estimates generated through the use of the presented
simulation based system level performance estimation framework.

Furthermore, the service model concept allows a gradual refinement of compo-
nents as desired by the designer. The goal of the gradual refinement of the
components is to reach a level of abstraction from which the actual synthesis of
the implementation of the system can take place.
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Chapter 4

A Framework for System
Level Modelling and

Performance Estimation

In this chapter the system level modelling and performance estimation frame-
work which is one of the main contributions of the work carried out in the course
of this project will be presented. The chapter presents the major elements of
the framework and describes how performance estimation at the system level
can be carried out.

The framework presented in this thesis does not strictly enforce the use of a
specific design methodology and thus can be used in several ways. However, as
already mentioned, the framework is related to the Y-chart approach [12, 50]
and leverage principles of the Platform Based Design (PBD) paradigm [48]. As
a consequence, a separate specification of the application (functionality) and
the target architecture (implementation) is used in the framework in the form
of an application model and platform model respectively. In this way favouring
design methodologies based on these principles.

Abstraction level refinement is performed independently for the application and
platform model as illustrated in figure 4.1. Thus, the possible abstraction level
of the system model is a 2-dimensional plane spanned by the abstraction levels
of the application and platform model respectively. Different paths can be
taken through the abstraction level space of the system model as shown, e.g.
A and B in the right part of figure 4.1. The framework, however, imposes no
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requirements of how the refinement process should be performed. In most cases,
a top-down approach is preferable but not mandatory. Using the framework in
a top-down approach allows an iterative refinement of models, lowering the level
of abstraction used to describe the system. The iterative approach ensures that
at each iteration level, the refined model can be verified against the previous
level, making the task of verification easier. At some point the abstraction level
of both the application model and platform model will reach a level suitable for
implementation as illustrated in the point referred to as implementation model
in figure 4.1.

APPLICATION
MODEL

HIGH

LOW

PLATFORM
MODEL

HIGH

LOW

HIGH

HIGH

LOW

LOW

IMPLEMENTATION
MODEL

PLATFORM
MODEL

APPLICATION
MODEL

A

B

SYSTEM
MODEL

Figure 4.1: Abstraction level refinement. The application model and the plat-
form model can be refined individually, thus the resulting abstraction level of the
system model is a 2-dimensional plane spanned by the application and platform
model abstraction levels respectively.

In the following, it will first be discussed how the functional behaviour of appli-
cations are captured in the form of an application model followed by a descrip-
tion of how models of a target architecture are constructed and modelled in a
platform model. Finally, the focus will be on the complete system model which
relates the application model to the platform model through an explicit mapping
step and how performance estimation can be carried out through simulations of
a system model.

4.1 Application Modelling

In the framework, applications are represented by application models which are
composed of an arbitrary number of parallelly executable components, referred
to as tasks. Application models are used to capture the functional behaviour and
communication requirements of the application only. The goal of an application
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model is to expose as much inherent task level parallelism as possible, as well
as the inter-task communication requirements, in order to ease the mapping
process.

In the general case, a strict separation of the functional behaviour, communi-
cation requirements and implementation of an application must be applied in
order for the application to be platform independent. Thus, no assumptions on
how the application is implemented should be made. However, in some cases
it might actually be desirable to include platform specific information in the
application model, e.g. in the case where an existing platform is being modified
and, thus, support for including implementation specific details in the applica-
tion model is provided. However, it will reduce the number of platforms onto
which the application model can be mapped.

As already mentioned, the tasks of an application model communicate through
the exchange of service requests, as described in section 3.4, making commu-
nication explicit and implementation independent, following the concepts of
which the framework is founded of separating functionality from implementa-
tion. Inter-task communication can occur directly between tasks or, if preferred,
via abstract buffers. Abstract buffers are also modelled using service models and
can be bounded or unbounded. There are no restrictions on the type of buffers
which are supported - the type of buffers used is determined by the designer
of the application model. Thereby, a separation of the functional behaviour of
a task and the communication requirements is obtained. This makes commu-
nication explicit which makes the later mapping of the task easier and, more
importantly, it makes the application model independent of the underlying im-
plementation.

TASK1 TASK2 TASK3

Figure 4.2: A simple application consisting of three tasks.

Figure 4.2 shows a simple application consisting of three tasks. In an applica-
tion model each task is represented by a service model, as shown in figure 4.3,
each having a single process associated. In this way tasks have a process-like
behaviour during simulation. This implies that tasks are modelled as executing
concurrently and that the individual task executes sequentially until it makes
a blocking service request through one of the active interfaces implemented by
the service model representing the task.

Application models can be executed and used for verifying the functional be-
haviour of the model and in this way can be used as an executable specification
of the targeted functionality; however, at this level of abstraction there is no no-
tion of time, resources or other quantitative performance estimates. In order to
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Figure 4.3: The corresponding application model for the application shown in
figure 4.2 with tasks and implicit buffers represented as service models.

obtain these, the tasks and buffers of the application model must be mapped to
the components of a platform model. When the tasks of an application model
are mapped to the processing elements of a platform model, the tasks, when
executed, can request the services offered by the processing elements, modelling
the execution of a particular functionality or set of functionalities. The services
required by an application model must be offered by the platform models in
order to be valid candidates for execution of the given application model.

The service model concept provides great flexibility and several different model-
ing approaches are supported for capturing applications. In general, the concept
allows a dynamic co-execution of application and platform components through
the unified representation of hardware and software elements. Services offered
by other components are requestable through the concept of service requests.
This implies that service requests can either be generated dynamically during
simulation at one extreme and, at the other, simply be a recorded trace which
is being played back.

In the next section, it will be described how quantitative performance estimates
can be associated with the execution of an application model using a model of
the target architecture represented by a platform model.

4.2 Architecture Modelling

In order to capture the behaviour of a given target architecture platform, models
are used. In contrast to the application models, the goal of the platform model
is to capture a specific implementation of the functionality offered by the target
architecture.

A platform model must offer all the services required by the application models,
which are mapped to the platform, in order for the platform to be valid. Several
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platform models can offer the same set of services, representing the same func-
tionality, through different implementations. The differentiating factor, how-
ever, will then be the cost associated with the execution of the applications on
each of the candidate platforms.

The platform model is used for two purposes. Firstly, the platform model allows
costs to be associated with the specific system realization, allowing designers to
associate a cost with the execution of an application on the specific platform.
The individual service models of a platform model associate a cost with each
service offered determined by the designer of the model. Secondly, implemen-
tation specific functionality can be modelled in the platform model so that e.g.
the computation of a given value is done in accordance with the actual imple-
mentation.

In this way, it is the service models of the platform model which allow design-
ers to associate quantitative cost with the execution of an application model.
Without a platform model, the service models of an application model simply
execute in zero time and have no cost associated. When the tasks of an appli-
cation model are mapped to the processing elements of the platform model, it
becomes possible to capture resource requirements, quantitative costs and asso-
ciate a time measure with the execution of the application model on the target
platform. In this way, it is the platform model which brings a notation of time
into the simulations and thus orchestrates the execution of a given application
model with respect to the timing and resource requirements defined by the in-
dividual parts of the application model executing on the platform model.

The elements of a platform model can be both hardware and software and
depending on the level of abstraction used, the decision as to which components
are implemented in hardware or software need not be decided until a late stage
in the design process. Through a refinement of the platform model, a level at
which the co-design problem of choosing which components are implemented in
software and hardware can eventually be addressed. However, in most practical
cases, in order to associate a reliable cost with the functionality offered by a
given component, considerations of how the functionality offered is implemented
should be made.

The platform model of a given target architecture is implemented as a service
model having one or more passive service model interfaces, as illustrated in
figure 4.4. Platform models are composed of an arbitrary number of service
models, each modelling a component of the target architecture and, so, form a
hierarchical model. The compositional properties of service models even allow
multiple platform models to be merged into a single platform model. In this way,
a modular approach can be taken in which sub-blocks of the target architecture
is modelled and explored individually if preferred.

The resulting set of services offered by a platform model is dictated by the
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Figure 4.4: Illustration of a simple platform model consisting of two processing
elements both connected to a block of shared memory.

composition of internal service models. From the tasks of the application mod-
els, which are mapped to the platform, the services of the platform model are
accessible through the passive service model interfaces, allowing the task to
request the services offered during simulation, modelling the execution of the
task.

The platform model also specifies how the service models of which it is composed
are inter-connected, thereby specifying the communication possibilities of the
models. There are no restrictions on how inter-component communication is
modelled, nor on the level of abstraction that is used, implying that, in principle,
all types of inter-component communication methods are supported. In this way,
platform models can represent arbitrary target architectures.

4.3 System Modelling

In order to capture the complete system, a system model, constructed by map-
ping the service models of one or more application models onto the service
models of a platform model, is used.

The application model is a functional model of the application and does not
make any assumptions on the implementation. Thus the application model
does not in itself address the hardware/software co-design problem; this impor-
tant problem is not decidable until the application model is being mapped to
a platform model. The separate specification of the application and platform
model, following the principles of the y-chart methodology, implies that one ap-
plication model described at a particular level of abstraction can be mapped to
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an arbitrary number of platform models, offering the required services, without
changing the application model. In this way allowing different platforms to be
evaluated and compared or even the same platform captured at different levels
of abstraction.

Quantitative costs can be associated with the services offered by a platform
model, and through a co-execution of the application model and the platform
model, the total cost of executing the application model on the specific plat-
form model instance can be calculated. In this way it is the application model
which is driving the simulation by requesting services offered by the platform
model.

The tasks of an application model can be categorized as being either functional,
mixed or implementation tasks when used in the composition of a system model
as illustrated in figure 4.5. The categories do not constrain the level of ab-
straction used to describe the tasks but are used solely to express how the
functionality of the task is being modelled within the system model. In general,
the obtainable accuracy is highest using tasks belonging to the implementation
category, however, this need not to be the case.

APPLICATION PLATFORM

OBTAINABLE 
ACCURACY

LOW

HIGH

FUNCTIONAL

MIXED

IMPLEMEN-
TATION

Figure 4.5: Illustration of the tasks categories. In general, the obtainable accu-
racy is highest using tasks belonging to the implementation category, however,
this need not to be the case.

A functional task is modelled solely within the application model and has no
costs associated. Such task types are used for behavioural purposes only.

A mixed task is a task which is mapped to a processing element of the platform
model in which only part of the functionality is modelled in the platform model,
leaving the remaining part to be modelled in the application model. Cost and
resource requirements can be included as well, depending on the abstraction level
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used to describe the processing element of the platform model. An example of a
mixed task could be when a task is implementing loop control in the application
model directly, and only part of the functionality and/or the cost of the loop
body through requests to services offered by the service model of the processing
element in the platform model onto which the task is mapped.

The use of mixed tasks is particularly useful in the early stages of the design
process where rough models of the platform might be constructed. In such a
scenario, fast estimations of the effect of adding redundant hardware support for
specific operations, or even rough estimates of the effect of using multi processor
systems, the effect of buffer sizes etc. can be explored. This scenario might be
refined to a level where cycle accurate and bit true models are described but still
leaving the control flow of the application to be handled in the application model
and modelling only the cost of control operations in the platform model.

An implementation task is a mapped task which is represented solely by a set of
requests to the services offered by the processing element of the platform model
onto which it is mapped. In this case, the complete functionality is modelled in
the platform model. Consequently, the complete task is represented by a service
request image, directly equivalent to a binary application image for a processor,
and the application model is not evaluated during simulations which, compared
to models described at the same level of abstraction, results in a speed-up in
simulation time. A second advantage of the support for implementation tasks
is that a platform model described at this level of abstraction can also be used
for performance estimation of compiler technologies.

It is important to notice that tasks belonging to the three categories can be
mixed freely, providing great expressiveness and flexibility. Thus, depending
on the level of abstraction used to describe the service models of a platform
model, the execution of a requested service can model the actual functionality
of the target architecture. Furthermore, the required resources and their cost
in terms of e.g. latency or power can be included. Thereby, the functionality of
the application model mapped to the platform model is modelled according to
the actual implementation, including e.g. the correct bit widths and availability
of resources, simply by refining the platform model without changing the appli-
cation model. It then becomes possible to annotate the cost of the execution
with the given task in the application model and, so, it adds a quantitative cost
measure for use in the assessment of the platform.

It is a requirement that a given mapping is valid in order for the resulting system
model to be used for performance estimation through simulations. A mapping
is said to be valid, if and only if, all the requested services of a given application
model are offered by the processing elements of the platform model onto which
it is mapped. However, it is not a requirement that all tasks of an application
model are mapped to the processing elements of a platform model. In the
case where a task of an application model is unmapped, only the functional
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behaviour of the tasks is modelled and no performance estimates are associated
with that particular task. Currently, the validity of a mapping is determined
during runtime only, resulting in an error during simulation in the case of an
invalid mapping. In the future, however, tools for performing such checks prior
to runtime will be constructed. Also, future work will include the possibility of
performing checks for the semantic validity of specific mappings to ensure, e.g.,
that no dead locks occur in a given mapping.

If multiple service models of the application model are mapped to the same
service model of the platform model, a scheduler should be provided as part of
the platform model. Schedulers are implemented as separate service models e.g.
acting as abstract operating systems. When the tasks of an application model
are mapped to the processing elements of an application model this is done by
mapping the active interfaces of the tasks of the application model onto the
passive interfaces of the processing elements of the platform model.

The use of services implies that a high level of flexibility is obtainable and
that it is possible to perform high level performance estimates using services
with a high level of granularity only, ranging to low level execution of the actual
implemented applications. The required services of the application model under
consideration can be used to guide the selection of platform components from a
library. In this way the required services of the application model can be used
to synthesize the target architecture.

4.4 Summary

In this chapter one of the main contributions of the work that has been carried
out during the course of this Ph.D. study - the system level modelling and
performance estimation framework - was presented.

The framework is related to what is known as the Y-chart approach [12, 50]
and leverages principles of the Platform Based Design (PBD) principle [48].
The functional requirement of applications is captured by application models
specifying the functional behaviour and abstract inter-task communication re-
quirements. The target architecture is modelled by a platform model possibly
composed of both hardware and software components. The application model
is then related, through an explicit mapping step, to the platform model form-
ing a system model. Quantitative performance estimates can then be produced
through simulation.

Application models are used to capture the functional behaviour of the appli-
cation considered. Preferably described in such a way that inherent task-level
parallelism is exposed making inter-task communication requirements explicit.
It is very much desirable to have application models describe without any as-
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sumptions of the implementation in order to maximize the possible platforms
for execution of the application.

Platform models, on the other hand, are used to capture the implementation
details, including the cost, of a particular target architecture. The target archi-
tecture can be used to associate a cost with the execution of a given application
on the specific architecture. However, it is also possible to model the actual im-
plementation specific functionality in the platform model, in this way reflecting
the actual implementation, without having to change the application model.
And, so, the same application model can be modelled as executing on many
different platform models very easily, allowing these to be compared based on a
desired cost metric chosen by the designer using the framework.

Quantitative performance estimates are produced through the simulation of a
system model. It is the system model which, through an explicit mapping of the
components of an application model onto the components of a platform model,
brings the two models together and allows a modelling of the execution of the
application on a specific target architecture.

Fundamental to the framework is the service model concept which allows a
unified modelling of embedded systems and which supports a gradual refinement
of abstraction levels and allowing components described at different abstraction
levels to co-exists. Service models are used for modelling components of both the
application and target architecture. Through the use of services it is possible to
achieve a decoupling of the specification of functionality, communication, cost
and implementation. The notion of services plays a vital role in the system level
performance estimation framework presented. Services are used to represent
functionality of the components of which a system is composed. It is the notion
of services which is the enabling factor for the unified approach presented here for
modelling complete systems composed of both hardware and software elements.
Services offered by a service model may themselves be requiring the presence
of other services, i.e. offered by other service models. The use of services
to abstract away implementation details implies that there is no distinction
between components actually being implemented in hardware or software. In
the early design phases this is of great benefit allowing the design space to be
explored without the constraints of an unjustified co-design choice of whether
the component is implemented in hardware or software. The co-design problem
can be addressed based on actual quantitative performance estimates such that
the decision of implementing a component in either hardware or software can
be based on a sound and well-founded basis.
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Chapter 5

Realization of the Framework
for System Level Modelling

and Performance Estimation

In this chapter an overview is given of the currently realized framework devel-
oped during the course of this Ph.D. study. The framework implements the
concepts presented in the previous chapters and includes a custom simulation
engine and a number of tools and libraries for supporting the practical use of
the framework. The focus of the chapter is on the practical aspects of using the
framework.

The objective of having a realization of the framework is to allow a proof-of-
concept based on a practical evaluation. Thus, it was of the utmost impor-
tance to have maximum flexibility of the underlying simulation engine as well
as the possibility of modifying and controlling all aspects of this. Therefore,
it was decided to implement a custom simulation engine instead of using e.g.
SystemC and the discrete event simulation engine supplied with the SystemC
libraries.

However, during the last couple of years, as SystemC have gained even more
widespread adoption throughout the industry, especially after the TLM 2.0 stan-
dard was released, SystemC is becoming more and more attractive for the im-
plementation of a framework such as the one presented in this thesis. The re-
strictions of a proprietary framework as the one presented in this thesis severely
limits a widespread use. The presented framework, however, is by no means
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bound to the current implementation and an investigation of an implementa-
tion of the current framework in e.g. SystemC could (should) be performed in
the future.

5.1 The Current Implementation

The current implementation of the framework is done in Java [73] and models are
specified directly in Java as well through the use of a number of libraries devel-
oped for supporting the concept of service models, application models, platform
models and system models. In addition to the libraries a simple graphical user
interface has also been implemented.

<?xml version=” 1 .0 ”?>
<system>

<a p p l i c a t i o n name=” Applicat ionX ” id=” a p p l i c a t i o n ”
c l a s s=” . . ApplicationModelX ”>
<se rv iceMode l id=” a p p l i c a t i o n . task0 ” c l a s s=” . . . Task0” />
<se rv iceMode l id=” a p p l i c a t i o n . task1 ” c l a s s=” . . . Task1” />
. . .
<se rv iceMode l id=” a p p l i c a t i o n . taskN” c l a s s=” . . . TaskN” />

</ a p p l i c a t i o n>

<plat form name=”PlatformX” id=” plat form ”
c l a s s=” . . PlatformX”>

<se rv iceMode l id=” plat form . pe0” c l a s s=” . . . ASIP”>
<argument id=”FCLK” value=”25” />

</ serv iceMode l>

<se rv iceMode l id=” plat form . pe1” c l a s s=” . . . DSP”>
<argument id=”FCLK” value=”50” />

</ serv iceMode l>
</ plat form>

<mappings>
<mapping source Id=” a p p l i c a t i o n . task0 ” t a r g e t I d=” plat form . pe0”>

< i n t e r f a c e a c t i v e=”EXECUTE” pas s i v e=”TASK” />
</mapping>

<mapping source Id=” a p p l i c a t i o n . task1 ” t a r g e t I d=” plat form . pe1”>
< i n t e r f a c e a c t i v e=”EXECUTE” pas s i v e=”TASK” />

</mapping>

<mapping source Id=” a p p l i c a t i o n . taskN” t a r g e t I d=” plat form . pe2”>
< i n t e r f a c e a c t i v e=”EXECUTE” pas s i v e=”TASK” />

</mapping>
</mappings>

</ system>

Listing 5.1: System model configuration in XML.
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The graphical user interface is built on the Eclipse [32] platform. It allows
simulations to be controlled and inspected in a more convenient way than pure
text based simulations.

Java as implementation language brings several benefits with respect to porta-
bility of the implemented simulation framework; however, Java is not optimal
for specifying models as done currently. The development of a custom language
as specification language to address this issue has been considered but it has
not been deemed of vital importance to the current objective of the framework
in which the focus is still mainly on a proof-of-concept.

The core implementation provides classes for describing service models, appli-
cation models and platform models as well as a simulation kernel which allows
system models to be simulated. In addition to the core components, a number
of utility interfaces and classes are used to provide unified access to elements of
the models in order to allow a graphical user interface to present information
about e.g. a service model.

The composition of a system model is specified using a XML configuration file.
The configuration file specifies the application model and platform model to
use, the components of each which are to be used as well as the mapping of
application model components onto platform model components. The use of a
configuration file provides an easy way for configuring system models through
simple declarative constructs. An example of a configuration file is shown in
listing 5.1.

Figure 5.1 shows a screen shot in which a system model is being simulated.
The system model of the example is composed of four service models which are
named i2c, source, sink and svf0 as can be seen in the debug-view.

In this case the model is used as an instruction set simulator supporting break-
points, single stepping through service requests and general simulation. The
service request currently being requested to be executed in the processor service
models includes a reference to the corresponding assembly level source code al-
lowing this to be displayed in the graphical user interface as well. The framework
also provides a view of any declared state holding elements of a service model
through the graphical user interface. In this way the registers and memory ele-
ments of the processor model may be displayed and inspected in the graphical
user interface.

In order to support a debugable version of the core, special debugable versions
of all components of the models have been constructed. These can be seen as
wrappers of their corresponding components and, through a number of interface
defined member methods, provide access to information about the given model.
The debugable wrappers are transparent to the designer and, thus, the designer
needs only implement a model once. The separation of models into debugable
and normal versions allow designers to start regular simulations in which no per-
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Figure 5.1: Screenshot of the graphical user interface.

formance degradation is experienced during simulation or to start a debugable
simulation in which one can single step through the simulation and inspect the
individual instantiated components of the system model under simulation which,
in this case, would result in a performance degradation.

5.2 Simulation Engine

This section describes the simulation engine used for simulation of the models
constructed in the presented system level performance estimation framework in
order to obtain quantitative performance estimates.

In order to support the existences of multiple different models-of-computation, a
discrete event simulation engine has been chosen for coordinating the execution
of the individual service models and their internal processes. Discrete event
modelling is used within a range of different application domains and described
thoroughly in e.g. [17].

A custom simulation engine for proto-type use supporting the modelling frame-
work presented has been implemented during the course of this project. The
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reason for implementing a custom simulation was to obtain maximum control
over the simulation kernel in order to be able to validate the ideas of the frame-
work. The implemented discrete event simulation kernel keeps track of simula-
tion time and schedules the execution of the individual processes of the service
models according to their sensitivity to events.

As already described in section 3.4, a number of events are associated with
the lifetime of a service request which by their occurrence can trigger processes
sensitive to the event. The occurrence of a given event allows a waiting process
to become activated at different phases of the simulation as described by the
designer of the model and depending on the desired behaviour.

The simulation engine provides basic semantics for controlling the execution
of a service model through a process like behaviour for modelling concurrency
and a number of waitFor-statements as listed in table 5.1 which will cause the
execution of the model to block.

waitFor(time)
waitFor(service request, event type)
waitFor(interface, service request type, event type)
waitFor(event)

Table 5.1: Process wait-types.

waitFor(time) causes the process to block until the specified time has passed.
The effect is that an event is being scheduled with a time tag of the current
simulation time plus the specified time value. The simulation engine will fire
the event when the specified simulation time has been reached and the process
will resume its execution.

waitFor(service request, event type) causes the process to block until the spec-
ified event type of the specific service request instance is being fired. When this
occurs the process will resume its execution and the time tag of the event will
be decided by the simulation engine.

waitFor(interface, service request type, event type) causes the process to block
until the specified service request type and event type is being fired at the
specified service model interface. In this case the simulation time will also be
annotated by the simulation engine when the event is fired.

waitFor(event) causes the process to block until the specified event is fired.
When the event is fired the process will be notified and continue its execu-
tion.
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5.2.1 Representation of time

The simulation engine is implemented as a discrete event simulation engine using
a delta-delay based representation of time. The delta-delay based representation
divides time into a two-level structure: Regular time and delta-time. Between
every regular time interval, there is a potentially infinite number of delta-time
points t+ δ, t+ 2δ, .... Each event is marked with a time tag which holds a sim-
ulation time value which indicates when the event is to occur. Every time an
event is fired and new events are generated having the same regular time value
as the current time value of the simulation, e.g. in the case of a feedback loop,
the new event will have a time stamp with the same regular time value but now
with a delta value incremented by one. The use of delta-delays ensures that no
computations can take place in zero-time, but will always experience minimum
a delta-delay. The delta-delay based representation is making simulations deter-
ministic because the use of delta-time makes it possible to distinguish between
which of two events generated at the same point of time is to be processed first
by looking at their delta-value.

Application models have no notion of time. It is only when the application
model is mapped to a platform model that it becomes possible to annotate the
execution time of the application model by relating the execution of its tasks
and the generation of service requests to discrete time instances.

In the platform model, on the other hand, time is represented explicitly using
the delta-based representation of time. Each model of the platform can be
modelled with arbitrary delays or specify a clock frequency at which they want
to be evaluated. In this way, it is possible to model synchronous components in
the platform model which are only activated at regular discrete time instances.
Thus, the tasks of the application model are blocking while the service requests
are being processed in the platform model and, so, makes it possible to associate
an execution time metric with tasks. Similarly, it is possible to annotate other
types of metrics such as power costs, etc.

A special event type is used to represent hardware clocks used e.g. by models
described using clocked synchronous models-of-computation. These models do
not use time explicitly, instead represent time as a cycle count, however, in
order to be used in the currently implemented simulation engine, they still need
to specify a clock frequency which determines how often they are allowed to
evaluate. Regular events are removed from the event list, executed and then
disposed and because events are bound to a unique time instance they can thus
only occur once. However, the special event type used to represent hardware
clocks is implemented as a re-schedulable event in the simulation engine which
takes care of handling the uniqueness of each instance of this event type. Such
a clock event is automatically rescheduled and re-inserted into the event list.
Each clock event object has a list of active processes which are to be evaluated
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when the clock ticks. This list is updated dynamically during simulation, and
in the case where a clock has no active processes in the active list, the clock
itself is removed from the pending list of events in order to increase simulation
performance. When a clock event object is inserted into the event list, it will
be inserted sorted according to the simulation time of the next clock tick of
the clock event object. It is also possible to have a clock object which contains
no static period. In this case, the clock ticks can be specified as random time
points or as a list of periods which can be used once or repeated.

Of course, the platform model can also contain service models which are acti-
vated on the arrival of service requests only triggered by the event associated
with the request of the service. In these cases, the occurrence of such an event,
at a specific simulation time, will activate the blocking process, also allowing a
modelling of e.g. a combinatorial delay if needed. The modelling of combinato-
rial elements can also be handled in zero regular time, in this case experiencing
only a delta-delay.

5.2.2 Simulation

The simulation engine uses two event list for controlling the simulation: One for
delta events and one for regular events. The delta event list contains only events
with a time tag equal to the current simulation time plus one delta cycle. The
regular event list on the other hand contains pending events with a time tag in
which the regular time is greater than the current simulation time. The regular
event list is sorted according to the time stamp of the events in increasing order.
In this way the head of the regular event list always points to the event with
the lowest time tag.

The simulation engine always checks the delta event list first; if the list is not
empty, the delta cycle count is incremented and all events contained in the delta
event list are fired one by one until the list is empty, implying that all events
belonging to the same delta cycle have been fired.

If no delta events are pending, i.e. the delta event list is empty, the simulation
engine detaches the first event in the regular event list and advances the simu-
lation time to the time specified by the time tag of the event. Also, the current
delta count is cleared and the event is then fired.

Delta-delay based discrete simulation engines suffer the risk of getting stuck in
infinite loops where time is not advanced and only the delta cycle is incremented.
A naive approach to handle this is implemented, allowing the designer to specify
a maximum number of delta cycles to be allowed before the simulation engine
quits the simulation.

The firing of an event can of course cause new events to be generated and
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scheduled in the simulation engine. If a new event is generated having its time
tag set to the same regular time value as the current simulation time, it is
added to the delta event list; otherwise it is scheduled according to its time
tag and inserted into the regular event list according to the time tag specified.
The delta-event list only contains events with a time tag equal to the current
simulation time plus one delta cycle.

After an event has been fired it is checked if the event type of the event is
periodic. Events belonging to a periodic event type, e.g. the special clock
event object described in section 5.2.1, are then automatically rescheduled and
inserted into the event list at the correct position.

5.3 Producer-Consumer Example

In order to illustrate the usage of the framework and elaborate more on the
different elements, a simple producer/consumer application is considered in the
following.

The first step in order to start using the presented framework is to construct
an application model. The application model captures the functional behaviour
of the application in a number of tasks as well as specifies the communication
requirements of the individual tasks explicitly, without any assumptions on the
implementation, following the principle, on which the framework is founded,
of separating the specification of functionality, communication, cost and im-
plementation. The application model serves as the functional reference in the
refinement steps towards the final implementation. However, at this level of
abstraction, there is no notion of time or physical resources - hence only very
rough performance estimates can be generated from a profiling of the application
model.
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ACTIVE 
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Figure 5.2: A simple application model consisting of a producer and a consumer
communicating through an abstract buffer.

Figure 5.2 shows an application model composed of a consumer task and a pro-
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ducer task which communicate through an abstract buffer. Both the tasks and
the abstract buffer are modelled by service models. The producer has an active
interface which is connected to the passive write interface of the buffer which
offers a write service. Similarly, the consumer has an active interface which is
connected to the passive read interface of the buffer model which offers a read
service. The producer and consumer models are the only active models, i.e. only
the producer and consumer models can initiate the request of services.

The service models are specified as one or more concurrently executing pro-
cesses. Processes execute until they are blocked, waiting for some condition to
become true. When the condition becomes true, the process can continue. Such
behaviour can be implemented using threads. The thread-context switching re-
quired, each time a process is being blocked or activated, has a high impact on
simulation performance and due to the fact that we currently use a global notion
of time in the discrete event simulation engine, most processes will execute in
a lock-step fashion, blocking and unblocking requiring context switches very of-
ten. At the same time, threads provide more functionality than actually needed
now that only one process can be active at a time in the physical simulation
engine. Thus, the desired behaviour is found in the much simpler concept of
co-routines which allows execution to be stopped and continued from the point
where it left off. The current implementation of the simulation kernel thus used
a concept very similar to co-routines implemented in Java [73]. This requires
that the designer of a process must divide the code body of the process into
blocks. Blocks are executing sequentially and the execution of a block cannot
be stopped. When the code contained in a block is done executing, the block
returns a reference to the next block to be executed. In this way it is possible to
model the blocking of a process on some condition and then when the condition
becomes true, the process will carry on its execution by executing the block
of code returned by the previous executing block. The full source code of the
functional application model of the producer-consumer example can be found
in appendix A.

Listing 5.2 shows the description of the main body of the producer service model.
In this case a single process is used to capture the behaviour of the producer. A
similar description is made for the consumer which, however, is not shown. The
main body of the producer is actually an infinite loop in which the producer
first calculates some value, then instantiates a write service request with the
calculated value as argument and then requests the write service via an active
service model interface. It is possible to request a service and then continue the
execution directly, however. In such a case a waitFor-statement is used to block
the producer service model until the requested write service has been executed,
signalled by the firing of a service done event. When the service done event
is fired, the producer will be activated and rescheduled for execution in the
simulation engine. The producer will then resume execution continuing from
the point at which it was blocked.
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. . .
private IAc t i v eSe rv i c eMode l In t e r f a c e f W r i t e I n t e r f a c e ;
. . .
public f ina l IBlock execute ( ){

// Ca l cu la t e data
. . .

// Create wr i t e s e r v i c e r eque s t
ISe rv i c eReques t s r = f W r i t e I n t e r f a c e . c r ea t eSe rv i c eReque s t (

”WRITE” , new Object [ ] { . . . } ) ;

// Request wr i t e i . e . product ion o f data
f W r i t e I n t e r f a c e . r eque s t ( s r ) ;

// Wait f o r wr i t e r e que s t to be done
waitFor ( sr , ISe rv i c eReques t . EventType .DONE) ;

. . .
}

Listing 5.2: Body of the producer service model main process.

