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Abstract

We present the mathematical foundation of a fluid animation method for unstructured meshes. Key contribu-
tions not previously treated are the extension to include diffusion forces and higher order terms of non-linear
force approximations. In our discretization we apply a fractional step method to be able to handle advection
in a numerically simple Lagrangian approach. Following this a finite element method is used for the remain-
ing terms of the fractional step method. The key to deriving a discretization for the diffusion forces lies in
restating the momentum equations in terms of a Newtonian stress tensor. Rather than applying a straight-
forward temporal finite difference method followed by a projection method to enforce incompressibility as
done in the stable fluids method, the last step of the fractional step method is rewritten as an optimization
problem to make it easy to incorporate non-linear force terms such as surface tension.

Keywords: Computational Fluid Dynamics, Unstructured Meshes, Finite Element Method, Optimization-
based Fluid Animation, Diffusion Forces, Deformable Simplicial Complexes.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.5]: Physically-
based modeling—Computer Graphics [1.3.7]: Animation—Mathematics of Computing [G.1.6]: Non-

linear programming—

1. Introduction

The simulation of liquid surfaces is highly dependent on
accurate treatment of surface tension forces and thus
on the ability to track the free surface as it develops.
This paper presents the foundation of a fluid anima-
tion method that can deal with such surface phenom-
ena. This work applies to fluid dynamics in a finite ele-
ment method type simulation where the liquid and vac-
uum (other phase) is represented as a simplicial com-
plex where each simplex contains either one phase or
the other but not both. Thus, the free surface is given
as the subcomplex of faces separating the two phases.

The deformable simplicial complexes (DSC) method
is an interface tracking method where the domain is
represented as an unstructured simplicial complex (tri-
angles in 2D, tetrahedra in 3D). Each simplex must be
completely on one side of the interface. Thus, the in-
terface itself is precisely the faces (line segments in 2D,
triangles in 3D) separating interior from exterior. Since
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DSC uses an unstructured grid as its underlying repre-
sentation, we can use it in an optimization-based fluid
animation method for unstructured meshes [MBE*10]
something which originates from ideas of the varia-
tional fluid method [BBB0O7, BB08]. The difference is
that our work takes a rigorous finite element method
approach and makes a connection to an optimization
problem through first order optimality conditions. A
2D fluid animation example is shown in Figure 1. The
strength of the optimization-based reformulation is the
wealth of optimization methods that can be applied and
the performance—quality tradeoff one obtains through
direct control of the stopping criteria. For instance in
all our examples volume loss is in the order of 0.01%.

In a simulation loop one specifies the displacement
field as input to the DSC method which then will up-
date the mesh connectivity and vertex positions. Upon
completion the fluid solver can query the new mesh
state of the simulation. The DSC method finds the
new state using an iterative relaxation scheme that
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Figure 1: A 2D optimization-based fluid animation using deformable simplicial complexes. Observe that ambient space
(blue) and fluid domain (yellow) are both tessellated and the fluid surface are accurately tracked. Notice how the tessel-
lation changes as simulation progress and that volume loss are kept at a minimum.

continues to iterative over all mesh elements one-by-
one and make local adjustments to improve both tes-
sellation as well as numerical conditioning. We refer
to [KBAE09, Mis10, MBE*10] for all meshing details.

One of the major benefits of the optimization-based
fluid animation method is the direct way in which sur-
face tension forces can be accounted for. In this paper,
we derive the diffusion term for the fluid animation
method. The main result is given by the modified opti-
mization problem that minimize the objective function

%ﬁT (Adi+b) &)

subject to constraints that enforce incompressibility.
Here u is the unknown velocity field of the fluid that we
wish to find. As we will show the b vector models the
result of the advection whereas A contains inertia and
diffusion force terms. In particular we will show that A
is a symmetric positive definite block matrix that can be
written as A = M + ArD where M is a mass matrix and
D is a diffusion matrix and At is the time step. The term
ArD accounts for the major contribution of this work.

1.1. Our Contributions

The focus in this paper lies on the mathematical for-
mulation for the finite element method that forms the
foundation for the fluid animation method. In this con-
text, we analyze the problem of solving the equations of
fluid dynamics and derive the formulas for a numerical
scheme. The present work extends that of [MBE*10].
In particular, we make the following contributions:

e Include diffusion (ie. viscosity) in the scheme allow-
ing for a wider range of types of fluid.

e Derive the finite element method equations from the
continuous fluid flow equations.

e Analyze the optimization process which arises in the
second part of the time step.

