

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Computing an Ontological Semantics for a Natural Language Fragment

Szymczak, Bartlomiej Antoni; Nilsson, Jørgen Fischer; Jensen, Per Anker

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Szymczak, B. A., Nilsson, J. F., & Jensen, P. A. (2010). Computing an Ontological Semantics for a Natural
Language Fragment. Kgs. Lyngby, Denmark: Technical University of Denmark (DTU). (IMM-PHD-2010; No.
242).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13753428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/computing-an-ontological-semantics-for-a-natural-language-fragment(a0bb43a1-fb74-4da9-a346-4a146189dff5).html

Computing an Ontological Semantics
for a Natural Language Fragment

Bart lomiej Antoni Szymczak

DTU Informatics
Technical University of Denmark

International Language Studies and Computational Linguistics
Copenhagen Business School

Kongens Lyngby 2010
IMM-PHD-2010-242

2

Abstract

The key objective of the research that has been carried out has been to establish
theoretically sound connections between the following two areas:

• Computational processing of texts in natural language by means of logical
methods

• Theories and methods for engineering of formal ontologies

We have tried to establish a domain independent “ontological semantics”
for relevant fragments of natural language. The purpose of this research is
to develop methods and systems for taking advantage of formal ontologies for
the purpose of extracting the meaning contents of texts. This functionality is
desirable e.g. for future content–based search systems in contrast to today’s
keyword based search systems (viz., Google) which rely chiefly on recognition
of stated keywords in the targeted text.

Logical methods were introduced into semantic theories for natural lan-
guage already during the 60’s in what is today known as Montague semantics.
However, this well–established tradition addresses mainly the domain indepen-
dent logical structures of language such as quantifiers/determiners by means
of logic [18], such as type theory [2]. By contrast this project focuses on the
domain–specific parts of language (nouns, verbs, adjectives) introducing formal
so–called generative ontologies as semantic target domains for noun– and verb
phrases. Such a logico–semantic theory links the meaning of a sentence phrases
to nodes in the chosen ontology for the domain.

3

4

Resumé

Den centrale målsætning for den forskning, der er blevet udført har været at
etablere teoretisk velfunderet forbindelse mellem følgende to omr̊ader:

• Maskinel behandling af tekster i naturlige sprog ved hjælp af logiske
metoder.

• Teorier og metoder til projektering af formelle ontologier.

Vi har forsøgt at etablere en domæneuafhængig “ontologisk semantik” for
relevante fragmenter af naturligt sprog. Formålet med denne forskning har
været at udvikle metoder og systemer til at drage fordel af formelle ontologier
med henblik p̊a udvinding af betydningsindholdet af tekster. Denne funktion-
alitet er ønskelig f.eks for fremtidige indholdbaserede søgesystemer i modsætning
til dagens søgeordsbaserede søgesystemer (f.eks, Google), som er afhængige først
og fremmest af genkendelse af anførte nøgleord i de målrettede tekster.

Logisk metoder blev indført i semantiske teorier for naturligt sprog allerede
i løbet af de 60erne i, hvad der i dag kendes som Montague semantik. Men
denne veletablerede tradition adresserer primært domæneuafhængige logiske
strukturer af sprog s̊asom kvantorer/artikler ved hjælp af logisk typeteori [2].
Derimod fokuserer dette projekt p̊a den domænespecifikke del af sproget (sub-
stantiver, verber, adjektiver) ved at indføre formelle s̊akaldte generative ontolo-
gier som semantiske måldomæner for navne- og verbal fraser. S̊adan en logico–
semantisk teori knytter betydningen af en sætning fraser til knudepunkter i den
valgte ontologi for domænet.

5

6

Acknowledgements

The author would like to thank his supervisor, prof. Jørgen Fischer Nilsson and
co–supervisor, prof. Per Anker Jensen for their help and guidance.

The author gratefully acknowledges the financial support with grants from
DTU Informatics, Technical University of Denmark and International Language
Studies and Computational Linguistics, Copenhagen Business School.

7

8

Contents

Contents 9

List of Figures 15

1 Motivation 17
1.1 Goals . 17
1.2 Partners . 19
1.3 More formal definitions . 20
1.4 Semantics of the keyword–based search and its deficiencies 20

1.4.1 Definition of keyword–based search 20
1.4.2 Problems with keyword–based search 21

1.5 Comprehensive natural language semantics 23
1.6 Ontology–enabled browsing search 25
1.7 Importance of fast information retrieval 25
1.8 Survey of the chapters . 26

2 Logic and formalisms 29
2.1 First Order Predicate Logic . 29

2.1.1 Predication . 30
2.1.2 Algebraic operations . 33
2.1.3 Distinction between classes and instances 34

2.2 Lattices . 34
2.2.1 Posets . 34
2.2.2 Top and bottom . 36
2.2.3 Upper and lower bounds 36
2.2.4 Lattice as poset . 37
2.2.5 Hasse diagrams . 37

9

2.2.6 isa as partial order . 37

2.2.7 Lattices as algebras . 38

2.2.8 Dual nature of lattices . 40

2.2.9 Atoms . 40

2.2.10 Algebraic lattices and classifications 40

2.3 Description Logics . 40

2.3.1 Restricting First Order Predicate Logic 40

2.3.2 TBox . 41

2.3.3 ABox . 42

2.3.4 Translating from Description Logics to First Order Pred-
icate Logic . 43

2.3.5 Examples . 44

2.3.6 Reasoning . 46

2.3.7 Peirce Algebra . 47

2.4 Logic of Plurals and Mass Terms 47

2.4.1 “A boy and a girl played.” 47

2.4.2 “George and Martha met.” 49

3 Introduction to ontologies 51

3.1 Classes and instances . 52

3.1.1 Distinction between class and instance 52

3.1.2 Inheritance and isa . 52

3.1.3 Relation instanceof . 53

3.1.4 Spanning objects . 54

3.2 Part-whole relation . 55

3.3 Types of formal ontologies . 56

3.3.1 Top–level ontologies . 56

3.3.2 Domain ontologies . 56

3.3.3 Merging top–level and domain ontologies 57

3.4 Querying Ontologies with Prolog 57

3.4.1 Pancreas Diagram . 59

3.4.2 Binary relations . 59

3.4.3 isa defined on top of inst. 59

3.4.4 Knowledge base design . 61

3.4.5 Well–formedness verification 62

3.4.6 Inference . 63

3.4.7 Prolog querying . 65

10

4 Type systems and programming languages for representing on-
tologies 69

4.1 Logical types . 69

4.2 Types in programming languages 71

4.2.1 StandardML . 72

4.2.2 Prolog . 74

4.2.3 Mercury . 75

4.3 Ontological types . 78

4.4 Grammatical ontotypes . 80

5 Ontological Semantics 83

5.1 Meaning of sentences . 83

5.2 Automatic meaning extraction 84

5.3 Human language understanding 84

5.4 Language as a protocol . 85

5.4.1 Parts of speech . 85

5.4.2 Necessity of part–of–speech tagging 86

5.5 Grammar as the structure of English 87

5.5.1 Rules and structure . 87

5.5.2 Rules for natural languages 87

5.5.3 Shallow context–free grammar for English 88

5.6 Let us try various formalisms . 91

5.7 Peirce–algebraic ontological semantics 91

5.8 Semantic incompleteness . 94

5.9 Rephrasing . 95

5.10 Relations vs. classes . 95

5.11 Plurals . 96

5.11.1 Collectives operator . 97

5.11.2 Multiple semantic roles 97

5.11.3 Special nodes for representing collectives 98

5.12 Merging ontological semantics with categorial grammar 98

5.12.1 Representing ontological semantics 99

5.12.2 Modified Categorial Grammar 100

5.12.3 Elimination rules . 102

5.12.4 Implementation outline 104

5.13 Summary . 108

11

6 Comparison with state–of–the–art in ontological semantics 109
6.1 Comparison to “Ontological Semantics” by Nirenburg and Raskin 109
6.2 Framenet . 110

7 The computational view of the relation between the natural
language fragment and the ontological semantics 113
7.1 Computation with Prolog vs. specification in First Order Predi-

cate Logic . 114
7.2 Lists . 115
7.3 Computing with Definite Clause Grammars 115
7.4 Ontograbbing with definite clauses 116

7.4.1 Noun phrases . 116
7.4.2 Handling prepositional phrases 117
7.4.3 Determiners . 119
7.4.4 Adjectives . 119
7.4.5 Sentences . 120
7.4.6 Ontology–based role recognition 120
7.4.7 Expressing ontology using definite clauses 123
7.4.8 Ambiguities . 124
7.4.9 Expressing the lexicon using definite clauses 124
7.4.10 Example . 126

7.5 An extended version of the ontograbber 126
7.5.1 Noun phrases . 127
7.5.2 Prepositional phrases . 128
7.5.3 Genitives . 130
7.5.4 Sentence level grammar 130
7.5.5 Verb phrases . 130
7.5.6 Paraphrasing . 132
7.5.7 Modified ontology representation 132
7.5.8 Alternative role recognition for prepositional phrases . . . 133
7.5.9 Examples . 133

7.6 Definite Clause Grammar Ontograbber 135
7.6.1 Example . 137

7.7 Summary . 139

8 The computation of ontosemantics for unrestricted natural lan-
guage 141
8.1 Indexing . 142
8.2 Microontology for a sentence . 142

12

8.3 Concept covers . 143
8.4 Grabbing . 146
8.5 Combining explained . 146
8.6 Grammar . 148
8.7 Sample run . 149
8.8 Ontograbber from the parsing perspective 150
8.9 Capturing natural language . 151
8.10 Termination . 151
8.11 Complexity issues . 152
8.12 Building ontoterms . 152
8.13 Applied generative ontology for bio–domain 153
8.14 Real life examples . 153
8.15 Conclusion . 171

9 Further work 173
9.1 Incorporation of a large scale lexicon and ontology 173
9.2 Extending natural language coverage 174
9.3 Ontological search engine . 174

9.3.1 Ad–hoc concepts . 176

10 Conclusion 179

A Investigations of the conjunctions’ reading (distributive vs. col-
lective) of Wikipedia Insulin sentences 181
A.1 Sample sentences . 182
A.2 Summary . 199

B Investigations of the type of relative clauses of the Wikipedia
Insulin article sentences 201
B.1 Which . 201
B.2 That . 202
B.3 Who . 205

C Mercury implementation of the ontological semantics in cate-
gorial grammar 207

D SML implementation of the Earley parser 213
D.1 Signature . 213
D.2 Implementation . 214

13

E SML implementation of the generative ontology and the lexi-
con 223
E.1 Signature . 223
E.2 Implementation . 224

F SML implementation of the ontograbber 249

G Querying ontologies with Prolog – source code 257

H Open–source licensing of the ontograbber 263
H.1 What is free software? . 263
H.2 Why is Ontograbber a good candidate for becoming a free software?264
H.3 Community benefits . 264
H.4 Why do free software communities form? 265
H.5 Main types of open source software licenses 265
H.6 Business models for free software and open source software . . . 266

H.6.1 Donations . 266
H.6.2 Double licensing . 266
H.6.3 Support . 266
H.6.4 Extra information . 267
H.6.5 Bounties . 267

H.7 Conclusion . 267

I Tests of the ontograbber algorithm on additional 27 sentences269

Bibliography 291

14

List of Figures

2.1 Abstract syntax of First Order Predicate Logic used throughout
the text. 31

2.2 Hasse diagram for ipo lattice. 38
2.3 Hasse diagram for isa lattice. 39

3.1 A sample ontology, created by merging the top–level Basic Formal
Ontology with common biomedical concepts. 58

3.2 Pancreas diagram, created by Sine Zambach, Roskilde University,
Denmark. 60

4.1 Pancreas ontology translated into Description Logics. 79
4.2 Grammatical specification of a sample ontology. 81
4.3 Sample sentencial form derivation for constructing nested onto-

logical types . 82

5.1 A shallow context-free grammar for English, specified in BNF. . 90

8.1 The microontology presented in a graph form. 144
8.2 Sample run of the ontograbber 149
8.3 Sample top ontology taxonomy to be used as the input to the

ontograbbing algorithm . 154

15

16

Chapter 1

Motivation

1.1 Goals

Many future generation software systems offering common public and specialized
services are going to apply computational representation and processing of the
meaning content of text and speech.

Representing such a semantics is a task that has been undertaken repeat-
edly by linguists, computational linguists, philosophers, logicians, statisticians,
mathematicians, computer scientists and software engineers. In addition to
logical and symbolic representations, meaning of language can be represented
geometrically with the help of vectors, or even physically with quantum states
and quantum mechanics. Such an approach is presented in [48].

However, rather than pursuing a geometric or non–symbolic approach, in
this work we have decided to explore and use a logico–algebraic approach. This
is due to two main reasons. First of all, we would like to be able to describe
semantics of large complex objects, such as phrases and sentences. This requires
the compositionality for semantics, where meaning of complex phrases can be
constructed from meanings of smaller constituent phrases. This is relatively
easily accomplished with symbolic and logic approach. The second reason is
that, we will use the so–called generative ontology to a large extent, and it
is naturally represented in symbolic formalism. Also, we strive to achieve full
formalization and implementability of our methods, which is in general hard
with non–symbolic representations such as Conceptual Spaces [19].

A well-established and prominent theory for coping with natural language

17

meaning content is the type-logical framework devised in the Montague tradi-
tion. However, this logical tradition tends to focus on closed word classes such
as determiners in order to account for the logical aspects of meaning formation
independent of context [13]. This is at the expense of open classes such as ad-
jectives, nouns, and verbs which, by contrast, intuitively play the key role in
carrying meaning and the ascription of meaning with respect to a domain of
discourse and a lexicon.

The word “Ontology” appeared thousands of years ago, where ancient philoso-
phers tried to explain the essence of being. In such context, we use the capital-
ized word “Ontology”. However, the current work deals with formal ontologies,
or simply ontologies, written with lower–case “o”. Formal ontology can be un-
derstood as specification of a conceptualization. It is crucial that the ontology
is specified in a formal way, so that it is machine–readable and understandable.
A conceptualization can be thought of as a view of the world shared by some
people. Of course none of the ontologies can describe a full conceptualization of
the whole world. In most cases an ontology attempts to describe only a selected
part of a specific domain. [17]

This work addresses the contextual and lexical meaning contributions and
compositions via the notion of formal ontologies. The latter have recently be-
come a research focal point in domain modeling and knowledge engineering.
Specifically, we try to develop theories and methodologies which bridge formal
ontologies and computational linguistics in a formal logical framework for “on-
tological semantics”.

We would like to list some assumptions/requirements of this work:

• Formal logical methods form the basis for this work. This is in contrast
to the fact that in natural language analysis and processing focus is com-
monly put on statistical methods. We do not use any statistics.

• The project concentrates on written language only. Furthermore, we nar-
row our attention to English texts in scientific domains.

• The project is intended to deal with search–oriented semantics for natural
language. The construction of an actual search engine is beyond the scope
of this study.

• We would like to achieve semantics that goes beyond keyword–seach, yet
is not as rich as we usually tend to think when talking about natural
language semantics. This can be visually expressed as:

keywords < ontological semantics < natural language semantics

18

• The goal of the project is to investigate some possibilities of merging
natural language semantics with formal ontologies. Hence, rather than
providing one complete solution for doing it, the project presents various
attempts, using different formalisms, languages and methods.

1.2 Partners

This work is carried out as part of a PhD-project which was carried out in
association with the SIABO project. SIABO addresses methods of engineering
and use of biomedical ontologies for content-based text search. From SIABO
website:

The approach used in SIABO introduces the notion of generative
ontologies, that is, ontologies providing ever more specialized con-
cepts reflecting the phrase structure of natural language. The project
seeks to set up a novel so–called “ontological semantics” mapping
noun phrases into points in the generative ontology. This enables an
advanced form of data mining of texts identifying paraphrases and
conceptual relationships, and measuring distances between key con-
cepts in texts. Thus, the project is unique in its attempt to provide a
formal underpinning to conceptual similarity or relatedness of mean-
ing. The project focuses on ontological engineering of biomedical on-
tologies applying the notion of lattices and relation-algebras, which
facilitates visualization of concepts as “ontoscapes”. The project has
clear affinities to contemporary research in the semantic web area,
to description logic as well as XML approaches and gains its dis-
tinct innovative scientific profile by means of the above mentioned
notions.

SIABO is supported by the Danish NABIIT program. SIABO partners
include:

• DTU Informatics

• Group of Computational Linguistics at Copenhagen Business School

• Programming, Logic and Intelligent Systems research group at Roskilde
University

• NovoNordisk A/S Research Division, Copenhagen.

19

1.3 More formal definitions

Throughout the text we will use First Order Predicate Logic as the framework
metalanguage, in which other formalisms will be formally presented. We have
chosen to do this mainly for the following reasons:

• People are usually familiar with First Order Predicate Logic, so that it
becomes a convenient formal inter–field language, just as English is a
convenient natural international language.

• The definitions become formal, as opposed to natural language descrip-
tions in some sources.

• The implementation is usually presented in Prolog, which comes close to
First Order Predicate Logic. This diminishes the distance between the
theoretical parts and the implementation.

1.4 Semantics of the keyword–based search and

its deficiencies

The big Internet boom of 1990s was followed by a huge increase in search engine
research. Many successful companies emerged, most notably Google, whose
search engine [11] has revolutionized the Internet.

1.4.1 Definition of keyword–based search

All of the current search engines in wide use are keyword–based. Informally, this
means that the query is a collection of words, and the search returns a collection
of documents that contain (usually) all of the queried words. Formally we can
describe the behavior of keyword search using first order predicate logic1 as
follows.

We can represent an empty list using the constant nil. A non–empty list
will be constructed using binary functor l, whose first argument is a head of the
list, and second argument is the tail of the list, being itself a list.

We assume that the documents to be searched are stored in the document
factual clause, which holds a list of keywords. A sample database of documents
D could look as follows:

1First order predicate logic is described in Section 2.1.

20

document(l(insulin, l(forces, l(storage, nil)))) (1.1)

The following set of formulae describes how a keyword–based search engine
works:

∀D,Q(document(D) ∧

∀K(member(K,Q)→ member(K,D))

→ query(Q,D)) (1.2)

∀X,L(member(X, l(X,L))) (1.3)

∀X,Y, L(member(X,L)→ member(X, l(Y, L))) (1.4)

As the set of formulae 1.2 – 1.4 show, querying with a list of keywords returns
a document only if it contains all the keywords found in the query.

Some engines differ in behavior in one or more aspects:

• Returning documents, which contain only subset of the query keywords.

• Returning documents, which contain keywords related to the query key-
words, e.g. forced instead of forces.

Let us call the set of formulae 1.2 – 1.4 KBSE. Coupled together with
our sample database D from formula 1.1, we can make the following sample
inference:

KBSE ∪D � query(l(forces, l(storage, nil)), (1.5)

l(insulin, l(forces, l(storage, nil))))

1.4.2 Problems with keyword–based search

The keyword querying has some advantages. One of them is simplicity of im-
plementation. The search engine presented in formulae 1.2 – 1.4 can be imple-
mented in Prolog in a few lines. Unfortunately, such a primitive approach to
information retrieval results in a number of disadvantages. Some problems stem
from the fact that the words in the document and the ones in the query could
be different, while we would still like to have a match. This can be overcomed to
some extent lemmatization and synonym detection. However, a number of other
problems is present, which are enumerated below with accompanying examples.

21

Scattered keywords

Let us consider the following query: insulin causes storage. The user is
interested in the concept of insulin forcing a storage of something.

Most search engines will return an article, in which insulin and storage

are present in one sentence, and causes is present in another sentence. This
behavior follows from the fact that the search engine does not recognize con-
cepts appearing in the text, but rather relies on presence of words in the whole
document.

Multiple queries

Most search engines have a feature which allows the user to search for a sequence
of keywords, which must appear contiguously in the returned document. Usu-
ally, such a sequence must be enclosed in double quotes in the query. This allows
the user to overcome the problem of scattered keywords to a certain extent. One
could, e.g. search for ‘‘insulin causes storage’’, so that documents with
those keywords scattered around will not be shown in the result.

Unfortunately, the user is usually forced to pose multiple queries, as the
document author might have written the text in a different way. The author
could use different wording, phrased the document in a different manner, etc.

As an example, the user might be forced to query with the following se-
quences of keywords:

• ‘‘insulin causes storage’’

• ‘‘insulin is causing storage’’

• ‘‘storage caused by insulin’’

• . . .

For each query different articles will be returned (if any).
An ontological search engine should realize that all of those sequences of

keywords are paraphrases. It should therefore be necessary to simply fire one
query only. It is a key goal in our work to achieve such a functionality.

Lack of underlying ontology

Without an underlying ontology, the search engine will not be able to realize
that “forcing” is in fact a kind of “causing”. The user therefore needs to fire up
additional queries:

22

• ‘‘insulin forces storage’’

• ‘‘insulin is forcing storage’’

• ‘‘storage forced by insulin’’

• . . .

Language dependency

The deficiencies of keyword–based searching are due to the fact that the engine
compares text, not the semantics. If the engine was able to extract semantics
from the text and from the query and compare them, instead of comparing the
text itself, many problems could be easily overcome.

Comparing the ontological concepts instead of the words that describe them
could allow new ways of information retrieval, e.g. one could query in English,
but get an article in Danish as a result.

1.5 Comprehensive natural language semantics

At one end of the spectrum we have the simple keyword functionality presented
in the previous section. At the other far end of the spectrum there is a very rich
semantics, where the meaning of a sentence is presented as a logical formula in
an expressive (usually undecidable) logic formalism. A common choice is the
Type Theory comprising simply–typed λ–calculus. [3] A very elaborate linguistic
system based on it is presented in [46]. However, we focus on using ontologies
as basis for semantic domain, and we present one approach merging generative
ontologies and type theory in Section 5.12 on page 98.

In this “rich” scenario the meaning of a sentece or a phrase is captured as
a logical formula, which facilitates the use of logical consequence as the means
of establishing how the meaning of two sentences relate. There are, however,
many problems with using such a semantics for search purposes.

Formalisms used in this scenario (e.g. First Order Predicate Logic, λ–calculus)
use variables extensively, and therefore they focus a lot on quantifiers as meaning–
carying elements (corresponding to determiners like “every”, “all”, “some”).
They also put stress on logical connectives/operators. However, scientific texts
in biomedical domain do not tend to convey meaning with quantifiers and con-
nectives. The meaning in these texts is concentrated around nouns, verbs,
adjectives and prepositions. Even if we find rare cases of quantifier–related

23

meaning in sentences, we claim that it is not important (maybe even unde-
sired) to make use of that meaning for the purpose of search. Consider the
sentence “All beta cells secrete insulin”. This could be translated to First
Order Predicate Logic as ∀X(betacell(X) → secrete(X, insulin)). Now con-
sider “Many beta cells secrete insulin”. This would translate to the formula
∃X(betacell(X) ∧ secrete(X, insulin)). We can observe how a lot of focus has
been put on quantification and operators. This seems irrelevant from the search–
perspective, as it is hard to imagine a user query where one of these sentences
should be returned as the result and the other should not. Also, deciding (even
non–automatically, i.e. by human) how to describe a meaning of a sentence in
First Order Predicate Logic or Type Theory is very difficult. The textbooks
are full of perfect examples, which seem to follow the building blocks of a given
logic, so they can be translated easily. Unfortunately, it is not so easy with real
life sentences, let alone in an automatic manner.

The formalisms commonly used for representing natural language semantics
come with logical consequence, which can in principle be used for search. The
search engine can return all documents containing sentences such that their
meaning entail the query. However, this approach suffers from multiple prob-
lems. First Order Predicate Logic and Type Theory are undecidable formalisms,
which means that sometimes we might not be able to conclude whether a given
sentence should be included in the search results. Another problem is that an
inconsistent sentence may appear in all search results (as anything follows from
it). Also, basing search on logical consequence seems to be a bad choice for
search purposes, because it does not mirror the intentions of the user. Consider
two sentences: “All beta cells secrete insulin” and “Not all beta cells secrete
insulin”. Clearly, neither of these follow from the other (as a matter of fact they
are opposites). However, in search context, if one of them matches a query, we
would like the other one to match as well. This is because while searching we are
mostly concerned with the “aboutness” of a sentence (what a sentence is about)
rather than the propositional content that focuses on variables, quantifiers, and
logical connectives.

In the current work, we try to find a better semantic domain, which will be
suitable for search. We will base it on a notion of generative ontologies, and
we will investigate the computational aspect of it. We would like to capture
more meaning than the keyword semantics, but less than the rich logic–based
semantics. As a matter of fact, the keyword–semantics will be our fallback
mechanism, i.e. any phrase that is not understood well by our methods will
produce corresponding keywords as result.

24

1.6 Ontology–enabled browsing search

Basing the search semantics on a generative ontology has a big advantage, i.e. it
enables search by browsing the indexed generative ontology.

Imagine that when processing the to–be–searched documents for every on-
tological concept found we create a link from the generative ontology to that
document. We can now browse the generative ontology, which for every node
would display the number of documents indexed under that node. It could ob-
viously also list the links to the documents (or even sentences) that contain this
node in their semantics. Example:

Let us say we want to find some documents about inhibiting the transport of
glucose. We start browsing the ontology at “inhibition”. The system says that
there is 106 documents containing this concept. It also displays the most general
subclasses, e.g. “inhibition of substance”, “inhibition of process”, etc. We
select the latter, and we can see that there is 105 documents about “inhibition
of process”. This is still too many, so we browse down different processes,
and we get to “inhibition of transport”, which has 104 documents. Again, we
narrow this concept down to “inhibition of (transport of substance)”, which has
103 documents. We browse further down, so that we narrow our concept to
“inhibition of (transport of glucose)”. At this point the system says there is
only 102 documents indexed. We could continue browsing down to even more
specific concepts (e.g. if we wanted the inhibition to happen in liver), but we
decide that we want to see the list of the documents.

This way of finding documents has some advantages compared to keyword
querying. The most important thing to notice is that the query is a concept in
the ontology, hence the query is not expressed in natural language. The same
concept would correspond to a series of different noun phrases, verb phrases,
sentences, or even languages.

Such a browsing is of course not free of drawbacks. The user needs to be a
domain expert in order to browse the ontology efficiently.

We believe that the browsing search approach could become a useful tool in
biomedical domains, where large ontologies exist, and people are fairly familiar
with them.

1.7 Importance of fast information retrieval

In todays world, people increasingly depend on fast access to information. We
have entered the era of “information society”, where Internet search engines are

25

the primary tool for each computer user.
Subsequently, any improvement in the way people search for information

constitutes a big leap forward for computer users. People “google” 3 billion
times a day[30]. Simple calculation shows that if by improving information
retrieval techniques we could save on average one second of person’s time per
search, this amounts to:

(timesavedpersearch) · (numberofsearchesperday)

= 1s · 3 · 109

= 3 · 109s

= 3 · 109s ·
1min

60s

= 5 · 107min ·
1h

60min

= 8.(3) · 105h ·
1d

24h

≈ 34722d ·
1y

365d
≈ 95y

Thus, each day, we could save a century of humanity’s time (95 man–years)
by one–second–per–person improvement. 2

In section 1.4 we explain why most people unnecessarily waste not one sec-
ond, but much more time on machine–aided searching using today’s state–of–
the–art technology.

Our hope is that by merging natural language semantics with formal on-
tologies we could achieve semantic representation of text that could be used for
more intelligent search than keyword–based one. Although we will not bother
with how to implement a search engine, we will devote this thesis to the devel-
opment of an ontological semantics, including practical computational methods
of extracting it from natural language texts (in limited contexts).

1.8 Survey of the chapters

In Chapter 2 we introduce the reader to the formalisms that are useful for repre-
senting either formal ontologies, natural language semantics, or both. Chapter 3

2Similar calculation shows that at the same time we save 100W · 8 · 105h ≈ 8 · 104kWh of
electrical energy.

26

provides a general introduction to ontologies, both formal and informal ones. In
Chapter 4 we explain how the notion of “types” is used in logic, ontologies, and
programming languages. We provide several approaches to the merging of the
formal ontologies with natural language semantics in Chapter 5. We compare
our point of view with that of the state of the art in Chapter 6. The question of
how to approach the same problem from the computational point of view is dis-
cussed in Chapter 7. In Chapter 8 we go one step further and try to use similar
methods for dealing with unrestricted natural language. We present some final
thoughts and the discussion of further work in Chapter 9. Finally, we conclude
the work in Chapter 10.

27

28

Chapter 2

Logic and formalisms

Basic knowledge of various formalisms may be essential for understanding the
following chapters. Therefore we will try to make the reader familiar with a set of
formalisms often used for representing ontologies, conceptual feature structures,
semantics of natural language sentences and phrases, etc. Such an introduction
could be achieved in an alternativ fashion, i.e. by providing good references to
the material that describes the formalisms needed. However, it is feared that
this would be at a cost of the lack of coherence of the current text.

In addition, the standard sources describing many of these formalisms are
unfortunately not rich in relevant examples. Hence, we will try to introduce the
necessary background knowledge with the help of many examples.

In this chapter we will describe some of the formalisms useful for ontology
engineering and semantic representation for natural language:

• First Order Predicate Logic

• Lattices

• Description Logics

We will also have a brief look at the Logic of Plurals and Mass Terms.

2.1 First Order Predicate Logic

We assume that the reader is familiar with First Order Predicate Logic, as it
is a basic tool for every computer scientist. Otherwise please consult a text on
the subject, e.g. [8].

29

Since the First Order Predicate Logic notation differs from one source to the
other, we present the syntax used in the current text in Figure 2.1 on page 31.

As can be seen from the Figure, there is a syntactical distinction between
predicates/functors and variables, that is variable names start with a capital
letter. This is the convention adopted from the logic programming languages
Prolog/Mercury. This convention eases translating a logical specification to a
programming language implementation. It also helps understanding formulae
in case when we use implicit quantification.

We will assume throughout the text an implicit universal quantification of
variables. Consider for instance:

sibling(X,Y)→ sibling(Y,X)

In this formula two variables appear free. However, by our convention we con-
sider them to be universally quantified, as in:

∀X(∀Y (sibling(X,Y)→ sibling(Y,X)))

This convention eliminates any free variables from any formula1, in effect turning
any formula into a closed one.

Please observe that the syntax is pure, in the sence that it does not allow
any mathematical contaminations. In particular, the symbol of equality (=) is
not inherently part of First Order Predicate Logic. Instead, one can use the
following sentence for testing whether two ground terms are identical:

equal(X,X) (2.1)

Notice that this definition is in fact only describing identity of two terms,
not their equality. In order to introduce equality, one could e.g. use an extended
version of the logic itself, which incorporates equality into the semantics of it.
An example of such a logic is First Order Predicate Logic With Equality.

2.1.1 Predication

First Order Predicate Logic expresses properties of and relationships between
individuals. However, we need also to express properties of relationships and
relationships between relationships (e.g. that part of is transitive). When rea-
soning about properties of various binary predicates, we shall use the following
First Order Predicate Logic notation for expressing them:

r(φ, ρ, ψ)

1except submormulas

30

〈formula〉 ::= 〈predicate〉(〈termlist〉)

| 〈predicate〉

| ¬〈formula〉

| 〈formula〉 ∨ 〈formula〉

| 〈formula〉 ∧ 〈formula〉

| 〈formula〉 → 〈formula〉

| 〈formula〉 ← 〈formula〉

| 〈formula〉 ↔ 〈formula〉

| 〈quantifier〉〈variablelist〉(〈formula〉)

| (〈formula〉)

〈quantifier〉 ::= ∀|∃

〈term〉 ::= 〈variable〉

| 〈functor〉

| 〈functor〉(〈termlist〉)

〈termlist〉 ::= 〈term〉

| 〈term〉, 〈termlist〉

〈variablelist〉 ::= 〈variable〉

| 〈variable〉, 〈variablelist〉

〈lowercase〉 ::= a|b| . . . |x|y|z

〈uppercase〉 ::= A|B| . . . |X |Y |Z

〈letters〉 ::= ǫ

| 〈lowercase〉〈letters〉

| 〈uppercase〉〈letters〉

〈variable〉 ::= 〈uppercase〉〈letters〉

〈predicate〉 ::= 〈lowercase〉〈letters〉

〈functor〉 ::= 〈lowercase〉〈letters〉

Figure 2.1: Abstract syntax of First Order Predicate Logic used throughout the
text.

31

Here r is a distinct predicate, expressing that φ is related to ψ by relation
ρ. For instance, we could express that liver is part of human body by

r(liver, part of, human body)

We can now quantify over predicates.
When we would like to conceive of the relation as a set of pairs, we can use

the following mathematical definition for arbitrary relation ρ:

ρ = {(X,Y)|r(X, ρ, Y)} (2.2)

Please observe that this set notation is a mathematical metalanguage, not
part of First Order Predicate Logic. Similarly, we can use the following math-
ematical definition for arbitrary relation ρ to obtain the set Aρ of elements on
which the relation is defined:

Aρ = {X |∃Y (r(X, ρ, Y) ∨ r(Y, ρ,X))} (2.3)

An alternative First Order Predicate Logic representation is to use a new
predicate for each relation, as in:

part of(liver, human body)

This has the disadvantage that general reasoning about relations would re-
quire higher order predicates. The notation proposed resembles more natural
language and mathematical notation, where most relations are used in infix
form. Nevertheless, for the implementation in logic programming languages we
use both notations, depending on which one is more convenient.

In the proposed notation it is easy to define general properties of relations.
The following definitions are applied throughout the text:

reflexive(R) ↔ ∀X∀Y (r(X,R, Y)→ r(X,R,X) ∧ r(Y,R, Y))

antisymmetric(R) ↔ ∀X∀Y (r(X,R, Y) ∧ r(Y,R,X)→ r(X, equal, Y))

transitive(R) ↔ ∀X∀Y (r(X,R, Y) ∧ r(Y,R, Z)→ r(X,R,Z))

We can now use these general definitions to express properties of different
relations, say by declaring:

transitive(part of)2

2This particular statement about parthood as such can be disputed. Please refer to [21]
for a more detailed ontological discussion of the part of relation.

32

Please observe that the following definition of reflexivity is deficient:

reflexive(R)↔ ∀X(r(X,R,X)) (2.4)

The problem is that we should require reflexivity to hold only for objects,
which in fact engage in the relation, not for all objects in the universe.

2.1.2 Algebraic operations

Algebra plays an important role in representing the meaning of natural lan-
guage. [28] We shall use the following First Order Predicate Logic notation for
expressing algebraic operations:

o(φ, ω, ψ, γ)

Here o is a distinct predicate intended for expressing that ω applied to φ and
ψ results in γ. E.g. we could express that Peirce product 3 of has color relation
and green is green thing by:

o(has color, :, green, green thing)

We can use the following metalanguage definition for arbitrary operation ω
to obtain the set Aω of elements on which the operation is defined:

Aω = {X |∃Y ∃Z(o(X, ρ, Y, Z) ∨ o(Y, ω,X,Z))} (2.5)

Similarly as for binary relations, it is easy to define general properties of
algebraic operations. The following is assumed to hold throughout the text:

idempotent(O) ↔ ∀(o(X,O, Y, Z)→

o(X,O,X,X) ∧ o(Y,O, Y, Y))

commutative(O) ↔ ∀(o(X,O, Y, Z)→ o(Y,O,X,Z))

associative(O) ↔ ∀(o(Y,O, Z,W) ∧ o(X,O,W, V)

∧ o(X,O, Y, U)→ o(U,O,Z, V))

absorptive(O1, O2) ↔ ∀(o(X,O2, Y, U)→ o(X,O1, U,X))

We can now use these general definitions to express properties of different
operations, e.g. commutativity of set intersection:

commutative(∩)

3Peirce product algebraic operation is described in section 2.3.7 on page 47.

33

2.1.3 Distinction between classes and instances

In many knowledge domains, e.g. in the biomedical domain we do not see
a clear need for distinguishing between classes (descriptions of groups of in-
dividuals) and instances (individuals). For example, we could have a class
liver, which represents a set of all possibly imaginable livers, and an instance
John Smith′s liver, representing a particular liver.

Since in the present framework we are concerned with understanding what
sentences in biomedical papers are about, we can forget about instances, as
articles rarely talk about some particulars. The general approach is to describe
things more generally. Even if the article talks about a particular patient, her
name will not be repeated in every sentence. Since we do not analyze the
context, but analyze each sentence individually, the objects will still represent
classes more than instances. Consider the following example:

This paper is about John Smith. His liver stores glucose. (2.6)

Even though the paper talks about some specific liver, our system will not
be able to notice that, because it analyzes each sentence independently.

Hence in the ontological analysis described later, we do not make any use of
instances, or particulars, but we only use classes. Anyway, a particular object
can be conceived as a singleton set comprising that object, so an instance can
be represented by a singleton class.

For further discussion of the notion of instances and classes, please refer
to [47, 32].

2.2 Lattices

One of the formalisms that can be used to represent the classification within
knowledge domains (and hence ontologies) is lattices. First we introduce nec-
essary definitions, next we will present examples ilustrating the usefulness of
lattices. We choose to present lattices within our chosen framework of First
Order Predicate Logic.

2.2.1 Posets

We call a binary relation R a poset (partially ordered set) iff it satisfies three
conditions:

poset(R)↔ reflexive(R) ∧ antisymmetric(R) ∧ transitive(R)

34

Following [38], from a mathematical point of view a poset is a pair (P,R)
where P is a set and R is a relation (set of pairs: R ⊆ P × P) such that R is a
partial order (it is reflexive, antisymmetric and transitive).

We will however use the notion of a poset and partial order simultaneously
for a relation ρ, since we can always obtain such a mathematical view of a poset
(Aρ, ρ) using definitions 2.3 and 2.2 on page 32.

Let us consider the following example defining the relation ipo (is part of),
e.g. peru ipo southAmerika, but amazon ipo both peru and brasil:

r(peru, ipo, peru)

r(brasil, ipo, brasil)

r(southAmerika, ipo, southAmerika)

r(amazon, ipo, southAmerika)

r(brasil, ipo, southAmerika)

r(peru, ipo, southAmerika)

r(amazon, ipo, brasil)

r(amazon, ipo, amazon)

r(amazon, ipo, peru)

Using definition 2.3 we can obtain a mathematical view of the set Aipo on
which the relation is defined:

Aipo = {amazon, peru, brasil, southAmerika}

Similarly, we can calculate the mathematical view of the relation ipo as a
set of pairs using definition 2.2:

ipo = { (amazon, amazon), (peru, peru), (brasil, brasil),

(southAmerika, southAmerika),

(amazon, southAmerika), (brasil, southAmerika),

(peru, southAmerika), (amazon, brasil), (amazon, peru) }

Hence, we can refer to relation ipo as both a partial order and a poset.

It is easy to verify that:

poset(ipo)

35

2.2.2 Top and bottom

“Top” is the largest element in a given ordering, and “bottom” is the lowest
one. We can define the top element T (denoted ⊤) for poset relation R as:

r(T, top,R)↔ ∀X,Y (r(X,R, Y)→ r(X,R, T) ∧ r(Y,R, T))

Similarly, the bottom element B (denoted ⊥) can be defined as:

r(B, bottom,R)↔ ∀X,Y (r(X,R, Y)→ r(B,R,X) ∧ r(B,R, Y))

As an example for relation ipo defined in section 2.2.1, we have:

r(southAmerika, top, ipo) ∧ r(amazon, bottom, ipo)

There are poset relations R without ⊤ and ⊥ elements:

∃R(¬∃T (r(T, top,R)))

∃R(¬∃B(r(B, bottom,R)))

2.2.3 Upper and lower bounds

We say that elements X and Y in poset relation R have an upper bound U , a
least upper bound (supremum) S, lower bound L, and a greatest lower bound
(infimum) I when:

upperBound(X,Y,R, U) ↔ r(X,R,U) ∧ r(Y,R, U)

supremum(X,Y,R, S) ↔ ∀U(upperBound(X,Y,R, U)→ r(S,R, U))

lowerBound(X,Y,R, L) ↔ r(L,R,X) ∧ r(L,R, Y)

infimum(X,Y,R, I) ↔ ∀L(lowerBound(X,Y,R, L)→ r(L,R, I))

36

Example:

upperBound(peru, amazon, ipo, southAmerika)

upperBound(peru, amazon, ipo, peru)

supremum(peru, amazon, ipo, peru)

¬supremum(peru, amazon, ipo, southAmerika)

lowerBound(brasil, southAmerika, ipo, amazon)

lowerBound(brasil, southAmerika, ipo, brasil)

infimum(brasil, southAmerika, ipo, brasil)

¬infimum(brasil, southAmerika, ipo, amazon)

2.2.4 Lattice as poset

We say that poset R is a lattice iff:

lattice(R)↔ ∀X,Y (r(X,R, Y)→ ∃S(supremum(X,Y,R, S))∧∃I(infimum(X,Y,R, I)))

We define boundedLattice as:

boundedLattice(R)↔ lattice(R) ∧ ∃T (r(T, top,R)) ∧ ∃B(r(B, bottom,R))

2.2.5 Hasse diagrams

The graphical representation of a poset known as Hasse diagram can be drawn
in the following manner (from [38]): if x ≤ y then we place x below y and draw
a line from x to y, except that lines following from reflexivity and transitivity
are omitted.

The Hasse diagram of the poset ipo (which happens to be a lattice) is pre-
sented in figure 2.2 on page 38.

2.2.6 isa as partial order

Of particular interest is the isa relation, which forms a poset when coupled
with arbitrary set of classes. We can hence easily represent the taxonomy of our
domain using the Hasse diagram.

poset(isa)

37

Figure 2.2: Hasse diagram for ipo lattice.

We might insist that the isa relation is a lattice in order to enjoy the stated
mathematical properties for our classification.

lattice(isa)

We present a sample Hasse diagram for the isa relation in our domain in
figure 2.3 on page 39.

2.2.7 Lattices as algebras

As defined in [38], from mathematical point of view, lattice is a triple (L, J,M),
where L is a nonempty set, J andM are binary operations defined on L, having
special properties. In our First Order Predicate Logic notation, however, the
set L is implicitly defined and can be obtained using definition 2.5.

We shall call a pair of operations J,M a lattice, when:

lattice(J,M)↔idempotent(J) ∧ idempotent(M)∧

commutative(J) ∧ commutative(M)∧

associative(J) ∧ associative(M)∧

absorptive(J,M) ∧ absorptive(M,J)

We usually refer to the two operations as join (denoted ∨) and meet (denoted
∧). Symbols ∨ and ∧ are reserved for disjunction and conjunction in First Order
Predicate Logic, hence we shall avoid them in our formulae.

38

Figure 2.3: Hasse diagram for isa lattice.

39

2.2.8 Dual nature of lattices

The two definitions below allow us to transform a lattice defined as partial order
(section 2.2.4) into lattice defined as an algebra (section 2.2.7) and vice versa.
The proof can be found in [38].

lattice(R) → ∀(supremum(X,Y,R, S)→ o(X, join, Y, S))

∧∀(infimum(X,Y,R, I)→ o(X,meet, Y, I))

∧lattice(join,meet)

lattice(J,M) → ∀(o(X, J, Y,X)→ r(X,≤, Y)) ∧ lattice(≤)

2.2.9 Atoms

A node A is a lattice atom iff:

atom(A,R)↔lattice(R)∧

∀(r(X,R,A)→ equal(X,A) ∨ (equal(X,B) ∧ r(B, bottom,R)))

2.2.10 Algebraic lattices and classifications

Thanks to the algebraic nature of lattices (section 2.2.7), we can use meet and
join algebraic operations to specify our domain’s classification as a lattice.

As an example, consider the ipo relation, depicted in figure 2.2 on page 38.
We could specify this lattice using the following:

o(brasil, join, peru, southAmerica)

o(brasil,meet, peru, amazon)

lattice(join,meet)

We do not need to specify anything else, e.g. o(amazon,meet, peru, amazon),
as it follows from lattice properties (defined in section 2.2.7).

2.3 Description Logics

2.3.1 Restricting First Order Predicate Logic

As described in [5] First Order Predicate Logic has some drawbacks when it
comes to applying it in knowledge representation systems: many problems are

40

undecidable and most of the decidable ones are intractable. Description Log-
ics might serve as a useful replacement. Description Logics is very much re-
stricted compared to First Order Predicate Logic as far as the expressive power
is concerned. This means that sometimes we may have difficulties expressing
something we want in Description Logics. It is on the other hand decidable and
computationally efficient.

The so–called Peirce product (described further in [12] and in Section 2.3.7
on page 47) is the link between lattices and Description Logics.

2.3.2 TBox

The terminology of the domain in question is described in the so–called TBox.
The terminology consists of concepts and roles. Concepts are equivalent to
unary predicates in First Order Predicate Logic (they can represent classes),
while roles are equivalent to binary predicates (they represent relations). Atomic
concepts and roles are common to all Description Logics languages, while they
differ by how expressive is the construction of complex ones.

Typical systems allow to perform various forms of reasoning based on the
terminology introduced by the TBox, e.g. whether the specification is satisfiable
or whether one description subsumes the other.

Most Description Logics languages are subsets of the ALCN language. They
provide a set of constructors, which allows to describe complex concepts in terms
of atomic ones.

The following BNF rules describe the available ALCN constructors and
their syntax (where 〈atomic concept〉 is an arbitrary atomic concept identifier,
〈atomic role〉 is an arbitrary atomic role, ⊤ is the universal concept, ⊥ is the

41

bottom concept and 〈n〉 is a natural number):

〈concept〉 ::= 〈atomic concept〉

| ⊤

| ⊥

| ¬〈concept〉

| 〈concept〉 ⊓ 〈concept〉

| 〈concept〉 ⊔ 〈concept〉

| ∀〈atomic role〉.〈concept〉

| ∃〈atomic role〉.〈concept〉

| > 〈n〉〈atomic role〉

| 6 〈n〉〈atomic role〉

〈terminological axiom〉 ::= 〈concept〉 ⊑ 〈concept〉

| 〈concept〉 ≡ 〈concept〉

〈definition〉 ::= 〈atomic concept〉 ⊑ 〈concept〉

| 〈atomic concept〉 ≡ 〈concept〉

A set of 〈definition〉s is called a TBox if each symbolic name is defined at
most once. This limitation however seems to be abandoned in recent versions
of some Description Logics reasoning implementations.

2.3.3 ABox

The ABox provides set of assertions expressed in terms of terminology defined
by the TBox. There are only two types of assertions one can make: concept
assertions of the form C(a) and role assertions of the form R(a, b), where C is
a concept, R is a role, and a, b are names of individuals.

Existing systems allow checking whether assertions expressed by the ABox
are consistent and whether a particular individual is an instance of a given
concept.

42

2.3.4 Translating from Description Logics to First Order
Predicate Logic

Let us define a function [·], which given ALCN formula, computes a First Order
Predicate Logic formula with equivalent meaning. This is usually done resort-
ing to lambda calculus, while we present an novel method using First Order
Predicate Logic only:

[A] = A(X) for A being atomic concept

[⊤] = true

[⊥] = false

[¬C] = ¬[C]

[C1 ⊓ C2] = [C1] ∧ [C2]

[C1 ⊔ C2] = [C1] ∨ [C2]

[∀R.C] = ∀Y (R(X,Y)→ ∀X(equal(Y,X)→ [C]))

[∃R.C] = ∃Y (R(X,Y) ∧ ∀X(equal(Y,X)→ [C]))

[> n R] = ∃Y1 · · · ∃Yn



R(X,Y1) ∧ . . . ∧R(X,Yn) ∧
∧

i<j

¬equal(Yi, Yj)





[6 n R] = ∀Y1 · · · ∀Yn+1



R(X,Y1) ∧ . . . ∧R(X,Yn+1)→
∨

i<j

equal(Yi, Yj)





[C1 ⊑ C2] = [C1]→ [C2]

[C1 ≡ C2] = [C1]↔ [C2]

The definitions are not all trivial. Let us consider why we need ∀X(equal(Y,X)→
[C]). [C] is a First Order Predicate Logic formula, having at most one free vari-
able, X . If we quantify it universally and add another free variable Y , and
require that [C] holds provided equal(Y,X), then we obtain a simple renaming
of variables (from X to Y). Therefore ∀X(equal(Y,X)→ [C]) is like [C], except
that the free variable has been renamed from X to Y .

As we can transform each ALCN formula into First Order Predicate Logic
formula, the notions of interpretation, model, satisfiability, etc. carry over from
First Order Predicate Logic to Description Logics.

For more information about semantics of Description Logics, please con-
sult [5].

43

2.3.5 Examples

Below we present a TBox defining a taxonomy analogous to the Hasse dia-
gram presented earlier in figure 2.3 on page 39. We assume that mountain,
water, flowingWater, erupting are atomic base concepts and hasT ributary is
an atomic role.

volcano ≡ mountain ⊓ erupting

geyser ≡ water ⊓ erupting

steadyWater ≡ water ⊓ ¬flowingWater ⊓ ¬geyser

lake ⊑ steadyWater

ocean ⊑ steadyWater

sea ⊑ steadyWater

river ≡ water ⊓ flowingWater ⊓ ∃hasT ributary.⊤

stream ≡ water ⊓ flowingWater ⊓ ∀hasT ributary.⊥

largeRiver ≡ river⊓ > 2 hasT ributary

Let us use the function f defined in section 2.3.4 in order to compute an

44

equivalent First Order Predicate Logic formulae. We get:

volcano(X) ↔ mountain(X) ∧ erupting(X)

geyser(X) ↔ water(X) ∧ erupting(X)

steadyWater(X) ↔ water(X) ∧ ¬flowingWater(X) ∧ ¬geyser(X)

lake(X) → steadyWater(X)

ocean(X) → steadyWater(X)

sea(X) → steadyWater(X)

river(X) ↔ water(X) ∧ flowingWater(X)

∧∃Y (hasT ributary(X,Y) ∧ ∀X(equal(Y,X)→ true))

stream(X) ↔ water(X) ∧ flowingWater(X)

∧∀Y (hasT ributary(X,Y)→ ∀X(equal(Y,X)→ false))

largeRiver(X) ↔ river(X) ∧

∃Y1∃Y2∃Y3(hasT ributary(X,Y1) ∧

hasT ributary(X,Y2) ∧

hasT ributary(X,Y3) ∧

¬equal(Y1, Y2) ∧ ¬equal(Y1, Y3) ∧ ¬equal(Y2, Y3))

Observe the coherence with lattices, where we would have:

r(lake, isa, steadyWater)

We can rewrite the formulae defining river and stream into equivalent
shorter versions:

river(X) ↔ water(X) ∧ flowingWater(X) ∧ ∃Y (hasT ributary(X,Y))

stream(X) ↔ water(X) ∧ flowingWater(X) ∧ ¬∃Y (hasT ributary(X,Y))

45

Below we present a sample ABox for geographical domain:

mountain(chomolungma)

volcano(vesuvius)

geyser(strokkur)

lake(caspianSea)

sea(baltic)

ocean(pacific)

stream(branco)

stream(jurua)

stream(nanay)

river(amazon)

hasT ributary(amazon, branco)

hasT ributary(amazon, jurua)

hasT ributary(amazon, nanay)

largeRiver(amazon)

In reality branco, jurua and nanay are rivers, but we pretend they have
no tributaries, hence they must be streams in order to avoid inconsistency with
our TBox.

2.3.6 Reasoning

Description Logics is very restricted when compared to First Order Predicate
Logic. However, this allows Description Logics to be not only decidable, but
also tractable, or even very efficiently decidable for some of its variants. Many
of–the–shelf reasoners exist. They provide many useful forms of reasoning about
TBoxes and ABoxes, e.g. they can verify the consistency of a logical theory, or
perform a model checking, where an ABox would be verify against a given TBox.

The logical specification in itself would not be that interesting if it would
not allow us to automatically draw some conclusions. For instance, using our
specification for the geographical domain, we can conclude that:

river ⊓ stream ≡ ⊥

46

2.3.7 Peirce Algebra

Peirce algebra is a two–sorted algebra, which combines operations on sets and
relations. Hence, it is very useful for ontological applications, where classes
can be conceived as sets, and where relations play major role. A very detailed
introduction is available in [12].

Of particular interest for us is the Peirce product, as the conceptual feature
structures used for representing parts of the ontological semantics are based on
the it. Peirce product (:) is defined as:

ρ : φ = {X |∃Y ((X,Y) ∈ ρ ∧ Y ∈ φ)},

where ρ is a relation and φ is a class understood as a set. Notice that the Peirce
product has an equivalent representation in Description Logics:

∃ρ.φ

Hence, the Peirce product can be considered to be the link between lattices
and Description Logics.