As can be seen, the write service request is both used for signalling the request
of a write service but also to transport the actual data values which are to
be exchanged between the producer and buffer service model and which will be
written into the buffer, eventually. In this way, arbitrary data and objects can
be transferred.

The buffer model is only activated when a service request is requested through
one of its passive interfaces. In such a case, the behaviour of the read and
write services depends on the implementation of the buffer and, so, e.g. differ-
ent blocking or non-blocking read and write schemes can be investigated easily
simply by interchanging the buffer model.

As an example, the buffer service model described in listing 5.3 uses a blocking
write policy. Again, the main body is actually executing an infinite loop. The
main body starts executing a waitFor-statement, blocking the execution until
the arrival of a write service request, indicated by the firing of a service request
requested event of type write. In this case the waitFor-statement is not instance
sensitive as in the case of the producer which was blocking for a service request
done event on the instance of the requested write service request. Instead it
is blocking until a service request requested event of the specified type is fired
indicating a request through the active service model interface. This implies
that whenever a service request requested event of type write is fired, the
write process of the buffer service model will be scheduled for execution in the
simulation engine and the write process will become active and continue its
execution from the point it left off. It then starts the actual execution of the
requested write service. If the buffer is already full, the write process will block
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once more until an empty slot in the buffer becomes available. Otherwise, the
actual write to the buffer will be executed and a service request done event
will be fired in order to notify the requester, in this case the producer, that
the service request has been executed. Similarly, a read process implementing
a blocking read policy is described in the same manner; this, however, is not
shown here.

. . .
private I P a s s i v e S e r v i c e M o d e l I n t e r f a c e f W r i t e I n t e r f a c e ;

private ISe rv i c eReques t fWr i teServ iceRequest ;

public f ina l IBlock execute ( ){
// Wait u n t i l a wr i t e s e r v i c e i s reques t ed
waitFor ( fWr i t e In t e r f a c e , ”WRITE” ,

ISe rv i c eReques t . EventType .REQUESTED) ;

. . .

i f ( f F u l l ){
// Wait u n t i l n o t i f i e d
waitFor ( ) ;
. . . .

}
else {

// Perform wr i t e
. . . .

// S igna l done
fWr i teServ iceRequest . done ( ) ;
. . . .

}
}

Listing 5.3: Main body of the write process of the buffer service model.

In order to generate quantitative performance estimates, the task and buffer
service models of the application model must be mapped to the service models
of a platform model creating a system model. Performance estimates relevant
for evaluating the different platform options can then be extracted from the
simulation of the system model. When the service models of an application
model are mapped to the service models of a platform model, the service models
of the application model can, when executed, request the services offered by
the platform service models. In this way, the functionality of e.g. a task is
represented by an arbitrary number of requests to services which, when executed,
model the execution of a particular operation or set of operations. The execution
of a service in the platform model can include the modelling of required resource
accesses and latency only, or, depending on the level of abstraction used to
describe the service model, even include the actual functionality including bit
true operations.
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The mapping of the service models of the application model to the service models
of the platform model need not to be complete, i.e. it is allowed that only a
subset of the service models of the application model are mapped. In this case,
the unmapped service models of the application model captures all functionality,
i.e. both the control flow and data operations within the application model, and
have no costs associated. In figure 5.3, the consumer service model is an example
of an unmapped service model.
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Figure 5.3: Only the producer task is mapped to the processing element of the
platform model. The consumer task is unmapped and modelled functionally
only.

On the other hand, the service model of the producer in figure 5.3 is an example
of a mapped task. As a first refinement step, the service model of the platform
model, to which the producer service model is mapped, is only used for latency
modelling and for associating a cost with the execution of the producer. This
is achieved by modelling a processing element which offers the service produce
through a passive service model interface.

IAc t i v eSe rv i c eMode l In t e r f a c e fExecute ;
. . .
// Ca l cu la t e data
ISe rv i c eReques t s r = fExecute . c r ea t eSe rv i c eReque s t (

”PRODUCE” , new Object [ ] { . . . } ) ;
fExecute . r eque s t ( s r ) ;
. .

Listing 5.4: The refined production of data values, now depending on the plat-
form model mapping.

The producer service model, as shown in listing 5.4, then requests the produce
service via its active service model interface during execution of the produce
service, modelling a particular implementation in terms of cost and latency. In
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this example, the produce service is a very abstract service; however, it is the
designer of a model who determines the level of abstraction used to associate
with each service. One could also imagine the specification of required services
for each arithmetic operation required for calculating the produce value. Cur-
rently, required services are specified manually and in order to have a valid
mapping of a service model from the application model to the service model in
a platform model, all required services must be provided by the service model
of the platform model. The higher level of abstraction used to specify required
services also implies that there are more options for mapping a model because
the separation of functionality and implementation is retained.

If preferred, it might also be possible to refine the processing element to include
the calculation of actual data values as well, in this case using a mixed task,
modelling part of the behaviour of the producer according to the functional
specification in the application model and part of the behaviour according to
a particular implementation in the platform model and, so, mix different levels
of abstraction seamlessly. This is particularly useful in the early stages of the
design process where rough models of the platform might be constructed. In
such a scenario, fast estimations of the effect of adding redundant hardware
support for specific operations, or even rough estimates of the effect of using
multi-processor systems, the effect of buffer sizes etc. can be explored. This
scenario might be refined to a level where cycle accurate and bit true models
are described, but still leaving the control flow of the application to be handled
in the application model and modelling only the cost of control operations in
the platform model.

Such an example is seen in figure 5.4, where the producer-task could be imple-
menting e.g. loop control in the application model directly, and only part of the
functionality of the loop body through requests to services offered by the service
model of the processing element in the platform model onto which it is mapped.
Figure 5.4 also shows how it is possible for the producer, mapped to and exe-
cuting on the processing element, to communicate through a partially mapped
buffer with the functional consumer service model which is only modelled in the
application model.

Finally, as shown in figure 5.5, it is possible to model a full mapping of an
application model to a platform model including both the active service models,
in this case the producer and consumer running on one or more processing
elements, and the passive service models, in this case the buffer mapped to
a block of memory. Still, it is possible to mix partially functional behaviour
modelled in the application model with the real behaviour of the implementation
modelled in the platform model. In the most extreme case, the producer and
consumer is represented solely by a set of requests to the services offered by the
processing element of the platform model onto which it is mapped. In this case
the complete functionality is modelled in the platform model, implying that the
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Figure 5.4: Only the producer task is mapped to a processing element of the
platform model. The consumer task is unmapped and modelled functionally
only. Similarly, the FIFO buffer is only partially mapped, allowing it to be
accessed from the active interface of the processing element in the platform
model and at the same time being accessible from the active interface of the
consumer task in the application model.

producer and consumer are modelled as tasks belonging to the implementation
category. Consequently, the complete task is represented by a service request
image, directly equivalent to a binary application image of e.g. a processor.
Another advantage of the support for such compiled tasks is that a platform
model described at this level of abstraction can also be used for performance
estimation of compiler technologies.

5.4 Summary

In this chapter an overview of the implementation of the presented system level
modelling and performance estimation framework in Java was presented.

Currently, an implementation of the framework exists at a proof-of-concept level
consisting of a core implementation of the framework and a graphical user in-
terface. The framework can be used in console mode in which simulations are
performed without any interaction with the user or a graphical user interface
built on the Eclipse platform can be used. System models being simulated are
configured through an XML-configuration which dictates the components to be
used in the system model and their configuration. The graphical user interface
allows an easier debugging of models by providing basic debugging capabilities
such as single stepping through a simulation. Also, the graphical user interface
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Figure 5.5: Both the producer and consumer tasks are now mapped to processing
elements of the platform model. The FIFO buffer is mapped to the service
model, modelling a block of shared memory to which both processing elements
have access.

makes it possible to inspect the variables and state of a model.

As the complete framework is implemented in Java, extensions can be made
within the scope allowed by the Java language. This also implies that any
Java debugger can be used to inspect the low level details of a simulation.
However, when a more complete version of the support tools for the framework is
implemented in the future, the implementation language should be transparent
to the user of the framework and thus Java need not to be the chosen language
for implementation.

The objective of the realization of the framework in Java was a proof-of-concept,
allowing the concepts introduced in chapter 3 and 4 in order to allow the pre-
sented ideas to be assessed and evaluated in practice. The proprietary imple-
mentation of the framework in Java was chosen over an implementation in e.g.
SystemC based on a consideration of an academic nature, namely, in order to
have full control of all aspects of the framework. The proprietary implementa-
tion in Java, of course, has the limitation of requiring all models to be defined
within the syntactical requirements imposed. However, Java is merely an im-
plementation language, hence other languages or possibly even other simulation
frameworks could have been used for realizing the framework in practice. Es-
pecially, SystemC and in particularly the transaction level modelling paradigm
defined in TLM 2.0 would be an interesting alternative implementation which
might prove more practical in order to obtain a wide spread use of the frame-
work.
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Chapter 6

A Service Based
Model-of-Computation for

Architecture Modelling and
Simulation

In order to allow efficient system level design of embedded systems, a flexible
modelling of hardware components allowing fast and accurate performance es-
timation to be carried out is required. Several methods have been presented in
recent years allowing performance estimation through formal analysis or simula-
tions of architectures at high levels of abstraction [14, 20, 36, 56, 68, 87].

Recently, approaches that rely, at least partly, on formal methods of analysis
in order to allow performance estimation have been presented. In theory, these
approaches eliminate the need for simulations in order to predict performance.
However, in most cases, the accuracy of these approaches only justifies their use
in the very early stages of the system design phase where they can be used to
reduce the number of potential candidate architectures, as is done in [56], before
more time consuming detailed performance estimates, obtainable only through
simulation, are produced in the later design stages.

The majority of the approaches based on fast simulations, e.g. [3, 36], are using
high speed functional instruction set simulators with high level modelling of
data memories, caches, inter-connect structures, etc. performing a number of
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abstractions thereby trading accuracy for simulation speed. These approaches
have their merit, especially in the early design stages, and often even allow soft-
ware developers to begin the target specific software development in parallel with
the hardware developers - long before low level register transfer level descriptions
of the platform exist or the actual hardware prototype bring-up.

The high level models fulfil the needs for early software development and initial
architectural exploration. However, in many cases one needs to be able to
generate accurate performance estimates in order to reason about the actual
performance of the system so as to verify architectural design choices. In order
to do so, cycle accurate models are required, implying that, currently, register
transfer level descriptions of the architectural elements of the target platform are
often the only viable solution. The simulation of large scale systems described
at the register transfer level, however, suffers from tremendous slowdown in
the simulation speed compared to the high level simulations. Even worse, the
development of such detailed descriptions is long and costly implying that when
these are finally available, often at a very late stage of the development phase,
changes of the architecture are very hard to incorporate resulting in limited
possibilities for design space exploration.

Thus there exists a gap between the fast semi-accurate methods which are highly
useful in modern design flows allowing the construction of high level virtual
platforms, in which rough estimates of the performance of the system can be
generated, and the detailed and very accurate estimates which can be produced
through register transfer level simulations.

In this chapter a model-of-computation fitting into the service-based system
level modelling and performance estimation framework will be presented which
allows a flexible modelling of synchronous components at different levels of ab-
straction covering initial high level models to cycle accurate and bit true de-
scriptions.

The model-of-computation presented in this chapter is based on Hierarchical
Coloured Petri Nets (HCPN) [44] and is targeted at the modelling of syn-
chronous hardware components only. The HCPN based model-of-computation
presented here is taking its point of departure in the initial work presented in [38]
which was only intended for modelling a single top level hardware component
and, thus, could not be used in a compositional modelling framework as the
one presented in part I. This issue is addressed in the method presented in this
paper and the basic approach is extended heavily both in terms of applicability
and in terms of simulation efficiency, making the HCPN based service models
usable in the current context.

In the following, the basic concepts of the HCPN based model-of-computation
will be presented, then a number of optimizations which can be performed due
to the restricted modelling domain of synchronous hardware are introduced
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which allow efficient simulations as will be shown in section 6.3. It should be
noted that, as was the case of the framework for system level modelling and
performance estimation introduced in part I and II, the current implementation
of HCPN based service models is done in Java [73].

6.1 The HCPN based model-of-computation

The HCPN based model-of-computation for modelling synchronous hardware
components is an example of a clocked synchronous model-of-computation which
can be used in the presented system level modelling and performance estimation
framework.

HCPN has been selected due to the great modelling capabilities with respect to
concurrency and resource access as well as the compositional properties which
match the requirements of service models very well. Also, the formal analysis
methods which are very mature for HCPN, regarding e.g. deadlock and reach-
ability analysis makes HCPN very interesting. The formal analysis capabilities,
however, are not investigated in this thesis and thus belong to the category of
future work.

Traditionally, HCPNs have been used mostly for high abstraction level modelling
and only been in limited use for describing cycle accurate hardware models. This
is most likely caused by the complexity of managing the synchronous execution
of transitions using the general HCPN model-of-computation.

In order to introduce the basic concepts of the modified HCPN based model-of-
computation for describing synchronous hardware components, the ARM9TDMI
processor core [66] is considered in the following. The ARM9TDMI processor
core is a 32-bit RISC like processor which implements the ARMv4T [67] in-
struction set. It has a 5-stage pipeline and 16 general purpose registers visible
at a time, connected to a shifter, arithmetic logic unit, and a multiplier. The
ARM9TDMI processor is a Harvard architecture, hence access to data memory
and program memory can be done in parallel.

Service models described using the modified HCPN model-of-computation is
constructed in a way very similar to traditional HCPNs. Through the use of
places and transitions connected by arcs, a model of the target component is
composed. Arcs have associated arc expressions which determine the tokens
produced and consumed when the arc expressions are evaluated during the fir-
ing of a transition. Transitions have associated guard expressions which are
Boolean expressions that must evaluate to true in order for the transition to be-
come enabled. In addition to transition guards, our modified HCPN model also
supports place guards. Place guards are equivalent to transition guards and,
thus, must evaluate to true before a transition is enabled which is connected
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to the place through an outgoing arc with an arc expression that requires the
production of tokens into that place. Transitions become enabled and can fire
when the tokens specified by all ingoing arc expressions are available, i.e. all
variables of the arc expressions can be bound, the transition guard expression
evaluates to true, and when the destination place guards of the outgoing arcs of
the transition also evaluate to true. Such a binding of variables is referred to as a
binding element. Transitions can also have an action associated which specifies
a piece of functionality which is carried out when the transition is allowed to
fire. Structural hierarchy is supported directly through the use of substitution
transitions as known from regular HCPNs. The use of substitution transitions
also allow a gradual refinement of models in which different sub-blocks of a
model can be easily exchanged.

In contrast to generic HCPN, only two types of tokens exist in the modified
HCPN model-of-computation. The first representing services which are used to
model resources and the second representing service requests which are used to
model access to resources. The HCPN based service model also defines three
special places which are used to support the interface-based approach used by
the service model framework. These are: The Service Request place, the Ser-
vice Done place and the Service place. Inter-model communication is handled
through the exchange of service requests via active-passive service model inter-
faces following the semantics introduced in section 3.4. The initiator model can
request one of the services specified, as required by the model, without know-
ing any details about the model which provides the required service or how
it is implemented. When a service request is made to a HCPN based service
model, a service request token is produced in the service request place associ-
ated with the interface. If the specified service is available in the Service place,
the service request will start its execution. When the specified service request
has been executed, the service request will arrive in the Service Done place,
associated with the passive interface from which it was requested, signalling
the completion of the service request. When this happens, the initiator model
(i.e. the model which requested the service) is notified that the execution of the
requested service is done.

Returning to the ARM9TDMI processor core, a graphical representation of the
HCPN model of the processor is shown in figure 6.1. In the HCPN based service
model, the 5-stage pipeline is clearly identifiable. The 5-stage pipeline consists
of the instruction fetch stage (F), the instruction decode stage (D), the execute
stage (E), the data memory access stage (M) and the register write stage (W). In
the figure, the associated transition actions for an implementation of the data
processing instructions of the ARM9TDMI core are illustrated using pseudo-
code. The actions allow arbitrary functionality to be associated with a pipeline
stage and thus the amount of details included determines the abstraction level
used allowing a modelling of high level functionality only to cycle accurate and
actual bit true modelling.
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The instructions of the ARM9TDMI processor is represented by a number of
services and initially, one token for each service provided is put in the place Ser-
vices, e.g. one token representing addition ADD, another token representing
multiplication MUL and so on.

The primary purpose of the HCPN model is to capture the parallel execution of
hardware. This implies that state holding elements, of e.g. a processor, are not
represented directly in the HCPN model but are simply contained in variables
of the model. These state holding elements, however, are only changed when a
transition is allowed to fire modelling synchronous behaviour. This is also the
case in the ARM9TDMI processor example in which registers are modelled as
variables in the model which, e.g. in the case of data processing instructions,
are read in the decode stage (transition D in the figure) and written in the write
back stage (transition W in the figure). It is also possible to model pipeline
interlocks; in the example this is done in a combination of using tables holding
information about reserved registers (i.e. registers which are to be written, and
in which no forwarding of data operands is possible) and guard expressions.
When a transition guard expression evaluates to false, the transition is not
allowed to fire, corresponding to an insertion of bubbles into the pipeline from
the instruction decode stage (transition D in the figure).

To summarize, the basic structure of the HCPN based service model implemen-
tation dictates the latency, resource requirements and concurrency properties of
each service offered, whereas the actual behaviour of the services is implemented
by associating actions with the transitions of the model. If transition actions
are combined with the possibility of adding arguments to the service requests,
the actual behaviour or functionality of the service can be implemented allowing
e.g. the implementation of an actual addition of two values or the possibility of
modelling data operand dependencies, etc. This emphasizes the great potential
of the method with respect to flexibility and accuracy. It is indeed possible to
refine models to a level where they can be used for e.g. cycle accurate instruction
set simulators if needed. Also, it is possible to associate a quantitative cost mea-
sure which each service. The cost measure can be pre-computed or computed
dynamically during runtime and, so, provides the user with a quantitative cost
measure for the execution of a given application on the model described.

6.2 Simulation Model

In this section an introduction to a number of optimizations which can be per-
formed to the models described using the modified HCPN model-of-computation
prior to runtime will be given in order to achieve efficient simulations. These op-
timizations significantly boost the simulation performance allowing performance
estimates to be generated efficiently.
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The HCPN based model-of-computation presented here shares properties with
the Synchronous Data Flow model-of-computation [60] because the modelling
domain is constrained, modelling synchronous hardware components only. How-
ever, an important difference is that the HCPN based model-of-computation
supports choices and conditional evaluations in the search for enabled transi-
tions as well as in the consumption and production of tokens and hence the
transition firing sequence cannot be scheduled statically. However, the modi-
fied HCPN model-of-computation allows a quasi-static scheduling of the firing
sequence of the transitions of the models to be used. The idea of quasi-static
scheduling [23, 95] in this context is to perform a static analysis of the model
in order to make as many choices as possible prior to runtime, leaving only the
data dependent dynamic choices to be evaluated at runtime.

Synchronous hardware components are modelled by firing all concurrently en-
abled binding elements of a model in each simulation cycle, implying that all
transitions, if enabled, must fire exactly one time in each simulation cycle. Com-
bined with the fact that the model structure does not change during runtime,
it is therefore possible to extract a static schedule which determines the order
in which the transitions are allowed to fire prior to runtime. At runtime, transi-
tions are evaluated for enablement according to the extracted schedule, forming
a quasi-static scheduling of the firing of the transitions of the model. The sched-
ule is determined by sorting all transitions of a service model implementation
with respect to the longest topological distance to the service done place of the
model. If two transitions have the same topological distance to the service done
place, and they are not independently enabled, i.e. they share an input place, a
priority must be assigned by the designer of the model to resolve such ambigu-
ities. In the case of the service model of the ARM9TDMI processor considered
here, and shown in figure 6.1, the schedule becomes very simple: {W, M, E,
D, F}, implying that in each cycle, the transitions are evaluated according to
the specified order.

The quasi-static schedule implies that the search for enabled binding elements is
done much faster because it is now a question of evaluating the transitions in the
order specified by the schedule as opposed to regular HCPN simulation where
such a schedule cannot be determined prior to runtime and hence the schedule
of fireable transitions needs to be computed at runtime in each simulation cy-
cle. Secondly, the quasi-static schedule based on the topological sorting of the
transitions implies that when a transition is evaluated and it is found to be en-
abled, it can directly produce the tokens specified because the transition, which
have the output places connected to the current transition as input places, will
already have been evaluated. This means that the enablement of that transition
will not be evaluated until the next simulation cycle in order to ensure correct
synchronous behaviour. In traditional HCPN engines, it is necessary to use a
two phase algorithm which first evaluates all enabled transitions and consumes
the specified input tokens and then, when all transitions have consumed their
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input tokens, a second sweep is made on all the transitions that were allowed to
fire in order to produce their specified tokens. Only in the case where feedback
arcs exist, or when a transition is connected to an output place of an interface,
is it necessary to use the more costly two phase evaluation principle in order
to ensure correct operation in the modified HCPN based model-of-computation
presented here.

Another important optimization, which can be performed in the presented
model-of-computation and which cannot be performed in generic HCPN sim-
ulations, is based on the observation that only two types of tokens are used,
one representing services, and a second representing service requests. Service
tokens are used solely to model the availability of resources and thus can be seen
as passive tokens not being able to enable a transition alone. Service request
tokens, on the other hand, are active tokens and are the only type of tokens
which can enable a transition implying that, when evaluating the enablement
of a transition, only the input places of the transition which contains service
request tokens need to be checked. However, service tokens play an important
role in the modelling of access to resources because the service model implemen-
tation can specify that their presence is needed before a given transition can be
enabled - even though an active service request token is present.

Because the service model structure does not change during simulation, the
possible routes of the service request can be determined before runtime and,
thus, it is possible to extract information regarding all the transitions and places
of the model through which the service request can pass. This information is
used to create a service description which captures the behaviour of the service
in the individual parts of the model for each service offered by a HCPN based
service model. The service request description contains one member function
for each place which the service request can pass through in the model and the
service request is instantiated with references to all the variable objects which
are required for reading or writing during the execution of the service request.
The place member functions capture the functionality associated with firing one
of the desired output transitions of the particular place and are built around a
simple template containing the following elements:

1. Evaluate transition guard.

2. Evaluate destination place guard.

3. Check for availability of required services / resources.

4. Transition action.

5. Produce output tokens.

6. Consume input tokens.

In this way, only the functionality relating to the specific service request is
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evaluated and can be executed directly. In the case of the ARM9TDMI processor
there is only one possible path for all service requests. However, different paths
could easily exist, as will be illustrated later in this chapter.

A concrete example of the use of place member functions for capturing the
detailed behaviour of the service requests of the ARM9TDMI processor core is
shown in listing 6.1 and 6.2, where a place member function is defined for each
place through which the service request can pass. When the execute method
is called, it will model the firing of the individual pipeline stages of the service
model of the ARM9TDMI core by calling the place member functions one by
one in the order specified by the quasi-static schedule.

The abstract service request class described in listing 6.1 and 6.2 defines the
basic behaviour of all service requests of the ARM9TDMI service model and is
extended by the child classes which capture the actual implementations of the
individual service requests. Thereby, these will then specify the specific func-
tionality. In this way, the functionality of each pipeline stage can be captured
at a level of detail which is determined by the designer of the model. In listing
6.1 it can e.g. be seen how a call to the place member function sr first checks
the guard expression and then models the firing of transition F, increments the
program counter before the implementation specific functionality of the child
class is allowed to occur and, finally, the service request is moved to place p1
and the next service request is fetched. Pipeline-interlocks are modelled, as can
be seen in the place member functions p1 and p3 of listing 6.1 and 6.2, using
guard expressions and masks, which determine if the current service request re-
quires reading of register operands which are to be modified by a write further
down the pipeline. If this is the case, the pipeline is stalled because the guard
expressions will then evaluate to false.

As described in section 3, the service model concept uses the notion of processes
to model concurrent activity. Service models described using the HCPN based
model-of-computation use only a single process to capture the behaviour of the
synchronous component being modelled. The inherent parallelism of the com-
ponent is then captured using transitions. The quasi-static schedule extracted
from the model before runtime is used to construct an execute method which is
called every time the process of the model is activated by the simulation engine.
The process is activated periodically according to a specific clock frequency
specified by the designer of the model. Simulation is then carried out by evalu-
ating the places in the order determined by the quasi-static schedule specified in
the execute method. To illustrate this, the execute method of the ARM9TDMI
processor model is shown in listing 6.3. Due to the quasi-static scheduling and
the member functions extracted for all service requests tokens, it is simply a
matter of calling the member functions of the tokens in the order specified by
the schedule. The member functions will evaluate any guard-expressions, per-
form the transition actions as well as handling the consumption and production
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abstract class ARM9TDMIServiceRequest {
. . .
@Override
public f ina l void s r ( ) {

// Guard expres s ion
i f ( ! p1 . hasServ i ceReques t s ( ) ) {

// Defau l t ac t ion
fProgramCounter . increment ( 4 ) ;

// Implementation s p e c i f i c f e t c h ac t ion
this .F ( ) ;

// Produce
p0 . addServiceRequest ( this ) ;

// Consume
s r . removeServiceRequest ( this ) ;

// Fetch next s e r v i c e r eque s t
s r . addServiceRequest ( fProgramMemory [

fProgramCounter . ge t Intege rVa lue ( ) ] ) ;
}

}

@Override
public f ina l void p0 ( ) {

// Guard expres s ion
i f ( ! p1 . hasServ i ceReques t s ( ) ) {

// Check r e s e r va t i on mask − p i p e l i n e in ter−l o c k s .
i f ( (WRITE MASK & REGISTER READ MASK) == 0) {

// Implementation s p e c i f i c decode ac t ion
this .D( ) ;

// Update r e s e r va t i on mask − l o c k d e s t i na t i on r e g i s t e r
WRITE MASK |= REGISTER WRITE MASK;

// Produce
p1 . addServiceRequest ( this ) ;

// Consume
p0 . removeServiceRequest ( this ) ;

}
}

}

Listing 6.1: First part of the base service request implementation of the
ARM9TDMI processor core.

of tokens, e.g. moving itself to the new place.

To summarize, the result of the optimizations described in this section is a
simulation engine in which it is possible to obtain the flexibility of interpreted
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@Override
public f ina l void p2 ( ) {

// Guard expres s ion
i f ( ! p2 . hasServ i ceReques t s ( ) ) {

// Implementation s p e c i f i c execute ac t ion
this .E ( ) ;

// Produce
p2 . addServiceRequest ( this ) ;

// Consume
p1 . removeServiceRequest ( this ) ;

}
}

@Override
public f ina l void p3 ( ) {

// Guard expres s ion
i f ( ! p3 . hasServ i ceReques t s ( ) ) {

// Implementation s p e c i f i c memory ac t ion
this .M( ) ;

// Produce
p3 . addServiceRequest ( this ) ;

// Consume
p2 . removeServiceRequest ( this ) ;

}
}

@Override
public f ina l void p4 ( ) {

// No de s t i na t i on guard

// Implementation s p e c i f i c wr i t e back ac t ion
this .W( ) ;

// Update r e s e r va t i on mask − r e l e a s e r e g i s t e r
WRITE MASK &= ˜REGISTER WRITE MASK;

// Consume
p3 . removeServiceRequest ( this ) ;

// S igna l done
this . done ( ) ;

}
}

Listing 6.2: Second part of the data-processing instruction implementation of
the ARM9TDMI processor core.
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/∗∗
∗ The main execu t ion method o f the ARM9TDMI model .
∗/
f ina l IBlock fB0 = new IBlock ( ) {

@Override
public f ina l IBlock execute ( ) {

i f ( p3 . hasServ i ceReques t s ( ) ) {
( ( IARM9ServiceRequest ) p4 . ge tServ i ceReques t ( ) ) . p3 ( ) ;

}
i f ( p2 . hasServ i ceReques t s ( ) ) {

( ( IARM9ServiceRequest ) p3 . ge tServ i ceReques t ( ) ) . p2 ( ) ;
}
i f ( p1 . hasServ i ceReques t s ( ) ) {

( ( IARM9ServiceRequest ) p2 . ge tServ i ceReques t ( ) ) . p1 ( ) ;
}
i f ( p0 . hasServ i ceReques t s ( ) ) {

( ( IARM9ServiceRequest ) p1 . ge tServ i ceReques t ( ) ) . p0 ( ) ;
}
i f ( s r . hasServ i ceReques t s ( ) ) {

( ( IARM9ServiceRequest ) s r . ge tServ i ceReques t ( ) ) . s r ( ) ;
}

return fB0 ;
}

Listing 6.3: The execute method of the service model of the ARM9TDMI pro-
cessor.

simulations and, at the same time, some of the speed obtained using compiled
simulations. However, in this approach it is not the application running on the
models (in our cases represented by service requests) which are compiled; it is
only the service model description corresponding to the approaches taken by
instruction set compiled simulations.

6.3 Experimental Results

In this section, simulations using the ARM9TDMI processor service model de-
scribed above, as well as service models of an ARM7TDMI and an XSCALE
processor core will be presented. The ARM7TDMI core has a 3-stage pipeline,
and thus is simpler than the ARM9TDMI core, whereas the XSCALE processor
has a relative complex pipeline.

The ARM7TDMI and ARM9TDMI processors implement the ARMv4T instruc-
tion set, whereas the XSCALE processor implements the ARMv5T instruction.
The ARMv5T instruction set is a super set of the ARMv4T instructions and
thus the processors can execute the same binary program images as long as pro-
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grams are compiled targeting the ARMv4T instruction set. Simulation results
from the three service models will be presented, primarily in order to illustrate
the obtainable simulation speed as well as give more details on the modelling
capabilities of the HCPN based model-of-computation.

The three service models have been implemented based on the information pro-
vided in the ARM reference manuals [66, 65, 67, 42]. Unfortunately, no cycle
accurate instruction set simulators has been available for verification of the tim-
ing accuracy of the service models. Thus, the models have not been verified
with respect to cycle accuracy. Instead only a functional verification has been
made using the functional arm-simulator which is supplied with the GNUARM
Tools [8] as reference. However, as the three service models capture each pipeline
stage of the corresponding processor cores and use actions associated with each
transition, representing the functionality of each pipeline stage, it should only
be a matter of refinement in order to obtain service models which would be cycle
accurate. To justify the correctness of such a statement, in chapter 7, a bit true
and cycle accurate service model of a proprietary application specific processor
from the portfolio of Bang & Olufsen ICEpower is described. In this case the
full RTL description has been available and thus it has been possible to verify
that the service model of the application specific processor is cycle accurate and
bit true.

The three models implement the data-processing instructions, the branch in-
struction as well as the majority of the load and store instructions of the
ARMv4T instruction set. The individual ARM instructions are relative complex
and each instruction has several different variants depending on the parameters
they are instantiated with. Also, all instructions are executed conditionally
although the majority use a conditional expression which always evaluates to
true. The implemented instructions allow for implementing the control flow of
the applications using various branch, compare and test instructions, integer
arithmetic such as subtraction, addition and multiplication as well as load and
store instructions. The set of instructions modelled allows applications specified
as C source code to be compiled using the gcc-arm-elf compiler tool-chain [1]
to be executed.

The service models of the ARM7TDMI and the XSCALE processors were con-
structed in a way similar to the ARM9TDMI core described in the previous
sections. The ARM7TDMI core is very similar to the ARM9TDMI core but has
a simpler 3-stage pipeline with a fetch, a decode and an execute stage only. In
the fetch stage, instructions are fetched from the instruction memory. In the de-
code stage, instructions are decoded and finally in the execute stage, operands
are fetched, the instruction is executed and the result is written back to the
destination. Figure 6.2 shows the graphical representation of the service model
of the ARM7TDMI core.

