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ABSTRACT

A numerical viscous/acoustic splitting approach for the calculation of an acoustic field is
applied to study the sound generation by a pair of spinning vortices and by the unsteady
interaction between an inviscid vortex and a finite length flexible boundary. Based on the
unsteady hydrodynamic information from the known incompressible flow field, the perturbed
compressible acoustic terms are calculated and compared with analytical solutions. Results
suggest that the present numerical approach produces results which are in good agreement with
the analytical solutions. The present investigation verifies the applicability of the viscous/
acoustic approach to flow structure-acoustic interaction.

Keywords: computational aeroacoustics; vortex sound; viscous/acoustic approach.

SIMULATIONS NUMÉRIQUES DE PRODUCTION SONORE PAR DES
ÉCOULEMENTS TOURBILLONNAIRES À L’AIDE DE DÉCOMPOSITION

VORTICITE/POTENTIEL

RÉSUMÉ

Une méthode de décomposition des écoulements en composantes acoustiques et vorticelles
est appliquée au problème de la génération sonore pour un couple de deux vortex tournants,
ainsi que le bruit d’interaction entre un vortex idéal et une surface flexible. Les contributions
linéaires acoustiques sont évaluées par comparaison avec la solution analytique connue pour
l’écoulement idéal potentiel incompressible. Le champ sonore résultant est comparé à une
solution analytique. Les résultats sont satisfaisants, et suggèrent des applications possibles pour
les interactions fluides-structures.

Mots-clés : calcul aéroacoustique, son tourbillon, méthode de décomposition des écoulements.
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1. INTRODUCTION

Aeroacoustics, which is the science of noise generation by airflows and its propagation, is a
relatively young discipline compared to other more classical fields of mechanics. Typically in
aeroacoustics, the solutions can be grouped into the frequency-domain solution and the natural
variables (x,t) solution. Within the latter, the different approaches in the analysis can be
categorized into three groups.

The first group makes use of the acoustic analogy. The most renowned acoustic analogy is
due to Lighthill [1]. He rearranged the mass and momentum equations to obtain an
inhomogeneous wave equation which describes the generation and propagation of an acoustic
wave in a medium at rest. Ffowcs Williams and Hawkings [2] generalized the Lighthill’s
acoustic analogy to include the effects of surfaces in arbitrary motions. Powell [3] and Möhring
[4] put forward the vortex sound theory for predicting the sound from two and three-
dimensional compact vortical flows. This group of approach can compute the noise directivity
in an economical way because the flow in the far field is actually uniform. However, all of the
acoustic analogies are based on a variety of assumptions such as compact source and low Mach
number. Acoustically compact sources (including a vortex) mean that the size of the acoustic
source is much smaller than the wavelength of the acoustic waves generated. In fact, in many
practical cases, the latter is comparable to the former. The advantage of numerical simulation is
that this compact source assumption is not needed.

The second approach makes use of direct numerical simulation (DNS), where both the fluid
motion and the generated sound are directly computed by means of the Navier-Stokes
equations. One of the advantages of DNS is its capability to compute the generation and
propagation processes without suffering from restrictions such as low Mach number, high
Reynolds number and compactness of the source region in principle. DNS methods are
specially suited to model broadband noise generated by turbulence. However, it is difficult to
distinguish pressure fluctuations from the sound generated as the acoustic perturbations are
typically at least 10 times weaker than the corresponding hydrodynamic perturbations [5]. Also,
DNS requires tremendous computational resources especially when the flow Mach number is
low and it is difficult to compute propagation over long distances. Therefore, this approach is
preferable for the study of aeroacoustics at a relatively higher Mach number condition [6]. Some
authors neglect the viscosity and flow turbulence and solve the Euler equations for short-time,
high-speed sound-generating phenomena such as shock wave-vortex interaction (for instance,
Inoue and Hatakeyama [7]).

The third approach uses the hydrodynamic/acoustic splitting method which decomposed the
flow field into incompressible hydrodynamic and compressible perturbation equations (for
instance, Hardin and Pope [8]). This splitting method has further been modified by Shen and
Sørensen [9]. Bogey et al. [10] computed the sound radiated by unsteady fluid motions using an
acoustic analogy based on the linear Euler equations forced by aerodynamic source terms. Seo
and Moon [11] revised this hydrodynamic/acoustic splitting method through a consideration of
the perturbed vorticity transport equation. More recently, Ewert and Schröder [12] derived
several source term formulations to allow the acoustic simulation based on incompressible and
compressible flow solutions. This approach does not allow acoustic backscattering into the flow
solution. It makes possible the computation of aeroacoustic noise generation and propagation
in non-uniform unsteady viscous flows in complex domains. This poses substantial advantage
over the first approach. Also, compared with the acoustic analogy theories, the sound strength
is obtained directly in this approach so that both sound radiation and scattering can be
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accounted for simultaneously [6]. On the other hand, the computing cost required is much lower
than that for the DNS solution of the time-dependent subsonic flow field.