2.4 Logic of Plurals and Mass Terms

The Logic of Plurals and Mass Terms is a variant of First Order Predicate Logic.
It defines special facilities for describing plural formations. The most interesting
of those is the collective operator (denoted ⊕), written by convention in an infix
notation. This operator takes two arguments and creates a collective object,
representing the plural entity consisting of both arguments.

Let us have a look at some sentences, so that we can explain how ⊕ works
by example.

2.4.1 “A boy and a girl played.”

This sentence has two main readings:

• The collective reading, where the boy and the girl were engaged in a
common play.

• The distributive reading, where they both played, but individually.

47

Logic of Plurals and Mass Terms

In Logic of Plurals and Mass Terms we can utilize the collective operator to
represent the collective reading:

∃X∃Y (boy′(X) ∧ girl′(Y) ∧ played′(X ⊕ Y))

On the other hand, no special facilities are called for if we want to represent
the distributive reading:

∃X∃Y (boy′(X) ∧ girl′(Y) ∧ played′(X) ∧ played′(Y))

Davidsonian view in First Order Predicate Logic

In the davidsonian view, we make use of an additional variable for representing
the event of playing. So the action of playing will not be represented by the
predicate played′(. . .) anymore. This has many advantages. We do not need
to use the collective operator to represent the fact that more than one agent
took part in the action of playing, so we can stay within First Order Predicate
Logic. Additionally, the arity of the played′ no longer needs to be decided
upon. E.g. if we also wanted to express the time at which the action took
place, we would need to extend the unary predicate played′(who) to a binary
one play′(who,when). Such a problem is nonexistent with the davidsonian
representation of the meaning of the sentence.

The collective reading takes the form:

∃E∃X∃Y ∃T (playing(E)∧ boy(X) ∧ girl(Y)

∧ agt(E,X) ∧ agt(E, Y) ∧ past(T) ∧ tmp(E, T))

The distributive reading will look as follows:

∃E1∃E2∃X∃Y ∃T1∃T2(playing(E1) ∧ boy(X) ∧ agt(E1, X) ∧ past(T1)

∧ playing(E2) ∧ girl(Y) ∧ agt(E2, Y) ∧ past(T2))

∧ tmp(E1, T1) ∧ tmp(E2, T2)

Description Logics

Finally, let us have a look at how such a semantics can be represented in De-
scription Logics.

48

Here we will follow our previous representation using the davidsonian view.
We chose our semantics to represent a concept rather than a terminological
axiom. The concept will be the one corresponding to the event that happened.

For the collective reading, we get the following single concept:

playing ⊓ ∃agt.boy ⊓ ∃agt.girl ⊓ ∃tmp.past

And for the distributive reading we get two separate semantics concepts (as
we have two different events):

playing ⊓ ∃agt.boy ⊓ ∃tmp.past

and
playing ⊓ ∃agt.girl ⊓ ∃tmp.past

2.4.2 “George and Martha met.”

This sentence has only the collective meaning. It is very hard to imagine that
somebody would use such a sentence with the intention of saying that both
George and Martha met somebody, but not each other.

Logic of Plurals and Mass Terms

The reading becomes (with the help of the collective operator):

met′(george ⊕martha)

Davidsonian view, First Order Predicate Logic

We can again utilize the davidsonian view for the purpose of representing the
collective reading within First Order Predicate Logic:

∃E∃X∃Y ∃T (meeting(E) ∧ george(X) ∧martha(Y)

∧ agt(E,X) ∧ agt(E, Y) ∧ past(T) ∧ tmp(E, T))

Description Logics

Following our approach from the previous sentence, the reading becomes:

meeting ⊓ ∃agt.george ⊓ ∃agt.martha ⊓ ∃tmp.past

49

50

Chapter 3

Introduction to ontologies

This chapter provides a short general introduction to ontologies, both formal
and informal ones. It is not the intention of the author that the chapter is a
rewrite of some books, but rather a brief introduction, which refers to certain
sources. The aim of this chapter is specifically to establish how ontological
notions (such as classes, properties, relations, etc.) can be represented easily in
a formal way.

In focus is the representation of ontologies in First Order Predicate Logic.
This is due to the fact that if one can express ontological data in First Order
Predicate Logic, it is less difficult to adjust that representation to fit Prolog at
the implementation stage. Various First Order Predicate Logic representations
can be compared, so that it becomes evident how one can later implement the
needed reasoning machinery easily and efficiently.

This chapter also discusses various means of simplifying the view of the
world, e.g. lifting instances to singleton classes, etc.

A nice introduction and overview of ontologies and their various definitions is
provided in [23]. The word “Ontology” appeared thousands of years ago, where
ancient philosophers tried to explain the essence of being. In such context, we
use the capitalized word “Ontology”. Please consult [23] for an overview of the
fascinating problems that philosophers have been dealing with.

However, the current text focuses on formal ontologies, or simply ontologies,
written with lower–case “o”. Formal ontology can be understood as specification
of a conceptualization. It is crucial that the ontology is specified in a formal
way, so that it is machine–readable and understandable. A conceptualization
can be thought of as a view of the world shared by some people. Of course none

51

of the ontologies can describe a full conceptualization of the whole world. In
most cases an ontology attempts to describe only a specific domain.

3.1 Classes and instances

3.1.1 Distinction between class and instance

In most domains we clearly see the need for distinguishing between classes (de-
scriptions of groups of individuals) and instances (individuals). For example, we
could have a class mountain, which represents a set of all possibly imaginable
mountains, and an instance chomolungma, representing a particular mountain.

In concrete domains (as opposed to abstract ones), we insist that every
instance represents an individual, which exists physically. On the other hand the
class mountain contains also non–existent objects. E.g. it comprises mountains
having 9000m of height, even though no such mountains exist on Earth.1 If such
a mountain existed in history or will appear in the future, we may construct
an instance representing it without modifying the class. Modifying the class
means changing the relations in which the class engages, e.g. isa relation by
adding or removing a pair of the form r(φ, isa, ψ) from the knowledge base, for
arbitrary φ and ψ. Such a way of defining classes by their properties is known as
intensional, as opposed to extensional manner, where classes are defined simply
by listing all elements.

Hence, once classes are defined and relations between them established, they
represent many different worlds. We can, by introducing specific instances,
represent a particular world, e.g. planet Earth. We could represent a different
world, e.g. planet Mars by using the same classes, yet different instances.

This is strongly related to the distinction between the TBox and the ABox
in Description Logics.

3.1.2 Inheritance and isa

Let us consider inheritance of properties from classes to subclasses. From inten-
sional perspective, all elements in a subclass need to possess all the properties
possessed jointly by all the members of parent class. Inheritance expresses
the fact that some classes are generalizations of other classes. The more gen-
eral class is referred to as superclass or base class, and the less general one as

1Perhaps it also comprises the Meinong’s golden mountain – a common literature example
for such non–existent objects. [14]

52

subclass or derived class. If the superclass represents a set of objects O, the
subclass represents a subset of O, which is in accord with the extensional view
of inheritance.

Inheritance is represented by the relation isa in the following manner:

r(flowingWaterObject, isa, waterObject)

We define isa to be a transitive relation:

transitive(isa)

Hence from the knowledge base, say:

r(flowingWaterObject, isa, waterObject)

r(river, isa, f lowingWaterObject)

we can deduce:
r(river, isa, waterObject)

Hence, all rivers will need to possess the properties of water objects, e.g.
that they are made of water, etc.

3.1.3 Relation instanceof

The relation between classes and instances is captured by the instanceof rela-
tion. We have:

r(chomolungma, instanceof,mountain)2

It is important to distinguish between isa and instanceof relations. In the
natural language these are often confused, as in the following example:

r(river, isa, f lowingWaterObject)

r(orinoco, isa, river)

Such a usage is flawed, as river represents a class comprising all rivers and
it can be instantiated. On the contrary orinoco is not a class, as it represents
an individual, and it cannot be instantiated.

The examples in Section 3.1.4 also ilustrate that instanceof is not transitive
(while isa is).

Furthermore, the following rule (defined as instance inference in [47]) applies:

∀(r(I, instanceof, C1) ∧ r(C1, isa, C2)→ r(I, instanceof, C2))

2Notice that we use lower–cased constants for geographic/politic names due to our con-
vention in which upper–cased names are reserved for variables.

53

3.1.4 Spanning objects

In [47] we learn about the need for introducing spanning objects. A spanning
object is both a class and an instance of another class. In our sample geography
domain, the need for those is not apparent, because the domain is not abstract.
We can add abstract concepts to the domain in order to discuss spanning objects.
Let us consider the class typeOfGeographicObject. Instances of this class could
be theRiver, theMountain, etc. On the other hand we have classmountain and
sample instance chomolungma. The simplest representation for that situation
would be:

r(theMountain, instanceof, typeOfGeographicObject)

r(chomolungma, instanceof,mountain)

This representation, according to [47], is flawed, because the same concept
(here mountain) needs an artificial split into an instance theMountain and a
class mountain.

We could express the correlation between theMountain and mountain in
terms of relation abstracts:

r(theMountain, abstracts,mountain)

In [47] we learn about problems arising from using relation abstracts. In-
dividuals theMountain and chomolungma are fundamentaly different, because
chomolungma is a physical object in Geography domain, while theMountain
is not. They do not exist in the same universe of discourse and this fact should
be explicitly modelled in our knowledge base.

Hence, the representation which makes use of spanning objects looks as
follows:

r(typeOfGeographicObject, classIn,metaGeographics)

r(mountain, instanceIn,metaGeographics)

r(mountain, classIn, geographics)

r(chomolungma, instanceIn, geographics)

r(mountain, instanceof, typeOfGeographicObject)

r(chomolungma, instanceof,mountain)

We have to introduce two universes of discourse: metaGeographics and
geographics. mountain is related to both of them, but using different relations
instanceIn and classIn, respectively.

54

In order to enforce correct usage of those relations in the knowledge base
one could add the following conditions:

∀C,U1, U2(r(C, classIn, U1) ∧ r(C, classIn, U2)→ equal(U1, U2))

∀I, U1, U2(r(I, instanceIn, U1) ∧ r(I, instanceIn, U2)→ equal(U1, U2))

∀S,U1, U2(r(S, instanceIn, U1) ∧ r(S, classIn, U2)→ ¬equal(U1, U2))

∀I, C(r(I, instanceof, C)→ ∃U(r(I, instanceIn, U) ∧ r(C, classIn, U)))

3.2 Part-whole relation

Part-whole relations play an important role in scientific modeling. They express
that some things are parts of other things. The graph of all part relations for a
given domain is refered to as partonomy.

Following [20], we define the supplementation property suppl of disjoint el-
ements for a relation R:

suppl(R)↔ ∀A,B(r(A,R,B)→ ∃C(r(C,R,B) ∧ ¬∃X(r(X,R,A) ∧ r(X,R,C))))

Then we can define partof relation as a strict partial ordering relation, thus
having the following properties:

antisymmetric(partof)

transitive(partof)

suppl(partof)

Based on these properties a sample relation partof knowledge base could
look as follows3:

r(zealand, partof, denmark)

r(jutland, partof, denmark)

r(denmark, partof, europe)

r(poland, partof, europe)

3We use lower–cased constants for geographic/politic names due to our convention in which
upper–cased names are reserved for variables.

55

3.3 Types of formal ontologies

Formal ontologies can be generally divided into lightweight and heavyweight
ontologies. The former are expressed using a very simple formalism, usually
variable–free one (like Description Logics and unlike First Order Predicate
Logic), so that they serve as an overview of the conceptualization. The latter
call for more complicated formalism, as they usually model the conceptualiza-
tion in a very detailed manner. In heavyweight ontologies a large amount of the
information is implicit and is left to be inferred by the engine, hence the name.

Another categorization of ontologies focuses on the level of reality, which
they describe. This division is presented in the following sections.

3.3.1 Top–level ontologies

Top–level ontologies, as the name suggests, are supposed to describe the most
general view of the world. For a nice overview of different upper level ontologies,
please refer to [23].

Out of many available top–level ontologies, we have decided to focus on Basic
Formal Ontology (BFO). Like most top–level ontologies, BFO divides the world
into enduring entities, called continuants (e.g. the body of a person), and 4–
dimensional entities, called occurrents (e.g. the life of a person). A particularly
good description of BFO can be found in [43]:

BFO grows out of a philosophical orientation which overlaps with
that of DOLCE and SUMO. Unlike these, however, it is narrowly
focused on the task of providing a genuine upper ontology which can
be used in support of domain ontologies developed for scientific re-
search, as for example in biomedicine within the framework of the
OBO Foundry.

3.3.2 Domain ontologies

Domain ontologies consist of classes characteristic for a given domain. Since
the current text is concerned mainly with biomedical domain texts, we shall be
interested in biomedical ontologies.

There exists a large collection of biomedical ontologies, which are freely
available, called Open Biomedical Ontologies Foundry (OBO) [45]. It consists
of many domain–specific ontologies, gathered together in a unified format.

It is worth noticing that a domain ontology must be constructed by domain
experts, not by software engineers who want to use the ontology. Hence, in the

56

current project such an ontology is considered to be the input to the system,
rather than a part of it. Various papers focus on the topic of creating a high–
quality ontologies, e.g. [42].

3.3.3 Merging top–level and domain ontologies

Merging a top–level ontology with a particular domain ontology is not always
easy. Top–level ontologies are usually an attempt at a “perfect” categorization
of the world around us. They might be very abstract, in contrast to the domain
ontologies. The latter usually attempt to be as complete as possible, trying
to include all the concepts found in a particular domain. Therefore they tend
to lose the perfectionistic view of the world. It might therefore be difficult to
merge the two into one, coherent ontology.

The reason why we would like to merge the two is that both are insufficient
if used alone. Top–level ontologies are simply very small, normally having less
than a hundred concepts. Therefore they cannot be used for analyzing natural
language, where much more concepts are found. The domain ontologies are, on
the other hand, relatively big, reaching even hundreds of thousands of concepts.
Unfortunately, they are always focused on the domain, so they are missing the
inter–domain concepts. Consider the sentence:

Insulin forces storage of glycogen. (3.1)

We can find three domain–specific concepts in the sentence: the chemical sub-
stances insulin and glycogen, and the biological process of storing a substance.
Unfortunately, the concept of action of forcing something cannot be present in
the biomedical ontology, as it is more of an inter–domain concept. If we can
construct an ontology, which contains all of the above concepts, the ontological
analysis of the sentence will be more complete.

A sample ontology, created by merging the top–level Basic Formal Ontology
with common biomedical concepts is presented in Figure 3.1 on page 58.

3.4 Querying Ontologies with Prolog

Let us try to formalize an ontology with the goal of querying it in mind. We will
use First Order Predicate Logic as our formalism due to its closeness to Prolog.

Whenever a greek letter φ or ψ is encountered in a formula, it denotes
a parameter and the formula itself is a parameterized formula, which can be

57

Figure 3.1: A sample ontology, created by merging the top–level Basic Formal
Ontology with common biomedical concepts.

58

transformed into proper First Order Predicate Logic formula by instantiating
the parameter with a constant or variable.

3.4.1 Pancreas Diagram

The information, which is to be modelled in our knowledge base is presented in
Figure 3.2.

3.4.2 Binary relations

We will express that β cell secretes insulin by

r(β cell, secrete, insulin)

.
An alternative First Order Predicate Logic representation would be to use

a new predicate for each relation, as in secrete(β cell, insulin). This has the
disadvantage that general reasoning about relations would require higher order
logic. In the notation we propose it is easy to define general properties of
relations.

We can now use these general definitions to express properties of different
relations, e.g.:

transitive(isa)

3.4.3 isa defined on top of inst.

In [41] relation isa is defined on top of relation inst in the following way:

∀(r(A, isa,B)← ∀X(r(X, inst, A)→ r(X, inst, B)))

Hence, if we define inst in our knowledge base, we could in principle get
correctly inferred isa. Unfortunately, prolog does not provide support for full
First Order Predicate Logic reasoning, but only for definite clauses with certain
extensions. Therefore in order to use this definition in Prolog, we need to rewrite
it slightly:

∀A(∀B(r(A, isa,B) ← ∀X(r(X, inst, A)→ r(X, inst, B))))

≡ ∀A(∀B(r(A, isa,B) ← ¬¬∀X(¬r(X, inst, A) ∨ r(X, inst, B))))

≡ ∀A(∀B(r(A, isa,B) ← ¬∃X(¬r(X, inst, A) ∨ r(X, inst, B))))

59

Figure 3.2: Pancreas diagram, created by Sine Zambach, Roskilde University,
Denmark.

60

This can be redefined as two formulas:

∀A(∀B(r(A, isa,B) ← ¬isa counterexample(A,B)))

∀A(∀B(isa counterexample(A,B)← ∃X(¬r(X, inst, A) ∨ r(X, inst, B))))

We can extract the existential quantifier from the latter formula to finally obtain:

∀A(∀B(r(A, isa,B) ← ¬isa counterexample(A,B)))

∀A(∀B(∀X(isa counterexample(A,B)← ¬r(X, inst, A) ∨ r(X, inst, B))))

The form at which we have arrived is suitable for making inferences in Prolog,
since we have two definite4 clauses, and we can represent negation using non–
provability, or negation as failure:

�

1 r (A, i sa ,B) :− \+ isa counte r example (A,B) .
i s a counte r example (A,B) :− \+ r (X, in s t ,A) , r (X,

in s t ,B) .

It is worth mentioning that in our pancreas example we have no informa-
tion about any instances. It would be infeasible to provide entries of the form
r(φ, inst, ψ) for all instances of the classes shown in the pancreas diagram.
Hence, we need an alternative approach, which is presented in Section 3.4.4.

3.4.4 Knowledge base design

It was decided that the diagram should be translated systematically into a
corresponding First Order Predicate Logic specification. The diagram has been
used as the database–like input only, in the sense that a database of factual
clauses has been retrieved from it using the following rules:

• Each yellow rectangle named φ has been translated to the following fact:

class(φ)

Thus expressing existence of class φ in our domain of discourse.

• Each green straight line connecting a rectangle named φ with a rectangle
named ψ has been translated to the following factual clause:

r(φ, isa, ψ)

4The clauses are not really definite, as we use negation in the body.

61

Those straight green lines do not have arrows indicating the direction, so
the convention assumed was that φ is below ψ in the picture, or in other
words the parent class is higher up in the taxonomy.

• Each red zigzag line connecting a rectangle named φ with a rectangle
named ψ has been translated to the following factual clause:

r(φ, partof, ψ)

Those red zigzag lines do not have arrows indicating the direction, so the
convention assumed was that φ is below ψ in the picture, or in other words
ψ class is higher up in the partonomy than φ.

In this way all the explicit knowledge visible on the pancreas diagram has
been transformed to First Order Predicate Logic and Prolog. Having no biolog-
ical knowledge whatsoever, we have not modified the diagram in any way.

3.4.5 Well–formedness verification

In [41] we can find the following axioms governing relations in our knowledge
base:

• inst relation must hold between an instance and a class. We do not use
inst in our system, but we use relations between classes that are defined
on top of it in [41]. Hence, we can add the following axiom:

error() ← ∃R(∃X(∃Y ((r(X,R, Y) ∧ ¬db relation(R))

∨ (r(X,R, Y) ∧ ¬db class(X))

∨ (r(X,R, Y) ∧ ¬db class(Y)))))

This can be rewritten in Prolog as:
�

e r r o r (unde f i n ed r e l a t i o n (R)) :− r (,R,) ,
\+ db r e l a t i o n (R) .

e r r o r (unde f i n ed c l a s s (X)) :− r (X, ,) , \+
db c l a s s (X) .

3 e r r o r (unde f i n ed c l a s s (X)) :− r (, ,X) , \+
db c l a s s (X) .

Now, we can run the query asking for an error:

62

�

?− e r r o r (E) .
2 E = unde f i n ed c l a s s (enzyme) ;
E = unde f i n ed c l a s s (hormone) ;
E = unde f i n ed c l a s s (d i g e s t i v e enzyme) ;
E = unde f i n ed c l a s s (s e c r e t i n) ;
E = unde f i n ed c l a s s (b i ca rbona te i on) ;

7 E = unde f i n ed c l a s s (cck) ;
No

We can see that some things have been used on the pancreas diagram
without being put in the yellow box. In order to make the knowledge
base consistent, we have added them as classes. One would argue that we
should also define various relations after adding those classes, e.g. that
db r(somatostatin, isa, hormone), but I’m not sure it holds.

• The axiom that nothing can be both an instance and a class does not
need to be expressed, since we do not have inst relation in our system.
We could instead require that nothing can be both a class and a relation,
which can be expressed as:

error() ← ∃X(db class(X) ∧ db relation(X))

This can be rewritten into Prolog as:
�

e r r o r (bo th c l a s s and i n s t an c e (X)) :−
db r e l a t i o n (X) , db c l a s s (X) .

3.4.6 Inference

The explicit information present in the pancreas diagram is not enough for our
knowledge base to work correctly. We can define relation r in the following way:

∀R(∀X(∀Y (r(X,R, Y)← db r(X,R, Y))))

In other words, X is related to Y by relation R if such information is explic-
itly given in the diagram. However, we also need to define how to infer reflexive
relationships:

∀R(∀X(∀Y (r(X,R, Y)← reflexive(R) ∧ r reflexive(X,R, Y))))

63

This says that we can use r reflexive to see whether reflexive behaviour can
be inferred, but only if the given relation is defined to be reflexive. r reflexive
is defined in the following way:

∀R(∀X(r reflexive(X,R,X)))

Transitivity is defined in the following way:

∀R(∀X(∀Y (r(X,R, Y)← transitive(R) ∧ r tr(X,R, Y))))

This says that we can use r tr to see whether transitive behaviour can be in-
ferred, but only if the given relation is defined to be transitive. r tr is defined
in the following way:

∀R(∀X(∀Y (∀Z(r tr(X,R,Z) ← db r(X,R, Y) ∧ db r(Y,R, Z)))))

∀R(∀X(∀Y (∀Z(r tr(X,R,Z) ← db r(X,R, Y) ∧ r tr(Y,R, Z)))))

However, the Prolog implementation is slightly different for performance rea-
sons.

We would also like to add inference of properties. We know that

r(acinar cell, isa, exocrine pancreatic cell)

Hence acinar cell should have all properties that exocrine pancreatic cell has.
This is handled by:

∀R(∀X(∀Y (∀Z(r(X,R, Y)← inherited(R)∧r(X, isa, Z)∧diff(X,Z)∧r(Z,R, Y)))))

So now we can infer:
�

?− r (a c i n a r c e l l , par to f ,C) .
C = exoc r ine panc r ea s ;
C = pancreas ;

4 No

Another interesting question is: since r(PP cell, partof, pancreas) and we
know that r(PP cell, secrete, pancreatic polypeptide), should we conclude that
r(pancreas, secrete, pancreatic polypeptide)? In other words, would the rela-
tion of secretion be copied up the partonomy? The answer is probably depen-
dent on the view of what it really means to secrete something. If the secreted
substance was only used internally within pancreas, we might not want to say
that pancreas secretes it, even though some part of pancreas does.

64

3.4.7 Prolog querying

If we are happy with the closed world assumption, we can use Prolog for querying
our knowledge base using simple language resembling English. The context–free
grammar of the language is presented below:

query ::= ”exist” class ”which” relation class

| ”every” class relation class

relation ::= ”isa” | ”partof” | ”secrete” | . . .

class ::= ”cell” | ”pancreas” | ”capillary” | . . .

The existential query resembles existential quantification in the sense that
one example is enough to get a positive answer. The following Prolog code
clarifies how the query is run:

�

1 ask ([ex i s t , Class1 , which , Relat ion , Clas s2] ,
[yes , fo r , ins tance ,X, Relat ion ,Y]) :−

db c l a s s (Clas s1) ,
db r e l a t i o n (Re la t ion) ,
db c l a s s (Clas s2) ,

6 r (X, i sa , Clas s1) ,
r (Y, i sa , Clas s2) ,
r (X, Relat ion ,Y) .

We may be for instance interested to know whether there exists a stem cell,
which secretes insulin. In such a case we would ask:

�

?− ask ([ex i s t , s t em ce l l , which , s e c r e t e , i n s u l i n] ,A
) .

2 No

But to see which cells at all secrete insulin, we can ask:
�

?− ask ([ex i s t , c e l l , which , s e c r e t e , i n s u l i n] ,A) .
A = [yes , fo r , ins tance , b e t a c e l l , s e c r e t e ,

i n s u l i n]

Universal querying resembles universal quentification. We can define it in
Prolog in the following way:

65

�

ask ([every , Class1 , Relat ion , Clas s2] , [yes , every])
:−

db c l a s s (Clas s1) ,
3 db r e l a t i o n (Re la t ion) ,

db c l a s s (Clas s2) ,
\+ counterexample (Class1 , Relat ion , Class2

,) .

ask ([every , Class1 , Relat ion , Clas s2] ,E) :−
8 db c l a s s (Clas s1) ,

db r e l a t i o n (Re la t ion) ,
db c l a s s (Clas s2) ,
counterexample (Class1 , Relat ion , Class2 ,E)

.

13 counterexample (Class1 , Relat ion , Class2 , [no ,
because ,X, not , Relat ion , Clas s2]) :−

r (X, i sa , Clas s1) , d i f f (X, Clas s1) ,
no t r (X, Relat ion , Clas s2) .

no t r (X,R,Y) :− \+ r (X,R,Y) .

We use negation as failure for finding a couterexample to our universal state-
ment. If a counterexample can be found, the answere is “no” and the counterex-
ample is returned. Otherwise, answer is “yes”. A sample interaction with the
system may look as follows:

�

?− ask ([every , e n d o c r i n e p a n c r e a t i c c e l l , s e c r e t e ,
i n s u l i n] ,A) .

A = [no , because , a l pha c e l l , not , s e c r e t e ,
i n s u l i n] ;

3 A = [no , because , gamma cell , not , s e c r e t e ,
i n s u l i n] ;

A = [no , because , pp c e l l , not , s e c r e t e , i n s u l i n
] ;

No
?− ask ([every , e n d o c r i n e p a n c r e a t i c c e l l , par to f ,

pancreas] ,A) .

66

A = [yes , every] ;
8 No

The full Prolog code is presented in Appendix G on page 257.

67

68

Chapter 4

Type systems and
programming languages for
representing ontologies

This chapter serves as an investigation into programming languages and their
usefulness for representing formal ontologies and implementing ontology–based
natural language tools. One of the topics we will focus on is the notion of
“type”. We will explain how this notion is used in logic and ontologies. We
will further see how it is utilized in programming languages, where it is a key
concept [36]. In other words, we will discuss what types of types there are.
We will discuss the ontological usefulness of several programming languages
as far as their type systems and other related features are concerned. These
considerations are important, as in the current work we are not only interested
in finding a link between natural language semantics and formal ontologies, but
also in establishing how to approach them in a practical way from the point of
view of computation.

4.1 Logical types

In First Order Predicate Logic there is no notion of types, or we can think of
it as having only one type, namely that of individuals. However, in the logical
type theory types are the key concept. We have two elementary types:

69

• o – the type of truth values

• ι – the type of entities/objects

Those types are further combined by forming a function type in order to
recursively form infinitely many possible types. For any two types τ1 and τ2 we
can construct a type of functions from τ1 to τ2, denoted either τ1 → τ2 or τ2τ1.
We prefer the latter notation, as it is more compact.

For instance, type of the negation operation will be oo, that is negation is a
function that takes a truth value and produces another truth value.

Some very useful kinds of objects, e.g. sets can be represented with the help
of function types. We could represent the type of sets of individuals by oι, that
is a function that takes an individual as argument and returns a truth value as
output. The intended working of such a function is that when an individual is
in the set, the function returns true, and false otherwise.1

For instance the set
{a, b}

can be represented by the following function:

f(X) = ⊤ if X = a or X = b, ⊥ otherwise.

However, this poses some restrictions on the use of such types from the
computational point of view. One of the most famous undecidable problems is
the problem of equality of functions. There is no algorithm that could decide
whether two arbitrary functions (even of the same type) are equal or not.

Consider the following function as an illustration of this problem:

f(X) = ⊤ if (X = a ∧ ‘p=np’) or X = b, ⊥ otherwise.

In the above we added ‘p=np’, the famous computer science problem as
one of the conditions as to what the function will answer when given a as the
argument. Here for brevity we simply refer to it by the name ‘p=np’, but think
of it as a long formula formalizing the problem and being either true or false.
If ‘p=np’, the function will return ⊤, otherwise it will return ⊥. Hence, this
function is identical to the previous one if and only if ‘p=np’. This illustrates
that the problem of comparing two functions is at least as difficult as the ‘p=np’

problem, i.e. it is not easy to say the least.
Hence, using type theory poses great difficulties for the implementation, as

most objects are represented by functions. Therefore, we would not be able to

1This commonly used function is known as the characteristic function of a set.

70

compare various objects (decide whether they are equal or not) in type theory.
This is a huge disadvantage, taking computation into consideration.

4.2 Types in programming languages

Types for data in programming languages (sometimes called datatypes) are in
fact kinds of ontologies for objects created in computer’s operating memory.
Some of them enable the representation of large taxonomies via the so–called
“inheritance”. The main objective behind introduction of types in programming
languages is to eliminate many programmingmistakes stemming from inter–type
confusion. Those mistakes are very common in non–typed languages, but can
be easily detected by the compiler for typed languages. Let us now have a brief
look at the declarative programming languages.

Declarative languages describe what should be computed, rather than how
something should be computed. This means they usually describe the computa-
tion without state, side effects, and control flow. The type system of declarative
languages is very well suited for expressing already specified logical theories.
Some of the advantages of declarative languages include:

• Most declarative languages have a formal or semiformal semantics, which
allow for proving the correctness of the program.

• Declarative languages have a syntax which is very close to the standard
mathematical notation. It is therefore easy to express formal ideas as a
program.

• Because a declarative program describes what the solution is instead of
how to compute it, the source code for the program is around 10 times
more concise than one expressed in a imperative language.

• Strongly–typed declarative languages tend to have stronger type systems
than strongly–typed imperative languages. Consider e.g. the Java im-
perative language, where null is a member of any user–defined type, or
C/C++, where compiler automatically casts between most primitive in-
teger types, pointers, etc. While those features are often very useful for
programmers, they also represent weakenings of the type system itself.

• Some declarative languages have support for nondeterministic computa-
tion (returning multiple results), which at times proves to be very helpful.

71

It is however worth noting that the type system of a programming language
cannot be used easily for representing ontologies. The ontologies are usually
represented in a program as data, not as types. With this approach, ontological
types will take form of dynamic self–programmed types, which are taken care
of by the program and not by the compiler or type checker.

Let us consider an example. In Java, a very popular language with object–
oriented type system, we could declare the class of substances:

class Substance {}

Then, we could create a subclass of it, expressing that insulin is one of subtypes
of substance:

class Insulin extends Substance {}

Java even provides a so–called reflection mechanism, where a program can
look into the type system during runtime. However, this approach is only suit-
able for expressing fixed, bounded–size ontologies. The generative ontologies
that we are going to work with are of unbounded size, as we can create complex
classes during the process of analyzing the text. We need to dynamically create
new ontological types as we go, and therefore we can’t use the programming
language’s type system directly for representing the ontology.

Next, let us have a brief look at some of the declarative programming lan-
guages, together with their type system.

4.2.1 StandardML

StandardML is an established functional programming language. It is widely
used in academia, as it has a formal semantics. The following description [29]
of StandardML [31] is a particularly concise description of the language:

Standard ML is a safe, modular, strict, functional, polymorphic pro-
gramming language with compile–time type checking and type infer-
ence, garbage collection, exception handling, immutable data types
and updatable references, abstract data types, and parametric mod-
ules. It has efficient implementations and a formal definition with a
proof of soundness.

Unfortunately, one can stumble upon an obstacle along the way. It turns out
that some of the operations which are necessary for natural language handling

72

would benefit greatly from nondeterministic implementation. Unfortunately,
StandardML does not provide language support for nondeterminism.

Consider, e.g. the problem of recognizing the ontological relations, based on
prepositions. Let us assume that we would like to have the following sample
mappings:

Preposition Relation Example
on TMP on Monday
to DST to school
in TMP in winter
in LOC in cells

As we can see, preposition “in” can describe two different relations, tem-
poral placement and locational placement. Unfortunately, one cannot write in
StandardML:

�

datatype r o l e
2 = TMP (∗ temporal aspec t s (gener i c r o l e) ∗)

| LOC (∗ l o ca t ion , po s i t i on ∗)
| DST (∗ de s t i n a t i on o f moving proces s ∗)

fun p2r ”on” = TMP
7 | p2r ” to ” = DST

| p2r ” in ” = TMP
| p2r ” in ” = LOC

This program will not compile, because of the way pattern matching works in
functional languages. Only the first matching definition is used, so the pattern

�

1 | p2r ” in ” = LOC

is unreachable.
Of course workarounds exist for that problem, e.g. the function p2r instead

of having the type fn : string -> role, could have type fn : string ->

role list, so instead of nondeterministically returning a role, it could return
deterministically a list of roles:

�

datatype r o l e
= TMP (∗ temporal aspec t s (gener i c r o l e) ∗)
| LOC (∗ l o ca t ion , po s i t i on ∗)

4 | DST (∗ de s t i n a t i on o f moving proces s ∗)

73

fun p2r ”on” = [TMP]
| p2r ” to ” = [DST]
| p2r ” in ” = [TMP,LOC]

In this way, one could implement a behaviour that is a substitute for non-
determinism, using exception throwing for backtracking. It might be feasible to
follow that path, however at some point the code can became very convoluted,
especially if nondeterminism is used in more than one place. It could lead to
the use of lists of lists of lists.

Therefore, it might be beneficial to turn to a language with support for
nondeterminism.

4.2.2 Prolog

Prolog is the most popular programming language supporting nondeterminism.
It is based on SLD–resolution and unification with negation as failure and a
closed world assumption. It is used extensively in the literature on computa-
tional natural language semantics. [10, 35]

Continuing our example from Section 4.2.1, we can simply write:
�

p2r (on , tmp) .
2 p2r (to , ds t) .
p2r (in , tmp) .
p2r (in , l o c) .

If we now run the program with the goal ←p2r(in,X), we will get two
answers for X, i.e. X=tmp and X=loc.

This is a great feature allowing very easy formulation of the problem at hand.
Unfortunately, Prolog does not come with a type system. The programmer
needs to verify by hand that the terms used will unify iff they are supposed to.
In particular, the heavy use of lists introduces some problems.

Once the programmer makes a type mistake (e.g. term has the arity of
three, instead of four), Prolog cannot spot it. In such a case the only thing that
happens is that Prolog is saying NO and not giving any answers, because the
unification fails at some stage.

Since this sort of behaviour is not considered erroneous by Prolog, the only
way of detecting such a simple typing error is tracing the execution of the pro-
gram step–by–step until one realizes where the problem lies. One can spend

74

countless hours on such unnecessary debugging, and therefore it might be ad-
visable to use a language with embedded type system.

4.2.3 Mercury

The following description [44] of Mercury is a concise description of the language:

Mercury is a new logic/functional programming language, which com-
bines the clarity and expressiveness of declarative programming with
advanced static analysis and error detection features. Its highly opti-
mized execution algorithm delivers efficiency far in excess of existing
logic programming systems, and close to conventional programming
systems. Mercury addresses the problems of large-scale program de-
velopment, allowing modularity, separate compilation, and numerous
optimization/time trade-offs.

Type system

The most important feature of Mercury is its strong type system. The type
system is very similar to the one known from functional languages, like Haskell
or ML. It includes discriminating union, recursive and polymorphic types. A
type definition for a well–known append predicate has the following form:

�

1 :− pred append (l i s t (T) , l i s t (T) , l i s t (T)) .

In the above T is a type variable, and stands for any type, including lists, lists
of lists, functions, etc.

Determinism declaration

Mercury allows for creating the following kinds of predicates and functions:

• Deterministic – predicate can succeed exactly once.

• Semi–deterministic – predicate can succeed at most once.

• Multi – predicate always succeeds more than once.

• Nondeterministic – predicate can succeed any number of times.

• Erroneous – predicate cannot succeed.

75

In addition there are “commited choice” nondeterministic predicates.
The determinism of a predicate has to be defined by the programmer and is

strictly checked by the compiler. The compiler can infer the correct nondeter-
minism declaration for most predicates.

If the program is not written clearly, the compiler may overestimate the be-
haviour of a predicate, e.g. it can infer that a predicate is nondeterministic, while
in fact it is semi–deterministic. This can usually be easily fixed by a small re–
write of the code. Usually one should use more functional programming style
than logic programming style for semi–deterministic and deterministic predi-
cates. For instance, using if–then–else constructs helps a great deal, as in such
a case compiler knows that either “then” branch will be taken, or “else”, but
not both, and not neither.

While the necessity of declaring the determinism of a predicate might seem
like a waste of time, it is not. There are certain programming errors that are
detected by the compiler in this way.

The knowledge that compiler gains from the determinism declarations allows
it to generate very efficient code. Deterministic and semi–deterministic pred-
icates, for instance, do not have a need for backtracking. Mercury programs
tend to work around 10–100 times faster than SWI–Prolog programs [37].

Mode system

The Mercury language has the notion of instantiatedness of a variable. It corre-
sponds to a specific instantiation of the type constructors, which form a value.
Consider the following simple example:

�

:− inst non empty l i s t
== bound ([ground | ground]) .

Here we can see that the value is bound to the list constructor ([|]) and
both head and tail are ground. Hence, the list must be non–empty. Two most
common instantiatednesses are ground, where the term does not contain any
variables, and free, meaning that variable is not instantiated at all.

Those definitions are in turn used in so–called modes. The mode of a pred-
icate declares what happens with the parameters of a predicate during its exe-
cution. Two most common modes are:

�

:− mode in == ground >> ground .
:− mode out == f r e e >> ground .

76

In other words, a variable is an input to a predicate, if its ground both
when the predicate is called, and when its finished. A variable is an output of
a predicate, if its free when the predicate is called, and it is ground when its
finished.

The mode system is immensely helpful for avoiding common mistakes in logic
programming. Consider for instance the well-known list appending predicate,
where type, determinism, and mode declarations look as follows:

�

:− pred append (l i s t (T) , l i s t (T) , l i s t (T)) .
:− mode append (in , in , out) i s det .

3 :− mode append (out , out , in) i s nondet .

One needs to declare that all three arguments are lists of the same type of
elements. Additionally, we want to use append in two ways. First, given two
input lists, we want to concatenate them to deterministically produce a resulting
list. Secondly, given a list, we want to nondeterministically produce two lists,
which when concatenated, give us the supplied list.

Apart from serving as a nice overview of how the predicate works, such a
declaration allows the compiler to check for the following sample mistakes:

• Type errors – if the predicate tries to unify one of the arguments with a
list of something else than the other arguments.

• Determinism errors – if the mode which we declared to work determinis-
tically, is in fact nondeterministic.

• Mode errors – If the out variable is not instantiated to be ground by the
predicate.

Pure declarativeness

In most declarative languages there is a need for impure functions or predicates
which introduce side–effects. Side–effects are things that happen outside of the
formal semantics of a language. This is very often the case with e.g. input/out-
put operations. In Mercury input and output is performed with preservation
of purely declarative semantics. This can only be achieved thanks to the mode
declarations for predicates. Consider, e.g. the predicate for loading WordNet
database:

�

:−pred load wn (s t r i n g : : in ,
2 wn : : out ,

77

i o : : di ,
i o : : uo) i s det .

The two last parameters represent input/output state before and after the
predicate was called. They have special modes. di means “destructive input”
– the variable is dead after being passed to load wn, cannot be used again. uo
means “unique output” – the variable can be used only once after being output
from the predicate. Please observe that the predicate cannot be nondeterminis-
tic, as it is impossible to backtrack over input/output operations. One cannot
“undisplay text” or “unread from a file”. This is different than in Prolog, where
input/output is performed in impure way, so one can perform input/output
operations in backtracking predicates.

4.3 Ontological types

Having discussed some datatypes in some programming languages, we now re-
turn to the issue of representing ontologies. From the point of view of the
ontologies, types take form of concepts or classes in the ontology. This means
that the taxonomy of the domain in question defines what types of objects can
exist in the domain.

Accordingly, the ontological types can be defined as a simple lattice, where
nodes represent classes. But we can also use some more heavy–weight types,
where an inference engine would need to be employed for deciding whether some
object belongs to a given type. This can be achieved by using Description Logics
with a large and complicated TBox.

If we wish to base our ontological types on the pancreas diagram from Fig-
ure 3.2 on page 60, then the snapshot of such a TBox could look as presented
in Figure 4.1 on page 79.

Notice that since in the biomedical domain we do not concern ourselves with
individuals, there is no need for the ABox.

In programming languages we usually have a finite number of types in a
given program. But from ontological perspective, types could be defined in
a generative fashion, hence producing potentially infinitely many (unbounded
number of) available classes. This approach is followed in our ontological se-
mantics prototypes with the Peirce product and infinite generative ontologies
defined by means of conceptual feature structures.

78

pancreatic cell ⊑ cell ⊓ ∀located in.pancreas

exocrine cell ⊑ cell ⊓ ∀secretes.enzyme

endocrine cell ⊑ cell ⊓ ∀secretes.hormone

exocrine pancreas ⊑ ∀partof.pancreas

endocrine pancreas ⊑ ∀partof.pancreas

stem cell ⊑ cell

adult stem cell ⊑ stem cell

embrionic stem cell ⊑ stem cell

islet of Langerhans ⊑ ∀partof.endocrine pancreas

exocrine pancreatic cell ⊑ exocrine cell ⊓ pancreatic cell

⊓∀partof.exocrine pancreas

endocrine pancreatic cell ⊑ endocrine cell ⊓ pancreatic cell

⊓∀partof.islet of Langerhans

duct ⊑ ∀partof.exocrine pancreas

capilary ⊑ ∀partof.islet of Langerhans

α cell ⊑ endocrine pancreatic cell

⊓∀secretes.glucagon

β cell ⊑ endocrine pancreatic cell

⊓∀secretes.insulin

δ cell ⊑ endocrine pancreatic cell

⊓∀secretes.(gastrin ⊔ somatostatin)

PP cell ⊑ endocrine pancreatic cell

⊓∀secretes.pancreatic polypeptide

centroacinar cell ⊑ exocrine pancreatic cell

⊓∀secretes.digestive enzyme

⊓∀has primary signal.secretin

acinar cell ⊑ exocrine pancreatic cell

⊓∀secretes.bicarbonate ion

⊓∀has primary signal.cck

Figure 4.1: Pancreas ontology translated into Description Logics.

79

4.4 Grammatical ontotypes

It is possible to use the familiar notion of context–free grammars for representing
ontological types, as described in [1]. In such an application classes are repre-
sented by nonterminal symbols and class subsumption relationship is replaced
by the string derivation.

As an example, consider the following sample grammar, which represents
an ontology created by combining Basic Formal Ontology with Gene Ontology.
The grammar is presented in Figure 4.2 on page 81.

This grammar has the power of generating infinitely many ontological types
by means of deriving many various sentential forms. A sample derivation is
shown in Figure 4.3 on page 82.

80

〈Entity〉 ::= 〈Continuant〉

| 〈Occurrent〉

〈Occurrent〉 ::= 〈Occurrent〉〈Occurrent role list〉

〈Occurrent role list〉 ::= ǫ

| [〈Occurrent role〉]〈Occurrent role list〉

〈Occurrent role〉 ::= CBY : 〈Occurrent〉

| LOC : 〈Continuant〉

| WRT : 〈Entity〉

| BMO : 〈Entity〉

| POF : 〈Occurrent〉

| . . .

〈Continuant〉 ::= 〈Continuant〉〈Continuant role list〉

〈Continuant role list〉 ::= ǫ

| [〈Continuant role〉]〈Continuant role list〉

〈Continuant role〉 ::= LOC : 〈Continuant〉

| POF : 〈Continuant〉

〈Occurrent〉 ::= 〈ProcessualEntity〉| . . .

〈ProcessualEntity〉 ::= 〈Process〉| . . .

〈Process〉 ::= 〈biological process〉

〈Continuant〉 ::= . . .

Figure 4.2: Grammatical specification of a sample ontology.

81

〈Entity〉
⇓

〈Occurrent〉
⇓

〈Occurrent〉〈Occurrent role list〉
⇓

〈Occurrent〉[〈Occurrent role〉]〈Occurrent role list〉
⇓

〈Occurrent〉[〈Occurrent role〉]
⇓

〈Occurrent〉[PNT : 〈Continuant〉]
⇓

〈ProcessualEntity〉[PNT : 〈Continuant〉]
⇓

〈Process〉[PNT : 〈Continuant〉]
⇓

〈biological process〉[PNT : 〈Continuant〉]
⇓

〈transport〉[PNT : 〈Continuant〉]
⇓
...
⇓

〈transport〉[PNT : 〈Substance〉]
⇓
...
⇓

〈transport〉[PNT : 〈glucose〉]

Figure 4.3: Sample sentencial form derivation for constructing nested ontological
types

82

Chapter 5

Ontological Semantics

In this chapter we will have a closer look at natural language, in particular
English. In particular we will discuss its grammar from a formal perspective.
We will also try to establish how to formally represent the meaning of sentences
and phrases with the help of generative ontologies. Further, we will discuss
some problems related to the extraction of that meaning.

Ontological phenomena visible most clearly in generative ontologies are mir-
rored in the language. Our observation is that ontology should be language–
independent, while language is perhaps ontology–dependent to a large extent.
Hence, it is quite natural to base ontological semantics for a language on gen-
erative ontologies.

5.1 Meaning of sentences

Let us use First Order Predicate Logic as a metalogic for describing relation
between sentences and their meaning. We will write:

follows(Φ,Υ)

whenever Φ follows from sentence Υ. Υ is a natural language sentence repre-
sented in arbitrary form, e.g. as a list of words. Φ is a formula in some chosen
logic representing partial meaning of the sentence Υ. We will say:

means(Υ,Φ)

83

whenever formula Φ is the full meaning of the sententence Υ. Let us define what
we understand by “full meaning”:

∀S,M(means(S,M)↔ follows(M,S) ∧ ∀I(follows(I, S)→ entails(M, I)))

In other words formula M is the full meaning of sentence S if it follows from
S and if it entails all other formulas I, which also follow from S. So when
means(Υ,Φ), Φ is the perfect translation of natural language sentence Υ into
desirable logic, where no information is lost, and of course no new information
is introduced.

5.2 Automatic meaning extraction

When constructing a system for automatic meaning extraction, one cannot hope
to extract the full meaning of each sentence. There are several reasons for that:

• The reasoning necessary for full understanding is beyond computer’s abil-
ities. It may be necessary to reference complicated real world knowledge
to understand the sentence.

• The target logic is unable to represent the full meaning of a sentence due
to its limited expressivity.

In any case, the system for natural language semantics extraction is sup-
posed to understand as much of the sentence as possible. We are interested in
extracting a meaning Φ, such that:

reading(Υ,Ψ) ∧ entails(Ψ,Φ)

5.3 Human language understanding

Human beings are exceptionally good at understanding language. It is by far
the most unique way of communicating found in nature, as it is tied to only one
species.

Since our goal is to allow computer to understand language, we shall first
discuss what makes language understandable for us. Indeed, if we knew how
our mind grasps the language, we could try to write a program, which would
act in a similar manner.

Unfortunately, this task might be extremely difficult, or maybe even impos-
sible. As a matter of fact we can only understand the brain on two levels:

84

1. A very low level: we know that impulses are being sent between cells and
we can observe that some regions of the brain are active while performing
a particular task, such as speaking.

2. A very high level: we can observe the external behavior produced by our
mind.

The first understanding can be compared to how computer hardware func-
tions. The second is similar to the output of a computer program, or its inter-
face. We do not have any access to the “source code” for our mind.

5.4 Language as a protocol

When we want two machines to communicate, we need a protocol, which both
will follow, so that they can understand each other. For human beings, the
natural language serves as a protocol.

The language, which we use today, and which has been evolving for tens of
thousands of years has one particular feature, which distinguishes it from other
protocols used today, i.e. it is extremely complicated. This stems from the fact
that language evolved to serve purposes of human mind, not that of a computer.

This might be conceived as an advantage in a various contexts, as the ability
of describing the same concept in so many different ways allows us to express
our emotions, it makes reading novels so pleasurable, etc.

Unfortunately, from the software engineering perspective the complexity of
language is a huge problem. No software system is capable of understanding it
fully (or even to a large extent).

Luckily, language being a protocol, is not completely random, but rather
sentences are built in a specific way. Language has been studied by linguists and
the knowledge about it is extremely useful when one tries to design a software
system, which should take natural language sentences as the input.

In Sections 5.4.1 and 5.5 we explain the particularly interesting features of
natural language, which might make it computer–understandable to a certain
degree.

5.4.1 Parts of speech

The English language consists of words, which can be grouped into certain
classes, called parts of speech or lexical categories. The most common ones are:

85

• common noun – names object class, e.g. the noun “cell” has the meaning,
which covers all imaginable cells, not a particular cell.

• proper noun – names particular object, e.g. “Denmark” is a proper noun
referring to a particular country.

• verb – names actions, which are activities or interactions between things,
e.g. “stored” is a verb, which names the action of storing something some-
where.

• adjective – names properties ascribed to nouns, e.g. the phrase “hyper-
glycemic symptoms” ascribes the property of being hyperglycemic to symp-
toms.

• preposition – explains how different entities are related to each other.
Very few prepositions exist. They tend to capture only the most common
relations. E.g. the phrase “storage in cell” means that storage takes place
inside of a cell.

• adverb – plays similar role as adjective, except that it describes properties
of concepts represented by other parts of speech than nouns.

5.4.2 Necessity of part–of–speech tagging

Let us consider the following sentence:
insulin forces storage

Let us assume that the underlying ontology understands that the word “in-
sulin” represents the concept c insulin and the word “storage” represents the
concept c storing. c insulin is defined as a chemical substance called insulin.
c storing is defined as an action of storing something somewhere. Let us also
assume that nothing in our ontology corresponds to the word “forces”.

In such a case understanding the whole phrase could be attempted by skip-
ping the word “forces” and analyzing just “insulin storage”. Unfortunately, this
would result in an incorrect understanding, as the original phrase was not really
talking about insulin storage. It is not insulin that is in fact stored.

In order to remedy the situation, the algorithm could use part–of–speech
tagging. This process assigns a list of lexical categories to each word of the sen-
tence. The coverage of part–of–speech tagging is extensive, due to the existence
of large lexical resources, like WordNet. The size of todays lexical resources is
far superior to the size of any existing ontology. Almost any word of English

86

language can be assigned a lexical category, but only a small subset can be
found in any ontology.

After the application of the part–of–speech tagging, we are faced with the
following information:

sentence insulin forces storage
tagging noun verb noun
ontology c insulin ? c storing

At the moment the algorithm understands, that the sentence does not talk
about storage of insulin, as words “insulin” and “storage” appear on two sides
of a verb. Such a situation disallows the compound concept to be understood
as storage of insulin. Rather, insulin could be an agent and storage could be a
patient of some action, described by the verb.

Observe that if the middle word is, e.g. a noun, we might be faced with
a different situation. For instance: “insulin particles storage” sentence has a
different structure, where the second word describes a patient for the action
described by third word. In other words, we deal with the concept of storing
some particles.

5.5 Grammar as the structure of English

5.5.1 Rules and structure

All sentences of a language are similar. Even though completely different words
are used, the structure of the sentence follows some rules. Recognizing those
rules is of utmost importance for understanding the sentence. If the sentence
is not constructed according to the rules, it will not be understood or it will be
misunderstood.

With artificial languages (e.g. programming languages), knowing the rules
is simple. When language is designed, a set of rules is invented, usually using a
variant of Backus–Naur Form if the language is context–free. One might there-
fore construct all the valid sentences of the language with the rules provided.

5.5.2 Rules for natural languages

The problem with natural languages is that they were not designed with any
rules in mind. The language evolved together with human brain, and we some-
how know from the very childhood, which sentences are correct and which are
not (to some extent). We learn that by listening to sample correct sentences,
rather than learning some rules and following them.

87

Hence, we are faced with a problem, which appears only for natural lan-
guages. The problem is that we do not know the rules of the language. In a
sence the rules are hidden.

Why would we need the rules at all? It is because we would like to teach
computers to understand natural language. Unfortunately, inputting all valid
sentences into a database is not an option. Such a set would probably be infinite,
or in most optimistic estimation extremely huge. So we shall try to construct a
relatively small set of rules, which could describe the structure of the language
in a satisfactory way.