In the case of the service model of the ARM7TDMI processor, the quasi-static
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transition F{

  bool guard(){

    return p0.isEmpty();

  }

  void action(){

    _PC += 4;

  }

}

transition E{

  bool guard(){

    ...

    if(_DINST.contains(_SR.S)){

      return _WT.contains(_SR.RN) || 

_WT.contains(_SR_SOP);

    }

    ...

  }

  void action(){

    ...

    if(_DINST.contains(_SR.S)){

      ((DINST)_SR).execute();

       _REG[_SR.FRD] = _ALU_OUT;

    }

    ...

  }

}

transition D{

  bool guard(){

    return p1.isEmpty();

  }

  void action(){

    ...

    if(_DATA.contains(_SR.S)){

      _SR.RN = _REG[_SR.FRN];

      _SR.SOP = getShifterOp();

    }

    ...

  }

}

P0

P0 P1

Figure 6.2: HCPN model of the ARM7TDMI processor which is an implemen-
tation of the ARMv4T instruction set.

schedule used to create the execute method of the model becomes very simple:
{E, D, F}, implying that in each cycle, the transitions are evaluated according
to this order. The service model of the ARM7TDMI core can be seen as a scaled
down version of the ARM9TDMI model.

The pipeline of the ARM7TDMI and ARM9TDMI processor cores are relatively
simple and, thus, the structure of the two service models described using the
proposed HCPN based model-of-computation is, too. Thus, the more complex
pipeline found in the XSCALE processor has also been modelled. Again, due
to lack of a reference simulator, the service model of the XSCALE processor
has not been verified for cycle accuracy. However, the full pipeline is modelled
and pipeline inter-locks, caused by data dependencies, are modelled in the same
ways as was done for the ARM7TDMI and ARM9TDMI processor service model
as well.

The XSCALE is an in-order-issue-out-of-order-completion processor, having a
shared fetch and decode pipeline and then parallel memory, execute and multi-
plication pipelines. Figure 6.3 shows the structure of the service model capturing
the XSCALE processor core. Again, actions are associated with the transitions
of the model in order to capture the behaviour of the individual pipeline stages.
Again, each instruction is modelled using a service request, and the information
regarding the possible paths of the individual service requests can be extracted
at compile time allowing the possible routes to be encoded in the individual
service request descriptions.
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Previously, it was shown how a single base class was used to represent all ser-
vice requests of the ARM9TDMI core because only one possible route for all
service requests was possible. In the case of the XSCALE service model, three
different possible routes can be taken; hence, three different base classes are
defined:

1. Load-store instructions which will take the following route:
SR− >F2− >ID− >RF− >X1− >X2− >D2

2. Data-processing instructions which will take the following route:
SR− >F2− >ID− >RF− >X1− >X2− >WB

3. Multiplication instructions which will take the following route:
SR− >F2− >ID− >RF− >X1− >M2− >MX

Similarly, the transition firing order can be extracted as well, forming the quasi-
static schedule used to construct the execute method of the XSCALE service
model which is shown in listing 6.4.

Returning to the simulations performed using the three different ARM ser-
vice models, a number of algorithms were used for investigating the obtainable
simulation speed of the a three different ARM service models which can be
categorized as bit true and roughly cycle accurate. In order not to avoid a cor-
relation between the obtainable simulation speed and the particular application,
a number of different applications have been investigated. However, in the im-
plementation of the service models, only basic integer arithmetic is implemented
and, thus, all applications are written in such a way that they used fixed-point
arithmetic. Five different simple applications were chosen which avoid system
calls and other non-supported function calls. These were: A cyclic-redundancy-
check (CRC) application, a Fast-Fourier-transform (FFT) application, a Inverse-
Fast-Fourier-transform (IFFT) application, and a finite-impulse-response (FIR)
application and finally a loop-test using four nested for-loops. The binary im-
ages were generated using the gcc-arm-elf [1] compiler with no optimizations
enabled.

Simulations were then carried out using the presented system level modelling
and performance estimation framework. A simple platform model was con-
structed composed of a single service model only. The platform model was then
configured to use the ARM7TDMI, ARM9TDMI or the XSCALE service model
and configured with separate program and data memory each having a size of
16K words. A system model was then formed by specifying the binary image of
the application which was to be executed on the instantiated service model. The
functional results were then compared and verified with the functional ARMv4T
simulator [1] and table 6.1 summarizes the results. It should be noted that all
simulations are performed on an Intel Core 2 Duo T7200 processor running 2.0
GHz and with 2GB RAM.
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/∗∗
∗ The main execu t ion method o f the XSCALE model .
∗/
f ina l IBlock fB0 = new IBlock ( ) {

/∗
∗ (non−Javadoc )
∗
∗ @see com. sysmopee . core . model . process . IBlock#execute ()
∗/

@Override
public f ina l IBlock execute ( ) {

i f ( d2 . hasServ i ceReques t s ( ) ) {
( ( IXSCALEMemoryServiceRequest ) d2 . ge tServ i ceReques t ( ) ) . d2 ( ) ;

}
i f ( d1 . hasServ i ceReques t s ( ) ) {

( ( IXSCALEMemoryServiceRequest ) d1 . ge tServ i ceReques t ( ) ) . d1 ( ) ;
}
i f (mx. hasServ i ceReques t s ( ) ) {

( ( IXSCALEMulServiceRequest ) mx. ge tServ i ceReques t ( ) ) .mx( ) ;
}
i f (m2. hasServ i ceReques t s ( ) ) {

( ( IXSCALEMulServiceRequest ) m2. ge tServ i ceReques t ( ) ) . m2 ( ) ;
}

i f (wb . hasServ i ceReques t s ( ) ) {
( ( IXSCALEDataServiceRequest ) wb . ge tServ i ceReques t ( ) ) . wb ( ) ;

}
i f ( x2 . hasServ i ceReques t s ( ) ) {

( ( IXSCALEDataServiceRequest ) x2 . ge tServ i ceReques t ( ) ) . x2 ( ) ;
}
i f ( x1 . hasServ i ceReques t s ( ) ) {

( ( IXSCALEDataServiceRequest ) x1 . ge tServ i ceReques t ( ) ) . x1 ( ) ;
}
i f ( r f . hasServ i ceReques t s ( ) ) {

( ( IXSCALEServiceRequest ) r f . ge tSe rv i ceReques t ( ) ) . r f ( ) ;
}
i f ( id . hasServ i ceReques t s ( ) ) {

( ( IXSCALEServiceRequest ) id . ge tServ i ceReques t ( ) ) . id ( ) ;
}
i f ( f 2 . hasServ i ceReques t s ( ) ) {

( ( IXSCALEServiceRequest ) f 2 . ge tServ i ceReques t ( ) ) . f 2 ( ) ;
}
i f ( s r . hasServ i ceReques t s ( ) ) {

( ( IXSCALEServiceRequest ) s r . ge tServ i ceReques t ( ) ) . s r ( ) ;
}
return fB0 ;

}
} ;

Listing 6.4: The execute method of the service model of the XSCALE processor.

The results show that reasonably fast simulation speeds are obtainable using the
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ARM7TDMI ARM9TDMI XSCALE
CRC 9.7M 8.8 5.1M
FFT 7.6M 5.0 4.7M
IFFT 7.5M 4.9 4.1M
FIR-1024 7.5M 7.0 4.3M
Loop-test 7.9M 7.1 4.4M

Table 6.1: Obtainable simulation speed of the three different ARM models (sim-
ulation cycles / second).

service models of the three different ARM processors in which the individual
pipeline stages are modelled explicitly. The service models of the ARM7TDMI
and the ARM9TDMI core are believed to be very close to cycle accurate whereas
the XSCALE service model is probably further from being cycle accurate as
advanced features, such as branch target buffers, are not modelled in the current
version.

The obtainable simulation speeds are promising but might degrade slightly in
the process of refining the models to be truly cycle accurate. The goal of the
HCPN based model-of-computation is to be adequately fast and at the same
time allowing models using the HCPN based model-of-computation to be used
in the system level modelling and performance estimation framework presented
in this thesis and, thus, the current obtainable simulation speeds are definitely
very promising.

The service models introduced here model only the core of the processors de-
scribed. However, the memory controllers, caches, memories, co-processors and
busses could be modelled using HCPN based service models in a similar matter
if desired.

6.4 Summary

In this chapter, a model-of-computation was presented based on Hierarchical
Coloured Petri Nets (HCPNs) which allow the generation of quantitative perfor-
mance estimates of synchronous hardware components through simulation. The
model-of-computation allows models described at different levels of abstraction
to co-exist, ranging from high level functional models to detailed cycle accu-
rate and possibly bit true descriptions, while being much faster than traditional
register transfer level simulations.

The time required to describe models using the presented framework is much
less than the time required to describe the equivalent RTL model due to the
higher level of abstraction used. It is significantly faster to modify a model
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described using the HCPN based model-of-computation in case of bug fixes or
functionality extensions. This is especially beneficial in the development of new
components where the exact requirements are not yet known. In such a case,
the framework can be used for the architectural exploration of the component
and then followed by an RTL description in a hardware description language
such as Verilog, etc. Currently, it is not possible to automate the generation of
RTL descriptions. However, due to the information included in the case where
a detailed bit true and cycle accurate model exists, it is believed that in the
future this can be done at least partially automated.

Furthermore, in the category of future work, an important and very interesting
path will be the investigation of the possibilities of using the existing formal
analysis capabilities defined for HCPNs. It would be very nice to be able to
couple the promising simulation efficiency shown with the possibilities of formal
analysis in order to formally reason about the properties of a model before
simulations are performed.
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Chapter 7

Exploration of a Digital Audio
Processing Platform

In this chapter, the presented system level performance estimation framework
is applied to a non-trivial industrial case provided by the Danish company and
DaNES partner Bang & Olufsen ICEpower. The case study illustrates how the
framework can be used for quantitative performance estimation using a simula-
tion based approach and a successive refinement of models. The framework is
applied in a top-down approach using an iterative refinement process that allows
qualified decisions to be made at each level of iteration based on quantitative
feedback extracted from the framework.

In this case study, a mobile audio processing platform is considered. The purpose
of the case study is to illustrate the potential of the presented framework and
to give an insight into its usage. As already mentioned in chapter 1, Bang
& Olufsen ICEpower is working within the field of audio power conversion.
Currently, an existing version of the audio processing platform considered is
available on the market and is sold in high volumes. However, due to a very
competitive market, the platform is constantly being refined in order to reduce
cost and increase performance and/or functionality.

The mobile audio processing platform, illustrated in figure 7.1, is comprised of a
digital front-end and a class D amplifier including the analogue power stage on-
chip. The platform offers stereo speaker and stereo headphone audio processing
resulting in a total of four audio channels being processed.

The digital front-end includes audio and control interfaces, sample rate conver-
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Figure 7.1: Overview of the case-study platform. The shaded block is the focus
of this case-study.

sion, mixing, audio processing algorithms for channel enhancement and finally
a proprietary digital modulator from which the output is connected to the on-
chip analogue power stage. However, in this case study, the focus will be on the
digital audio processing part of the platform only in which all audio processing
is done within a single clock domain. The input interfaces, mixing and sample
rate conversion are considered one combined abstract entity from which audio
samples are being sourced at a fixed rate determined by the sample rate of the
system. Similarly, one processed sample must be available at the modulator at
each sample rate period in order to ensure normal operation. The ratio, defined
in equation (7.1), between the sample rate of the system and the clock-frequency
of the audio processing clock domain, expresses the real-time constraint of the
application, i.e. how many cycles that can be used for audio processing per
sample.

Cycles/sample =
Fclk

Fsamplerate
(7.1)

The sample rate of the system is defined as part of the specification of the
application and cannot be changed but the real time constraint can still be
modified by changing the clock frequency of the audio processing domain in order
to scale the number of available cycles for processing each sample. However, with
the targeted domain of the platform in mind, the objective is to have the lowest
possible clock frequency in order to minimize the power consumption. The real
time constraint can also be modified using buffers so that the processing of a
buffer can amortize any processing overhead on the complete buffer limited, both
as regards the overall tolerated latency of the application, and especially, in the
current case-study, as regards the physical area occupied by the buffers.

The audio processing application under investigation can obviously be catego-
rized as a stream based application. However, the application also includes
the possibility of customizing and controlling the audio processing at runtime
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adding a less dominant control oriented nature to the application. This allows
the individual processing algorithms to be turned on and off as well as changing
the operation of each one through the change of various parameters. Some of
these control operations are time constrained implying that they must be han-
dled within a given time frame in order not to have a negative impact on the
subjective listening experience.

The objective of the exploration is to optimize the execution platform, on which
the application runs, in terms of silicon area and power consumption, both of
which need to be minimized. Due to the very high production volumes of the
system, both the cost and performance of the system are critical elements in
order to obtain commercial success, making the flexibility of the implementation
a secondary objective only. In addition to these objectives, the time-to-market
constraints of the system is added, complicating the design process even fur-
ther by limiting the possibility of exploring the design space severely due to
the absence of the possibility of getting feedback on design choices until the
system has been realized at a very low level of abstraction with the current
tools available. The increasing time-to-market constraints, however, are making
a flexible implementation more attractive both in terms of design time for the
current design but also increase the possibility of reusing the platform in future
systems.

Traditionally, the choice of implementation has been between a platform based
on a DSP processor or a fully dedicated hardware implementation. The DSP
processor is programmable and includes a software debugging environment,
making algorithm implementation and debugging relatively easy compared to
a hardwired implementation done at register transfer level. However, the effi-
ciency of the DSP compared to the hardwired implementation in terms of area
and power consumption is sacrificed to some degree in exchange for flexibility
which implies that a DSP based platform at first glance seems uninteresting, the
current objectives taken into consideration. It seems obvious that both solutions
have severe drawbacks either with respect to efficiency or with respect to the
level of flexibility. Thus, a third option has been considered at the company and
an experimental application specific processor referred to as the SVF -processor
has been developed. The SVF processor is optimized to execute the type of
algorithms needed in the application of the current case-study, has a relatively
small silicon footprint, a very shallow pipeline and is programmable by offering
61 different instructions. The rather general DSP includes a number of features
which are not needed by the specific application considered. Thus, a platform
based on one or more SVF processors might prove to be the better choice in the
trade-off between flexibility and efficiency but still need not be efficient enough
to compete with the hardwired implementation.

The major problem with the three types of solution is that even though a number
of conclusions seem obvious based on experience and intuition, they cannot be
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verified until a very late stage in the design process where, as a minimum,
register transfer level descriptions of the systems exist and, so, answering the
question, ”What is the best suited platform for the given application under the
given constraints?” is not straightforward in the early design phases.

In the following, it will be explained how the presented framework was used in
order to help answer the question before the system is realized at a very low
level of abstraction based on quantitative performance estimates produced by
the framework. The accuracy of the estimates, as well as the simulation speed,
will also be discussed.

7.1 Application modelling

The first step in order to start the exploration of the platform, using the pro-
posed framework, is to construct an application model. The application model
is constructed from a specification of the application in Matlab and captures the
functional behaviour of the application in a number of tasks as well as specifies
the communication requirements of the individual tasks explicitly, without any
assumptions on the implementation, following the principle, on which the frame-
work is founded, of separating the specification of functionality, communication,
cost and implementation.

The audio processing consists of four different algorithms which are labelled
A-D. Table 7.1 shows their computational requirements in terms of arithmetic
operations per sample only.

Algorithm Number of Multiplica-
tions

Number of Additions /
Subtractions

A 15 15
B 8 6
C 3 2
D 3 12

Total 29 43

Table 7.1: Table showing the computational requirements of the audio process-
ing algorithms in terms of aritmetic operations per sample.

The application supports the processing of a total of four audio channels allowing
individual stereo speaker and stereo headphone processing. The application
receives one common stereo audio stream, consisting of a left and right audio
stream. After the processing of algorithm A, these are split into four separate
audio streams, two for speaker and two for headphone, in order to allow a
separate processing of the speaker and the headphone streams. The resulting
high level application model is shown in figure 7.2.
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Figure 7.2: High-level view of the application model of the case-study.

The application model contains 14 tasks (2 x A, 4 x B, 4 x C, 4 x D) for mod-
elling the processing of the audio streams, 6 tasks (2 x SRC, 4 x SINK) for
modelling the audio interfaces to and from the environment, as well as the envi-
ronment itself, and finally an additional task (CTRL) for modelling the changes
of the application state and/or control parameter changes which influence the
individual audio processing parts. The connections between the tasks of figure
7.2 represent abstract communication buffers. The bandwidth of these are fairly
low, each requiring the transfer of one audio sample in each sample rate period
and with a word size which is implementation specific. The abstract communi-
cation buffers allow implementation independent inter-task communication and
the implementation is considered only when the tasks are being mapped to the
processing elements of the platform on which they run. In addition to the con-
nections shown, all tasks have a connection to the control task allowing each
one to access the parameters relevant to that particular task.

The tasks and buffers of the application model are modelled as a service models
and in order to illustrate this in more detail, only a subset of the application
model will be discussed in the following for illustrative purposes. This is done
without loss of generality. Figure 7.3(a) shows a subset of the tasks of the
application considered: A source task from which samples are generated, two
audio processing tasks and a sink task to which processed audio samples are
sinked. From the behavioural specification of the application in figure 7.3(a),
an application model is constructed as shown in figure 7.3(b). The application
model consists of one service model for each task and a buffer service model for
each communication link required.

The functional behaviour of the application model was verified through simula-
tions of the application model. The results were compared to the specification
of the algorithms in Matlab and verified. The functional tasks of the high level
application model are implemented using the floating-point arithmetic represen-



98 Exploration of a Digital Audio Processing Platform
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(a) The high level view of the simplified application model of
the case-study.

SOURCE

ACTIVE 
INTERFACE

TASK A

ACTIVE 
INTERFACE

TASK B

ACTIVE 
INTERFACE

ACTIVE 
INTERFACE

SINK

BUFFER

PASSIVE
INTERFACE

PASSIVE
INTERFACE

BUFFER

PASSIVE
INTERFACE

PASSIVE
INTERFACE

BUFFER

PASSIVE
INTERFACE

PASSIVE
INTERFACE

ACTIVE 
INTERFACE

ACTIVE 
INTERFACE

(b) The coressponding simplified application model of the case-study, showing the individual
service models and their inter-connection. For each task and each buffer, a service model is used
to represent the functionality offered and required.

Figure 7.3: Application model construction.

tation offered by the host machine on which the simulator, running the model, is
executed. This high level functional application model serves as the functional
reference in the refinement steps towards the final implementation. However, at
this level of abstraction, there is no notion of time or physical resources - hence
only very rough performance estimates can be generated from a profiling of the
application model combined with an annotation of the individual tasks with a
cost. The cost can either be estimated or, in the case where the target platform
is already available, a statistic average may be used.

7.2 Platform Modelling

In order to generate quantitative performance estimates, the tasks and buffers
of the application model must be mapped to the components of a platform
model creating a system model. Performance estimates relevant for evaluating
the different platform options can then be extracted from the simulation of the
system model.

When the tasks of an application model are mapped to the processing elements
of a platform model, the tasks can, when executed, request the services offered by
the processing elements. In this way, the functionality of the task is represented
by an arbitrary number of requests to services which, when executed, model
the execution of a particular operation or set of operations. The execution of a
service can include the modelling of required resource accesses and latency only,
or, depending on the level of abstraction used to describe the service model onto
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which the tasks are executed, even include the actual functionality including bit
true operations.

In the current case-study, three different types of platforms were considered
based on either a DSP processor, the SVF processor or a dedicated hardware
implementation. Due to area constraints of the system, the number of feasi-
ble platforms were limited to the platforms shown in table 7.2. The table also
includes area estimates of the platforms relative to the dedicated hardware im-
plementation. For each of the platforms listed in table 7.2, a platform model
was constructed.

Platform Description Relative Area
HW Dedicated hardware 1.0
SVFx1 1 SVF ASIP 0.6
SVFx2 2 SVF ASIP’s 1.3
SVFx3 3 SVF ASIP’s 2.1
SVFx4 4 SVF ASIP’s 2.9
DSP 1 Audio DSP 4.0

Table 7.2: Relative area of the investigated platforms.

In the exploration of the platforms, the first set of quantitative performance
estimates were focusing on an execution time analysis of the platforms only.
At this point, the objective was to investigate the utilization of the processing
elements of the platforms at different clock frequencies in order to find the
lowest clock frequency at which the platforms could be run and still execute the
application within the real-time constraint defined in equation 7.1.

The first step in the quantitative performance estimation process was to con-
struct service models of the different types of processing elements for use in
the specified platform models. In this case-study, the architecture of the pro-
cessing elements was already fixed; hence a detailed latency based model could
be constructed of each processing element using the HCPN based model-of-
computation introduced in chatper 6.

For illustrative purposes the SVF processor will be used as, example in the
following. The pipeline of the SVF processor is very shallow and illustrated
in figure 7.4 which shows the HCPN based service model of the SVF proces-
sor.

The HCPN model of the SVF processor defines two service model interfaces:
One passive and one active, as shown in figure 7.5. The passive interface allows
application models to access the services of the SVF processor model, i.e. mod-
elling the execution of the application on the processor. The active interface
is used to support the connection of the SVF processor model to other service
models e.g. a memory block. The services offered by a HCPN based service
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Figure 7.4: Simplified block diagram of the SVF-processor pipeline.

model are represented by a number of tokens in a one-to-one relation. In the
case of the SVF processor model, each of the 61 instructions of the SVF pro-
cessor is represented by a service and, initially, one token for each instruction is
put in the place Services. During the simulation of a service model, a service
is requested by placing a service request token in the place Service Requests.
Recall, that a service request specifies the requested service, a list of arguments
which can be empty, and a unique request number used to identify the service
request by the simulation engine, e.g. to annotate the execution time of the
service request. The argument list can be used to provide input arguments to
the implementation of a service, or to allow the modelling of data operand de-
pendencies, by letting the arguments specify one or more data operands that
must be present before the service can be executed.

If the requested service is available in the Services place, and it is assumed
that the service model is composed as shown in figure 7.5, the transition T1
becomes enabled and is allowed to fire in the next simulation cycle. During
a simulation cycle all concurrently enabled transitions are fired corresponding
to the modelling of a global clock event. When the transition T1 fires, the
service request token from the Service Requests place and the corresponding
service token from the Services place are consumed. The firing of the transition
produces a new service token - of the type that was just consumed - in the
Services place indicating that the model is ready for executing the same service
again in the next simulation cycle. Furthermore, a service request token is
produced in the second outgoing place of T1, having the same arguments as the
service requests consumed including the unique request number which identifies
the service request. The arrival of the service request in the Service Done
place indicates the completion of the service request and the token representing
the service request will be either consumed by the model or removed by the
simulation engine for later analysis.
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The service model implementation of the pipelined version of the SVF service
model captures the latency of each service offered by the service model only. The
pipeline stages are clearly identifiable in figure 7.5, separated by transitions. The
model of the processor considered defines two interfaces: one, a passive service
model interface through which the instructions, represented as a single service
each, are offered to the application model which will eventually be mapped to the
processor model, and a second, active, service model interface which allows the
model to be connected to a memory model. The active service model interface
also specifies the services which must be provided by the passive service model
interface to which it will be connected. These, however, are not shown in the
figure.

Arc expressions are used to route tokens through the model. When e.g. a
load word (LW) or store word (SW) service is being processed, they request
a new service request via the active service model interface of the SVF model
of figure 7.5 modelling access to memory. Depending on the implementation
of a service model, an arbitrary number of service requests can be processed in
parallel e.g. modelling more advanced pipelines, VLIW, SIMD, and super scalar
architectures.

If the framework had been used in the exploration of an architecture of a new
processing element, the first version service model would probably have had an
even higher level of abstraction, modelling a number of the key features very
roughly only. The latency models do not include a modelling of the actual
functionality but only the resource access and latency of each service without
any modelling of data dependencies. This makes it possible to extract cycle
approximate estimates of the execution of a given application.

7.3 Quantitative Performance Estimation

Quantitative performance estimation is then performed by mapping the appli-
cation model to the platform models consisting of the latency based service
models. The latency based service models do not model the actual functionality
of the individual services and, so, no calculations are performed in the service
models. This implies that the control flow of the application must be handled
in the application model and the tasks mapped to the individual latency based
service models must belong to the category of mixed-tasks. This group of system
models is hence named mixed latency. The construction of a system model is
illustrated in figure 7.6 where the application model shown in the upper part of
the figure is being mapped to the SVFx2-platform model composed of only two
SVF processor service models shown in the lower part of the figure. For reasons
of clarity only part of the application model is shown in the figure. Similar
system models were constructed for each of the platforms.
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The utilization ratios extracted from the six different platforms are shown in
figure 7.7 for the different clock frequencies investigated. In the cases where
the application is requiring more computational cycles than those offered by the
processing elements, implying that the real-time constraint of the application
cannot be met, the utilization ratio has been set to 100% in the figure. Thus,
in the figure, if a processing element has a utilization ratio of 100% it actually
means that the platform is not usable. From the figure it can be seen that the
clock frequency of the dedicated hardware implantation can be no lower than
25 MHz in order to fulfil the real-time constraint of the application.

The results of figure 7.7, combined with the area estimates of the platforms,
showed that the SVF based platforms, were particularly interesting in the per-
formance/flexibility trade-off having the possibility of achieving half the clock
frequency of the hardwired implementation with only a minor increase in the
silicon area in the case of the SVFx2-platform. The results also indicated that
the clock frequency could even be reduced to one fourth of the hardwired im-
plementation in the case of the SVFx4-platform at the expense, however, of a
tripling of the area. The platform based on the general audio DSP proved not
to be attractive due to a high area and medium performance compared to both
the hardwired and application specific platforms.

Figure 7.7: Platform utilization vs. clock-frequency.

Due to the promissing results obtained for the SVF based platforms these were
selected for further modelling in order to verify the initial results. Therefore, a
more detailed service model of the SVF processor were constructed and used for
verifying the utilization ratios and the functional correctness of the results. The
detailed SVF service model share the structure of the latency based model but
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includes a detailed bit true modelling of the functionality of each service resulting
in a bit true and cycle accurate model. The SVF processor is a synchronous
24-bit fixed point processor implying that data operations must be modelled
explicitly due to the fact that the simulation platform used has a native word
size of 32 bit. The source code for the detailed cycle accurate and bit true
service model of the SVF processor can be found in appendix D.

The four SVF based platforms were refined to use the bit true and cycle accu-
rate SVF service models utilizing the compositional properties of the framework
and the tasks of the application models, which were mapped to the SVF service
model processing elements, were now modelled as implementation-tasks. These
system models are referred to as compiled system models, because the tasks
are represented as a service request image generated using the existing compiler
infrastructure associated with the SVF processor. In this way, a one-to-one
correspondence with the physical execution of the application can be obtained.
Furthermore, the platform models were refined to include service models repre-
senting FIFOs modelling direct point-to-point connections between the process-
ing elements. Figure 7.8 shows the refined system model of the SVFx2-system.
The platform model is still composed of two SVF processor service models,
but now connected via a FIFO service model, allowing the left processor to
send processed data samples to the right processor using a direct point-to-point
connection. The figure also illustrates how the SRC-task is modelled as a func-
tional -task in the application model and, still, it is allowed to communicate
with the compiled A-task running on a cycle accurate and bit true model of
an SVF processor through the abstract buffer B1. The possibility of mixing
components described at different levels of abstraction is one of the strengths of
the framework. Again, similar system models were constructed for each of the
SVF based platforms.

The results of the simulations performed on the four compiled system mod-
els verified the functional correctness of these when compared with the results
obtained from the application model. Furthermore, the results showed that it
was actually the case that the SVFx2-platform makes it possible to lower the
clock frequency to one half of the hardwired version. The results make the
SVFx2-platform a promising alternative to a hardwired implementation when
the area estimates are also taken into account. Even the SVFx1 platform seems
competitive with an area equivalent to the hardwired platform. However, this
platform does not experience the benefit of halving the clock frequency as was
the case with the SVFx2 platform. Instead it has the same minimum clock
frequency requirement as the hardwired version and, hence, it might be that
the power consumption cannot compete with the hardwired platform. In order
to reach such conclusions, a detailed analysis of the power consumption must
be performed which is not possible in the presented framework.
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7.4 Accuracy

The accuracy of the performance estimates produced using the framework de-
pends directly on the level of abstraction used to describe the models used to
generate the estimates. This implies that in order to use the performance esti-
mates constructively, the level of abstraction at which the estimates have been
generated must be taken into account.

In order to relate the quality of the performance estimates produced by the
framework in the current case-study, an RTL implementation of the SVFx1-
platform was created in the hardware description language Verilog referred to
as the RTL model in the following. The simulations performed using the RTL
model, were then compared with the results obtained from the performance
estimation framework.

Table 7.3 shows the estimated number of cycles used to process a stereo audio
channel produced by the framework for the mixed latency and the compiled
SVFx1-system model and estimates extracted from the RTL model simula-
tions.

The table shows that the cycle estimates obtained from the mixed latency
model, in which only the latency based service models are used, are not cycle
accurate. The cycle estimates produced by the mixed latency model are in
general too optimistic and differ by roughly 18% for the A task, 2% for the B
task and 9% for the D task. Only the estimated number of cycles for the C
task is actually correct. This is caused by the fact that the latency based model
does not take data dependencies into account. If desired, the modelling of data
dependencies could be included and better estimates would be obtained, still
using mixed task types. However, the purpose of these simulations was solely to
get an initial rough performance estimate and, thus, this emphasizes the need
for taking into account the level of abstraction with which the models are to be
described when evaluating the results.

In the other range of the scale, in terms of accuracy, the table also shows the
cycle estimates of the refined compiled model in which a cycle accurate and bit
true modelling of the components was used. In this case, the cycle estimates are
identical with the estimates obtained from the RTL model, as can be seen from
the table, where the required computational cycles are listed for the processing
of 3000 samples in one audio channel.

The constructed RTL model was also used to make a comparison of the func-
tional results produced by the framework using the compiled version of the
SVFx1-platform. Again, the comparison involved the processing of 3000 sam-
ples. The functional comparison showed that the audio streams processed from
the system model were 100% identical to the processed audio streams from the
RTL model.
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Mixed Latency Compiled RTL
A 84,034 102,034 102,034
B 123,041 129,384 129,384
C 33,011 33,011 33,011
D 153,051 168,056 168,056
Total 393,137 429,143 429,143

Table 7.3: Estimated number of cycles for the processing of 3000 samples in one
audio channel at three levels of abstraction.

Furthermore, the time required to describe the model using the presented frame-
work is much less than the time required to describe the equivalent RTL model
due to the higher level of abstraction used. More importantly, it is significantly
faster to modify a model of the framework in case of bug fixes or functionality
extensions. This is especially beneficial in the development of new components
the exact requirements of which are not yet known. In this case, the framework
can be used for the architectural exploration of the component and then followed
by an RTL description in a hardware description language such as Verilog, etc.
Currently, it is not possible to automate the generation of RTL descriptions.
Hopefully, however, this can be done at least partially automated in the case
where a detailed bit true and cycle accurate model exists.

7.5 Simulation speed

Like the accuracy, the obtainable simulation speed also depends on the level
of abstraction used to describe the components of the system model which is
being simulated and the framework experiences the classic trade-off between
accuracy and simulation speed. Table 7.4 shows the measured simulation speeds
expressed as cycles per second for the individual system models investigated.
Before proceeding, it should be noted that all simulations are performed on an
Intel Core 2 Duo processor running 2.0 GHz and with 2GB RAM.

Mixed Latency Compiled RTL
HW 21,9M N/A N/A
SVFx1 21,7M 19,9M 15,324
SVFx2 18,6M 15,8M N/A
SVFx3 17,2M 13,8M N/A
SVFx4 15,9M 12,4M N/A
DSP 20,0M N/A N/A

Table 7.4: Obtainable simulation speed of the investigated system models (sim-
ulation cycles / second).
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At the highest level of abstraction are the models referred to as mixed latency
in which the application model tasks were modelled as mixed tasks and only the
latency and resource access were modelled in the platform model. In general,
these provide the fastest simulation speeds due to their high level of abstraction
but, as mentioned in the previous sections, they can only be used for rough
execution time analysis.