In Section 2 we cover previous work on fluid anima-
tion with focus on unstructured meshes. Following this
we present the mathematical model for incompressible
flows in Section 3. We present full details of the dis-
cretization process in Section 4. Finally, we show 3D ex-
amples in Section 5 before summarizing the key math-
ematical points of our derivations in Section 6.

2. Previous Work about Fluid Animation on
Unstructured Meshes

Many works are based on regular grids and we refer to
[FM96,FM97, Sta99,FF01,FSJ01,BMFO07,Bri08,BBB10]
for details. In comparison with most previous work
our work focusses on unstructured meshes. The work
in computer graphics on fluid solvers based on un-
structured meshes is sparse. Early work used static un-
structured meshes [FOKO5]. Dynamic meshes where
the deformation is limited to preserve mesh quality
where introduced in [FOKGO5]. Local topological oper-
ations have been explored in [MBE*10, WRK*10]. Re-
meshing using visual clues to generate a high resolution
mesh in visual important regions have also been ex-
plored [KFCOO06] and variational meshing [BWHTO7].
Other re-meshing approaches are based on extraction
of the free surface [CFL*07] or subdivision of elongated
elements [WTO08].

Solid boundaries and two-way coupling have been
touched upon [FOK05,KFCOO06]. The preferred method
for dealing with advection has been the semi-
Lagrangian advection method [FOKO5] and its gener-
alization to deforming meshes [FOKGO5] which have
been applied in many works [KFCO06, CGFOO6,
CFL*07,WBOLO07].

The finite volume method is a popular choice
for unstructured meshes [FOKO05, FOKGO5, KFCOQ06,
ETK*07, WBOL07]. The finite element method have
been used in [BWHTO07, WT08, WRK*10] for plastic
and elastic objects. However, its application for fluids
is sparse [MBE*10].
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Many schemes are based on staggered grid layouts
[FOK05,FOKGO5,ETK*07,WBOLO7]. Here the face cen-
ters often store the normal velocities and volume cen-
ters store pressure values. These schemes often suffer
from the problem of having to reconstruct the full ve-
locity field to deal with advection and diffusion.

In summary past work is based on staggered meshes
using a face centered velocity grid layout. Most work on
unstructured meshes deal with free surfaces using con-
touring and complete re-meshing. Deforming meshes
has been considered to control visual quality but in a
deformation rate limited manner. We use a moving and
deforming tetrahedral mesh and we store the full ve-
locity vector at the vertices. Our approach follows the
physical simulation and has no limitations. Further, our
work uses a finite element method for fluid simulation
whereas previous work on fluid simulation on unstruc-
tured meshes mostly use finite volume methods. Our
work currently does not address two-way coupling.

3. The Mathematical Model of Incompressible
Fluids

We have a volumetric domain V C R containing a fluid
of volume Vg C V, solids Vioiq € V and the remain-
ing non-fluid and non-solid part V;; C V. Here we as-
sume V,;; to be vacuum as we do not have two phase
flows. The surface boundary of the fluid are given by
0Viuia and can be divided into two disjoint parts, one
being the contact at solid walls dV1qa = Viuid N Vsolid
and the other being the free surface between fluid and
air 0Vgree = Viiuid N Vair-

The motion of a Newtonian fluid is given by the
Navier-Stokes equation,

pi=—(u-V)u—Vp+uViu+f,  x€Viuq (2

where p is the mass density, u is the unknown velocity
field, p is the pressure field, u is the dynamic viscosity
coefficient, x is the spatial position and f is a force term
including external forces like gravity and surface ten-
sion etc.. Assuming a constant mass density then mass
conservation given by the continuity equation models
incompressibility of the fluid,

V-u=0, X € Viuid- (©))]

If we did not assume constant mass density then we
would need a constitutive law relating pressure field
and mass density field. The ideal gas law is such an
example.