In order to learn the rules, we might assume that we know which sentences
are correct and which are incorrect, and based on that we would like to analyze
the language, so that we can recognize the hidden rules.

Such a task, however, turns out to be extremely difficult.
A substantial problem is that whatever set of rules one might come up with,

it is always relatively simple to find a counterexample. Such a counterexample
could take two forms. It could either be a valid sentence, which cannot be
produced using the rules, or it could be an invalid sentence, which could be
produced using the set of rules provided.

For this very reason one cannot prove that English is a context–free language,
hence it might not be describable using a context–free grammar.

Many linguistic problems that are faced if one tries to construct a context–
free grammar for English are described in [40].

5.5.3 Shallow context–free grammar for English

This section describes the idea of a shallow grammar for English language.
The problems described in Section 5.5.2 have to be dealt with somehow

if we want the system to understand the language. Fortunately, the system,
which is to be designed in the current text, has some important properties. The
crucial thing to realize is that the system has to analyze biomedical documents.
Such documents are written using correct English language. Therefore, we can
assume the absence of incorrect sentences in the analyzed text.

Such assumption has a major influence on the set of rules, which we shall
decide upon. Normally the rules should be very restrictive, so that they need
to reject incorrect sentences. However, since we will not have any incorrect
sentences, we do not need to reject them with the help of our rules.

As an example, consider the following simple rule1:

1Expressed in BNF.

88

〈sentence〉 ::= 〈noun〉〈verb〉〈noun〉 (5.1)

This rule expresses that a sentence can consist of a noun, followed by a verb,
followed by a noun. Let us consider the following two sentences:

1. Insulin forces storage.

2. Insulin force storage.

Sentence 1 is a correct English sentence, while sentence 2 is not. Neverthe-
less, sentence 1 will be accepted by our rule, as will sentence 2.

If we wanted to reject the second sentence, but accept the first one, we would
need to introduce more complicated rules. We can however observe, that the
second sentence will not ever appear in the analyzed text, assuming that it is a
high–quality material.

Hence, we can use a relatively simple shallow grammar for analyzing English.

As previously noted, English might not be describable by a context–free
grammar. However, taking into consideration the aforementioned observation,
we can try to formulate a shallow grammar as a context–free grammar, since
we do not need to reject incorrect sentences.

Such a grammar would not cover the whole English language, but this is not
a problem. We shall note that the text, which is to be analyzed, is a scientific
text. As such it normally makes use of a specific subset of English language
only.

As an example, we could consider the problem of questions. In a casual
conversation, a novel, or a play, questions occur very often. This is however
not a case for scientific articles, reports and texts. The Wikipedia entry for
“Insulin”, which is our playground, does not contain even one question. That
observation allows us to construct a substantially simpler grammar for text
analysis, as the order of words in a question is not the same as in a statement.

In case a question appears in the analyzed text, we simply will not be able
to analyze such a sentence. Similarly if a sentence formulated in a less obvious
way is encountered, which is rejected by the grammar, it will not be analyzed.

Taking all the considerations into account, we might design the a shallow
context–free grammar for English, which is presented in Figure 5.5.3 on page 90.

Please observe that the grammar is ambiguous. The same sentence could
produce different parse trees.

89

Figure 5.1: A shallow context-free grammar for English, specified in BNF.

〈s〉 ::= 〈d a cnp pp〉〈vp〉

〈vp〉 ::= 〈v〉〈pps〉|〈v〉〈d a cnp pp〉〈pps〉

〈pps〉 ::= ǫ|〈pp〉〈pps〉

〈pp〉 ::= 〈p〉〈d a cnp pp〉

〈d a cnp pp〉 ::= 〈d a cnp〉〈pps〉

〈d a cnp〉 ::= 〈d〉〈a cnp〉|〈a cnp〉

〈a cnp〉 ::= 〈adj〉〈a cnp〉|〈cnp〉

〈cnp〉 ::= 〈n〉〈cnp〉|〈n〉

〈v〉 ::= force|forces|cause|causes| . . .

〈n〉 ::= insulin|storage|cell|cells| . . .

〈d〉 ::= the|this|my| . . .

〈p〉 ::= in|with|by| . . .

〈adj〉 ::= pancreatic|recombinant|adipose|pineal| . . .

90

5.6 Let us try various formalisms

Instead of giving one final answer as to what formalism shall be used for rep-
resenting ontological semantics, we would prefer to “play around” with some of
them.

Initially one can try each of them separately and argue how well suited each
of them is for representing ontological semantics. Is Description Logics good
enough? How about First Order Predicate Logic? Lambda Calculus? The
problems of tractability and decidability have to be taken into consideration as
far as search aspects are concerned, so the reader knows that semantics expressed
in λ–calculus or First Order Predicate Logic cannot be searched for. Hence a
need arises for narrowing or combining some of them.

At this point let us have a look at the Peirce product2 based semantics
for representing nodes in generative ontology, which is restrictive enough to be
tractable.

5.7 Peirce–algebraic ontological semantics

We are interested in “understanding” the language. This is a very complicated
problem, and in the computational context it can be defined as capturing correct
semantics from the text.

There are various theories describing formal semantics for English, e.g. the
algebraic boolean semantics described in [26].

However, the most prominent example is the Montague semantics, where
one focuses on translating various English phrases into quantified formulae in
First Order Predicate Logic3.

As an example, consider the following article from the Wikipedia entry on
“Insulin”:

“Insulin is required for all animal life.” (5.2)

One could capture the semantics of this sentence in the following way:

∀X(life(X)∧ animal(X)→ requires(X, insulin))

This semantic representation is not particularly useful for the purpose of
creating a search engine. One of the problems is that First Order Predicate

2The Peirce product has been introduced in section 2.3.7 on page 47.
3Often higher–order logics are also used.

91

Logic is not decidable. Therefore it would be impossible to decide whether
semantics of some sentence in the text subsumes the semantics of the query
sentence.

Additionally, such a focus on quantification is not something that the user of
the search engine would expect. As a matter of fact the user is mostly concerned
with finding articles, which refer to a particular concept. Here the concept could
be defined as requiring of insulin by animal life.

Peirce algebra (described in Section 2.3.7 on page 47) turns out to contain
a very useful operation, called Peirce product, which allows us to express the
ontological semantics of the sentence of interest as:

requiring ∩ agt : insulin∩ pnt : (animal ∩ life)

Note that Peirce product (:) binds stronger than intersection (∩).
In order to explain this ontological semantics, let us go back to our running

example:

Insulin forces storage of glycogen. (5.3)

Its semantics can be expressed using Peirce algebra as:

forcing ∩ agt : insulin∩ pnt : (storage ∩ pnt : glycogen) (5.4)

Recall that Peirce algebra is an algebra of sets and relations between indi-
viduals belonging to those sets [12]. In Equation 5.4, the sets, which represent
classes in our ontology, are:

• forcing – A class (set) comprising all imaginable actions of forcing. E.g. “me
forcing my younger brother yesterday to clean the room” is an example of
individual belonging to this class.

• insulin – This class contains only one individual, being the chemical sub-
stance called “insulin”. It is a singleton set.

• storage – A class (set) comprising all imaginable actions of storing.

• glycogen– This class contains only one individual, being the chemical sub-
stance called “glycogen. It is a singleton set.

Similarly, the following ontological relations are present in Equation 5.4:

• agt – Agent relation, relating an action to its agent, which is usually
initiating the action and carrying it on.

92

• pnt – Patient relation, relating an action to its patient, which is usually
influenced by the action, being modified, etc.

The problem of capturing the semantics presented in Equation 5.4 from the
sample sentence is described in Chapter 7 on page 113.

In order to fully understand the semantics at hand, let us first translate it
according to the definition of Peirce product:

forcing

∩ {X |∃Y ((X,Y) ∈ agt ∧ Y ∈ insulin)}

∩ {X |∃Y ((X,Y) ∈ pnt

∧ Y ∈ (storage ∩ {X |∃Y ((X,Y) ∈ pnt ∧ Y ∈ glycogen)}))}

The resulting formula is quite complex. Let us try to explain part of it:

{X |∃Y ((X,Y) ∈ agt ∧ Y ∈ insulin)} (5.5)

Equation 5.5 defines a set of all individuals X , which are agent–related to
some individual Y , such that Y is an instance of insulin. The resulting set will
be a class, comprising all entities, which have insulin as an agent.

Coming back to the full sentence, if we intersect all imaginable forcing actions
with all entities having insulin as an agent, we get a class containing all forcing
actions, which have insulin as an agent.

Similarly, we narrow the forcing class by intersecting it with all entities,
which have storage as a patient. A further, Peirce product restriction is applied
to the storage in a nested way, as we are only interested in the storage of
glycogen.

Hence, by using Peirce algebraic operations we can construct infinitely many
compound concepts, using a finite supply of primitive classes and relations. It
is worth noticing that such a representation allows us to capture most of the
substantial information from the text.

This semantics is chosen as the best alternative for the ontological natural
language analyzers, which are described in Chapter 7.

A very useful property of the chosen semantics is that it is variable–free,
hence quite simple to be dealt with computationally. It does not suffer from the
problems of First Order Predicate Logic, like undecidability. It is used in the
working implementation of the system, and allows it to work very efficiently.

93

5.8 Semantic incompleteness

If we consider sentence 5.3 and its semantics 5.4, we can notice that not all of
the information that humans can retrieve from the sentence is captured by the
semantics. For instance, the tense of the verb is lost, so the semantics does not
tell whether the action of forcing happens presently, in the past, etc.

In other words, we have:

[[Insulin forces storage of glycogen.]]

= [[Insulin forced storage of glycogen.]]

= forcing ∩ agt : insulin∩ pnt : (storage ∩ pnt : glycogen)

We should discuss whether such a behaviour is desired. We have to keep in
mind that the semantics presented is supposed to be used by a search engine
for ontological querying.

Clearly, the search engine will give one of the sentences as the match for the
other, as they have the same semantics. This is a desired behaviour, because the
sentences talk about the same concepts, and we would probably like to neglect
the tense when we use the search engine.

On the other hand, we need to keep in mind that such a phenomenon cannot
be used as the main principle for the search engine’s matching. Also sentences
with different semantics should be often found as answers to queries. Consider
e.g.:

[[Insulin forces storage of glycogen.]]

= forcing ∩ agt : insulin∩ pnt : (storage ∩ pnt : glycogen)

and:

[[Insulin causes storage of glycogen.]]

= causing ∩ agt : insulin∩ pnt : (storage ∩ pnt : glycogen)

Both sentences have different semantics, yet we would like to return one as
the match for the other one being the query. We can do it, because in the
underlying ontology we have:

isa(forcing, causing)

Knowing that the action of “forcing” is kind of a “causing”, the search engine
shall in this case decide to return the sentence in question as a match.

We can conclude by saying that the incompleteness of the captured semantics
can in fact improve the end result of the search.

94

5.9 Rephrasing

One sentence might be reformulated in different ways. Usually words can be
moved around the sentence, in order to stress something, make the sentence
funny, etc. The sentence normally keeps similar meaning.

Rephrasing, however, poses a challenge for the ontological text analyzer.
Clearly, we would like to achieve semantics, which is independent of the way
the sentence was phrased. This independence comes in most cases for free with
the commutativity of the set intersection operation. As an example, consider:

forcing ∩ agt : insulin∩ pnt : (storage ∩ pnt : glycogen)

= forcing ∩ pnt : (storage ∩ pnt : glycogen) ∩ agt : insulin

One could imagine that such two meanings are captured from different sen-
tences. Nevertheless, they will be considered equal, as the set intersection (∩)
is commutative.

Another type of rephrasing is illustrated by the following example:

[[Insulin forces storage of glycogen.]]

= [[Insulin forces glycogen storage.]]

= forcing ∩ agt : insulin∩ pnt : (storage ∩ pnt : glycogen)

The system is able to construct the same semantics for this example, because
it looks for patient of an action both in prepositional phrase and in compond
noun phrase. This is the expected behaviour, as both sentences have the same
meaning.

5.10 Relations vs. classes

For some sentences we have the choice of extracting semantics in two different
ways: using a relation or a class. For our sample sentence we could have:

[[Insulin forces storage of glycogen.]]

= forcing ∩ agt : insulin∩ pnt : (storage ∩ pnt : glycogen)

But we could also use the CBY relation, which relates an action to its cause.
In such a case we would obtain:

[[Insulin forces storage of glycogen.]]

= storage ∩ pnt : glycogen∩ cby : insulin

95

Please observe how in one version the notion of forcing is represented by a
class and in the other by relation.

It should be decided which of the two semantics is preferable. In our opinion
the former is a better choice for the following reasons:

• By representing the action of forcing by the cby role we actually loose some
useful information. This is because few other verbs could trigger this role,
e.g. “causes”.

• Since we did not introduce a subsumption relation between relations, but
only between classes, representing forcing as a class allows for some more
ontology–based reasoning. E.g. we can easily see that “forcing” is below
“causing” in the ontology, which is in turn below “action”, etc.

• One could argue that if we introduce a relation for representing the action
of causing, we should be consistent and do the same for other actions as
well. In our opinion it is preferable to keep the number of relations low.

• Relations also have the problem of requiring the inverse relations to be
taken into consideration. Consider the following two semantics:

storage ∩ pnt : glycogen∩ cby : insulin

insulin∩ cau : (storage ∩ pnt : glycogen)

Both semantics are equivalent, as the relation cau4 is the inverse relation
of cby5. For some reasoning engine, it must be explicitly defined that
those relations are inverse, so that it could infer that the two presented
semantics are the same.

5.11 Plurals

Sentences of our interest often involve plural constructions. Various construcions
can be used for constructing plurals. In the following, we will concentrate on
the “and” conjunction, which can form conjoined noun phrases, verb phrases,
sentences, etc.

Let us consider the sentence:

A boy and a girl played. (5.6)

4r(φ, cau, ρ) means that phi causes ρ.
5r(φ, cby, ρ) means that phi is caused by ρ.

96

The sentence has two Logic of Plurals and Mass Terms readings – the col-
lective one:

∃x∃y[boy′(x) ∧ girl′(y) ∧ played′(x⊕ y)]

and the distributive one:

∃x[boy′(x) ∧ played′(x)] ∧ ∃y[girl′(y) ∧ played′(y)]

The distributive reading can be easily represented as two nodes in the generative
ontology:

playing[agt : boy]

and
playing[agt : girl]

The collective reading is however problematic, as we need to decide how it should
be captured. The three alternatives are discussed in the following sections.

5.11.1 Collectives operator

We could use the operator ⊕ for constructing plural sums of two individuals, as
in:

playing[agt : (boy ⊕ girl)]

The equivalent view in Peirce Algebra:

playing ∩ {X |∃Y ((X,Y) ∈ agt ∧ Y ∈ (boy ⊕ girl))}

In this proposal the ⊕ operator takes two sets, representing classes, and con-
structs a set representing collectives consisting of two individuals, each of which
belongs to one of those two classes.

The advantage of this approach is that we can assume that relations have a
functional character. It means that the intended meaning of the agt relation is
as follows: We say that event e and individual i are agt–related ((e, i) ∈ agt)
iff i participates in e as its only agent. If an event has more than one agent, we
need to represent all of them as one collective agent, a plural.

5.11.2 Multiple semantic roles

We could simply use the same semantic role twice in a feature structure, as in:

playing[agt : boy, agt : girl]

97

The equivalent view in Peirce Algebra becomes:

playing ∩ {X |∃Y ((X,Y) ∈ agt ∧ Y ∈ boy)} ∩ {X |∃Y ((X,Y) ∈ agt ∧ Y ∈ girl)}

This means that the event which the sentence talks about is an intersection of
three things:

• All events of playing;

• All events that have a boy as their agent;

• All events that have a girl as their agent.

We need to assume that relations do not have a functional character. It means
that the intended meaning of the agt relation is as follows: We say that event e
and individual i are agt–related ((e, i) ∈ agt) iff i participates in e as one of its
agents.

5.11.3 Special nodes for representing collectives

We may introduce special classes in the ontology for representing plurals. Say,
we have a class sum, representing a very general collection of objects. Then we
can create the following node in the generative ontology as our representation
of the sample sentence:

playing[agt : sum[cmp : boy, cmp : girl]]

We can think of this representation in the following way: the event belongs to
the class playing and it has an agent, which belongs to a class sum, comprising
two elements – a boy and a girl.

It is worth observing that this approach requires multiple semantic roles.
The sum can be refined further into more specific classes, e.g. combination,
mixture, etc.

5.12 Merging ontological semantics with catego-

rial grammar

Let us now investigate how one could merge the ontological semantics developed
in this chapter with categorial grammar.6 The incorporation of ontologies can

6The combination of ontologies and categorial grammar has been presented previously by
us in a paper at the International Multiconference on Computer Science and Information
Technology – Computational Linguistics Applications.

98

be devised in order to reject ontologically–incorrect semantics to be assigned to
some natural language fragments (e.g. “A table smiled.”). Categorial Grammar
is a well established tool for describing natural language semantics.[13, 34] Let
us discuss some of its drawbacks and how it could be extended to overcome
them. We use the extended version for deriving ontological semantics from text.
A proof–of–concept implementation is also presented. We wish to extend the
usual Categorial Grammar framework in order to achieve more flexibility. We
also present how it can be used with an ontological component, which imposes
well–formedness restrictions on sentences. The objective is to integrate formal
ontologies with semantic domains.

Throughout this section we use classical Church’s type theory, C, as pre-
sented in [2]. We use the convention that functional types associate to the
left, i.e. type γβα is the same as (γβ)α, which is also sometimes denoted as
α→ (β → γ).

5.12.1 Representing ontological semantics

We wish to construct ontological semantics for a fragment of English, following
the approach in [24], using C as our formalism.

We can represent concepts appearing in a skeleton ontology as constants of
type α: Childα, T allα, Runningα, Those concepts are to be thought of as
sets, e.g. Childα is a set of all imaginable children. Tallα is the set of all tall
objects, thus properties such as “tall” are introduced in the ontology on the
par with classes. Runningα is a set of all imaginable actions of running, etc.
We do not want to be specific about α, but in the current example it could
be replaced by oι, which is traditionally used for representing sets. Introducing
nominalized verb forms as concepts in the ontology is in line with the adoption of
the Davidsonian view. We also disregard meaning of determiners in the present
fragment, as the resulting semantics is intended to be used for content–based
text search. We will represent intersection of concepts using constant ∩ααα,
e.g. child ∩ tall will be represented as ∩αααChildαTallα.

A simple skeleton ontology can be represented using a set of factual clauses
of the form:

SuboααChildαPersonα

SuboααPersonαPhysicalα

SuboααPersonαAnimateα

SuboααRunningαActionα

99

Suboαα is a direct descendant relation, representing the lines that are drawn
in the Hasse diagrams. Isaoαα can be specified as the (reflexive) transitive
closure of Suboαα in the following way:

∀cα[Isaoααcαcα]

∀cα∀aα∀pα[Isaoααcαaα ⊃ Suboααcαpα ∧ Isaoααpαaα]

We use constants of type ρ to represent roles (binary relations), e.g. Agtρ,
Locρ. We can use Peirce product [12] to create compound concepts. We
use constant :ααρ for that purpose, e.g. agt : child will be represented as
:ααρ AgtρChildα. Such a concept formation is well–known from Description
Logics, where it would be represented as ∃agt.child.

For a sample sentence “The tall kid runs”, we would like to derive the fol-
lowing ontologico–algebraic meaning:

running ∩ agt : (child ∩ tall)

This can be represented in type theory as a wffα:

∩αααRunningα[:ααρ Agtρ[∩αααChildαTallα]]

We shall extend the specification of subsumption relation to accomodate for
the intersection:

∀xα∀yα∀zα[[Isaoαα[∩αααxαyα]zα] ⊃ [Isaoααxαzα]]

∀xα∀yα∀zα[[Isaoαα[∩αααxαyα]zα] ⊃ [Isaoααyαzα]]

5.12.2 Modified Categorial Grammar

We introduce type ω. Constants of this type represent words in English, e.g.Wkidω,
Wtallω, Wrunsω. Notice that we use different names for constants denoting
words and those representing concepts, e.g. Wtallω and Tallα. In this way they
are not confused.

Let us define a new type, say, κ, which we will use for lexical entries. We
also define three constants, which act as type constructors:

Bκ(oκκ)

Fκ(oκκ)

Eκα

100

Lexical entries are represented using the predicate constant Lexoκω. The
lexicon consists of the set of factual clauses of the form:

LexoκωWkidω[EκαChildα]

The type constructor Eκα is used in the lexical entry in case the meaning
of a word is some “fixed” ontological concept. The other constructors, Fκ(oκκ)

and Bκ(oκκ) are reminiscent of the Categorial Grammar’s backward and forward
slashes, respectively. A lexical entry for word “tall” might look as follows:

LexoκωWtallω[Fκ(oκκ)P talloκκ]

In the above, P talloκκ is a predicate, which might be defined in the following
way:

∀cα[[P talloκκ[Eκαcα][Eκα[∩αααtallαcα]]]

⊃ [IsaoααcαPhysicalα]]

The novelty in our approach is the use of predicates in meanings of words. In
standard Categorial Grammar, lambda terms are used for that purpose. They
are combined using β–reduction, with the only provision of categorial agreement.
Consider the sentence “vitamin smiles.” In traditional CG, “vitamin” has cat-
egory np and meaning vitamin. The word “smiles” has category np\s and
meaning λx.smile(x). Since the categories fit together, the meanings get com-
bined using β–reduction, and the sentence gets the meaning smile(vitamin).
While the sentence is correct syntactically, it is incorrect from an ontological
point of view. Unfortunately, usual CG does not allow us to introduce any on-
tological restrictions on the semantics. Our approach can reject this sentence,
as we can use the following lexical entry for “smiles”:

LexoκωWsmilesω[Bκ(oκκ)Psmilesoκκ]

∀cα[[Psmilesoκκ[Eκαcα]

[Eκα[∩αααSmilingα[:ααρ Agtρcα]]]]

⊃ [IsaoααcαAnimateα]]

The inability of β–reduction to fail has been already recognized as a problem
by G. Ben–Avi and N. Francez in [9]. They have introduced a new formalism,
which includes “β–reduction for ontologically–well typed λ–terms”, among 12
definitions that constitute “the Ontological Lambek Calculus”. Our proposal,
however, has some further advantages:

101

• It is very formal – it is formalized fully within C.

• It is very simple – it consists of a small number of formulae.

• It is very flexible – it allows adding arbitrary restrictions, e.g. one might
like to use restrictions based on parthood relation rather than subsump-
tion.

• It can be implemented in a straight–forward way, as presented in Sec-
tion 5.12.4

For those reasons, rather than using β–reduction, we propose using a general
proof system, which is a machinery having inherently the notion of failure at
disposal. Now, desired semantic restriction can be handled by non–provability
of a certain statement, e.g.:

K 0 ∃xκ[Psmilesoκκ[EκαV itaminα]xκ]

In the above K denotes a set of formulas consisting of lexical assertions and
rules introduced throughout this section. So a vitamin cannot smile, but a child
certainly can:

K ⊢ ∃xκ[Psmilesoκκ[EκαChildα]xκ]

Not only are we interested in the provability of such a goal, but we would also
like to know what is the resulting semantics. In this case it is: Eκα[∩αααSmilingα[:ααρ
AgtρChildα]]

In other words:

K ⊢ [Psmilesoκκ[EκαChildα]

[Eκα[∩αααSmilingα

[:ααρ AgtρChildα]]]]

5.12.3 Elimination rules

Recall that the forward sequent rule of the natural–deduction Lambek Calculus
takes the form:

a⇒ Φ1 : A/B b⇒ Φ2 : B

a, b⇒ Φ1(Φ2) : A

102

and the backward rule:

a⇒ Φ1 : B b⇒ Φ2 : B\A

a, b⇒ Φ2(Φ1) : A

In the above a, b is the concatenation of a and b. Notice that the only pro-
vision for the elimination to take place is the agreement of syntactic categories.
This is because Φ1(Φ2) is always a well–formed λ–term, which can be β–reduced.

For the ease of reading, let us present the forward elimination rule of the
generalized grammar in a similar, though quite informal way:

aθ ⇒ Fκ(oκκ)poκκ bθ ⇒ jκ K ⊢ poκκjκkκ

aθ, bθ ⇒ kκ

Let us formalize our generalized elimination rules in C. The derivation rela-
tion (⇒) can be represented using a constant Roκθ. The sequences of meanings
will be represented using a well–known logic representation for lists. For the
empty list we use the Nθ constant, and the list constructor is represented by
Lθθκ.

The list concatenation can be represented using the list appending well–
known from logic programming, though here defined for non–empty lists only:

∀xκ∀yκ∀tθ[Aoθθθ[LθθκxκNθ]

[Lθθκyκtθ]

[Lθθκxκ[Lθθκyκtθ]]]

∀hκ∀lθ∀mθ∀tθ[[Aoθθθ[Lθθκhκlθ]mθ[Lθθκhκtθ]]

⊃ [Aoθθθlθmθtθ]]

The above use of Aoθθθ asserts that the concatenation of a and b yields g,
or g is split into a and b. Now the forward elimination rule can be formalized
in C:

∀aθ∀bθ∀gθ∀jκ∀kκ∀poκκ[Roκθgθkκ]

⊃ [Aoθθθaθbθgθ]

∧ [Roκθaθ[Fκ(oκκ)poκκ]]

∧ [Roκθbθjκ]

∧ [poκκjκkκ]

103

Similarly, the backward elimination rule:

∀aθ∀bθ∀gθ∀jκ∀kκ∀poκκ[Roκθgθkκ]

⊃ [Aoθθθaθbθgθ]

∧ [Roκθaθjκ]

∧ [Roκθbθ[Bκ(oκκ)poκκ]]

∧ [poκκjκkκ]

We also need the following grammatical axiom, which expresses that if the
list of meanings contains only one element, that element is the resulting meaning:

∀kκ[Roκθ[LθθκkκNθ]kκ]

The English text can also be represented formally in C. We introduce a new
type ζ for that purpose. We will represent the text as a list of words. An empty
list of words will be represented by a constant Tnilξ and a list constructor by a
constant Tξξω.

5.12.4 Implementation outline

Using C instead of some kind of untyped logic as the underlying formalism has
important advantages regarding the implementation. It forces us to think of the
type of every formula, subformula and symbol. Thanks to that, the resulting
formalization of the grammar is well–suited for implementation in a strongly–
typed programming language. Using such a language (e.g. Mercury instead of
Prolog) helps avoid very hard–to–find bugs and allows the compiler to generate
much faster code.

We are interested in translating the formal specification given so far to a
Prolog–like logic programming language, so that we can execute specific queries.
For that purpose, we have formalized the grammar in C using only definite
clauses. Furthermore, we perform the following steps:

• We write all the constants in lower–case

• We write all variables in upper–case

• We use i for intersection constant and p for the Peirce product constant

• We drop the subscripts indicating types in all formulas

• We replace ‘⊃’ and ‘∧’ with ‘:-’ and ‘,’, respectively.

104

• We add a period at the end of each formula.

• We replace curried notation of argument application with a non–curried
one.

• We simply remove the universal quantification over all variables, as it is
implicit.

Following all the given steps results in the program presented below. The
result is a perfectly valid program in the Mercury logic programming language.
Mercury is however strongly typed, so we need to add a few auxiliary definitions
in order to compile it.

The type α can be modeled as follows:
�

1 :−type alpha −−−> ch i l d ; t a l l ; phy s i c a l ;
a c t i on ; person ; running ;
smi l i ng ; animate ;
. . .
i (alpha , alpha) ;

6 p(ro l e , alpha) .

We need to add the following type, mode and determinism specification for
the subsumption predicate:

�

:−pred sub (alpha : : in , a lpha : : out) i s nondet .

This tells Mercury that predicate sub takes an entity of type α as input,
and computes an entity of type α as output. Furthermore, we specify that sub
is a nondeterministic predicate, meaning that it can compute multiple outputs
for one input. We need to provide similar specifications for all predicates in our
program.

The factual subsumption database, translated directly from our previous
definition in C:

�

sub (ch i ld , person) .
sub (person , phy s i c a l) .
sub (person , animate) .

4 sub (running , a c t i on) .
sub (smi l ing , a c t i on) .
. . .

105

The type ρ of roles can be defined in Mercury as:
�

:−type r o l e −−−>
tmp ; l o c ; prp ; wrt

; chr ; cum ; bmo ; cby
4 ; cau ; cmp ; pof ; agt

; pnt ; s r c ; r s t ; ds t
; v ia ; . . .

Clauses defining the isa relation:
�

i s a (C,C) .
i s a (C,A) :−sub (C,P) , i s a (P,A) .
i s a (i (X, Y) ,Z) :− i s a (X, Z) .

4 i s a (i (X ,Y) ,Z) :− i s a (Y, Z) .

The predicates included in lexical entries take the following form in Mercury:
�

1 p t a l l (e (C) , e (i (t a l l ,C))) :−
i s a (C, phy s i c a l) .

p runs (e (C) , e (i (running , p(agt ,C)))) :−
i s a (C, animate) .

6

p sm i l e s (e (C) , e (i (smi l ing , p (agt ,C)))) :−
i s a (C, animate) .

p the (e (I) , e (I)) .
11

. . .

The lexicon, translated to Mercury:
�

l e x (w kid , e (ch i l d)) .
l ex (w ta l l , f (p t a l l)) .

3 l e x (w runs , b (p runs)) .
l ex (w smiles , b(p sm i l e s)) .
l ex (w the , f (p the)) .
l ex (w a , f (p the)) .
. . .

106

The definition of non–empty list appending:
�

a (l (X, n) , l (Y,T) , l (X, l (Y,T))) .
a (l (H,L) ,M, l (H,T)) :−a (L ,M,T) .

The rules formalized in C take the following form in Mercury:
�

r (l (X, n) ,X) .

3 r (G, E1) :−
a (G1 ,G2 ,G) ,
r (G1 , f (P)) ,
r (G2 , E2) ,
P(E2 , E1) .

8

r (G, E1) :−
a (G1 ,G2 ,G) ,
r (G1 , E2) ,
r (G2 , b (P)) ,

13 P(E2 , E1) .

The rules are the only place in the program, where we use higher–order predi-
cates.

The following predicate assigns a meaning to English text:
�

m(T,C) :−
2 map lex (T,L) ,

r (L , e (C)) .

Let us add an auxiliary predicate work for testing purposes:
�

work (C) :−
2 m(t (w the ,

t (w ta l l ,
t (w kid ,

t (w smiles ,
t n i l)))) ,C) .

The map lex predicate is used for lexicon look–up of a list of words.

107

�

map lex (tn i l , n) .
map lex (t (W,T) , l (I ,MT)) :−

l e x (W, I) , map lex (T,MT) .

Notice that the program does not require higher order unification, except
for the simplest case where a variable is bound to a predefined predicate and
such a predicate is called. Most logic programming languages provide a facility
for such behaviour. We could change the syntax slightly and turn our code into
a valid Prolog program by utilizing the call library predicate.

The full listing of the program is given in Appendix C on page 207.
Notice that the program is a direct implementation of the theory, hence

quite inefficient. Instead of the presented top–down approach, we could derive
the semantics in the bottom–up manner in order to avoid unneeded search.

For the sample query:
�

? work (C) .

We get the following (exactly one) result:
�

C = i (smi l ing , p (agt , i (t a l l , c h i l d)))

5.13 Summary

In this chapter we have introduced the notion of ontological semantics. In
particular we will focus on the Peirce–algebraic ontological semantics, as it fits
perfectly with the generative ontology.

Furthermore, we have presented an example of how our ontological seman-
tics can be utilized by merging it with Categorial Grammar. The functional
composition and β–reduction have been replaced with proof rule application.
We have utilized it for constructing ontologico–algebraic meaning using onto-
logical restrictions, dropping at the same time syntactic categories and syntactic
restrictions.

108

Chapter 6

Comparison with
state–of–the–art in
ontological semantics

In this brief chapter, as an interlude before we commence with developing sys-
tems for ontological meaning extraction, let us have a look at the state–of–the–
art and compare it to our approach.

One of the state–of–the–art approaches to ontological semantics utilizing
Lambek Calculus has been presented by G. Ben–Avi and N. Francez in [9]. We
have previously presented a discussion of this work and suggested an alternative
approach in Section 5.12 on page 98.

6.1 Comparison to “Ontological Semantics” by
Nirenburg and Raskin

Perhaps it is worth comparing our approach to the ontological semantics de-
scribed in the previous chapter to that described in the book by the same title
by Nirenburg and Raskin [33].

• In our approach we use First Order Predicate Logic as the underlying for-
mal metalanguage in order to maintain coherence between theory, specifi-
cation, and implementation parts. Nirenburg and Raskin (N&R) dismiss

109

First Order Predicate Logic, as according to them it has failed “to have
made a historical impact”. We try to remain formal in our discussions,
while they tend to be more philosophical and informal.

• N&R deal with textual natural language semantics in general. We con-
cern ourselves only in general with scientific texts, particularly biomedical
ones. This has large impact on the way ontologies are used in the seman-
tics. Due to unrestricted domain, N&R’ semantics approaches issues of
aspect, detailed time, language style (formality, politeness, respect, force,
simplicity, color, directness), modality, etc. These issues are not relevant
for our scientific text domains.

• The tasks that N&R’s text meaning representations have been used for
include machine translation, information extraction, question answering,
general human–computer dialog systems, and text summarization. This
is a wide range of linguistic applications, while we focus ourselves on the
problem of semantic search.

• Our approach is unique in that we use the notion of generative ontologies
in order to establish a formal ontological semantics.

• We provide several concrete algorithms for extracting ontological seman-
tics from text (and one for generating text given ontological semantics),
with implementation. While N&R discuss how text meaning representa-
tions can be extracted from text, they do not provide a specific algorithm
or implementation thereof.

6.2 Framenet

Let us consider the Framenet project [6, 49, 7], centered around the idea of
semantic frames.

In [15] we read:

The basic idea is that one cannot understand the meaning of a sin-
gle word without access to all the essential knowledge that relates to
that word. For example, one would not be able to understand the
word “sell” without knowing anything about the situation of com-
mercial transfer, which also involves, among other things, a seller, a
buyer, goods, money, the relation between the money and the goods,
the relations between the seller and the goods and the money, the
relation between the buyer and the goods and the money and so on.

110

This approach differs substantially from ours in various respects. As it ap-
pears, frame semantics presuposes the need of quite large amount of real–world
knowledge. The quoted “knowing about the situation of commercial transfer”
is very advanced and complicated task with a computer. Full formalization of
such a knowledge is an extremely difficult task – so difficult in fact, that nobody
has ever come close to accomplishing it (for non–abstract concepts). All existing
real–world knowledge formalization attempts simplify the view of the problem,
and describe only some relatively small (but usually most important) part of
it, leaving the less–important (or sometimes just more–difficult–to–model) el-
ements out. Cf. e.g. CYC [27]. FrameNet serves as a simplified view of this
“knowing”, where frames are used to encode some limited information about
situations like “commercial transfer”. However, comparing FrameNet to our
approach, it still contains much more information in the frames than we do
in our setup. This has both advantages and disadvantages. The advantage of
using FrameNet for our purposes could be that the information available could
improve the understanding of language. That’s the goal of FrameNet or any
other lexical resource – more knowledge allows better language comprehension.
However, the downside is that one requires a large amount of frames. At the
time of writing FrameNet consists of close to 800 frames, which covers an im-
presive amount of language. Nevertheless, still a lot more is needed to claim
a very large linguistic coverage. Projects like BioFrameNet [16] try to fill the
gaps for some domains, but as with any knowlegde representation project, a lot
is left to do.

In a sense, in our approach, we would like to have quite large language
coverage. Therefore we only depend on a lexicon and a skeleton ontology, both
of which can support very large linguistic coverage, far beyond FrameNet’s 800
frames.

The key difference, however, lies hidden in the underlying motivation and
aspirations of the projects. Once again, frame semantics claims:

The basic idea is that one cannot understand the meaning of a single
word without access to all the essential knowledge that relates to that
word.

While we fully agree with this statement, the point to notice is that, as
far as our approach is concerned, we refrain from trying to “understand the
meaning of a single word”. Instead of understanding the full meaning of a
word, a phrase, or a sentence, we limit ourselves to capturing what the sentence
is about, i.e. extracting conceptual information from the sentence and linking to
the generative ontology. This comes from the fact that our ontological semantics

111

is supposed to be used for search, and for that purpose we do not need to
understand the propositional content of a sentence. Hence, in our approach,
understanding a word is limited to linking the word to a concept in the generative
ontology.

Also, according to [39], FrameNet cannot be used as an ontology.
Even though for the reasons explained above, we do not use FrameNet di-

rectly, some of its data could still be utilized while building a generative ontology.
FrameNet contains semantic categories for frame elements, and those could be
manually1 turned into ontological affinities that define the generative ontology.
However, we do not pursue this idea.

1It seems unlikely to achieve good results with automatic methods.

112

Chapter 7

The computational view of
the relation between the
natural language fragment
and the ontological
semantics

This chapter gives an overview of how one could relate a fragment of the natural
language and the ontological semantics established in chapter 5 by computa-
tional means. We call the process of extracting the ontological semantics from
text “ontograbbing”. However, we also discuss the reverse problem of linguistic
realization, i.e. transforming a given ontological semantics into a linguistic form,
such as a phrase or a sentence.

The chapter starts with a simple definite clause example of ontograbbing,
which algorithmically relates text to its ontological semantics. This relation
is supposed to be very formal, so the language is limited and narrowed down
to selected language fragments. Further extensions are presented, in order of
increasing complexity. In the next chapter we will present a more robust model
accepting realistic text.

The algorithms presented in this chapter are not meant to be efficient, but to
reflect closely the logical relation between language and its semantics established

113

in the previous chapter.

Since these simple ontograbbers are implemented in Prolog (including its
special Definite Clause Grammar notation), a short discussion about suitability
of that system is provided.

7.1 Computation with Prolog vs. specification

in First Order Predicate Logic

In case of First Order Predicate Logic, we could use a Prolog system as a
convenient computational approximation that would allow us to reason in an
efficient way. However, Prolog systems use most commonly some version of SLD
resolution coupled with closed world assumption and negation as failure in order
to simulate the First Order Predicate Logic reasoning. The word “simulate” is
used intentionally here. Let us have a look at how First Order Predicate Logic
and Prolog logic programming differ. In the latter, due to the fact that SLD
resolution is used, we are limited to writing our sentences as definite clauses.

This poses serious restrictions on our freedom to use arbitrary operators
and quantifiers anywhere within our sentences. We are limited to using definite
clauses only, which are all built as universaly quantified implications with one
term on the left hand side and a conjunction of arbitrary number of terms on the
right hand side. Unfortunately, not every First Order Predicate Logic formula
can be translated to a set of definite clauses to be used by Prolog systems. One
of the most noticeable problems with such translation is the fact that Prolog
uses negation as non–provability instead of classical negation.

Prolog systems often offer additional facilities, e.g. cut operation, which
go beyond definite clauses. Such extensions modify the way SLD resolution
operates, and hence logic programs containing them are referred to as impure.

However, even if the set of formulae is pure and exactly the same for First
Order Predicate Logic and Prolog, it is still not to be understood in the same
way. We have to keep in mind how Prolog executes the given logic program.
The order of clauses is very important. Swapping the order of two clauses can
turn a well–working program into a non–terminating one. We do not observe
such shortcomings with First Order Predicate Logic. Similar issue occurs with
the order of literals in the body of a given clause. While the order of literals in
a conjunction is strictly arbitrary in First Order Predicate Logic, it matters a
lot with Prolog.

This situation means that while some First Order Predicate Logic specifi-

114

cation can provide a full specification of some problem, a corresponding logic
program may only reflect a single side of it. This means that some Prolog
queries, which are sentences to be proven, might work well with the given set of
clauses, while others may cause Prolog to loop infinitely.

For the reasons described above, a given logical specification may have to be
rewritten as several logic programs, each allowing to pose some kind of queries.
This situation is often encountered if we want Prolog to perform synthesis and
analysis at the same time. Often one is achievable, while the other causes
queries to loop indefinitely, or vice versa. The issue may be fixed by writing one
logic program to be used with synthesis queries and another to be used with
analysis queries. Such a solution may be regarded as not fully satisfactory, as
both programs usually differ only in the order of clauses or literals within clause
bodies.

7.2 Lists

In the tradition of logic programming, lists are used for representing sequences
of tokens or words. Most logic programming languages use a special notation for
lists, where a instead of writing list(head, tail) one writes [head|tail]. Also in-
stead of using the recursive notation [a|[b|[c|...]]] one uses [a,b,c,...].

In all presented ontograbbers we make extensive use of lists. We use them for
representing all kind of phrases and sentences, as lists of words. Furthermore,
they will also play key role in representing semantic structures, what is explained
further in Section 7.5.1 on page 127.

7.3 Computing with Definite Clause Grammars

Definite Clause Grammars are simply grammars expressed as definite clauses
[35]. They allow us to turn the problem of language parsing or generation into
theorem proving task. The grammar for the language needs to be expressed in
first order logic in form of definite clauses. The fact that the clauses are definite
facilitates the use of resolution systems for finding the proofs. The most common
such a system is Prolog, which uses SLD-resolution with unification for this task.

Hence, using DCGs not only allows us to provide formal ascriptions of onto-
logical semantics to text, but also function as a practical computational method.
However, the practicality of this method is questioned by some limitations of
the logic programming paradigm itself. Some of those limitations stem from

115

the discrepancies between the underlying logic with its proof system and the
inferential engine used to simulate it in logic programming in a computational
manner.

7.4 Ontograbbing with definite clauses

We first present a simple grammar, which does not make use of the special
DCG notation available in Prolog. All definite clauses are “spelled out” fully.
Additionally, for simplicity, we do not use difference lists, which would be hidden
behind the special Prolog DCG notation.

In the course of analyzing the sentence the list of words needs to be divided
into shorter sublists, corresponding to shorter phrases or words. For the purpose
of (nondeterministically) dividing any list of tokens into two shorter lists we use
the split predicate:

�

s p l i t (X, [H1 |T1] , [H2 |T2])
:−append ([H1 |T1] , [H2 |T2] ,X) .

The approach to parsing employed for this simplest ontograbber is by no
means the fastest one. However, it allow us to provide a clean logical description
of how the ontological semantics is coupled with the grammar. Describing an
efficient parsing process, e.g. utilizing the Earley1 parser would call for a very
large number of formulae in First Order Predicate Logic.

7.4.1 Noun phrases

The np predicate defines the logical relation between noun phrases and corre-
sponding ontological concepts. The singleton list containing only one token N

can be recognized as a noun phrase corresponding to the concept C if the lexicon
contains an entry for the noun N with an associated meaning C:

�

np ([N] ,C) :−noun (N,C) .

For handling noun–noun compounds, we have the following rule:
�

np (L ,C) :− s p l i t (L , L1 , L2) ,np (L1 ,C1) ,np (L2 ,C2) ,
a nnc (C1 ,C2 ,C) .

1An SML implementation of the Earley parser is presented in Appendix D.

116

Here we assign onto–meaning C to a noun–noun compound L provided that
it splits into two shorter noun phrases L1 and L2 with onto–semantics C1 and C2.
An additional requirement is that the ontological affinities allow us to combine
the meanings C1 and C2 into the meaning C, which is expressed in terms of the
a nnc predicate.

7.4.2 Handling prepositional phrases

First, let us observe that we do not handle prepositional phrases (PP) them-
selves. We always analyze them together with the phrase to which they are at-
tached. Hence, with noun phrases (NP) we will look at the tripples of the form
NP1 P NP2 instead of NP1 PP , where PP would consist of P and NP2 . The
reason for this is that we use all three elements for ontological disambiguation
of the role carried by the preposition. This is discussed in detail in Section 7.4.6
on page 120.

�

np (L ,C) :− s p l i t (L , L1 , L2) , s p l i t (L2 , [P] , L3) ,
prep (P) , np (L1 ,C1) , np (L3 ,C3) ,

3 a pp (C1 ,P,C3 ,C) .

This rule splits the (candidate) noun–phrase L into three sublists by per-
forming the splitting action twice. First L is split into L1 and L2, and then L2 is
split into a singleteon list containing only one preposition P and remaining list
L3.

After the splitting, we perform three actions. We test whether P is actually
a preposition according to our lexicon and we recursively apply noun phrase
recognition rules for both L1 and L3. Notice that we could have performed
those actions also in more “natural” order, that is the order of the elements in
the phrase L. The resulting rule would be as follows:

�

np (L ,C) :− s p l i t (L , L1 , L2) , s p l i t (L2 , [P] , L3) ,
2 np (L1 ,C1) , prep (P) , np (L3 ,C3) ,

a pp (C1 ,P,C3 ,C) .

Nevertheless, we choose not to do it, as the “unnatural” order has higher
efficiency. This is due to the fact that testing whether P is actually a preposition
takes a very short time, as it only requires one lookup in the lexicon. But testing
whether L1 is a noun phrase (and calculating its ontological semantics) may take
a longer time. If L1 would not turn out to be a correct noun phrase, the system

117

would need to backtrack only to find perhaps that in fact P is not a preposition.
Hence, testing the preposition first improves the performance of the system
by avoiding a lot of unnecessary backtracking. After all, if we encounter a
preposition in a sentence, a fairly good guess is that it follows a noun phrase.

Such a shuffling of atoms in the body of the clause is specific to practical
logic programming systems. We would never consider these two rules to be
any different if we would be working with logical specification in First Order
Predicate Logic.

The question arises – what if there is more than one prepositional phrase
attached to some noun phrase? In such a situation we observe ambiguity at the
syntactic level, i.e. the prepositional phrases can be either alligned or nested.
However, it turns out that our rule for handling noun–preposition–noun triplets
is flexible enough to handle these cases. This stems from the fact that the rule
is recursive in nature. Let us investigate how the rule operates in such cases by
considering the following example:

Blood flow through the liver after meals
︸ ︷︷ ︸

NP0

The rule can split the phrase into three parts in two ways (as there are two
prepositions):

Blood flow
︸ ︷︷ ︸

NP1

through
︸ ︷︷ ︸

PREP1

the liver after meals
︸ ︷︷ ︸

NP4
︸ ︷︷ ︸

NP0

or

Blood flow through the liver
︸ ︷︷ ︸

NP5

after
︸︷︷︸

PREP2

meals
︸ ︷︷ ︸

NP3
︸ ︷︷ ︸

NP0

In both cases, after the splitting is performed, the rule is called recursively
on the sublists, so that the noun phrases containing prepositions (NP4 and
NP5) will be handled using the same rule, in effect splitting them again into
three parts each. So, after the second phase of splitting, we will be left with the
following two divisions:

118

Blood flow
︸ ︷︷ ︸

NP1

through
︸ ︷︷ ︸

PREP1

the liver
︸ ︷︷ ︸

NP2

after
︸︷︷︸

PREP2

meals
︸ ︷︷ ︸

NP3
︸ ︷︷ ︸

NP4
︸ ︷︷ ︸

NP0

or

Blood flow
︸ ︷︷ ︸

NP1

through
︸ ︷︷ ︸

PREP1

the liver
︸ ︷︷ ︸

NP2
︸ ︷︷ ︸

NP5

after
︸︷︷︸

PREP2

meals
︸ ︷︷ ︸

NP3

︸ ︷︷ ︸

NP0

As we can observe, in both cases the final constituents to contribute to the
ontological semantics are the same, as could be expected. However, they are
structured differenctly at a higher level, via either NP4 or NP5 corresponding
to either nested or alligned prepositional phrases, respectively.

7.4.3 Determiners

The following rule handles determiners. Notice that determiners do not con-
tribute to the ascribed meaning:

�

np ([D|L] ,C) :−det (D) ,np (L ,C) .

Any determiners in the analyzed sentence are simply discarded. This has
an interesting side–effect. If the sentence contained determiners which are not
soundly placed according to the grammar, the analysis will continue without
noticing it. Usually a sentence containing e.g. a list of tokens “the the the”
should be rejected, as being ungrammatical.

7.4.4 Adjectives

Adjectives can be analyzed in the following way, analogous to how we dealt with
other phrases:

�

np (L ,C) :− s p l i t (L , [A] , L1) , adj (A,CA) ,np (L1 ,C1) ,
a ad j (CA,C1 ,C) .

119

7.4.5 Sentences

Sentences built of a subject NP, a transitive verb, and an object NP, will be
analyzed as follows:

�

s (L ,C) :− s p l i t (L , L1 , L2) , s p l i t (L2 , [V] , L3) ,
np (L1 ,C1) , tv (V,CV) , np (L3 ,C3) ,

3 a tv (C1 ,CV,C3 ,C) .

7.4.6 Ontology–based role recognition

Noun–noun compounds

An interesting problem is the recognition of a proper relation between concepts
in a noun–noun compound. While in prepositional phrases the preposition con-
tains a hint as to what role should be ascribed in the resulting semantics, noun–
noun compounds are more tricky. This recognition, in the current prototype,
is made on the basis of where the concepts corresponding to the constituent
nouns are placed in the ontology. E.g. if the meaning of the modifier noun is
below “substance” in the ontology, and the meaning of the head noun is below
“process”, we recognize the role to be “pnt”:

�

a nnc (X,Y, i (Y, p(pnt ,X))) :− i s a (X, substance) ,
2 i s a (Y, pro ce s s) .

Examples of this situation are: “glucose storage”, “insulin secretion”.
Similarly, we can base the role recognition on the parthood relation:
�

a nnc (X,Y, i (Y, p(loc ,X))) :−pa r to f (X, body) ,
pa r to f (Y, body) .

If both nouns represent parts of the body, we understand the hidden relation
between them to be “loc”. E.g. “liver cell”.

Prepositional phrases

When used to represent compound concepts, prepositional phrases give us more
information about the intended role between the partial concepts than noun–
noun compounds do. The clue is the preposition used. Nevertheless, preposi-
tions still do not allow us to determine the role uniquely, as they are in general

120

ambiguous. We can, however, similarly as with noun–noun compounds, use the
ontology for the purpose of disambiguation. In the current theory, the predicate
used for role disambiguation in prepositional phrases is called a pp.

It is worth noting that the disambiguation need not be absolute, i.e. we
will not always get one unique role. Out of n possible roles, we will get m
disambiguated ones, where 0 ≤ m ≤ n. Thus, we will usually get fewer roles,
most commonly one or two. It can also happen that we do not get any role
at all in the disambiguation process. This happens if our ontological affinities
are unable to “understand” a given prepositional prase type from ontological
perspective. Such a situation is common in domain–specific texts, if the given
text falls outside of the domain considered, but the ontology is only defined for
the domain.

The a pp predicate might be defined as follows:
�

a pp (X, of ,Y, i (X, p (pnt ,Y)))
:− i s a (Y, substance) ,

3 i s a (X, pro ce s s) .

Such a rule defines that if the noun phrase corresponding to concept X is
augmented with a prepositional phrase consisting of the preposition “of” and a
nounphrase corresponding to the concept Y, then the resulting role can be “pnt”,
provided that X is below “process” in the ontology and Y is below “substance”.
The resulting compound concept will be i(X,p(pnt,Y)), which can be written
in the feature–structure notation as X [pnt : Y].

As an example, let us consider the prepositional phrase “secretion of insulin”.
According to the disambiguation rule above, we can understand the preposition
“of” as representing the role pnt, due to the fact that “secretion” falls below
“process” and “insulin” falls below “substance” in our ontology.

Note that it would be difficult to disambiguate the role represented by the
prepositional phrase by looking at the phrase itself. That is why we also inves-
tigate the noun phrase to which this prepositional phrase is attached. As an
example of why this is the case, consider the phrase “of insulin”. By looking at
such a prepositional phrase itself, it is difficult to decide what role the prepo-
sition denotes. If this phrase is attached to the noun “secretion”, we would
understand it as pnt. However, if the noun would be “level”, thus forming the
phrase “level of insulin”, then we would want to understand the role to be wrt.

Obviously, our role disambiguation for prepositional phrases can use arbi-
trary definitions for any given preposition. We are not limited merely to tax-
onomical inclusions. We could, for instance, also use parthood information for

121

this purpose, as shown in the following example:
�

a pp (X, acros s ,Y, i (X, p (via ,Y)))
2 :− i s a (X, t r anspo r t) ,

pa r to f (Y, body) .