The turbulent air flow inside air conditioning ductwork induces pressure fluctuations on the
duct walls, resulting in the vibration of the latter which in turn radiates sound to both the duct
interior and the external environment. Understanding the flow structure-acoustics interaction
therefore is important for improved duct noise control design. Tang et al. [13] developed a
theoretical model to investigate the sound generated by the unsteady interactions between a
vortex and a finite length flexible boundary in an otherwise rigid wall at low Mach numbers. It
is concluded that the time fluctuating volumetric flow rate induced by the flexible boundary
vibration and the vortex acceleration are two major sources of sound.

However, real duct flows are turbulent and analytical solution is hard to find for this kind of
aeroacoustics problem while numerical solution will make it possible to investigate the
turbulence-structure interaction. A turbulence modeling technique can be used to recover the
turbulent activities and therefore provide the hydrodynamic terms needed in the acoustic/viscous
splitting method. The acoustic radiation can then be obtained directly through numerical means.

In this paper, the viscous/acoustic splitting method is applied to calculate the sound
generation by the spinning vortices [14–15] and by the vortex induced flexible wall vibration
[13]. The computed results are compared with the analytical solutions and the performance of
this viscous/acoustic splitting method is examined. The major aim of this paper is to verify the
applicability of the numerical technique to the simplified models of flow noise radiation with
and without a nearby solid structure. It is hoped that the present results will provide clues for
the modeling of more complicated aeroacoustic problems.

2. NUMERICAL PROCEDURES

2.1. General Formulations
According to Shen and Sørensen [5], the compressible solution can be decomposed as:

u~Uzu0, v~Vzv0, p~Pzp0, r~rozr0, ð1Þ

where U, V, P and ro are the background mean flow longitudinal and transverse velocities, fluid
pressure and density respectively. They can be obtained analytically or numerically using low-
order schemes of computational fluid dynamics, while u9, v9, p9 and r9 are corresponding
acoustic disturbances obtained from the numerical solutions using high-order schemes in space
and time to precisely capture the sound pressure.

Substituting the above equations into the compressible Navier-Stokes equations, neglecting
the viscous terms and the higher order perturbations, and subtracting the incompressible
conservation equations, the set of governing equations for the two-dimensional acoustic fields
can be expressed as:

Lr0

Lt
z

Lfi

Lxi

~0

Lfi

Lt
z

L
Lxj

p’dijzfi Ujzu0j

� �
zroUiu

0
j

h i
~0

Lp0

Lt
{c2 Lr0

Lt
~{

LP

Lt
:

ð2Þ

Transactions of the Canadian Society for Mechanical Engineering, Vol. 35, No. 1, 2011 41



where

fi~ru0izr0Ui, ð3Þ

c, the ambient speed of sound, is obtained from the equation c2~cp=r~c Pzp0ð Þ= rozr0ð Þ and
c is the specific heat ratio. Details of the formulation of Eq. (2) are given in the Appendix. It
should be noted that the only acoustic source coming from the incompressible solution is the
instantaneous pressure and the acoustic calculations can thus be started at any time during the
incompressible computation. The initial conditions are

r0~0, u0i~0 and p0~po{P, ð4Þ

where po is the ambient air pressure.

2.2. Numerical Discretization
The acoustic waves are non-dispersive and non-dissipative during their propagation. They are

particularly susceptible to numerical dispersion and dissipation. Numerical dispersion distorts
the phase between various waves and numerical dissipation reduces the gradients in the
solutions [16]. One straightforward way to overcome these problems is to use a very fine grid
together with a standard low-order method. However, this approach is not truly feasible
because of the dramatic increase of the computation time and memory. To accurately resolve
the propagation of acoustic waves, finite difference and time-marching schemes that have low
numerical dissipation and can accurately present the dispersion relation for the inviscid
equations are required [7].