Further, we specify the boundary conditions for the
fluid model. The surface tension forces act to minimize
the fluid surface and may be included in our model
through the force term f. Thus, one may define the sur-
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face potential energy of the whole fluid surface as
U=1A, (€))]

where A is the area of the fluid surface. The surface
tension force is then given as,

—VU(X) = —’YVA(X), X € aVﬂuid, (5

At solid walls we have,
u-n=0, for X € OVylid s (6a)
Ap =0, for X € BVSOHd, (6b)

These equations state that the fluid and solid veloci-
ties must be the same in the normal direction and that
the difference in the pressure field Ap is zero across the
solid boundary. At the free surface of the fluid we have
the boundary conditions

p=0, for
Au=0, for

X € Vair, (7a)
X € 0WVee- (7b)

The first equation states that pressure in vacuum is
zero. The second equation is a slightly pseudo physi-
cal condition. Because we only consider single phase
flow then the air region of our simulation is vacuum.
Thus, no matter is present in the air region and it can
be argued what value the velocity of empty space has.

We have now stated our idealized model of the fluid
motion problem and may move on to show how we
discretize our model. This process includes four in-
gredients, fractional step method, semi-Lagrangian im-
plicit time integration, finite element method, and con-
strained optimization.

4. The Optimization-based Fluid Animation Method

We will now discretize the mathematical model into a
numerical scheme. The finite element method is devel-
oped in Section 4.1, time discretization is done in Sec-
tion 4.2 and finally the optimization-based reformula-
tion is detailed in Section 4.3.

4.1. Finite Element Discretization

We are given a tetrahedral mesh with N vertices and K
elements. We use a staggered grid layout where fluid
velocities @i; € R? are stored at the vertices x; € R? and
pressure values p; € R are stored at the tetrahedra cen-
ters. Using the shape functions ¢;(x) : R* — R we may
write an approximation @ to the true velocity u(x) at
any given point x as

u(x) = a(x) = Zc{)i(x)ﬁi. ®

Here the hat-notation is used to distinguish between
true velocities and the discrete velocities. We will omit
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a method for interpolating the pressure field values be-
cause as we show later the pressure field ends up acting
as Lagrange multipliers that enforce the discrete incom-
pressibility constraint so we do not need any interpolat-
ing functionality for the pressure field.

The advection term causes the non-linear behavior
of the model. However, it is easy to solve using a La-
grangian representation. Therefore, the time deriva-
tives of the equation of motion are solved using a frac-
tional step method [FP02], where the equation of mo-
tion is split into a first step where advection is dealt
with and a second step where the remaining force terms
are handled. The first step of the method is handled by
using a generalized semi-Lagrangian implicit time inte-
gration method [Sta99, KFCOO06]. The idea is to think
of the vertices of the mesh as particles and trace their
motion back in time. The past velocity values are then
copied to the current location to account for the advec-
tion. That is given the initial discrete velocity field @}
then the advection of the velocity field is given by

i) ﬁ’(x;fm) ;x?iAt € Viuid
W = =9, t—At t—At ’ )
W(Px;Y)) x; ¢ Viuid
where
XA = x!— Ardl (10)
and P(x;~")) is the projection of the point x;~*' onto

the closest point on the fluid volume Vp,;;4. As an alter-
native one could use an explicit Lagrangian approach
moving vertices forward in time according to the cur-
rent velocity while the vertices keep their velocities.
This has the advantage that the DSC method can han-
dle the advection while tracking the fluid surface. One
specifies the current velocity field multiplied by the
time step as the displacement field for the DSC method.
This is termed a co-moving mesh in computational fluid
dynamics [FP02] and has the benefit that the advec-
tion term can be dropped. The explicit approach re-
stricts the time step size as a rule of thumb we have
observed that time step should be chosen such that the
maximum displacement for DSC is proportional to the
average edge length in the initial mesh. The implicit ap-
proach allows for large time step sizes but suffers from
more numerical dissipation.

Finally the second step of the fractional step method
is reformulated using a finite element method dis-
cretization [BW0O, ZT00]. We will start by restating the
momentum equation of the Navier-Stokes equations in
an alternative equivalent form,

Du
pE—VT—H‘, 1D

where 2t = %—‘; + (u- V)u is the full derivative and T is

the Newtonian fluid stress tensor given as,
T:—pI3X3+u(Vu+VuT), 12)

where I3 is the 3 x 3 identity matrix. Observe this is
by definition a symmetric stress tensor. Since the first
step was dealt with using the semi-Lagrangian implicit
time integration what remains to be solved in the sec-
ond step is

p%—‘t‘:v-TJrf. (13)