Table 7.4 also shows the obtainable simulation speeds for SVF-platform models
which were refined to bit true and cycle accurate versions. Application mod-
els running on these are compiled into a service request image, equivalent to
the actual binary image running on the actual hardware, using the compiler
infrastructure of the SVF processor. These sets of simulations are referred to as
compiled and only include the SVF-platforms.

However, what is more interesting is the big speed-up seen when comparing the
simulation speed of detailed bit true and cycle accurate version of the SVFx1-
system model with the equivalent RTL simulation. The SVFx1-system model
runs at approximately 20 million cycles per second with all algorithms enabled,
including data logging, and the functionally equivalent RTL description runs
with approximately 15 thousand cycles per second resulting in a speed-up of
more than 1000x. This makes it possible to use the bit true and cycle accurate
system model as a virtual platform and also allows a much larger part of the
functional design space to be tested and verified before a physical prototype of
the system has been constructed.

7.6 Summary

In this chapter, a case-study from Bang & Olufsen ICEpower was presented in
which a mobile audio processing platform was considered.

The results of the case-study indicate that the platform consisting of a single
SVF processor is directly comparable to the hardwired solution in terms of
gate count and processing power offered. However, what is more interesting,
is that while the platform consisting of two SVF processors experience only a
slight area overhead compared to the hardwired platform, it can actually run
at half the clock frequency, potentially leading to a lower power consumption.
At the same time, the SVF processors provide a higher degree of flexibility
because they are programmable and, thus, design changes are adapted faster
and also make a reuse of the platform more likely. However, the conclusion is
not evident but, if the increased silicon area can be accepted, an SVF based
platform is competitive with the current hardwired platform and may even lead
to lower power consumption due to the lower clock frequency which can be
used. Additional investigation is required, however, to draw such conclusions
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due to the lack of power consumption estimates in the current version of the
framework.

The application of the case-study was to be executed on a platform which was
yet to be decided, and the company wanted to know how to ensure that the
applications are executed in the best possible way, and which platform would be
best suited for that. Usually, choices like these are based on the engineers’ prior
experience but using the presented framework, it was shown how to construct
a model of both the application and of the platform that enables the two to
interact and show how they will perform in a given situation within a relatively
short time span. This allows a larger part of the design space to be explored,
potentially leading to better designs and thus better products.



Part III

Extensions





Chapter 8

Service Model Description
Language

This part presents initial work on two different aspects of supporting a practical
use of the framework at companies like Bang & Olufsen ICEpower. Still, several
areas of future work reside and pointers to these will be discussed in section
10.2.

The case study described in the previous chapter gave rise to a number of
ideas for improvement of the system level modelling and performance estimation
framework presented.

The first area of focus, which will be presented in this chapter, is the specification
of synchronous hardware models using the presented HCPN based model-of-
computation. In order to allow a specification of models which accommodate
changes in an easier and more flexible way than the current one, in which the
complete model is described in Java, a domain specific language referred to as
the Service Model Description Language (SMDL) was developed. The primary
purpose of having the current version of the SMDL language is to sketch a path
to a usable approach which would allow an efficient practical use. For illustrating
the basic features of the SMDL language, the experimental application specific
SVF processor from Bang & Olufsen ICEpower, introduced in chapter 7, will
be used.

A second area of focus, presented in chapter 9, is to allow automatic design space
exploration (DSE) using the system level modelling and performance estimation
framework described in this thesis to generate estimates of the performance of
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the systems under investigation. The idea is to have a DSE framework which will
automatically create permutations of the permissible configuration of a system
model and then estimate the performance of the specific system instance through
simulations. The current version of the DSE framework is based on the use of the
NSGA-II heuristic for multi-objective optimization but, in principle, it should
be very easy to use other heuristics if preferred. The DSE framework provides an
infrastructure which allows designers to specify the objectives targeted as well
as representing the decision variables and a number of evolutionary algorithm
operators used for generating permutations when searching the design space. In
order to illustrate the potential of the proposed framework, it will be applied
with minor modifications to the case study which was explored manually in
chapter 7.

The remaining part of this chapter introduces the initial version of a custom lan-
guage for describing service models of synchronous hardware. The language can
be categorized as an architecture description language (ADL). Currently, de-
scriptions are used to generate fast simulation models using the service oriented
HCPN based model-of-computation presented in chapter 6 only. However, in
principle , the richness of the information contained in such descriptions makes
it possible also to generate register transfer level descriptions in arbitrary hard-
ware description languages, such as VHDL or Verilog. This will be discussed in
the future work sections at the end of the chapter.

The chapter will start out with an introduction to architecture description lan-
guages and give an overview of the work related to the research within archi-
tecture description languages. The field of research has already been receiving
much attention and several excellent description languages already exist. How-
ever, the nature of service models are so distinct that the flexibility of a cus-
tom language for this purpose outweighed the work required to develop this,
compared to using a pre-existing architecture description language. Then, the
language developed in this project will be described and examples will be given
of how the language is used to describe the custom proprietary processor of the
Danish company Bang & Olufsen ICEpower introduced in chapter 7.

8.1 Related Work

Architecture description languages are used to capture descriptions of architec-
tures for many different reasons. The purpose of the description can be to gener-
ate compilers, simulators and possibly actual implementations of the described
architecture in hardware through synthesis and automated test generation as
illustrated in figure 8.1.

Architecture description languages can be categorized into three groups: Struc-
tural, behavioural or mixed structural and behavioural.
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ADL 
SPECIFICATION

HARDWARE
SYNTHESIS

SIMULATOR
GENERATOR

SOFTWARE
SYNTHESIS

TEST
GENERATOR

HDL
NETLIST

COMPILER
ASSEMBLER

LINKER
OS

ISS
PLATFORM

TEST-VECTOR
TESTBENCH
UNIT-TEST

Figure 8.1: Usage of architecture description languages (ADL).

Structural ADLs focus on capturing the components of which an architecture
is constructed and often include detailed descriptions of the actual hardware
including functional units, pipelines etc. MIMOLA [61] is an example of a struc-
tural ADL in which the micro-architecture being modelled is captured through
a net list of component models which are described at register transfer level as
the behaviour of the component and a set of interfaces containing ports. Mod-
ules can be connected as seen in most HDLs. The information contained in the
net lists is extracted by a code generator named MSSQ in order to generate the
instruction set; this, however, is a very difficult task and constraints need to be
inferred which basically limits the scope of targeted architectures.

Behavioural ADLs describe the behaviour of the operations offered only through
a semantic description and, so, only implicitly describe the underlying hard-
ware, leaving the task of extracting the hardware model to the software tools
provided. In general, it is difficult to generate detailed cycle accurate models
using behavioural based descriptions only without a number of assumptions,
implying that the same problem exists if a synthesis of hardware is to be per-
formed.

nML [31] is an example of a behavioural ADL which focuses on capturing the
instruction set of a processor. nML has been used for several purposes including
both automatic retargeting of compiler infrastructures and instruction set sim-
ulators. nML is also used commercially by Target Compiler Technologies and
their tool suite CHESS/CHECKERS [98] for both compilation tool generation
and instruction set simulator generation. nML uses a hierarchical specification
of instructions in order to achieve a compact instruction set description. In
this way common functionality is specified once only and shared among several
instruction descriptions.
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Several ADLs use a mixture of both the structural and behavioural elements
and such an example is seen in [40] where EXPRESSION is introduced. EX-
PRESSION descriptions contain a behavioural part and a structural part. The
behavioural part captures the instruction set whereas the structural part is used
to capture the data path of the processor explicitly. The structural part includes
timing information for elements which require multiple cycles, such as pipelined
multipliers etc.

In many cases, the individual ADLs target a specific type of architectures, e.g.
FACILE [94] which targets out-of-order processors, Sim-nML [41] which focuses
on digital signal processors (DSPs). ISDL [39] is yet another behavioural ADL,
and as nML is targeted at capturing instruction sets but targets primarily Very
Long Instruction Word (VLIW) based processors and is mainly focused at au-
tomatic assembly and binary code generation.

LISA [108] is a very comprehensive example of an ADL which is also used
commercially in the tool suites previously offered by CoWare and now, due to an
acquisition, Synopsys [3]. Originally, LISA was developed for the same purpose
as the SMDL language described in this chapter, namely for the generation
simulators, but has subsequently evolved and is being used also for synthesis
and compiler tool-chain generation.

Tensilica Instruction Extension (TIE) language [5] is an ADL developed by
Tensilica [5] for describing application specific instruction set processors. The
TIE ADL is used to describe the instruction set details including mnemon-
ics, operands, encoding and the functional behaviour and timing requirements.
Through software tools offered by Tensilica, an automatic retargeting of the
GCC compiler tool chain [1] can be generated, as can custom instructions of
configurable processor cores of the company.

The ArchC [10] which include software tools for automatically generating sim-
ulators and verification interfaces which allow refined models to be compared
against the functional references and, thus, validating the correctness of the
model.

TDL [55] focuses on generating post pass optimizers and analyzers for use in
compilers based on machine-dependent information about the target processor
captured using a specification in the TDL description language.

There has been extensive research within the field of architecture description
languages for automatic simulator generation during the last two decades, as
this section also shows, and only a very brief overview of a number of different
ADLs have been presented here.
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8.2 Service Model Description Language

In this section the details of the Service Model Description Language (SMDL)
in its current form will be presented.

The SMDL architecture description language combines structural and behavioural
descriptions in order to capture the synchronous hardware component being
modelled. The aim of the current version, illustrated in figure 8.2, is to gener-
ate fast simulation models only and, consequently, it is not a full blown ADL
as many of the ADLs discussed in the previous section. The SMDL descrip-
tions are translated into service models implemented using the HCPN based
model-of-computation described in chapter 6.
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SIMULATOR
GENERATOR
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TEST
GENERATOR
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Figure 8.2: Usage of the service model description language - currently only
simulation model generation is supported.

Structural descriptions are used for specifying the state holding elements of
the component such as registers and memories. Currently, the actual model
capturing e.g. the pipeline of a processor is created manually. However, it is
only a matter of extending the SMDL language with syntax and semantics for
capturing this as well; i.e. instead of specifying HCPN models in Java, it would
be possible to do this in the SMDL language instead. However, this is considered
a relatively trivial process because this is mainly a translation of a specification
in one language to another. The time used to describe the services offered by a
component is by far the most time consuming part of describing a service model,
especially if bit-true modelling is needed, implying that non-native word-sizes
are used to represent data, and if the data path bit widths have not yet been
decided. Therefore, the focus is on the SMDL language in order to start with
the possibility of capturing services.

The actual services offered by a service model described using the SMDL lan-
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guage is specified behaviourally and can include the specification of access to
structural elements in order to access e.g. data operands. The service descrip-
tion specifies the behaviour associated with the firing of the transitions of the
structural HCPN model of relevance. In this way the service declaration of an
SMDL description is used to automatically generate the member-functions of a
service request as discussed in section 6.2.

Language elements

In order to introduce the developed language in detail, once again the application
specific SVF processor developed at Bang & Olufsen ICEpower will be used as
an illustration throughout this section. The complete SMDL source code for
the SVF processor as well as the generated Java source code can be found in
appendix C and D respectively. This section will outline the basic language
elements of which the SMDL language is composed.

s e rv i c emode l SVF{
/∗ Active i n t e r f a c e s ∗/
A c t i v e I n t e r f a c e SOURCE LEFT;
. . .
A c t i v e I n t e r f a c e SINK LEFT ;
. . .
A c t i v e I n t e r f a c e I2C ;

/∗ Reg i s t e r f i l e ∗/
word<24> reg [ 1 6 ] ;
. . .

/∗ Program counter ∗/
word<16> pc ;

/∗ S e r v i c e d e c l a r a t i o n s ∗/
. . .

}

Listing 8.1: Service model declaration.

A servicemodel declaration is used to capture the specification of a service
model using the presented SMDL language. The service model declaration con-
sists of a structural declaration and an arbitrary number of service declarations
specifying the behaviour of the services offered by the model. An extract of the
service model declaration of the SVF processor is shown in listing 8.1.

The structural declaration specifies the state holding elements of the model as
well as the interfaces implemented by the model. In the future, the idea is
that this structural declaration will also include the actual structure in terms
of pipeline stages etc.
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An interface declaration specifies the name and type of the interface, either
active or passive. In the case of an active interface, the interface should specify
the required services, i.e. the services which the model which implements the
interface assumes to be requestable and which must be provided by the service
model implementing the passive interface to which this active interface is con-
nected. In the case of the declaration of a passive interface, the interface should
similarly specify the services offered.

abs t r a c t s e r v i c e TYPE1 extends EXTENDEDTYPE2{
encoding {

OPCODE, OP1, OP2, OP3, EXT2, EXT1;
}

/∗ P i p e l i n e behaviour ∗/
abs t r a c t void p0 ( ){

pc = pc + 1 ;
}
abs t r a c t void p1 ( ) ;
ab s t r a c t void p2 ( ) ;

}

s e r v i c e ADDS extends TYPE1{
encoding {

OPCODE = 1 ;
}
. . .
void p0 ( ){

super . p0 ( ) ;
. . . .

}

void p1 ( ){
getOP1 ( ) = getOP2 ( ) + reg [OP3 ] ;

}

void p2 ( ){
. . .

}
. . .

}

Listing 8.2: Specification of the signed addition instruction of the SVF processor.

A service declaration, as illustrated in listing 8.2, is used to capture the be-
haviour of a service. The contents of listing 8.2, will be explained in details in
the following sections.

A simplified object oriented structure is used allowing basic inheritance between
services. Services can be declared abstract if the service is only intended to
hold common functionality shared by extending child-services. Only the non-
abstract service declarations will eventually be represented by a service request
in the generated simulation model. Child-services can be declared as extending
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a parent service, as is shown in listing 8.2, where the ADDS service is extending
the abstract TYPE1 service, in this way sharing the functionality declared by
the parent service. This allows for a more compact description of services.

The body of a service declaration can specify an arbitrary number of service
method declarations which are used to capture the behaviour of the service.
The individual service methods can be associated with the execution of e.g.
a pipeline stage and, so, the behaviour defined by the service method is ex-
ecuted when the corresponding transition of the HCPN model, modelling the
functionality of the specific pipeline stage, when firing.

s e r v i c e ADDS extends TYPE1{
encoding {

OPCODE = 1 ;
}
. . .
void p0 ( ){

super . p0 ( ) ;
. . . .

}

void p1 ( ){
getOP1 ( ) = getOP2 ( ) + reg [OP3 ] ;

}

void p2 ( ){
. . .

}
. . .

}

Listing 8.3: Specification of the signed addition instruction of the SVF processor.

Listing 8.3 shows the specification of three service methods. In this case, the
method p0 specifies the behaviour of the operand fetch stage of the ADDS
instruction and, similarly, the method p1 specifies the functionality of the exe-
cute stage and finally the method p2 specifies the functionality of the write back
stage of the pipeline of the SVF processor. The service method p1 calls two
methods, getOP1 and getOP2, which are defined in a parent service. The two
methods specify the operands to use, modelling the correct behaviour accord-
ing to the corresponding instruction of the SVF processor. The variable reg is
declared in the structural part of the service model declaration and is a global
variable representing the register file of the SVF processor. The operand OP3
is a constant specified by the encoding of the ADDS instruction declared in
the abstract service TYPE1. The encoding declaration will be discussed later
in this section.

A service method declaration can be declared abstract, but only if the service
declaration itself is declared abstract. If a service method declaration is de-
clared abstract it is up to the child service to implement the functionality of the
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method. In listing 8.4, the abstract service TYPE1 is declaring three abstract
methods. The method p0 defines common functionality by stating that the
program counter variable should be incremented but leaves the specification of
remaining functionality to be determined by any extending child services.

abs t r a c t s e r v i c e TYPE1 extends EXTENDEDTYPE2{
abs t r a c t void p0 ( ){

pc = pc + 1 ;
}
abs t r a c t void p1 ( ) ;
ab s t r a c t void p2 ( ) ;

}

Listing 8.4: Illustration of the use of abstract services and methods.

Because the SMDL language is used extensively for describing processors, it also
supports specification of instruction format encoding and can automatically gen-
erate a parser which converts binary encoded instructions to their corresponding
service requests instances. This is done by including a special optional decla-
ration in the service declaration referred to as an encoding declaration. In
the encoding declaration the fields defined in the global encoding declaration
of the service model, shown for the SVF processor in listing 8.5, can be refer-
enced according to the actual desired encoding of the service. It is possible to
include a binding of the global fields to specific values and/or force the presence
of different number strings.

/∗ F i e l d s used in the encoding o f the SVF I n s t r u c t i o n Set ∗/
encoding {

OPCODE[ 2 3 : 1 8 ] ; OP1 [ 1 7 : 1 4 ] ; OP2 [ 1 3 : 1 0 ] ; OP3 [ 9 : 6 ] ;
IMMEEXT[ 1 1 : 0 ] ; IMMEXT[ 9 : 3 ] ; IMM[ 7 : 3 ] ;
TARGET[ 1 7 : 0 ] ; OFFSET [ 9 : 0 ] ;
EEXT2 [ 9 ] ; EEXT1 [ 8 ] ; EXT2 [ 5 : 3 ] ; EXT1 [ 2 : 0 ] ;

}

Listing 8.5: Fields used in the encoding of the SVF Instruction Set.

The fields of listing 8.5 declare the position and number of bits used to encode
the instruction set of the SVF processor which is shown in appendix B.

The encoding is determined by any parent service encoding declarations and the
current service encoding declaration as illustrated in listing 8.6, where the ab-
stract service TYPE1 declares an encoding consisting of the fields OPCODE,
OP1, OP2, OP3, EXT2, EXT1.

The ADDS service then binds the OPCODE field to the value of 1. The
ADDS service can then be encoded as the binary string:

000001XXXXXXXXXXXXXXXXXX
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where X represents arbitrary values. The binary string is used to generate a
mask in the generated parser in order to instantiate the corresponding service
from the binary application image obtained from the compiler infrastructure
supplied with the SVF processor.

abs t r a c t s e r v i c e TYPE1 extends EXTENDEDTYPE2{
encoding {

OPCODE, OP1, OP2, OP3, EXT2, EXT1;
}
. . .

}

s e r v i c e ADDS extends TYPE1{
encoding {

OPCODE = 1 ;
}
. . .

}

Listing 8.6: The encoding of the ADDS service.

The part of the generated decoder responsible for instantiating the ADDS
service request is shown in listing 8.7 which makes sure that all declared fields
of the instruction are parsed as arguments to the constructor of the ADDS
service request, too.

public ISe rv i c eReques t c r ea t eSe rv i c eReque s t ( long i n s t ) {
. . .
else i f ( ( i n s t & 262144) == 262144

&& (˜ i n s t & 16252928) == 16252928) {
int l 0 = ( int ) ( i n s t & 960) >>> 6 ;
int l 1 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 2 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 3 = ( int ) ( i n s t & 56) >>> 3 ;
int l 4 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”ADDS” , new Object [ ] { l0 , l1 ,

l2 , l3 , l 4 } ) ;
}
. . .

}

Listing 8.7: The automatically generated binary decoder. The decoder decodes
the binary instruction and returns an instance of the corresponding service re-
quest. This listing is an extract of the decoder for the ADDS instruction.

8.3 Service model generation

In this section, a brief overview is given of how simulation models are generated
based on a specification of the model using the SMDL language. The current
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implementation of the synthesis and code generation tool is built as a traditional
compiler as illustrated in 8.3.
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Figure 8.3: Usage of the service model description language - currently only
simulation model generation is supported.

The SMDL specification is first parsed, checked for syntactical correctness and
converted into an abstract syntax tree, in this way representing the syntactical
elements of the specification as a data structure which allows the generation of an
intermediate representation of the specification. A number of optimizations can
then be applied to the intermediate representation. These are of a general nature
and are independent of the optimizations which are implementation language
specific. The optimized intermediate representation is then used to generate
an abstract service model. This abstract service model is then parsed onto the
code-generator which, in the current case, emits Java source code. In principle
it should be possible to generate e.g. C/C++ or SystemC source instead in a
straightforward manner at this point.

class ADDS extends TYPE1 {
protected f ina l IDataWord FIELD0 ;
protected f ina l int OP3 ;

public ADDS( IServ iceMode l p0 , I S e r v i c e p1 , int OP3, int OP2,
int OP1, int EXT2, int EXT1) {
super ( p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP3 = OP3;
FIELD0 = ( IDataWord ) fModel . g e tS ta t e ( ) . g e t R e g i s t e r (

” reg ” + OP3 ) . getElement ( ) ;
}
. . .
public f ina l void p1 ( ) {

GETOP1. s e t In t ege rVa lue ( ( GETOP2. ge t Intege rVa lue ( ) + FIELD0
. ge t Intege rVa lue ( ) ) ) ;

}
. . .

}

Listing 8.8: The Java implementation of the ADDS service request class which
represents the ADDS instruction specified in SMDL.

Listing 8.8 shows the generated Java class for the ADDS service which were
used as example in the previous section. All services specified in the SMDL
specification will have a corresponding Java class.
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In addition to the Java implementation of all services specified, a number of
Java classes are generated automatically to support the service model concept
using the presented framework. These make it possible for other models to
request services and interface with the generated service model and also make
it possible to e.g. allow the graphical user interface to inspect the variables
declared, etc. Currently, the actual implementation of the service model, i.e. the
part responsible for executing the service requests, must be specified manually.
This, however, is the part which is the least time consuming to construct and it
is estimated that this can be generated in the future with relative ease. The part
of the HCPN based service model which requires the most time to specify are
the actual services offered, especially if this is done at a low level of abstraction
as in the case of the SVF processor example given here. The benefits of having
a high level language, such as the SMDL language, is thus extra rewarding for
auto generating the services of a model as can be done with the current version
of the SMDL language and associated tools.

As can be seen in appendix C and D the SMDL description of the SVF ser-
vice model is more compact than the equivalent specification of the SVF service
model in Java. Also, the specification in SMDL is more intuitive and thus the
SMDL specification brings several benefits seen from a practical point of view,
allowing designers to specify service models of synchronous hardware compo-
nents in a more convenient way.

8.4 Summary

This chapter presented the service model description language (SMDL) for spec-
ifying service models of synchronous hardware components in a fast and compact
manner.

The SMDL language is still mostly used for proof-of-concept and hence much
work still lies ahead within a further refinement of the language. It was shown
how the SMDL language can be used through examples of how parts of the SVF
processor were described. There are several elements which would be interesting
to pursue in the future which follow traditional usage of ADLs. From a practical
point of view, much value would be added if hardware synthesis support would
be added as well as automated test generation in the form of both test benches
and test vectors.

Until now the SMDL specification has only been used to generate fast simulation
models based on the modified HCPN model-of-computation for modelling syn-
chronous hardware components. Considerations regarding a future possibility of
using the SMDL language for specifying all service models in general have also
been made. The pros and cons of using a proprietary language for specification
need to be evaluated. Pros, include the obtainable flexibility to match and allow
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the specification of the concepts of service models easily. Heavy weighing cons
include the complexity of managing a complete software tool-infrastructure as
well issues regarding model interoperability.
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Chapter 9

Automated Design Space
Exploration

This chapter presents the first steps in the construction of an automated de-
sign space exploration framework which uses the system level modelling and
performance estimation framework presented in part I for fitness evaluation of
potential candidate solutions.

Design space exploration is the process of exploring the possible combinations of
configurations of a system, quantifying each in order to associate a quality mea-
sure with the particular realization, allowing the best possible system realization
to be selected. In theory, all possible design points need to be evaluated in or-
der to find the optimal system. The problem in most cases is a multi-objective
optimization problem in which several objectives are equally important imply-
ing that no unique solution exists. Instead of a single golden solution, a set of
equally good solutions which represent the best trade-offs between the specified
objectives can be identified from which the designers can then choose. The so-
lutions which represent the best trade-off between the objectives are referred to
as the Pareto optimal set of solutions.

In most practical instances, the sheer size of the design space is simply too
large to allow a full evaluation of every design point. Thus, traditionally, the
experience of the designers of a system has been a vital element in order to obtain
a successful system realization. However, another approach is to use multi-
objective optimization heuristics to facilitate a structured automated search
of the design space and, so, limit the number of investigated points in the
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design space in a structured manner. Such an approach, based on what is
known as multi-objective evolutionary algorithms, is outlined in this chapter
using one specific heuristic which, combined with the system level modelling
and performance estimation framework presented earlier in this thesis, allows
designers to perform an automated multi-objective design space exploration.
The output of the proposed framework is a set of Pareto approximated solutions
which express the best found trade-offs between the specified objectives from
which the designer can then choose the preferred solution.

Figure 9.1 gives an overview of how the proposed design space exploration
framework interacts with the system level modelling and performance estimation
framework presented.

SYSTEM LEVEL PERFORMANCE 
ESTIMATION FRAMEWORK

DESIGN SPACE EXPLORATION

SYSTEM 
CONFIGURATION

RESULTS

Figure 9.1: Overview of the proposed design space exploration framework.

In the remainder of this chapter, a short overview of related work will be pre-
sented before multi-objective optimization is briefly introduced. Then, one
particularly well-known meta-heuristic for multi-objective optimization is in-
troduced together with a number of operators used in the particular algorithm.
Finally, initial results are presented before pointers to future work and conclu-
sions are given.

9.1 Related Work

In this section related work within the field of automated design space explo-
ration will be briefly discussed. The field of multi-objective optimization using
evolutionary algorithms has received a lot of attention within the last decades;
however, the focus here will be on applications within the field of automated
design space exploration of embedded systems. An excellent introduction to the
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field of multi-objective optimization using evolutionary algorithms is given in
e.g. [54], other prominent surveys include [21, 105, 106].

Platune [37] requires the designer to specify parameter inter-dependencies and
then automatically analyses the permutations of these parameters in order to
find the best possible solution. Parameters are inter-dependent if changing the
value of one parameter impacts the optimal value of the other. The authors state
that such inter-dependent parameters are found rarely in SoC platforms and
thus utilize this to find an approximated Pareto set of solutions by exhaustively
searching sub-blocks of the design space based on the ordering of the parameter
inter-dependency information. The current version of Platune is bound to a
MIPS based platform and does not allow other system models to be used.

In [22], Sesame, a performance estimation framework which includes automated
design space exploration for multimedia systems, i.e. applications which are
stream based, is outlined. The approach to automated design space exploration
taken is very similar to the one taken in this thesis and the authors also use
evolutionary algorithms for analyzing the design space. In particular, the focus
is on solving the mapping problem, i.e. mapping the tasks of an application
onto the processing elements of the target architecture.

In [83], a modular design space exploration framework is presented in which the
system model, exploration algorithms and objectives are specified individually.
Three different heuristics for multi-objective optimization are provided and the
flexible structure is very similar to the approach taken in this thesis. How-
ever, only limited information is available regarding the actual system model
specification and simulation in order to associate cost metrics with the given
solution.

CHARMED is presented in [49], which is a framework for multi-objective design
space exploration. Applications are represented by task graphs. As part of the
search process, the tasks of the task graphs are then automatically mapped to
the processing elements and communication resources available as specified by
the designer in the architecture model. For fitness evaluation, analytical cost
estimates are computed and used to evaluate the given solution. The result of
the search is a set of non-dominated solutions which describe the best found
trade-offs between the targeted design objectives.

The design space exploration framework presented here, by itself, is not unique
but the combination of the automated design space exploration framework with
the presented system level modelling and performance estimation framework
provides a strong tool for exploring complex designs in a semi-automated fashion
with no restrictions on the type of applications which can be considered as is
seen in several of the previous efforts within this area.
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9.2 Multi-objective optimization

This section will introduce the basic concepts of multi-objective optimization
relevant to the design space exploration problem considered here. The defini-
tions in this section are based on the definitions given in [25].

A major difference between a multi-objective optimization problem and a single-
objective optimization problem is that the objective space is multi-dimensional.
Thus, the objective function maps a decision vector ~x = (x1, x2, ..., xN )T from
the decision variable space X into an objective vector ~z = (z1, z2, ..., zM )T in
the objective space Z. Where N denotes the number of decision variables and
M denotes the number of objective functions. Please note that in the following
it is assumed that objective functions are to be minimized without a loss of
generality.

Definition 9.1 In general, a multi-objective optimization problem with N de-
cision variables and M objective functions is defined as:

Minimize f(~x) = (f1(~x), f2(~x), ..., fM (~x))

subject to ~x ∈ X

�

In the following, a particular mapping of a decision variable vector from the de-
cision variable space into an objective vector from the objective space is referred
to as a solution.

Domination

A key-concept, used in multi-objective optimization for comparing different so-
lutions and assessing their quality, is the concept of domination. In our case,
all objective functions are to be minimized, giving us the following definition of
domination:

Definition 9.2 A solution xi dominates xj (xi � xj) if both of the following
two conditions are satisfied:

1. The solution xi is at least as good as xj in all objectives:
fk(xi) ≤ fk(xj) for all k = 1, 2, ...,M

2. The solution xi is strictly better in at least one objective:
fk(xi) > fk(xi) for all k = 1, 2, ...,M
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�

Where M is the number of objective functions. The dominance definition thus
provides a measure of which of the two solutions is the better one.

Non-dominated set

In general, as already mentioned in the introduction of this chapter, no single
optimal solution exists when all objectives are equally important; instead a set of
non-dominated solutions can be found which each represent a trade-off between
the objective functions. This set is referred to as a non-dominated set or a
Pareto set.

Definition 9.3 In a given set of solutions, P , the Pareto set P ∗ is the set of
solutions which are not dominated by any other solution in P . �

If the entire objective space is searched exhaustively, the resulting Pareto set
is said to be the global Pareto-optimal set. In practice, however, the global
Pareto-optimal set is seldom identifiable due to the vast size of the decision and
objective space which is encountered in real world problems. In the following
both the terms Pareto set and Pareto front will be used.

9.3 The design space exploration framework

The current version of the automated design space exploration framework is im-
plemented in Java [73]. The framework consists of a core which allows the spec-
ification of an optimization problem which is to be solved, the multi-objective
optimization algorithm to use, the decision variables and a range of valid values
for each. Having specified these, the core is capable of automatically generating
system configurations which are used for instantiating a system model for fitness
evaluation of the individually generated solutions using the system level mod-
elling and performance estimation framework presented in this thesis.

The current version of the framework assumes the use of multi-objective opti-
mization algorithms which can be categorized as evolutionary algorithms. Cur-
rently, only the NSGA-II [26] multi-objective optimization algorithm is imple-
mented but the framework allows other algorithms to be used easily requiring
only that a specific Java interface is implemented in order to be used in the
framework. Similarly, extensions of the default set of evolutionary operators
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for mutation, cross-over, selection etc. can be added, under the constraint that
appropriate operator interfaces are implemented.

The current version of the design space exploration framework assumes that all
required system model components are already available. Thus no models are
generated automatically; instead, only parameters of the individual models are
tuned and different mappings are explored. The designer must specify an appli-
cation model which captures the application under investigation as one or more
parallelly executable tasks including their possible data dependencies.

A least one platform model must also be specified by the designer. The platform
model specifies the service models of which it is composed as well as the way
they are inter-connected. It is possible to specify multiple platform models to
be used if several structurally different platforms are to be explored. The design
space exploration framework does not automatically create platform models
but instead selects one of the possible platform models and then configures it.
This includes a selection of individual service models of the platform model if
alternatives are allowed. All this information is represented as decision variables
in the framework. Each decision variable can be specified in such a way that
the possible values can be constrained.