In this study, the forth-order-accurate central-difference compact scheme [17] that has low
dissipation and near spectral representation of the dispersion relationship is chosen for the
numerical approximation of the spatial derivatives in Eq. (2):

1

4
V’i{1zV’iz

1

4
V’iz1~

3

4Dx
Viz1{Vi{1ð Þ, ð5Þ

where V~r0, f1
0, f2

0, p0, and Dx is the grid size. At the boundary of computational domain, a
third-order-accurate compact scheme biased toward the interior nodes is used [17]:

V’1z2V’2~
1

Dx
{

5

2
V1z2V2z

3

2
V3

� �
,

V’nz2V’n{1~
1

Dx
{

5

2
Vnz2Vn{1z

3

2
Vn{2

� � ð6Þ

The centered nondissipative compact scheme is desirable for the computation of linear wave
propagation. However, the inherent lack of numerical dissipation may also result in spurious
numerical oscillations and instability. To overcome its unrestricted growth of spurious
perturbations, the tenth order filter scheme [15] is employed as such scheme does not amplify
any waves, preserves constant functions and completely eliminates the odd-even mode when
uniform meshes are taken.
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If a solution vector is denoted by l, the filtered values l̂l satisfy,

af l̂li{1zl̂lizaf l̂liz1~
XN

n~0

an

2
liznzli{nð Þ, ð7Þ

where af is the filter coefficient and {0:5vaf ƒ0:5. A higher value of af corresponds to a less
dissipative filter and there will be no filtering effect for af ~0:5. In this paper, af ~0:45. The
Nz1 coefficients a0,a1, � � � aN , are functions of af. With a proper choice of the coefficients,
Eq. (7) provides a 2Nth-order formula on a 2Nz1 point stencil. In this study, the tenth order
filtering scheme are employed and the corresponding coefficients of an can be found in Visbal
and Gaitonde [18].

Since the compact schemes near boundaries are not symmetrical and they contain dissipation
factors already, no filtering scheme is needed at the boundary point 0 and IL – 1. At a near-
boundary point, i, the one-sided filter formula is given by

af l̂li{1zl̂lizaf l̂liz1~
X10

n~0

an,iln, i[ 1, � � � 4f g ð8Þ

and

af l̂li{1zl̂lizaf l̂liz1~
X10

n~0

aIL{n,il̂lIL{n, i[ IL{5, � � � IL{1f g ð9Þ

More information about the coefficients of an can be found in Gaitonde and Visbal [19].

The explicit fourth-order Runge-kutta time advancement scheme proposed by Williamson
[20] and implemented by Wilson et al. [21] is adopted in the present study as it gives low
amplitude and phase errors of traveling wave solutions. To simplify the discussion, consider the
following convective wave equation:

LV
Lt

z
LV
Lx

z
LV
Ly

~0: ð10Þ

The equation is advanced from time level n to n+1 in Q sub-stages. The advancement from
sub-stage M to M+1 is defined by

VMz1~VMzbMz1HMDt, ð11Þ

where M51,…,5 is the particular stage number, Dt is the time step, bM is a coefficient that can
be found in Williamson [20] and VM represents the V value at the Mth sub-stage. HM is the sum
of all the right-hand-side terms in Eq. (2). The accumulation from the previous sub-stage or
from the initial conditions at t 5 0 is

HM~
LVM

Lx
z

LVM

Ly
zaMHM{1, ð12Þ
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where aM is another coefficient that can be found in Williamson [20]. The low-storage
requirement is accomplished by continuously overwriting the storage location for the time
derivatives and unknown variables at each sub-stage:

aMHM{1?HM and VMzbMz1HMDt?VMz1 ð13Þ

where R indicates that the storage locations HM-1 and VM are overwritten by HM and VM+1 at
each time step respectively.

2.3. Boundary Conditions
Aeraocoustic problems are usually defined on an infinite or semi-infinite domain. The

numerical solution of all the discrete equations requires truncation of the computational
domain and the imposition of artificial numerical boundary conditions at the truncated domain
boundaries. These artificial boundaries must not only ensure non-reflection of waves, but also
account for the direction of mean flow with respect to the boundary. Non-reflecting
characteristic boundary conditions based on Thompson’s technique [22] are used because they
are straightforward and easy to apply. There is no obvious reflection observed in the present
computations.

For the case of flexible wall discussed later, the vibration amplitude of the flexible boundary
is assumed small and this boundary is modeled as a rigid surface with distributed time varying
normal velocity perturbations [13].