In this case, if the noun phrase corresponding to concept X is augmented with
a prepositional phrase consisting of the preposition “across” and a nounphrase
corresponding to the concept Y, then the resulting role can be “via”, provided
that X represents some kind of transport process in the ontology and Y is some
body part. The resulting compound concept will be i(X,p(via,Y)), or in the
familiar feature–structure notation: X [via : Y].

Transitive verbs

We will use similar principles for understanding roles intended to hold between
concepts expressed as a transitive verb and the corresponding subject and ob-
ject. Similarly as with noun–noun compounds, and contrary to the prepositional
phrases, the roles are not stated in any way. The most important hint for role
understanding is that transitive verbs tend to be used most commonly when
expressing agent and patient roles. Other linguistic constructs are rarely used
for this purpose if subject–transitive-verb–object can be used. Of course the
order is a big clue in itself, as the agent role holds between the verb’s concept
and the subject’s concept, while the patient role ties the verb’s concept with
object’s concept. This is the case with verbs in active form, and those are under
current consideration.

We will use the a tv predicate for defining the relation between the concepts
corresponding to the verb, the subject, the object, and the resulting ontoseman-
tics. As an example, consider the following rule:

�

a tv (X,Y,Z , i (Y, i (p (agt ,X) ,p (pnt , Z))))
2 :− i s a (Y, i n f l u e n c e) .

This rule states quite simply that for any verb, which represents some con-
cept that can be found under “influence” in the ontology, we can analyze the
relation between the verb’s concept and subject’s concept as “agt” and between
verb’s concept and subject’s concept as “pnt”. Verbs that fall into this group
include “to inhibit”, “to promote”, etc. Observe that the only condition in the
body of the definite clause is taxonomical inclusion regarding the verb’s concept.
We do not pose any requirements on the subject’s and object’s concepts. This

122

means that in a sample sentence “A inhibits B”, no matter what A and B are,
we will assume the outcoming roles to be “agt” and “pnt”.

Adjectives

The a adj predicate is used for defining the relation between the adjective’s
concept, noun’s concept, and whole phrase’s concept. The constraints for this
relation to hold are ontologically–based, as in the following example:

�

a ad j (X,Y, i (X,Y)) :− i s a (X, p o s i t i o n o n s c a l e) ,
i s a (Y, l e v e l) .

Here if the concept represented by the adjective is some kind of “posi-
tion on scale”, and the noun represents something below “level”, we understand
the concept of the whole phrase to be the intersection of these two concepts.
This follows the view that adjectives can be understood as classes rather than
properties, e.g. that everything that is green constitutes the class of green things.

The desired ontosemantics may also express some adjectives in terms of
Peirce product including some desired role. For instance, we may like to use
the adjective “pancreatic” as meaning “loc:pancreas”. The a adj predicate is
able to handle such a situation easily. Here is an example of how this can be
achieved:

�

a ad j (X,Y, i (p (chr ,X) ,Y))
:− i s a (X, p o s i t i o n o n s c a l e) ,

3 i s a (Y, l e v e l) .

One of the advantages of this approach is that we can define ontosemantics
for some groups of adjectives to follow the intersective approach, and for other
groups to follow the Peirce product approach.

7.4.7 Expressing ontology using definite clauses

Definite clauses are not only well suited for expressing the grammar. They can
be easily employed for representing the ontology.

The direct taxonomical subsumption can be formulated as a collection of
facts:

�

i s a (i nh i b i t i o n , i n f l u e n c e) .
2 i s a (promotion , i n f l u e n c e) .

123

i s a (i n s u l i n , substance) .
i s a (g lucose , substance) .
i s a (transpor t , p r o ce s s) .
i s a (low , p o s i t i o n o n s c a l e) .

7 i s a (high , p o s i t i o n o n s c a l e) .
. . .

We can as easily represent the parthood relation database:
�

pa r to f (c e l l , body) .
2 pa r to f (membrane , body) .

. . .

7.4.8 Ambiguities

Prolog is quite unique in the easiness of expressing ambiguities. Many other
programming languages lack that property, e.g. imperative or functional lan-
guages. In those one has to explicitly implement some handling of ambiguities
– say, a function would need to return a set of answers instead of one answer,
and of course a lot of changes in the code are necessary to handle that.

Fortunately, with Prolog, ambiguities are handled very easily due to the
mechanism of SLD resolution. We can include as many definite clause as we
need, and the system will try them all, possibly producing many answers instead
of just one. Such a behavior is perfect for expressing, e.g. the ambiguities for
lexical items or ontological bindings.

7.4.9 Expressing the lexicon using definite clauses

Similarly as with the ontology, we can represent the lexicon in a straightforward
manner. An interesting question arises – Prolog uses the closed world assump-
tion – is this adequate for lexical representation of both closed and open parts
of speech? The answer is yes. Although we might be mislead by the similarity
of naming, the open world assumption, which First Order Predicate Logic uses,
is not very useful for representing the open classes of words.

Suppose we would represent our lexicon in a formalism which utilizes the
open world assumption. Then for any given word we would need to specify not
only which part(s) of speech it is, but also list a lot of negative information

124

about which parts of speech it is not. This would rather be an impractical
approach.

The confusion arises from the fact that the word “open” in “open world
assumption” refers to the openness of the knowledge about a given word – we
do not know that it does not belong to some class unless we specify that. But
the word “open” in “open word class” refers to the openness of the class as a
whole, meaning that it does not have a fairly fixed amount of member words.

Determiners

The determiners are defined by the det predicate:
�

det (the s e) .
2 det (the) .

. . .

Prepositions

We take care of prepositions just as easily:
�

prep (o f) .
2 prep (a c r o s s) .

. . .

Nouns

The predicate for noun lexical entries will be binary, coupling the given noun
with its ontological class:

�

noun (transpor t , t r anspo r t) .
2 noun (i n s u l i n , i n s u l i n) .

. . .

Verbs

Transitive verbs are stored in the lexicon together with the ontological class
they represent by means of the tv predicate:

125

�

tv (i nh i b i t , i n h i b i t i o n) .
2 . . .

Adjectives

Lexical entries for adjectives are taken care of in the same way as nouns and
verbs:

�

adj (low , low) .
. . .

7.4.10 Example

Now, using Prolog’s SLD resolution, we can for instance ask the following query:
�

:− s ([these , low , i n s u l i n , l e v e l , i nh i b i t ,
the , t ranspor t , of , g lucose , acros s , c e l l ,

membrane] ,
3 C)

We will get only one answer:
�

C = i (i nh i b i t i o n ,
2 i (p(agt , i (low , i (l e v e l ,

p(wrt , i n s u l i n)))) ,
p(pnt , i (i (t ranspor t ,

p (pnt , g luco s e)) ,
p(via , i (membrane ,

7 p(loc , c e l l)))))))

7.5 An extended version of the ontograbber

We now present another ontograbber expressed with definite clauses to be used
with the Prolog logic programming language.

This version uses similar basic principles as the previous one, except it is
extended in many respects. Let us go step by step through the changes.

126

7.5.1 Noun phrases

In the current prototype we employ an alternative representation for ontoterms,
where we make use of lists for representing intersections of classes. This is similar
to the conjunctive normal form representation of formulas. In our new notation
the intersection

a ∩ b ∩ c

is represented as a list
�

[a , b , c] .

Hence, we can compute intersections of ontoterms simply by appending two
lists and sorting the result:

�

i (C1 ,C2 ,C) :−append (C1 ,C2 ,C3) , s o r t (C3 ,C) .

This solves the problem of representing intersections using the i(A,B) func-
tion symbol. Such a representation is not handled easily due to the fact that
two expressions

(a ∩ b) ∩ c

and
a ∩ (b ∩ c)

are represented by two different terms. In the new representations both expres-
sions will take form of the same list.

For that reason we need to refine our grammatical definition of noun phrases,
which includes the lexicon lookup:

�

np ([N] , [SC]) :−noun (N,SC) .

We introduce the distributive reading of conjunctions at noun phrase level
using the following rules:

�

np (L ,C) :− s p l i t (L , L1 , [and | L2]) ,np (L1 ,C) .
np (L ,C) :− s p l i t (L , L1 , [and | L2]) ,np (L2 ,C) .

Another small change concerning noun phrases is the tabularisation of def-
initions for role disanbiguation in noun–noun compounds. The information
necessary for disambiguation will be located in a “table” called t nnc. This
table is looked up by our disambiguating predicate a nnc:

127

�

a nnc (X,Y,Z) :− t nnc (A,B,R) , i s a (X,A) , i s a (Y,B) ,
i (Y, [p(R,X)] , Z) .

3

t nnc (chemical compound , proces s , pnt) .
t nnc (substance , l e v e l , wrt) .
t nnc (phy s i c a l o b j e c t , phy s i c a l o b j e c t , l o c) .
. . .

7.5.2 Prepositional phrases

Handling of the prepositional phrases is modified, as we would like to add the
recognition of conjunctions. We face a problem – how do we take care of the
recognition of the intended reading of the confunction, i.e. whether it is dis-
tributive or collective?

According to the study we have conducted (see Appendix A on page 181)
the reading of “and” is almost exclusively distributive in biomedical scientific
texts. The collective reading is sometimes present at the level of prepositional
phrase and is always hinted by the use of some noun representing collectivity,
e.g. “mixture of A and B”, “combination of A and B”, etc. This requires some
kind of “exception” mechanism to be utilized, as we would like the reading to
be distributive by default, and collective for some special cases. We can model
this situation by using the so–called negation as failure, which is an impure
facility offerred by Prolog systems. Strictly using negation as failure results in
the program which goes beyond definite clauses. Any clause containing this
impurity cannot be regarded as a definite clause.

Hence, we will have more rules for handling prepositional phrases. We use
the ontology for the purpose of detecting whether the reading is distributive
or collective. We inspect the concept corresponding to the noun to which the
prepositional phrase is attached. If that noun represents some kind of “combi-
nation”, then we assume the reading to be collective:

�

np (L ,C) :− s p l i t (L , L1 , [P |L2]) ,
prep (P) , np (L1 ,C1) ,

3 i s a (C1 , [combination]) ,
s p l i t (L2 , L21 , [and | L22]) ,
np (L21 , C21) ,np (L22 , C22) ,
a pp (C1 ,P, C21 , C01) ,

128

a pp (C1 ,P,C22 , C02) ,
8 i (C01 , C02 ,C) .

Otherwise, the reading is understood to be distributive:
�

np (L ,C) :− s p l i t (L , L1 , [P |L2]) ,
2 prep (P) ,np (L1 ,C1) ,

\+i s a (C1 , [combination]) ,
np (L2 ,C2) ,
a pp (C1 ,P,C2 ,C) .

Another extension in this version of the ontograbber is the tabularization of
the ontological role disambiguation information.

We will store the many–to–many relation between prepositions and roles in
the p r predicate:

�

p r (of , pnt) .
p r (by , agt) .
p r (acros s , v ia) .
p r (of , l o c) .

5 p r (of , wrt) .
p r (through ,bmo) .
p r (of , cmp) .
. . .

The information about possible roles between some top–level concepts has
been extracted into the t pp table:

�

a pp (X,P,Y, Z) :− t pp (A,R,B) , p r (P,R) , i s a (X,A) , i s a
(Y,B) , i (X, [p (R,Y)] , Z) .

2

t pp (proces s , pnt , substance) .
t pp (i n f l u en c e , pnt , p r o ce s s) .
t pp (proces s , agt , univ) .
t pp (transpor t , via , univ) .

7 t pp (body part , loc , person) .
t pp (property , wrt , univ) .
t pp (i n f l u en c e , bmo, pro ce s s) .
t pp (combination , cmp , univ) .
. . .

129

7.5.3 Genitives

In this extension of the ontograbber we introduce handling of genitives:
�

np (L ,C) :− s p l i t (L , L1 , [s |L2]) ,
np (L1 ,C1) ,
np (L2 ,C2) ,

4 a gen (C1 ,C2 ,C) .

The role recognition for genitives is taken care of in the same way as for
noun–noun compounds:

�

1 a gen (X,Y,Z) :− t gen (A,B,R) ,
i s a (X,A) ,
i s a (Y,B) ,
i (Y, [p(R,X)] , Z) .

6 t gen (person , body part , pof) .
t gen (univ , proces s , agt) .
. . .

7.5.4 Sentence level grammar

At the level of sentences, conjunctions have only distributive meaning and the
following rules model that:

�

s (L ,C) :− s p l i t (L , LS1 , [and | LS2]) , s (LS1 ,C) .
2 s (L ,C) :− s p l i t (L , LS1 , [and | LS2]) , s (LS2 ,C) .

7.5.5 Verb phrases

Again we introduce two new rules to cope with distributive conjunctions, this
time at verb phrase level:

�

s (L ,C) :− s p l i t (L ,LNP1 , [VPH|VPT]) , tv (VPH,) ,
s p l i t ([VPH|VPT] ,LVP1 , [and | LVP2]) ,

130

3 append (LNP1,LVP1, L1) ,
s (L1 ,C) .

s (L ,C) :− s p l i t (L ,LNP1 , [VPH|VPT]) , tv (VPH,) ,
s p l i t ([VPH|VPT] , LVP1 , [and |LVP2]) ,

8 append (LNP1,LVP2, L2) ,
s (L2 ,C) .

We analyze verb phrases without conjunctions at the sentence level in the
same way as before:

�

1 s (L ,C) :− s p l i t (L ,LNP1 , [TV|LNP2]) , tv (TV,TVC) ,
np (LNP1,NPC1) , np (LNP2,NPC2) ,
a tv (NPC1,TVC,NPC2,C) .

However, we introduce another extension, i.e. the possibility of attaching
prepositional phrases at the verb phrase level through the following rules:

�

s (L ,C) :− s p l i t (L ,LNP1 , [TV| L2]) ,
2 tv (TV,TVC) ,

s p l i t (L2 ,LNP2 , [LPPSH |LPPST]) ,
prep (LPPSH) ,
np (LNP1,NPC1) ,
np (LNP2,NPC2) ,

7 pps (TVC, [LPPSH |LPPST] ,TVC1) ,
a tv (NPC1,TVC1,NPC2,C) .

pps (C , [] , C) .
pps (C,LPPS,C2) :−

12 append ([P |NPL] , LPPS1,LPPS) ,
prep (P) ,
pps (C,LPPS1,C1) ,np (NPL,NPC) ,
a pp (C1 ,P,NPC,C2) .

We also tabularize the ontological information for role disambiguation and
make use of the more efficient representation for concept intersections:

�

a tv (X,Y, Z ,V) :− t t v (A,RS,RO) ,
i s a (Y,A) ,
i (Y, [p(RS,X)] ,W) ,

131

i (W, [p (RO,Z)] ,V) .
5

t t v (i n f l u en c e , agt , pnt) .
t t v (proces s , agt , pnt) .

7.5.6 Paraphrasing

Our rules allow us to ascribe ontoterms to sentences and phrases. This in turn
enables us to define what paraphrasing is. We will cosider two sentences to be
paraphrasing each other if both are realizations of the same ontoterm:

�

paraphrase (S1 , S2 ,C) :− s (S1 ,C) , s (S2 ,C) .

Similarly, a noun phrase could parahrase a sentence if both represent the same
ontoterm:

�

paraphrase (S ,NP,C) :− s (S ,C) , np (NP,C) .

�

paraphrase (NP, S ,C) :−np (NP,C) , s (S ,C) .

Obviously, two noun phrases can be paraphrases of each other as well:
�

paraphrase (NP1,NP2,C) :−np (NP1,C) , np (NP2,C) .

7.5.7 Modified ontology representation

The modified way of representing intersected concepts forces us to update our
ontology definition. The new taxonomy has the following rules:

Anything is under “univ”, representing the universal concept:
�

i s a (, univ) .

isa is the transitive closure of the direct subsumption relation sub:
�

i s a (X, Z) :−sub (X,Y) , i s a (Y, Z) .

An intersection of some concepts is subsumed by some concept if any of the
intersected concepts are subsumed by that concept:

132

�

i s a ([X | T] , Z) :− i s a (X, Z) .
i s a ([X |T] , Z) :− i s a (T, Z) .

Due to the changes introduced we store now the taxonomical subsumption
information in relation called sub:

�

sub (oxygen , substance) .
sub (transpor t , p r o ce s s) .

7.5.8 Alternative role recognition for prepositional phrases

The definition of the a pp predicate can be refined in order to make use of only
one table for the role recognition in prepositional phrases:

�

a pp (X,P,Y, Z) :− t pp (A,P,B,R) , i s a (X,A) , i s a (Y,B) , i
(X, [p(R,Y)] , Z) .

3 t pp (proces s , of , substance , pnt) .
t pp (i n f l u en c e , of , proces s , pnt) .
t pp (proces s , by , univ , agt) .
t pp (transpor t , acros s , univ , v ia) .
t pp (body part , of , person , l o c) .

8 t pp (property , of , univ , wrt) .
t pp (i n f l u en c e , through , proces s , bmo) .
t pp (combination , of , univ , cmp) .

7.5.9 Examples

Let us consider several examples of sentences and noun phrases and their cor-
responding ontological semantics produced by the system.

The sentence
�

[these , low , i n s u l i n , l e v e l , i nh i b i t ,
t ranspor t , of , g lucose , acros s , c e l l , membrane]

results in the following ontological semantics:

133

�

[i nh i b i t i o n ,
p (agt , [l e v e l , low , p(wrt , [i n s u l i n])]) ,

3 p(pnt , [t ranspor t , p(pnt , [g luco s e]) ,
p(via , [membrane , p (loc ,

[c e l l])]

The following sentence contains a conjunction at the verb phrase level, which
is read distributively, hence resulting in more than one ontological semantics:

�

[low , i n s u l i n , l e v e l , i nh i b i t ,
t ranspor t , of , g lucose ,
and , s t imulate , t ranspor t , of , oxygen]

The results corresponding to two verb phrases joined with the conjunction are:
�

[i nh i b i t i o n ,
2 p(agt , [l e v e l , low , p(wrt , [i n s u l i n])]) ,

p (pnt , [t ranspor t , p(pnt , [g luco s e])])]

�

[s t imu la t i on ,
2 p(agt , [l e v e l , low , p(wrt , [i n s u l i n])]) ,

p (pnt , [t ranspor t , p(pnt , [oxygen])])]

Let us consider the following noun phrase:
�

[i n c r ea s e , of , dna , r e p l i c a t i o n , and , prote in ,
s yn th e s i s]

The conjunction can be regarded as distributive, splitting the phrase into
two independent phrases, thus giving rise to the following ontoterms:

�

[i n c r ea s e , p (pnt , [r e p l i c a t i o n , p(pnt , [dna])])]

and
�

[s ynthe s i s , p (pnt , [p r o te in])]

However, the conjunction can also be understood as being embedded within
the prepositional phrase, thus giving us one more possible reading:

134

�

[i n c r ea s e , p (pnt , [s ynthe s i s , p (pnt , [p r o te in])])]

However, the conjunction can also be understood in one surprising way,
i.e. as a distributive connection of “replication” and “protein”. It is very hard to
visualize such an interpretation, as we know it is not a correct one. Imagine the
sentence with the following added parentheses for the purpose of visualizing the
scope of the conjunction: “increase of dna (replication and protein) synthesis”.
Now the rules allow us to apply the distributive reading to the conjunction,
hence producing the meaning as if for the following phrase: “increase of dna
protein synthesis”. Thus, we obtain the following ontological semantics:

�

[i n c r ea s e , p (pnt , [s ynthe s i s , p (pnt , [dna]) ,p (pnt , [
p r o te in])])]

While this result is not desired, it illustrates how largely ambiguous the grammar
becomes when introducing conjunctions at all possible levels. Such a problem
could be overcome by introducing a larger number of fine–grained grammatical
rules to the system.

As a last example, let us see the effect of the collective reading of the con-
junction. The sentence

�

[combination , of , i n s u l i n , and , c pept ide]

produces the desired collective reading:
�

[combination , p (cmp , [c pept ide]) ,p (cmp , [i n s u l i n])
]

7.6 Definite Clause Grammar Ontograbber

We now present an ontograbber expressed in a special notation available in
Prolog system, i.e. Definite Clause Grammars. It improves the performance of
the ontograbber due to the fact that it uses difference lists for parsing. In order
to view the relation between natural language and its semantics from another
perspective, we will use this ontograbber for generating sentences, rather than
understanding them.

The biggest difference between this ontograbber and the previous one is the
part where the grammar is specified:

135

�

np ([SC]) −−> [N] ,{ l e x (noun ,N,SC) } .

np (C) −−> {a nnc (C1 ,C2 ,C) } , np (C1) ,np (C2) .
4

np (C) −−> {a pp (C1 ,P,C2 ,C) } , np (C1) , [P] , np (C2) .

np (C) −−> { a gen (C1 ,C2 ,C) } , np (C1) , [s] , np (C2) .

9 np (C) −−> { a ad j (CA,CNP,C) } , a (CA) ,np (CNP) .

a ([C]) −−> [A] ,{ adj (A,C) } .

s (C) −−> { a tv (C1 ,TVC,C2 ,C) } , np (C1) ,
14 tv (TVC) , np(C2) .

tv ([C]) −−> [V] ,{ l e x (tv ,V,C) } .

The intersection of concepts is still represented using a list, except that our
new definition rejects empty lists for intersections:

�

i (C1 ,C2 ,C) :−append (C1 ,C2 ,C) ,
nonempty (C1) ,
nonempty (C2) .

4 nonempty ([|]) .

In the a nnc predicate we swap the order of literals in the body:
�

1 a nnc (X,Y,Z) :− i (Y, [p(R,X)] , Z) ,
t nnc (A,B,R) ,
i s a (X,A) ,
i s a (Y,B) .

We make similar operation with the a pp predicate:
�

1 a pp ([H|T] ,P,Y, Z)
:− i ([H|T] , [p(R,Y)] , Z) ,

t pp (A,P,B,R) ,
i s a chk ([H|T] ,A) ,
i s a chk (Y,B) .

136

Again, the same needs to be done with the a tv predicate:
�

a tv (X,Y, Z ,V)
:− i (W, [p(RO,Z)] ,V) ,

i (Y, [p(RS,X)] ,W) ,
t t v (A,RS,RO) ,

5 i s a (Y,A) .

The final change is in the way our ontology is defined:
�

i s a r e f l e x i v e (X,X) :− l e x (, ,X) .

i s a t r a n s i t i v e (X,Y) :−sub (X,Y) .
i s a t r a n s i t i v e (X, Z) :−sub (X,Y) ,

5 i s a t r a n s i t i v e (Y, Z) .

i s a un i v (X, univ) :−sub (X,) .
i s a un i v (X, univ) :−sub (,X) .

10 i s a ([X] ,Y) :− i s a r e f l e x i v e (X,Y) .
i s a ([X] ,Y) :− i s a t r a n s i t i v e (X,Y) .
i s a ([X] ,Y) :− i s a un i v (X,Y) .

i s a chk (X,Y) :−member (M,X) , i s a ([M] ,Y) .

Now we can find language realizations for a given ontoterm. They can be
either sentences or noun phrases:

�

1 r e a l i z e (C,L) :− s (C,L , []) .
r e a l i z e (C,L) :−np (C,L , []) .

In those two definitions the empty list is used due to the fact that Definite
Clause Grammars utilize difference lists for parsing, and we do not wish to be
left with any part of the sentence unparsed.

7.6.1 Example

Let us consider the following, quite complex concept in the generative ontology.
�

[i nh i b i t i o n ,

137

p(agt , [low ,
3 l e v e l ,

p(wrt , [i n s u l i n])]) ,
p (pnt , [t ranspor t ,

p(pnt , [g luco s e]) ,
p(via , [membrane ,

8 p(loc , [c e l l])])])]

Let us try to use our system for finding linguistic realizations of it. Below
we present the list of produced phrases.

�

[i nh i b i t i o n , by , low , i n s u l i n , l e v e l ,
2 of , g lucose , t ranspor t , acros s , c e l l , membrane]

[i nh i b i t i o n , by , low , i n s u l i n , l e v e l ,
of , t ranspor t , of , g lucose , acros s , c e l l , membrane]

7 [i nh i b i t i o n , by , low , i n s u l i n , s , l e v e l ,
of , g lucose , t ranspor t , acros s , c e l l , membrane]

[i nh i b i t i o n , by , low , i n s u l i n , s , l e v e l ,
of , t ranspor t , of , g lucose , acros s , c e l l , membrane]

12

[i nh i b i t i o n , by , low , l e v e l , of , i n s u l i n ,
of , g lucose , t ranspor t , acros s , c e l l , membrane]

[i nh i b i t i o n , by , low , l e v e l , of , i n s u l i n ,
17 of , t ranspor t , of , g lucose , acros s , c e l l , membrane]

[low , i n s u l i n , l e v e l , i nh i b i t ,
g lucose , t ranspor t , acros s , c e l l , membrane]

22 [low , i n s u l i n , l e v e l , i nh i b i t ,
t ranspor t , of , g lucose , acros s , c e l l , membrane]

[low , i n s u l i n , s , l e v e l , i nh i b i t ,
g lucose , t ranspor t , acros s , c e l l , membrane]

27

[low , i n s u l i n , s , l e v e l , i nh i b i t ,

138

t ranspor t , of , g lucose , acros s , c e l l , membrane]

[low , l e v e l , of , i n s u l i n , i nh i b i t ,
32 g lucose , t ranspor t , acros s , c e l l , membrane]

[low , l e v e l , of , i n s u l i n , i nh i b i t ,
t ranspor t , of , g lucose , acros s , c e l l , membrane]

As we can observe, the results include various usages of verbs, nouns, preposi-
tional phrases and noun–noun compounds. In other words, the system is able
to generate many paraphrases of the same concept. The task of paraphrasing
is very important in search situations, where the same concept can appear in
texts in various forms. Another issue worth noting is that the generated phrases
do not have any preferred result. In some scenarios it could be useful to prefer
some phrases rather than others. For instance, if the generated phrase is sup-
posed to be understood by humans, it would be preferable if it was a sentence
contained an active verb rather than a long noun phrases consisting of nouns
and few prepositions.

7.7 Summary

In this chapter we have presented how ontological semantics can be handled
computationally for a fragment of natural language. We have transitioned from
a specification in First Order Predicate Logic to an implementation in Prolog.
We have presented both ontograbbers that can analyze a text, producing equiv-
alent ontological semantics, as well as generate phrases and sentences given a
concept in the generative ontology.

The systems presented in this chapter deal with a restricted fragment of
natural language. In the following chapter we will proceed with robust analysis
of unrestricted natural language. We will deal with the problem of partiality of
understanding, where only parts of a sentence can be analyzed by ontological
means.

139

140

Chapter 8

The computation of
ontosemantics for
unrestricted natural
language

We now present the algorithm which associates ontological semantics with sen-
tences. The retrieved ontological information takes the form of nodes in the
generative ontology represented by so–called ‘concept covers’, to be described
in sect. 8.3. The result of the algoritmic analysis of a sentence is a collection of
ontoterms.

The novel contribution of the present approach is that the natural language
parsing process is driven primarily by the ontology rather than by grammatical
production rules. Similarly to unification grammars, syntactic and semantic
constraints are utilized in parallel. However, in our approach, we do not con-
struct a parse tree. Syntax plays a secondary role, taking the form of additional
constraints, while ontological affinities play the primary role. The algorithm
makes use of a grammar, but it is a simplified, rudimentary grammar covering
fragments of English.

The algorithm described below proceeds in a bottom–up fashion, similar
to forward chaining, robustly parsing complex sentences which are not fully
covered by the simplified grammar. It is reminiscent of the Earley parsing

141

algorithm (presented in Appendix D on page 213) in that it utilizes a similar
dynamic programming technique for backtracking and recomputation avoidance,
although it does not make use of top–down constraints due to the lack of a formal
grammar for natural language in its entirety.

The algorithm presented goes beyond usual partial and shallow parsing tech-
niques like chunking, which do not provide recursive phrase structure necessary
for construction of nodes in the generative ontology.

8.1 Indexing

We index all the ontologically meaningful tokens of the input text. Consider
the sample sentence S1:

“These low0 insulin1 levels2 inhibit3 the transport4 of glucose5 across cell6
membranes7.”

Only nouns, verbs and adjectives get indexed, as they correspond to some class
in the ontology. Nouns, verbs and adjectives are the main building blocks carry-
ing ontological meaning. Even though prepositions do not represent any classes
in the ontology, they are utilized by the algorithm, as they usually determine
how classes should be combined into compound nodes in the generative ontology.

8.2 Microontology for a sentence

A microontology is the smallest fragment of the generative ontology which re-
lates to the words in a sentence together with inherited ontological affinities.

The microontology for the sentence S1 is presented below:

142

c 2

c1

lo
w

in
su
li
n

le
v
el

in
h
ib
it
io
n

tr
a
n
sp
o
rt

g
lu
co
se

ce
ll

m
em

b
ra
n
e

low
insulin
level CHR WRT WRT

inhibition AGT AGT PNT PNT AGT
transport PNT PNT VIA VIA
glucose
cell LOC ,POF LOC ,POF

membrane LOC ,POF LOC ,POF

For each role r given in the table, the concept c1[r : c2] is a valid node in the
generative ontology. This can be also represented by a graph, see Figure 8.1
on page 144.

8.3 Concept covers

The algorithm manages sets of concept covers (covers for short), which represent
associations between the text and nodes in the generative ontology.

Covers are of the following type:

N× N× syn×N × P

That means, a concept cover is a quintuple of:

• Two numbers m,n, such that m ≤ n, representing the spanning interval.
The integers are indices of the words in the sentence

• The syntactic category representing what kind of word or phrase the cover
represents (VP, NP, . . .)

• The node in the generative ontology that the cover represents

• The actual phrase covered

As an example, consider the following cover:

(4, 5,NP, transport[PNT : glucose], “transport of glucose”)

143

Figure 8.1: The microontology presented in a graph form.

144

It covers the sentence between positions 4 and 5, it corresponds to a noun phrase,
represents the transport[PNT : glucose] node in the generative ontology, and
comes from the phrase “transport of glucose”.

The iterative algorithm works on a state consisting of two sets: C and H .
At each stage of computation, C is the set of all covers found so far. Only covers
which are sound with respect to both syntactic and ontological constraints are
ever present in C. At any stage of computation H , such that H ⊂ C, is the
set of “hot” covers. Hot covers are those that have been found in previous
stages and have not yet been “tried” for possible concept combinations. When
H is empty, the algorithm stops with C as result. To illustrate, for the sample
sentence S1 we get the following initial set C0 of concept covers:

C0 = { (0, 0,A, low, “low”),

(1, 1,N, insulin, “insulin”),

(2, 2,N, level, “levels”),

(3, 3,TV, inhibition, “inhibit”),

(4, 4,N, transport, “transport”),

(4, 4,TV, transport, “transport”),

(5, 5,N, glucose, “glucose”),

(6, 6,N, cell, “cell”),

(7, 7,N,membrane, “membranes”)}

Initially, only covers corresponding to single words are present in both sets
(beginning of cover interval being the same as the end for each element).

The algorithm begins by having all the initial covers in both sets: C = C0

and H = C0. All covers are in C, because they all represent valid concepts. On
the other hand, they are all in H , because all concepts have to be “tried” for
possible combinations. In the most pessimistic case, when no concept can be
meaningfully combined with any other concept, the initial set C0 represents a
result corresponding to “keyword–level fallback”.

Observe that there are two covers in the set corresponding to the word
“transport”. These have the same cover interval, but different syntactic cat-
egories. Eventually, only one of those entries will be utilized for building a
large cover. This can be viewed as a part–of–speech tagging process guided by
syntactic and ontological constraints.

145

8.4 Grabbing

The process of grabbing proceeds as follows:

• An arbitrary “hot” concept cover h is selected, such that h ∈ H

• All left–neighbours and right–neighbours of h are found by utilizing h’s
cover interval information

• A set of pairs P is constructed:

P = {(l, h)|l is left–neighbour of h} ∪ {(h, r)|r is right–neighbour of h}

• For each pair (e1, e2) ∈ P we try to combine the covers e1 and e2. Com-
bining is explained in sect. 8.5. The result of combining is a set N of new
covers. If e1 and e2 cannot be combined, N = ∅. The set of all found
covers C is extended to C′, so that C′ = C ∪N . The set of hot covers H
is extended to H ′, so that H ′ = (H ∪ (N\C))\{h}. In other words, newly
found concepts are reflected in H ′ if they have not been found before. The
just–tried cover h is removed from the hot set

• The process of grabbing continues with C′ and H ′ or terminates when
H ′ = ∅, that is, nothing is left in the “hot” set. At this point, C′ represents
the result: all covers, representing found concepts together with their
coverage. If the whole sentence was understood, there will be a cover in
C′ such that it covers the entire sentence. Otherwise, we can select the
concept with the biggest coverage as the result.

8.5 Combining explained

Combining two concept covers e1 (representing concept c1 and syntactic cate-
gory syn1) and e2 (representing concept c2 and syntactic category syn2) pro-
ceeds as follows:

• We check whether (and how) concepts can be combined ontologically. A
set R of roles r is found using ontological affinities from the microontology,
such that c1[r : c2] or c2[r : c1] is a valid node in the generative ontology.
In other words:

R = {r|isa(c1[r : c2],⊤)} ∪ {r|isa(c2[r : c1],⊤)}

146

• We check how any found combination could be realized syntactically by
utilizing syntactic matching rules. Each matching rule gives us a string to
be matched against the sentence. Matching rules have the form:

syn1, r, syn2 ⇒ pattern, syn′

The elements on the lhs of ⇒ represent restrictions on when the rule is
applicable. syn′ is the syntactic category of the resulting pattern. Some
of the matching rules:

VP,AGT ,NP ⇒ str2@str1, S

TV,PNT ,NP ⇒ str1@str2,VP

NP,CHR,A ⇒ str2@str1,NP

As an example, consider the rule:

VP,AGT ,NP⇒ str2@str1, S

The rule says that we can combine concept c1 represented by a verb phrase
with concept c2 represented by a noun phrase using the agent role. The
result is a concatenation of strings corresponding to c2 and c1, respectively,
and the resulting syntactic category is S. The syntactic information could
be extracted from this rule into BNF notation:

S ::= NP VP

To illustrate, assume we have two concept covers:

e1 = e(2, 4,VP, inhibition[PNT : transport[PNT : glucose]],

”inhibits glucose transport”)

e2 = e(1, 1,NP, insulin, ”insulin”)

In this case, we can combine e1 and e2 as c1[AGT : c2] is a valid node in
the generative ontology. Since the syntactic categories fit, we construct
the pattern

[”insulin”, ”inhibits”, ”glucose”, ”transport”]

147

which is successfully matched against the sentence. Hence, we add a new
cover to the sets:

e(1, 4, S, inhibition[PNT : transport[PNT : glucose],AGT : insulin],

”insulin inhibits glucose transport”)

In addition to the matching rules mentioned above, we also have a highly
ambiguous rule for noun–noun compounds:

N, ρ,N⇒ str2@str1,N

In the above, ρ can stand for any role, see also [22]. The high syntactic ambiguity
of this rule is usually resolved with the help of ontological affinities.

Prepositions are related to roles by the following many–to–many relation:

Role Preposition
pnt ”of”
agt ”by”
via ”across”
loc ”of”
wrt ”of”
bmo ”through”
cmp ”of”
...

...

For each related role ρ and preposition φ, we add one rule to our algorithm:

NP, ρ,NP⇒ str1@[φ]@str2,NP

In addition, the algorithm utilizes syntactic lifting rules which do not aim at
combining concepts but allow the lifting of syntactic categories, e.g., from noun
to a noun phrase or from intransitive verb to a verb phrase.

8.6 Grammar

The purely syntactic parsing part of the algorithm could be achieved by full
relaxation of ontological affinities, e.g., adding the role any:

isa(⊤[any : ⊤],⊤)

148

“These low insulin levels inhibit the transport of glucose across cell membranes.”

low insulin level inhibition transport glucose cell membrane
⇓

low level[wrt : insulin] inhibition transport glucose cell membrane
⇓

level
[
chr:low
wrt:insulin

]
inhibition transport glucose cell membrane

⇓
level

[
chr:low
wrt:insulin

]
inhibition transport glucose membrane[loc : cell]

⇓
level

[
chr:low
wrt:insulin

]
inhibition transport[pnt : glucose] membrane[loc : cell]

⇓

level
[
chr:low
wrt:insulin

]
inhibition transport

[
pnt:glucose
via:membrane[loc:cell]

]

⇓

inhibition[agt : level
[
chr:low
wrt:insulin

]
] transport

[
pnt:glucose
via:membrane[loc:cell]

]

⇓

inhibition

[
agt:level[chr:low

wrt:insulin]
pnt:transport

[

pnt:glucose

via:membrane[loc:cell]

]

]

Figure 8.2: Sample run of the ontograbber

In such a case, any concept can be combined with any other from the ontological
point of view, effectively making the algorithm use only syntactic constraints.

Since the formal grammar covers only fragments of the language, one cannot,
in general, parse the sentence in its entirety. Therefore, we cannot assume any
particular starting symbol, e.g., S. In many cases we might only be able to
capture a few phrases. In order to model that, we could introduce a modified
grammar, with production rules containing a distinguished nonterminal junk
representing any string. Instead, however, we simply parse the sentence in a
bottom–up manner, without any starting symbol.

8.7 Sample run

Figure 8.2 on page 149 presents a sample execution of the ontograbber algorithm.
It abstracts from the details of concept covers, and only illustrates in what order
concepts are combined and what is the resulting ontological semantics.

149

8.8 Ontograbber from the parsing perspective

The parsing performed by the algorithm is quite unusual, as it is executed as an
additional constraint on top of the ontological affinities. The ontological well-
formedness of the ontoterms is the primary driving mechanism of the algorithm.

In order to describe the pure grammatical parsing performed by the al-
gorithm, we could imagine a situation, where ontological constraints are fully
relaxed. This is a very unlikely scenario, which constitutes the absolutely worst
case. In such a case, any two neighbouring concepts can be combined in a sound
manner according to the ontological affinities.

The grammatical constraints take the form of a restricted context free gram-
mar. The restriction is that at most two nonterminals can appear in the right
hand side of a production rule. This restriction comes from the fact that the
analysis is ontology–driven. The algorithm tries to put together two neighbour-
ing concepts using the affinities, and each of those concepts represents a given
grammatical class. Therefore when viewed as a context free grammar, the right
hand side of any rule will have at most two nonterminals corresponding to the
two concepts being combined.

It is worth observing that the grammar is therefore similar to the CNF.
Strictly, our grammar allows more expresive rules. CNF allows rules of the
form where there is exactly two nonterminals on the right-hand side, without
any terminal symbols. The grammar of our algorithm allows two nonterminals
augmented by arbitrary number of terminal symbols. Hence, any valid CNF
production rule is also a valid rule in the ontograbber’s grammar.

The allowance of an arbitrary number of terminal symbols in the rules is
useful for the purpose of writing rules involving closed word classes, e.g. prepo-
sitions, determiners, etc.

Due to the fact that any CFG can be rewritten to an equivalent CNF rules,
and the fact that CNF rules is a subset of the ontograbber’s grammatical rules,
we conclude that CFG is not more expressive than our grammar.

The idea of introduction of full CFG production rules has been abandoned.
This is because more than two nonterminals on the right hand side of a rule do
not correspond well to the way that ontological affinities are defined. It is not
clear at present how or why one would want to combine three or more concepts
at once. Three concepts can be easily combined in two steps: two of them are
combined, followed by the combination of the result with the third one.

Additionally, we are not interested in constructing a new parsing algorithm.
There is a number of interesting approaches to parsing, many of which handle
full CFG productions. One example could be the Earley parsing algorithm.

150

One could easily use some of the so-called “of–the–shelf” parsers in order to
parse with full CFG. We, however, consider the grammatical constraints to
be of secondary importance. We are more interested in the development of a
ontological analyzer, rather than grammatical parser.

The fact that full CFG rules are not allowed does not seem to be a large
obstacle. There exist also widely used algorithms that limit the grammar to
CNF form, e.g. the CKY algorithm. The popularity of this algorithm lets us to
believe that in practice the limitation on the form of the rules is not a severe
problem.

8.9 Capturing natural language

As we have discussed, the algorithm from grammatical point of view is able to
describe any context free language. The problem of capturing a given natural
language (or an interesting subset of it) can be reduced to the problem of such
a language (or its subset) being a context free language.

This question cannot be answered definitively. Nobody has ever proven one
way or the other. The general consensus is that natural languages are context
free, although some parts of natural language might not be very conveniently
modeled using context–free production rules.

A general problem is that the grammar of natural languages is rarely de-
scribed using fully formal methods. Natural languages are extremely compli-
cated, constantly evolving, varying across regions. Any two native speakers will
at times find a sentence, which one considers grammatical, and the other un-
grammatical. For those reasons nobody has ever managed to fully formalize the
grammar of any written natural language.

Thus, the question of whether the ontograbber is able to handle any natural
language in its entirety boils down to whether the given language is actually
context–free.

8.10 Termination

The proof of the termination of the algorithm proceeds as follows:

When two neighbouring concepts are combined the first one covering posi-
tions between a and b, the second one between b+1 and c, the result will cover
positions between a and c. Each cover is non–empty, so the result always covers
more than any of its constituents. Hence, the algorithm could not terminate

151

only in the case if some covers would be growing to unbounded sizes. This is
however impossible, as below the index 0 and above the length of the sentence,
no neighbours can be found for further combination.

8.11 Complexity issues

The running time and memory complexity of the algorithm is exponential in the
worst case. To show that, imagine that the sentence consists of many preposi-
tional phrases, each of which could be either alligned or nested. Additionally
imagine that the ontological affinities do not restrict any of those compositions.
In such a case we get exponential number of possible parses in the number of
prepositional phrases present.

Our algorithm uses the dynamic programming principle in order to avoid
the inefficiencies associated with typical top–down parsing, where many trees
are rebuilt numerous times while possible rules are tried. In our approach any
sound parse tree is kept in memory for further use, so that recomputation of
those is not necessary.

Although the worst case running time of the algorithm is exponential, in
reality this does not pose a serious problem. Often, there is only a few preposi-
tional phrases present in a sentence, which can be both attached or nested. The
ontological affinities filter out many unsound parses. In addition, the sentences
are not of unbounded length. Typical sentence might have around 20 words.
The algorithm analyses only meaning carrying components of the sentence, so
for a sentence of 20 words, around 10 concepts are usually identified. In most
cases the amount of ambiguities is not large.

The widely used of–the–shelf parsers need to have extremely good complexi-
ties, as they are used e.g. for parsing programming languages, where there might
be tens of thousands of terminals present in the input sentence. Earley parser or
CKY chart parsers are examples of parsers that work in cubic time. However,
when the length of sentences is limited to as few as 20 tokens, we do not need
to use such an efficient approach.

8.12 Building ontoterms

The ontograbber builds ontoterms by attaching one ontoterm at the root of
another ontoterm using some case role in the process of combining. Such mech-
anism is enough to build all possible tree–like structured ontoterms, which can

152

be represented as feature structures.
The limitation of this approach is that it is not possible to build general

graph–like ontoterms, that go beyond trees in their shape.

8.13 Applied generative ontology for bio–domain

In Figure 8.3 on page 154 we present a sample top ontology taxonomy that
could be used as the input to the ontograbbing algorithm.

Similarly, the following ontological affinities could be used as the input to
the algorithm, coupled with the top ontology presented in Figure 8.3.

anatomical structure pof anatomical structure
influence agt substance
influence agt level
influence pnt phenomenon or process
physical object loc anatomical structure
physical object pof physical object
production agt anatomical structure
production pnt substance
substance portion wrt substance
transport pnt substance
transport via anatomical structure
level chr position on scale
level wrt substance
...

...
...

8.14 Real life examples

Let us now perform some experiments concerning how the algorithm presented
in this chapter performs on some sample sentences. Below we present a list of
sentences, which is a random sample from large biomedical corpora. Out of
millions of sentences these specific sentences have been chosen only according to
how much of them is covered by our microscopic test lexicon. The lexicon is so
small that it was difficult to find a large number of sentences to experiment with.
Those presented here have not been preselected according to how well they are
handled by the algorithm. For each sentence we first give a set of three idealistic
ontological semantics, which have been created by hand by three experts:

153

activation

influence

natural_phenomenon_or_process

anatomical_structure

physical_objectentity

biologic_function

phenomenon_or_process
body_part_or_organ_or_organ_component

fully_formed_anatomical_structure

body_system
functional_concept

idea_or_concept

cell

conceptual_entity

univ

event

inhibition

insulinproteinsubstance

membrane

organ

substance_portion

transport

F
ig
u
re

8
.3
:

S
a
m
p
le

to
p

o
n
to
lo
g
y
ta
x
o
n
o
m
y

to
b
e
u
sed

a
s
th
e
in
p
u
t
to

th
e

o
n
to
g
ra
b
b
in
g
a
lg
o
rith

m

1
5
4

• Bartlomiej Antoni Szymczak (abbreviated BAS) from Technical Univer-
sity of Denmark

• Tine Lassen (abbreviated TL) from Roskilde University, Denmark

• Hanne Erdman Thomsen (abbreviated HET) from Copenhagen Business
School, Denmark

All experts are members of the SIABO project and specialize in the use of
generative ontologies and ontological semantics.

The semantics prepared by experts is believed to be a “perfect answer”,
which one would ideally like to get as the output of the algorithm. In addition to
those golden ontoterms we also list the ontoterm(s) produced by the algorithm.
Due to ambiguities, there is often more than one ontosemantics produced (both
by experts and the algorithm).

Unfortunately, producing ontological semantics by hand is difficult and time
consuming, and in addition requires expert knowledge. Therefore we did not
have resources to acquire hand–produced ontosemantics for more than ten sen-
tences. We have rejected the option of producing golden standard semantics
exclusively ourselves, as it is difficult to create such semantics objectively while
knowing how the algorithm operates and what can be expected of it.

We have performed tests on 37 realistic sentences. Out of these we first
present 10 for which we managed to get experts’ golden standard. Next, we
present the remaining 27 sentences, for which we do not have a golden standard.
Adding a single sentence to the test set is not trivial, as both the lexicon and
the generative ontology need to be manually extended to incorporate the new
words and concepts.

The input sentence 1:
�

the s e low i n s u l i n l e v e l s i n h i b i t the t r anspo r t o f g luco s e
a c r o s s c e l l membranes t h e r e f o r e caus ing high blood

g luco s e l e v e l s

Golden ontosemantics (BAS):
�

causa t i on [agt : i n h i b i t i o n [agt : [l e v e l [wrt : i n s u l i n ,
chr : low]] ,

pnt : t r anspo r t [pnt : g lucose ,

155

v ia : membrane [pof :
c e l l]]] ,

5 pnt : l e v e l [chr : high ,
wrt : g luco s e [l o c : blood]]]

Golden ontosemantics (TL):
�

i n h i b i t i o n [AGT: l e v e l [WRT: i n su l i n ,CHR: low] ,PNT: t r anspo r t [
WRT: g luco s e [WRT:

membrane [WRT: c e l l]]] , RST: l e v e l [WRT: g luco s e [LOC: blood] ,CHR
: high]]

Golden ontosemantics (HET):
�

i n h i b i t i o n [AGT: [[l e v e l [WRT: i n s u l i n]] CHR: low] ;
PNT: t r anspo r t [PNT: g luco s e ; VIA : membrane [

LOC: c e l l] ;
CAUS: [[[l e v e l [WRT: g luco s e [LOC: blood]]

CHR: high]

Ontograbber’s tagged sentence:
�

the s e [] low [A] i n s u l i n [N] l e v e l s [N] i n h i b i t [TV] the []
t r anspo r t [N TV] o f [] g luco s e [N] a c r o s s [] c e l l [N]
membranes [N] t h e r e f o r e [] caus ing [VBG] high [A] blood [N]
g luco s e [N] l e v e l s [N]

Ontograbber’s output ontosemantics:

• (0,7,S,inhibition







agt: level

[
chr: low
wrt: insulin

]

pnt: transport

[
pnt: glucose
via: membrane

[
loc: cell

]

]






,“low insulin lev-

els inhibit transport of glucose across cell membranes”)

• (0,7,S,inhibition







agt: level

[
chr: low
wrt: insulin

]

pnt: transport

[
pnt: glucose
via: membrane

[
pof: cell

]

]






,“low insulin lev-

els inhibit transport of glucose across cell membranes”)

156

• (8,8,VBG,causing,“causing”)

• (9,12,NP,level

[
chr: high
wrt: glucose

[
src: blood

]

]

,“high blood glucose levels”)

• (9,12,NP,level





chr: high
loc: blood
wrt: glucose



,“high blood glucose levels”)

Discussion:
This is a sentence where all experts have agreed to a large extent on the

golden ontological semantics. They have in addition all decided that the seman-
tics should be represented by one very complex concept. The algorithm was
mostly capable of understanding the sentence. It has failed to merge to large
ontoterms into one covering entire sentence, as it was unable to understand the
formulation ‘therefore causing’. Also, some small ambiguities are visible in the
result, i.e. the treatment of ‘cell membranes‘, which could be either membranes
located in cells or membranes being part of cells. Also, ‘blood glucose levels’ is
a noun–noun–noun compound that is ambiguous to the algorithm.

The input sentence 2:
�

g luco s e en t e r s the b e t a c e l l s through the g luco s e
t r an spo r t e r g lu t2

Golden ontosemantics (BAS):
�

1 . en te r ing [agt : g lucose , pnt : b e t a c e l l , v ia : g lu t2]
2 . be ing [agt : g lut2 , pnt : t r a n spo r t e r [wrt : g luco s e]]

Golden ontosemantics (TL):
�

entrance [THM: g lucose ,LOC: be t a c e l l ,PATH: g lu t2 [CHR:
t r an spo r t e r [WRT: g luco s e]]]

Golden ontosemantics (HET):
�

entrance [AGT: g luco s e ;
GOAL: b e t a c e l l ;
VIA : t r an spo r t e r [PNT: g luco s e] ;

157

VIA : g lu t2]

Ontograbber’s tagged sentence:
�

g luco s e [N] en t e r s [TV] the [] b e t a c e l l s [N] through [] the []
g luco s e [N] t r an spo r t e r [N] g lu t2 [N]

Ontograbber’s output ontosemantics:

• (0,5,S,entry





agt: glucose
pnt: betacell
via: glut2

[
wrt: transporter

[
wrt: glucose

]]



,“glucose enters be-

tacells through glucose transporter glut2”)

• (0,5,S,entry







agt: glucose
pnt: betacell

via: glut2

[
wrt: glucose
wrt: transporter

]






,“glucose enters betacells through

glucose transporter glut2”)

Discussion:

In this sentence we can observe that the experts have used different roles for
constructing golden semantics. They had full freedom as far as the choice of
atomic concepts and roles is concerned. Also notice that the sentence contains
the phrase ‘glucose transporter glut2’, which is very difficult to analyze without
domain–specific expert knowledge. The experts BAS, TL and HET specialize in
ontological semantics, however they cannot be regarded as experts in biology or
medical domain. It is meaningless to judge whether the algorithm’s treatment
of ‘glucose transporter glut2’ is correct, as the experts couldn’t easily agree on
it.

The input sentence 3:
�

i n s u l i n a l s o i n h i b i t s the r e l e a s e o f g luco s e from the
l i v e r

Golden ontosemantics (BAS):

158

�

i n h i b i t i o n [agt : i n s u l i n ,
pnt : r e l e a s e [pnt : g lucose , s r c : l i v e r]]

Golden ontosemantics (TL):
�

i n h i b i t i o n [AGT: i n s u l i n ,PNT: r e l e a s e [WRT: g luco s e [SRC: l i v e r
]]]

Golden ontosemantics (HET):
�

i n h i b i t i o n [AGT: i n s u l i n ;
PNT: r e l e a s e [PNT: g luco s e [SRC: l i v e r]]]

Ontograbber’s tagged sentence:
�

i n s u l i n [N] a l s o [] i n h i b i t s [TV] the [] r e l e a s e [N] o f []
g luco s e [N] from [] the [] l i v e r [N]

Ontograbber’s output ontosemantics:

• (0,4,S,inhibition





agt: insulin

pnt: release

[
pnt: glucose
src: liver

]



,“insulin inhibits release of glu-

cose from liver”)

• (0,4,S,inhibition

[
agt: insulin
pnt: release

[
pnt: glucose

[
src: liver

]]

]

,“insulin inhibits re-

lease of glucose from liver”)

Discussion:
This is a relatively simple sentence, which uses only the most common lin-

guistic constructs. The experts were in agreement as to what ontosemantics
should be produced. The algorithm has also successfully extracted the golden
semantics. However, it also produced one more result stemming from the ambi-
guity of the phrase ‘release of glucose from liver’. It has found an extra, slightly
surprising meaning, where it is ‘glucose from liver’ that is released, but the re-
lease process itself is not necessarily sourced in liver. Humans are very good at
rejecting such an alternative. In fact, they reject it so well, that being presented
with such an answer appears to be surprising.