It is also assumed that appropriate cost models are supplied by the designer,
so that the objective functions specified can be evaluated correctly. In this
way a simulation of a system model configured by the design space exploration
framework is evaluated, using the system level modelling and performance es-
timation framework, allowing the fitness of a solution generated by the design
space exploration framework to be evaluated.

9.4 Elitist Non-dominated Sorting Genetic Al-
gorithm

In the current version of the design space exploration framework, a multi-
objective evolutionary optimization heuristic, called Elitist Non-dominated Sort-
ing GA (NSGA-II) [26], was implemented and used to solve the multi-objective
optimization problem faced.

The NSGA-II is a evolutionary algorithm which finds multiple Pareto sets. The
heuristic uses an elitist approach by continually emphasizing the Pareto sets,
combined with diversity preserving methods, by using a tournament selection
operator based on the crowding distance metric [93]. The crowding distance
is a measure of how close other solutions are to a specific solution. Using the
crowding distance metric, the crowded tournament selection operator is defined
as:
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Definition 9.4 The crowded tournament selection operator is defined as: So-
lution si wins a tournament with solution sj if either one of the following con-
ditions is satisfied:

1. Solution si has better rank than solution sj : ri > rj

2. Solution si has the same rank as solution sj , but better crowding distance:
ri = rj and di > dj

�

The goal of using the crowding distance metric is to obtain a good spread of
solutions along the currently best Pareto front found.

The pseudo-code for the NGSA-II algorithm implemented is given in algorithm
1. The NSGA-II heuristics start by forming the off-spring population Qt from
the parent population Pt using crowded tournament selection, crossover and
mutation operators [93]. The union of the parent population Pt and the off-
spring population Qt is then formed and the set of non-dominated solutions of
the resulting set of size 2N is identified. The next step is to cut down the size of
the new set to only N solutions. This is done by selecting the N solutions from
the best non-dominated front identified in the set formed by the union of the
parent and offspring solutions, followed by the second non-dominated front and
so on until N solutions have been selected, forming the parent set of the next
generation Pt+1. The remaining fronts are then simply discarded. However, in
most cases when selecting the last solutions, the number of solutions in the last
non-dominated front considered is larger than the number of solutions needed
to reach N . In this case, a special diversity preserving mechanism is used so
that the solutions, which are chosen to be part of Pt+1, are selected based on the
crowding distance in order to maximize the spread of solutions. The resulting
set Pt+1 now consists of the best solutions of the previous generation parent
and offspring. The next generation offspring set Qt+1 is then created using the
crowded tournament selection, crossover and mutation operators.

The implementation of the NSGA-II algorithm uses the Non-Dominated-Sorting
algorithm presented in [25]. The pseudo-code for the algorithm implemented is
given in algorithm 2. The algorithm starts by finding the first non-dominated
front in lines 1 − 16, and then continues to identify higher level fronts in the
while loop in lines 17− 29.

Representation of decision variables

The decision variables can be encoded arbitrarily using Java types, however in
most case they are encoded as integers which are then decoded individually for
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Algorithm 1 NGSA-II(N , G)

1: Pt := Create-Initial-Polulation(N)
2: Qt := Create-OffSpring-Polulation(Pt)
3: for all G do
4: Rt := Qt ∪ Pt

5: F := Non-Dominated-Sorting(Rt)
6: Pt+1 := ∅
7: while |Pt+1|+ |Fi| < N do
8: Pt+1 := Pt+1 + Fi

9: i := i+ 1
10: end while
11: if |Pt+1| < N then
12: Crowding-Sort(Fi)
13: |Pt+1| := |Pt+1|∪ (N − |Pt+1|) first of Fi

14: end if
15: Qt+1 := Create-OffSspring-Polulation(Pt+1)
16: end for

each decision variable specified. The decoding is implementation specific and
is specified by the designer. Figure 9.2 illustrates the principle. In this case,
the application ”task mappings” specifies an id of the processing element onto
which they are mapped; constraints can be applied in order to determine the
processing elements that are valid for mapping. PE specifies the number of
processing elements in the platform and the type of each processing element is
specified next. For each processing element there exists a set of types which are
valid for that particular processing element as illustrated in the figure. Related
genes are grouped together in order to preserve locality during the application
of the genetic operators when forming offspring populations.

0

APPLICATION TASK MAPPINGS

2

|PE| PROCESSING ELEMENT TYPES

2 0 3 4 1 2 1 0 3 1 06

1

2

3

DSP

HW

ASIP

RISC

Figure 9.2: Example of the coding of the decision variables of a specific problem.
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Algorithm 2 Non-Dominated-Sorting(P)

1: for all i ∈ P do
2: Si := ∅
3: ni := 0
4: for all j ∈ P do
5: if j 6= i then
6: if i � j then
7: Si = Si ∪ {j}
8: else if j � i then
9: ni := ni + 1

10: end if
11: end if
12: end for
13: if ni = 0 then
14: F1 := F1 ∪ {i}
15: end if
16: end for
17: k := 1
18: while Fk 6= ∅ do
19: Fk+1 := ∅
20: for all i ∈ Fk do
21: for all j ∈ Si do
22: nj := nj − 1
23: if nj = 0 then
24: Fk+1 := Fk+1 ∪ {j}
25: end if
26: k := k + 1
27: end for
28: end for
29: end while
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Selection

Currently, only the crowded tournament selection operator, defined in defini-
tion 9.4 is used for selection of candidate solutions for generating the offspring
population.

Crossover

The first version of the framework uses a simple single point crossover operator
in which the crossover point is chosen randomly. Only the probability of a
crossover needs to be specified as a parameter in this case.

Mutation

A bit-flip-like mutation operator is used in the initial version of the design
space exploration framework. The value of the decision variables are changed
randomly within their valid range. This leaves only one parameter to be tuned:
The mutation probability.

Repair

In order to ensure that only valid permutations of the decision variables are
sent for evaluation, a simple repair principle is used which corrects the values of
illegal decision variable values through saturation to the upper or lower bound
of the decision variable.

Evaluation

The evaluation of each generated solution is by far the most costly operation
in the targeted application of the framework for solving the multi-objective
optimization problem. Each solution formed, using the evolutionary operators,
specifies a system configuration of a system model of the embedded system which
is under investigation. The configuration is used as input to the simulation
based system level modelling and performance estimation framework. The time
used for these simulations range from seconds to several hours. It is therefore
obviously preferable that the number of different solutions which needs to be
investigated can be minimized.
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9.5 Experimental Results

This section is merely an appetizer, illustrating the potential usefulness of having
available an automated design space exploration framework as the one proposed
in this chapter.

In this problem, the application presented in chapter 7, is considered again. In
order to limit the problem only one of the two stereo audio channels is con-
sidered. This implies that the application model is composed of six tasks only,
in which four tasks are modelling the actual application, i.e. the processing of
the stereo audio channel, and two tasks are used for modelling the environment
representing a sourcing and sinking of audio samples. The system experiences
a real-time constraint, as explained in chapter 7, limiting the total allowed time
used to process each sample. This constraint is determined by the sample rate of
the incoming audio channel which requires that for every Tsample = 1/Fsample,
two processed audio samples must be ready per stereo channel. As explained in
chapter 7, the clock frequency of the system components as well as the buffering
of audio samples are two ways of tuning the amount of processing which can be
applied to the audio channel in order to fulfil the real time constraint. In the
current problem, we will only consider a tuning of the clock frequency of the plat-
form components in order to ensure that enough time for the required processing
is available. A higher clock frequency implies that more cycles are available for
processing but also has higher power consumption as a consequence.

The problem considered has two objectives:

1. Maximize the utilization of the selected platform.

2. Minimize the power consumption.

In this respect, we define the utilization of a platform as the average utilization
of each processing element and require that the total utilization of a platform is
less than 80% and that no single processing element has a utilization ratio which
is higher than 80%. A very rough power model is used to quantify the power
consumption based on a pre-characterization of the individual tasks on each
processing element and then scaled according to the specific clock frequency. As
a rough estimate, it is assumed that power is only dissipated while the processing
element is actively performing computations, i.e. clock gating is applied so that
the processing element is not clocked when idle. The current implementation of
the design space exploration framework assumes that all objective functions are
to be minimized; hence the first objective of maximizing the utilization of the
investigated platforms is re-written so that we will strive to minimize the total
idle time of the platform in order to obtain an objective function which needs
to be minimized.

As was the case in the case-study performed in chapter 7, a platform consisting
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of no more than four processing elements is considered. Again, three different
processing element types are available: A DSP, the application specific ASIP
referred to as the SVF processor and a dedicated hardware implementation.
The clock frequency of each processor can be controlled individually and five
different levels are supported.

Thus, the problem considered here considers both the mapping problem of deter-
mining on which processing elements each of the four tasks should be executed
as well as how the best platform should be composed in terms of the number of
processing elements as well as processing element types and the clock frequency
of each. The problem only considers the time required for computation and not
communication, because direct point-to-point FIFO-buffers are used between
each task in the implementations. In future case-studies, of course, this could
be included, too.

In order to assess the quality of the Pareto set found using the design space
exploration framework, several approaches can be taken in order to quantify the
results in order to perform a comparison of different multi-objective optimization
algorithms as well as for the purpose of tuning the operators used, e.g. as
proposed in [25]. Metrics such as accuracy expressed as the difference from the
optimal Pareto front, distribution of solutions along the best Pareto front found
as well as the extent of the solution, i.e. the values covered, are suggested for
use. However, in most cases the optimal Pareto front is not known and instead
the best found front of all runs is most often used as reference when measuring
the quality of the individual runs which have different parameters and/or uses
a different algorithm.

However, in the problem considered here, the design space is searched exhaus-
tively in order to obtain a good reference. This can be done because of the
relative small size of the problem considered in which a total of 51,840,000 dif-
ferent solutions exist based on a direct permutation of the decision variables as
illustrated in table 9.1. However, a substantial amount of these solutions can be
disregarded due to invalid combinations of decision variables. As an example,
the tasks of the application model are only allowed to be mapped to physical
processing elements of the current platform instance. In this case, this first
pruning of the design space was performed analytically so that invalid permu-
tations were not used for simulation. Still 13,236,990 solutions were valid and
required to be simulated in order to search the full design space. A number of
these simulations violated the real time requirement, implying that not enough
time was available for the required processing to finish. Also, several of the
valid permutations of decision variables map to the same point in the objective
space, limiting the number of valid and unique solutions to only 26,315. Even
though, the number of valid and unique solutions seems rather small, in order to
identify these, the simulation of 13,236,990 solutions was still required in order
to search the entire design space of this small problem exhaustively.
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All simulations were carried out using the latency based service models of the
processing elements which were presented in chapter 7 and it should be noted
that all simulations were performed on an Intel Core 2 Duo processor running
2.0 GHz and with 2GB RAM. The utilization is measured as the time each
processing element of a platform is active. Each simulation had a duration of
100 ms of simulation time in which a total of 4800 audio samples were processed
with a sample rate Fsample = 48kHz. The total time required to perform
the simulations required to do an exhaustive search of the design space, using
the system level modelling and performance estimation framework presented
in part I and II, was roughly 37 hours! It is obvious that the time required
for performing a full search of the design space is not feasible already when
considering problems which have only a few more decision variable values. This
is where the multi-objective optimization algorithms can play an interesting role
as indicated by the results presented in the following.

Figure 9.3 shows a plot of all evaluated valid solutions in terms of the estimated
power consumption vs. the inverse utilization of the specific platform (i.e. the
idle time) with each solution indicated by a gray cross. A value of 20% on the
inverse utilization axis thus corresponds to a utilization ratio of 80%. The figure
also shows the found Pareto front using the NSGA-II algorithm. Qualitatively,
it can be seen from the figure that the Pareto front found using the NSGA-
II algorithm is, in fact, covering solutions which represent optimal trade-offs
between the two objectives.

It is very interesting to see that, in this case, only 100 generations, each with
a population size of 30 individuals is required in order to obtain this Pareto
front. This implies that only 3000 solutions have been evaluated. Furthermore,
the time required to perform this search was approximately 10 minutes! Natu-
rally, there is a trade-off between the number of solutions investigated and the
quality of the best found Pareto front. The number of solutions investigated
is determined by the product of the population size and the number of gener-
ations of which the algorithm is allowed to run and as these increase, a larger
part of the design space can be explored implying that the probability of finding
better solutions increases at the expense of the time required to perform this
search.

In general, the results show that with the current partitioning of tasks and the
available processing elements, it is hard to utilize the investigated platforms
efficiently as most solutions lie in the range of 10%-60% utilization. However,
there are some very interesting solutions which lie in the lower left half of fig-
ure 9.3, and this is also were the Pareto front found using the design space
exploration framework is located. These solutions have a high utilization ratio
while still having low power consumption. Looking into the system instances
behind these solutions, it was seen that most of these solutions are based on
platforms consisting of either two ASIPs, the DSP or a direct hardware imple-
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Figure 9.3: Population size=30, Generations = 100, Mutation probability = 0.1,
Crossover probability = 0.1. The mutation and crossover operators used are the
ones described in section 9.4.

mentation running at different clock frequencies. In particular, the Pareto front
is composed of platforms composed of two ASIP processing elements running
either both 12.5 MHz or one at 25MHz and the other at 6.25 MHz depending
on the mapping of tasks. Also, the Pareto front suggests that a platform con-
sisting of a single DSP processor running at 12.5 MHz is also attractive with
the given objectives. The hardwired platform is not part of the Pareto front
with the given objectives; if the cost of silicon area or component cost had been
part of the objectives, however, this outcome had probably been different. The
great thing about programmable platforms, on the other hand, is the flexibility
of the implemented silicon solution in which changes and bug fixes are much
easier to accommodate compared to a hardwired platform and this puts extra
weight on the benefits of choosing one of the platforms found in this design
space exploration example.

It should be noted that the performance of the design space exploration frame-
work is very much dependent on the chosen parameters and operators for the
selected evolutionary algorithm. With the current investigations and problems
examined, no general guidelines can be presented but it is the hope that a default
parameter set could be provided in the future. However, one major difficulty is
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that, in general, the optimal Pareto set is not known and if the quality of a given
configuration of the algorithm used is how fast it can find the near-to-optimal
Pareto set, one does not know how close the approximated Pareto front is to
the optimal one unless the entire design space is explored. Instead, different
parameter sets can, of course, be compared relatively so that they are allowed
to run for the same amount of time, or for the same number of generations,
and then the one with the best found Pareto set is preferred. However, as men-
tioned already, it may very likely be the case that this is also highly related to
the specific problem considered.

9.6 Summary

This chapter has introduced the initial investigations of the coupling of the
system level modelling and performance estimation framework presented in this
thesis with an extension which allows automated design space exploration to be
carried out.

The current version of the automated design space exploration framework uses
the evolutionary multi-objective optimization algorithm NSGA-II [26] for auto-
mated design space exploration. However, the design space exploration frame-
work is constructed in such a way that different meta-heuristics can easily be
implemented and used instead, if preferred. Similarly other types of selection
operators and types of genetic operators can be implemented if needed.

In the category of future work, it would be interesting to investigate the possibil-
ity of representing the system models used for performance estimation, modelled
at two levels of abstraction, so that a high level and a low level version would
exist, allowing rough estimates to be produced fast using the high level model,
and detailed estimates to be produced using the low abstraction level version.
In this way the potential candidate solutions which were to be selected could be
investigated using the high level version in order to speed up the search process
and, then, use the detailed version only for those solutions which were selected
as the best candidates of the current population and which are used to form the
next generation of solutions.

Finally, it was shown how the design space exploration framework was applied
to a case-study from Bang & Olufsen ICEpower. It is obvious from the pre-
sented experimental results that much work is still required in order to verify
the benefits of the approach in more detail which require that larger and more
complex case-studies should be performed in order to allow a further assessment
of the framework. However, the initial results obtained from the relative small
example, which was presented, are encouraging.
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Chapter 10

Conclusions and Outlook

This thesis presents the work that has been carried out during the course of the
Ph.D. project with the title System Level Modelling and Performance Estima-
tion of Embedded Systems. Efficient system level modelling and performance
estimation of embedded systems is required in order to tackle the increasing de-
sign complexity associated with embedded systems of today to allow true design
space exploration to be carried out.

The main contribution of the thesis is the presented framework for system level
modelling and performance estimation. As discussed, the framework does not
strictly enforce the use of a specific design methodology but is related to the
Y-chart approach [12, 50] and leverage principles of the Platform Based Design
(PBD) paradigm [48]. As a consequence, a separate specification of the appli-
cation (functionality) and the target architecture (implementation) is used in
the framework in the form of an application model and platform model respec-
tively. Consequently, the design methodologies introduced are based on these
principles. The framework is capable of capturing embedded systems at the
system level, allowing designers to associate quantitative performance estimates
obtained through simulations with the individual system components, in this
way allowing designers to select the best suited system from a well-defined cri-
teria. The framework allows a given embedded system to be constructed and
explored before a physical realization is present.

Fundamental to the framework is the concept of service models. The service
model can be seen as a meta-model which allows a unified modelling of both
hardware and software components. Services are used to represent the function-
ality offered by a component and cost, and the implementation of the function-
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ality modelled, can be associated with the service through an implementation of
the service. Gradual refinement of models is supported providing a very flexible
framework. In principle, the service model concept allows arbitrary models-of-
computation to be used for capturing the behaviour of the individual compo-
nents and also allows communication across abstraction levels using the notion
of service requests and, so, makes it possible to have components described at
multiple levels of abstraction to co-exist within the same model instance. In the
practical realization of the current framework, restrictions exist on the types of
models of computation which can be implemented. These are inferred due to
the chosen discrete event simulation engine used, and the representation of time,
implying that new models of computation can be added under the constraint
that they must be implementable in this context and implement inter-model
communication through service requests.

One example of a model-of-computation for synchronous hardware modelling
fitting into the service model framework was also presented which has showed
promising results with respect to handling model complexity, user friendliness
for capturing synchronous hardware descriptions and increasing the obtainable
simulation speed compared to register transfer level simulations, while still be-
ing cycle accurate and bit true as was illustrated in the industrial case-study
presented in chapter 7.

In addition to this, an initial version of a high level description language for auto-
matically generating simulation models using the presented model-of-computation
was also introduced, easing the practical specification of models which is of great
importance in the context of industrial use at e.g. Bang & Olufsen ICEpower.
Finally, an initial version of an automated design space exploration framework
which used the presented system level modelling and performance estimation
framework was outlined. The design space exploration framework is based on
the use of evolutionary multi-objective algorithms and is constructed in such a
way that new evolutionary operators and algorithms can be easily implemented.
Currently, only one specific algorithm is implemented and a small case-study was
performed in order to illustrate the usefulness of such a framework. Much work
still lies ahead in order to verify initial results on large scale problems.

The primary benefits of the framework and components described above are
the possibilities of exploring a large number of candidate systems within a short
time frame leading to better designs, easier design verification through a possible
iterative refinement of the executable system description, and finally the possi-
bility of a reduction of the time-to-market of the design and implementation of
the system under consideration.
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10.1 Limitations of the approach

The work presented in this thesis has showed great potential. However, it is by
no means the solution to all problems experienced within the field of embedded
systems design and thus several challenges still need to be addressed.

Two categories of challenges exist for the system level modelling and perfor-
mance estimation framework presented in this thesis. The first relates to the
fundamental concepts and the second is of a more practical nature.

The focus has been on outlining a framework for practical applicability in the
industry and, so, a somewhat pragmatic approach has been taken. Thus, cur-
rently, no guarantees can be given regarding the general applicability of the
framework and the realization of a more formal foundation would be interesting
the future.

In the practical category, a major limitation of the currently realized version of
the presented framework is the proprietary specification of models. All models
must be described in Java using the current realization of the framework - and no
import possibilities currently exist for automatic conversion of models described
in other languages. Thus, additional time spent on software development in or-
der to provide commercial- quality tools supporting the method will be required.
Nevertheless, the benefits of having such a framework available will be twofold.
Firstly, improved productivity will be possible, and secondly, it will be possible
to obtain better designs because a larger part of the design space will be ex-
plored. Verification of the individual refinement steps will also be easier and,
last but not least, changes to the design will be easier to accommodate.

The general service based concept scales very well due to the inherent abstrac-
tion level refinement and hierarchical support. The practical realization of the
concepts in the framework presented, however, is expected to suffer from scala-
bility problems. Model construction in itself can easily accommodate complex
and large models; however, the current simulation engine is expected not to scale
very well, among other things due to the single threaded implementation of the
simulation kernel. This is due to the discrete event simulation engine which uses
a global notion of time. Several approaches have been explored in the past in
order to parallelize discrete event simulation engines allowing time to be syn-
chronized, e.g. only on communication between models. Such approaches could
be interesting to investigate in the future in order to obtain a more efficient sim-
ulation engine. Another approach would be to adopt an existing discrete event
simulation engine such as the one provided with e.g. SystemC. In practice, this
would be possible simply by providing a SystemC library which would provide
the general service model concepts for a practical construction of models. Such
an approach would allow designers to specify models quite similar to their ac-
customed SystemC models, only now using the service request based approach
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for inter-model communication as well as the interface based approach which
is the fundamental element behind the abstraction level refinement capabilities
defined by the framework.

10.2 Future Work

As already discussed in the previous section, there are, of course, a number of
limitations to the framework presented.

In the category of practical related future work the focus is on the usage of
the framework - it is very important that sufficient quality tools are available
in order for a framework, as the one presented, to be used in practice. In gen-
eral, automation of the design steps is not a goal in itself; however, it is very
important that users of a framework, and the tools offered with this, initially
are able to control all steps in detail. In later stages, automation of the time
consuming cumbersome steps is of course highly desirable. Automatic correct-
by-construction code generation for both hardware and software models would
be interesting to investigate. In principle, communication refinement could also
be performed automatically utilizing the information of the service models which
specifies inter-model communication through an interface based approach com-
bined with the use of service requests for modelling communication transactions.
The model based design approach taken by the framework should also make it
possible to allow a systematic generation of test benches and test vectors for
input, allowing a better verification of systems. Several analysis tools could be
developed as well - e.g. tools for automatic identification of mappable compo-
nents based on the set of offered services.

The presented system level modelling and performance estimation framework
provides an infrastructure for designers to use when modelling systems and
estimating the performance of these. The thesis has not focused on developing
actual cost models, e.g. power models etc., for performance estimation. These,
of course, play a vital role in system design and, thus, a great amount of work
could lie in the category of developing or adapting cost models for performance
estimation.

Finally, in the category of future work, it is obvious that in order to asses the
ideas presented here, more elaborate case-studies are required in order to verify
the usefulness of the framework in order to identify further limitations than the
ones already outlined.
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Appendix A

Producer-Consumer Example
Source Code

class Producer extends AbstractServ iceModel {

private I S e r v i c e M o d e l I n t e r f a c e fWrite ;

private f ina l IntValue fValue = new IntValue ( 0 ) ;

private ISe rv i c eReques t fSR ;

public Producer ( IS imulator s imulator , I S e r v i c e M o d e l I n t e r f a c e wr i t e ) {
super ( ”PRODUCER” ) ;

this . s e tS imu la to r ( s imu la to r ) ;

fWrite = wr i t e ;

fSR = fWrite . c r ea t eSe rv i c eReque s t ( ”WRITE” , new Object [ ] { fValue } ) ;
}

/∗
∗ (non−Javadoc )
∗
∗ @see com. sysmopee . core . model . process . AbstractProcess#i n i t ( )
∗/

public f ina l void i n i t ( ) {
this . fNextBlock = fBlock0 ;

this . s e tAc t i v e ( ) ;
}
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private f ina l IBlock fBlock0 = new IBlock ( ) {
/∗
∗ (non−Javadoc )
∗
∗ @see com. sysmopee . core . model . process . IBlock#execute ()
∗/

@Override
public f ina l IBlock execute ( ) {

i f (DEBUG) {
System . out . p r i n t l n ( ” Producer s t a r t i n g @ ”

+ fS imula to r . getSimulationTime ( ) ) ;
}

// Request b l o c k i n g wr i t e
fWrite . r eque s t ( fSR ) ;

waitFor ( fSR , ISe rv i c eReques t . EventType .DONE) ;

return fBlock1 ;
}

} ;

private f ina l IBlock fBlock1 = new IBlock ( ) {
@Override
public f ina l IBlock execute ( ) {

i f (DEBUG) {
System . out . p r i n t l n ( ” Producer done @ ”

+ fS imula to r . getSimulationTime ( ) ) ;
}

waitFor ( 0 ) ;

return fBlock0 ;
}

} ;
}

class Consumer extends AbstractServ iceModel {

private I S e r v i c e M o d e l I n t e r f a c e fRead ;

private f ina l IntValue fValue = new IntValue ( 2 1 ) ;

private ISe rv i c eReques t fSR ;

public Consumer ( IS imulator s imulator , I S e r v i c e M o d e l I n t e r f a c e read ) {
super ( ”CONSUMER” ) ;

this . s e tS imu la to r ( s imu la to r ) ;

fRead = read ;

fSR = fRead . c r ea t eSe rv i c eReque s t ( ”READ” , new Object [ ] { fValue } ) ;
}
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public void i n i t ( ) {
super . i n i t ( ) ;

this . fNextBlock = fBlock0 ;

this . s e tAc t i v e ( ) ;
}

private f ina l IBlock fBlock0 = new IBlock ( ) {
@Override
public f ina l IBlock execute ( ) {

i f (DEBUG) {
System . out . p r i n t l n ( ”Consumer s t a r t i n g @ ”

+ fS imula to r . getSimulationTime ( ) ) ;
}

// Request b l o c k i n g read
fRead . r eque s t ( fSR ) ;

waitFor ( fSR , ISe rv i c eReques t . EventType .DONE) ;

return fBlock1 ;
}

} ;

private f ina l IBlock fBlock1 = new IBlock ( ) {
@Override
public f ina l IBlock execute ( ) {

// DO SOME STUFF WITH THE DATA
int va l = fValue . getValue ( ) ;

i f (DEBUG) {
System . out . p r i n t l n ( ”Consumer r e c e i v e d : ” + va l + ” @ ”

+ fS imula to r . getSimulationTime ( ) ) ;
}

waitFor ( 0 ) ;

return fBlock0 ;
}

} ;
}



154 Producer-Consumer Example Source Code



Appendix B

SVF Processor instruction
format
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Figure B.1: Overview of the SVF instruction format.
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Appendix C

SMDL description of the SVF
processor

This appendix holds the SMDL source code of the SVF application specific
processor.

s e rv i c emode l SVF{
/∗ The s t r u c t u r e o f the SVF Core ∗/
s t r u c t u r e {

/∗ Active i n t e r f a c e s ∗/
A c t i v e I n t e r f a c e SOURCE LEFT;
A c t i v e I n t e r f a c e SOURCE RIGHT;

A c t i v e I n t e r f a c e SINK LEFT ;
A c t i v e I n t e r f a c e SINK RIGHT ;

A c t i v e I n t e r f a c e I2C ;

word<24> mem[ 4 0 9 6 ] ;

/∗ Reg i s t e r f i l e ∗/
word<24> reg [ 1 6 ] ;

/∗ F i l t e r Reg i s t e r f i l e ∗/
word<24> a l p [ 1 6 ] ;
word<24> a bp [ 1 6 ] ;
word<24> a hp [ 1 6 ] ;

word<24> b lp [ 1 6 ] ;
word<24> b bp [ 1 6 ] ;



158 SMDL description of the SVF processor

word<24> b hp [ 1 6 ] ;

word<24> c1 [ 1 6 ] ;
word<24> c2 [ 1 6 ] ;
word<24> f c f g [ 1 6 ] ;

/∗ Conf igurat ion and s t a t u s r e g i s t e r s ∗/
word<24> c f g s t [ 8 ] ;

word<16> pc ;
}

/∗ Encoding o f the SVF In s t r u c t i on Set ∗/
encoding {

OPCODE[ 2 3 : 1 8 ] ;

OP1 [ 1 7 : 1 4 ] ;
OP2 [ 1 3 : 1 0 ] ;
OP3 [ 9 : 6 ] ;

IMMEEXT[ 1 1 : 0 ] ;
IMMEXT[ 9 : 3 ] ;
IMM[ 7 : 3 ] ;

TARGET[ 1 7 : 0 ] ;

EXT1 [ 2 : 0 ] ;
EXT2 [ 5 : 3 ] ;

OFFSET [ 9 : 0 ] ;

EEXT1 [ 8 ] ;
EEXT2 [ 9 ] ;

}

abstract s e r v i c e EXTENDEDTYPE1{

decode word<24> getOP1 ( ){
switch (EXT1){

case 0 :
return reg [OP1 ] ;

break ;

case 1 :
return c f g s t [OP1 ] ;

break ;

case 2 :
return a l p [OP1 ] ;

break ;

case 3 :
return a bp [OP1 ] ;

break ;
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case 4 :
return a hp [OP1 ] ;

break ;

case 5 :
return b lp [OP1 ] ;

break ;

case 6 :
return b bp [OP1 ] ;

break ;

case 7 :
return b hp [OP1 ] ;

break ;
}

}
}

abstract s e r v i c e EXTENDEDTYPE2{

decode word<24> getOP1 ( ){
switch (EXT1){

case 0 :
return reg [OP1 ] ;

break ;

case 1 :
return c f g s t [OP1 ] ;

break ;

case 2 :
return a l p [OP1 ] ;

break ;

case 3 :
return a bp [OP1 ] ;

break ;

case 4 :
return a hp [OP1 ] ;

break ;

case 5 :
return b lp [OP1 ] ;

break ;

case 6 :
return b bp [OP1 ] ;

break ;

case 7 :
return b hp [OP1 ] ;

break ;
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}
}

decode word<24> getOP2 ( ){
switch (EXT2){

case 0 :
return reg [OP2 ] ;

break ;

case 1 :
return c f g s t [OP2 ] ;

break ;

case 2 :
return a l p [OP2 ] ;

break ;

case 3 :
return a bp [OP2 ] ;

break ;

case 4 :
return a hp [OP2 ] ;

break ;

case 5 :
return b lp [OP2 ] ;

break ;

case 6 :
return b bp [OP2 ] ;

break ;

case 7 :
return b hp [OP2 ] ;

break ;
}

}
}

abstract s e r v i c e EEXTENDEDTYPE1 extends EXTENDEDTYPE1{

decode word<24> getEOP1 (){
i f (EEXT1 == 1){

switch (EXT1){
case 0 :

return c1 [OP1 ] ;
break ;

case 1 :
return c2 [OP1 ] ;

break ;

default :
return f c f g [OP1 ] ;
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break ;
}

}
else {

return getOP1 ( ) ;
}

}

}

abstract s e r v i c e EEXTENDEDTYPE2 extends EXTENDEDTYPE2{

decode word<24> getEOP1 (){
i f (EEXT1 == 1){

switch (EXT1){
case 0 :

return c1 [OP1 ] ;
break ;

case 1 :
return c2 [OP1 ] ;

break ;

default :
return f c f g [OP1 ] ;

break ;
}

}
else {

return getOP1 ( ) ;
}

}

decode word<24> getEOP2 (){
i f (EEXT2 == 1){

switch (EXT2){
case 0 :

return c1 [OP1 ] ;
break ;

case 1 :
return c2 [OP1 ] ;

break ;

default :
return f c f g [OP1 ] ;

break ;
}

}
else {

return getOP2 ( ) ;
}

}
}
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s e r v i c e NOP{
encoding {

OPCODE = 0 , 18 ’ b0 ;
}

/∗ BEHAVIOUR ∗/
void p1 ( ){

// DO NOTHING
}

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ START OF TYPE1 INSTRUCTIONS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
abs t r a c t s e r v i c e TYPE1 extends EXTENDEDTYPE2{

encoding {
OPCODE, OP1, OP2, OP3, EXT2, EXT1;

}

/∗ BEHAVIOUR ∗/
abs t r a c t void p1 ( ) ;