3. ILLUSTRATIVE EXAMPLES

3.1. The Spinning Vortex Pair
The sound generated by a spinning vortex pair has an analytical solution [14] and has been

investigated numerically by Lee and Koo [15]. This serves as a simple validation case of the
present computation code.

The two identical rectilinear vortices, each of a circulation C and are separated by a distance
2ro, undergo co-rotational motions along a circular path with radius ro (Fig. 1). The period of
such motion is T~8p2r2

o

�
C, the angular speed v~C

�
4p2r2

o

� �
and the rotational Mach number

Mr~C=(4proc). The inviscid incompressible flow solution can be expressed in term of a
potential function w(xo, yo) [23]:

w~
C

2p
tan{1 y{yo

x{xo

� �
ztan{1 yzyo

xzxo

� �	 

, ð14Þ

where (xo, yo) is the vortex location. The hydrodynamic velocity and the hydrodynamic pressure
P can be obtained by differentiating Eq. (3) with respect to (x, y) and t respectively:

U~
Lw

Lx
,V~

Lw

Ly
and P~po{ro

L
Lt

w xo,yo,tð Þ{ 1

2
r U2zV 2
� �

: ð15Þ

From the asymptotic expansions by Muller and Obermeier [14], the analytical acoustic
pressure variation produced by a spinning vortex pair at a distance r from the vortex system
centroid, which is (0,0) in this case, is
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p0 rð Þ~ roC
4

64p3r4
oc2

H
(2)
2 krð Þ: ð16Þ

Computations are performed in the domain {20vxv20½ �| {20vyv20½ � for C/(cro) 5 1.0
and Mr 5 0.0796 (and thus k 5 0.1592). The 300|300½ � grids are used. The Vatistas vortex-core
model24 is adopted in order to avoid the singularity at the center of the vortex. At a distance s
from the vortex center, the tangential fluid velocity vh is given by:

vh~
C

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4

czs4
p , ð17Þ

where Rc is the core radius.

Figures 2a and 2b present the calculated acoustic pressure contours for the unfiltered and
filtered solutions respectively at t 5 5 when the waves are still sufficiently far away from the
computational farfield boundaries. A double-spiral pattern of a rotating quadrupole can be
observed. The filter is applied to the conserved variables and sequentially in each coordinate
direction after each sub-iteration of the implicit Runge-Kutta scheme. The results obtained
without a filter show the appearance of high-frequency oscillation and instability as the wave
propagates outward in Fig. 2(a). When the high-order filter is employed, these unwanted
oscillations are completely eliminated. Figure 2c illustrates the acoustic pressure contours at
t 5 20 (filter applied). A comparison of the acoustic pressure profile at this moment along a
radial line from the center to the lower-right corner of the computational domain with the
theoretical result is shown in Fig. 3. Very good agreement has been reached between the
numerical results and the analytical solution.

Fig. 1. The spinning vortex pair. – – – – : Path of vortex motion; N : vortex of circulation C (positive).
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Fig. 2. Rotating quadrupole produced by the spinning vortex pair (a) t 5 5 without filter; (b) t 5 5 with
filter; (c) t 5 20 with filter. ––– : Positive contour; – – – – : negative contour. Contour levels: ¡2.561025;
¡561025; ¡7.561025; ¡161024; ¡1.2561024; ¡1.561024; ¡1.7561024; ¡261024.
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3.2. Vortex Induced Flexible Wall Vibration
Figure 4 illustrates the schematic of the vortex induced flexible wall vibration model, which is

an extract from Tang et al. [13]. A vortex of strength (circulation) C initially located far
upstream of a flexible boundary of length L at a distance d above a rigid plane is considered.
The flexible boundary is at rest initially. The vortex motion creates an unsteady fluid pressure
on this boundary, causing it to vibrate and this vibration eventually gives rise to a fluctuating
velocity field, which affects the motion of the vortex.

As stated in Tang et al. [13], the vibration amplitude g of the flexible boundary is assumed
small compared to the distance from the vortex center to the plane and this boundary is
modeled as a rigid surface with distributed fluctuating velocity v x,tð Þ.