Next we multiply the above partial differential equation

by an admissible test function w(") and take the volume
integral over the fluid volume V4,

/ pr%—udV— w! (V-T)av
Vituid t Vatuid (14)
— [ w'tav =o.
Vaid
We will apply a Galerkin method which means that the
test function is written in terms of the shape functions
we defined in (8),

w= Z(])i(x)\?v,-. (15)

In the first term of the strong form formulation (14) we
substitute the interpolation formular given by the shape
functions in (8) and the test function in (15),

Py = pr%—l;dM (16a)

Viuia
T 90,
= i i0idV | =—. 16b
2L (/v pos0 ) ar (165
Similar the third term gives

P = / wltdv, (17a)
Vi

luid
vy el A
—;;WJ ( /V . ¢,¢de> i (17b)

This term gives the body forces which is usually gravity.
The stress tensor term is rewritten into a weak form
using the symmetry of the stress tensor and the identity
V- (Tw) = (V-T)-w+T: Vw (9,

/ w! (V-T)dV =
J Viid (18)
V- (Tw)dV —

Viiuid J Viuid

T:VwdV,

and using Gauss divergence theorem we rewrite the

T In our case w can have any arbitrary value as long as it is
zero on the boundary and continuous differentiable on the do-
main

! The double contraction between two second order tensors
Aand BisdefinedasA:B=Y;Y,;A;B;;

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2011)
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first term on the right hand side into a surface integral,

/ wl (V. -T)av =
Viuid (19)
/ wTnas— [ T:Vwav.
Viuid Viuid

The boundary integral term favﬂmd TndS are the integral
of prescribed surface traction and are given by appro-
priate boundary conditions. In our model no such sur-
face traction is used and the term vanishes. Inserting
the Galerkin type test function yields

Pr:/VT: (Zv(q),wj)) av. (20a)

Next we use V((])jﬁ'j) =Ww;®Vo; (%) and that T: W; ®
Vo; = \?vervq)j SO

=Y (w,f / TV jdv> 1)
- 1%
J
which we split into normal and shear stress terms

Ppy=), (WJT' /V _pI3><3V¢jdV> , (22a)

J

=3 (W/T/ H(ﬁi®v¢i+v¢i®ﬁi)v¢jd\/) .
Joi Viiuid

(22b)
A last rewrite gives
(6;®Vo;+V; @) Vo, =
T ™ . 23)
(VoI V1.3 + Vorve] ) a
so the shear stress term becomes
%:ZZCﬂ/ 1 (V0! Vo T3
70 Viid (24)
+ vq)ivq)_,f) ﬁidv> .
Our weak form formulation now reads
Po+P+Py+Pp=0, (25)

and it must hold for all values of W; which means we
end up with the ordinary differential equation,
Ji

M —Bf+Pp+Dii =0, (26)

§ The tensor product ® is defined as (a®b)x = (b-x)a given
the three vectors a, b and x.
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where
= AT 71T
= [a] ay] (27a)
P=[ff i, (27b)
= [x] <& 27¢)
p=[p - k], 27d)
and
M;j =1I3x3 / po;d:dv, (28a)
Viuid
Bij=Iz3x3 0;0:dV, (28b)
Viuid

D, = /V " (VoI Vojlsxa + V0] )av.  (280)

These equations reveal the block and symmetric prop-
erties of the matrices. One may apply a lumped matrix
approach in which case M and B simplify to diagonal
block matrices. Observe, that the shape functions are
linear polynomials when using linear shape functions
(ie. barycentric coordinates). In this particular case sim-
ple closed form solutions exist for the blocks M;; and
B;;. Further, in this case the block D;; becomes very sim-
ple as the spatial gradients of the shape functions are
constant. The number of nonzeros in A depends on the
mesh connectivity. A block row corresponds to one node
in the mesh and the number of non-zero column blocks
is equal to the number of edges incident to that node.
In general no bound on the number of neighbors of a
node can be given. However, in practice the maximum
number of neighbors is observed to be bounded by a
constant c. Therefore the number of nonzero blocks in
any row is less than or equal ¢ and the number of nonze-
ros scale as O(cN). In practice ¢ < N so matrix vector
products involving A can be done in O(N).