}

s e r v i c e ADDS extends TYPE1{
encoding {

OPCODE = 1 ;
}
void p1 ( ){

getOP1 ( ) = getOP2 ( ) + reg [OP3 ] ;
}

}

s e r v i c e ADDU extends TYPE1{
encoding {

OPCODE = 2 ;
}

void p1 ( ){
getOP1 ( ) = getOP2 ( ) + reg [OP3 ] ;

}
}

s e r v i c e MULS extends TYPE1{
encoding {

OPCODE = 3 ;
}

void p1 ( ){
getOP1 ( ) = getOP2 ( ) ∗ reg [OP3 ] ;

}
}

s e r v i c e MULU extends TYPE1{
encoding {

OPCODE = 4 ;
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}

void p1 ( ){
getOP1 ( ) = getOP2 ( ) + reg [OP3 ] ;

}
}

s e r v i c e MACS extends TYPE1{
encoding {

OPCODE = 5 ;
}

void p1 ( ){
getOP1 ( ) = getOP2 ( ) ∗ reg [OP3] + getOP1 ( ) ;

}
}

s e r v i c e MACU extends TYPE1{
encoding {

OPCODE = 6 ;
}

void p1 ( ){
getOP1 ( ) = getOP2 ( ) ∗ reg [OP3] + getOP1 ( ) ;

}
}

s e r v i c e AND extends TYPE1{
encoding {

OPCODE = 35 ;
}

void p1 ( ){
getOP1 ( ) = getOP2 ( ) & reg [OP3 ] ;

}
}

s e r v i c e OR extends TYPE1{
encoding {

OPCODE = 36 ;
}

void p1 ( ){
getOP1 ( ) = getOP2 ( ) | reg [OP3 ] ;

}
}

s e r v i c e XOR extends TYPE1{
encoding {

OPCODE = 37 ;
}

void p1 ( ){
getOP1 ( ) = getOP2 ( ) ˆ reg [OP3 ] ;

}
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}

s e r v i c e LW extends TYPE1{
encoding {

OPCODE = 24 ;
}
void p1 ( ){

i f ( getOP2()+ reg [OP3] < x200 ){
// Normal wr i t e to memory
getOP1 ( ) = mem[ getOP2 ( ) + reg [OP3 ] ] ;

}
e l s e i f ( getOP2()+ reg [OP3] == x800 ){

SOURCE LEFT−>READ( getOP1 ( ) ) ;
}
e l s e i f ( getOP2()+ reg [OP3] == x801 ){

SOURCE RIGHT−>READ( getOP1 ( ) ) ;
}
e l s e i f ( getOP2()+ reg [OP3] >= xA00 && getOP2()+ reg [OP3] < xA20){

I2C−>READ( getOP1 ( ) , ( getOP2()+ reg [OP3 ] ) & x1F ) ;
}

}
}

s e r v i c e SW extends TYPE1{
encoding {

OPCODE = 23 ;
}
void p1 ( ){

i f ( getOP2()+ reg [OP3] < x200 ){
// Normal wr i t e to memory
mem[ getOP2 ( ) + reg [OP3 ] ] = getOP1 ( ) ;

}
e l s e i f ( getOP2()+ reg [OP3] == x900 ){

SINK LEFT−>WRITE( getOP1 ( ) ) ;
}
e l s e i f ( getOP2()+ reg [OP3] == x901 ){

SINK RIGHT−>WRITE( getOP1 ( ) ) ;
}
e l s e i f ( getOP2()+ reg [OP3] >= xA00 && getOP2()+ reg [OP3] < xA20){

I2C−>WRITE( getOP1 ( ) , ( getOP2()+ reg [OP3 ] ) & x1F ) ;
}

}
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ START OF TYPE2 INSTRUCTIONS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
abs t r a c t s e r v i c e TYPE2{

encoding {
OPCODE, OP1, 2 ’ b00 , IMMEEXT;

}

/∗ BEHAVIOUR ∗/
abstract void p1 ( ) ;

}
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s e r v i c e ADDIS extends TYPE2{
encoding {

OPCODE = 7 ;
}

void p1 ( ){
reg [OP1] = reg [OP1] + SIGNED(IMMEEXT) ;

}
}

s e r v i c e ADDIU extends TYPE2{
encoding {

OPCODE = 8 ;
}

void p1 ( ){
reg [OP1] = reg [OP1] + UNSIGNED(IMMEEXT) ;

}
}

s e r v i c e MULIS extends TYPE2{
encoding {

OPCODE = 9 ;
}

void p1 ( ){
reg [OP1] = reg [OP1] ∗ SIGNED(IMMEEXT) ;

}
}

s e r v i c e MULIU extends TYPE2{
encoding {

OPCODE = 10 ;
}

void p1 ( ){
reg [OP1] = reg [OP1] ∗ UNSIGNED(IMMEEXT) ;

}
}

s e r v i c e MOVI extends TYPE2{
encoding {

OPCODE = 15 ;
}

void p1 ( ){
reg [OP1] = ( reg [OP1 ] [ 2 3 : 1 2 ] & xFFF000) | IMMEEXT[ 1 1 : 0 ] ;

}
}

s e r v i c e MOVUI extends TYPE2{
encoding {

OPCODE = 16 ;
}
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void p1 ( ){
reg [OP1] = (IMMEEXT[ 1 1 : 0 ] s l l 12) | reg [OP1 ] [ 1 1 : 0 ] ;

}
}

s e r v i c e LWA extends TYPE2{
encoding {

OPCODE = 28 ;
}

void p1 ( ){
i f (IMMEEXT < x200 ){

reg [OP1] = mem[IMMEEXT] ;
}
else i f (IMMEEXT == x800 ){

SOURCE LEFT−>READ( reg [OP1 ] ) ;
}
else i f (IMMEEXT == x801 ){

SOURCE RIGHT−>READ( reg [OP1 ] ) ;
}
else i f (IMMEEXT >= xA00 && IMMEEXT < xA20){

I2C−>READ( reg [OP1] , IMMEEXT & x1F ) ;
}

}
}

s e r v i c e SWA extends TYPE2{
encoding {

OPCODE = 27 ;
}

void p1 ( ){
i f (IMMEEXT < x200 ){

mem[IMMEEXT] = reg [OP1 ] ;
}
else i f (IMMEEXT == x900 ){

SINK LEFT−>WRITE( reg [OP1 ] ) ;
}
else i f (IMMEEXT == x900 ){

SINK RIGHT−>WRITE( reg [OP1 ] ) ;
}
else i f (IMMEEXT >= xA00 && IMMEEXT < xA20){

I2C−>WRITE( reg [OP1] , IMMEEXT & x1F ) ;
}

}
}

s e r v i c e ANDI extends TYPE2{
encoding {

OPCODE = 38 ;
}

void p1 ( ){
reg [OP1] = reg [OP1] & IMMEEXT;
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}
}

s e r v i c e ORI extends TYPE2{
encoding {

OPCODE = 39 ;
}

void p1 ( ){
reg [OP1] = reg [OP1] | IMMEEXT;

}
}

s e r v i c e XORI extends TYPE2{
encoding {

OPCODE = 40 ;
}

void p1 ( ){
reg [OP1] = reg [OP1] ˆ IMMEEXT;

}
}

s e r v i c e BGTZ extends TYPE2{
encoding {

OPCODE = 20 ;
}

void p1 ( ){
i f ( reg [OP1] > 0){

pc = pc + SIGNED(IMMEEXT) ;
}

}
}

s e r v i c e BLEZ extends TYPE2{
encoding {

OPCODE = 21 ;
}

void p1 ( ){
i f ( reg [OP1] <= 0){

pc = pc + SIGNED(IMMEEXT) ;
}

}
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ START OF TYPE3 INSTRUCTIONS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
abstract s e r v i c e TYPE3{

encoding {
OPCODE, TARGET;

}
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/∗ BEHAVIOUR ∗/
abstract void p1 ( ) ;

}

s e r v i c e JMP extends TYPE3{
encoding {

OPCODE = 22 ;
}

void p1 ( ){
pc = TARGET;

}
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ START OF TYPE4 INSTRUCTIONS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
abstract s e r v i c e TYPE4 extends EXTENDEDTYPE2{

encoding {
OPCODE, OP1, OP2, 4 ’ b0000 , EXT2, EXT1;

}

/∗ BEHAVIOUR ∗/
abs t r a c t void p1 ( ) ;

}

s e r v i c e SVF1 extends TYPE4{
encoding {

OPCODE = 17 ;
}

/∗ BEHAVIOUR ∗/
void p1 ( ){

a hp [OP2] = ( getOP1 ( ) − a l p [OP2 ] ) ∗ c1 [OP2] + a l p [OP2 ] ;
}

}

s e r v i c e SVF2A extends TYPE4{
encoding {

OPCODE = 18 ;
}

/∗ BEHAVIOUR ∗/
void p1 ( ){

a hp [OP2] = ( getOP1 ( ) − a l p [OP2 ] ) ∗ c1 [OP2] + a l p [OP2 ] ;
}

}

s e r v i c e SVF2B extends TYPE4{
encoding {

OPCODE = 19 ;
}

/∗ BEHAVIOUR ∗/
void p1 ( ){
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a hp [OP2] = ( getOP1 ( ) − a l p [OP2 ] ) ∗ c1 [OP2] + a l p [OP2 ] ;
}

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ START OF TYPE5 INSTRUCTIONS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
abs t r a c t s e r v i c e TYPE5 extends EXTENDEDTYPE1{

encoding {
OPCODE, OP1, OP2, IMMEXT, EXT1;

}

/∗ BEHAVIOUR ∗/
abs t r a c t void p1 ( ) ;

}

s e r v i c e SLLI extends TYPE5{
encoding {

OPCODE = 11 ;
}

/∗ BEHAVIOUR ∗/
void p1 ( ){

getOP1 ( ) = reg [OP2] s l l IMMEXT;
}

}

s e r v i c e SRLI extends TYPE5{
encoding {

OPCODE = 12 ;
}

/∗ BEHAVIOUR ∗/
void p1 ( ){

getOP1 ( ) = reg [OP2] s r l IMMEXT;
}

}

s e r v i c e SRAI extends TYPE5{
encoding {

OPCODE = 13 ;
}

/∗ BEHAVIOUR ∗/
void p1 ( ){

getOP1 ( ) = reg [OP2] s ra IMMEXT;
}

}

s e r v i c e BGT extends TYPE5{
encoding {

OPCODE = 31 ;
}

/∗ BEHAVIOUR ∗/
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void p1 ( ){
i f ( getOP1 ( ) > reg [OP2] ) {

pc = pc + SIGNED(IMMEXT) ;
}

}
}

s e r v i c e BLT extends TYPE5{
encoding {

OPCODE = 32 ;
}

/∗ BEHAVIOUR ∗/
void p1 ( ){

i f ( getOP1 ( ) <= reg [OP2] ) {
pc = pc + SIGNED(IMMEXT) ;

}
}

}

s e r v i c e BEQ extends TYPE5{
encoding {

OPCODE = 33 ;
}

/∗ BEHAVIOUR ∗/
void p1 ( ){

i f ( getOP1 ( ) == reg [OP2] ) {
pc = pc + SIGNED(IMMEXT) ;

}
}

}

s e r v i c e BNE extends TYPE5{
encoding {

OPCODE = 33 ;
}

/∗ BEHAVIOUR ∗/
void p1 ( ){

i f ( getOP1 ( ) != reg [OP2] ) {
pc = pc + SIGNED(IMMEXT) ;

}
}

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ START OF TYPE6 INSTRUCTIONS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
abs t r a c t s e r v i c e TYPE6 extends EEXTENDEDTYPE2{

encoding {
OPCODE, OP1, OP2, EEXT1, EEXT2, 2 ’ b00 , EXT2, EXT1;

}

/∗ BEHAVIOUR ∗/
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abstract void p1 ( ) ;
}

s e r v i c e MOV extends TYPE6{
encoding {

OPCODE = 14 ;
}

/∗ BEHAVIOUR ∗/
void p1 ( ){

getOP1 ( ) = getOP2 ( ) ;
}

}

s e r v i c e ABS extends TYPE6{
encoding {

OPCODE = 29 ;
}

/∗ BEHAVIOUR ∗/
void p1 ( ){

i f ( getOP2 ( ) < 0){
getOP1 ( ) = ˜getOP2 ( ) + 1 ;

}
}

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ START OF TYPE7 INSTRUCTIONS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
abstract s e r v i c e TYPE7{

encoding {
OPCODE, OP1, OP2, OP3, 3 ’ b000 , EXT1;

}

/∗ BEHAVIOUR ∗/
abs t r a c t void p1 ( ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ START OF TYPE8 INSTRUCTIONS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
abs t r a c t s e r v i c e TYPE8 extends EEXTENDEDTYPE1{

encoding {
OPCODE, OP1, OP2, 1 ’ b0 , EEXT1, IMM, EXT1;

}

/∗ BEHAVIOUR ∗/
abstract void p1 ( ) ;

}

s e r v i c e LWI extends TYPE8{
encoding {

OPCODE = 26 ;
}
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void p1 ( ){
// Local memory access
i f ( reg [OP2] + IMM < x200 ){

getEOP1 ( ) = mem[ reg [OP2] + IMM] ;
}
else i f ( reg [OP2] + IMM == x800 ){

SOURCE LEFT−>READ(getEOP1 ( ) ) ;
}
else i f ( reg [OP2] + IMM == x801 ){

SOURCE RIGHT−>READ(getEOP1 ( ) ) ;
}
else i f ( reg [OP2] + IMM >= xA00 && reg [OP2] + IMM <= xA1F){

I2C−>READ(getEOP1 ( ) , ( reg [OP2] + IMM) & x1F ) ;
}

}
}

s e r v i c e SWI extends TYPE8{
encoding {

OPCODE = 25 ;
}
void p1 ( ){

i f ( reg [OP2] + IMM < x200 ){
// Normal wr i t e to memory
mem[ reg [OP2] + IMM] = getEOP1 ( ) ;

}
else i f ( reg [OP2] + IMM == x900 ){

SINK LEFT−>WRITE(getEOP1 ( ) ) ;
}
else i f ( reg [OP2] + IMM == x900 ){

SINK RIGHT−>WRITE(getEOP1 ( ) ) ;
}
else i f ( reg [OP2] + IMM >= xA00 && reg [OP2] + IMM <= xA1F){

I2C−>WRITE(getEOP1 ( ) , ( reg [OP2] + IMM) & x1F ) ;
}

}
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ START OF TYPE9 INSTRUCTIONS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
abstract s e r v i c e TYPE9{

encoding {
OPCODE, 4 ’ b0000 , OP2, OFFSET;

}

/∗ BEHAVIOUR ∗/
abs t r a c t void p1 ( ) ;

}
}
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Generated Java source code
for the SVF processor model

This appendix holds the generated Java source code of the HCPN based service
model of the SVF application specific processor.

package com . sysmopee . t e s t ;

import java . math . B ig Intege r ;

import com . sysmopee . core . model . datatypes . DataWord ;
import com . sysmopee . core . model . datatypes . IDataWord ;
import com . sysmopee . core . model . s e rv i cemode l . AbstractServiceModelAdapter ;
import com . sysmopee . core . model . s e rv i cemode l . Abs t rac tSe rv i c eMode l In t e r f a ce ;
import com . sysmopee . core . model . s e rv i cemode l . AbstractServ iceRequest ;
import com . sysmopee . core . model . s e rv i cemode l . IEvaluate ;
import com . sysmopee . core . model . s e rv i cemode l . I S e r v i c e ;
import com . sysmopee . core . model . s e rv i cemode l . ISe rv i c eDoneL i s t ene r ;
import com . sysmopee . core . model . s e rv i cemode l . IServ iceModel ;
import com . sysmopee . core . model . s e rv i cemode l . I S e rv i c eMode l In t e r f a c e ;
import com . sysmopee . core . model . s e rv i cemode l . ISe rv i ceReques t ;
import com . sysmopee . core . model . s e rv i cemode l . S e rv i c e ;
import com . sysmopee . core . model . s e rv i cemode l . s t a t e . AbstractServ iceMode lState ;
import com . sysmopee . core . model . s e rv i cemode l . s t a t e . IMemory ;
import com . sysmopee . core . model . s e rv i cemode l . s t a t e . IReg i s t e r ;
import com . sysmopee . core . model . s e rv i cemode l . s t a t e . IRegisterGroup ;
import com . sysmopee . core . model . s e rv i cemode l . s t a t e . StateFactory ;
import com . sysmopee . core . s imulator . IS imulator ;
import com . sysmopee . model . s e rv i cemode l . hcpn . core . AbstractHCPNServiceModel ;
import com . sysmopee . model . s e rv i cemode l . hcpn . core . IHCPNServiceModel ;
import com . sysmopee . model . s e rv i cemode l . hcpn . core . ISe rv i ceReques tP lace ;

public c lass SVF3 extends AbstractHCPNServiceModel {
public SVF3( ) {

this . s e t S t a t e (new SVF3ServiceModelState ( ) ) ;
this . setServiceModelAdapter (new SVF3ServiceModelAdapter ( this ) ) ;
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}

class SVF3ServiceModelAdapter extends AbstractServiceModelAdapter {

private ISe rv i c eReques tP lace p0 ;
private ISe rv i c eReques tP lace p1 ;
private ISe rv i c eReques tP lace p2 ;

public SVF3ServiceModelAdapter ( IServ iceModel p0 ) {
super ( p0 ) ;

}

/∗
∗ (non−Javadoc )
∗
∗ @seecom . sysmopee . core . model . servicemodel . IServiceModelAdapter#
∗ getAddressab leSize ()
∗/

@Override
public int ge tAddre s sab l eS i z e ( ) {

return 3 ;
}

/∗
∗ (non−Javadoc )
∗
∗ @see
∗ com. sysmopee . core . model . servicemodel . IServiceModelAdapter#getMemoryBlock
∗ ( int , in t )
∗/

@Override
public byte [ ] getMemoryBlock ( int intValue , int l ength ) {

IMemory mem = fModel . g e tS ta te ( ) . getMemories ( ) . get ( 0 ) ;

byte [ ] r e s = new byte [ l ength ∗ 3 ] ;

int max = Math . min ( intValue + length , mem. getElements ( ) . l ength )
− intValue ;

for ( int i = 0 ; i < max ; i++) {

int va l = ( ( IDataWord ) mem. getElement ( intValue + i ) )
. ge t Intege rVa lue ( ) ;

r e s [ i + 0 ] = (byte ) ( va l & 0xFF ) ;
r e s [ i + 1 ] = (byte ) ( ( va l & 0xFF00) >> 8 ) ;
r e s [ i + 2 ] = (byte ) ( ( va l & 0xFF0000 ) >> 16 ) ;

}

return r e s ;
}

/∗
∗ (non−Javadoc )
∗
∗ @seecom . sysmopee . core . model . servicemodel . IServiceModelAdapter#
∗ getMemoryEndAddress ()
∗/

@Override
public int getMemoryEndAddress ( ) {

return fModel . g e tSta te ( ) . getMemories ( ) . get ( 0 ) . getElements ( ) . l ength ;
}

/∗
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∗ (non−Javadoc )
∗
∗ @seecom . sysmopee . core . model . servicemodel . IServiceModelAdapter#
∗ getMemoryStartAddress ()
∗/

@Override
public int getMemoryStartAddress ( ) {

return 0 ;
}

/∗
∗ (non−Javadoc )
∗
∗ @seecom . sysmopee . core . model . servicemodel . IServiceModelAdapter#
∗ setValueOfMemoryLocation ( java .math . BigInteger , byte [ ] )
∗/

@Override
public void setValueOfMemoryLocation ( B ig Intege r add , byte [ ] bytes ) {

}

@Override
public void i n i t i a l i z e ( IS imulator s imulator ) {

// Get handles for the se rv i ce reques t p laces of the model
p0 = ( IServ i ceReques tP lace ) ( ( IHCPNServiceModel ) fModel )

. ge tPlace ( ”P0” ) ;
p1 = ( IServ i ceReques tP lace ) ( ( IHCPNServiceModel ) fModel )

. ge tPlace ( ”P1” ) ;
p2 = ( IServ i ceReques tP lace ) ( ( IHCPNServiceModel ) fModel )

. ge tPlace ( ”P2” ) ;
}

abstract class SVFServiceRequest extends AbstractServ iceRequest
implements ICPUServiceRequest {

private f ina l IDataWord fProgramCounter ;

public SVFServiceRequest ( IServ iceModel model , I S e r v i c e type ) {
super (model , type ) ;

fProgramCounter = ( IDataWord ) model . g e tSta te ( )
. g e tReg i s t e r ( ”pc” ) . getElement ( ) ;

}

@Override
public f ina l void p0 ( ) {

// Signal reques t
this . r eques ted ( ) ;

// Defaul t act ion
fProgramCounter . increment ( ) ;

// Produce
p1 . addServiceRequest ( this ) ;

// Consume
p0 . removeServiceRequest ( ) ;

}

public void p1b ( ) {
// Produce
p2 . addServiceRequest ( this ) ;

// Consume
p1 . removeServiceRequest ( ) ;
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}

@Override
public f ina l void p2 ( ) {

// Consume
p2 . removeServiceRequest ( ) ;

// Signal done
this . done ( ) ;

}
}

abstract class EXTENDEDTYPE1 extends SVFServiceRequest {
protected f ina l IDataWord GETOP1;
protected f ina l int EXT1 ;
protected f ina l int OP1 ;

public EXTENDEDTYPE1( IServ iceModel p0 , I S e r v i c e p1 , int OP1,
int EXT1) {

super (p0 , p1 ) ;
OP1 = OP1;
EXT1 = EXT1;
switch ( EXT1) {
case 0 :

GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” reg ” + OP1 ) . getElement ( ) ) ;

break ;
case 1 :

int v = OP1 & 0x7 ;
GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” c f g s t ” + v ) . getElement ( ) ) ;
break ;

case 2 :
GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” a l p ” + OP1 ) . getElement ( ) ) ;
break ;

case 3 :
GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

”a bp” + OP1 ) . getElement ( ) ) ;
break ;

case 4 :
GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

”a hp” + OP1 ) . getElement ( ) ) ;
break ;

case 5 :
GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” b lp ” + OP1 ) . getElement ( ) ) ;
break ;

case 6 :
GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

”b bp” + OP1 ) . getElement ( ) ) ;
break ;

default :
GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

”b hp” + OP1 ) . getElement ( ) ) ;
break ;

}
}

}

abstract class EXTENDEDTYPE2 extends SVFServiceRequest {
protected f ina l IDataWord GETOP1;
protected f ina l IDataWord GETOP2;
protected f ina l int EXT1 ;
protected f ina l int EXT2 ;
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protected f ina l int OP1 ;
protected f ina l int OP2 ;

public EXTENDEDTYPE2( IServ iceModel p0 , I S e r v i c e p1 , int OP2,
int OP1, int EXT2, int EXT1) {

super (p0 , p1 ) ;
OP2 = OP2;
OP1 = OP1;
EXT2 = EXT2;
EXT1 = EXT1;
switch ( EXT2) {
case 0 :

GETOP2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” reg ” + OP2 ) . getElement ( ) ) ;

break ;
case 1 :

GETOP2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” c f g s t ” + OP2 ) . getElement ( ) ) ;

break ;
case 2 :

GETOP2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” a l p ” + OP2 ) . getElement ( ) ) ;

break ;
case 3 :

GETOP2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
”a bp” + OP2 ) . getElement ( ) ) ;

break ;
case 4 :

GETOP2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
”a hp” + OP2 ) . getElement ( ) ) ;

break ;
case 5 :

GETOP2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” b lp ” + OP2 ) . getElement ( ) ) ;

break ;
case 6 :

GETOP2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
”b bp” + OP2 ) . getElement ( ) ) ;

break ;
default :

GETOP2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
”b hp” + OP2 ) . getElement ( ) ) ;

break ;
}
switch ( EXT1) {
case 0 :

GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” reg ” + OP1 ) . getElement ( ) ) ;

break ;
case 1 :

GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” c f g s t ” + OP1 ) . getElement ( ) ) ;

break ;
case 2 :

GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” a l p ” + OP1 ) . getElement ( ) ) ;

break ;
case 3 :

GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
”a bp” + OP1 ) . getElement ( ) ) ;

break ;
case 4 :

GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
”a hp” + OP1 ) . getElement ( ) ) ;

break ;
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case 5 :
GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” b lp ” + OP1 ) . getElement ( ) ) ;
break ;

case 6 :
GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

”b bp” + OP1 ) . getElement ( ) ) ;
break ;

default :
GETOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

”b hp” + OP1 ) . getElement ( ) ) ;
break ;

}
}

}

abstract class EEXTENDEDTYPE1 extends EXTENDEDTYPE1 {
protected f ina l IDataWord GETEOP1;
protected f ina l int EXT1 ;
protected f ina l int EEXT1 ;
protected f ina l int OP1 ;

public EEXTENDEDTYPE1( IServ iceModel p0 , I S e r v i c e p1 , int OP1,
int EEXT1, int EXT1) {

super (p0 , p1 , OP1, EXT1) ;
OP1 = OP1;
EEXT1 = EEXT1;
EXT1 = EXT1;
i f ( ( EEXT1 == 1)) {

switch ( EXT1) {
case 0 :

GETEOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” c1” + OP1 ) . getElement ( ) ) ;

break ;
case 1 :

GETEOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” c2” + OP1 ) . getElement ( ) ) ;

break ;
default :

GETEOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” f c f g ” + OP1 ) . getElement ( ) ) ;

break ;
}

} else {
GETEOP1 = GETOP1;

}
}

}

abstract class EEXTENDEDTYPE2 extends EXTENDEDTYPE2 {
protected f ina l IDataWord GETEOP1;
protected f ina l IDataWord GETEOP2;
protected f ina l int EXT1 ;
protected f ina l int EXT2 ;
protected f ina l int EEXT1 ;
protected f ina l int EEXT2 ;
protected f ina l int OP1 ;

public EEXTENDEDTYPE2( IServ iceModel p0 , I S e r v i c e p1 , int OP2,
int OP1, int EEXT2, int EEXT1, int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP1 = OP1;
EEXT2 = EEXT2;
EEXT1 = EEXT1;
EXT2 = EXT2;
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EXT1 = EXT1;
i f ( ( EEXT2 == 1)) {

switch ( EXT2) {
case 0 :

GETEOP2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” c1” + OP1 ) . getElement ( ) ) ;

break ;
case 1 :

GETEOP2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” c2” + OP1 ) . getElement ( ) ) ;

break ;
default :

GETEOP2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” f c f g ” + OP1 ) . getElement ( ) ) ;

break ;
}

} else {
GETEOP2 = GETOP2;

}
i f ( ( EEXT1 == 1)) {

switch ( EXT1) {
case 0 :

GETEOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” c1” + OP1 ) . getElement ( ) ) ;

break ;
case 1 :

GETEOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” c2” + OP1 ) . getElement ( ) ) ;

break ;
default :

GETEOP1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” f c f g ” + OP1 ) . getElement ( ) ) ;

break ;
}

} else {
GETEOP1 = GETOP1;

}
}

}

class NOP extends SVFServiceRequest {
public NOP( IServ iceModel p0 , I S e r v i c e p1 ) {

super (p0 , p1 ) ;
}

public f ina l void p1 ( ) {
}

}

abstract class TYPE1 extends EXTENDEDTYPE2 {
public TYPE1( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,

int EXT2, int EXT1) {
super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;

}

public abstract void p1 ( ) ;
}

class ADDS extends TYPE1 {
protected f ina l IDataWord FIELD0 ;
protected f ina l int OP3 ;

public ADDS( IServ iceModel p0 , I S e r v i c e p1 , int OP3, int OP2,
int OP1, int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
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OP3 = OP3;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
GETOP1. s e t In t ege rVa lue ( ( GETOP2. get Intege rVa lue ( ) + FIELD0

. ge t Intege rVa lue ( ) ) ) ;
}

}

class ADDU extends TYPE1 {
protected f ina l IDataWord FIELD0 ;
protected f ina l int OP3 ;

public ADDU( IServ iceModel p0 , I S e r v i c e p1 , int OP3, int OP2,
int OP1, int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP3 = OP3;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
GETOP1. s e t In t ege rVa lue ( ( GETOP2. get Intege rVa lue ( ) + FIELD0

. ge t Intege rVa lue ( ) ) ) ;
}

}

class MULS extends TYPE1 {
protected f ina l IDataWord FIELD0 ;
protected f ina l int OP3 ;

public MULS( IServ iceModel p0 , I S e r v i c e p1 , int OP3, int OP2,
int OP1, int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP3 = OP3;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
GETOP1. s e t In t ege rVa lue ( ( GETOP2. get Intege rVa lue ( ) ∗ FIELD0

. ge t Intege rVa lue ( ) ) ) ;
}

}

class MULU extends TYPE1 {
protected f ina l IDataWord FIELD0 ;
protected f ina l int OP3 ;

public MULU( IServ iceModel p0 , I S e r v i c e p1 , int OP3, int OP2,
int OP1, int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP3 = OP3;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
GETOP1. s e t In t ege rVa lue ( ( GETOP2. get Intege rVa lue ( ) ∗ FIELD0

. ge t Intege rVa lue ( ) ) ) ;
}

}
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class MACS extends TYPE1 {
protected f ina l IDataWord FIELD0 ;
protected f ina l int OP3 ;

public MACS( IServ iceModel p0 , I S e r v i c e p1 , int OP3, int OP2,
int OP1, int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP3 = OP3;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
GETOP1. s e t In t ege rVa lue ( ( ( GETOP2. ge t Intege rVa lue ( ) ∗ FIELD0

. ge t Intege rVa lue ( ) ) + GETOP1. ge t Intege rVa lue ( ) ) ) ;
}

}

class MACU extends TYPE1 {
protected f ina l IDataWord FIELD0 ;
protected f ina l int OP3 ;

public MACU( IServ iceModel p0 , I S e r v i c e p1 , int OP3, int OP2,
int OP1, int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP3 = OP3;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
GETOP1. s e t In t ege rVa lue ( ( ( GETOP2. ge t Intege rVa lue ( ) ∗ FIELD0

. ge t Intege rVa lue ( ) ) + GETOP1. ge t Intege rVa lue ( ) ) ) ;
}

}

class AND extends TYPE1 {
protected f ina l IDataWord FIELD0 ;
protected f ina l int OP3 ;

public AND( IServ iceModel p0 , I S e r v i c e p1 , int OP3, int OP2,
int OP1, int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP3 = OP3;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
GETOP1. s e t In t ege rVa lue ( ( GETOP2. get Intege rVa lue ( ) & FIELD0

. ge t Intege rVa lue ( ) ) ) ;
}

}

class OR extends TYPE1 {
protected f ina l IDataWord FIELD0 ;
protected f ina l int OP3 ;

public OR( IServ iceModel p0 , I S e r v i c e p1 , int OP3, int OP2, int OP1,
int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP3 = OP3;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
}
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public f ina l void p1 ( ) {
GETOP1. s e t In t ege rVa lue ( ( GETOP2. get Intege rVa lue ( ) | FIELD0

. ge t Intege rVa lue ( ) ) ) ;
}

}

class XOR extends TYPE1 {
protected f ina l IDataWord FIELD0 ;
protected f ina l int OP3 ;

public XOR( IServ iceModel p0 , I S e r v i c e p1 , int OP3, int OP2,
int OP1, int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP3 = OP3;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
GETOP1. s e t In t ege rVa lue ( ( GETOP2. get Intege rVa lue ( ) ˆ FIELD0