159

The input sentence 4:
�

the s e c r e t ed i n s u l i n promotes g luco s e u t i l i z a t i o n and
i n h i b i t s product ion o f g luco s e by the l i v e r

Golden ontosemantics (BAS):
�

1 . promotion [agt : i n s u l i n [chr : s e c r e t ed] ,
pnt : u t i l i z a t i o n [pnt : g luco s e]]

2 . i n h i b i t i o n [agt : i n s u l i n [chr : s e c r e t ed] ,
pnt : product ion [agt : l i v e r , pnt : g luco s e]]

Golden ontosemantics (TL):
�

promotion [AGT: i n s u l i n [CHR: s e c r e t ed] ,PNT: u t i l i z a t i o n [WRT:
g luco s e]]

2 i n h i b i t i o n [AGT: i n s u l i n [CHR: s e c r e t ed] ,PNT: product ion [AGT:
l i v e r ,RST: g luco s e]]

Golden ontosemantics (HET):
�

[promotion [AGT: i n s u l i n [CHR: s e c r e t i o n] ;
PNT: u t i l i z a t i o n [PNT: g luco s e]] ;

i n h i b i t i o n [AGT: i n s u l i n [CHR: s e c r e t i o n] ;
4 PNT: product ion [AGT: l i v e r ; PNT: g luco s e]]]

Ontograbber’s tagged sentence:
�

the [] s e c r e t ed [VBD VBN] i n s u l i n [N] promotes [TV] g luco s e [N
] u t i l i z a t i o n [N] and [] i n h i b i t s [TV] product ion [N] o f []
g luco s e [N] by [] the [] l i v e r [N]

Ontograbber’s output ontosemantics:

• (0,8,S,promotion

[
agt: insulin

[
pntof: secretion

]

pnt: utilization
[
pnt: glucose

]

]

,“ secreted insulin promotes

glucose utilization and inhibits production of glucose by liver”)

160

• (0,8,S,inhibition





agt: insulin
[
pntof: secretion

]

pnt: production

[
agt: liver
pnt: glucose

]



,“ secreted insulin promotes

glucose utilization and inhibits production of glucose by liver”)

Discussion:
In this sentence we encounter the ‘and’ conjunction at the verb phrase level.

The reading of it is distributive, as illustrated by the golden ontosemantics. All
experts agree about what the semantics should be, and all have hand–produced
two ontoterms corresponding to the distributive reading of the conjunction. The
algorithm performs very well for this sentence, understanding the distributivity
and producing two correct readings virtually identical to those suggested by
experts.

The input sentence 5:
�

th r e e i n s u l i n − s i g n a l i n g pathway − s p e c i f i c i n h i b i t o r s
a l s o abo l i s h pgg − induced g luco s e t r anspo r t in 3t3−l 1
ad ipocy te s

Golden ontosemantics (BAS):
�

a b o l i t i o n [agt : i nh i b i t o r ,
pnt : t r anspo r t [wrt : g lucose , chr : induced [agt : pgg

]]]

Golden ontosemantics (TL):
�

a b o l i t i o n [AGT: i n h i b i t o r [CHR: s p e c i f i c i t y [WRT: pathway [WRT:
s i g n a l i n g [WRT: i n s u l i n]]]] , PNT: t r anspo r t [PNT: g luco s e [
CHR: induced [WRT: pgg]]] ,LOC: ad ipocy te s [CHR:3 t3−l 1]]

or
a b o l i t i o n [AGT: i n h i b i t o r [CHR: s p e c i f i c i t y [WRT: pathway [WRT:

s i g n a l i n g [WRT: i n s u l i n]]]] , PNT: t r anspo r t [PNT: g luco s e [
CHR: induced [WRT: pgg]] ,LOC: ad ipocy te s [CHR:3 t3−l 1]]]

Golden ontosemantics (HET):
�

a b o l i t i o n [AGT: i n h i b i t o r [CHR: s i g n a l i n g [PNT:
i n s u l i n] ;

161

CHR: pathway−s p e c i f i c] ;
3 PNT: t r anspo r t [PNT: g luco s e ;

CHR: induc t i on [AGT: pgg] ;
LOC: ad ipocy te s [CHR: 3t3−l 1]]

Ontograbber’s tagged sentence:
�

th r e e [] i n s u l i n [N] − [] s i g n a l i n g [VBG] pathway [N] − []
s p e c i f i c [A] i n h i b i t o r s [N] a l s o [] a bo l i s h [TV] pgg [N]
− [] induced [VBD VBN] g luco s e [N] t r anspo r t [N TV] in [] 3
t3−l 1 [N] ad ipocy te s [N]

Ontograbber’s output ontosemantics:

• (0,1,VBG,signaling
[
pnt: insulin

]
,“insulin - signaling”)

• (1,4,NP,signaling
[
pnt: inhibitor

[
chr: specific

[
wrt: pathway

]]]
,“signaling path-

way - specific inhibitors”)

• (2,11,S,abolition







agt: inhibitor
[
chr: specific

[
wrt: pathway

]]

loc: adipocyte
[
pof: q-3t3l1

]

pnt: transport

[
pnt: glucose
pntof: induction

[
agt: pgg

]

]






,“pathway - spe-

cific inhibitors abolish pgg - induced glucose transport in 3t3-l1 adipocytes”)

• (2,11,S,abolition







agt: inhibitor
[
chr: specific

[
wrt: pathway

]]

loc: adipocyte
[
loc: q-3t3l1

]

pnt: transport

[
pnt: glucose
pntof: induction

[
agt: pgg

]

]






,“pathway - spe-

cific inhibitors abolish pgg - induced glucose transport in 3t3-l1 adipocytes”)

• (2,11,S,abolition







agt: inhibitor
[
chr: specific

[
wrt: pathway

]]

pnt: transport





loc: adipocyte
[
loc: q-3t3l1

]

pnt: glucose
pntof: induction

[
agt: pgg

]










,“pathway -

specific inhibitors abolish pgg - induced glucose transport in 3t3-l1 adipocytes”)

162

• (2,11,S,abolition







agt: inhibitor
[
chr: specific

[
wrt: pathway

]]

pnt: transport





loc: adipocyte
[
pof: q-3t3l1

]

pnt: glucose
pntof: induction

[
agt: pgg

]










,“pathway -

specific inhibitors abolish pgg - induced glucose transport in 3t3-l1 adipocytes”)

Discussion:
This sentence proves to be very complicated. It requires a biological expert

knowledge to understand. The experts have suggested quite different golden
semantics for this sentence. There seems to be a lot of disagreement about what
the sentence means and how small ontoterms should be combined to provide an
ontological meaning for the entire sentence. Hence, it is very difficult to judge
how successful the algorithm was, however it seems to be closest to the golden
standard suggested by HET.

The input sentence 6:
�

some anti−funga l agents func t i on as c e l l wa l l i n h i b i t o r s
by i n h i b i t i n g g luco s e synthase

Golden ontosemantics (BAS):
�

i n h i b i t i o n [agt : agent [chr : anti−funga l] ,
wrt : wa l l [pof : c e l l] ,
pnt : synthase [pnt : g luco s e]]

Golden ontosemantics (TL):
�

func t i on [THM: agent [CHR: anti−funga l] ,ATT: i n h i b i t o r [PNT:
wa l l [WRT: c e l l]] ,MNR: i n h i b i t i o n [PNT: synthase [WRT:
g luco s e]]]

Golden ontosemantics (HET):
�

func t i on [AGT: agent [CHR: anti−funga l]
THM: i n h i b i t i o n [AGT: i n h i b i t o r [XXX: wa l l [

POF: c e l l]] ;
PNT: synthase [PNT: g luco s e]]]

163

Ontograbber’s tagged sentence:
�

some [] anti−funga l [A] agents [N] func t i on [N TV] as [] c e l l [
N] wa l l [N] i n h i b i t o r s [N] by [] i n h i b i t i n g [VBG] g luco s e [
N] synthase [N]

Ontograbber’s output ontosemantics:

• (0,1,NP,agent
[
chr: antifungal

]
,“ anti-fungal agents”)

• (2,2,TV,functioning,“function”)

• (2,2,NP,function,“function”)

• (3,5,NP,inhibitor
[
src: wall

[
pof: cell

]]
,“cell wall inhibitors”)

• (3,5,NP,inhibitor
[
src: wall

[
loc: cell

]]
,“cell wall inhibitors”)

• (3,5,NP,inhibitor

[
src: cell
src: wall

]

,“cell wall inhibitors”)

• (6,8,NP,inhibition
[
pnt: synthase

[
pnt: glucose

]]
,“inhibiting glucose synthase”)

Discussion:
This sentence also appears to be very difficult to understand, as the experts

have quite different views on what ontosemantics should be extracted ideally.
They have however all constructed one large ontoterm, while the algorithm has
only managed to construct several smaller ones without merging them into one
large. However, it is interesting to observe that the small ontoterms produced
by the algorithm all appear as constituents of the large ontoterms produced by
experts. It could be argued that these small ontoterms represent the common
agreement level between the experts.

The input sentence 7:
�

although i n s u l i n s e c r e t i o n i s predominantly c o n t r o l l e d by
blood l e v e l s o f g luco s e , somatostat in i n h i b i t s

g luco s e − mediated i n s u l i n s e c r e t o r y r e spons e s

Golden ontosemantics (BAS):

164

�

1 . c on t r o l [agt : l e v e l [wrt : g luco s e [l o c : blood]] ,
pnt : s e c r e t i o n [pnt : i n s u l i n]]

2 . i n h i b i t i o n [agt : somatostat in , pnt : r e sponse [? ?]]

Golden ontosemantics (TL):
�

c on t r o l [AGT: l e v e l [WRT: g lucose ,LOC: blood] ,PNT: s e c r e t i o n [
WRT: i n s u l i n]

2 i n h i b i t i o n [AGT: somatostat in ,PNT: response [CHR: s e c r e t o r y [
WRT: i n s u l i n] ,CHR: mediated]]

Golden ontosemantics (HET):
�

c on t r o l [AGT: l e v e l [WRT: g luco s e ; LOC: blood] ;
PNT: s e c r e t i o n [THM: i n s u l i n]

i n h i b i t i o n [AGT: somatostat in ;
4 PNT: response [BMO: s e c r e t i o n [CHR: mediat ion [

AGT: g luco s e] ;
THM: i n s u l i n]]

Ontograbber’s tagged sentence:
�

1 although [] i n s u l i n [N] s e c r e t i o n [N] i s [IS] predominantly []
c o n t r o l l e d [VBD VBN] by [] blood [N] l e v e l s [N] o f []

g luco s e [N] , [,] somatostat in [N] i n h i b i t s [TV] g luco s e [N
] − [] mediated [VBD VBN] i n s u l i n [N] s e c r e t o r y [A]
r e spons e s [N]

Ontograbber’s output ontosemantics:

• (0,6,PSV,control




agt: level

[
loc: blood
wrt: glucose

]

pnt: secretion
[
pnt: insulin

]



,“insulin secretion is controlled

by blood levels of glucose”)

• (7,7,,,nil,“,”)

• (8,8,NP,somatostatin,“somatostatin”)

165

• (9,9,TV,inhibition,“inhibits”)

• (10,10,NP,glucose,“glucose”)

• (11,11,VBD,mediation,“mediated”)

• (11,11,VBN,mediation,“mediated”)

• (12,12,NP,insulin,“insulin”)

• (13,14,NP,response
[
chr: secretory

]
,“secretory responses”)

Discussion:
The experts seem to agree about the fact that the ontosemantics should be

split into two ontoterms, one corresponding to a large concept of ‘control’ and
the other to a large concept of ‘inhibition’. However, the experts had trouble
understanding or agreeing upon how to represent the meaning of the phrase
‘inhibits glucose–mediated insulin secretory responses’. The algorithm in fact
reflects this difficulty, as it has found a satisfactory answer for the ‘control’ part,
but did not manage to go far beyond keywords for the ‘inhibition’ part.

The input sentence 8:
�

the blood g luco s e l e v e l s may be f a s t i n g or fed g luco s e
l e v e l s , and blood g luco s e l e v e l s inc lude serum or
plasma g luco s e l e v e l s

Golden ontosemantics (BAS):
�

l e v e l [wrt : g luco s e [l o c : blood]]
l e v e l [wrt : g luco s e [l o c : blood , chr : f ed]]
l e v e l [wrt : g luco s e [l o c : blood , chr : f a s t i n g]]
l e v e l [wrt : g luco s e [l o c : serum]]

5 l e v e l [wrt : g luco s e [l o c : plasma]]

Golden ontosemantics (TL):
�

1 being [THM: l e v e l [WRT: g lucose ,LOC: blood] , ATT: l e v e l [WRT:
g lucose ,CHR: f a s t i n g] , ATT: l e v e l [WRT: g lucose ,CHR: fed]]

be ing [THM: l e v e l [WRT: g lucose ,LOC: blood] , ATT: l e v e l [WRT:
g lucose ,LOC: serum] , ATT: l e v e l [WRT: g lucose ,LOC: plasma]]

166

Golden ontosemantics (HET):
�

l e v e l [WRT: g luco s e ; LOC: blood]
l e v e l [WRT: g luco s e ; CHR: f a s t i n g]
l e v e l [WRT: g luco s e ; CHR: f e ed i ng]

4 i n c l u s i o n [AGT: l e v e l [WRT: g luco s e ; LOC: blood]
PNT: l e v e l [WRT: serum] ;
PNT: l e v e l [WRT: g luco s e [CHR: plasma]]]

Ontograbber’s tagged sentence:
�

the [] blood [N] g luco s e [N] l e v e l s [N] may [CAN] be [BE]
f a s t i n g [VBG] or [] f ed [VBD VBN] g luco s e [N] l e v e l s [N]
, [,] and [] blood [N] g luco s e [N] l e v e l s [N] inc lude [TV]
serum [N] or [] plasma [N] g luco s e [N] l e v e l s [N]

Ontograbber’s output ontosemantics:

• (0,2,NP,level
[
wrt: glucose

[
src: blood

]]
,“ blood glucose levels”)

• (0,2,NP,level

[
loc: blood
wrt: glucose

]

,“ blood glucose levels”)

• (3,3,CAN,can,“may”)

• (4,4,BE,nil,“be”)

• (5,5,VBG,fasting,“fasting”)

• (6,6,VBD,feeding,“fed”)

• (6,6,VBN,feeding,“fed”)

• (7,8,NP,level
[
wrt: glucose

]
,“glucose levels”)

• (9,9,,,nil,“,”)

• (10,12,NP,level
[
wrt: glucose

[
src: blood

]]
,“ blood glucose levels”)

• (10,12,NP,level

[
loc: blood
wrt: glucose

]

,“ blood glucose levels”)

167

• (13,13,TV,inclusion,“include”)

• (14,14,NP,serum,“serum”)

• (15,15,NP,plasma,“plasma”)

• (16,17,NP,level
[
wrt: glucose

]
,“glucose levels”)

Discussion:
The sentence is quite difficult to understand, and the experts do not have a

common view of what the semantics should be. This is probably due to relatively
unusual nature of the sentence. Rather than providing describing observations,
it provides a classification. This can be understood as the definition of the
biomedical ontology itself, which the algorithm uses as its input. The algorithm
performs quite well, as it captures most of the ontoterms common to all those
suggested by experts.

The input sentence 9:
�

the i n s u l i n s e c r e t i o n determined i s p r e f e r ab l y g luco s e −
s t imulated i n s u l i n s e c r e t i o n

Golden ontosemantics (BAS):
�

s e c r e t i o n [pnt : i n s u l i n , chr : s t imulated [agt : g luco s e]]

Golden ontosemantics (TL):
�

f i nd i ng [THM: s e c r e t i o n [PNT: i n s u l i n] ,ATT: s e c r e t i o n [PNT:
i n s u l i n ,CHR: s t imu la t i on [AGT: g luco s e]]]

Golden ontosemantics (HET):
�

s e c r e t i o n [THM: i n s u l i n ; CHR: determinat ion]
s e c r e t i o n [THM: i n s u l i n ; CHR: s t imu la t i on [AGT: g luco s e]]

Ontograbber’s tagged sentence:
�

the [] i n s u l i n [N] s e c r e t i o n [N] determined [VBD VBN] i s [IS]
p r e f e r ab l y [] g luco s e [N] − [] s t imulated [VBD VBN]
i n s u l i n [N] s e c r e t i o n [N]

168

Ontograbber’s output ontosemantics:

• (0,1,NP,secretion
[
pnt: insulin

]
,“ insulin secretion”)

• (2,2,VBD,determining,“determined”)

• (2,2,VBN,determining,“determined”)

• (3,5,PSV,stimulation
[
agt: glucose

]
,“is glucose - stimulated”)

• (4,7,NP,secretion

[
pnt: insulin
pntof: stimulation

[
agt: glucose

]

]

,“glucose - stimulated in-

sulin secretion”)

Discussion:
There was a medium–level agreement between the experts on this sentence.

One expert suggested two ontoterms, while other suggested one. The algorithm
was however unable to find any ontoterm covering entire sentence. It found
several ontoterms covering some parts of the sentence. It is worth noticing that
two of these overlap, one representing the phrase ‘is glucose – stimulated’, and
the other ‘glucose – stimulated insulin secretion’.

The input sentence 10:
�

in the l i v e r , i n s u l i n i n h i b i t s the product ion o f g luco s e
by i n h i b i t i n g g luconeogene s i s and g l y c o g e n o l y s i s

Golden ontosemantics (BAS):
�

causa t i on [agt : i n h i b i t i o n [agt : i n s u l i n ,
pnt : g luconeogene s i s , pnt :

g l y c o g e n o l y s i s]
pnt : i n h i b i t i o n [agt : i n s u l i n , l o c : l i v e r ,

pnt : product ion [pnt : g luco s e]]]

Golden ontosemantics (TL):
�

i n h i b i t i o n [AGT: i n s u l i n , PNT: product ion [PNT: g luco s e] , MNR:
i n h i b i t i o n [PNT: g luconeogene s i s ,PNT: g l y c o g e n o l y s i s] ,LOC
: l i v e r]

169

Golden ontosemantics (HET):
�

i n h i b i t i o n [AGT: i n s u l i n ;
PNT: product ion [PNT: g luco s e] ;
BMO: i n h i b i t i o n [PNT: g luconeogene s i s ; PNT:

g l y c o g e n o l y s i s] ;
LOC: l i v e r]

Ontograbber’s tagged sentence:
�

in [] the [] l i v e r [N] , [,] i n s u l i n [N] i n h i b i t s [TV] the []
product ion [N] o f [] g luco s e [N] by [] i n h i b i t i n g [VBG]
g luconeogene s i s [N] and [] g l y c o g e n o l y s i s [N]

Ontograbber’s output ontosemantics:

• (0,0,NP,liver,“ liver”)

• (1,1,,,nil,“,”)

• (2,5,S,inhibition

[
agt: insulin
pnt: production

[
pnt: glucose

]

]

,“insulin inhibits production

of glucose”)

• (6,8,NP,inhibition
[
pnt: glycogenolysis

]
,“inhibiting gluconeogenesis and glycogenol-

ysis”)

• (6,8,NP,inhibition
[
pnt: gluconeogenesis

]
,“inhibiting gluconeogenesis and glycogenol-

ysis”)

• (6,8,NP,glycogenolysis,“inhibiting gluconeogenesis and glycogenolysis”)

Discussion:

In this sentence the experts do not seem to agree what the ontosemantics
should be. Thay have all produced quite different large ontoterms. However, it
is worth observing that these large ontoterms, while different, have some small
common constituents. The algorithm has captured multiple ontoterms that
overlap with these constituents. It also had a surprising approach as to how the
conjunction should be interpreted.

170

8.15 Conclusion

The result of testing the remaining 27 sentences is presented in Appendix I on
page 269. The ten results presented and discussed here are of highest impor-
tance, as we have been able to provide golden standard ontosemantics produced
by three experts.

We believe that the results are very promising. The ontograbber was able to
analyze sentences for which it does not know a full grammar. Furthermore, the
lexicon used as input to the ontograbber was tiny. In most sentences not all the
words have been found in the lexicon. However, despite those shortcomings, the
system has managed to extract some ontological semantics for the sentences.
The semantics in many cases is quite far from the golden one specified by ex-
perts by hand. However, it is worth keeping in mind that the golden semantics
assumes perfect lexical and grammatical coverage of each sentence. With the
tiny grammar employed in the system and the minute lexicon and ontology, we
believe that the extracted semantics is very promsing. It would certainly get
much closer to the golden one if the lexicon, ontology, and grammar given as
input to the ontograbber would be extended.

In some cases the algorithm failed at merging middle–sized ontoterms into
one very large ontoterm covering the meaning of entire sentence. This most
often stems from the fact that non–domain specific words are used as connec-
tive entities for such meaning or linguistic constructs not covered by our small
grammar are used. However, we regard this not to be a major problem, as
the middle–sized ontoterms (say, covering half of the sentence each) are sound
meaning representations, representing correctly the meaning of some phrases.

It is also important that in all sentences the resulting semantics provides
much deeper understanding of meaning content than keyword–based search do.
This hints that the resulting semantics could be used for constructing a success-
ful search engine, at least for the domain of biomedical scientific texts.

171

172

Chapter 9

Further work

9.1 Incorporation of a large scale lexicon and
ontology

All of the ontograbbers presented in Chapters 7 and 8 use two main resources
as input, i.e. the lexicon and the ontology. It would be very interesting to use
some large scale resources for that purpose, in an attempt to capture as much
of the natural language as possible. However, doing so poses many challenges
described below, and hence is beyond the scope of the current project.

The ontologies available today do not exhibit the generative character, nec-
essary for our ontograbbers. Hence, they would need to be tailored manually
in order to fit as the input to our systems. This generativity could be achieved
by providing ontological affinities on the already–existing large taxonomies, in
effect creating a large generative ontology. The amount of work here would not
be as large as might be suspected, due to the fact that we only need to provide
the affinities on the very top level of our ontology and allow the mechanics of
the generative ontology to inherit the affinities deeper down. For an example
how this is working in practice, see Figure 4.3 on page 82.

Adaptation of a large lexicon as the input to our ontograbber might prove
more challenging. The lexicon needs to provide two main pieces of information to
our ontograbbers, i.e. the possible parts of speech for every word and what node
in the ontology the word actually represents. Even though a large number of
lexicons exist which provide the required information on word’s parts of speech1,

1Most dictionaries do so.

173

none of them is immediately ready for use with the generative ontology by
providing the information how words link to it. This could be worked around
by using some of the lexicons available together with large ontologies available
today. Unfortunately, by following this path we would only get simple links
of words to the ontology, i.e. linking only to the basic concepts. Ideally, the
lexicon would need to be modified to introduce the links of some words to
complex ontoterms, which might require a substantial amount of work.

9.2 Extending natural language coverage

One interesting extension of most of the ontograbbers presented in Chapters 7
and 8 is enlarging the grammar of those systems, in order to enable them to
capture more natural language constructs. This could be achieved fairly simply
for many types of constructs, by following the same principles as with the con-
structs already taken care of. For instance, the introduction of relative clauses
would be based on the same ideas as verb phrases and noun–noun compounds.
There are also some constructs, which we have purposedly decided to omit, as
their contribution to the ontological semantics we search for is marginal. These
include for instance determiners. However, there are some other interesting lin-
guistic constructs that might be more difficult to introduce. An example of that
are phrasal verbs, where part of the verb is moved to the end of the sentence.
Taking care of that would require some changes in the grammar of the ontograb-
bers. We also have not discussed how to modify the methods presented in order
to deal with languages other than English.

9.3 Ontological search engine

While the problem of ontograbbing is quite well suited for formal description,
which does not depart much from the logical specification, it is still important to
keep in mind that one wants to perform search based on the assigned ontological
semantics. Hence, there is a need for coming up with a mechanism for searching
huge amounts of text.

The semantics extracted from the text could be used in a search engine. As
a matter of fact, the design was guided with such a possibility in mind. The
semantics has been tailored, so that the search can be performed efficiently and
easily.

174

Consider the following semantics extracted from the text:

forcing ∩ agt : insulin

∩pnt : (storage ∩ pnt : glycogen

∩ loc : (cell ∩ wrt : liver))

Semantics of this form could be pre–extracted from multiple articles and
stored in a database, which could be accessed by the search engine. If the user
issues a query, we would simply perform the semantic analysis on it, and extract
the query semantics. Let us assume that the user is interested in the fact that
insulin causes the storage of some substance and issues the following query:

Insulin caused storage of substance. (9.1)

This query would get the following semantics captured:

causing ∩ agt : insulin

∩pnt : (storage ∩ pnt : substance)

How would the search engine identify the sentence of interest as the answer
to the query? It is worth observing that forcing is a subclass of causing and
glycogen is a subclass of substance. One approach could use grammatical
production rules and in a few steps derive the text concept from the query
concept. This approach has been presented in Figure 4.3 on page 82.

Another procedure can use a graph matching algorithm. Ontoterms can be
represented graphically in the form of direct acyclic tree graphs. In our case,
we would need to match the query graph:

insulin[n] caused[v] storage[n] of[prep] substance[n]

c_causing

c_insulin

agt

c_storage

pnt

c_substance

pnt

175

against the article sentence graph:

insulin[n] forces[v] storage[n] of[prep] glycogen[n] in[prep] liver[n] cells[n]

c_forcing

c_insulin

agt

c_storage

pnt

c_glycogen

pnt

c_cell

loc

c_liver

wrt

Please observe that the underlying ontology with its class subsumption plays
a vital role in such a matching, as we need to identify that forcing is a subclass
of causing and glycogen is a subclass of substance for the graphs to match.

The graph matching has the advantage of respecting the commutativity of
set intersection. Additionally it can very easily deal with inverse relations by
simply honoring the direction of the arc in the graph.

The need of comparing the query graph to all graphs in the database can
be easily eliminated by indexing the database graphs by the primitive classes
appearing in them, which are conceived in the current context as graph nodes.
The query semantics would only need to be matched against those graphs, which
contain all the concepts appearing in the query according to the index.

Even though the core of the engine would be relatively easy to implement,
the amount of work would be substantial due to the need of downloading many
articles, setting up a database for them, indexing them, etc. However, the
SIABO project is currently working on an ontological search engine, which works
very much along similar lines.

9.3.1 Ad–hoc concepts

A keyword–based search has a certain advantage over an ontological semantic
search. If a given word does not correspond to any class in the ontology, the

176

keyword search will still be able to perform some search involving such a word.
It is possible to add such a functionality to the ontological search engine quite
easily.

This can be achieved by introducing ad–hoc concepts. If a word does not
correspond to any class in the ontology, we can generate a new class on the fly.
Such a class would be identified by the given word. Obviously, we would not
know where this class should be placed in the ontology. We may simply put
it under the top concept. The ad–hoc class created in such a way allows the
ontological search engine to work as if it was a keyword, i.e. only exact match
will be considered as a response to the query. While this approach is relatively
primitive, it allows at least some search results to be returned in case that the
ontology does not contain what was queried about.

177

178

Chapter 10

Conclusion

In Chapter 1 we have outlined the motivation behind this work, including the
fact that we would like to offer search–friendly semantics that surpasses the
capabilities of the keyword–based search. That should be achieved by merging
formal domain ontologies with natural language semantics.

In Chapter 2 we have presented formalisms that are useful for representing
either formal ontologies, natural language semantics, or both. We also gave
examples about how they can be utilized. First Order Predicate Logic has been
used throughout the thesis as a common metalogical framework language, in
which other ideas and formalisms have been presented. This has functioned as
a glue between the logical methods presented and the computation procedures
developed in later chapters, where we used logic programming.

Chapter 3 provided a general introduction to ontologies, with focus on formal
ones. In this chapter we have not yet dwelved into natural language semantics.
Instead, we have presented how to use the logical framework of formal ontologies
to extract non–trivial information from them with the help of logic program-
ming.

In Chapter 4 we explored the notion of types. We demonstrated how much
variety exists between types as used in logic, ontologies, and programming lan-
guages. Last but not least we have presented how generative ontologies work to
provide the infinitude of ontological types, or “ontoterms”.

In Chapter 5 we had a closer look at natural language – its grammar, mean-
ing, and some problems related to extracting that meaning. We have presented
some ways of how to merge the formal ontologies with natural language seman-
tics.

179

In Chapter 6 we looked at the state–of–the–art in ontological semantics and
we have compared it to our approach.

In Chapter 7 we have answered the question of how to approach the problem
of relating computationally the ontological semantics and a natural language
fragment. We have discussed how to use practical logic programming tools,
such as Prolog, for that purpuse, while keeping as close to the underlying logical
specification as possible. We have elaborated several approaches, each with its
own advantages, and described them in detail.

In Chapter 8 we went one step further and try to use similar methods as
in Chapter 7 for dealing with unrestricted natural language. However, we have
moved further away from the pure logical specification in order to be able to
deal with unrestricted versions of natural language. The approach presented in
this chapter introduces a novelty, i.e. the utilization of the ontological meaning
earlier in the process understanding of the language than the grammar itself.

We have presented some final thoughts and the discussion of further work
in Chapter 9.

180

Appendix A

Investigations of the
conjunctions’ reading
(distributive vs. collective)
of Wikipedia Insulin
sentences

The following is an investigation of the reading of conjunctions in a scientific
text, i.e. the Wikipedia entry on Insulin.

For each sentence:

• The conjunction has been identified with a frame

• The reading has been distinguished (whether it is collective or distributive)

• The syntactic level of the conjunction has been identified (NP level, sen-
tence level, etc.)

• The relevance of the sentence has been decided (some sentences contribut-
ing a lot to the given scientific text, and some not being interesting from
that point of view)

A summary follows, where the findings of this study are presented.

181

A.1 Sample sentences

1: Insulin is a hormone with intensive effects on both metabolism and
several other body systems.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

2: Insulin causes most of the body’s cells to take up glucose from the blood,

storing it as glycogen in the liver and muscle, and stops use of fat as an energy
source.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

3: Insulin causes most of the body’s cells to take up glucose from the blood,

storing it as glycogen in the liver and muscle, and stops use of fat as an energy
source.

The reading is distributive. Conjunction at VP level. Sentence is relevant.

4: When insulin is absent, glucose is not taken up by most body cells and
the body begins to use fat as an energy source.

The reading is distributive. Conjunction at VP level. Sentence is relevant.

5: Insulin is a peptide hormone composed of 51 amino acid residues and
has a molecular weight of 5808 Da.

The reading is distributive. Conjunction at VP level. Sentence is relevant.

6: Bovine insulin differs from human in only three amino acid residues, and
porcine insulin in one.

The reading is distributive. Ellipsis. Sentence is irrelevant.

7: Insulin in some invertebrates is quite close to human insulin, has similar

effects inside cells, and is produced very similarly.
The reading is distributive. Conjunction at VP level. Sentence is relevant.

8: Insulin is produced in the pancreas, and released when any of several
stimuli are detected.

The reading is distributive. Conjunction at VP level. Sentence is relevant.

9: These include protein ingestion, and glucose in the blood.

182

The reading is distributive. Conjunction at NP level. Sentence is irrelevant.

10: In target cells, they initiate a signal transduction which has the effect of

increasing glucose uptake and storage.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

11: Production and secretion are largely independent; prepared insulin is
stored awaiting secretion.

The reading is collective. Conjunction at NP level. Relevance is question-
able.

12: Both C-peptide and mature insulin are biologically active.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

13: Cell components and proteins in this image are not to scale.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

14: These modifications of proinsulin remove the center portion of the

molecule, from the C- and N- terminal ends of proinsulin.

Conjunction at NP level. Relevance is questionable.

15: The remaining polypeptides, the B- and A- chains, are bound together
by disulfide bonds/disulphide bonds.

The reading can be collective or distributive. Conjunction at NP level.
Relevance is questionable.

16: Confusingly, the primary sequence of proinsulin goes in the order ”B-

C-A”, since B and A chains were identified on the basis of mass, and the C
peptide was discovered after the others.

The reading can be collective or distributive. Conjunction at NP level.
Relevance is questionable.

17: Confusingly, the primary sequence of proinsulin goes in the order ”B-

C-A”, since B and A chains were identified on the basis of mass, and the C
peptide was discovered after the others.

The reading is distributive. Conjunction at S level. Sentence is relevant.

183

18: Glucose goes into the glycolysis and the respiratory cycle where mul-
tiple high-energy ATP molecules are produced by oxidation

The reading is distributive. Conjunction at NP level. Sentence is relevant.

19: Dependent on ATP levels, and hence blood glucose levels, the ATP-
controlled potassium channels close and the cell membrane depolarizes

The reading is distributive. Conjunction at NP level. Sentence is relevant.

20: Dependent on ATP levels, and hence blood glucose levels, the ATP-

controlled potassium channels close and the cell membrane depolarizes
The reading is distributive. Conjunction at S level. Sentence is relevant.

21: On depolarization, voltage controlled calcium channels open and cal-
cium flows into the cells

The reading is distributive. Conjunction at S level. Sentence is relevant.

22: An increased calcium level causes activation of phospholipase C, which
cleaves the membrane phospholipid phosphatidyl inositol 4,5-bisphosphate into

inositol 1,4,5-triphosphate and diacylglycerol.
The reading can be collective or distributive. Conjunction at NP level.

Relevance is questionable.

23: This allows the release of Ca2+ from the ER via IP3 gated channels,

and further raises the cell concentration of calcium.
The reading is distributive. Conjunction at VP level. Sentence is relevant.

24: This is the main mechanism for release of insulin and regulation of
insulin synthesis.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

25: In addition some insulin synthesis and release takes place generally at
food intake, not just glucose or carbohydrate intake, and the beta cells are also
somewhat influenced by the autonomic nervous system.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

26: In addition some insulin synthesis and release takes place generally at

food intake, not just glucose or carbohydrate intake, and the beta cells are
also somewhat influenced by the autonomic nervous system.

184

The reading is distributive. Conjunction at S level. Sentence is relevant.

27: Other substances known to stimulate insulin release include amino acids
from ingested proteins, acetylcholine, released from vagus nerve endings, chole-

cystokinin, released by enteroendocrine cells of intestinal mucosa and glucose-
dependent insulinotropic peptide.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

28: This is thought to avoid downregulation of insulin receptors in target

cells and to assist the liver in extracting insulin from the blood.

The reading is distributive. Sentence is relevant.

29: Activation of insulin receptors leads to internal cellular mechanisms

that directly affect glucose uptake by regulating the number and operation of
protein molecules in the cell membrane that transport glucose into the cell.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

30: The genes that specify the proteins that make up the insulin receptor in
cell membranes have been identified and the structure of the interior, cell mem-

brane section, and now, finally after more than a decade, the extra-membrane
structure of receptor.

Ellipsis. Relevance is questionable.

31: Two types of tissues are most strongly influenced by insulin, as far as

the stimulation of glucose uptake is concerned: muscle cells and fat cells.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

32: The former are important because of their central role in movement,

breathing, circulation, etc, and the latter because they accumulate excess food
energy against future needs.

Ellipsis. Relevance is questionable.

33: Effect of insulin on glucose uptake and metabolism.

The reading is distributive. Conjunction at NP level. Sentence is irrelevant.

185

34: These include: translocation of Glut-4 transporter to the plasma mem-

brane and influx of glucose, glycogen synthesis, glycolysis and fatty acid syn-
thesis.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

35: These include: translocation of Glut-4 transporter to the plasma mem-

brane and influx of glucose, glycogen synthesis, glycolysis and fatty acid syn-
thesis.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

36: Control of cellular intake of certain substances, most prominently glucose

in muscle and adipose tissue.
The reading is distributive. Conjunction at NP level. Sentence is relevant.

37: Increase of DNA replication and protein synthesis via control of amino
acid uptake.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

38: Increased glycogen synthesis - insulin forces storage of glucose in liver
cells in the form of glycogen; lowered levels of insulin cause liver cells to convert

glycogen to glucose and excrete it into the blood.
The reading is distributive. Relevance is questionable.

39: Decreased gluconeogenesis - decreases production of glucose from non-
sugar substrates, primarily in the liver ; lack of insulin causes glucose production

from assorted substrates in the liver and elsewhere.
The reading is distributive. Conjunction at NP level. Sentence is irrelevant.

40: Once an insulin molecule has docked onto the receptor and effected its
action, it may be released back into the extracellular environment or it may be
degraded by the cell.

The reading is collective. Relevance is questionable.

41: They do not require insulin to absorb glucose, unlike muscle and adi-
pose tissue, and they have very small internal stores of glycogen.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

186

42: They do not require insulin to absorb glucose, unlike muscle and adipose

tissue, and they have very small internal stores of glycogen.
The reading is distributive. Conjunction at S level. Sentence is relevant.

43: Glycogen stored in liver cells can be converted to glucose, and released
into the blood, when glucose from digestion is low or absent, and the glycerol
backbone in triglycerides can also be used to produce blood glucose.

The reading is distributive. Relevance is questionable.

44: Glycogen stored in liver cells can be converted to glucose, and released

into the blood, when glucose from digestion is low or absent, and the glycerol
backbone in triglycerides can also be used to produce blood glucose.

The reading is distributive. Conjunction at S level. Sentence is relevant.

45: Sufficient lack of glucose and scarcity of these sources of glucose can
dramatically make itself manifest in the impaired functioning of the central
nervous system; dizziness, speech problems, and even loss of consciousness, can
occur.

The reading can be collective or distributive. Conjunction at NP level.
Relevance is questionable.

46: Sufficient lack of glucose and scarcity of these sources of glucose can
dramatically make itself manifest in the impaired functioning of the central

nervous system; dizziness, speech problems, and even loss of consciousness,
can occur.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

47: Endogenous causes of insulin excess are very rare, and the overwhelm-
ing majority of insulin-excess induced hypoglycemia cases are iatrogenic and
usually accidental.

The reading is distributive. Conjunction at S level. Sentence is relevant.

48: Endogenous causes of insulin excess are very rare, and the overwhelm-

ing majority of insulin-excess induced hypoglycemia cases are iatrogenic and
usually accidental.

Sentence is relevant. Sentence is irrelevant.

187

49: Metabolic syndrome - a poorly understood condition first called Syn-
drome X by Gerald Reaven, Reaven’s Syndrome after Reaven, CHAOS in Aus-

tralia, and sometimes prediabetes.
The reading is distributive. Conjunction at NP level. Sentence is irrelevant.

50: It is characterized by elevated blood pressure, dyslipidemia, and in-
creased waist circumference.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

51: Commonly, morbidities such as essential hypertension, obesity, Type 2

diabetes, and cardiovascular disease develop.
The reading is distributive. Conjunction at NP level. Sentence is relevant.

52: Polycystic ovary syndrome - a complex syndrome in women in the re-

productive years where there is anovulation and androgen excess commonly
displayed as hirsutism.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

53: The host cells are then allowed to grow and reproduce normally, and
due to the inserted human DNA, they produce a synthetic version of human
insulin.

The reading is distributive. Relevance is questionable.

54: The host cells are then allowed to grow and reproduce normally, and
due to the inserted human DNA, they produce a synthetic version of human
insulin.

Relevance is questionable.

55: According to a survey that the International Diabetes Federation con-

ducted in 2002 on the access to and availability of insulin in its member coun-
tries, approximately 70% of the insulin that is currently sold in the world is
recombinant, biosynthetic ’human’ insulin.

The reading is distributive. Ellipsis. Relevance is questionable.

56: Also, the International Diabetes Federation’s position statement is very
clear in stating that ”there is NO overwhelming evidence to prefer one species

188

of insulin over another” and ”[modern, highly-purified] animal insulins remain
a perfectly acceptable alternative.

Sentence is irrelevant.

57: Selecting the ’right’ dose and timing.
The reading is distributive. Conjunction at NP level. Relevance is question-

able.

58: Adjusting dosage and timing to fit food intake timing, amounts, and
types.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

59: Adjusting dosage and timing to fit exercise undertaken.
The reading is distributive. Conjunction at NP level. Relevance is question-

able.

60: Adjusting dosage, type, and timing to fit other conditions, for instance
the increased stress of illness.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

61: The dosage is non-physiological in that a subcutaneous bolus dose of

insulin alone is administered instead of combination of insulin and C-peptide

being released gradually and directly into the portal vein.
The reading is collective. Conjunction at NP level. Sentence is relevant.

62: These delay absorption of the insulin, adjust the pH of the solution to

reduce reactions at the injection site, and so on.
Sentence is irrelevant.

63: They have absorption and activity characteristics not currently possible
with subcutaneously injected insulin proper.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

64: Choosing insulin type and dosage/timing should be done by an expe-
rienced medical professional working closely with the diabetic patient.

189

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

65: these begin to work within 5 to 15 minutes and are active for 3 to 4
hours.

The reading is distributive. Conjunction at VP level. Relevance is question-
able.

66: Short-acting, such as ”regular” insulin starts working within 30 minutes

and is active about 5 to 8 hours.
The reading is distributive. Conjunction at VP level. Relevance is question-

able.

67: Intermediate-acting, such as ”NPH”, or ”lente” insulin starts working

in 1 to 3 hours and is active 16 to 24 hours.
The reading is distributive. Conjunction at VP level. Relevance is question-

able.

68: Long-acting, such as ”ultralente” insulin starts working in 4 to 6 hours,

and is active 24 to 28 hours.
The reading is distributive. Conjunction at VP level. Relevance is question-

able.

69: ”Insulin glargine” and ”Insulin detemir” both insulin analogs which
start working within 1 to 2 hours and continue to be active, without major
peaks or dips, for about 24 hours, although this varies in many individuals.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

70: ”Insulin glargine” and ”Insulin detemir” both insulin analogs which

start working within 1 to 2 hours and continue to be active, without major
peaks or dips, for about 24 hours, although this varies in many individuals.

The reading is distributive. Conjunction at VP level. Relevance is question-
able.

71: A mixture of NPH and regular insulin - starts working in 30 minutes
and is active 16 to 24 hours.

The reading is collective. Conjunction at NP level. Sentence is relevant.

190

72: A mixture of NPH and regular insulin - starts working in 30 minutes

and is active 16 to 24 hours.
The reading is distributive. Conjunction at VP level. Relevance is question-

able.

73: 25 in India claiming it eliminates the risk of contracting diseases such as

BSE and CJD associated with insulin derived from pigs and cattle.
The reading is distributive. Conjunction at NP level. Sentence is relevant.

74: 25 in India claiming it eliminates the risk of contracting diseases such as

BSE and CJD associated with insulin derived from pigs and cattle.
The reading is distributive. Conjunction at NP level. Relevance is question-

able.

75: Hence, both a long-acting insulin and a short-acting insulin are typi-
cally used.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

76: Advantages to the patient are better control over background or ’basal’

insulin dosage, bolus doses calculated to fractions of a unit, and calculators in
the pump that may help with determining ’bolus’ infusion dosages.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

77: The limitations are cost, the potential for hypoglycemic and hyper-
glycemic episodes, catheter problems, and no ”closed loop” means of controlling
insulin delivery based on current blood glucose levels.

The reading is distributive. Conjunction at ADJ level. Sentence is relevant.

78: The limitations are cost, the potential for hypoglycemic and hyper-

glycemic episodes, catheter problems, and no ”closed loop” means of control-
ling insulin delivery based on current blood glucose levels.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

79: In addition, indwelling catheters pose the risk of infection and ulcer-
ation, and some patients may also develop lipodystrophy due to the infusion

191

sets.
The reading is distributive. Conjunction at NP level. Sentence is relevant.

80: In addition, indwelling catheters pose the risk of infection and ulceration,

and some patients may also develop lipodystrophy due to the infusion sets.
The reading is distributive. Conjunction at S level. Sentence is relevant.

81: Insulin pumps require care and effort to use correctly.
The reading is collective. Conjunction at NP level. Relevance is question-

able.

82: Food and Drug Administration approved the use of Exubera, the first
inhalable insulin.

Conjunction at name level. Relevance is questionable.

83: Inhaled insulin has similar efficacy to injected insulin, both in terms of

controlling glucose levels and blood half-life.
The reading is distributive. Conjunction at NP level. Sentence is relevant.

84: Currently, inhaled insulin is short acting and is typically taken before
meals; an injection of long-acting insulin at night is often still required.

The reading is distributive. Conjunction at VP level. Relevance is question-
able.

85: Following its commercial launch in 2005 in the UK, it was not recom-

mended by National Institute for Health and Clinical Excellence for routine
use, except in cases where there is ””proven injection phobia diagnosed by a
psychiatrist or psychologist””.

Conjunction at name level. Relevance is questionable.

86: Similarly, Eli Lilly and Company ended its efforts to develop its Air
inhaled insulin in March 2008.

Conjunction at name level. Relevance is questionable.

87: Jet injection had different insulin delivery peaks and durations as com-
pared to needle injection.

The reading can be collective or distributive. Conjunction at NP level.
Relevance is questionable.

192

88: Both electricity using iontophoresis and ultrasound have been found to
make the skin temporarily porous.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

89: Researchers have produced a watch-like device that tests for blood glu-

cose levels through the skin and administers corrective doses of insulin through
pores in the skin.

The reading is distributive. Conjunction at VP level. Sentence is relevant.

90: However, insulin is a protein, which are digested in the stomach and
gut and in order to be effective at controlling blood sugar, can not be taken
orally.

The reading can be collective or distributive. Conjunction at NP level.
Sentence is relevant.

91: However, insulin is a protein, which are digested in the stomach and gut

and in order to be effective at controlling blood sugar, can not be taken orally.

The reading is distributive. Conjunction at S level. Sentence is relevant.

92: In a Phase I study, VIAtab delivered insulin to the blood stream quickly

and resembled the first-phase insulin release spike found in healthy individuals.

The reading is distributive. Conjunction at VP level. Sentence is relevant.

93: The company claims that an oral insulin therapy would be more con-

venient than currently available injectable or inhalable therapies, and they
expect that convenience to result in increased insulin usage among the cur-
rently underserved early-stage patients with Type 2 diabetes, thus helping to
create better long-term outcomes for that patient population.

The reading is distributive. Conjunction at S level. Sentence is relevant.

94: Transplantation of an entire pancreas is difficult and relatively uncom-
mon.

The reading is distributive. Conjunction at ADJ level. Sentence is irrelevant.

95: However, researchers at the University of Illinois at Chicago have slightly

modified the Edmonton Protocol procedure for islet cell transplantation and

193

achieved insulin independence in diabetes patients with fewer but better-functioning
pancreatic islet cells.

The reading is distributive. Conjunction at VP level. Relevance is question-
able.

96: The central problem for those requiring external insulin is picking the

right dose of insulin and the right timing.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

97: The increased insulin level causes glucose absorption and storage in
cells, reduces glycogen to glucose conversion, reducing blood glucose levels, and
so reducing insulin release.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

98: The increased insulin level causes glucose absorption and storage in cells,

reduces glycogen to glucose conversion, reducing blood glucose levels, and so
reducing insulin release.

Relevance is questionable.

99: The result is that the blood glucose level rises somewhat after eating,

and within an hour or so, returns to the normal ’fasting’ level.

Relevance is questionable.

100: In additions, fats and proteins cause delays in absorption of glucose
from carbohydrate eaten at the same time.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

101: Because of the complex and interacting factors, it is, in principle,
impossible to know for certain how much insulin is needed to ’cover’ a particular
meal to achieve a reasonable blood glucose level within an hour or two after
eating.

The reading can be collective or distributive. Conjunction at ADJ level.
Relevance is questionable.

102: Non-diabetics’ beta cells routinely and automatically manage this by
continual glucose level monitoring and insulin release.

194

The reading is distributive. Conjunction at ADJ level. Relevance is ques-
tionable.

103: Non-diabetics’ beta cells routinely and automatically manage this by

continual glucose level monitoring and insulin release.

The reading can be collective or distributive. Conjunction at NP level.
Relevance is questionable.

104: All such decisions by a diabetic must be based on experience and
training and, further, specifically based on the individual experience of the pa-
tient.

The reading is collective. Conjunction at NP level. Relevance is question-
able.

105: But it is not straightforward and should never be done by habit or
routine.

The reading is distributive. Conjunction at VP level. Sentence is relevant.

106: For example, some patients with diabetes require more insulin after
drinking skim milk than they do after taking an equivalent amount of fat, pro-

tein, carbohydrate, and fluid in some other form.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

107: Maintaining the basal rate and the bolus rate is a continuous balancing
act that people with insulin-dependent diabetes must manage each day.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

108: NPH/isophane, lente, ultralente, glargine, and detemir may be used
for this purpose.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

109: The advantage of NPH is its low cost and the fact that you can mix it
with short-acting forms of insulin, thereby minimizing the number of injections
that must be administered.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

195

110: The disadvantage is that the activity of NPH is less steady and will
peak 4-6 hours after administration, and this peak has the potential of causing
hypoglycemia.

The reading is distributive. Conjunction at VP level. Relevance is question-
able.

111: NPH and regular insulin in combination are available as premixed
solutions, which can sometimes simplify administration.

The reading is collective. Conjunction at NP level. Relevance is question-
able.

112: The theoretical advantage of glargine and detemir is that they only
need to be administered once a day, and they also have steady activity, generally
without peaks, although in practice, many patients find that neither lasts a full
24 hours.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

113: The theoretical advantage of glargine and detemir is that they only need

to be administered once a day, and they also have steady activity, generally
without peaks, although in practice, many patients find that neither lasts a full
24 hours.

The reading is distributive. Conjunction at S level. Sentence is relevant.

114: Glargine and detemir are also signifincantly more expensive, and they
cannot be mixed with other forms of insulin.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

115: Glargine and detemir are also signifincantly more expensive, and they
cannot be mixed with other forms of insulin.

The reading is distributive. Conjunction at S level. Sentence is relevant.

116: Regular insulin, lispro, aspart and glulisine can be used for this pur-
pose.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

117: Regular insulin should be given with about a 30 minute lead-time

prior to the meal to be maximally effective and to minimize the possibility of
hypoglycemia.

196

The reading is distributive. Sentence is relevant.

118: Lispro, aspart and glulisine are approved for dosage with the first bite
of the meal, and may even be effective if given after completing the meal.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

119: Lispro, aspart and glulisine are approved for dosage with the first bite

of the meal, and may even be effective if given after completing the meal.

The reading is distributive. Conjunction at VP level. Relevance is question-
able.

120: Insulin prescriptions generally specify fixed amounts of long-acting in-

sulin to be given routinely, and fixed amounts of short-acting insulin prior to
every meal.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

121: ”Sample regimen using insulin NPH and regular insulin”

The reading is distributive. Conjunction at NP level. Sentence is irrelevant.

122: ”Sample regimen using insulin glargine and insulin lispro”¡br /¿

The reading is distributive. Conjunction at NP level. Sentence is irrelevant.

123: A more complicated method that allows greater freedom with meal

times and snacks is carb counting.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

124: The patient can use his or her total daily dose of insulin to estimate

how many grams of carbohydrates will be ”covered” by 1 unit of insulin, and
using this result, the patient can estimate how many units of insulin should be
administered depending on the carbohydrate concentration of their meal.

Sentence is irrelevant.

125: However, all dosages involve a fair degree of guesswork, and will
seldom work consistently from one dosage to the next.

197

The reading is distributive. Conjunction at VP level. Relevance is question-
able.

126: Poorly controlled diabetics are more prone than others to exhaustion

and tiredness, and properly-administered insulin can relieve such symptoms.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

127: Poorly controlled diabetics are more prone than others to exhaustion

and tiredness, and properly-administered insulin can relieve such symptoms.

The reading is distributive. Conjunction at S level. Sentence is relevant.

128: ”Game of Shadows,” by reporters Mark Fainaru-Wada and Lance
Williams, includes allegations that Barry Bonds used insulin in the apparent
belief that it would increase the effectiveness of the growth hormone he was
taking.

The reading is collective. Conjunction at NP level. Sentence is irrelevant.

129: On top of this, non-prescribed insulin is a banned drug at the Olympics

and other global competitions.

The reading is distributive. Conjunction at NP level. Sentence is irrelevant.

130: The use and abuse of exogenous insulin is claimed to be widespread
amongst the bodybuilding community.

The reading is distributive. Conjunction at NP level. Relevance is question-
able.

131: Insulin, human growth hormone and insulin-like growth factor 1 are
self-administered by those looking to increase muscle mass beyond the scope
offered by anabolic steroids alone.