The pressure term derivation is not quite complete
yet. However, when using linear shape functions then
the deformation gradient is constant over a tetrahedral
element. This means the normal stress tensor is con-
stant per tetrahedral element. From this it follows that
the pressure values are constant over the tetrahedral
elements and we have

k
P = /w Vo,dV = —V¥Vo;, (29)

where V¥ is the volume of the k™ tetrahedron. The last
equality follows only if linear shape functions are used.
The final step in the finite element discretization is to
process the continuity equation that is

0=/ (V-uwav. (30)

Viiuid
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Substitution of the shape function interpolation yields

0=Y Vo; 0;dV, (31a)
7V Viid
— T v )
,sz: (/ka" dv> o, (31b)
=Pla. (310

What remains to be considered is the final time dis-
cretization of the resulting ordinary differential equa-
tions. We will embark on this in the following section.

4.2. Time Discretization

Using the finite element method we have derived the
ordinary differential equations,

Ju

Mat

+Pp+Dii=F, (32)
Pla=0, (33)

where we introduced the notation F = Bf. Using the
result @2 from the first fractional step as initial value
we have an initial value problem for our second step.
We may now apply finite differences to obtain the first
order approximation,

Ji al A ﬁr+%

o At (34)

This is an advantage from a computational cost view
point. Choosing an implicit scheme for stability yields
the equations,

o=

(M+AD) & ™ —Md' "2 —AF—APp=0, (35a)

P ot =0. (35b)

Defining A = (M +ArD), b= —Mii' "2 — ArF, and p’ =
Arp we have

AT b -Pp =0, (36a)
Pl = . (36b)

These equations conclude what could be considered the
“classical” finite element method for the fluid scheme
we have presented. If no external force terms or only
simple constant force terms are needed in the simula-
tion then one does not need to develop the numerical
method further. However, in some cases one may wish
to add complex non-linear force types to the model.
Surface tension is such an example. In the next section
we will briefly discuss how all such force types can be
dealt with by recasting the above equations as the first
order optimality conditions of an optimization problem.

4.3. The Optimization-based Reformulation

Consider the optimization problem
i = argmjn%ﬁT (Al +b) 37
u

subject to
Pla=0. (38)

The first order optimality conditions (the Karush-
Kuhn-Tucker (KKT) conditions) of this convex con-
strained quadratic minimization problem result in the
KKT system [NW99]:

AR* +b—PL* =0, (39a)
Pli* = 0. (39b)

By comparison with our finite difference approximation
equations we observe that ii* = i ™ and that A* = Arp.

The optimization problem as it stands give us some
insight into whether there are any solutions for our
discrete fluid simulation problem. From its definition
one observe that A is a block symmetric positive def-
inite matrix. Thus, we have a strict convex quadratic
programming problem subject to linear constraints. In
essence that means constraint qualifications are ful-
filled and that the unconstrained objective has one
unique global minimizer [NW99].

Our current approach for solving the quadratic pro-
gramming problem is to apply a direct method based on
a Shur method and/or factorization. We have not ex-
plored any iterative methods for solving the optimiza-
tion problem because the high accuracy of our direct
approach results in a volume loss in the order of 0.01%
in all our test cases.

Since A~! is non-singular it can be inverted and
the KKT system can be solved efficiently using a Shur
method [NW99, Saa03]. A Shur method results in the
Shur system PTA~'PA* = P'A~'b. This has the ad-
vantage of reducing the number of variables. Observe
the Shur matrix is non-singular if P has full column
rank. Locking may occur for instance near solid bound-
aries or at non-manifold fluid surface points (happens
at droplet collisions). In case of locking P does not
have full column rank and the Shur system becomes
singular. To circumvent this numerical problem we ap-
ply a numerical damping strategy and add a stabiliza-
tion term to the second equation in the KKT system,
P &@* +SA* = 0. Here S is a symmetric block matrix.
In [MBE*10] an area weighted strategy is used that al-
lows S to be interpreted as Laplacian smoothing of the
resulting pressure field and has the property of prov-
able global volume conservation. However, from a nu-
merical viewpoint one may simply use a small valued
positive diagonal matrix.

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2011)
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Currently our implementation uses a sparse Cholesky
factorization for solving the Shur system [DH11]. When
we add second order approximations later we apply the
solver to the full KKT system. However, it should be
noted that the KKT matrix is a sparse symmetric non-
singular matrix and a Conjugate Gradient method may
be considered as a computational effective alternative.
We speculate that one may use a mass-matrix like (us-
ing a block diagonal matrix of M and S) pre-conditioner
for such an iterative scheme. We have not explored this
further as we are content with the current performance
of our direct factorization method.