. ge t Intege rVa lue ( ) ) ) ;
}

}

class LW extends TYPE1 {
protected f ina l ISe rv i c eReques t FIELD10 ;
protected f ina l IDataWord FIELD9 ;
protected f ina l IDataWord FIELD8 ;
protected f ina l ISe rv i c eReques t FIELD7 ;
protected f ina l IDataWord FIELD6 ;
protected f ina l IDataWord FIELD5 ;
protected f ina l ISe rv i c eReques t FIELD4 ;
protected f ina l IDataWord FIELD3 ;
protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord [ ] FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l I S e rv i c eMode l In t e r f a c e SOURCE LEFT;
protected f ina l I S e rv i c eMode l In t e r f a c e SOURCE RIGHT;
protected f ina l I S e rv i c eMode l In t e r f a c e I2C ;
protected f ina l int OP3 ;

public LW( IServ iceModel p0 , I S e r v i c e p1 , int OP3, int OP2, int OP1,
int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP3 = OP3;
I2C = p0 . ge tAc t i v eSe rv i c eMode l In t e r f a c e ( ”I2C” ) ;
SOURCE LEFT = p0 . ge tAct i v eSe rv i c eMode l In t e r f a c e ( ”SOURCE LEFT” ) ;
SOURCE RIGHT = p0

. ge tAct i v eSe rv i c eMode l In t e r f a c e ( ”SOURCE RIGHT” ) ;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
FIELD1 = ( IDataWord [ ] ) fModel . g e tSta te ( ) . getMemorySegment (

”mem” ) . getElements ( ) ;
FIELD2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
FIELD3 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
FIELD4 = SOURCE LEFT. c r ea t eSe rv i c eReques t ( ”READ” ,

new Object [ ] { GETOP1 } ) ;
FIELD5 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
FIELD6 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
FIELD8 = new DataWord ( 2 4 ) ;
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FIELD9 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” reg ” + OP3 ) . getElement ( ) ) ;

FIELD7 = I2C . c r ea t eSe rv i c eReques t ( ”READ” , new Object [ ] {
GETOP1, FIELD8 } ) ;

i f ( SOURCE RIGHT != null )
FIELD10 = SOURCE RIGHT. c r ea t eSe rv i c eReques t ( ”READ” ,

new Object [ ] { GETOP1 } ) ;
else

FIELD10 = null ;
}

public f ina l void p1 ( ) {
i f ( ( ( GETOP2. ge t Intege rVa lue ( )

+ FIELD0 . get Intege rVa lue ( ) ) < 512)) {
GETOP1

. s e t In t ege rVa lue ( FIELD1 [ ( GETOP2. get Intege rVa lue ( ) +
FIELD2 . get Intege rVa lue ( ) ) ] . ge t Intege rVa lue ( ) ) ;

} else i f ( ( ( GETOP2. get Intege rVa lue ( ) + FIELD3
. ge t Intege rVa lue ( ) ) == 2048)) {

SOURCE LEFT. reques t ( FIELD4 ) ;

FIELD4 . addDoneListener (new ISe rv i c eDoneL i s t ene r ( ) {

@Override
public void done ( ) {

s e tAct ive ( true ) ;
p1b ( ) ;

}

} ) ;

s e tAct ive ( fa l se ) ;
} else i f ( ( ( GETOP2. get Intege rVa lue ( ) + FIELD3

. ge t Intege rVa lue ( ) ) == 2049)) {
SOURCE RIGHT. reques t ( FIELD10 ) ;

FIELD10 . addDoneListener (new ISe rv i c eDoneL i s t ene r ( ) {

@Override
public void done ( ) {

s e tAct ive ( true ) ;
p1b ( ) ;

}
} ) ;

s e tAct ive ( fa l se ) ;
} else i f ( ( ( ( GETOP2. ge t Intege rVa lue ( ) + FIELD5

. ge t Intege rVa lue ( ) ) >= 2560) && (( GETOP2

. ge t Intege rVa lue ( ) + FIELD6 . get Intege rVa lue ( ) ) < 2592) ) ) {
FIELD8

. s e t In t ege rVa lue ( ( int ) ( ( ( GETOP2. get Intege rVa lue ( ) +
FIELD9 . get Intege rVa lue ( ) ) & 3 1 ) ) ) ;

I2C . r eques t ( FIELD7 ) ;
}

}
}

class SW extends TYPE1 {
protected f ina l ISe rv i c eReques t FIELD10 ;
protected f ina l IDataWord FIELD9 ;
protected f ina l IDataWord FIELD8 ;
protected f ina l ISe rv i c eReques t FIELD7 ;
protected f ina l IDataWord FIELD6 ;
protected f ina l IDataWord FIELD5 ;
protected f ina l ISe rv i c eReques t FIELD4 ;
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protected f ina l IDataWord FIELD3 ;
protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord [ ] FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l I S e rv i c eMode l In t e r f a c e I2C ;
protected f ina l I S e rv i c eMode l In t e r f a c e SINK LEFT ;
protected f ina l I S e rv i c eMode l In t e r f a c e SINK RIGHT ;
protected f ina l int OP3 ;

public SW( IServ iceModel p0 , I S e r v i c e p1 , int OP3, int OP2, int OP1,
int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP3 = OP3;
SINK LEFT = p0 . ge tAct i v eSe rv i c eMode l In t e r f a c e ( ”SINK LEFT” ) ;
SINK RIGHT = p0 . ge tAct i v eSe rv i c eMode l In t e r f a c e ( ”SINK RIGHT” ) ;
I2C = p0 . ge tAc t i v eSe rv i c eMode l In t e r f a c e ( ”I2C” ) ;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
FIELD1 = ( IDataWord [ ] ) fModel . g e tSta te ( ) . getMemorySegment (

”mem” ) . getElements ( ) ;
FIELD2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
FIELD3 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
FIELD4 = SINK LEFT . c r ea t eSe rv i c eReque s t ( ”WRITE” ,

new Object [ ] { GETOP1 } ) ;
FIELD5 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
FIELD6 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
FIELD8 = new DataWord ( 2 4 ) ;
FIELD9 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP3 ) . getElement ( ) ) ;
FIELD7 = I2C . c r ea t eSe rv i c eReques t ( ”WRITE” , new Object [ ] {

GETOP1, FIELD8 } ) ;
FIELD10 = SINK RIGHT . c r ea t eSe rv i c eReque s t ( ”WRITE” ,

new Object [ ] { GETOP1 } ) ;
}

public f ina l void p1 ( ) {
i f ( ( ( GETOP2. get Intege rVa lue ( ) +

FIELD0 . get Intege rVa lue ( ) ) < 512)) {
FIELD1 [ ( GETOP2. get Intege rVa lue ( ) + FIELD2

. ge t Intege rVa lue ( ) ) ] . s e t In t ege rVa lue ( GETOP1

. ge t Intege rVa lue ( ) ) ;
} else i f ( ( ( GETOP2. get Intege rVa lue ( ) + FIELD3

. ge t Intege rVa lue ( ) ) == 2304)) {
SINK LEFT . reques t ( FIELD4 ) ;

} else i f ( ( ( GETOP2. get Intege rVa lue ( ) + FIELD3
. ge t Intege rVa lue ( ) ) == 2305)) {

SINK RIGHT . reques t ( FIELD10 ) ;
} else i f ( ( ( ( GETOP2. ge t Intege rVa lue ( ) + FIELD5

. ge t Intege rVa lue ( ) ) >= 2560) && (( GETOP2

. ge t Intege rVa lue ( ) + FIELD6 . get Intege rVa lue ( ) ) < 2592) ) ) {
FIELD8

. s e t In t ege rVa lue ( ( int ) ( ( ( GETOP2. get Intege rVa lue ( ) + FIELD9
. ge t Intege rVa lue ( ) ) & 3 1 ) ) ) ;

I2C . r eques t ( FIELD7 ) ;
}

}
}

abstract class TYPE2 extends SVFServiceRequest {
public TYPE2( IServ iceModel p0 , I S e r v i c e p1 ) {

super (p0 , p1 ) ;
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}

public abstract void p1 ( ) ;
}

class ADDIS extends TYPE2 {
protected f ina l int FIELD2 ;
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEEXT;
protected f ina l int OP1 ;
protected f ina l int OP2 ;

public ADDIS( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMMEEXT) {

super (p0 , p1 ) ;
OP2 = OP2;
OP1 = OP1;
IMMEEXT = IMMEEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD2 = IMMEEXT >= 2048 ? IMMEEXT − 4096 : IMMEEXT;

}

public f ina l void p1 ( ) {
FIELD0 . s e t In t ege rVa lue ( ( FIELD0 . ge t Intege rVa lue ( ) + FIELD2 ) ) ;

}
}

class ADDIU extends TYPE2 {
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEEXT;
protected f ina l int OP1 ;
protected f ina l int OP2 ;

public ADDIU( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMMEEXT) {

super (p0 , p1 ) ;
OP2 = OP2;
OP1 = OP1;
IMMEEXT = IMMEEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
FIELD0 . s e t In t ege rVa lue ( ( FIELD0 . ge t Intege rVa lue ( ) + IMMEEXT) ) ;

}
}

class MULIS extends TYPE2 {
protected f ina l int FIELD2 ;
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEEXT;
protected f ina l int OP1 ;
protected f ina l int OP2 ;

public MULIS( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMMEEXT) {
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super (p0 , p1 ) ;
OP2 = OP2;
OP1 = OP1;
IMMEEXT = IMMEEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD2 = IMMEEXT >= 2048 ? IMMEEXT − 4096 : IMMEEXT;

}

public f ina l void p1 ( ) {
FIELD0 . s e t In t ege rVa lue ( ( FIELD0 . ge t Intege rVa lue ( ) ∗ FIELD2 ) ) ;

}
}

class MULIU extends TYPE2 {
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEEXT;
protected f ina l int OP1 ;
protected f ina l int OP2 ;

public MULIU( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMMEEXT) {

super (p0 , p1 ) ;
OP2 = OP2;
OP1 = OP1;
IMMEEXT = IMMEEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
FIELD0 . s e t In t ege rVa lue ( ( FIELD0 . ge t Intege rVa lue ( ) ∗ IMMEEXT) ) ;

}
}

class MOVI extends TYPE2 {
protected f ina l int FIELD2 ;
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEEXT;
protected f ina l int OP1 ;

public MOVI( IServ iceModel p0 , I S e r v i c e p1 , int OP1, int IMMEEXT) {
super (p0 , p1 ) ;
OP1 = OP1;
IMMEEXT = IMMEEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD2 = ( IMMEEXT & 4095) ;

}

public f ina l void p1 ( ) {
FIELD0

. s e t In t ege rVa lue ( ( int ) ( ( ( ( ( FIELD1 . ge t Intege rVa lue ( )
& 16773120) >>> 12) & 16773120) | FIELD2 ) ) ) ;

}
}
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class MOVUI extends TYPE2 {
protected f ina l IDataWord FIELD3 ;
protected f ina l int FIELD2 ;
protected f ina l int FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEEXT;
protected f ina l int OP1 ;

public MOVUI( IServ iceModel p0 , I S e r v i c e p1 , int OP1, int IMMEEXT) {
super (p0 , p1 ) ;
OP1 = OP1;
IMMEEXT = IMMEEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD1 = ( IMMEEXT & 4095) ;
FIELD2 = ( FIELD1 << 12 ) ;
FIELD3 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
FIELD0 . s e t In t ege rVa lue ( ( int ) ( ( FIELD2 | ( FIELD3

. ge t Intege rVa lue ( ) & 40 9 5 ) ) ) ) ;
}

}

class LWA extends TYPE2 {
protected f ina l ISe rv i c eReques t FIELD7 ;
protected f ina l IDataWord FIELD6 ;
protected f ina l ISe rv i c eReques t FIELD5 ;
protected f ina l IDataWord FIELD4 ;
protected f ina l ISe rv i c eReques t FIELD3 ;
protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord FIELD1 ;
protected f ina l IEvaluate FIELD0 ;
protected f ina l I S e rv i c eMode l In t e r f a c e SOURCE LEFT;
protected f ina l I S e rv i c eMode l In t e r f a c e SOURCE RIGHT;
protected f ina l I S e rv i c eMode l In t e r f a c e I2C ;
protected f ina l int OP1 ;
protected f ina l int IMMEEXT;

public LWA( IServ iceModel p0 , I S e r v i c e p1 , int IMMEEXT, int OP1) {
super (p0 , p1 ) ;
IMMEEXT = IMMEEXT;
OP1 = OP1;
I2C = p0 . ge tAc t i v eSe rv i c eMode l In t e r f a c e ( ”I2C” ) ;
SOURCE LEFT = p0 . ge tAct i v eSe rv i c eMode l In t e r f a c e ( ”SOURCE LEFT” ) ;
SOURCE RIGHT = p0

. ge tAct i v eSe rv i c eMode l In t e r f a c e ( ”SOURCE RIGHT” ) ;
FIELD1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD2 = (( IDataWord ) fModel . g e tSta te ( ) . getMemoryLocation (

IMMEEXT) ) ;
i f ( ( IMMEEXT < 512)) {

FIELD0 = new IEvaluate ( ) {
public f ina l void eva luate ( ) {

FIELD1 . s e t In t ege rVa lue ( FIELD2 . ge t Intege rVa lue ( ) ) ;
}

} ;
} else i f ( ( IMMEEXT == 2048)) {

FIELD0 = new IEvaluate ( ) {
public f ina l void eva luate ( ) {

SOURCE LEFT. reques t ( FIELD3 ) ;

FIELD3 . addDoneListener (new ISe rv i c eDoneL i s t ene r ( ) {
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@Override
public void done ( ) {

s e tAct ive ( true ) ;
p1b ( ) ;

}

} ) ;

s e tAct ive ( fa l se ) ;
}

} ;
} else i f ( ( IMMEEXT == 2049)) {

FIELD0 = new IEvaluate ( ) {
public f ina l void eva luate ( ) {

SOURCE RIGHT. reques t ( FIELD7 ) ;

/∗
∗ FIELD7 . addDoneListener (new
∗ IServiceDoneListener (){
∗
∗ @Override pub l i c void done () { se tAct ive ( true ) ;
∗ p1b ( ) ; }
∗
∗ } ) ;
∗
∗ se tAct ive ( f a l s e ) ;
∗/

}
} ;

} else i f ( ( ( IMMEEXT >= 2560) && ( IMMEEXT < 2592) ) ) {
FIELD0 = new IEvaluate ( ) {
public f ina l void eva luate ( ) {

I2C . r eques t ( FIELD5 ) ;
}

} ;
} else {

FIELD0 = new IEvaluate ( ) {
public f ina l void eva luate ( ) {
{
}

}
} ;

}
FIELD4 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD3 = SOURCE LEFT. c r ea t eSe rv i c eReques t ( ”READ” ,

new Object [ ] { FIELD4 } ) ;
FIELD6 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD5 = I2C . c r ea t eSe rv i c eReques t ( ”READ” , new Object [ ] {

FIELD6 , new DataWord( IMMEEXT & 31 , 24) } ) ;
i f ( SOURCE RIGHT != null )

FIELD7 = SOURCE RIGHT. c r ea t eSe rv i c eReque s t ( ”READ” ,
new Object [ ] { FIELD4 } ) ;

else
FIELD7 = null ;

}

public f ina l void p1 ( ) {
FIELD0 . eva luate ( ) ;

}
}

class SWA extends TYPE2 {
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protected f ina l ISe rv i c eReques t FIELD7 ;
protected f ina l IDataWord FIELD6 ;
protected f ina l ISe rv i c eReques t FIELD5 ;
protected f ina l IDataWord FIELD4 ;
protected f ina l ISe rv i c eReques t FIELD3 ;
protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord FIELD1 ;
protected f ina l IEvaluate FIELD0 ;
protected f ina l I S e rv i c eMode l In t e r f a c e I2C ;
protected f ina l I S e rv i c eMode l In t e r f a c e SINK LEFT ;
protected f ina l I S e rv i c eMode l In t e r f a c e SINK RIGHT ;
protected f ina l int OP1 ;
protected f ina l int IMMEEXT;

public SWA( IServ iceModel p0 , I S e r v i c e p1 , int IMMEEXT, int OP1) {
super (p0 , p1 ) ;
IMMEEXT = IMMEEXT;
OP1 = OP1;
SINK LEFT = p0 . ge tAct i v eSe rv i c eMode l In t e r f a c e ( ”SINK LEFT” ) ;
SINK RIGHT = p0 . ge tAct i v eSe rv i c eMode l In t e r f a c e ( ”SINK RIGHT” ) ;
I2C = p0 . ge tAc t i v eSe rv i c eMode l In t e r f a c e ( ”I2C” ) ;
FIELD1 = (( IDataWord ) fModel . g e tSta te ( ) . getMappedElement (

IMMEEXT) ) ;
FIELD2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
i f ( ( IMMEEXT < 512)) {

FIELD0 = new IEvaluate ( ) {
public f ina l void eva luate ( ) {

FIELD1 . s e t In t ege rVa lue ( FIELD2 . ge t Intege rVa lue ( ) ) ;
}

} ;
} else i f ( ( IMMEEXT == 2304)) {

FIELD0 = new IEvaluate ( ) {
public f ina l void eva luate ( ) {

SINK LEFT . reques t ( FIELD3 ) ;
}

} ;
} else i f ( ( IMMEEXT == 2305)) {

FIELD0 = new IEvaluate ( ) {
public f ina l void eva luate ( ) {

SINK RIGHT . reques t ( FIELD7 ) ;
}

} ;
} else i f ( ( ( IMMEEXT >= 2560) && ( IMMEEXT < 2592) ) ) {

FIELD0 = new IEvaluate ( ) {
public f ina l void eva luate ( ) {

I2C . r eques t ( FIELD5 ) ;
}

} ;
} else {

FIELD0 = new IEvaluate ( ) {
public f ina l void eva luate ( ) {
{
}

}
} ;

}
FIELD4 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD3 = SINK LEFT . c r ea t eSe rv i c eReque s t ( ”WRITE” ,

new Object [ ] { FIELD4 } ) ;
FIELD6 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD5 = I2C . c r ea t eSe rv i c eReques t ( ”WRITE” , new Object [ ] {

FIELD6 , new DataWord( IMMEEXT & 31 , 24) } ) ;
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i f ( SINK RIGHT != null )
FIELD7 = SINK RIGHT . c r ea t eSe rv i c eReque s t ( ”WRITE” ,

new Object [ ] { FIELD4 } ) ;
else

FIELD7 = null ;
}

public f ina l void p1 ( ) {
FIELD0 . eva luate ( ) ;

}
}

class ANDI extends TYPE2 {
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEEXT;
protected f ina l int OP1 ;
protected f ina l int OP2 ;

public ANDI( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMMEEXT) {

super (p0 , p1 ) ;
OP2 = OP2;
OP1 = OP1;
IMMEEXT = IMMEEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
FIELD0 . s e t In t ege rVa lue ( ( FIELD0 . ge t Intege rVa lue ( ) & IMMEEXT) ) ;

}
}

class ORI extends TYPE2 {
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEEXT;
protected f ina l int OP1 ;
protected f ina l int OP2 ;

public ORI( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMMEEXT) {

super (p0 , p1 ) ;
OP2 = OP2;
OP1 = OP1;
IMMEEXT = IMMEEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
FIELD0 . s e t In t ege rVa lue ( ( FIELD0 . ge t Intege rVa lue ( ) | IMMEEXT) ) ;

}
}

class XORI extends TYPE2 {
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEEXT;
protected f ina l int OP1 ;
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protected f ina l int OP2 ;

public XORI( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMMEEXT) {

super (p0 , p1 ) ;
OP2 = OP2;
OP1 = OP1;
IMMEEXT = IMMEEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
FIELD0 . s e t In t ege rVa lue ( ( FIELD0 . ge t Intege rVa lue ( ) ˆ IMMEEXT) ) ;

}
}

class BGTZ extends TYPE2 {
protected f ina l int FIELD3 ;
protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEEXT;
protected f ina l int OP1 ;

public BGTZ( IServ iceModel p0 , I S e r v i c e p1 , int OP1, int IMMEEXT) {
super (p0 , p1 ) ;
OP1 = OP1;
IMMEEXT = IMMEEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD1 = ( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r ( ”pc” )

. getElement ( ) ;
FIELD2 = ( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r ( ”pc” )

. getElement ( ) ;
FIELD3 = IMMEEXT >= 2048 ? IMMEEXT − 4096 : IMMEEXT;

}

public f ina l void p1 ( ) {
i f ( ( FIELD0 . ge t Intege rVa lue ( ) > 0) ) {

FIELD1
. s e t In t ege rVa lue ( ( FIELD2 . ge t Intege rVa lue ( ) + FIELD3 ) ) ;

}
}

}

class BLEZ extends TYPE2 {
protected f ina l int FIELD3 ;
protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEEXT;
protected f ina l int OP1 ;

public BLEZ( IServ iceModel p0 , I S e r v i c e p1 , int OP1, int IMMEEXT) {
super (p0 , p1 ) ;
OP1 = OP1;
IMMEEXT = IMMEEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP1 ) . getElement ( ) ) ;
FIELD1 = ( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r ( ”pc” )

. getElement ( ) ;
FIELD2 = ( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r ( ”pc” )
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. getElement ( ) ;
FIELD3 = IMMEEXT >= 2048 ? IMMEEXT − 4096 : IMMEEXT;

}

public f ina l void p1 ( ) {
i f ( ( FIELD0 . ge t Intege rVa lue ( ) <= 0)) {

FIELD1
. s e t In t ege rVa lue ( ( FIELD2 . ge t Intege rVa lue ( ) + FIELD3 ) ) ;

}
}

}

abstract class TYPE3 extends SVFServiceRequest {
public TYPE3( IServ iceModel p0 , I S e r v i c e p1 ) {

super (p0 , p1 ) ;
}

public abstract void p1 ( ) ;
}

class JMP extends TYPE3 {
protected f ina l IDataWord FIELD0 ;
protected f ina l int TARGET;

public JMP( IServ iceModel p0 , I S e r v i c e p1 , int TARGET) {
super (p0 , p1 ) ;
TARGET = TARGET;
FIELD0 = ( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r ( ”pc” )

. getElement ( ) ;
}

public f ina l void p1 ( ) {
FIELD0 . s e t In t ege rVa lue ( ( int ) ( TARGET) ) ;

}
}

abstract class TYPE4 extends EXTENDEDTYPE2 {
public TYPE4( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,

int EXT2, int EXT1) {
super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;

}

public abstract void p1 ( ) ;
}

class SVF1 extends TYPE4 {
protected f ina l IDataWord FIELD3 ;
protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int OP2 ;

public SVF1( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP2 = OP2;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

”a hp” + OP2 ) . getElement ( ) ) ;
FIELD1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” a l p ” + OP2 ) . getElement ( ) ) ;
FIELD2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” c1” + OP2 ) . getElement ( ) ) ;
FIELD3 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” a l p ” + OP2 ) . getElement ( ) ) ;
}
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public f ina l void p1 ( ) {
FIELD0

. s e t In t ege rVa lue ( ( ( ( GETOP1. ge t Intege rVa lue ( ) − FIELD1
. ge t Intege rVa lue ( ) ) ∗ FIELD2 . ge t Intege rVa lue ( ) ) + FIELD3
. ge t Intege rVa lue ( ) ) ) ;

}
}

class SVF2A extends TYPE4 {
protected f ina l IDataWord FIELD3 ;
protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int OP2 ;

public SVF2A( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP2 = OP2;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

”a hp” + OP2 ) . getElement ( ) ) ;
FIELD1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” a l p ” + OP2 ) . getElement ( ) ) ;
FIELD2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” c1” + OP2 ) . getElement ( ) ) ;
FIELD3 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” a l p ” + OP2 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
FIELD0

. s e t In t ege rVa lue ( ( ( ( GETOP1. ge t Intege rVa lue ( ) − FIELD1
. ge t Intege rVa lue ( ) ) ∗ FIELD2 . ge t Intege rVa lue ( ) ) + FIELD3
. ge t Intege rVa lue ( ) ) ) ;

}
}

class SVF2B extends TYPE4 {
protected f ina l IDataWord FIELD3 ;
protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int OP2 ;

public SVF2B( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EXT2, EXT1) ;
OP2 = OP2;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

”a hp” + OP2 ) . getElement ( ) ) ;
FIELD1 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” a l p ” + OP2 ) . getElement ( ) ) ;
FIELD2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” c1” + OP2 ) . getElement ( ) ) ;
FIELD3 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” a l p ” + OP2 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
FIELD0

. s e t In t ege rVa lue ( ( ( ( GETOP1. ge t Intege rVa lue ( ) − FIELD1
. ge t Intege rVa lue ( ) ) ∗ FIELD2 . ge t Intege rVa lue ( ) ) + FIELD3
. ge t Intege rVa lue ( ) ) ) ;

}
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}

abstract class TYPE5 extends EXTENDEDTYPE1 {
public TYPE5( IServ iceModel p0 , I S e r v i c e p1 , int OP1, int EXT1) {

super (p0 , p1 , OP1, EXT1) ;
}

public abstract void p1 ( ) ;
}

class SLLI extends TYPE5 {
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEXT;
protected f ina l int OP2 ;

public SLLI ( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMMEXT, int EXT1) {

super (p0 , p1 , OP1, EXT1) ;
OP2 = OP2;
IMMEXT = IMMEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
GETOP1. s e t In t ege rVa lue ( ( FIELD0 . ge t Intege rVa lue ( ) << IMMEXT) ) ;

}
}

class SRLI extends TYPE5 {
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEXT;
protected f ina l int OP2 ;

public SRLI( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMMEXT, int EXT1) {

super (p0 , p1 , OP1, EXT1) ;
OP2 = OP2;
IMMEXT = IMMEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
GETOP1

. s e t In t ege rVa lue ( ( FIELD0 . ge t Intege rVa lue ( ) >>> IMMEXT) ) ;
}

}

class SRAI extends TYPE5 {
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEXT;
protected f ina l int OP2 ;

public SRAI( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMMEXT, int EXT1) {

super (p0 , p1 , OP1, EXT1) ;
OP2 = OP2;
IMMEXT = IMMEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
}

public f ina l void p1 ( ) {
GETOP1. s e t In t ege rVa lue ( ( FIELD0 . ge t Intege rVa lue ( ) >> IMMEXT) ) ;
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}
}

class BGT extends TYPE5 {
protected f ina l int FIELD3 ;
protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEXT;
protected f ina l int OP2 ;

public BGT( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMMEXT, int EXT1) {

super (p0 , p1 , OP1, EXT1) ;
OP2 = OP2;
IMMEXT = IMMEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD1 = ( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r ( ”pc” )

. getElement ( ) ;
FIELD2 = ( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r ( ”pc” )

. getElement ( ) ;
FIELD3 = IMMEXT >= 64 ? IMMEXT − 128 : IMMEXT;

}

public f ina l void p1 ( ) {
i f ( ( GETOP1. get Intege rVa lue ( ) > FIELD0 . get Intege rVa lue ( ) ) ) {

FIELD1
. s e t In t ege rVa lue ( ( FIELD2 . ge t Intege rVa lue ( ) + FIELD3 ) ) ;

}
}

}

class BLT extends TYPE5 {
protected f ina l int FIELD3 ;
protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEXT;
protected f ina l int OP2 ;

public BLT( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMMEXT, int EXT1) {

super (p0 , p1 , OP1, EXT1) ;
OP2 = OP2;
IMMEXT = IMMEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD1 = ( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r ( ”pc” )

. getElement ( ) ;
FIELD2 = ( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r ( ”pc” )

. getElement ( ) ;
FIELD3 = IMMEXT >= 64 ? IMMEXT − 128 : IMMEXT;

}

public f ina l void p1 ( ) {
i f ( ( GETOP1. get Intege rVa lue ( ) <= FIELD0 . ge t Intege rVa lue ( ) ) ) {

FIELD1
. s e t In t ege rVa lue ( ( FIELD2 . ge t Intege rVa lue ( ) + FIELD3 ) ) ;

}
}

}

class BEQ extends TYPE5 {
protected f ina l int FIELD3 ;



196 Generated Java source code for the SVF processor model

protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEXT;
protected f ina l int OP2 ;

public BEQ( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMMEXT, int EXT1) {

super (p0 , p1 , OP1, EXT1) ;
OP2 = OP2;
IMMEXT = IMMEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD1 = ( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r ( ”pc” )

. getElement ( ) ;
FIELD2 = ( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r ( ”pc” )

. getElement ( ) ;
FIELD3 = IMMEXT >= 64 ? IMMEXT − 128 : IMMEXT;

}

public f ina l void p1 ( ) {
i f ( ( GETOP1. get Intege rVa lue ( ) == FIELD0 . ge t Intege rVa lue ( ) ) ) {

FIELD1
. s e t In t ege rVa lue ( ( FIELD2 . ge t Intege rVa lue ( ) + FIELD3 ) ) ;

}
}

}

class BNE extends TYPE5 {
protected f ina l int FIELD3 ;
protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l int IMMEXT;
protected f ina l int OP2 ;

public BNE( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMMEXT, int EXT1) {

super (p0 , p1 , OP1, EXT1) ;
OP2 = OP2;
IMMEXT = IMMEXT;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD1 = ( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r ( ”pc” )

. getElement ( ) ;
FIELD2 = ( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r ( ”pc” )

. getElement ( ) ;
FIELD3 = IMMEXT >= 64 ? IMMEXT − 128 : IMMEXT;

}

public f ina l void p1 ( ) {
i f ( ( GETOP1. get Intege rVa lue ( ) != FIELD0 . ge t Intege rVa lue ( ) ) ) {

FIELD1
. s e t In t ege rVa lue ( ( FIELD2 . ge t Intege rVa lue ( ) + FIELD3 ) ) ;

}
}

}

abstract class TYPE6 extends EEXTENDEDTYPE2 {
public TYPE6( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,

int EEXT2, int EEXT1, int EXT2, int EXT1) {
super (p0 , p1 , OP2, OP1, EEXT2, EEXT1, EXT2, EXT1) ;

}

public abstract void p1 ( ) ;
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}

class MOV extends TYPE6 {
public MOV( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,

int EEXT2, int EEXT1, int EXT2, int EXT1) {
super (p0 , p1 , OP2, OP1, EEXT2, EEXT1, EXT2, EXT1) ;

}

public f ina l void p1 ( ) {
GETOP1. s e t In t ege rVa lue ( GETOP2. ge t Intege rVa lue ( ) ) ;

}
}

class ABS extends TYPE6 {
protected f ina l IEvaluate FIELD0 ;

public ABS( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int EEXT2, int EEXT1, int EXT2, int EXT1) {

super (p0 , p1 , OP2, OP1, EEXT2, EEXT1, EXT2, EXT1) ;
i f ( ( GETOP2. get Intege rVa lue ( ) < 0) ) {

FIELD0 = new IEvaluate ( ) {
public f ina l void eva luate ( ) {

GETOP1
. s e t In t ege rVa lue ( ( GETOP2. ge t Intege rVa lue ( ) + 1 ) ) ;

}
} ;

} else {
FIELD0 = new IEvaluate ( ) {
public f ina l void eva luate ( ) {
{
}

}
} ;

}
}

public f ina l void p1 ( ) {
FIELD0 . eva luate ( ) ;

}
}

abstract class TYPE7 extends SVFServiceRequest {
public TYPE7( IServ iceModel p0 , I S e r v i c e p1 ) {

super (p0 , p1 ) ;
}

public abstract void p1 ( ) ;
}

abstract class TYPE8 extends EEXTENDEDTYPE1 {
public TYPE8( IServ iceModel p0 , I S e r v i c e p1 , int OP1, int EEXT1,

int EXT1) {
super (p0 , p1 , OP1, EEXT1, EXT1) ;