The reading can be collective or distributive. Conjunction at NP level.
Relevance is questionable.

132: This theory has been supported in recent years by top-level body-
builders whose competition weight is in excess of of muscle, larger than that of

competitors in the past, and with even lower levels of body fat.

Relevance is questionable.

198

133: The abuse of exogenous insulin carries with it an attendant risk of

hypoglycemic coma and death when the amount used is in excess of that
required to handle ingested carbohydrate.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

134: Acute risks include brain damage, paralysis, and death.
The reading is distributive. Conjunction at NP level. Sentence is relevant.

135: Long-term risks may include development of type 2 diabetes, and
potentially a lifetime dependency on exogenous insulin.

The reading is distributive. Conjunction at NP level. Sentence is relevant.

136: In addition, overly high levels of insulin are seen only in those with

pathologies such as Type 2 diabetes mellitus, and only in some of those.
Sentence is irrelevant.

137: The typical person cannot have insulin overload and still have blood
glucose levels which do not force symptoms of hypoglycemia.

The reading is collective. Relevance is questionable.

A.2 Summary

The reading can be collective or distributive: 15 16 22 45 87 90 101 103 131
The reading is collective: 11 40 61 71 81 104 111 128 137
The reading is distributive: 1 2 3 4 5 6 7 8 9 10 12 13 17 18 19 20 21 23 24

25 26 27 28 29 31 33 34 35 36 37 38 39 41 42 43 44 46 47 49 50 51 52 53 55 57
58 59 60 63 64 65 66 67 68 69 70 72 73 74 75 76 77 78 79 80 83 84 88 89 91 92
93 94 95 96 97 100 102 105 106 107 108 109 110 112 113 114 115 116 117 118
119 120 121 122 123 125 126 127 129 130 133 134 135

Conjunction at S level: 17 20 21 26 42 44 47 80 91 93 113 115 127
Conjunction at NP level: 1 2 9 10 11 12 13 14 15 16 18 19 22 24 25 27 29

31 33 34 35 36 37 39 41 45 46 49 50 51 52 57 58 59 60 61 63 64 69 71 73 74 75
76 78 79 81 83 87 88 90 96 97 100 103 104 106 107 108 109 111 112 114 116 118
120 121 122 123 126 128 129 130 131 133 134 135

Conjunction at ADJ level: 77 94 101 102
Conjunction at VP level: 3 4 5 7 8 23 65 66 67 68 70 72 84 89 92 95 105 110

119 125
Conjunction at name level: 82 85 86

199

Ellipsis: 6 30 32 55
Sentence is relevant: 1 2 3 4 5 7 8 10 12 13 17 18 19 20 21 23 24 25 26 27 28

29 36 37 41 42 44 47 48 50 51 61 71 73 75 77 79 80 83 88 89 90 91 92 93 97 100
105 106 107 108 112 113 114 115 116 117 126 127 133 134 135

Sentence is irrelevant: 6 9 33 39 48 49 56 62 94 121 122 124 128 129 136
Relevance is questionable: 11 14 15 16 22 30 31 32 34 35 38 40 43 45 46 52

53 54 55 57 58 59 60 63 64 65 66 67 68 69 70 72 74 76 78 81 82 84 85 86 87 95
96 98 99 101 102 103 104 109 110 111 118 119 120 123 125 130 131 132 137

200

Appendix B

Investigations of the type of
relative clauses of the
Wikipedia Insulin article
sentences

The following is an investigation of the type of relative clauses occuring in a
scientific text, i.e. the Wikipedia entry on Insulin.

Insulin text had 172 sentences, of which: 13 had a ”which” relative clause.
29 had a ”that” relative clause. 1 had a ”who” relative clause.

B.1 Which

These include protein ingestion, and glucose in the blood (from food which
produces glucose when digested – characteristically this is carbohydrate, though
not all types produce glucose and so an increase in blood glucose levels).

In target cells, they initiate a signal transduction which has the effect of
increasing glucose uptake and storage.

One million to three million islets of Langerhans (pancreatic islets) form the
endocrine part of the pancreas, which is primarily an exocrine gland.

An increased calcium level causes activation of phospholipase C, which cleaves
the membrane phospholipid phosphatidyl inositol 4,5-bisphosphate into inositol

201

1,4,5-triphosphate and diacylglycerol.
Metabolic syndrome a poorly understood condition first called Syndrome

X by Gerald Reaven, Reaven’s Syndrome after Reaven, CHAOS in Australia
(from the signs which seem to travel together), and sometimes prediabetes.

Slight variations of the human insulin molecule are called insulin analogs,
(technically ”insulin receptor ligands”) so named because they are not techni-
cally insulin, rather they are analogs which retain the hormone’s glucose man-
agement functionality.

”Insulin glargine” and ”Insulin detemir” both insulin analogs which start
working within 1 to 2 hours and continue to be active, without major peaks or
dips, for about 24 hours, although this varies in many individuals.

However, insulin is a protein, which are digested in the stomach and gut and
in order to be effective at controlling blood sugar, can not be taken orally.

Because of the complex and interacting factors, it is, in principle, impossible
to know for certain how much insulin (and which type) is needed to ’cover’ a
particular meal to achieve a reasonable blood glucose level within an hour or
two after eating.

NPH and regular insulin in combination are available as premixed solutions,
which can sometimes simplify administration.

The typical person cannot have insulin overload and still have blood glucose
levels which do not force symptoms of hypoglycemia.

Nicolae Paulescu, a professor of physiology at the University of Medicine
and Pharmacy in Bucharest was the first one to isolate insulin, which he called
at that time pancrein, and published his work in 1921 that had been carried out
in Bucharest.

Banting suggested that they try to use fetal calf pancreas, which had not
yet developed digestive glands; he was relieved to find that this method worked
well.

B.2 That

Activation of insulin receptors leads to internal cellular mechanisms that di-
rectly affect glucose uptake by regulating the number and operation of protein
molecules in the cell membrane that transport glucose into the cell.

The genes that specify the proteins that make up the insulin receptor in
cell membranes have been identified and the structure of the interior, cell mem-
brane section, and now, finally after more than a decade, the extra-membrane
structure of receptor (Australian researchers announced the work 2Q 2006).

202

It is a protein that has been highly conserved across evolutionary time.

According to a survey that the International Diabetes Federation conducted
in 2002 on the access to and availability of insulin in its member countries,
approximately 70

Also, the International Diabetes Federation’s position statement is very clear
in stating that ”there is NO overwhelming evidence to prefer one species of
insulin over another” and ”[modern, highly-purified] animal insulins remain a
perfectly acceptable alternative.

The dosage is non-physiological in that a subcutaneous bolus dose of insulin
alone is administered instead of combination of insulin and C-peptide being
released gradually and directly into the portal vein.

Advantages to the patient are better control over background or ’basal’ in-
sulin dosage, bolus doses calculated to fractions of a unit, and calculators in the
pump that may help with determining ’bolus’ infusion dosages.

Researchers have produced a watch-like device that tests for blood glucose
levels through the skin and administers corrective doses of insulin through pores
in the skin.

The company claims that an oral insulin therapy would be more convenient
than currently available injectable or inhalable therapies, and they expect that
convenience to result in increased insulin usage among the currently underserved
early-stage patients with Type 2 diabetes, thus helping to create better long-
term outcomes for that patient population.

The result is that the blood glucose level rises somewhat after eating, and
within an hour or so, returns to the normal ’fasting’ level.

Maintaining the basal rate and the bolus rate is a continuous balancing act
that people with insulin-dependent diabetes must manage each day.

The advantage of NPH is its low cost and the fact that you can mix it with
short-acting forms of insulin, thereby minimizing the number of injections that
must be administered.

The disadvantage is that the activity of NPH is less steady and will peak
4-6 hours after administration, and this peak has the potential of causing hy-
poglycemia.

The theoretical advantage of glargine and detemir is that they only need
to be administered once a day, and they also have steady activity, generally
without peaks, although in practice, many patients find that neither lasts a full
24 hours.

A more complicated method that allows greater freedom with meal times
and snacks is ”carb counting.

203

”Game of Shadows,” by reporters Mark Fainaru-Wada and Lance Williams,
includes allegations that Barry Bonds used insulin in the apparent belief that
it would increase the effectiveness of the growth hormone he was (also alleged
to be) taking.

Their rationale is that since insulin and HGH act synergistically to promote
growth, and since IGF-1 is a primary mediator of musculoskeletal growth, the
’stacking’ of insulin, HGH and IGF-1 should offer a synergistic growth effect on
skeletal muscle.

This theory has been supported in recent years by top-level bodybuilders
whose competition weight is in excess of of muscle, larger than that of competi-
tors in the past, and with even lower levels of body fat.

The abuse of exogenous insulin carries with it an attendant risk of hypo-
glycemic coma and death when the amount used is in excess of that required to
handle ingested carbohydrate.

In the non-diabetic, the feedback control mechanism connecting insulin re-
lease and blood glucose level is very effective, and it is not possible to adjust it
except that blood glucose levels rise slightly during digestion and absorption of
glucose.

The decrease in blood glucose levels is directly attributable to release of
insulin, and that release ceases as blood glucose levels drop.

On testing the urine they found that there was sugar in the dog’s urine,
establishing for the first time a relationship between the pancreas and diabetes.

Nicolae Paulescu, a professor of physiology at the University of Medicine
and Pharmacy in Bucharest was the first one to isolate insulin, which he called
at that time pancrein, and published his work in 1921 that had been carried out
in Bucharest.

In October 1920 Canadian Frederick Banting was reading one of Minkowski’s
papers and concluded that it is the very digestive secretions that Minkowski had
originally studied that were breaking down the islet secretion(s), thereby making
it impossible to extract successfully.

Several weeks later it was clear the second run was also a success, and he
helped publish their results privately in Toronto that November.

Banting suggested that they try to use fetal calf pancreas, which had not
yet developed digestive glands; he was relieved to find that this method worked
well.

However, the extract was so impure that Thompson suffered a severe allergic
reaction, and further injections were canceled.

Banting, insulted that Best was not mentioned, shared his prize with Best,
and Macleod immediately shared his with Collip.

204

Prior to that, insulin was sold in different strengths, including U-80 (80 units
per milliliter) and U-40 formulations (40 units per milliliter), so the effort to
”standardize” the potency aimed to reduce dosage errors and ease doctors’ job
of prescribing insulin for patients.

B.3 Who

Macleod, who was not entirely impressed with his idea so many before him had
tried and failed.

205

206

Appendix C

Mercury implementation of
the ontological semantics in
categorial grammar

Below we present full implementation of the ideas from Section 5.12 on page 98.
�

:−module a .

:− interface .
4

:−import module i o .
:−pred main (i o : : di , i o : : uo) i s det .

:−implementation .
9

%% Simple concept in s k e l e t on on to logy :
:−type alpha −−−>

ch i l d ;
t a l l ;

14 phy s i c a l ;
a c t i on ;
person ;
running ;

207

smi l i ng ;
19 animate ;

v itamin ;
v i tamin c ;
ac id ;
i (alpha , alpha) ;

24 p(ro l e , alpha) .

:−pred sub (alpha : : in , a lpha : : out) i s nondet .

sub (ch i ld , person) .
29 sub (person , phy s i c a l) .

sub (person , animate) .
sub (running , a c t i on) .
sub (smi l ing , a c t i on) .
sub (vitamin c , v itamin) .

34

:−type r o l e −−−>
tmp % temporal aspec t s (gener i c r o l e)

; l o c % loca t ion , po s i t i on
39 ; prp % purpose , func t ion

; wrt % with r e s pe c t to
; chr % ch a r a c t e r i s t i c (proper t y a s c r i p t i o n)
; cum % cum (i . e . , wi th accompanying)
; bmo % by means of , instrument , v ia

44 ; cby % caused by
; cau % causes
; cmp % compris ing , has par t
; pof % part o f
; agt % agent o f ac t or proces s

49 ; pnt % pa t i en t o f ac t or proces s
; s r c % source o f act or proces s
; r s t % r e s u l t o f ac t or proces s
; ds t % des t i n a t i on o f moving proces s
.

54

:−type item −−−>
b(pred (item , item)) ;

208

f (pred (item , item)) ;
e (alpha) .

59

:− inst i t em in s t −−−>
b(pred (in (i t em in s t) ,out (i t em in s t)) i s semidet) ;
f (pred (in (i t em in s t) ,out (i t em in s t)) i s semidet) ;
e (ground) .

64

:−type l l i s t −−−>
n ;
l (item , l l i s t) .

69 :− inst l l i s t i n s t −−−>
n ;
l (i t em ins t , l l i s t i n s t) .

:−import module s o l u t i o n s .
74

:−pred i s a (alpha : : in , a lpha : : in) i s semidet .

i s a (C,C) .
i s a (C,A) :−sub (C,P) , i s a (P,A) .

79 i s a (i (X, Y) ,Z) :− i s a (X, Z) .
i s a (i (X ,Y) ,Z) :− i s a (Y, Z) .

:−type word −−−>
84 w the ; w a ; w kid ; w t a l l ; w runs ; w smi le s ;

w vitamin ; w c ; w a s co rb i c ; w acid .

%%Lex i ca l e n t r i e s .
:−pred l e x (word : : in , item : : out (i t em in s t)) i s det .

89

:−pred p t a l l (item : : in , item : : out (i t em in s t)) i s semidet .
:−pred p the (item : : in , item : : out (i t em in s t)) i s semidet .
:−pred p runs (item : : in , item : : out (i t em in s t)) i s semidet .
:−pred p sm i l e s (item : : in , item : : out (i t em in s t)) i s semidet .

94 :−pred p c (item : : in , item : : out (i t em in s t)) i s semidet .
:−pred p a s c o r b i c (item : : in , item : : out (i t em in s t)) i s semidet .

209

p t a l l (e (C) , e (i (t a l l ,C))) :− i s a (C, phy s i c a l) .
99 p runs (e (C) , e (i (running , p (agt ,C)))) :− i s a (C, animate) .

p sm i l e s (e (C) , e (i (smi l ing , p (agt ,C)))) :− i s a (C, animate) .
p the (e (I) , e (I)) .
p c (e (C) , e (v i tamin c)) :− i s a (C, vitamin) .
p a s c o r b i c (e (C) , e (v i tamin c)) :− i s a (C, ac id) .

104

l e x (w kid , e (ch i l d)) .
l ex (w ta l l , f (p t a l l)) .
l ex (w runs , b(p runs)) .
l ex (w smiles , b (p sm i l e s)) .

109 l e x (w the , f (p the)) .
l ex (w a , f (p the)) .
l ex (w vitamin , e (v itamin)) .
l ex (w c , b (p c)) .
l ex (w acid , e (ac id)) .

114 l e x (w ascorb ic , f (p a s c o r b i c)) .

:−pred r (l l i s t : : in (l l i s t i n s t) , item : : out (i t em in s t)) i s nondet .

:−pred a (l l i s t ,
119 l l i s t ,

l l i s t) .

:−mode a (out (l l i s t i n s t) ,
out (l l i s t i n s t) ,

124 in (l l i s t i n s t)) i s nondet .

a (l (X, n) , l (Y,T) , l (X, l (Y,T))) .
a (l (H, L) ,M, l (H,T)) :−a (L ,M,T) .

129 r (l (X, n) ,X) .

r (G, E1) :−a (G1 ,G2 ,G) , r (G1 , f (P)) , r (G2 , E2) ,P(E2 , E1) .

r (G, E1) :−a (G1 ,G2 ,G) , r (G1 , E2) , r (G2 , b (P)) ,P(E2 , E1) .
134

210

:−pred m(tex t : : in , a lpha : : out) i s nondet .

m(T,C) :−
map lex (T,L) ,

139 r (L , e (C)) .

:−pred work (alpha : : out) i s nondet .

work (C) :−
144 m(t (w the , t (w ta l l , t (w kid , t (w smiles , t n i l)))) ,C) .

%m(t (w the , t (w t a l l , t (w vitamin , t (w smiles , t n i l)))) ,C) .

:−type t ex t −−−>
t n i l ;

149 t (word , t ex t) .

:−pred map lex (t ex t : : in , l l i s t : : out (l l i s t i n s t)) i s nondet .

map lex (tn i l , n) .
154 map lex (t (W,T) , l (I ,MT)) :− l e x (W, I) , map lex (T,MT) .

main (! IO) :−
s o l u t i o n s (work , Cs) ,
i o . wr i t e (Cs , ! IO) ,

159 i o . n l (! IO) .

211

212

Appendix D

SML implementation of the
Earley parser

Earley parser is an efficient polynomial time parser, with n3 time complexity [4]
(see also [25]). Below we present the implementation of it in the Standard Meta
Language.

D.1 Signature

�

1 signature Earley =
sig

(∗ Types o f t e rmina l s and nontermina ls∗)

6 type t = char
type n = s t r i n g

(∗ Terminals and nontermina ls are symbols ∗)

11 type symbol

val t : t −> symbol
val n : n −> symbol

213

16 (∗ [r ecogn i z e r u l e s root sequence] w i l l re turn t rue i f
sequence be longs to language de s c r i b ed by r u l e s and
root . r u l e s i s the l i s t o f grammar r u l e s and root i s the
s t a r t i n g symbol . ∗)

21 val r e c o gn i z e : (n∗ symbol l i s t) l i s t −> n −> t l i s t −> bool

end

D.2 Implementation
�

structure Earley :> Earley =
2 struct

(∗ User w i l l use t h i s s imple way o f r u l e s s p e c i f i c a t i o n ∗)

type t = char
7 type n = s t r i n g

(∗ And below are i n t e r n a l t ypes ∗)

(∗ We need to ex tend s e t o f t ermina l symbols wi th terminator ∗)
12 datatype te rmina l

= i s of t (∗ any input symbol ∗)
| te rminator (∗ s p e c i a l t erminator symbol ∗)

datatype symbol
17 = nter of n (∗ nonterminal , name o f the s y n t a c t i c c l a s s ∗)

| t e r of te rmina l (∗ t ermina l symbol ∗)

fun t t = t e r (i s t)
22 fun n n = nter n

datatype lhsSymbol
= lh s of n (∗ nonterminal , name o f the s y n t a c t i c c l a s s ∗)

214

| phi (∗ s p e c i a l symbol used in s t a r t i n g s e t ∗)
27

type r u l e s
= (n , symbol l i s t l i s t) Polyhash . ha sh tab l e

exception notFound
32

datatype s t a t e = s t a t e of
lhsSymbol (∗ l h s o f the ru l e ∗)
∗ (symbol l i s t) (∗ a l r eady parsed symbols ∗)
∗ (symbol l i s t) (∗ not ye t parsed symbols ∗)

37 ∗ te rmina l (∗ one look−ahead symbol ∗)
∗ i n t (∗ where par s ing s t a r t e d ∗)

fun makeStartState n
= s ta t e (phi ,

42 [] ,
[nter n] ,
terminator ,
0)

47 (∗ t ype input = termina l Array . array ∗)

fun input t s
= Array . f romLis t ((L i s t .map i s t s)@[terminator])

52 (∗ We represen t s e t as map from se t e lements to un i t ∗)
type s t a t eS e t = (state , un i t) Polyhash . ha sh tab l e

fun createEmptyStateSet () =
l e t

57 val emptyStateSet : s t a t eS e t
= Polyhash . mkPolyTable (10 , notFound)

in
emptyStateSet

end
62

exception i n t e r na lE r r o r

215

fun c r ea teSta teSe tArray s i z e s t a r t S t a t e =
l e t

67 val a = Array . a r ray (s i z e , createEmptyStateSet ())
in

i f s i z e < 1
then raise i n t e r na lE r r o r
else (Array . update a 0 s t a r t S t a t e ; a)

72 end

fun p r ed i c t o r (nonterminal , lookAhead , ru l e s , s t a r t ed) =
l e t

fun aux (nonterminal , [] , lookAhead , s t a r t ed)
77 = []

| aux (nonterminal , rhs : : rhss , lookAhead , s t a r t ed)
= s t a t e (l h s nonterminal , [] , rhs , lookAhead , s t a r t ed)

: : aux (nonterminal , rhss , lookAhead , s t a r t ed)
val a l t e r n a t i v e s = Polyhash . f i nd r u l e s nonterminal

82 in
aux (nonterminal , a l t e r n a t i v e s , lookAhead , s t a r t ed)

end

(∗ i s S u b s t r i n g (l , a , p) checks i f l i s t l i s a s u b s t r i n g o f
87 array a s t a r t i n g at po s i t i on p o f the array . ∗)

(∗ fun i s S u b s t r i n g ([] , ,) = t rue
| i s S u b s t r i n g (terminator : : r e s t , input , po s i t i on)
= pos i t i on >= Array . l en g t h input

92 | i s S u b s t r i n g ((l t ermina l) : : r e s t , input , po s i t i on)
= Array . sub (input , po s i t i on) = termina l

anda lso i s S u b s t r i n g (re s t , input , po s i t i on +1)∗)

fun completer ([] ,) = []
97 | completer ((s t a t e (lhs1 ,

beforeDot ,
(nter nonterminal) : : afterDot ,
lookAhead ,
s t a r t ed)) : : s ta t e s ,

102 l h s 2)
= i f nonterminal = lhs2

216

then
(s t a t e (lhs1 ,

beforeDot@ [nter nonterminal] ,
107 afterDot ,

lookAhead ,
s t a r t ed)) : : (completer (s ta t e s , l h s2))

else
completer (s ta t e s , l h s2)

112 | completer ((s t a t e (,
,

(t e r te rmina l) : : ,
,
)) : : s ta t e s ,

117 l h s 2)
= completer (s ta t e s , l h s2)
| completer ((s t a t e (,

,
[] ,

122 ,
)) : : s ta t e s ,

l h s2)
= completer (s ta t e s , l h s2)

127 (∗ expand re tu rns pa i r o f l i s t s , where f i r s t l i s t con ta in s
s t a t e s f o r t h i s pos i t i on , second f o r the nex t po s i t i on . ∗)

exception whatToDo (∗ Get r i d o f t h i s TODO∗)

132 fun expand (po s i t i on ,
s t a t e (,

,
(nter nonterminal) : : (t e r te rmina l) : : ,
,

137) ,
,

r u l e s ,
input)

= (p r ed i c t o r (nonterminal , terminal , r u l e s , p o s i t i o n) , [])
142

217

| expand (po s i t i on ,
s t a t e (,

,
(nter nonterminal1) : : (nter nonterminal2) : : ,

147 ,
) ,

,
r u l e s ,
input)

152 = raise whatToDo

| expand (po s i t i on ,
s t a t e (,

,
157 [nter nonterminal] ,

lookAhead ,
) ,

,
r u l e s ,

162 input)
= (p r ed i c t o r (nonterminal , lookAhead , ru l e s , p o s i t i o n) , [])

| expand (po s i t i on ,
s t a t e (l e f t ,

167 beforeDot ,
(t e r te rmina l) : : afterDot ,
lookAhead ,
s t a r t ed) ,

,
172 ,

input)
(∗ scanner ∗)
= i f Array . sub (input , po s i t i o n) = termina l

then
177 ([] , [s t a t e (l e f t ,

beforeDot@ [t e r te rmina l] ,
a fterDot ,
lookAhead ,
s t a r t ed)])

218

182 else
([] , [])

| expand (po s i t i on ,
s t a t e (phi ,

187 beforeDot ,
[] ,
lookAhead ,
s t a r t ed) ,

s ta teSetArray ,
192 ru l e s ,

input)
= raise whatToDo

| expand (po s i t i on ,
197 s t a t e (l h s l e f t ,

beforeDot ,
[] ,
lookAhead ,
s t a r t ed) ,

202 s ta teSetArray ,
ru l e s ,
input)

(∗ comple ter ∗)
= i f Array . sub (input , po s i t i o n) = lookAhead

207 then
(completer (L i s t .map (fn (a , b) => a) (Polyhash . l i s t I t em s

(Array . sub (s ta teSetArray , s t a r t ed))) ,
l e f t) ,

[])
else

212 ([] , [])

fun r u l e s l i s t R u l e s =
l e t

val rulesMap : r u l e s
217 = Polyhash . mkPolyTable ((l ength l i s tR u l e s) div 2 ,

notFound)
fun aux ((l e f t , r i g h t) : : l i s tRu l e s , rulesMap)

219

= (case Polyhash . peek rulesMap l e f t of
SOME r i g h t s => Polyhash . i n s e r t rulesMap (l e f t ,

r i g h t : : r i g h t s)
222 | NONE => Polyhash . i n s e r t rulesMap (l e f t , [r i g h t])

;
aux (l i s tRu l e s , rulesMap))

| aux ([] , rulesMap) = rulesMap
in

227 aux (l i s tRu l e s , rulesMap)
end

fun f o r (from , to , rulesMap , s ta teSetArray)
= i f to <= from

232

fun r e c o gn i z e r u l e s L i s t root t s =
l e t

val rulesMap
= r u l e s r u l e s L i s t

237 val s ta teSetAray
= cr ea teSta teSe tArray (length t s + 2) (makeStartState

root)
val input

= input t s
val numberOfStates

242 = length t s + 2
in

f o r (0 , numberOfStates , rulesMap , s ta teSetArray)
end

247

(∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
(∗ ∗ TESTING ∗∗)
(∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)

252 (∗ User probab l y wants to s p e c i f y r u l e s in t h i s way : ∗)

val ae
= [(”E” , [n ”T”]) ,

(”E” , [n ”E” , t #”+” ,n ”T”]) ,

220

257 (”T” , [n ”P”]) ,
(”T” , [n ”T” , t #”∗” ,n ”P”]) ,
(”P” , [t #”a”])
]

262 val r e s
= r e c o gn i z e ae ”E” (explode ”a+a∗a”)

end

221

222

Appendix E

SML implementation of the
generative ontology and the
lexicon

Below we present an implementation of the generative ontology and the lexicon
written in the Standard Meta Language.

E.1 Signature
�

signature GenerativeOntology =
sig

datatype s imp l e concept = s imple of s t r i n g

5 val s imple concept compare : s imp l e concept ∗ s imp l e concept −>
order

datatype r o l e = r of s t r i n g

val ro le compare : r o l e ∗ r o l e −> order
10

datatype concept
= cc of s imp l e concept ∗ (r o l e ∗ concept) l i s t

223

(∗ Simple t e x t u a l r e p r e s en t a t i on o f a concept ∗)
15 val c2s : concept −> s t r i n g

(∗ LaTeX tabu lar−based r ep r e s en t a t i on o f a concept ∗)
val c 2 l a t e x : concept −> s t r i n g

20 (∗ TODO: Make i s a f a s t e r . ∗)
(∗ ex cep t ion concep t no t found o f s t r i n g ∗)
(∗ va l i s a : s imp l e concep t −> s imp l e concep t l i s t ∗)

datatype s yn ta c t i c c a t e g o r y = syn of s t r i n g
25

val s c2 s : s yn t a c t i c c a t e g o r y −> s t r i n g

val synta c t i c ca tego ry compar e : s yn t a c t i c c a t e g o r y ∗
s yn ta c t i c c a t e g o r y −> order

30 datatype l e x i c on i t em = l i of s yn ta c t i c c a t e g o r y ∗ concept

exception l e x no t found of s t r i n g
val l e x : s t r i n g −> l e x i c on i t em l i s t

35 val a f f : s imp l e concept ∗ s imp l e concept −> r o l e l i s t
end

E.2 Implementation
�

structure GenerativeOntology :> GenerativeOntology =
struct

4 fun poly compare (x1 , x2) =
Int . compare (Polyhash . hash x1 , Polyhash . hash x2)

datatype s imp l e concept = s imple of s t r i n g

9 fun s c2 s (s imple x) = x

224

fun s imple concept compare (s imple x , s imple y) = Str ing . compare
(x , y)

datatype r o l e = r of s t r i n g
14

fun r 2 s (r x) = x

fun ro le compare (r x , r y) = Str ing . compare(x , y)

19 datatype concept
= cc of s imp l e concept ∗ (r o l e ∗ concept) l i s t

fun p2 la tex (r o l e , c) = ”{\\ i t ”ˆ r 2 s r o l e ˆ” } :\\ hspace {2 pt}”ˆ
c 2 l a t e x c

and ps2 l a t ex [] = ””
24 | ps2 l a t ex (p : : ps) = ”\\begin {math}\\ l e f t [\\ begin { tabu la r }{@{}

l@{}}”ˆ p2 la tex pˆ f o l d r opˆ ”” (map (fn p=>”\\\\”ˆ p2 la tex p)
ps) ˆ”\\end{ tabu la r }\\ r i g h t]\\ end{math}”

and c 2 l a t e x (cc (x , ps)) = sc2 s x ˆ ps2 l a t ex ps

fun p2s (r o l e , c) = r2 s r o l e ˆ” : ”ˆ c2s c
and ps2s [] = ””

29 | ps2s (p : : ps) = ” [”ˆp2s pˆ f o l d r opˆ ”” (map (fn p=>” , ”ˆp2s p)
ps) ˆ”] ”

and c2s (cc (x , ps)) = sc2 s x ˆ ps2s ps

datatype s yn ta c t i c c a t e g o r y = syn of s t r i n g

34 fun s c2 s (syn x) = x
fun synta c t i c ca tego ry compar e (syn x , syn y) = Str ing . compare (x

, y)

datatype l e x i c on i t em = l i of s yn ta c t i c c a t e g o r y ∗ concept

39 exception l e x no t found of s t r i n g

fun l e x ” , ” = [l i (syn (” , ”) , cc (s imple (” n i l ”) , []))]
| l e x ”3t3−l 1 ” = [l i (syn (”N”) , cc (s imple (” q 3 t 3 l 1 ”) , []))]

225

| l e x ” abo l i s h ” = [l i (syn (”TV”) , cc (s imple (” a b o l i t i o n ”) , []))]
44 | l e x ” a c t i v a t i o n ” = [l i (syn (”N”) , cc (s imple (” a c t i v a t i o n ”) , []))

]
| l e x ” a c t i v i t y ” = [l i (syn (”N”) , cc (s imple (” a c t i v i t y ”) , []))]
| l e x ” ac t s ” = [l i (syn (”TV”) , cc (s imple (” a c t ing ”) , []))]
| l e x ” add i t i on ” = [l i (syn (”N”) , cc (s imple (” add i t i on ”) , []))]
| l e x ” adipocyte ” = [l i (syn (”N”) , cc (s imple (” ad ipocyte ”) , []))]

49 | l e x ” ad ipocy te s” = [l i (syn (”N”) , cc (s imple (” ad ipocyte ”) , []))]
| l e x ”age” = [l i (syn (”N”) , cc (s imple (”age ”) , []))]
| l e x ” agents ” = [l i (syn (”N”) , cc (s imple (” agent ”) , []))]
| l e x ” a l l im in ” = [l i (syn (”N”) , cc (s imple (” a l l im in ”) , []))]
| l e x ”am” = [l i (syn (” IS”) , cc (s imple (” i s ”) , []))]

54 | l e x ” anti−funga l ” = [l i (syn (”A”) , cc (s imple (” an t i f ung a l ”) , [])
)]

| l e x ” are ” = [l i (syn (” IS”) , cc (s imple (” i s ”) , []))]
| l e x ”auc” = [l i (syn (”N”) , cc (s imple (”auc”) , []))]
| l e x ”background” = [l i (syn (”N”) , cc (s imple (”background”) , []))

]
| l e x ”be” = [l i (syn (”BE”) , cc (s imple (” n i l ”) , []))]

59 | l e x ” b e t a c e l l ” = [l i (syn (”N”) , cc (s imple (” b e t a c e l l ”) , []))]
| l e x ” b e t a c e l l s ” = [l i (syn (”N”) , cc (s imple (” b e t a c e l l ”) , []))]
| l e x ” b ind ing ” = [l i (syn (”N”) , cc (s imple (” b ind ing”) , [])) , l i (

syn (”VBG”) , cc (s imple (” b ind ing”) , []))]
| l e x ”blood ” = [l i (syn (”N”) , cc (s imple (”blood ”) , []))]
| l e x ” c a r r i e r ” = [l i (syn (”N”) , cc (s imple (” c a r r i e r ”) , []))]

64 | l e x ” caspase ” = [l i (syn (”N”) , cc (s imple (” caspase ”) , []))]
| l e x ” ca spa s e s” = [l i (syn (”N”) , cc (s imple (” caspase ”) , []))]
| l e x ” caus ing ” = [l i (syn (”VBG”) , cc (s imple (” caus ing ”) , []))]
| l e x ” c e l l ” = [l i (syn (”N”) , cc (s imple (” c e l l ”) , []))]
| l e x ” c e l l s ” = [l i (syn (”N”) , cc (s imple (” c e l l ”) , []))]

69 | l e x ” c e l l u l a r ” = [l i (syn (”A”) , cc (s imple (” c e l l u l a r ”) , []))]
| l e x ” c en t r a l ” = [l i (syn (”A”) , cc (s imple (” c en t r a l ”) , []))]
| l e x ” cha l l e ng e ” = [l i (syn (”N”) , cc (s imple (” cha l l e ng e”) , []))]
| l e x ” c h a r a c t e r i z a t i o n” = [l i (syn (”N”) , cc (s imple (”

c h a r a c t e r i z a t i o n”) , []))]
| l e x ” c l on ing ” = [l i (syn (”N”) , cc (s imple (” c l on ing ”) , []))]

74 | l e x ” combination ” = [l i (syn (”N”) , cc (s imple (” combination ”)
, []))]

| l e x ”compound” = [l i (syn (”N”) , cc (s imple (”compound”) , []))]

226

| l e x ”compounds” = [l i (syn (”N”) , cc (s imple (”compound”) , []))]
| l e x ” concent r a t i on ” = [l i (syn (”N”) , cc (s imple (” concent r a t i on ”

) , []))]
| l e x ” concent r a t i ons ” = [l i (syn (”N”) , cc (s imple (” concent r a t i on

”) , []))]
79 | l e x ” c o n t r o l l e d” = [l i (syn (”VBD”) , cc (s imple (” c on t r o l ”) , [])) ,

l i (syn (”VBN”) , cc (s imple (” c on t r o l ”) , []))]
| l e x ” cpept ide ” = [l i (syn (”N”) , cc (s imple (” cpept ide ”) , []))]
| l e x ”death” = [l i (syn (”N”) , cc (s imple (”death”) , []))]
| l e x ” d e c l i n e ” = [l i (syn (”TV”) , cc (s imple (” d e c l i n e ”) , []))]
| l e x ” d e c l i n e s ” = [l i (syn (”TV”) , cc (s imple (” d e c l i n e ”) , []))]

84 | l e x ”dependent ” = [l i (syn (”A”) , cc (s imple (”dependent ”) , []))]
| l e x ” detected ” = [l i (syn (”VBN”) , cc (s imple (” d e t e c t i o n”) , []))]
| l e x ” d e t e c t i o n” = [l i (syn (”N”) , cc (s imple (” d e t e c t i o n ”) , []))]
| l e x ”determined ” = [l i (syn (”VBD”) , cc (s imple (” determin ing”)

, [])) , l i (syn (”VBN”) , cc (s imple (” determin ing”) , []))]
| l e x ” d i s po s a l ” = [l i (syn (”N”) , cc (s imple (” d i s po s a l ”) , []))]

89 | l e x ”dna” = [l i (syn (”N”) , cc (s imple (”dna”) , []))]
| l e x ” e f f e c t ” = [l i (syn (”N”) , cc (s imple (” e f f e c t ”) , []))]
| l e x ” e l e v a t i o n ” = [l i (syn (”N”) , cc (s imple (” e l e v a t i o n ”) , []))]
| l e x ” en t e r s ” = [l i (syn (”TV”) , cc (s imple (” entry ”) , []))]
| l e x ” entry” = [l i (syn (”N”) , cc (s imple (” entery ”) , []))]

94 | l e x ” ex c i t e d ” = [l i (syn (”VBD”) , cc (s imple (” excitement ”) , [])) ,
l i (syn (”VBN”) , cc (s imple (” excitement ”) , []))]

| l e x ” ex c r e t e ” = [l i (syn (”TV”) , cc (s imple (” ex c r e t i o n ”) , []))]
| l e x ” ex c r e t e s ” = [l i (syn (”TV”) , cc (s imple (” ex c r e t i o n ”) , []))]
| l e x ” ex c r e t i n g ” = [l i (syn (”VBG”) , cc (s imple (” ex c r e t i o n ”) , []))

]
| l e x ” excur s i on” = [l i (syn (”N”) , cc (s imple (” excur s i on ”) , []))]

99 | l e x ” expr e s s ” = [l i (syn (”TV”) , cc (s imple (” expr e s s i on ”) , []))]
| l e x ” f a c i l i t a t e d ” = [l i (syn (”VBD”) , cc (s imple (” f a c i l i t a t i o n ”)

, [])) , l i (syn (”VBN”) , cc (s imple (” f a c i l i t a t i o n ”) , []))]
| l e x ” f a s t i n g ” = [l i (syn (”VBG”) , cc (s imple (” f a s t i n g ”) , []))]
| l e x ” f a t ” = [l i (syn (”N”) , cc (s imple (” f a t ”) , []))]
| l e x ” fed ” = [l i (syn (”VBD”) , cc (s imple (” f e ed i ng ”) , [])) , l i (syn (

”VBN”) , cc (s imple (” f e ed i ng ”) , []))]
104 | l e x ” formed” = [l i (syn (”VBD”) , cc (s imple (” forming”) , [])) , l i (

syn (”VBN”) , cc (s imple (” forming”) , []))]

227

| l e x ” func t i on ” = [l i (syn (”N”) , cc (s imple (” func t i on ”) , [])) , l i (
syn (”TV”) , cc (s imple (” f un c t i o n i ng ”) , []))]

| l e x ” gene ra te s ” = [l i (syn (”TV”) , cc (s imple (” g ene ra t i on”) , []))
]

| l e x ” glucagon” = [l i (syn (”N”) , cc (s imple (” g lucagon”) , []))]
| l e x ” g lucok ina s e ” = [l i (syn (”N”) , cc (s imple (” g lucok ina s e ”)

, []))]
109 | l e x ” g luconeogene s i s ” = [l i (syn (”N”) , cc (s imple (”

g luconeogene s i s ”) , []))]
| l e x ” g luco s e ” = [l i (syn (”N”) , cc (s imple (” g luco s e ”) , []))]
| l e x ” g lucose−6−phosphatase” = [l i (syn (”N”) , cc (s imple (”

g luco s e 6 pho spha ta s e ”) , []))]
| l e x ” g luco s ens ing ” = [l i (syn (”N”) , cc (s imple (” g luco s ens ing ”)

, []))]
| l e x ” g lu t2 ” = [l i (syn (”N”) , cc (s imple (” g lu t2 ”) , []))]

114 | l e x ” g lu t4 ” = [l i (syn (”N”) , cc (s imple (” g lu t4 ”) , []))]
| l e x ” g lycogen” = [l i (syn (”N”) , cc (s imple (” g lycogen”) , []))]
| l e x ” g l y c o g e n o l y s i s” = [l i (syn (”N”) , cc (s imple (”

g l y c o g e n o l y s i s ”) , []))]
| l e x ” g l y c op r o t e i n” = [l i (syn (”N”) , cc (s imple (” g l y c op r o t e i n”)

, []))]
| l e x ”growth” = [l i (syn (”N”) , cc (s imple (”growth”) , []))]

119 | l e x ”high ” = [l i (syn (”A”) , cc (s imple (”high ”) , []))]
| l e x ”hsp27” = [l i (syn (”N”) , cc (s imple (”hsp27”) , []))]
| l e x ” impaired” = [l i (syn (”VBD”) , cc (s imple (” impairment”) , []))

, l i (syn (”VBN”) , cc (s imple (” impairment ”) , []))]
| l e x ” inc lude ” = [l i (syn (”TV”) , cc (s imple (” i n c l u s i o n ”) , []))]
| l e x ” i n c o r po r a t i o n” = [l i (syn (”N”) , cc (s imple (” i n c o r po r a t i on”

) , []))]
124 | l e x ” i n c r e a s e ” = [l i (syn (”N”) , cc (s imple (” i n c r e a s e ”) , []))]

| l e x ” i n c r e a s ed” = [l i (syn (”VBD”) , cc (s imple (” i n c r e a s e ”) , [])) ,
l i (syn (”VBN”) , cc (s imple (” i n c r e a s ed”) , []))]

| l e x ” incubat ion ” = [l i (syn (”N”) , cc (s imple (” incubat ion ”) , []))
]

| l e x ” i n d i c a t e s ” = [l i (syn (”TV”) , cc (s imple (” i n d i c a t i o n ”) , []))
]

| l e x ” induce ” = [l i (syn (”TV”) , cc (s imple (” induc t i on ”) , []))]
129 | l e x ” induced ” = [l i (syn (”VBD”) , cc (s imple (” induc t i on”) , [])) ,

l i (syn (”VBN”) , cc (s imple (” induc t i on ”) , []))]

228

| l e x ” induces ” = [l i (syn (”TV”) , cc (s imple (” induc t i on ”) , []))]
| l e x ” induc ing ” = [l i (syn (”VBG”) , cc (s imple (” induc t i on”) , []))]
| l e x ” induc t i on” = [l i (syn (”N”) , cc (s imple (” induc t i on ”) , []))]
| l e x ” i n h i b i t ” = [l i (syn (”TV”) , cc (s imple (” i n h i b i t i o n ”) , []))]

134 | l e x ” i n h i b i t e d ” = [l i (syn (”VBD”) , cc (s imple (” i n h i b i t i o n ”) , [])
) , l i (syn (”VBN”) , cc (s imple (” i n h i b i t i o n ”) , []))]

| l e x ” i n h i b i t i n g ” = [l i (syn (”VBG”) , cc (s imple (” i n h i b i t i o n ”)
, []))]

| l e x ” i n h i b i t i o n ” = [l i (syn (”N”) , cc (s imple (” i n h i b i t i o n ”) , []))
]

| l e x ” i n h i b i t o r ” = [l i (syn (”N”) , cc (s imple (” i n h i b i t o r ”) , []))]
| l e x ” i n h i b i t o r s ” = [l i (syn (”N”) , cc (s imple (” i n h i b i t o r ”) , []))]

139 | l e x ” i n h i b i t s ” = [l i (syn (”TV”) , cc (s imple (” i n h i b i t i o n ”) , []))]
| l e x ” i n s u l i n ” = [l i (syn (”N”) , cc (s imple (” i n s u l i n ”) , []))]
| l e x ” i n s u l i n o t r o p i c ” = [l i (syn (”A”) , cc (s imple (”

i n s u l i n o t r o p i c ”) , []))]
| l e x ” invo lved ” = [l i (syn (”VBD”) , cc (s imple (” involvment ”) , []))

, l i (syn (”VBN”) , cc (s imple (” involvment ”) , []))]
| l e x ” i s ” = [l i (syn (” IS”) , cc (s imple (” i s ”) , []))]

144 | l e x ” john” = [l i (syn (”N”) , cc (s imple (” john”) , []))]
| l e x ” k i t ” = [l i (syn (”N”) , cc (s imple (” k i t ”) , []))]
| l e x ” l e v e l ” = [l i (syn (”N”) , cc (s imple (” l e v e l ”) , []))]
| l e x ” l e v e l s ” = [l i (syn (”N”) , cc (s imple (” l e v e l ”) , []))]
| l e x ” l i v e r ” = [l i (syn (”N”) , cc (s imple (” l i v e r ”) , []))]

149 | l e x ” low” = [l i (syn (”A”) , cc (s imple (” low”) , []))]
| l e x ” lower s ” = [l i (syn (”TV”) , cc (s imple (” dec r ea s e ”) , []))]
| l e x ” man i f e s t a t i on s” = [l i (syn (”N”) , cc (s imple (”man i f e s ta t i on

”) , []))]
| l e x ”may” = [l i (syn (”CAN”) , cc (s imple (”can”) , []))]
| l e x ”mediated ” = [l i (syn (”VBD”) , cc (s imple (”mediat ion”) , [])) ,

l i (syn (”VBN”) , cc (s imple (”mediat ion”) , []))]
154 | l e x ”mediator ” = [l i (syn (”N”) , cc (s imple (”mediator ”) , []))]

| l e x ”membrane” = [l i (syn (”N”) , cc (s imple (”membrane”) , []))]
| l e x ”membranes” = [l i (syn (”N”) , cc (s imple (”membrane”) , []))]
| l e x ”mixture ” = [l i (syn (”N”) , cc (s imple (”mixture ”) , []))]
| l e x ”molecu la r” = [l i (syn (”A”) , cc (s imple (”molecu la r ”) , []))]

159 | l e x ”molecule ” = [l i (syn (”N”) , cc (s imple (”molecule ”) , []))]
| l e x ”muscle” = [l i (syn (”N”) , cc (s imple (”muscle”) , []))]
| l e x ”neurons ” = [l i (syn (”N”) , cc (s imple (”neuron”) , []))]

229

| l e x ” organism” = [l i (syn (”N”) , cc (s imple (” organism”) , []))]
| l e x ” ox ida t i on ” = [l i (syn (”N”) , cc (s imple (” ox ida t i on ”) , []))]

164 | l e x ”oxygen” = [l i (syn (”N”) , cc (s imple (”oxygen”) , []))]
| l e x ”pathway” = [l i (syn (”N”) , cc (s imple (”pathway”) , []))]
| l e x ” p e r i ph e r a l ” = [l i (syn (”A”) , cc (s imple (” p e r i ph e r a l ”) , []))

]
| l e x ”pgg” = [l i (syn (”N”) , cc (s imple (”pgg”) , []))]
| l e x ” phosphory la t ion ” = [l i (syn (”N”) , cc (s imple (”

phosphory la t ion ”) , []))]
169 | l e x ”pkc” = [l i (syn (”N”) , cc (s imple (”pkc”) , []))]

| l e x ”plasma” = [l i (syn (”N”) , cc (s imple (”plasma”) , []))]
| l e x ” po lypept ide ” = [l i (syn (”N”) , cc (s imple (” po lypept ide ”)

, []))]
| l e x ” po t en t i a t e s ” = [l i (syn (”TV”) , cc (s imple (” po t en t i a t i o n ”)

, []))]
| l e x ” product ion” = [l i (syn (”N”) , cc (s imple (” product ion”) , []))

]
174 | l e x ” pro longed ” = [l i (syn (”VBN”) , cc (s imple (” pro l onga t i on”)

, []))]
| l e x ”promote” = [l i (syn (”TV”) , cc (s imple (”promotion ”) , []))]
| l e x ”promotes ” = [l i (syn (”TV”) , cc (s imple (”promotion ”) , []))]
| l e x ” pro te in ” = [l i (syn (”N”) , cc (s imple (” pro te in ”) , []))]
| l e x ” r e c epto r ” = [l i (syn (”N”) , cc (s imple (” r e c epto r ”) , []))]

179 | l e x ” r e gu l a t ab l e ” = [l i (syn (”A”) , cc (s imple (” r e gu l a t ab l e ”)
, []))]

| l e x ” r egu la t ed ” = [l i (syn (”VBD”) , cc (s imple (” r e gu l a t i o n ”) , [])
) , l i (syn (”VBN”) , cc (s imple (” r e gu l a t i o n ”) , []))]

| l e x ” r e gu l a t i o n ” = [l i (syn (”N”) , cc (s imple (” r e gu l a t i o n ”) , []))
]

| l e x ” r e l e a s e ” = [l i (syn (”N”) , cc (s imple (” r e l e a s e ”) , []))]
| l e x ” r e p l i c a t i o n ” = [l i (syn (”N”) , cc (s imple (” r e p l i c a t i o n ”)

, []))]
184 | l e x ” r e qu i r e ” = [l i (syn (”TV”) , cc (s imple (” requirement ”) , []))]

| l e x ” r e q u i r e s ” = [l i (syn (”TV”) , cc (s imple (” requirement ”) , []))
]

| l e x ” r e s i s t a n c e ” = [l i (syn (”N”) , cc (s imple (” r e s i s t a n c e ”) , []))
]

| l e x ” r e spons e s ” = [l i (syn (”N”) , cc (s imple (” response ”) , []))]

230

| l e x ” r e spons iv e ” = [l i (syn (”A”) , cc (s imple (” r e spons iv e ”) , []))
]

189 | l e x ” r e s u l t i n g ” = [l i (syn (”VBG”) , cc (s imple (” r e s u l t ”) , []))]
| l e x ” s e c r e t ed ” = [l i (syn (”VBD”) , cc (s imple (” s e c r e t i o n ”) , [])) ,

l i (syn (”VBN”) , cc (s imple (” s e c r e t i o n ”) , []))]
| l e x ” s e c r e t e s ” = [l i (syn (”TV”) , cc (s imple (” s e c r e t i o n ”) , []))]
| l e x ” s e c r e t i n g ” = [l i (syn (”VBG”) , cc (s imple (” s e c r e t i o n ”) , []))

]
| l e x ” s e c r e t i o n ” = [l i (syn (”N”) , cc (s imple (” s e c r e t i o n ”) , []))]

194 | l e x ” s e c r e t o r y ” = [l i (syn (”A”) , cc (s imple (” s e c r e t o r y ”) , []))]
| l e x ” sensed” = [l i (syn (”VBD”) , cc (s imple (” s ens ing ”) , [])) , l i (

syn (”VBN”) , cc (s imple (” s ens ing ”) , []))]
| l e x ” s e n s i t i v e ” = [l i (syn (”A”) , cc (s imple (” s e n s i t i v e ”) , []))]
| l e x ”serum” = [l i (syn (”N”) , cc (s imple (”serum”) , []))]
| l e x ” s i g n a l i n g ” = [l i (syn (”VBG”) , cc (s imple (” s i g n a l i n g ”) , []))

]
199 | l e x ” sma l l e r ” = [l i (syn (”A”) , cc (s imple (” sma l l e r ”) , []))]

| l e x ” somatostat in ” = [l i (syn (”N”) , cc (s imple (” somatostat in ”)
, []))]

| l e x ” s p e c i f i c ” = [l i (syn (”A”) , cc (s imple (” s p e c i f i c ”) , []))]
| l e x ” s t imu la te ” = [l i (syn (”TV”) , cc (s imple (” s t imu la t i on ”) , [])

)]
| l e x ” s t imulated ” = [l i (syn (”VBD”) , cc (s imple (” s t imu la t i on ”)

, [])) , l i (syn (”VBN”) , cc (s imple (” s t imu la t i on ”) , []))]
204 | l e x ” s t imu l a t e s ” = [l i (syn (”TV”) , cc (s imple (” s t imu la t i on ”)

, []))]
| l e x ” s t imu la t ing ” = [l i (syn (”VBG”) , cc (s imple (” s t imu la t i on ”)

, []))]
| l e x ” synthase” = [l i (syn (”N”) , cc (s imple (” synthase”) , []))]
| l e x ” s yn th e s i s ” = [l i (syn (”N”) , cc (s imple (” s yn th e s i s ”) , []))]
| l e x ” t i s s u e s ” = [l i (syn (”N”) , cc (s imple (” t i s s u e ”) , []))]

209 | l e x ” t o l e r an c e ” = [l i (syn (”N”) , cc (s imple (” t o l e r an c e ”) , []))]
| l e x ” t r a n s l o c a t i o n” = [l i (syn (”N”) , cc (s imple (” t r a n s l o c a t i o n”

) , []))]
| l e x ” t r anspo r t ” = [l i (syn (”N”) , cc (s imple (” t r anspo r t ”) , [])) ,

l i (syn (”TV”) , cc (s imple (” t r anspo r t ”) , []))]
| l e x ” t r an spo r t a t i o n” = [l i (syn (”N”) , cc (s imple (” t r anspo r t ”)

, []))]

231

| l e x ” t r anspo r t ed” = [l i (syn (”VBD”) , cc (s imple (” t r anspo r t ”)
, [])) , l i (syn (”VBN”) , cc (s imple (” t r anspo r t ”) , []))]

214 | l e x ” t r an spo r t e r ” = [l i (syn (”N”) , cc (s imple (” t r an spo r t e r ”)
, []))]

| l e x ” t r an spo r t e r s ” = [l i (syn (”N”) , cc (s imple (” t r an spo r t e r ”)
, []))]

| l e x ” t r anspo r t ing ” = [l i (syn (”VBG”) , cc (s imple (” t r anspo r t ”)
, []))]

| l e x ” t r an spo r t s ” = [l i (syn (”TV”) , cc (s imple (” t r anspo r t ”) , []))
]

| l e x ” ty r o s i n e ” = [l i (syn (”N”) , cc (s imple (” ty r o s i n e ”) , []))]
219 | l e x ”uptake ” = [l i (syn (”N”) , cc (s imple (”uptake ”) , []))]

| l e x ” u t i l i z a t i o n ” = [l i (syn (”N”) , cc (s imple (” u t i l i z a t i o n ”)
, []))]

| l e x ” va s op r e s s in” = [l i (syn (”N”) , cc (s imple (” va s op r e s s i n”)
, []))]

| l e x ”wa l l ” = [l i (syn (”N”) , cc (s imple (”wa l l ”) , []))]
| l e x ”was” = [l i (syn (” IS”) , cc (s imple (” i s ”) , []))]