However, it does not appear as though we have
gained much from restating our time discretized equa-
tions as first order optimality conditions for this op-
timization problem. In fact the optimization problem
seems to have complicated matters. The added benefit
comes when other force contributions are considered
such as the surface tension forces. The surface tension
energy potential should be minimized as much as pos-
sible this suggest we should apply a minimization prob-
lem with the objective

%ﬁT (Adi+b) +U(%). (40)

The problem is that we wish to minimize with respect
to velocity @ and not position %. To get around this we
make a second order Taylor series approximation for
U(X) = U(x' +Aril),

U(X +Ari) = U(X') + ArVU (X )i

+ AP VU ()i “
Observe the approximation is now only a function of
the velocities. When minimizing the above expression
the U(x') term is a constant and can therefore be ig-
nored. Substitution of this simplified second order ap-
proximation leads to a new objective function

Lo [ [ A+242v%0 | i+b+ 2000 (42)
2 —_—— —_——
A’ b’

where we for readability have dropped explicitly writ-
ing the x’ dependency of the U terms. Notice that the
optimization problem is still a strict convex quadratic
problem given by the objective

%ﬁT (A'a+b). (43)

We replaced the position dependent force term with an
implicit second order approximation which will intro-
duce a small amount of discretization error. However,
the added benefit is that we can add complex external
forces to the scheme in a consistent manner without
breaking the discrete divergence free constraint.
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5. Results and Examples

In the 2D water splash in Figure 1 we optimized the De-
launay property as 2D Delaunay meshes have good nu-
merical properties from the finite element method point
of view. In the 3D case we optimize the volume to root
mean square edge length quality measure [PGH94].

The improvement loop in DSC which runs over all
mesh elements continues to iterate either until all ver-
tices have moved to their final positions given by the
specified displacement field or a maximum iteration
count is exceeded. In all our cases the DSC loop stops
after at most 3 iterations (normally, 1 or 2) so we use a
maximum of 5 iterations. In all the test examples shown
we apply the explicit Lagrangian advection method and
we used the sparse Cholesky factorization to solve the
full KKT system. For the experiments in this paper we
also applied lumped matrix approximation due to its
simplicity.

In the examples we used the area weighted damp-
ing matrix S from [MBE*10]. The 8 parameter used for
creating the S matrix was chosen such that the abso-
lute values of the S matrix entries are at least 100 times
smaller than the entries of any other matrices. This has
worked well in practice for our experiments.

The implementation is in C++ and single threaded.
We have done no attempts at optimizing this. The plat-
form used for Figure 2 to 5 is based on 64-bit Intel®
Core® i7 CPU X980 @ 3.33 GHz, 24 GB RAM. Fine
renderings are in the supplementary movies.

Frame computing time depends on the number of
DSC iterations per frame, However, it is only a fraction
of the frame time that is used for DSC. Frame times
without rendering are in the range of 5-18 seconds on
average in the droplets examples shown below, and 60-
80 seconds in the bunny examples shown below.

We have observed that Ar = 0.02 seconds or smaller
seems to work fine for the droplets examples. In all
examples the surface tension values were chosen such
that cos(0) = (Ysa — Ysr)/(Yra) = —0.9 where 6 is the
contact angle, ys4 is the surface tension between solid
and air, Ysr between solid and fluid, and yg, is between
fluid and air.

In Figure 2 a symmetrical collision between two wa-
ter droplets in zero gravity is shown. The surface area
and mesh statistics change a lot during the simulation.
An non-symmetrical droplet collision is shown in Fig-
ure 3. Here the mesh statistics also varies a lot. A water
Stanford bunny is left in a zero gravitational field in
Figure 4 . Figure 5 shows the bunny splashing against a
spherical container. We present detailed measurements
of the droplet collision simulations in Table 1. The ta-
ble reveal that the KKT solving is currently our bot-
tleneck. The results also show that matrices are very
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(@ (b) © @

Figure 2: A 3D optimization-based fluid animation using deformable simplicial complexes. Two water droplets in a
symmetric collision in zero gravity. Observe the paper thin structure that develops and ruptures due to surface tension
forces.