}

public abstract void p1 ( ) ;
}

class LWI extends TYPE8 {
protected f ina l ISe rv i ceReques t FIELD10 ;
protected f ina l IDataWord FIELD9 ;
protected f ina l IDataWord FIELD8 ;
protected f ina l ISe rv i c eReques t FIELD7 ;
protected f ina l IDataWord FIELD6 ;
protected f ina l IDataWord FIELD5 ;
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protected f ina l ISe rv i c eReques t FIELD4 ;
protected f ina l IDataWord FIELD3 ;
protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord [ ] FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l I S e rv i c eMode l In t e r f a c e SOURCE LEFT;
protected f ina l I S e rv i c eMode l In t e r f a c e SOURCE RIGHT;
protected f ina l I S e rv i c eMode l In t e r f a c e I2C ;
protected f ina l int IMM;
protected f ina l int OP2 ;

public LWI( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMM, int EEXT1, int EXT1) {

super (p0 , p1 , OP1, EEXT1, EXT1) ;
OP2 = OP2;
IMM = IMM;
I2C = p0 . ge tAc t i v eSe rv i c eMode l In t e r f a c e ( ”I2C” ) ;
SOURCE LEFT = p0 . ge tAct i v eSe rv i c eMode l In t e r f a c e ( ”SOURCE LEFT” ) ;
SOURCE RIGHT = p0

. ge tAct i v eSe rv i c eMode l In t e r f a c e ( ”SOURCE RIGHT” ) ;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD1 = ( IDataWord [ ] ) fModel . g e tSta te ( ) . getMemorySegment (

”mem” ) . getElements ( ) ;
FIELD2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD3 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD4 = SOURCE LEFT. c r ea t eSe rv i c eReques t ( ”READ” ,

new Object [ ] { GETEOP1 } ) ;
i f ( SOURCE RIGHT != null )

FIELD10 = SOURCE RIGHT. c r ea t eSe rv i c eReques t ( ”READ” ,
new Object [ ] { GETEOP1 } ) ;

else
FIELD10 = null ;

FIELD5 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” reg ” + OP2 ) . getElement ( ) ) ;

FIELD6 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” reg ” + OP2 ) . getElement ( ) ) ;

FIELD8 = new DataWord ( 2 4 ) ;
FIELD9 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD7 = I2C . c r ea t eSe rv i c eReques t ( ”READ” , new Object [ ] {

GETEOP1, FIELD8 } ) ;
}

public f ina l void p1 ( ) {
i f ( ( ( FIELD0 . ge t Intege rVa lue ( ) + IMM) < 512)) {

GETEOP1
. s e t In t ege rVa lue ( FIELD1 [ ( FIELD2 . ge t Intege rVa lue ( ) + IMM) ]

. ge t Intege rVa lue ( ) ) ;
} else i f ( ( ( FIELD3 . ge t Intege rVa lue ( ) + IMM) == 2048)) {

SOURCE LEFT. reques t ( FIELD4 ) ;

FIELD4 . addDoneListener (new ISe rv i c eDoneL i s t ene r ( ) {

@Override
public void done ( ) {

s e tAct ive ( true ) ;
p1b ( ) ;

}

} ) ;

s e tAct ive ( fa l se ) ;
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} else i f ( ( ( FIELD3 . ge t Intege rVa lue ( ) + IMM) == 2049)) {
SOURCE RIGHT. reques t ( FIELD10 ) ;

FIELD10 . addDoneListener (new ISe rv i c eDoneL i s t ene r ( ) {

@Override
public void done ( ) {

s e tAct ive ( true ) ;
p1b ( ) ;

}

} ) ;

s e tAct ive ( fa l se ) ;
} else i f ( ( ( ( FIELD5 . ge t Intege rVa lue ( ) + IMM) >= 2560) && (( FIELD6

. ge t Intege rVa lue ( ) + IMM) <= 2591) ) ) {
FIELD8

. s e t In t ege rVa lue ( ( int ) ( ( ( FIELD9 . ge t Intege rVa lue ( ) +
IMM) & 31 ) ) ) ;

I2C . r eques t ( FIELD7 ) ;
}

}
}

class SWI extends TYPE8 {
protected f ina l ISe rv i ceReques t FIELD10 ;
protected f ina l IDataWord FIELD9 ;
protected f ina l IDataWord FIELD8 ;
protected f ina l ISe rv i c eReques t FIELD7 ;
protected f ina l IDataWord FIELD6 ;
protected f ina l IDataWord FIELD5 ;
protected f ina l ISe rv i c eReques t FIELD4 ;
protected f ina l IDataWord FIELD3 ;
protected f ina l IDataWord FIELD2 ;
protected f ina l IDataWord [ ] FIELD1 ;
protected f ina l IDataWord FIELD0 ;
protected f ina l I S e rv i c eMode l In t e r f a c e I2C ;
protected f ina l I S e rv i c eMode l In t e r f a c e SINK LEFT ;
protected f ina l I S e rv i c eMode l In t e r f a c e SINK RIGHT ;
protected f ina l int IMM;
protected f ina l int OP2 ;

public SWI( IServ iceModel p0 , I S e r v i c e p1 , int OP2, int OP1,
int IMM, int EEXT1, int EXT1) {

super (p0 , p1 , OP1, EEXT1, EXT1) ;
OP2 = OP2;
IMM = IMM;
SINK LEFT = p0 . ge tAct i v eSe rv i c eMode l In t e r f a c e ( ”SINK LEFT” ) ;
SINK RIGHT = p0 . ge tAct i v eSe rv i c eMode l In t e r f a c e ( ”SINK RIGHT” ) ;
I2C = p0 . ge tAc t i v eSe rv i c eMode l In t e r f a c e ( ”I2C” ) ;
FIELD0 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD1 = ( IDataWord [ ] ) fModel . g e tSta te ( ) . getMemorySegment (

”mem” ) . getElements ( ) ;
FIELD2 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD3 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD4 = SINK LEFT . c r ea t eSe rv i c eReque s t ( ”WRITE” ,

new Object [ ] { GETEOP1 } ) ;
FIELD5 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD6 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (

” reg ” + OP2 ) . getElement ( ) ) ;
FIELD8 = new DataWord ( 2 4 ) ;
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FIELD9 = (( IDataWord ) fModel . g e tSta te ( ) . g e tReg i s t e r (
” reg ” + OP2 ) . getElement ( ) ) ;

FIELD7 = I2C . c r ea t eSe rv i c eReques t ( ”WRITE” , new Object [ ] {
GETEOP1, FIELD8 } ) ;

FIELD10 = SINK LEFT . c r ea t eSe rv i c eReque s t ( ”WRITE” ,
new Object [ ] { GETEOP1 } ) ;

}

public f ina l void p1 ( ) {
i f ( ( ( FIELD0 . ge t Intege rVa lue ( ) + IMM) < 512)) {

FIELD1 [ ( FIELD2 . ge t Intege rVa lue ( ) + IMM) ]
. s e t In t ege rVa lue ( GETEOP1. ge t IntegerVa lue ( ) ) ;

} else i f ( ( ( FIELD3 . ge t Intege rVa lue ( ) + IMM) == 2304)) {
SINK LEFT . reques t ( FIELD4 ) ;

} else i f ( ( ( FIELD3 . ge t Intege rVa lue ( ) + IMM) == 2305)) {
SINK RIGHT . reques t ( FIELD10 ) ;

} else i f ( ( ( ( FIELD5 . ge t Intege rVa lue ( ) + IMM) >= 2560) && (( FIELD6
. ge t Intege rVa lue ( ) + IMM) <= 2591) ) ) {

FIELD8
. s e t In t ege rVa lue ( ( int ) ( ( ( FIELD9 . ge t Intege rVa lue ( ) +

IMM) & 31 ) ) ) ;
I2C . r eques t ( FIELD7 ) ;

}
}

}

abstract class TYPE9 extends SVFServiceRequest {
public TYPE9( IServ iceModel p0 , I S e r v i c e p1 ) {

super (p0 , p1 ) ;
}

public abstract void p1 ( ) ;
}

public ISe rv i ceReques t c r ea t eSe rv i c eReque s t ( I S e r v i c e p0 , Object p1 [ ] ) {
i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”NOP” ) )

return new NOP( fModel , p0 ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”ADDS” ) )

return new ADDS( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”ADDU” ) )
return new ADDU( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”MULS” ) )

return new MULS( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”MULU” ) )
return new MULU( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”MACS” ) )

return new MACS( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”MACU” ) )
return new MACU( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”AND” ) )

return new AND( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”OR” ) )
return new OR( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”XOR” ) )

return new XOR( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”LW” ) )
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return new LW( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”SW” ) )
return new SW( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”ADDIS” ) )

return new ADDIS( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”ADDIU” ) )
return new ADDIU( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”MULIS” ) )

return new MULIS( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”MULIU” ) )
return new MULIU( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”MOVI” ) )

return new MOVI( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”MOVUI” ) )

return new MOVUI( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”LWA” ) )

return new LWA( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”SWA” ) )

return new SWA( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”ANDI” ) )

return new ANDI( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”ORI” ) )
return new ORI( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”XORI” ) )

return new XORI( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”BGTZ” ) )
return new BGTZ( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”BLEZ” ) )
return new BLEZ( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”JMP” ) )
return new JMP( fModel , p0 , ( In t eg e r ) p1 [ 0 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”SVF1” ) )
return new SVF1( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”SVF2A” ) )

return new SVF2A( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”SVF2B” ) )
return new SVF2B( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”SLLI” ) )

return new SLLI ( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”SRLI” ) )
return new SRLI( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”SRAI” ) )

return new SRAI( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”BGT” ) )
return new BGT( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”BLT” ) )

return new BLT( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”BEQ” ) )
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return new BEQ( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”BNE” ) )
return new BNE( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”MOV” ) )

return new MOV( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ,
( I n t eg e r ) p1 [ 5 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”ABS” ) )
return new ABS( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ,
( I n t eg e r ) p1 [ 5 ] ) ;

else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”LWI” ) )
return new LWI( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,

( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ) ;
else i f ( p0 . g e t I d e n t i f i e r ( ) . equa l s ( ”SWI” ) )

return new SWI( fModel , p0 , ( In t eg e r ) p1 [ 0 ] , ( I n t eg e r ) p1 [ 1 ] ,
( I n t eg e r ) p1 [ 2 ] , ( I n t eg e r ) p1 [ 3 ] , ( I n t eg e r ) p1 [ 4 ] ) ;

return null ;
}

}

class So f twa r e In t e r f a c e extends Abst rac tSe rv i c eMode l In t e r f a ce {
public So f twa r e In t e r f a c e ( ) {

super ( ”SWINT” ) ;
this . addServ ice (new Se rv i c e ( ”NOP” ) ) ;
this . addServ ice (new Se rv i c e ( ”ADDS” ) ) ;
this . addServ ice (new Se rv i c e ( ”ADDU” ) ) ;
this . addServ ice (new Se rv i c e ( ”MULS” ) ) ;
this . addServ ice (new Se rv i c e ( ”MULU” ) ) ;
this . addServ ice (new Se rv i c e ( ”MACS” ) ) ;
this . addServ ice (new Se rv i c e ( ”MACU” ) ) ;
this . addServ ice (new Se rv i c e ( ”AND” ) ) ;
this . addServ ice (new Se rv i c e ( ”OR” ) ) ;
this . addServ ice (new Se rv i c e ( ”XOR” ) ) ;
this . addServ ice (new Se rv i c e ( ”LW” ) ) ;
this . addServ ice (new Se rv i c e ( ”SW” ) ) ;
this . addServ ice (new Se rv i c e ( ”ADDIS” ) ) ;
this . addServ ice (new Se rv i c e ( ”ADDIU” ) ) ;
this . addServ ice (new Se rv i c e ( ”MULIS” ) ) ;
this . addServ ice (new Se rv i c e ( ”MULIU” ) ) ;
this . addServ ice (new Se rv i c e ( ”MOVI” ) ) ;
this . addServ ice (new Se rv i c e ( ”MOVUI” ) ) ;
this . addServ ice (new Se rv i c e ( ”LWA” ) ) ;
this . addServ ice (new Se rv i c e ( ”SWA” ) ) ;
this . addServ ice (new Se rv i c e ( ”ANDI” ) ) ;
this . addServ ice (new Se rv i c e ( ”ORI” ) ) ;
this . addServ ice (new Se rv i c e ( ”XORI” ) ) ;
this . addServ ice (new Se rv i c e ( ”BGTZ” ) ) ;
this . addServ ice (new Se rv i c e ( ”BLEZ” ) ) ;
this . addServ ice (new Se rv i c e ( ”JMP” ) ) ;
this . addServ ice (new Se rv i c e ( ”SVF1” ) ) ;
this . addServ ice (new Se rv i c e ( ”SVF2A” ) ) ;
this . addServ ice (new Se rv i c e ( ”SVF2B” ) ) ;
this . addServ ice (new Se rv i c e ( ”SLLI” ) ) ;
this . addServ ice (new Se rv i c e ( ”SRLI” ) ) ;
this . addServ ice (new Se rv i c e ( ”SRAI” ) ) ;
this . addServ ice (new Se rv i c e ( ”BGT” ) ) ;
this . addServ ice (new Se rv i c e ( ”BLT” ) ) ;
this . addServ ice (new Se rv i c e ( ”BEQ” ) ) ;
this . addServ ice (new Se rv i c e ( ”BNE” ) ) ;
this . addServ ice (new Se rv i c e ( ”MOV” ) ) ;
this . addServ ice (new Se rv i c e ( ”ABS” ) ) ;
this . addServ ice (new Se rv i c e ( ”LWI” ) ) ;
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this . addServ ice (new Se rv i c e ( ”SWI” ) ) ;
}

public ISe rv i ceReques t c r ea t eSe rv i c eReque s t ( long i n s t ) {
i f ( ( i n s t & 0) == 0 && (˜ i n s t & 16777215) == 16777215) {

return this . c r ea t eSe rv i c eReque s t ( ”NOP” , new Object [ ] {} ) ;
} else i f ( ( i n s t & 262144) == 262144

&& (˜ i n s t & 16252928) == 16252928) {
int l 0 = ( int ) ( i n s t & 960) >>> 6 ;
int l 1 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 2 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 3 = ( int ) ( i n s t & 56) >>> 3 ;
int l 4 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”ADDS” , new Object [ ] { l0 , l1 ,

l2 , l3 , l 4 } ) ;
} else i f ( ( i n s t & 524288) == 524288

&& (˜ i n s t & 15990784) == 15990784) {
int l 5 = ( int ) ( i n s t & 960) >>> 6 ;
int l 6 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 7 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 8 = ( int ) ( i n s t & 56) >>> 3 ;
int l 9 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”ADDU” , new Object [ ] { l5 , l6 ,

l7 , l8 , l 9 } ) ;
} else i f ( ( i n s t & 786432) == 786432

&& (˜ i n s t & 15728640) == 15728640) {
int l 10 = ( int ) ( i n s t & 960) >>> 6 ;
int l 11 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 12 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 13 = ( int ) ( i n s t & 56) >>> 3 ;
int l 14 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”MULS” , new Object [ ] { l10 ,

l11 , l12 , l13 , l 14 } ) ;
} else i f ( ( i n s t & 1048576) == 1048576

&& (˜ i n s t & 15466496) == 15466496) {
int l 15 = ( int ) ( i n s t & 960) >>> 6 ;
int l 16 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 17 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 18 = ( int ) ( i n s t & 56) >>> 3 ;
int l 19 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”MULU” , new Object [ ] { l15 ,

l16 , l17 , l18 , l 19 } ) ;
} else i f ( ( i n s t & 1310720) == 1310720

&& (˜ i n s t & 15204352) == 15204352) {
int l 20 = ( int ) ( i n s t & 960) >>> 6 ;
int l 21 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 22 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 23 = ( int ) ( i n s t & 56) >>> 3 ;
int l 24 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”MACS” , new Object [ ] { l20 ,

l21 , l22 , l23 , l 24 } ) ;
} else i f ( ( i n s t & 1572864) == 1572864

&& (˜ i n s t & 14942208) == 14942208) {
int l 25 = ( int ) ( i n s t & 960) >>> 6 ;
int l 26 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 27 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 28 = ( int ) ( i n s t & 56) >>> 3 ;
int l 29 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”MACU” , new Object [ ] { l25 ,

l26 , l27 , l28 , l 29 } ) ;
} else i f ( ( i n s t & 9175040) == 9175040

&& (˜ i n s t & 7340032) == 7340032) {
int l 30 = ( int ) ( i n s t & 960) >>> 6 ;
int l 31 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 32 = ( int ) ( i n s t & 245760) >>> 14 ;
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int l 33 = ( int ) ( i n s t & 56) >>> 3 ;
int l 34 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”AND” , new Object [ ] { l30 ,

l31 , l32 , l33 , l 34 } ) ;
} else i f ( ( i n s t & 9437184) == 9437184

&& (˜ i n s t & 7077888) == 7077888) {
int l 35 = ( int ) ( i n s t & 960) >>> 6 ;
int l 36 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 37 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 38 = ( int ) ( i n s t & 56) >>> 3 ;
int l 39 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”OR” , new Object [ ] { l35 , l36 ,

l37 , l38 , l 39 } ) ;
} else i f ( ( i n s t & 9699328) == 9699328

&& (˜ i n s t & 6815744) == 6815744) {
int l 40 = ( int ) ( i n s t & 960) >>> 6 ;
int l 41 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 42 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 43 = ( int ) ( i n s t & 56) >>> 3 ;
int l 44 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”XOR” , new Object [ ] { l40 ,

l41 , l42 , l43 , l 44 } ) ;
} else i f ( ( i n s t & 6291456) == 6291456

&& (˜ i n s t & 10223616) == 10223616) {
int l 45 = ( int ) ( i n s t & 960) >>> 6 ;
int l 46 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 47 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 48 = ( int ) ( i n s t & 56) >>> 3 ;
int l 49 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”LW” , new Object [ ] { l45 , l46 ,

l47 , l48 , l 49 } ) ;
} else i f ( ( i n s t & 6029312) == 6029312

&& (˜ i n s t & 10485760) == 10485760) {
int l 50 = ( int ) ( i n s t & 960) >>> 6 ;
int l 51 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 52 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 53 = ( int ) ( i n s t & 56) >>> 3 ;
int l 54 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”SW” , new Object [ ] { l50 , l51 ,

l52 , l53 , l 54 } ) ;
} else i f ( ( i n s t & 1835008) == 1835008

&& (˜ i n s t & 14692352) == 14692352) {
int l 55 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 56 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 57 = ( int ) ( i n s t & 4095) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”ADDIS” , new Object [ ] { l55 ,

l56 , l 57 } ) ;
} else i f ( ( i n s t & 2097152) == 2097152

&& (˜ i n s t & 14430208) == 14430208) {
int l 58 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 59 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 60 = ( int ) ( i n s t & 4095) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”ADDIU” , new Object [ ] { l58 ,

l59 , l 60 } ) ;
} else i f ( ( i n s t & 2359296) == 2359296

&& (˜ i n s t & 14168064) == 14168064) {
int l 61 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 62 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 63 = ( int ) ( i n s t & 4095) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”MULIS” , new Object [ ] { l61 ,

l62 , l 63 } ) ;
} else i f ( ( i n s t & 2621440) == 2621440

&& (˜ i n s t & 13905920) == 13905920) {
int l 64 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 65 = ( int ) ( i n s t & 245760) >>> 14 ;
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int l 66 = ( int ) ( i n s t & 4095) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”MULIU” , new Object [ ] { l64 ,

l65 , l 66 } ) ;
} else i f ( ( i n s t & 3932160) == 3932160

&& (˜ i n s t & 12595200) == 12595200) {
int l 67 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 68 = ( int ) ( i n s t & 4095) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”MOVI” , new Object [ ] { l67 ,

l 68 } ) ;
} else i f ( ( i n s t & 4194304) == 4194304

&& (˜ i n s t & 12333056) == 12333056) {
int l 69 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 70 = ( int ) ( i n s t & 4095) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”MOVUI” , new Object [ ] { l69 ,

l 70 } ) ;
} else i f ( ( i n s t & 7340032) == 7340032

&& (˜ i n s t & 9187328) == 9187328) {
int l 71 = ( int ) ( i n s t & 4095) >>> 0 ;
int l 72 = ( int ) ( i n s t & 245760) >>> 14 ;
return this . c r ea t eSe rv i c eReque s t ( ”LWA” ,

new Object [ ] { l71 , l 72 } ) ;
} else i f ( ( i n s t & 7077888) == 7077888

&& (˜ i n s t & 9449472) == 9449472) {
int l 73 = ( int ) ( i n s t & 4095) >>> 0 ;
int l 74 = ( int ) ( i n s t & 245760) >>> 14 ;
return this . c r ea t eSe rv i c eReque s t ( ”SWA” ,

new Object [ ] { l73 , l 74 } ) ;
} else i f ( ( i n s t & 9961472) == 9961472

&& (˜ i n s t & 6565888) == 6565888) {
int l 75 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 76 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 77 = ( int ) ( i n s t & 4095) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”ANDI” , new Object [ ] { l75 ,

l76 , l 77 } ) ;
} else i f ( ( i n s t & 10223616) == 10223616

&& (˜ i n s t & 6303744) == 6303744) {
int l 78 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 79 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 80 = ( int ) ( i n s t & 4095) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”ORI” , new Object [ ] { l78 ,

l79 , l 80 } ) ;
} else i f ( ( i n s t & 10485760) == 10485760

&& (˜ i n s t & 6041600) == 6041600) {
int l 81 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 82 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 83 = ( int ) ( i n s t & 4095) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”XORI” , new Object [ ] { l81 ,

l82 , l 83 } ) ;
} else i f ( ( i n s t & 5242880) == 5242880

&& (˜ i n s t & 11284480) == 11284480) {
int l 84 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 85 = ( int ) ( i n s t & 4095) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”BGTZ” , new Object [ ] { l84 ,

l 85 } ) ;
} else i f ( ( i n s t & 5505024) == 5505024

&& (˜ i n s t & 11022336) == 11022336) {
int l 86 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 87 = ( int ) ( i n s t & 4095) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”BLEZ” , new Object [ ] { l86 ,

l 87 } ) ;
} else i f ( ( i n s t & 5767168) == 5767168

&& (˜ i n s t & 10747904) == 10747904) {
int l 88 = ( int ) ( i n s t & 262143) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”JMP” , new Object [ ] { l 88 } ) ;

} else i f ( ( i n s t & 4456448) == 4456448
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&& (˜ i n s t & 12059584) == 12059584) {
int l 89 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 90 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 91 = ( int ) ( i n s t & 56) >>> 3 ;
int l 92 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”SVF1” , new Object [ ] { l89 ,

l90 , l91 , l 92 } ) ;
} else i f ( ( i n s t & 4718592) == 4718592

&& (˜ i n s t & 11797440) == 11797440) {
int l 93 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 94 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 95 = ( int ) ( i n s t & 56) >>> 3 ;
int l 96 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”SVF2A” , new Object [ ] { l93 ,

l94 , l95 , l 96 } ) ;
} else i f ( ( i n s t & 4980736) == 4980736

&& (˜ i n s t & 11535296) == 11535296) {
int l 97 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 98 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 99 = ( int ) ( i n s t & 56) >>> 3 ;
int l 100 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”SVF2B” , new Object [ ] { l97 ,

l98 , l99 , l100 } ) ;
} else i f ( ( i n s t & 2883584) == 2883584

&& (˜ i n s t & 13631488) == 13631488) {
int l 101 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 102 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 103 = ( int ) ( i n s t & 1016) >>> 3 ;
int l 104 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”SLLI” , new Object [ ] { l101 ,

l102 , l103 , l104 } ) ;
} else i f ( ( i n s t & 3145728) == 3145728

&& (˜ i n s t & 13369344) == 13369344) {
int l 105 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 106 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 107 = ( int ) ( i n s t & 1016) >>> 3 ;
int l 108 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”SRLI” , new Object [ ] { l105 ,

l106 , l107 , l108 } ) ;
} else i f ( ( i n s t & 3407872) == 3407872

&& (˜ i n s t & 13107200) == 13107200) {
int l 109 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 110 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 111 = ( int ) ( i n s t & 1016) >>> 3 ;
int l 112 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”SRAI” , new Object [ ] { l109 ,

l110 , l111 , l112 } ) ;
} else i f ( ( i n s t & 8126464) == 8126464

&& (˜ i n s t & 8388608) == 8388608) {
int l 113 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 114 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 115 = ( int ) ( i n s t & 1016) >>> 3 ;
int l 116 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”BGT” , new Object [ ] { l113 ,

l114 , l115 , l116 } ) ;
} else i f ( ( i n s t & 8388608) == 8388608

&& (˜ i n s t & 8126464) == 8126464) {
int l 117 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 118 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 119 = ( int ) ( i n s t & 1016) >>> 3 ;
int l 120 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”BLT” , new Object [ ] { l117 ,

l118 , l119 , l120 } ) ;
} else i f ( ( i n s t & 8650752) == 8650752

&& (˜ i n s t & 7864320) == 7864320) {
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int l 121 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 122 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 123 = ( int ) ( i n s t & 1016) >>> 3 ;
int l 124 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”BEQ” , new Object [ ] { l121 ,

l122 , l123 , l124 } ) ;
} else i f ( ( i n s t & 8650752) == 8650752

&& (˜ i n s t & 7864320) == 7864320) {
int l 125 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 126 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 127 = ( int ) ( i n s t & 1016) >>> 3 ;
int l 128 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”BNE” , new Object [ ] { l125 ,

l126 , l127 , l128 } ) ;
} else i f ( ( i n s t & 3670016) == 3670016

&& (˜ i n s t & 12845248) == 12845248) {
int l 129 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 130 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 131 = ( int ) ( i n s t & 512) >>> 9 ;
int l 132 = ( int ) ( i n s t & 256) >>> 8 ;
int l 133 = ( int ) ( i n s t & 56) >>> 3 ;
int l 134 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”MOV” , new Object [ ] { l129 ,

l130 , l131 , l132 , l133 , l134 } ) ;
} else i f ( ( i n s t & 7602176) == 7602176

&& (˜ i n s t & 8913088) == 8913088) {
int l 135 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 136 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 137 = ( int ) ( i n s t & 512) >>> 9 ;
int l 138 = ( int ) ( i n s t & 256) >>> 8 ;
int l 139 = ( int ) ( i n s t & 56) >>> 3 ;
int l 140 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”ABS” , new Object [ ] { l135 ,

l136 , l137 , l138 , l139 , l140 } ) ;
} else i f ( ( i n s t & 6815744) == 6815744

&& (˜ i n s t & 9699840) == 9699840) {
int l 141 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 142 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 143 = ( int ) ( i n s t & 248) >>> 3 ;
int l 144 = ( int ) ( i n s t & 256) >>> 8 ;
int l 145 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”LWI” , new Object [ ] { l141 ,

l142 , l143 , l144 , l145 } ) ;
} else i f ( ( i n s t & 6553600) == 6553600

&& (˜ i n s t & 9961984) == 9961984) {
int l 146 = ( int ) ( i n s t & 15360) >>> 10 ;
int l 147 = ( int ) ( i n s t & 245760) >>> 14 ;
int l 148 = ( int ) ( i n s t & 248) >>> 3 ;
int l 149 = ( int ) ( i n s t & 256) >>> 8 ;
int l 150 = ( int ) ( i n s t & 7) >>> 0 ;
return this . c r ea t eSe rv i c eReque s t ( ”SWI” , new Object [ ] { l146 ,

l147 , l148 , l149 , l150 } ) ;
}
return null ;

}
}

public c lass SVF3ServiceModelState extends AbstractServ iceMode lState {
public SVF3ServiceModelState ( ) {

IRegisterGroup gene ra l = StateFactory
. createReg i s terGroup ( ” gene ra l ” ) ;

fGroups . add ( gene ra l ) ;
IRegisterGroup b hp = StateFactory . createReg i s terGroup ( ”b hp” ) ;
fGroups . add ( b hp ) ;
for ( int i = 0 ; i < 16 ; i++) {
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b hp . addMember( StateFactory . c r e a t eReg i s t e r ( ”b hp” + i ,
new DataWord (0 , 2 4 ) ) ) ;

}
IRegisterGroup c f g s t = StateFactory . createReg i s terGroup ( ” c f g s t ” ) ;
fGroups . add ( c f g s t ) ;
for ( int i = 0 ; i < 8 ; i++) {

c f g s t . addMember( StateFactory . c r e a t eReg i s t e r ( ” c f g s t ” + i ,
new DataWord (0 , 2 4 ) ) ) ;

}
IRegisterGroup b bp = StateFactory . createReg i s terGroup ( ”b bp” ) ;
fGroups . add ( b bp ) ;
for ( int i = 0 ; i < 16 ; i++) {

b bp . addMember( StateFactory . c r e a t eReg i s t e r ( ”b bp” + i ,
new DataWord (0 , 2 4 ) ) ) ;

}
IRegisterGroup reg = StateFactory . createReg i s terGroup ( ” reg ” ) ;
fGroups . add ( reg ) ;
for ( int i = 0 ; i < 16 ; i++) {

reg . addMember( StateFactory . c r e a t eReg i s t e r ( ” reg ” + i ,
new DataWord (0 , 2 4 ) ) ) ;

}
IRegisterGroup a hp = StateFactory . c reateReg i s terGroup ( ”a hp” ) ;
fGroups . add ( a hp ) ;
for ( int i = 0 ; i < 16 ; i++) {

a hp . addMember( StateFactory . c r e a t eReg i s t e r ( ”a hp” + i ,
new DataWord (0 , 2 4 ) ) ) ;

}
IRegisterGroup c2 = StateFactory . createReg i s terGroup ( ”c2” ) ;
fGroups . add ( c2 ) ;
for ( int i = 0 ; i < 16 ; i++) {

c2 . addMember( StateFactory . c r e a t eReg i s t e r ( ” c2” + i ,
new DataWord (0 , 2 4 ) ) ) ;

}
IRegisterGroup a bp = StateFactory . c reateReg i s terGroup ( ”a bp” ) ;
fGroups . add ( a bp ) ;
for ( int i = 0 ; i < 16 ; i++) {

a bp . addMember( StateFactory . c r e a t eReg i s t e r ( ”a bp” + i ,
new DataWord (0 , 2 4 ) ) ) ;

}
IRegisterGroup c1 = StateFactory . createReg i s terGroup ( ”c1” ) ;
fGroups . add ( c1 ) ;
for ( int i = 0 ; i < 16 ; i++) {

c1 . addMember( StateFactory . c r e a t eReg i s t e r ( ” c1” + i ,
new DataWord (0 , 2 4 ) ) ) ;

}
IRegisterGroup b lp = StateFactory . createReg i s terGroup ( ” b lp ” ) ;
fGroups . add ( b lp ) ;
for ( int i = 0 ; i < 16 ; i++) {

b lp . addMember( StateFactory . c r e a t eReg i s t e r ( ” b lp ” + i ,
new DataWord (0 , 2 4 ) ) ) ;

}
IReg i s t e r pc = StateFactory . c r e a t eReg i s t e r ( ”pc” ,

new DataWord (0 , 1 6 ) ) ;
g ene ra l . addMember( pc ) ;

IDataWord mem[ ] = new DataWord [ 5 1 2 ] ;

for ( int i = 0 ; i < 512 ; i++) {
mem[ i ] = new DataWord (0 , 2 4 ) ;

}
fMemories . add ( StateFactory . createMemory ( ”mem” , mem, 0 , 5 1 1 ) ) ;

IRegisterGroup a lp = StateFactory . c reateReg i s terGroup ( ” a lp ” ) ;
fGroups . add ( a l p ) ;
for ( int i = 0 ; i < 16 ; i++) {
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a lp . addMember( StateFactory . c r e a t eReg i s t e r ( ” a l p ” + i ,
new DataWord (0 , 2 4 ) ) ) ;

}
IRegisterGroup f c f g = StateFactory . c reateReg i s terGroup ( ” f c f g ” ) ;
fGroups . add ( f c f g ) ;
for ( int i = 0 ; i < 16 ; i++) {

f c f g . addMember( StateFactory . c r e a t eReg i s t e r ( ” f c f g ” + i ,
new DataWord (0 , 2 4 ) ) ) ;

}
}

}
}
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