224 | l e x ”weigth ” = [l i (syn (”N”) , cc (s imple (”weigth ”) , []))]
| l e x ”were” = [l i (syn (” IS”) , cc (s imple (” i s ”) , []))]
| l e x ” z c y t o r 1 7 l i g ” = [l i (syn (”N”) , cc (s imple (” z c y t o r 1 7 l i g ”)

, []))]
| l e x w = raise l e x no t found w

229 fun i s a (s imple ” a b o l i t i o n ”) = [s imple ” a b o l i t i o n ” , s imple ” event
” , s imple ” i n f l u e n c e ” , s imple ” natura l phenomenon or proces s ” ,
s imple ” phenomenon or process” , s imple ”univ ”]
| i s a (s imple ” a c i n a r c e l l ”) = [s imple ” a c i n a r c e l l ” , s imple ”

ana tomica l s t ruc tur e ” , s imple ” c e l l ” , s imple ” en t i t y ” , s imple
” e x o c r i n e c e l l ” , s imple ” e x o c r i n e p a n c r e a t i c c e l l ” , s imple ”
fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” p a n c r e a t i c c e l l ”
, s imple ” phy s i c a l o b j e c t ” , s imple ”univ ”]

| i s a (s imple ” a c t i v a t i o n ”) = [s imple ” a c t i v a t i o n ” , s imple ”
event” , s imple ” i n f l u e n c e ” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ”univ ”]

| i s a (s imple ” a c t i v i t y ”) = [s imple ” a c t i v i t y ” , s imple ” event” ,
s imple ” natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ”univ ”]

232

| i s a (s imple ” add i t i on ”) = [s imple ” add i t i on ” , s imple ” event” ,
s imple ” phenomenon or process” , s imple ”univ ”]

234 | i s a (s imple ” ad ipocyte ”) = [s imple ” ad ipocyte ” , s imple ”
ana tomica l s t ruc tur e ” , s imple ” c e l l ” , s imple ” en t i t y ” , s imple
” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” phy s i c a l o b j e c t
” , s imple ”univ ”]

| i s a (s imple ” a du l t s t em c e l l ”) = [s imple ” a du l t s t em c e l l ” ,
s imple ” ana tomica l s t ruc tur e ” , s imple ” c e l l ” , s imple ” en t i t y ”
, s imple ” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ”
phy s i c a l o b j e c t ” , s imple ” s t em c e l l ” , s imple ”univ ”]

| i s a (s imple ” agent ”) = [s imple ” agent ” , s imple ”
c onc ep tua l e n t i t y ” , s imple ” en t i t y ” , s imple ” substance” ,
s imple ”univ ”]

| i s a (s imple ” a l l im in ”) = [s imple ” a l l im in ” , s imple ”
c onc ep tua l e n t i t y ” , s imple ” en t i t y ” , s imple ” pro te in ” , s imple
” substance” , s imple ”univ ”]

| i s a (s imple ” a l p h a c e l l ”) = [s imple ” a l p h a c e l l ” , s imple ”
ana tomica l s t ruc tur e ” , s imple ” c e l l ” , s imple ” e nd o c r i n e c e l l ”
, s imple ” e nd o c r i n e p a n c r e a t i c c e l l ” , s imple ” en t i t y ” , s imple
” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” p a n c r e a t i c c e l l
” , s imple ” phy s i c a l o b j e c t ” , s imple ”univ ”]

239 | i s a (s imple ”aminoacid”) = [s imple ”aminoacid” , s imple ”
c onc ep tua l e n t i t y ” , s imple ” en t i t y ” , s imple ” substance” ,
s imple ”univ ”]

| i s a (s imple ” ana tomica l s t ruc tur e ”) = [s imple ”
ana tomica l s t ruc tur e ” , s imple ” en t i t y ” , s imple ”
phy s i c a l o b j e c t ” , s imple ”univ ”]

| i s a (s imple ” an t i f ung a l ”) = [s imple ” an t i f ung a l ” , s imple ”
proper ty” , s imple ” subs tance prope r ty ” , s imple ”univ ”]

| i s a (s imple ” b e t a c e l l ”) = [s imple ” ana tomica l s t ruc tur e ” ,
s imple ” b e t a c e l l ” , s imple ” c e l l ” , s imple ” e nd o c r i n e c e l l ” ,
s imple ” e nd o c r i n e p a n c r e a t i c c e l l ” , s imple ” en t i t y ” , s imple ”
fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” p a n c r e a t i c c e l l ”
, s imple ” phy s i c a l o b j e c t ” , s imple ”univ ”]

| i s a (s imple ” b i o l o g i c f u n c t i o n ”) = [s imple ”
b i o l o g i c f u n c t i o n ” , s imple ” event ” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ”univ ”]

233

244 | i s a (s imple ”blood ”) = [s imple ” ana tomica l s t ruc tur e ” , s imple
”blood ” , s imple ” body par t or organ or organ component ” ,

s imple ” en t i t y ” , s imple ” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” ,
s imple ”organ” , s imple ” phy s i c a l o b j e c t ” , s imple ”univ ”]

| i s a (s imple ” body par t or organ or organ component ”) = [
s imple ” ana tomica l s t ruc tur e ” , s imple ”
body par t or organ or organ component ” , s imple ” en t i t y ” ,
s imple ” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ”
phy s i c a l o b j e c t ” , s imple ”univ ”]

| i s a (s imple ”body system”) = [s imple ”body system” , s imple ”
c onc ep tua l e n t i t y ” , s imple ” en t i t y ” , s imple ”
fun c t i o na l c on c ep t ” , s imple ” i d e a o r c on c ep t ” , s imple ”
phy s i c a l o b j e c t ” , s imple ”univ ”]

| i s a (s imple ” c pept ide ”) = [s imple ” c pept ide ” , s imple ”
c onc ep tua l e n t i t y ” , s imple ” en t i t y ” , s imple ” substance” ,
s imple ”univ ”]

| i s a (s imple ” c a r r i e r ”) = [s imple ” c a r r i e r ” , s imple ”
c onc ep tua l e n t i t y ” , s imple ” en t i t y ” , s imple ” substance” ,
s imple ” t r an spo r t e r ” , s imple ”univ ”]

249 | i s a (s imple ” caspase ”) = [s imple ” caspase ” , s imple ”
c onc ep tua l e n t i t y ” , s imple ” en t i t y ” , s imple ” pro te in ” , s imple
” substance” , s imple ”univ ”]

| i s a (s imple ” caus ing ”) = [s imple ” caus ing ” , s imple ” event” ,
s imple ” i n f l u e n c e ” , s imple ” natura l phenomenon or proces s ” ,
s imple ” phenomenon or process” , s imple ”univ ”]

| i s a (s imple ” c e l l ”) = [s imple ” ana tomica l s t ruc tur e ” , s imple
” c e l l ” , s imple ” en t i t y ” , s imple ”
fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” phy s i c a l o b j e c t ”
, s imple ”univ ”]

| i s a (s imple ” c en t r a l ”) = [s imple ” c en t r a l ” , s imple ” proper ty”
, s imple ” s t r u c tu r e p r ope r t y ” , s imple ”univ ”]

| i s a (s imple ” c e n t r o a c i n a r c e l l ”) = [s imple ”
ana tomica l s t ruc tur e ” , s imple ” c e l l ” , s imple ”
c e n t r o a c i n a r c e l l ” , s imple ” en t i t y ” , s imple ” e x o c r i n e c e l l ” ,
s imple ” e x o c r i n e p a n c r e a t i c c e l l ” , s imple ”
fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” p a n c r e a t i c c e l l ”
, s imple ” phy s i c a l o b j e c t ” , s imple ”univ ”]

254 | i s a (s imple ” cha l l e ng e ”) = [s imple ” cha l l e ng e” , s imple ” event
” , s imple ”phenomenon or process” , s imple ”univ ”]

234

| i s a (s imple ” change”) = [s imple ” change” , s imple ” event” ,
s imple ” natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ”univ ”]

| i s a (s imple ” c l on ing ”) = [s imple ” c l on ing ” , s imple ” event ” ,
s imple ” phenomenon or process” , s imple ”univ ”]

| i s a (s imple ” combination ”) = [s imple ” combination ”]
| i s a (s imple ”compound”) = [s imple ”compound” , s imple ”

c onc ep tua l e n t i t y ” , s imple ” en t i t y ” , s imple ” substance” ,
s imple ”univ ”]

259 | i s a (s imple ” concent r a t i on ”) = [s imple ” concent r a t i on ” ,
s imple ” l e v e l ”]

| i s a (s imple ” c onc ep tua l e n t i t y ”) = [s imple ”
c onc ep tua l e n t i t y ” , s imple ” en t i t y ” , s imple ”univ ”]

| i s a (s imple ” c on t r o l ”) = [s imple ” c on t r o l ” , s imple ” event ” ,
s imple ” i n f l u e n c e ” , s imple ” natura l phenomenon or proces s ” ,
s imple ” phenomenon or process” , s imple ”univ ”]

| i s a (s imple ”death”) = [s imple ”death” , s imple ” event” , s imple
” natura l phenomenon or proces s ” , s imple ”

phenomenon or process” , s imple ”univ ”]
| i s a (s imple ” d e c l i n e ”) = [s imple ” change” , s imple ” d e c l i n e ” ,

s imple ” event” , s imple ” natura l phenomenon or proces s ” ,
s imple ” phenomenon or process” , s imple ”univ ”]

264 | i s a (s imple ” dec r ea s e ”) = [s imple ” dec r ea s e ” , s imple ” event” ,
s imple ” i n f l u e n c e ” , s imple ” natura l phenomenon or proces s ” ,
s imple ” phenomenon or process” , s imple ”univ ”]

| i s a (s imple ”dependent ”) = [s imple ”dependent ” , s imple ”
p r o c e s s p r op e r t y ” , s imple ” proper ty” , s imple ”univ ”]

| i s a (s imple ” d e t e c t i o n ”) = [s imple ” d e t e c t i o n ” , s imple ” event
” , s imple ”medica l procedure ” , s imple ”phenomenon or process”
, s imple ”univ ”]

| i s a (s imple ” d i s po s a l ”) = [s imple ” d i s po s a l ” , s imple ” event” ,
s imple ” natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” product ion” , s imple ”
subs tance pro ce s s ” , s imple ”univ ”]

| i s a (s imple ”dna”) = [s imple ” c onc ep tua l e n t i t y ” , s imple ”dna
” , s imple ” en t i t y ” , s imple ” substance” , s imple ”univ ”]

269 | i s a (s imple ” e f f e c t ”) = [s imple ” e f f e c t ” , s imple ” event” ,
s imple ” phenomenon or process” , s imple ”univ ”]

235

| i s a (s imple ” embryon i c s t em ce l l ”) = [s imple ”
ana tomica l s t ruc tur e ” , s imple ” c e l l ” , s imple ”
embryon i c s t em ce l l ” , s imple ” en t i t y ” , s imple ”
fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” phy s i c a l o b j e c t ”
, s imple ” s t em c e l l ” , s imple ”univ ”]

| i s a (s imple ” e nd o c r i n e c e l l ”) = [s imple ”
ana tomica l s t ruc tur e ” , s imple ” c e l l ” , s imple ” e nd o c r i n e c e l l ”
, s imple ” en t i t y ” , s imple ” fu l l y f o rmed ana tom i c a l s t r u c tu r e ”
, s imple ” phy s i c a l o b j e c t ” , s imple ”univ ”]

| i s a (s imple ” e nd o c r i n e p a n c r e a t i c c e l l ”) = [s imple ”
ana tomica l s t ruc tur e ” , s imple ” c e l l ” , s imple ” e nd o c r i n e c e l l ”
, s imple ” e nd o c r i n e p a n c r e a t i c c e l l ” , s imple ” en t i t y ” , s imple
” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” p a n c r e a t i c c e l l
” , s imple ” phy s i c a l o b j e c t ” , s imple ”univ ”]

| i s a (s imple ” en t i t y ”) = [s imple ” en t i t y ” , s imple ”univ ”]
274 | i s a (s imple ” entry ”) = [s imple ” entry ” , s imple ” event” , s imple

” phenomenon or process” , s imple ”univ ”]
| i s a (s imple ”enzyme”) = [s imple ” c onc ep tua l e n t i t y ” , s imple ”

en t i t y ” , s imple ”enzyme” , s imple ” substance” , s imple ”univ ”]
| i s a (s imple ” event ”) = [s imple ” event” , s imple ”univ ”]
| i s a (s imple ” excitement ”) = [s imple ” event” , s imple ”

excitement ” , s imple ” i n f l u e n c e ” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ”univ ”]

| i s a (s imple ” ex c r e t i o n ”) = [s imple ” event” , s imple ” ex c r e t i o n
” , s imple ” natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” product ion” , s imple ”
subs tance pro ce s s ” , s imple ”univ ”]

279 | i s a (s imple ” excur s i on ”) = [s imple ” event” , s imple ” excur s i on
” , s imple ” natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” subs tance pro ce s s ” , s imple ”
univ ”]

| i s a (s imple ” e x o c r i n e c e l l ”) = [s imple ” ana tomica l s t ruc tur e
” , s imple ” c e l l ” , s imple ” en t i t y ” , s imple ” e x o c r i n e c e l l ” ,
s imple ” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ”
phy s i c a l o b j e c t ” , s imple ”univ ”]

| i s a (s imple ” e x o c r i n e p a n c r e a t i c c e l l ”) = [s imple ”
ana tomica l s t ruc tur e ” , s imple ” c e l l ” , s imple ” en t i t y ” , s imple
” e x o c r i n e c e l l ” , s imple ” e x o c r i n e p a n c r e a t i c c e l l ” , s imple ”

236

f u l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” p a n c r e a t i c c e l l ”
, s imple ” phy s i c a l o b j e c t ” , s imple ”univ ”]

| i s a (s imple ” f a c i l i t a t i o n ”) = [s imple ” event” , s imple ”
f a c i l i t a t i o n ” , s imple ” i n f l u e n c e ” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ”univ ”]

| i s a (s imple ” f a t ”) = [s imple ” ana tomica l s t ruc tur e ” , s imple ”
body par t or organ or organ component ” , s imple ” en t i t y ” ,
s imple ” f a t ” , s imple ” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” ,
s imple ” phy s i c a l o b j e c t ” , s imple ” t i s s u e ” , s imple ”univ ”]

284 | i s a (s imple ” fu l l y f o rmed ana tom i c a l s t r u c tu r e ”) = [s imple ”
ana tomica l s t ruc tur e ” , s imple ” en t i t y ” , s imple ”
fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” phy s i c a l o b j e c t ”
, s imple ”univ ”]

| i s a (s imple ” fun c t i o na l c on c ep t ”) = [s imple ”
c onc ep tua l e n t i t y ” , s imple ” en t i t y ” , s imple ”
fun c t i o na l c on c ep t ” , s imple ” i d e a o r c on c ep t ” , s imple ”univ ”]

| i s a (s imple ”gamma cell ”) = [s imple ” ana tomica l s t ruc tur e ” ,
s imple ” c e l l ” , s imple ” e nd o c r i n e c e l l ” , s imple ”
e nd o c r i n e p a n c r e a t i c c e l l ” , s imple ” en t i t y ” , s imple ”
fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ”gamma cell ” ,
s imple ” p a n c r e a t i c c e l l ” , s imple ” phy s i c a l o b j e c t ” , s imple ”
univ ”]

| i s a (s imple ” g en e r a l p r op e r t y ”) = [s imple ” g en e r a l p r op e r t y”
]

| i s a (s imple ” g lucagon”) = [s imple ” c onc ep tua l e n t i t y ” , s imple
” en t i t y ” , s imple ” g lucagon” , s imple ” substance” , s imple ”univ

”]
289 | i s a (s imple ” g lucok ina s e ”) = [s imple ” c onc ep tua l e n t i t y ” ,

s imple ” en t i t y ” , s imple ”enzyme” , s imple ” g lucok ina s e ” , s imple
” substance” , s imple ”univ ”]

| i s a (s imple ” g luconeogene s i s ”) = [s imple ” event” , s imple ”
g luconeogene s i s ” , s imple ” natura l phenomenon or proces s ” ,
s imple ” phenomenon or process” , s imple ”univ ”]

| i s a (s imple ” g luco s e ”) = [s imple ” c onc ep tua l e n t i t y ” , s imple
” en t i t y ” , s imple ” g luco s e ” , s imple ” substance” , s imple ”univ ”]

| i s a (s imple ” g luco s e 6 pho spha ta s e ”) = [s imple ”
c onc ep tua l e n t i t y ” , s imple ” en t i t y ” , s imple ”
g luco s e 6 pho spha ta s e ” , s imple ” substance” , s imple ”univ ”]

237

| i s a (s imple ” g l u c o s e e x c i t e d ”) = [s imple ” g l u c o s e e x c i t e d ” ,
s imple ” proper ty” , s imple ” s t r u c tu r e p r ope r t y ” , s imple ”univ ”
]

294 | i s a (s imple ” g luco s ens ing ”) = [s imple ” event ” , s imple ”
g luco s ens ing ” , s imple ” natura l phenomenon or proces s ” , s imple
” phenomenon or process” , s imple ”univ ”]

| i s a (s imple ” g lu t2 ”) = [s imple ” c onc ep tua l e n t i t y ” , s imple ”
en t i t y ” , s imple ” g lu t2 ” , s imple ” substance” , s imple ”
t r an spo r t e r ” , s imple ”univ ”]

| i s a (s imple ” g lu t4 ”) = [s imple ” c onc ep tua l e n t i t y ” , s imple ”
en t i t y ” , s imple ” g lu t4 ” , s imple ” substance” , s imple ”
t r an spo r t e r ” , s imple ”univ ”]

| i s a (s imple ” g lycogen”) = [s imple ” c onc ep tua l e n t i t y ” , s imple
” en t i t y ” , s imple ” g lycogen” , s imple ”molecule ” , s imple ”

substance” , s imple ”univ ”]
| i s a (s imple ” g l y c o g e n o l y s i s ”) = [s imple ” event” , s imple ”

g l y c o g e n o l y s i s ” , s imple ” natura l phenomenon or proces s ” ,
s imple ” phenomenon or process” , s imple ”univ ”]

299 | i s a (s imple ” g l y c op r o t e i n”) = [s imple ” c onc ep tua l e n t i t y ” ,
s imple ” en t i t y ” , s imple ” g l y c op r o t e i n ” , s imple ” pro te in ” ,
s imple ” substance” , s imple ”univ ”]

| i s a (s imple ”growth”) = [s imple ” b i o l o g i c f u n c t i o n ” , s imple ”
event” , s imple ”growth” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ”univ ”]

| i s a (s imple ”high ”) = [s imple ”high ” , s imple ”
p o s i t i o n o n s c a l e ”]

| i s a (s imple ”hsp27”) = [s imple ” c onc ep tua l e n t i t y ” , s imple ”
en t i t y ” , s imple ”hsp27” , s imple ” substance” , s imple ”univ ”]

| i s a (s imple ” i d e a o r c on c ep t ”) = [s imple ” c onc ep tua l e n t i t y ”
, s imple ” en t i t y ” , s imple ” i d e a o r c on c ep t ” , s imple ”univ ”]

304 | i s a (s imple ” i n c o r po r a t i on”) = [s imple ” event” , s imple ”
i n c o r po r a t i on” , s imple ” natura l phenomenon or proces s ” ,
s imple ” phenomenon or process” , s imple ” subs tance pro ce s s ” ,
s imple ”univ ”]

| i s a (s imple ” i n c r e a s e ”) = [s imple ” event” , s imple ” i n c r e a s e ” ,
s imple ” i n f l u e n c e ” , s imple ” natura l phenomenon or proces s ” ,
s imple ” phenomenon or process” , s imple ”univ ”]

238

| i s a (s imple ” i n c r e a s ed”) = [s imple ” i n c r e a s ed” , s imple ”
p o s i t i o n o n s c a l e ”]

| i s a (s imple ” incubat ion ”) = [s imple ” event” , s imple ”
incubat ion ” , s imple ” natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ”univ ”]

| i s a (s imple ” induc t i on ”) = [s imple ” event” , s imple ” induc t i on
” , s imple ” i n f l u e n c e ” , s imple ” natura l phenomenon or proces s ”
, s imple ” phenomenon or process” , s imple ”univ ”]

309 | i s a (s imple ” i n f l u e n c e ”) = [s imple ” event” , s imple ” i n f l u e n c e
” , s imple ” natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ”univ ”]

| i s a (s imple ” i n h i b i t i o n ”) = [s imple ” event” , s imple ”
i n f l u e n c e ” , s imple ” i n h i b i t i o n ” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ”univ ”]

| i s a (s imple ” i n h i b i t o r ”) = [s imple ” c onc ep tua l e n t i t y ” ,
s imple ” en t i t y ” , s imple ” i n h i b i t o r ” , s imple ” substance” ,
s imple ”univ ”]

| i s a (s imple ” i n s u l i n ”) = [s imple ” c onc ep tua l e n t i t y ” , s imple
” en t i t y ” , s imple ” i n s u l i n ” , s imple ” pro te in ” , s imple ”
substance” , s imple ”univ ”]

| i s a (s imple ” i n s u l i n r e g u l a t a b l e ”) = [s imple ”
i n s u l i n r e g u l a t a b l e ” , s imple ” proper ty” , s imple ”
subs tance prope r ty” , s imple ”univ ”]

314 | i s a (s imple ” i n s u l i n o t r o p i c ”) = [s imple ” i n s u l i n o t r o p i c ” ,
s imple ” proper ty” , s imple ” subs tance prope r ty” , s imple ”univ ”
]

| i s a (s imple ” i s ”) = [s imple ” i s ”]
| i s a (s imple ” l e v e l ”) = [s imple ” l e v e l ”]
| i s a (s imple ” l i v e r ”) = [s imple ” ana tomica l s t ruc tur e ” , s imple

” body par t or organ or organ component ” , s imple ” en t i t y ” ,
s imple ” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” l i v e r ” ,
s imple ” organ” , s imple ” phy s i c a l o b j e c t ” , s imple ”univ ”]

| i s a (s imple ” low”) = [s imple ” low” , s imple ” p o s i t i o n o n s c a l e
”]

319 | i s a (s imple ”medica l procedure ”) = [s imple ” event” , s imple ”
medica l procedure ” , s imple ”phenomenon or process” , s imple ”
univ ”]

239

| i s a (s imple ”membrane”) = [s imple ” ana tomica l s t ruc tur e ” ,
s imple ” en t i t y ” , s imple ”membrane” , s imple ” phy s i c a l o b j e c t ” ,
s imple ”univ ”]

| i s a (s imple ”mixture ”) = [s imple ” combination ” , s imple ”
mixture ”]

| i s a (s imple ”molecu la r ”) = [s imple ”molecu la r” , s imple ”
p r o c e s s p r op e r t y” , s imple ” proper ty” , s imple ”univ ”]

| i s a (s imple ”molecule ”) = [s imple ” c onc ep tua l e n t i t y ” , s imple
” en t i t y ” , s imple ”molecule ” , s imple ” substance” , s imple ”univ

”]
324 | i s a (s imple ”muscle”) = [s imple ” ana tomica l s t ruc tur e ” ,

s imple ” body par t or organ or organ component ” , s imple ”
en t i t y ” , s imple ” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ”
muscle” , s imple ” organ” , s imple ” phy s i c a l o b j e c t ” , s imple ”
univ ”]

| i s a (s imple ” natura l phenomenon or proces s ”) = [s imple ”
event” , s imple ” natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ”univ ”]

| i s a (s imple ” nervous system ”) = [s imple ”body system” , s imple
” c onc ep tua l e n t i t y ” , s imple ” en t i t y ” , s imple ”

fun c t i o na l c on c ep t ” , s imple ” i d e a o r c on c ep t ” , s imple ”
nervous system ” , s imple ” phy s i c a l o b j e c t ” , s imple ”univ ”]

| i s a (s imple ”neuron”) = [s imple ” ana tomica l s t ruc tur e ” ,
s imple ” c e l l ” , s imple ” en t i t y ” , s imple ”
fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ”neuron” , s imple ”
phy s i c a l o b j e c t ” , s imple ”univ ”]

| i s a (s imple ” neurona l s chwann ce l l ”) = [s imple ”
ana tomica l s t ruc tur e ” , s imple ” c e l l ” , s imple ” en t i t y ” , s imple
” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ”
neurona l s chwann ce l l ” , s imple ” phy s i c a l o b j e c t ” , s imple ”
univ ”]

329 | i s a (s imple ”organ”) = [s imple ” ana tomica l s t ruc tur e ” , s imple
” body par t or organ or organ component ” , s imple ” en t i t y ” ,

s imple ” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ”organ” ,
s imple ” phy s i c a l o b j e c t ” , s imple ”univ ”]

| i s a (s imple ”organism”) = [s imple ” ana tomica l s t ruc tur e ” ,
s imple ” en t i t y ” , s imple ” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” ,
s imple ”organism” , s imple ” phy s i c a l o b j e c t ” , s imple ”univ ”]

240

| i s a (s imple ” ox ida t i on ”) = [s imple ” event” , s imple ”
natura l phenomenon or proces s ” , s imple ” ox ida t i on ” , s imple ”
phenomenon or process” , s imple ” subs tance pro ce s s ” , s imple ”
univ ”]

| i s a (s imple ”oxygen”) = [s imple ” c onc ep tua l e n t i t y ” , s imple ”
en t i t y ” , s imple ”oxygen” , s imple ” substance” , s imple ”univ ”]

| i s a (s imple ” p a n c r e a t i c c e l l ”) = [s imple ”
ana tomica l s t ruc tur e ” , s imple ” c e l l ” , s imple ” en t i t y ” , s imple
” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” p a n c r e a t i c c e l l
” , s imple ” phy s i c a l o b j e c t ” , s imple ”univ ”]

334 | i s a (s imple ”pathway”) = [s imple ” c onc ep tua l e n t i t y ” , s imple
” en t i t y ” , s imple ”pathway” , s imple ”univ ”]

| i s a (s imple ”pgg”) = [s imple ” c onc ep tua l e n t i t y ” , s imple ”
en t i t y ” , s imple ”pgg” , s imple ” substance” , s imple ”univ ”]

| i s a (s imple ”phenomenon or process”) = [s imple ” event” ,
s imple ” phenomenon or process” , s imple ”univ ”]

| i s a (s imple ” phosphory la t ion ”) = [s imple ” event” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” phosphory la t ion ” , s imple ”
univ ”]

| i s a (s imple ” phy s i c a l o b j e c t ”) = [s imple ” en t i t y ” , s imple ”
phy s i c a l o b j e c t ” , s imple ”univ ”]

339 | i s a (s imple ”pkc”) = [s imple ” c onc ep tua l e n t i t y ” , s imple ”
en t i t y ” , s imple ”pkc” , s imple ” substance” , s imple ”univ ”]

| i s a (s imple ” po l ynuc l e o t i d e”) = [s imple ” c onc ep tua l e n t i t y ” ,
s imple ” en t i t y ” , s imple ” po l ynuc l e o t i d e” , s imple ” substance” ,
s imple ”univ ”]

| i s a (s imple ” po lypept ide ”) = [s imple ” c onc ep tua l e n t i t y ” ,
s imple ” en t i t y ” , s imple ” po lypept ide ” , s imple ” substance” ,
s imple ”univ ”]

| i s a (s imple ” p o s i t i o n o n s c a l e ”) = [s imple ”
p o s i t i o n o n s c a l e ”]

| i s a (s imple ” po t en t i a t i o n ”) = [s imple ” event” , s imple ”
i n f l u e n c e ” , s imple ” natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” po t en t i a t i o n ” , s imple ”univ ”]

344 | i s a (s imple ” pp c e l l ”) = [s imple ” ana tomica l s t ruc tur e ” ,
s imple ” c e l l ” , s imple ” e nd o c r i n e c e l l ” , s imple ”
e nd o c r i n e p a n c r e a t i c c e l l ” , s imple ” en t i t y ” , s imple ”
fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” p a n c r e a t i c c e l l ”

241

, s imple ” phy s i c a l o b j e c t ” , s imple ” pp c e l l ” , s imple ”univ ”]
| i s a (s imple ” p r o c e s s p r op e r t y”) = [s imple ” p r o c e s s p r op e r t y”

, s imple ” proper ty” , s imple ”univ ”]
| i s a (s imple ” product ion”) = [s imple ” event” , s imple ”

natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” product ion” , s imple ”
subs tance pro ce s s ” , s imple ”univ ”]

| i s a (s imple ”promotion ”) = [s imple ” event” , s imple ” i n f l u e n c e
” , s imple ” natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ”promotion ” , s imple ”univ ”]

| i s a (s imple ” proper ty”) = [s imple ” proper ty” , s imple ”univ ”]
349 | i s a (s imple ” pro te in ”) = [s imple ” c onc ep tua l e n t i t y ” , s imple

” en t i t y ” , s imple ” pro te in ” , s imple ” substance” , s imple ”univ ”]
| i s a (s imple ” q 3 t 3 l 1 ”) = [s imple ” ana tomica l s t ruc tur e ” ,

s imple ” c e l l ” , s imple ” en t i t y ” , s imple ”
fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” phy s i c a l o b j e c t ”
, s imple ” q 3 t 3 l 1 ” , s imple ”univ ”]

| i s a (s imple ” r e c epto r ”) = [s imple ” ana tomica l s t ruc tur e ” ,
s imple ” en t i t y ” , s imple ” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” ,
s imple ” phy s i c a l o b j e c t ” , s imple ” r e c epto r ” , s imple ”univ ”]

| i s a (s imple ” r e gu l a t i o n ”) = [s imple ” event” , s imple ”
i n f l u e n c e ” , s imple ” natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” r e gu l a t i o n ” , s imple ”univ ”]

| i s a (s imple ” r e l e a s e ”) = [s imple ” event ” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” product ion” , s imple ” r e l e a s e ”
, s imple ” subs tance pro ce s s ” , s imple ”univ ”]

354 | i s a (s imple ” r e p l i c a t i o n ”) = [s imple ” event ” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” product ion” , s imple ”
r e p l i c a t i o n ” , s imple ” subs tance pro ce s s ” , s imple ”univ ”]

| i s a (s imple ” requirement ”) = [s imple ” event ” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” requirement ” , s imple ”
subs tance pro ce s s ” , s imple ”univ ”]

| i s a (s imple ” r e s i s t a n c e ”) = [s imple ” b i o l o g i c f u n c t i o n ” ,
s imple ” event ” , s imple ” natura l phenomenon or proces s ” ,
s imple ” phenomenon or process” , s imple ” r e s i s t a n c e ” , s imple ”
univ ”]

242

| i s a (s imple ” response ”) = [s imple ” event ” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” response ” , s imple ”univ ”]

| i s a (s imple ” s e c r e t i o n ”) = [s imple ” event” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” product ion” , s imple ”
s e c r e t i o n ” , s imple ” subs tance pro ce s s ” , s imple ”univ ”]

359 | i s a (s imple ” s e c r e t o r y ”) = [s imple ” p r o c e s s p r op e r t y” , s imple
” proper ty” , s imple ” s e c r e t o r y ” , s imple ”univ ”]

| i s a (s imple ” s ens ing ”) = [s imple ” event ” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” s ens ing ” , s imple ”
subs tance pro ce s s ” , s imple ”univ ”]

| i s a (s imple ” s i g n a l ”) = [s imple ” c onc ep tua l e n t i t y ” , s imple ”
en t i t y ” , s imple ” s i g n a l ” , s imple ”univ ”]

| i s a (s imple ” s i g n a l i n g ”) = [s imple ” event” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” s i g n a l i n g ” , s imple ”
subs tance pro ce s s ” , s imple ”univ ”]

| i s a (s imple ” sma l l e r ”) = [s imple ” p o s i t i o n o n s c a l e ” , s imple
” sma l l e r ”]

364 | i s a (s imple ” somatostat in ”) = [s imple ” c onc ep tua l e n t i t y ” ,
s imple ” en t i t y ” , s imple ” somatostat in ” , s imple ” substance” ,
s imple ”univ ”]

| i s a (s imple ” s p e c i f i c ”) = [s imple ” g en e r a l p r op e r t y ” , s imple
” proper ty” , s imple ” s p e c i f i c ” , s imple ” subs tance prope r ty” ,
s imple ”univ ”]

| i s a (s imple ” s t em c e l l ”) = [s imple ” ana tomica l s t ruc tur e ” ,
s imple ” c e l l ” , s imple ” en t i t y ” , s imple ”
fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ” phy s i c a l o b j e c t ”
, s imple ” s t em c e l l ” , s imple ”univ ”]

| i s a (s imple ” s t imu la t i on ”) = [s imple ” event” , s imple ”
i n f l u e n c e ” , s imple ” natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” s t imu la t i on ” , s imple ”univ ”]

| i s a (s imple ” s t r u c tu r e p r ope r t y ”) = [s imple ” proper ty” ,
s imple ” s t r u c tu r e p r ope r t y ” , s imple ”univ ”]

369 | i s a (s imple ” substance”) = [s imple ” c onc ep tua l e n t i t y ” ,
s imple ” en t i t y ” , s imple ” substance” , s imple ”univ ”]

243

| i s a (s imple ” subs tance pro ce s s ”) = [s imple ” event ” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” subs tance pro ce s s ” , s imple ”
univ ”]

| i s a (s imple ” subs tance prope r ty ”) = [s imple ” proper ty” ,
s imple ” subs tance prope r ty” , s imple ”univ ”]

| i s a (s imple ” synthase”) = [s imple ” event” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” subs tance pro ce s s ” , s imple ”
synthase” , s imple ”univ ”]

| i s a (s imple ” s yn th e s i s ”) = [s imple ” event” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” product ion” , s imple ”
subs tance pro ce s s ” , s imple ” s yn th e s i s ” , s imple ”univ ”]

374 | i s a (s imple ” t i s s u e ”) = [s imple ” ana tomica l s t ruc tur e ” ,
s imple ” body par t or organ or organ component ” , s imple ”
en t i t y ” , s imple ” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple ”
phy s i c a l o b j e c t ” , s imple ” t i s s u e ” , s imple ”univ ”]

| i s a (s imple ” t o l e r an c e ”) = [s imple ” event” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” subs tance pro ce s s ” , s imple ”
t o l e r an c e ” , s imple ”univ ”]

| i s a (s imple ” t r a n s l o c a t i o n”) = [s imple ” event” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” subs tance pro ce s s ” , s imple ”
t r a n s l o c a t i o n” , s imple ”univ ”]

| i s a (s imple ” t r anspo r t ”) = [s imple ” event” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” subs tance pro ce s s ” , s imple ”
t r anspo r t ” , s imple ”univ ”]

| i s a (s imple ” t r an spo r t e r ”) = [s imple ” c onc ep tua l e n t i t y ” ,
s imple ” en t i t y ” , s imple ” substance” , s imple ” t r an spo r t e r ” ,
s imple ”univ ”]

379 | i s a (s imple ” ty r o s i n e ”) = [s imple ”aminoacid” , s imple ”
c onc ep tua l e n t i t y ” , s imple ” en t i t y ” , s imple ” substance” ,
s imple ” ty r o s i n e ” , s imple ”univ ”]

| i s a (s imple ”univ ”) = [s imple ”univ ”]
| i s a (s imple ”uptake ”) = [s imple ” event ” , s imple ”

natura l phenomenon or proces s ” , s imple ”

244

phenomenon or process” , s imple ” subs tance pro ce s s ” , s imple ”
univ ” , s imple ”uptake ”]

| i s a (s imple ” u t i l i z a t i o n ”) = [s imple ” event” , s imple ”
natura l phenomenon or proces s ” , s imple ”
phenomenon or process” , s imple ” subs tance pro ce s s ” , s imple ”
univ ” , s imple ” u t i l i z a t i o n ”]

| i s a (s imple ” va s op r e s s i n”) = [s imple ” c onc ep tua l e n t i t y ” ,
s imple ” en t i t y ” , s imple ” substance” , s imple ”univ ” , s imple ”
va s op r e s s i n”]

384 | i s a (s imple ”wa l l ”) = [s imple ” ana tomica l s t ruc tur e ” , s imple
” en t i t y ” , s imple ” fu l l y f o rmed ana tom i c a l s t r u c tu r e ” , s imple
” phy s i c a l o b j e c t ” , s imple ”univ ” , s imple ”wa l l ”]

| i s a (s imple ”weigth ”) = [s imple ” proper ty” , s imple ”univ ” ,
s imple ”weigth ”]

| i s a (s imple ” z c y t o r 1 7 l i g ”) = [s imple ” c onc ep tua l e n t i t y ” ,
s imple ” en t i t y ” , s imple ” po l ynuc l e o t i d e” , s imple ” substance” ,
s imple ”univ ” , s imple ” z c y t o r 1 7 l i g ”]

| i s a (s imple x) = [s imple x]

389 fun i s a chk (x , y) = L i s t . e x i s t s (fn z=>z=y) (i s a x)

val a data = [(s imple ”DUMMY” , r ”dum” , s imple ”DUMMY”) ,
(s imple ” i n f l u e n c e ” , r ” agt” , s imple ” substance”) ,
(s imple ” subs tance pro ce s s ” , r ”pnt” , s imple ”

substance”) ,
394 (s imple ” i n f l u e n c e ” , r ” agt” , s imple ” l e v e l ”) ,

(s imple ” i n f l u e n c e ” , r ”pnt” , s imple ”
phenomenon or process”) ,

(s imple ” i n f l u e n c e ” , r ”pnt” , s imple ”
ana tomica l s t ruc tur e ”) ,

(s imple ” phy s i c a l o b j e c t ” , r ” l o c ” , s imple ”
ana tomica l s t ruc tur e ”) ,

(s imple ” phy s i c a l o b j e c t ” , r ” pof ” , s imple ”
phy s i c a l o b j e c t ”) ,

399 (s imple ” product ion” , r ” agt” , s imple ”
ana tomica l s t ruc tur e ”) ,

(s imple ”phenomenon or process” , r ” l o c ” , s imple ”
ana tomica l s t ruc tur e ”) ,

245

(s imple ” substance” , r ” s r c ” , s imple ”
ana tomica l s t ruc tur e ”) ,

(s imple ” product ion” , r ” s r c ” , s imple ”
ana tomica l s t ruc tur e ”) ,

(s imple ” t r anspo r t ” , r ” v ia ” , s imple ”
ana tomica l s t ruc tur e ”) ,

404 (s imple ” entry” , r ” agt” , s imple ” substance”) ,
(s imple ” entry” , r ”pnt” , s imple ”

ana tomica l s t ruc tur e ”) ,
(s imple ” entry” , r ” v ia ” , s imple ” t r an spo r t e r ”) ,
(s imple ” l e v e l ” , r ” chr ” , s imple ” p o s i t i o n o n s c a l e ”

) ,
(s imple ” substance” , r ” chr ” , s imple ”

subs tance prope r ty ”) ,
409 (s imple ”phenomenon or process” , r ” chr ” , s imple ”

p r o c e s s p r op e r t y”) ,
(s imple ” ana tomica l s t ruc tur e ” , r ” chr ” , s imple ”

s t r u c tu r e p r ope r t y ”) ,
(s imple ” l e v e l ” , r ”wrt” , s imple ” substance”) ,
(s imple ” l e v e l ” , r ” l o c ” , s imple ”blood ”) ,
(s imple ” t r an spo r t e r ” , r ”wrt” , s imple ” substance”) ,

414 (s imple ” g en e r a l p r op e r t y” , r ”wrt” , s imple ”univ ”) ,
(s imple ” i s ” , r ”qqq” , s imple ”univ ”)]

fun member (x , ys) = L i s t . e x i s t s (fn y=>y=x) ys

419 fun a f f (sc1 , s c2) =
l e t

val s c 1 anc e s t o r s = i s a sc1
val temp0 = L i s t . f i l t e r (fn (x , y , z)=>member (x ,

s c 1 anc e s t o r s)) a data
val temp1 = L i s t . f i l t e r (fn (x , y , z)=>i s a chk (sc2 , z))

temp0
424 val r o l e s = L i s t .map (fn (x , y , z)=>y) temp1

in
Binaryset . l i s t I t em s (Binaryset . addList (Binaryset . empty

ro le compare , r o l e s))
end

246

429 end

247

248

Appendix F

SML implementation of the
ontograbber

Below we present the full listing of an implementation of the ontograbber in
the Standard Meta Language. This is the ontograbber presented in Chapter 8
on page 141.

�

1 load ”GenerativeOntology” ;
load ” L i s t s o r t ” ;
load ” Substr ing ” ;
open GenerativeOntology ;

6 type cove r beg in = in t
type cover end = in t

datatype cover = e of cove r beg in ∗ cover end ∗ s yn ta c t i c c a t e g o r y
∗ concept ∗ s t r i n g l i s t

11 val i 2 s = Int . toSt r ing
fun g lue [] = ””
| g lue [w] = w
| g lue (w : :ws) = wˆ” ”ˆ g lue ws

16 fun e2s (e (c b , c e , synt , c , s t r)) =
l e t val v = c2s c

249

val sep = i f l ength (explode v)>20 then ”\\\\\n&&\\phantom
{(}” else ””

in
”&& (”ˆ i 2 s c b ˆ” , ”ˆ i 2 s c e ˆ” ,\\ textrm {”

21 ˆ s c2 s synt ˆ” } , ”ˆvˆ” , ”ˆ sep
ˆ”\\ textrm { ‘ ‘ ”ˆ g lue s t r ˆ” ’ ’}) ”

end

fun eqnarray [] = ””
26 | eqnarray [x] = e2s xˆ””

| eqnarray (x : : xs) = e2s xˆ” ,\\\\\n”ˆ eqnarray xs

fun appendToFile s t r i n g f i l ename =
l e t

31 val out stream = TextIO . openAppend f i l ename
in

TextIO . output (out stream , s t r i n g) ;
TextIO . f lushOut out stream ;
TextIO . c loseOut out stream

36 end

fun wr iteToFi l e s t r i n g f i l ename =
l e t

val out stream = TextIO . openOut f i l ename
41 in

TextIO . output (out stream , s t r i n g) ;
TextIO . f lushOut out stream ;
TextIO . c loseOut out stream

end
46

val () = wr i teToFi l e ”” ” prog r e s s . tex ”

fun a (cc (sc1 ,)) (cc (sc2 ,)) = a f f (sc1 , s c2)

51 (∗ Set o f e n t r i e s implemented as l i s t ∗)
type ’ ’ a s e t = ’ ’ a l i s t
val empty : cover s e t = []
fun s i n g l e t on (item : cover) = [item]
fun add (s e t : cover set , item : cover)

250

56 = i f L i s t . e x i s t s (fn (y : cover)=>y=item) s e t then s e t else item : :
s e t

fun addList (s e t : cover set , []) = s e t
| addList (se t , (x : cover) : : xs) = add (addList (se t , xs) , x)

fun de l e t e (se t , item : cover) = L i s t . f i l t e r (fn y=>y<>item) s e t
fun l i s t I t em s s e t = s e t

61 val isEmpty = L i s t . nu l l
val f i nd = L i s t . f i nd

fun i n i t i a t e sen =
l e t

66 fun i [] n (s e t : cover s e t) = s e t
| i (w : :ws) n s e t =

l e t
fun h ((l i (synt , c)) : l e x i c on i t em) = ((e (n , n , synt , c

, [w])) : cover)
in

71 i ws (n+1) (addList (se t ,map h (l ex w)))
handle l e x no t found => i ws n s e t

end
in

i sen 0 empty
76 end

fun best (cs : cover s e t) = l e t val SOME(x) = f i nd (fn =>t rue) cs
in x end

fun addRole (cc (sc1 , ps1) , r o l e , c2) = cc (sc1 , (r o l e , c2) : : ps1)
81

val t a l l =
[fn (s t r1 , syn ”VP” , c1 , r ” agt” , s t r2 , syn ”NP” , c2)

=> (s t r2@str1 , syn ”S” , addRole (c1 , r ” agt” , c2)) ,
fn (s t r1 , syn ”TV” , c1 , r ”pnt” , s t r2 , syn ”NP” , c2)

86 => (s t r1@str2 , syn ”VP” , addRole (c1 , r ”pnt” , c2)) ,
fn (s t r1 , syn ”N” , c1 , r o l e , s t r2 , syn ”N” , c2)
=> (s t r2@str1 , syn ”N” , addRole (c1 , r o l e , c2)) ,

fn (s t r1 , syn ”NP” , c1 , r ”pnt” , s t r2 , syn ”NP” , c2)
=> (str1@ [” o f ”] @str2 , syn ”NP” , addRole (c1 , r ”pnt” , c2)) ,

91 fn (s t r1 , syn ”NP” , c1 , r ” agt” , s t r2 , syn ”NP” , c2)

251

=> (str1@ [”by”] @str2 , syn ”NP” , addRole (c1 , r ” agt” , c2)) ,
fn (s t r1 , syn ”NP” , c1 , r ” v ia ” , s t r2 , syn ”NP” , c2)
=> (str1@ [” a c r o s s ”] @str2 , syn ”NP” , addRole (c1 , r ” v ia ” , c2)) ,

fn (s t r1 , syn ”NP” , c1 , r ” l o c ” , s t r2 , syn ”NP” , c2)
96 => (str1@ [” o f ”] @str2 , syn ”NP” , addRole (c1 , r ” l o c ” , c2)) ,

fn (s t r1 , syn ”NP” , c1 , r ”wrt” , s t r2 , syn ”NP” , c2)
=> (str1@ [” o f ”] @str2 , syn ”NP” , addRole (c1 , r ”wrt” , c2)) ,

fn (s t r1 , syn ”NP” , c1 , r ”bmo” , s t r2 , syn ”NP” , c2)
=> (str1@ [” through”] @str2 , syn ”NP” , addRole (c1 , r ”bmo” , c2)) ,

101 fn (s t r1 , syn ”NP” , c1 , r ”cmp” , s tr2 , syn ”NP” , c2)
=> (str1@ [” o f ”] @str2 , syn ”NP” , addRole (c1 , r ”cmp” , c2)) ,

fn (s t r1 , syn ”NP” , c1 , r ” s r c ” , s t r2 , syn ”NP” , c2)
=> (str1@ [” from”] @str2 , syn ”NP” , addRole (c1 , r ” s r c ” , c2)) ,

fn (s t r1 , syn ”NP” , c1 , r ” chr ” , s t r2 , syn ”A” , c2)
106 => (s t r2@str1 , syn ”NP” , addRole (c1 , r ” chr ” , c2)) ,

fn (s t r1 , syn ”VP” , c1 , r ” v ia ” , s t r2 , syn ”NP” , c2)
=> (s t r1@str2 , syn ”VP” , addRole (c1 , r ” v ia ” , c2))

]

111 val t s y n a l l =
[fn (s t r1 , syn ”NP” , c1 , s t r2 , syn ”NP” , c2)

=> (str1@ [”and”] @str2 , syn ”NP” , c1) ,
fn (s t r1 , syn ”NP” , c1 , s t r2 , syn ”NP” , c2)
=> (str1@ [”and”] @str2 , syn ”NP” , c2) ,

116 fn (s t r1 , syn ”VP” , c1 , s t r2 , syn ”VP” , c2)
=> (str1@ [”and”] @str2 , syn ”VP” , c1) ,

fn (s t r1 , syn ”VP” , c1 , s t r2 , syn ”VP” , c2)
=> (str1@ [”and”] @str2 , syn ”VP” , c2) ,

fn (s t r1 , syn ” IS” , c1 , s t r2 , syn ”VBG” , c2)
121 => (s t r1@str2 , syn ”TV” , c2)]

fun pa t te rns x [] = []
| pa t te rns x (t : : t s) = (t x) : : (pa t t e rn s x t s) handle Match => (

pa t t e rn s x t s)

126 fun match ([] ,) = true
| match (, []) = f a l s e
| match (PH: :PT,SH : :ST) = i f PH=SH then match (PT,ST)

else match (PH : :PT,ST)

252

131 fun combine sentence (e (c b1 , c e1 , s1 , c1 , s t r 1) ,
e (c b2 , c e2 , s2 , c2 , s t r 2)) =

l e t
fun n1 r o l e =

l e t
136 val pats = pat te rns (s tr1 , s1 , c1 , r o l e , s t r2 , s2 , c2)

t a l l
val matched = L i s t . f i l t e r (fn (pat , syn ’ , c)=> match

(pat , s entence)) pats
in

map (fn (pat , syn ’ , c)=>e (c b1 , c e2 , syn ’ , c , pat))
matched

end
141 fun n2 r o l e =

l e t
val pats = pat te rns (s tr2 , s2 , c2 , r o l e , s t r1 , s1 , c1)

t a l l
val matched = L i s t . f i l t e r (fn (pat , syn ’ , c)=> match

(pat , s entence)) pats
in

146 map (fn (pat , syn ’ , c)=>e (c b1 , c e2 , syn ’ , c , pat))
matched

end
in

L i s t . concat ((map n1 (a c1 c2)) @ (map n2 (a c2 c1)))
end

151

fun syn combine sentence (e (c b1 , c e1 , s1 , c1 , s t r 1) ,
e (c b2 , c e2 , s2 , c2 , s t r 2)) =

l e t
val pats = pat te rns (s tr1 , s1 , c1 , s t r2 , s2 , c2) t s y n a l l

156 val matched = L i s t . f i l t e r (fn (pat , syn ’ , c)=> match (pat ,
s entence)) pats

in
map (fn (pat , syn ’ , c)=>e (c b1 , c e2 , syn ’ , c , pat)) matched

end

161 val l i f t r u l e = fn syn ”N” => syn ”NP” | => raise Match

253

fun l i f t (e (c b , c e , synt , c , s t r)) =
[e (c b , c e , l i f t r u l e synt , c , s t r)] handle Match => []

166 fun grab sen (C: cover s e t) (H: cover s e t) =
i f isEmpty H
then

C
else

171 l e t
val SOME(h as e (c b , c e , , c , s t r)) = f i nd (fn =>t rue)

H
val l n e i g hbou r s = L i s t . f i l t e r (fn (e (, y , , ,))=>y+1=

c b) (l i s t I t em s C)
val r ne i ghbour s = L i s t . f i l t e r (fn (e (y , , , ,))=>c e

+1=y) (l i s t I t em s C)
val pa i r s = (map (fn n=>(n , h)) l n e i g hbou r s)@(map (fn

n=>(h , n)) r ne i ghbour s)
176 val l i f t e d = l i f t h

val new = l i f t e d
@ L i s t . concat (map (fn pa i r=>combine sen

pa i r) pa i r s)
@ L i s t . concat (map (fn pa i r=>syn combine sen

pa i r) pa i r s)
val tex = i f new=[] then ””

181 else ”\n\\begin { eqnarray∗}\n”
ˆ”h=”ˆ e2s hˆ”\\\\\n”
ˆ”N=\\{”
ˆ eqnarray newˆ”\\}\n\\end{ eqnarray∗}\n”

val () = appendToFile tex ” prog r e s s . tex ”
186 in

grab sen (addList (C, new)) (d e l e t e ((addList (H, new)) ,h)
)

end

fun run sen = l e t val C 0 = i n i t i a t e sen in grab sen C 0 C 0 end
191

fun s p l i t s = L i s t .map Substr ing . s t r i n g (Substr ing . f i e l d s (fn #” ”
=>t rue | =>f a l s e) (Substr ing . a l l s))

254

(∗ Here are some t e s t s en t ences ∗)

196 val entence = ” the s e low i n s u l i n l e v e l s a re i n h i b i t i n g the
t r anspo r t o f g luco s e and oxygen a c r o s s c e l l membranes”

val entence = ” the s e low i n s u l i n l e v e l s i n h i b i t the t r anspo r t o f
g luco s e a c r o s s c e l l membranes t h e r e f o r e caus ing high blood
g luco s e l e v e l s ”

val entence = ” g luco s e en t e r s the b e t a c e l l s through the g luco s e
t r an spo r t e r g lu t2 ”

val entence = ” i n s u l i n a l s o i n h i b i t s the r e l e a s e o f g luco s e from
the l i v e r ”

val entence = ” the s e c r e t ed i n s u l i n promotes g luco s e u t i l i z a t i o n
and i n h i b i t s product ion o f g luco s e by the l i v e r ”

201 val entence = ” thr e e i n s u l i n−s i g n a l i n g pathway−s p e c i f i c i n h i b i t o r s
a l s o abo l i s h pgg−induced g luco s e t r anspo r t in 3 t3−l 1

ad ipocy te s”
val sentence = ”some anti−funga l agents func t i on as c e l l wa l l

i n h i b i t o r s by i n h i b i t i n g g luco s e synthase”
val entence = ”although i n s u l i n s e c r e t i o n i s predominantly

c o n t r o l l e d by blood l e v e l s o f g luco s e , somatostat in i n h i b i t s
g lucose−mediated i n s u l i n s e c r e t o r y r e spons e s ”

val entence = ” in the l i v e r , i n s u l i n i n h i b i t s the product ion o f
g luco s e by i n h i b i t i n g g luconeogene s i s and g l y c o g e n o l y s i s ”

val entence = ”however , i n s u l i n a l s o a c t s to i n h i b i t the a c t i v i t y
o f g lucose−6−phosphatase”

206 val entence = ” the blood g luco s e l e v e l s may be f a s t i n g or fed
g luco s e l e v e l s , and blood g luco s e l e v e l s inc lude serum or
plasma g luco s e l e v e l s ”

val entence = ” the i n s u l i n s e c r e t i o n determined i s p r e f e r ab l y
g lucose−s t imulated i n s u l i n s e c r e t i o n ”

val entence = ” p r e f e r ab l y , the i n s u l i n s e c r e t i o n i s g lucose−
s t imulated i n s u l i n s e c r e t i o n ”

val t s e n = s p l i t s entence
211

val t e s t = run t s en

fun b i g g e r c o v e r (e (c b , c e , synt , c , s t r) , (max , s t r i n g s)) =

255

l e t val c d i f = c e−c b
216 in

i f max>c d i f then (max , s t r i n g s)
else i f max=c d i f then (max , c2s c : : s t r i n g s)
else (c d i f , [c2 s c])

end
221

val b i g g e s t c o v e r = f o l d r b i g g e r c o v e r (0 , []) t e s t

val C 0 = i n i t i a t e t s en

226 val tex = eqnarray (L i s t s o r t . s o r t (fn (e (a , , , ,) , e (b , , , ,))=>
Int . compare(a , b))

(i n i t i a t e t s en))

val () = wr i teToFi l e tex ” e n t r i e s . tex ”

256

Appendix G

Querying ontologies with
Prolog – source code

Below the full Prolog code is presented for our “pancreas knowledge base”,
together with querying facilities.