Fig. 3. Radial variation of acoustic pressure along a line making 245u with the x-axis at t 5 20.––– :
Present result; – ? – : analytical solution. [17]

Fig. 4. Schematic of the vortex induced wall vibration model (from Tang et al. [13]).
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The potential function at the position (x, y) in the flow field is a combination of the vortex
potential and the flexible boundary vibration potential13:

w~
C

2p
tan{1 y{yo

x{xo

� �
{tan{1 yzyo

x{xo

� �	 

z

1

p

ðL=2

{L=2

v log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{xvð Þ2z y{gð Þ2

q
dxv, ð18Þ

where (xo, yo) is the time varying vortex position and (xv, g) represents the location of a point on
the flexible boundary. The induced velocity at the vortex position (xo, yo) due to the boundary
vibration, Vi, can be determined using potential theory [25] as

Vi~
x̂x

p

ðL=2

{L=2

v xo{xð Þ
xo{xð Þ2zyo

2
dxz

ŷy

p

ðL=2

{L=2

vyo

xo{xð Þ2zyo
2
dx ð19Þ

where the caret denotes unit vector in the direction indicated. The vortex velocity V, can thus be
approximated as:

V~
C

4pyo

x̂xzVi ð20Þ

The vortex movement path and the movement of the vibrating flexible boundary are obtained
from the results of Tang et al. [13] with an in vacuo wave speed along the flexible boundary
equals twice the initial speed of the vortex and a normalized damping coefficient of unity. The
correspond Mach number of the initial vortex speed M equals 0.05. The vortex is initially
located at (24, 1). Figure 5 illustrates the flight path of the vortex center. The vortex initially
moves parallel to the wall. It then moves transversely towards the flexible wall when it is in the

Fig. 5. Vortex flight path for M 5 0.05 (from Tang et al. [13]).
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proximity of the flexible wall. It resumes its original height afterwards. The initial vortex
velocity is normalized to 1.

As described in the spinning vortex case, the hydrodynamic velocity can be obtained by the
relationship between velocity and the potential function, while the hydrodynamic pressure can
be calculated by using the unsteady Bernoulli’s equation. The induced longitudinal and
transverse velocities at a position (x, y) due to the boundary vibration are respectively:

Uflex~
1

p

ðL=2

{L=2

v x{xvð Þ
x{xvð Þ2zy2

dxv and Vflex~
1

p

ðL=2

{L=2

vy

x{xvð Þ2zy2
dxv: ð21Þ

Those due to the vortex are

Uvor~
C

2p

x{xo

x{xoð Þ2z y{yoð Þ2
{

x{xo

x{xoð Þ2z yzyoð Þ2

" #
ð22aÞ

and Vvor~
C

2p

y{yo

x{xoð Þ2z y{yoð Þ2
{

yzyo

x{xoð Þ2z yzyoð Þ2

" #
: ð22bÞ

The corresponding hydrodynamic pressure related to the flowfield induced by the vortex and
the flexible wall vibration is respectively:

Fig. 6. Effects of grid refinement on the computed acoustic pressure. Test position : (40, 40). – ? – :
1006100; – ? – : 2006200; – – – – : 3006300; ––– : 4006400.
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Pvor~po{ro

Lwvor

Lt
{

1

2
r U2

voirzV2
vor

� �
and Pflex~po{ro

Lwflex

Lt
{

1

2
r U2

flexzV2
flex

� �
: ð23Þ

The acoustic field induced by the moving vortex can then be obtained by substituting its
incompressible hydrodynamic terms into the acoustic disturbance equation, Eq. (2), and so does
that from the flexible wall vibration.

A grid refinement study is conducted using the Vatistas vortex model [23]. The computational
domain S~ {20vMxv20½ �| 0vMyv40½ � is covered with 1006100, 2006200, 3006300 and
4006400 uniform numerical grids. The acoustic pressure time history at the point (40, 40) is
presented in Fig. 6. For the coarse grid of 1006100, there is an obvious difference between the
corresponding results and those of the 4006400 grid. The acoustic pressure profiles for the
3006300 and 4006400 grids almost overlap with each other and the maximum difference is
below 1%. Therefore, the 3006300 uniform numerical grid is used in this study. The time step
Dt is 0.01 in consistence with that adopted by Tang et al. [1]. The tenth order filter scheme is
again applied.

Fig. 7. Sound fields generated during vortex-flexible boundary interaction at t – to 5 9. M 5 0.05.
(a) By flexible boundary vibration; (b) by unsteady vortex motion.
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Figure 7 illustrates the acoustic pressure patterns at t – to 5 9 when the vortex has propagated
far downstream of the flexible wall boundary to x , 8, where to denotes the time at which the
vortex passes across the plane x 5 0. The vibration of the flexible wall creates a monopole as

Fig. 8. Acoustic pressure radiation contours. M 5 0.05. (a) t – to 5 1 (vortex near to the leading edge
of flexible boundary); (b) t – to 5 5 (vortex at trailing edge of flexible boundary); (c) t – to 5 9
(vortex far downstream of flexible boundary at x , 8).