(@ (b) © @

P
() (h)

(e)

Figure 3: A 3D optimization-based fluid animation using deformable simplicial complexes. Two water droplets during a
non-symmetric collision in zero gravity. Observe how the thin water tail after the collision breaks into small droplets

(a) (b) © @ (e

Figure 4: A 3D optimization-based fluid animation using deformable simplicial complexes. The stanford water bunny in
outer space. Observe how surface tension forces pulls the bunny into a near perfect spherical form.
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(a)

(®)

©

(d) (e)

Figure 5: A 3D optimization-based fluid animation using deformable simplicial complexes. The stanford water bunny is

falling under gravity in a spherical container.

Scene Unknowns (#)/Nonzeros of A (%) Fluid Tet./Surface Tri. (#) Volume Loss (%)
Avg. Min. Max. Std. Avg. Min. Max. Std. Avg. Min. Max. Std.
Sym. Droplet 31K /0.002 12K/0.001 67K/0.003 19K/0.001 16K/ 9K 6K/3K 34K/22K 9K/6K 0.008 -0.024 0.358 0.038
Non-Sym. Droplet 14K/0.003 12K/0.002 17K/0.003 1K/0.0003 7K/4K 6K/3K 8K/5K 0.5K/0.6K 0.008 -0.017 0.045 0.005
Scene Total Wall Clock (secs) Advection Step (%) Matrix Assembly (%) KKT Solver (%)
Avg. Min. Max. Std. Avg. Min. Max. Std. Avg. Min. Max. Std. Avg. Min. Max. Std.
Sym. Droplet 18.1 4.8 127.9 13 14.1 4.9 43.7 4 13.5 5.6 35.5 4.3 59 27.1 79.2 11.0
Non-Sym. Droplet 5.9 3.5 11.4 2.0 20.7 9.2 45.9 6.8 14.8 6.2 25.3 5.1 45.4 15.8 75.3 14.2

Table 1: Statistics on performance measurements. All numbers have been rounded up. The platform used is based on

64-bit Intel® CoreTM i5 CPU M520 @ 2.40 GHz, 4GB RAM. Windows 7. Observe that KKT solver takes more than half
the time and the matrices are very sparse even though mesh statistics vary greatly.

sparse throughout simulation and that the DSC itera-
tions done in the advection step only takes a smaller
fraction of the total time.

6. Discussion and Summary

In this paper we derived closed form formulas for the
finite element matrices (28) used by the optimization-
based fluid animation method. In particular we ex-
tended past work to include the diffusion term result-
ing in the diffusion matrix given by (28c). Finally, we
showed how the time discretization of the finite ele-
ment equations were equivalent to a constrained min-
imization problem shown in (37). This reformulation
proved to be particular useful when considering non-
linear force terms as one continues to have a quadratic
programming problem given by the objective in (43).

As demonstrated by our derivations and examples
the fluid animation method in this paper is capa-
ble of handling complex non-linear force terms, the
optimization-based setting makes it easy to set toler-
ances for what the end-user considers as acceptable vol-
ume loss. Although linear elements are applied in our
work, it is clear from derivations how to extend the fi-
nite element method to higher order shape functions
simply by applying quadrature rules to the integrals in
(28). There are limitations to our work:

e The explicit semi-Lagrangian approach for advection

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2011)

causes the time step to be bounded by the average
edge size in the mesh. This is tightly coupled to the
workings of DSC.

e Mixing of fluids is not obvious. It is clear that each

simplex can have only one phase, but we do not
have to have discrete phases. We could have a color
or other continuous property in each simplex and
allow the color of neighboring simplices to influ-
ence each other. However, it raises some difficult
questions. For instance when the connectivity of the
mesh is changed in the DSC method then it is not
obvious what to do. We may also need to directly
model some exchange/mixing of material between
simplices which calls for additional governing equa-
tions in our mathematical model.

e Moving obstacles and non-mixing two phase flows

are not supported. We believe it is not too hard to
extend to include these.

e The optimization-based method needs to assemble

the matrices in each time step as they depend on
the current spatial position of the mesh. This has an
added computational cost compared to matrix-free
methods.

e Real-life computational fluid dynamics applications

is not yet within our grasp. More formal error anal-
ysis and validation are needed. However, this is not
a limitation for computer animation applications as
our examples demonstrate.
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