�

1 %% Ex p l i c i t in format ion from pancreas diagram :

db c l a s s (c e l l) .

db c l a s s (nervous system) .
6

db c l a s s (neurona l s chwann ce l l) .
db r (neurona l s chwann ce l l , i sa , c e l l) .
db r (neurona l s chwann ce l l , par to f , nervous system) .

11 db c l a s s (pancreas) .

db c l a s s (s t em c e l l) .
db r (s t em ce l l , i sa , c e l l) .

16 db c l a s s (e x o c r i n e c e l l) .
db r (e x o c r i n e c e l l , i sa , c e l l) .
db r (e x o c r i n e c e l l , s e c r e t e , enzyme) .

257

db c l a s s (e nd o c r i n e c e l l) .
21 db r (e nd o c r i n e c e l l , i sa , c e l l) .

db r (e nd o c r i n e c e l l , s e c r e t e , hormone) .

db c l a s s (p a n c r e a t i c c e l l) .
db r (p a n c r e a t i c c e l l , i sa , c e l l) .

26 db r (p a n c r e a t i c c e l l , l o c a t ed i n , pancreas) .

db c l a s s (exoc r ine panc r ea s) .
db r (exoc r ine panc r ea s , par to f , pancreas) .

31 db c l a s s (endoc r ine panc r ea s) .
db r (endocr ine pancreas , par to f , pancreas) .

db c l a s s (a du l t s t em c e l l) .
db r (adu l t s t em ce l l , i sa , a du l t s t em c e l l) .

36

db c l a s s (embryon i c s t em ce l l) .
db r (embryonic s tem ce l l , i sa , s t em c e l l) .

db c l a s s (i s l e t o f l a n g e r h a n s) .
41 db r (i s l e t o f l a n g e r h a n s , par to f , endoc r ine panc r ea s) .

db c l a s s (e x o c r i n e p a n c r e a t i c c e l l) .
db r (e x o c r i n e p a n c r e a t i c c e l l , i sa , e x o c r i n e c e l l) .
db r (e x o c r i n e p a n c r e a t i c c e l l , i sa , p a n c r e a t i c c e l l) .

46 db r (e x o c r i n e p a n c r e a t i c c e l l , par to f , exo c r ine panc r ea s) .

db c l a s s (duct) .
db r (duct , par to f , exo c r ine panc r ea s) .

51 db c l a s s (e nd o c r i n e p a n c r e a t i c c e l l) .
db r (e nd o c r i n e p a n c r e a t i c c e l l , i sa , e n d o c r i n e c e l l) .
db r (e nd o c r i n e p a n c r e a t i c c e l l , i sa , p a n c r e a t i c c e l l) .

db c l a s s (c a p i l l a r y) .
56 db r (c ap i l l a r y , par to f , i s l e t o f l a n g e r h a n s) .

db c l a s s (c e n t r o a c i n a r c e l l) .

258

db r (c e n t r o a c i n a r c e l l , i sa , e x o c r i n e p a n c r e a t i c c e l l) .
db r (c e n t r o a c i n a r c e l l , s e c r e t e , d i g e s t i v e enzyme) .

61 db r (c e n t r o a c i n a r c e l l , p r imary s i gna l , s e c r e t i n) .

db c l a s s (a c i n a r c e l l) .
db r (a c i n a r c e l l , i sa , e x o c r i n e p a n c r e a t i c c e l l) .
db r (a c i n a r c e l l , s e c r e t e , b i ca rbona te i on) .

66 db r (a c i n a r c e l l , p r imary s i gna l , cck) .

db c l a s s (a l p h a c e l l) .
db r (a l pha c e l l , i sa , e n d o c r i n e p a n c r e a t i c c e l l) .
db r (a l pha c e l l , par to f , i s l e t o f l a n g e r h a n s) .

71 db r (a l pha c e l l , s e c r e t e , g lucagon) .

db c l a s s (b e t a c e l l) .
db r (b e t a c e l l , i sa , e n d o c r i n e p a n c r e a t i c c e l l) .
db r (b e t a c e l l , par to f , i s l e t o f l a n g e r h a n s) .

76 db r (b e t a c e l l , s e c r e t e , i n s u l i n) .

db c l a s s (gamma cell) .
db r (gamma cell , i sa , e n d o c r i n e p a n c r e a t i c c e l l) .
db r (gamma cell , par to f , i s l e t o f l a n g e r h a n s) .

81 db r (gamma cell , s e c r e t e , g a s t r i n) .
db r (gamma cell , s e c r e t e , somatostat in) .

db c l a s s (p p c e l l) .
db r (pp c e l l , i sa , e n d o c r i n e p a n c r e a t i c c e l l) .

86 db r (pp c e l l , par to f , i s l e t o f l a n g e r h a n s) .
db r (pp c e l l , s e c r e t e , p anc r e a t i c po l yp ep t i d e) .

db c l a s s (g lucagon) .

91 db c l a s s (i n s u l i n) .

db c l a s s (g a s t r i n) .

db c l a s s (somatostat in) .
96

db c l a s s (panc r e a t i c po l yp ep t i d e) .

259

%% Added f o r f i x i n g knowledge base er ror s :

101 db c l a s s (enzyme) .
db c l a s s (hormone) .
db c l a s s (d i g e s t i v e enzyme) .
db c l a s s (s e c r e t i n) .
db c l a s s (b i ca rbona te i on) .

106 db c l a s s (cck) .

%% In ference d e f i n i t i o n s .

db r e l a t i o n (i s a) .
111 db r e l a t i o n (pa r to f) .

db r e l a t i o n (s e c r e t e) .
db r e l a t i o n (l o c a t e d i n) .
db r e l a t i o n (pr imary s i gna l) .

116 i n h e r i t e d (pa r to f) .
i n h e r i t e d (s e c r e t e) .
i n h e r i t e d (l o c a t e d i n) .
i n h e r i t e d (pr imary s i gna l) .

121 r r e f l e x i v e (X, ,X) .

r t r (X,R, Z) :− nonvar (Z) , r t r 1 (X,R, Z) .
r t r (X,R, Z) :− nonvar (X) , r t r 2 (X,R, Z) .

126 r t r 1 (X,R,Z) :− db r (Y,R, Z) , db r (X,R,Y) .
r t r 1 (X,R,Z) :− db r (Y,R, Z) , r t r 1 (X,R,Y) .

r t r 2 (X,R,Z) :− db r (X,R,Y) , db r (Y,R, Z) .
r t r 2 (X,R,Z) :− db r (X,R,Y) , r t r 2 (Y,R, Z) .

131

r e f l e x i v e (i s a) .
t r a n s i t i v e (i s a) .
t r a n s i t i v e (pa r to f) .

136 r (X,R,Y) :− db r (X,R,Y) .

260

r (X,R,Y) :− r e f l e x i v e (R) , r r e f l e x i v e (X,R,Y) .
r (X,R,Y) :− t r a n s i t i v e (R) , r t r (X,R,Y) .

r (X,R,Y) :− i n h e r i t e d (R) , r (X, i sa , Z) , d i f f (X, Z) , r (Z ,R,Y) .
141

%% Cons t ra in t s :

e r r o r (unde f i n ed r e l a t i o n (R)) :− r (,R,) , \+ db r e l a t i o n (R) .
e r r o r (unde f i n ed c l a s s (X)) :− r (X, ,) , \+ db c l a s s (X) .

146 e r r o r (unde f i n ed c l a s s (X)) :− r (, ,X) , \+ db c l a s s (X) .

e r r o r (bo th c l a s s and i n s t an c e (X)) :− db r e l a t i o n (X) , db c l a s s (X) .

%% Querying :
151

ask ([ex i s t , Class1 , which , Relat ion , Clas s2] , [yes , fo r , ins tance ,X,
Relat ion ,Y]) :−

db c l a s s (Clas s1) ,
db r e l a t i o n (Re la t ion) ,
db c l a s s (Clas s2) ,

156 r (X, i sa , Clas s1) ,
r (Y, i sa , Clas s2) ,
r (X, Relat ion ,Y) .

ask ([every , Class1 , Relat ion , Clas s2] , [yes , every]) :−
161 db c l a s s (Clas s1) ,

db r e l a t i o n (Re la t ion) ,
db c l a s s (Clas s2) ,
\+ counterexample (Class1 , Relat ion , Class2 ,) .

166 ask ([every , Class1 , Relat ion , Clas s2] ,E) :−
db c l a s s (Clas s1) ,
db r e l a t i o n (Re la t ion) ,
db c l a s s (Clas s2) ,
counterexample (Class1 , Relat ion , Class2 ,E) .

171

counterexample (Class1 , Relat ion , Class2 , [no , because ,X, not , Relat ion ,
Clas s2]) :−

r (X, i sa , Clas s1) , d i f f (X, Clas s1) ,

261

no t r (X, Relat ion , Clas s2) .

176 no t r (X,R,Y) :− \+ r (X,R,Y) .

d i f f (X,Y) :− \+ eq (X,Y) .
eq (X,X) .

262

Appendix H

Open–source licensing of
the ontograbber

The following is a discussion on the topic of possibility of releasing the ontograb-
ber under an open–source license.

The Ontograbber is an algorithm which associates ontological semantics with
sentences. The retrieved ontological information takes the form of nodes in the
generative ontology represented by so–called ‘concept covers’. The result of the
algoritmic analysis of a sentence is a collection of ontoterms.

H.1 What is free software?

The Free Software Foundation has defined what a free software is:
“Free software is a matter of the users’ freedom to run, copy, distribute,

study, change and improve the software. More precisely, it means that the
program’s users have the four essential freedoms:

• The freedom to run the program, for any purpose (freedom 0).

• The freedom to study how the program works, and change it to make it
do what you wish (freedom 1). Access to the source code is a precondition
for this.

• The freedom to redistribute copies so you can help your neighbor (freedom
2).

263

• The freedom to distribute copies of your modified versions to others (free-
dom 3). By doing this you can give the whole community a chance to
benefit from your changes. Access to the source code is a precondition for
this.”

H.2 Why is Ontograbber a good candidate for
becoming a free software?

The software developed in a academic environment, e.g. during a PhD studies
has some unique characteristics as compared to a commercially developed soft-
ware. The internal workings of the software are usually a public knowledge,
described in detail in scientific papers and the thesis itself. Companies, on the
other hand try to hide as much information as possible concerning the internal
workings of the software they develop. They usually claim that this is to pro-
tect their trade secrets. In reality many companies do not allow people to look
into the source code of their products due to poor programming practices and
quality of the underlying design.

Since there is usually nothing to hide with academic software, this paper
explores the possibility of releasing such a software as free software.

H.3 Community benefits

The free software enjoys a large community of people who use it. Those people
for historical reasons have mostly very high computer skills. Many of them get
involved in the development of the software and its environment. The ways
people get involved is usually one of the following:

• They use the software, and if they encounter a bug, they report it. Since
these are usually highly skilled users, the bug reports tend to be very
detailed and of good quality. In return for reporting the bug, people can
get a fix for it.

• They write documentation. This can e.g. take the form of a WIKI, where
users themselves document the software. The motivation for doing that
might be: “You (developers) better concentrate on developing the soft-
ware, while we (users) will document it for you.” People realize that if
they take the burden of writing the documentation off the developers, the
software will be developed more quickly.

264

• They discuss and support. It is much easier for users to get support for a
free software product than for a closed alternative. This is because there is
a lot of other users of the software that are ready to share their knowledge
and help when there are problems. This can take the form of a mailing
list, a forum website, Internet Relay Chat, or a local user group. Help is
usually provided promptly, sometimes in minutes after a question is asked.
At the Technical University of Denmark we have a “Linux User Group”,
which meets at regular intervals.

• They develop the software. People with programming skills often will offer
to fix a bug themselves. They might send a patch together with a bug
report. There is also a community of “bug squashers”, who follow the bug
reports and donate their free time by fixing known issues.

H.4 Why do free software communities form?

The reasons people get involved in free software communities are the following:

• They get the software for free, based on hard work of others. They want
to contribute back in return.

• They want to learn. Getting involved in a open source project is a great
way of learning or mastering programming skills. One can also learn
how large software projects are managed successfully, e.g. those involving
thousands of programmers.

• They make money on the product. E.g. a company that uses the Linux
operating system kernel as part of their commercial product might need to
extend it in some way in order to use it successfully in their product. They
may e.g. write a new device driver for hardware that they have developed.

• They want to be a part of a friendly community. People are social beings.
They need to belong to some communities. People with high computer
skills are very likely to feel well in a free software community.

H.5 Main types of open source software licenses

1. Freedom–preserving licenses. These licenses preserve the basic liberties of
the free software. This means that the receipient of the software covered

265

by such a license cannot in any way turn it into non–free software. The
most commonly used license in this group is the GNU General Public
License.

2. Permissive licenses. These licenses allow the receipient of a open source
software to turn it into non-free software or even a completely closed soft-
ware and distribute it further as such. Why would anybody need that?
This commonly occurs when some company wants to use some open source
software product or library as part of their commercial product, without
the combining product becoming an open source product. The most com-
mon licences of this group are GNU Lesser General Public License and
BSD software license.

H.6 Business models for free software and open

source software

H.6.1 Donations

It is very common for free software to accept donations from users who would
like to support the project or the developers financially.

H.6.2 Double licensing

Many companies currently involved in the free software business make money
on the so–called double licensing. This is a business model where exactly the
same product is provided as both a free–licensed one and as a closed–licensed
one.

The free–licensed product is usually given away for free to anybody who
wants it. This helps building a large community of users, wide–spreading and
advertising the software. The developers can also get a lot back from those
users, e.g. free documentation, free bug reports, or even fixes for them, and free
support for other users of this software.

The closed–licensed product is sold to customers who need a closed license
for some reason.

H.6.3 Support

Many companies developing free software are giving copies of the software and
its source code for free, while charging users for optional support with respect

266

to the software. Many customers, including most corporate customers need a
guarantee of professional support when they decide to use a product. Free soft-
ware vendors may be selling time–limited access to such a support. Technicians
providing such a support may solve it using on–line communication, telephone,
or by visiting the customer.

H.6.4 Extra information

Many free software developers make money not on the product itself, but on
the information about it. It is quite common for a developer to write a book
describing a particular free software. Information vending can also take form of
consulting, conducting courses or workshops, etc.

H.6.5 Bounties

Some free software developers propose to add a requested extension to an ex-
isting product for some financial compensation, called a bounty. If a user is in
need of a particular fix/extension, she may consider paying such a bounty so
that the developers will solve her problems quickly.

H.7 Conclusion

We believe that the Ontograbber is well–fit for becoming a free software. Even
though it would be released to any interested party for free, there still exist
business models that allow the developing team to generate revenue.

267

268

Appendix I

Tests of the ontograbber
algorithm on additional 27
sentences

Below we present the results of testing the final ontograbber algorithm on ad-
ditional 27 sentences. Fo each sentence the lexicon and ontology had to be
extended manually, in order to give the algorithm a chance of coping with the
given sentence. Unfortunately for these sentences we were unable to obtain a
golden standard from experts against which we could compare the results.

The input sentence 11:
�

molecu la r c l on ing and c h a r a c t e r i z a t i o n o f an i n s u l i n −
r e gu l a t ab l e g luco s e t r an spo r t e r

Ontograbber’s tagged sentence:
�

molecu la r [A] c l on ing [N] and [] c h a r a c t e r i z a t i o n [N] o f [] an
[] i n s u l i n [N] − [] r e g u l a t ab l e [A] g luco s e [N]
t r an spo r t e r [N]

Ontograbber’s output ontosemantics:

269

• (0,2,NP,cloning
[
chr: molecular

]
,“molecular cloning and characterization”)

• (0,2,NP,characterization,“molecular cloning and characterization”)

• (3,3,NP,insulin,“insulin”)

• (4,4,A,regulatable,“regulatable”)

• (5,6,NP,transporter
[
wrt: glucose

]
,“glucose transporter”)

The input sentence 12:
�

g lucok ina s e i s the l i k e l y mediator o f g luco s ens ing in
both g luco s e − e x c i t e d and g luco s e − i n h i b i t e d c en t r a l
neurons

Ontograbber’s tagged sentence:
�

g lucok ina s e [N] i s [IS] the [] l i k e l y [] mediator [N] o f []
g luco s ens ing [N] in [] both [] g luco s e [N] − [] e x c i t e d [VBD
VBN] and [] g luco s e [N] − [] i n h i b i t e d [VBD VBN] c en t r a l [

A] neurons [N]

Ontograbber’s output ontosemantics:

• (0,0,NP,glucokinase,“glucokinase”)

• (1,1,IS,is,“is”)

• (2,2,NP,mediator,“mediator”)

• (3,3,NP,glucosensing,“glucosensing”)

• (4,9,NP,neuron

[
chr: central
pntof: inhibition

[
agt: glucose

]

]

,“glucose - excited and glu-

cose - inhibited central neurons”)

• (4,9,NP,neuron





chr: central

pntof: inhibition

[
agt: glucose
agt: glucose

]



,“glucose - excited and glu-

cose - inhibited central neurons”)

270

• (4,9,NP,neuron

[
chr: central
pntof: excitement

[
agt: glucose

]

]

,“glucose - excited and glu-

cose - inhibited central neurons”)

The input sentence 13:
�

p r e f e r ab l y , the i n s u l i n s e c r e t i o n i s g luco s e −
s t imulated i n s u l i n s e c r e t i o n

Ontograbber’s tagged sentence:
�

p r e f e r ab l y [] , [,] the [] i n s u l i n [N] s e c r e t i o n [N] i s [IS]
g luco s e [N] − [] s t imulated [VBD VBN] i n s u l i n [N]
s e c r e t i o n [N]

Ontograbber’s output ontosemantics:

• (0,0,,,nil,“,”)

• (1,5,PSV,stimulation

[
agt: glucose
pnt: secretion

[
pnt: insulin

]

]

,“ insulin secretion is glu-

cose - stimulated”)

• (3,7,PSV,stimulation

[
agt: glucose
pnt: secretion

[
pnt: insulin

]

]

,“ insulin secretion is glu-

cose - stimulated”)

The input sentence 14:
�

the entry o f g luco s e in to the ad ipocyte r e q u i r e s the
a c t i v i t y o f the i n s u l i n s e n s i t i v e g luco s e t r an spo r t e r s

Ontograbber’s tagged sentence:
�

the [] entry [N] o f [] g luco s e [N] in to [] the [] ad ipocyte [N]
r e q u i r e s [TV] the [] a c t i v i t y [N] o f [] the [] i n s u l i n [N]
s e n s i t i v e [A] g luco s e [N] t r an spo r t e r s [N]

271

Ontograbber’s output ontosemantics:

• (0,0,NP,entery,“ entry”)

• (1,1,NP,glucose,“glucose”)

• (2,2,NP,adipocyte,“ adipocyte”)

• (3,3,TV,requirement,“requires”)

• (4,4,NP,activity,“ activity”)

• (5,5,NP,insulin,“ insulin”)

• (6,6,A,sensitive,“sensitive”)

• (7,8,NP,transporter
[
wrt: glucose

]
,“glucose transporters”)

The input sentence 15:
�

however , i n s u l i n a l s o a c t s to i n h i b i t the a c t i v i t y o f
g lucose−6−phosphatase

Ontograbber’s tagged sentence:
�

however [] , [,] i n s u l i n [N] a l s o [] a c t s [TV] to [] i n h i b i t [TV
] the [] a c t i v i t y [N] o f [] g lucose−6−phosphatase [N]

Ontograbber’s output ontosemantics:

• (0,0,,,nil,“,”)

• (1,1,NP,insulin,“insulin”)

• (2,2,TV,acting,“acts”)

• (3,4,VP,inhibition
[
pnt: activity

]
,“inhibit activity”)

• (5,5,NP,glucose-6-phosphatase,“glucose-6-phosphatase”)

272

The input sentence 16:
�

i n c r e a s ed g luco s e concent r a t i ons are sensed upon
t ranspo r t a c r o s s the plasma membrane by g luco s e
t r an spo r t e r g l y c op r o t e i n r e s u l t i n g in i n s u l i n
s e c r e t i o n

Ontograbber’s tagged sentence:
�

i n c r e a s ed [VBD VBN] g luco s e [N] concent r a t i ons [N] are [IS]
s ensed [VBD VBN] upon [] t r anspo r t [N TV] a c r o s s [] the []
plasma [N] membrane [N] by [] g luco s e [N] t r an spo r t e r [N]
g l y c op r o t e i n [N] r e s u l t i n g [VBG] in [] i n s u l i n [N]
s e c r e t i o n [N]

Ontograbber’s output ontosemantics:

• (0,0,VBD,increase,“increased”)

• (0,0,VBN,increased,“increased”)

• (1,2,NP,concentration
[
wrt: glucose

]
,“glucose concentrations”)

• (3,4,PSV,sensing,“are sensed”)

• (5,5,TV,transport,“transport”)

• (5,5,NP,transport,“transport”)

• (6,6,NP,plasma,“ plasma”)

• (7,7,NP,membrane,“membrane”)

• (8,9,NP,transporter
[
wrt: glucose

]
,“glucose transporter”)

• (10,10,NP,glycoprotein,“glycoprotein”)

• (11,11,VBG,result,“resulting”)

• (12,13,NP,secretion
[
pnt: insulin

]
,“insulin secretion”)

273

The input sentence 17:
�

the s e t i s s u e s r e qu i r e i n s u l i n f o r f a c i l i t a t e d t r anspo r t
o f g luco s e and expr e s s the i n s u l i n − r e spons iv e
t r an spo r t e r g lu t4

Ontograbber’s tagged sentence:
�

the s e [] t i s s u e s [N] r e qu i r e [TV] i n s u l i n [N] f o r []
f a c i l i t a t e d [VBD VBN] t r anspo r t [N TV] o f [] g luco s e [N]
and [] expr e s s [TV] the [] i n s u l i n [N] − [] r e spons iv e [A]
t r an spo r t e r [N] g lu t4 [N]

Ontograbber’s output ontosemantics:

• (0,0,NP,tissue,“tissues”)

• (1,2,VP,requirement
[
pnt: insulin

]
,“require insulin”)

• (3,5,NP,transport

[
pnt: glucose
pntof: facilitation

]

,“facilitated transport of glucose”)

• (6,6,TV,expression,“express”)

• (7,7,NP,insulin,“ insulin”)

• (8,8,A,responsive,“responsive”)

• (9,10,NP,glut4
[
wrt: transporter

]
,“transporter glut4”)

The input sentence 18:
�

in the l i v e r , i n s u l i n s t imu l a t e s g luco s e i n c o r po r a t i on
in to g lycogen and i n h i b i t s the product ion o f g luco s e

Ontograbber’s tagged sentence:

274

�

in [] the [] l i v e r [N] , [,] i n s u l i n [N] s t imu l a t e s [TV]
g luco s e [N] i n c o r po r a t i on [N] in to [] g lycogen [N] and []
i n h i b i t s [TV] the [] product ion [N] o f [] g luco s e [N]

Ontograbber’s output ontosemantics:

• (0,0,NP,liver,“ liver”)

• (1,1,,,nil,“,”)

• (2,5,S,stimulation

[
agt: insulin
pnt: incorporation

[
pnt: glucose

]

]

,“insulin stimulates glu-

cose incorporation”)

• (6,9,S,inhibition

[
agt: glycogen
pnt: production

[
pnt: glucose

]

]

,“glycogen inhibits produc-

tion of glucose”)

The input sentence 19:
�

the e f f e c t o f i n s u l i n was the oppo s i t e o f g luco s e

Ontograbber’s tagged sentence:
�

the [] e f f e c t [N] o f [] i n s u l i n [N] was [IS] the [] oppo s i t e []
o f [] g luco s e [N]

Ontograbber’s output ontosemantics:

• (0,0,NP,effect,“ effect”)

• (1,1,NP,insulin,“insulin”)

• (2,2,IS,is,“was”)

• (3,3,NP,glucose,“glucose”)

275

The input sentence 20:
�

i n s u l i n r e gu l a t i o n o f the two g luco s e t r an spo r t e r s in 3t3
−l 1 ad ipocy te s

Ontograbber’s tagged sentence:
�

i n s u l i n [N] r e gu l a t i o n [N] o f [] the [] two [] g luco s e [N]
t r an spo r t e r s [N] in [] 3 t3−l 1 [N] ad ipocy te s [N]

Ontograbber’s output ontosemantics:

• (0,1,NP,regulation
[
agt: insulin

]
,“insulin regulation”)

• (2,3,NP,transporter
[
wrt: glucose

]
,“glucose transporters”)

• (4,5,NP,adipocyte
[
pof: q-3t3l1

]
,“3t3-l1 adipocytes”)

• (4,5,NP,adipocyte
[
loc: q-3t3l1

]
,“3t3-l1 adipocytes”)

The input sentence 21:
�

invo lved in i n s u l i n r egu la t ed t r a n s l o c a t i o n o f the
g luco s e t r an spo r t e r g lu t4

Ontograbber’s tagged sentence:
�

invo lved [VBD VBN] in [] i n s u l i n [N] r egu la t ed [VBD VBN]
t r a n s l o c a t i o n [N] o f [] the [] g luco s e [N] t r an spo r t e r [N]
g lu t4 [N]

Ontograbber’s output ontosemantics:

• (0,0,VBD,involvment,“involved”)

• (0,0,VBN,involvment,“involved”)

276

• (1,1,NP,insulin,“insulin”)

• (2,6,NP,translocation

[
pnt: glut4

[
wrt: transporter

[
wrt: glucose

]]

pntof: regulation

]

,“regulated

translocation of glucose transporter glut4”)

• (2,6,NP,translocation




pnt: glut4

[
wrt: glucose
wrt: transporter

]

pntof: regulation



,“regulated transloca-

tion of glucose transporter glut4”)

The input sentence 22:
�

the g luco s e l e v e l was detected with a g luco s e d e t e c t i o n
k i t

Ontograbber’s tagged sentence:
�

the [] g luco s e [N] l e v e l [N] was [IS] detected [VBN] with [] a
[] g luco s e [N] d e t e c t i o n [N] k i t [N]

Ontograbber’s output ontosemantics:

• (0,1,NP,level
[
wrt: glucose

]
,“ glucose level”)

• (2,3,PSV,detection,“was detected”)

• (4,4,NP,glucose,“ glucose”)

• (5,5,NP,detection,“detection”)

• (6,6,NP,kit,“kit”)

The input sentence 23:
�

c e l l u l a r man i f e s t a t i o n s o f i n s u l i n r e s i s t a n c e inc lude
impaired i n s u l i n − s t imulated g luco s e uptake by
pe r i ph e r a l t i s s u e s and impaired g luco s e d i s po s a l

277

Ontograbber’s tagged sentence:
�

c e l l u l a r [A] man i f e s t a t i o n s [N] o f [] i n s u l i n [N] r e s i s t a n c e [
N] inc lude [TV] impaired [VBD VBN] i n s u l i n [N] − []
s t imulated [VBD VBN] g luco s e [N] uptake [N] by []
p e r i ph e r a l [A] t i s s u e s [N] and [] impaired [VBD VBN]
g luco s e [N] d i s po s a l [N]

Ontograbber’s output ontosemantics:

• (0,0,A,cellular,“cellular”)

• (1,1,NP,manifestation,“manifestations”)

• (2,2,NP,insulin,“insulin”)

• (3,3,NP,resistance,“resistance”)

• (4,4,TV,inclusion,“include”)

• (5,5,VBD,impairment,“impaired”)

• (5,5,VBN,impairment,“impaired”)

• (6,9,NP,uptake

[
pnt: glucose
pntof: stimulation

[
agt: insulin

]

]

,“insulin - stimulated glu-

cose uptake”)

• (10,10,A,peripheral,“peripheral”)

• (11,11,NP,tissue,“tissues”)

• (12,12,VBD,impairment,“impaired”)

• (12,12,VBN,impairment,“impaired”)

• (13,14,NP,disposal
[
pnt: glucose

]
,“glucose disposal”)

The input sentence 24:

278

�

high g luco s e l e v e l s promote i n s u l i n r e s i s t a n c e , and
i n s u l i n r e s i s t a n c e g ene ra te s pro longed e l e v a t i o n s o f
serum g luco s e concent r a t i on

Ontograbber’s tagged sentence:
�

high [A] g luco s e [N] l e v e l s [N] promote [TV] i n s u l i n [N]
r e s i s t a n c e [N] , [,] and [] i n s u l i n [N] r e s i s t a n c e [N]
g ene ra te s [TV] pro longed [VBN] e l e v a t i o n s [] o f [] serum [N
] g luco s e [N] concent r a t i on [N]

Ontograbber’s output ontosemantics:

• (0,2,NP,level

[
chr: high
wrt: glucose

]

,“high glucose levels”)

• (3,3,TV,promotion,“promote”)

• (4,4,NP,insulin,“insulin”)

• (5,5,NP,resistance,“resistance”)

• (6,6,,,nil,“,”)

• (7,7,NP,insulin,“insulin”)

• (8,8,NP,resistance,“resistance”)

• (9,9,TV,generation,“generates”)

• (10,10,VBN,prolongation,“prolonged”)

• (11,11,NP,serum,“serum”)

• (12,13,NP,concentration
[
wrt: glucose

]
,“glucose concentration”)

The input sentence 25:
�

in the l i v e r , i n s u l i n i n h i b i t s the r e l e a s e o f g luco s e
from glycogen and the s yn th e s i s o f new g luco s e

279

Ontograbber’s tagged sentence:
�

in [] the [] l i v e r [N] , [,] i n s u l i n [N] i n h i b i t s [TV] the []
r e l e a s e [N] o f [] g luco s e [N] from [] g lycogen [N] and []
the [] s yn th e s i s [N] o f [] new [] g luco s e [N]

Ontograbber’s output ontosemantics:

• (0,0,NP,liver,“ liver”)

• (1,1,,,nil,“,”)

• (2,5,S,inhibition

[
agt: insulin
pnt: release

[
pnt: glucose

]

]

,“insulin inhibits release of glu-

cose”)

• (6,7,NP,glycogen,“glycogen and synthesis”)

• (6,7,NP,synthesis,“glycogen and synthesis”)

• (8,8,NP,glucose,“glucose”)

The input sentence 26:
�

i n s u l i n lower s blood g luco s e l e v e l s and promotes
t r anspo r t and entry o f g luco s e in to muscle c e l l s and
other t i s s u e s

Ontograbber’s tagged sentence:
�

i n s u l i n [N] lower s [TV] blood [N] g luco s e [N] l e v e l s [N] and []
promotes [TV] t r anspo r t [N TV] and [] entry [N] o f []

g luco s e [N] in to [] muscle [N] c e l l s [N] and [] o ther []
t i s s u e s [N]

Ontograbber’s output ontosemantics:

• (0,2,S,decrease

[
agt: insulin
pnt: blood

]

,“insulin lowers blood”)

280

• (2,8,S,promotion

[
agt: level

[
wrt: glucose

[
src: blood

]]

pnt: transport
[
pnt: glucose

]

]

,“blood glucose levels

promotes transport and entry of glucose”)

• (2,8,S,promotion




agt: level

[
loc: blood
wrt: glucose

]

pnt: transport
[
pnt: glucose

]



,“blood glucose levels pro-

motes transport and entry of glucose”)

• (9,10,NP,cell
[
pof: muscle

]
,“muscle cells”)

• (9,10,NP,cell
[
loc: muscle

]
,“muscle cells”)

• (11,11,NP,tissue,“tissues”)

The input sentence 27:
�

in the l i v e r , i n s u l i n i n h i b i t s the r e l e a s e o f g luco s e
from glycogen

Ontograbber’s tagged sentence:
�

in [] the [] l i v e r [N] , [,] i n s u l i n [N] i n h i b i t s [TV] the []
r e l e a s e [N] o f [] g luco s e [N] from [] g lycogen [N]

Ontograbber’s output ontosemantics:

• (0,0,NP,liver,“ liver”)

• (1,1,,,nil,“,”)

• (2,5,S,inhibition

[
agt: insulin
pnt: release

[
pnt: glucose

]

]

,“insulin inhibits release of glu-

cose”)

• (6,6,NP,glycogen,“glycogen”)

The input sentence 28:

281

�

add i t i on o f name to the incubat ion mixture i n h i b i t e d the
i n s u l i n − mimicking e f f e c t o f a l l im in on both g luco s e
t r anspo r t and g luco s e ox ida t i on

Ontograbber’s tagged sentence:
�

add i t i on [N] o f [] name [] to [] the [] incubat ion [N] mixture [
N] i n h i b i t e d [VBD VBN] the [] i n s u l i n [N] − [] mimicking []
e f f e c t [N] o f [] a l l im in [N] on [] both [] g luco s e [N]

t r anspo r t [N TV] and [] g luco s e [N] ox ida t i on [N]

Ontograbber’s output ontosemantics:

• (0,0,NP,addition,“addition”)

• (1,1,NP,incubation,“ incubation”)

• (2,2,NP,mixture,“mixture”)

• (3,3,VBD,inhibition,“inhibited”)

• (3,3,VBN,inhibition,“inhibited”)

• (4,4,NP,insulin,“ insulin”)

• (5,5,NP,effect,“effect”)

• (6,6,NP,allimin,“allimin”)

• (7,10,NP,transport
[
pnt: glucose

]
,“glucose transport and glucose oxidation”)

• (7,10,NP,oxidation
[
pnt: glucose

]
,“glucose transport and glucose oxidation”)

The input sentence 29:
�

the g luco s e formed i s then t r anspo r t ed by the g luco s e
c a r r i e r o f the organism

Ontograbber’s tagged sentence:

282

�

the [] g luco s e [N] formed [VBD VBN] i s [IS] then []
t r anspo r t ed [VBD VBN] by [] the [] g luco s e [N] c a r r i e r [N]
o f [] the [] organism [N]

Ontograbber’s output ontosemantics:

• (0,0,NP,glucose,“ glucose”)

• (1,1,VBD,forming,“formed”)

• (1,1,VBN,forming,“formed”)

• (2,3,PSV,transport,“is transported”)

• (4,5,NP,carrier
[
wrt: glucose

]
,“ glucose carrier”)

• (6,6,NP,organism,“ organism”)

The input sentence 30:
�

a sma l l e r auc f o r g luco s e (sma l l e r blood g luco s e
excur s i on a f t e r g luco s e cha l l e ng e) i n d i c a t e s b e t t e r
g luco s e t o l e r an c e

Ontograbber’s tagged sentence:
�

a [] sma l l e r [A] auc [N] f o r [] g luco s e [N] ([] sma l l e r [A]
blood [N] g luco s e [N] excur s i on [N] a f t e r [] g luco s e [N]
cha l l e ng e [N]) [] i n d i c a t e s [TV] b e t t e r [] g luco s e [N]
t o l e r an c e [N]

Ontograbber’s output ontosemantics:

• (0,0,A,smaller,“smaller”)

• (1,1,NP,auc,“auc”)

• (2,2,NP,glucose,“glucose”)

283

• (3,3,A,smaller,“smaller”)

• (4,6,NP,excursion
[
pnt: glucose

[
src: blood

]]
,“blood glucose excursion”)

• (4,6,NP,excursion

[
loc: blood
pnt: glucose

]

,“blood glucose excursion”)

• (6,7,NP,excursion
[
pnt: glucose

]
,“glucose excursion”)

• (8,8,NP,challenge,“challenge”)

• (9,9,TV,indication,“indicates”)

• (10,11,NP,tolerance
[
pnt: glucose

]
,“glucose tolerance”)

The input sentence 31:
�

gene ra l ca spa s e s i n h i b i t o r (z−asp−ch2−dcb) i n h i b i t e d
c e l l death

Ontograbber’s tagged sentence:
�

gene ra l [] c a spa s e s [N] i n h i b i t o r [N] ([] z−asp−ch2−dcb [])
[] i n h i b i t e d [VBD VBN] c e l l [N] death [N]

Ontograbber’s output ontosemantics:

• (0,0,NP,caspase,“caspases”)

• (1,1,NP,inhibitor,“inhibitor”)

• (2,4,NP,death

[
loc: cell
pntof: inhibition

]

,“inhibited cell death”)

The input sentence 32:
�

g luco s e t o l e r an c e tends to p r o g r e s s i v e l y d e c l i n e with age

284

Ontograbber’s tagged sentence:
�

g luco s e [N] t o l e r an c e [N] tends [] to [] p r o g r e s s i v e l y []
d e c l i n e [TV] with [] age [N]

Ontograbber’s output ontosemantics:

• (0,1,NP,tolerance
[
pnt: glucose

]
,“glucose tolerance”)

• (2,2,TV,decline,“decline”)

• (3,3,NP,age,“age”)

The input sentence 33:
�

g luco s e − dependent i n s u l i n o t r o p i c po lypept ide (g ip)
po t en t i a t e s g luco s e − induced i n s u l i n s e c r e t i o n

Ontograbber’s tagged sentence:
�

g luco s e [N] − [] dependent [A] i n s u l i n o t r o p i c [A] po lypept ide
[N] ([] g ip []) [] p o t en t i a t e s [TV] g luco s e [N] − []
induced [VBD VBN] i n s u l i n [N] s e c r e t i o n [N]

Ontograbber’s output ontosemantics:

• (0,0,NP,glucose,“glucose”)

• (1,1,A,dependent,“dependent”)

• (2,8,S,potentiation





agt: polypeptide
[
chr: insulinotropic

]

pnt: secretion

[
pnt: insulin
pntof: induction

[
agt: glucose

]

]



,“insulinotropic

polypeptide potentiates glucose - induced insulin secretion”)

The input sentence 34:

285

�

background i n s u l i n s t imu l a t e s g luco s e t r anspo r t in muscle
and f a t

Ontograbber’s tagged sentence:
�

background [N] i n s u l i n [N] s t imu l a t e s [TV] g luco s e [N]
t r anspo r t [N TV] in [] muscle [N] and [] f a t [N]

Ontograbber’s output ontosemantics:

• (0,0,NP,background,“background”)

• (1,6,S,stimulation

[
agt: insulin
pnt: fat

]

,“insulin stimulates glucose transport in mus-

cle and fat”)

• (1,6,S,stimulation





agt: insulin

pnt: transport

[
loc: fat
pnt: glucose

]



,“insulin stimulates glucose

transport in muscle and fat”)

• (1,6,S,stimulation





agt: insulin

pnt: transport

[
loc: muscle
pnt: glucose

]



,“insulin stimulates glucose

transport in muscle and fat”)

• (1,6,S,stimulation





agt: insulin
loc: muscle
pnt: transport

[
pnt: glucose

]



,“insulin stimulates glucose

transport in muscle and fat”)

• (1,6,S,stimulation





agt: insulin
loc: fat
pnt: transport

[
pnt: glucose

]



,“insulin stimulates glucose

transport in muscle and fat”)

The input sentence 35:

286

�

most o f the compounds which i n h i b i t t y r o s i n e
phosphory la t ion o f the i n s u l i n r e c epto r a l s o i n h i b i t e d
g luco s e uptake in the same c e l l s

Ontograbber’s tagged sentence:
�

most [] o f [] the [] compounds [N] which [] i n h i b i t [TV]
ty r o s i n e [N] phosphory la t ion [N] o f [] the [] i n s u l i n [N]
r e c epto r [N] a l s o [] i n h i b i t e d [VBD VBN] g luco s e [N]
uptake [N] in [] the [] same [] c e l l s [N]

Ontograbber’s output ontosemantics:

• (0,0,NP,compound,“ compounds”)

• (1,1,TV,inhibition,“inhibit”)

• (2,2,NP,tyrosine,“tyrosine”)

• (3,3,NP,phosphorylation,“phosphorylation”)

• (4,4,NP,insulin,“ insulin”)

• (5,5,NP,receptor,“receptor”)

• (6,8,NP,uptake

[
pnt: glucose
pntof: inhibition

]

,“inhibited glucose uptake”)

• (9,9,NP,cell,“cells”)

The input sentence 36:
�

i n h i b i t i o n o f z c y t o r 1 7 l i g a c t i v i t y could thus i n h i b i t
growth o f such c e l l s

Ontograbber’s tagged sentence:
�

i n h i b i t i o n [N] o f [] z c y t o r 1 7 l i g [N] a c t i v i t y [N] could []
thus [] i n h i b i t [TV] growth [N] o f [] such [] c e l l s [N]

287

Ontograbber’s output ontosemantics:

• (0,0,NP,inhibition,“inhibition”)

• (1,1,NP,zcytor17lig,“zcytor17lig”)

• (2,2,NP,activity,“activity”)

• (3,4,VP,inhibition
[
pnt: growth

]
,“inhibit growth”)

• (5,5,NP,cell,“cells”)

The input sentence 37:
�

the t r anspo r t o f g luco s e a c r o s s a c e l l u l a r membrane i s
s t imulated by i n s u l i n b ind ing to i t s i n s u l i n r e c epto r
as part o f an i n s u l i n s i g n a l l i n g pathway

Ontograbber’s tagged sentence:
�

the [] t r anspo r t [N TV] o f [] g luco s e [N] a c r o s s [] a []
c e l l u l a r [A] membrane [N] i s [IS] s t imulated [VBD VBN] by
[] i n s u l i n [N] b ind ing [N VBG] to [] i t s [] i n s u l i n [N]
r e c epto r [N] as [] part [] o f [] an [] i n s u l i n [N]
s i g n a l l i n g [] pathway [N]

Ontograbber’s output ontosemantics:

• (0,1,NP,transport
[
pnt: glucose

]
,“ transport of glucose”)

• (2,2,A,cellular,“cellular”)

• (3,6,PSV,stimulation

[
agt: insulin
pnt: membrane

]

,“membrane is stimulated by insulin”)

• (7,7,VBG,binding,“binding”)

• (7,7,NP,binding,“binding”)

288

• (8,8,NP,insulin,“ insulin”)

• (9,9,NP,receptor,“receptor”)

• (10,10,NP,insulin,“ insulin”)

• (11,11,NP,pathway,“pathway”)

289

290

Bibliography

[1] Troels Andreasen and Jørgen Fischer Nilsson. Grammatical specification
of domain ontologies. Data Knowl. Eng., 48(2):221–230, 2004.

[2] P. Andrews. Classical type theory, 2001. Peter Andrews. Classical type
theory. In Alan Robinson and Andrei Voronkov, editors, Handbook of Au-
tomated Reasoning,volume 2, chapter 15, pages 965-1007. North-Holland,
2001. 43.

[3] Peter B. Andrews. An introduction to mathematical logic and type theory:
to truth through proof. Academic Press Professional, Inc., San Diego, CA,
USA, 1986.

[4] John Aycock and Nigel Horspool. Practical earley parsing, 2002.

[5] F. Baader and W. Nutt. Basic description logics, 2003.

[6] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The berkeley
framenet project. In Proceedings of the 17th international conference on
Computational linguistics, pages 86–90, Morristown, NJ, USA, 1998. Asso-
ciation for Computational Linguistics.

[7] Collin F. Baker and Hiroaki Sato. The framenet data and software. In ACL
’03: Proceedings of the 41st Annual Meeting on Association for Computa-
tional Linguistics, pages 161–164, Morristown, NJ, USA, 2003. Association
for Computational Linguistics.

[8] M. Ben-Ari. Mathematical logic for computer science. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1993.

[9] Gilad Ben-Avi and Nissim Francez. Categorial grammar with ontology-
refined types. In Proceedings of CG04, 2004.

291

[10] Patrick Blackburn and Johan Bos. Representation and Inference for Nat-
ural Language. A First Course in Computational Semantics. CSLI Publi-
cations, 2005.

[11] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. Computer Networks and ISDN Systems, 30(1–7):107–
117, 1998.

[12] Chris Brink, Katarina Britz, and Renate A. Schmidt. Peirce algebras. For-
mal Aspects of Computing, 6(3):339–358, April 1994. Also available as
Research Report MPI-I-92-229, Max-Planck-Institut fr Informatik, Saar-
brcken, Germany (July 1992), and as Research Report RR 140, Depart-
ment of Mathematics, University of Cape Town, Cape Town, South Africa
(August 1992). An extended abstract appears in Nivat, M., Rattray, C.,
Rus, T. and Scollo, G. (eds) , Algebraic Methodology and Software Tech-
nology (AMAST’93): Proceedings of the 3rd International Conference on
Algebraic Methodology and Software Technology. Workshops in Computing
Series, Springer-Verlag, London, 165-168 (1994).

[13] Bob Carpenter. Type-logical semantics. MIT Press, Cambridge, MA, USA,
1998.

[14] Wikipedia contributors. Alexius meinong.
http://en.wikipedia.org/wiki/Alexius Meinong.

[15] Wikipedia contributors. Frame semantics.
http://en.wikipedia.org/wiki/Frame semantics (linguistics).

[16] Andrew Dolbey, Michael Ellsworth, and Jan Scheffczyk. Bioframenet: A
domain-specific framenet extension with links to biomedical ontologies. In
Olivier Bodenreider, editor, KR-MED, volume 222 of CEUR Workshop
Proceedings. CEUR-WS.org, 2006.

[17] Chris Fox. The Ontology of Language: properties, individuals and discourse.
Lecture Notes of The Center for the Study of Language and Information
(CSLI). The Center for the Study of Language and Information (CSLI),
2000.

[18] L. T. F. Gamut. Logic, Language and Meaning, volume 1. University of
Chicago Press, 1991.

292

[19] Peter Gärdenfors. Conceptual Spaces: The Geometry of Thought. The MIT
Press, Cambridge, Massachusetts, 2000.

[20] Peter Gerstl and Simone Pribbeenow. Midwinters, end games, and body
parts: a classification of part–whole relation. In Human-Computer Studies,
pages 865–889, 1995.

[21] Peter Gerstl and Simone Pribbenow. Midwinters, end games, and body
parts: a classification of part-whole relations. Int. J. Hum.-Comput. Stud.,
43(5-6):865–889, 1995.

[22] Roxana Girju, Dan Moldovan, Marta Tatu, and Daniel Antohe. On the
semantics of noun compounds. Comput. Speech Lang., 19(4):479–496, 2005.

[23] Asuncion Gomez-Perez, Oscar Corcho, and Mariano Fernandez-Lopez. On-
tological Engineering : with examples from the areas of Knowledge Man-
agement, e-Commerce and the Semantic Web. First Edition (Advanced In-
formation and Knowledge Processing). Springer, July 2004.

[24] P. A. Jensen and J. F. Nilsson. Ontology-based semantics for prepositions.
In Syntax and Semantics of Prepositions, Text, Speech and Language Tech-
nology, Vol. 29. Springer, 2006.

[25] Daniel Jurafsky and James H. Martin. Speech and Language Processing
(2nd Edition) (Prentice Hall Series in Artificial Intelligence). Prentice
Hall, 2 edition, 2008.

[26] Edward L. Keenan and Leonard M. Faltz. Boolean Semantics for Natural
Language. Reidel., Dordrecht, 1986.

[27] Douglas Lenat. Cyc: A large-scale investment in knowledge infrastructure.
Communications of the ACM, 38(11):33–38, November 1995.

[28] Godehard Link. Algebraic semantics for natural language: some philosophy,
some application. Int. J. Hum.-Comput. Stud., 43(5-6):765–784, 1995.

[29] Dave MacQueen. The standard ml of new jersey website.
http://www.smlnj.org/index.html.

[30] Matt McGee. searchengineland.com. http://searchengineland.com/by-the-
numbers-twitter-vs-facebook-vs-google-buzz-36709.

293

[31] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, Cambridge, MA, USA, 1990.

[32] J. F. Nilsson. Ontological constitutions for classes and properties. In
P. Øhrstrøm H. Schaerfe, P. Hitzler, editor, 14th Int. Conf. on Concep-
tual Structures, ICCS 2006, Lecture Notes in Artificial Intelligence LNAI
4068. Springer, 2006.

[33] Sergei Nirenburg and Victor Raskin. Ontological Semantics. Language,
Speech, and Communication. MIT Press, Cambridge, Mass., 2004.

[34] R. T. Oehrle, E. Bach, and D. Wheeler. Categorial Grammars and Natural
Language Structures. Reidel, Dordrecht, 1988.

[35] F. Pereira and S. Shieber. Prolog and natural-language analysis. Stanford
: Center for the Study of Language and Information, 1987.

[36] Benjamin C. Pierce. Types and programming languages. MIT Press, Cam-
bridge, MA, USA, 2002.

[37] The Mercury Project. The mercury project benchmarks.
http://www.mercury.cs.mu.oz.au/information/benchmarks.html.

[38] Jørgen Fischer Nilsson and Nikolaj Oldager. Introduction to orders and
lattices. 2002.

[39] Josef Ruppenhofer, Michael Ellsworth, Miriam R. L. Petruck, Christo-
pher R. Johnson, and Jan Scheffczyk. FrameNet II: Extended theory and
practice. Technical report, ICSI, 2005.

[40] Sag, T. Wasow, and E. Bender. Syntactic Theory: a formal introduction,
Second Edition. 2003.

[41] B Smith and C Rosse. The role of foundational relations in the alignment of
biomedical ontologies. In MEDINFO 2004. Proceedings of the 11th World
Congress on Medical Informatics; 2004 Sep 7-11. IOS Press, 2004.

[42] Barry Smith. Beyond concepts: Ontology as reality representation.

[43] Holger Stenzhorn. Basic formal ontology website. http://www.ifomis.uni-
saarland.de/bfo/.

[44] Author unknown. The mercury project introduction.
http://www.cs.mu.oz.au/research/mercury/.

294

[45] Author unknown. Obo foundry website. http://obofoundry.org/.

[46] Jørgen Villadsen. Nabla: A Linguistic System based on Type Theory. Lit,
2010.

[47] Christopher A. Welty and David A. Ferrucci. What’s in an instance?

[48] Dominic Widdows. Geometry and Meaning. CLSI Publications, Stanford,
CA, USA, 2004.

[49] Mauhab Zareh. Framenet frequently asked questions.
http://framenet.icsi.berkeley.edu/.

295