Transactions of the Canadian Society for Mechanical Engineering, Vol. 35, No. 1, 2011 51



shown in Fig. 7(a) and is still significant even when the vortex is far away from the flexible wall.
The unsteady vortex motion generates a dipole but the duration of its generation is relatively
short Fig. 7(b). This dipole is generated when the vortex is near to the flexible wall ( Mxj jƒ0:05
with My0*0:05), such that the centre of the radiation appears very near to the origin of the
co-ordinate system. The amplitude of the vibration monopole is approximately five times that
of the vortex dipole. All these agree with the theoretical calculations of Tang et al. [13].

Figure 8 summarizes the development of the overall sound field. At t – to 5 1 when the vortex
is close to the x 5 0 plane (centerline of the flexible wall), a strongly asymmetric pressure
perturbation pattern can be found somewhere near to the flexible wall. This is also the time at
which intense interaction between the vortex and the flexible wall is taking place. The very
symmetrical radiation in the outer area is from the small flexible wall vibration when the vortex
is moving gradually towards the flexible wall. The vortex dipole is therefore significant at the
time when the vortex is moving over the flexible wall. Figure 8(b) suggests that the dipole lasts
for only around two to three cycles. The whole sound field is eventually dominated by the
continuous monopole from the wall vibration Fig. 8(c). One can also observe from Fig. 8 that
the radiation directivity is biased to the downstream when the vortex is above the flexible wall,
which is also the instant of high transverse vortex acceleration or deceleration. This is also in-
line with the theoretical deduction of Tang et al. [13].

Figure 9 illustrates the acoustic pressure variation along the h 5 45o radial line at t – to 5 12.
Fairly good agreement between the theoretical results of Tang et al. [13] and the present
simulation is observed at large radius. It should be noted that the results of Tang et al. [13] are
for the far field only and thus discrepancy between the present computed results and that of
Tang et al. [13] at small radial distance can be expected. Similar observations can also be made
at later instants and along other radial lines and thus are not presented. Similar results are
obtained with other combinations of vortex system parameters studied by Tang et al. [13] and

Fig. 9. Radial variation of acoustic pressure along h 5 45u. For M 5 0.05 at t – to 5 12 : ––– :
present result; – ? – : analytical solution [13]; for M 5 0.1 at t – to 5 20 : – – – : present result; – ?? – :
analytical solution [13].
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thus they are not presented. The agreement between computed and analytical results in the far
field for M 5 0.1 is also very satisfactory.

4. CONCLUSIONS

A computational aeroacoustic technique, which splits Euler equations into the hydrodynamic
terms and the perturbed acoustic terms is applied. First, the case of the sound generation due to
a spinning vortex pair is taken as a benchmark testing case to valid the code. A very good
agreement between the numerical simulation and the analytical results is observed.

This method is then applied to the case of sound radiation due to the unsteady interaction
between an inviscid vortex and a finite length flexible boundary on an otherwise rigid horizontal
plane. Based on the unsteady hydrodynamic information from the known incompressible flow
field, the perturbed compressible acoustic terms are calculated. Calculated results are compared
with analytical solutions obtained by the method of matched asymptotic expansions. Good
agreement between the simulation and the semi-analytical results of Tang et al. [13] is again
observed. The present investigation verifies the applicability of the viscous/acoustics splitting
approach to flow structure-acoustic interaction. It also implies the possibility of extending the
current research to study the complicated interaction between flow turbulence and sound inside
a duct silencer for the future development of low self-noise efficient silencing devices.
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APPENDIX

The dynamic equations for disturbance components (Eq. 2)

The non-linear Euler equations in Cartesian coordinates yield:

Lr

Lt
z

L ruið Þ
Lxi

~0

L ruið Þ
Lt

z
L ruiujzpij

� �
Lxj

~0

Lp

Lt
~c2 Lr

Lt
:

ðA� 1Þ

Decomposing the compressible solution as the sum of a mean and an acoustic disturbance :

ui~Uizu0i , p~Pzp0, r~rozr0, ðA� 2Þ

it can be shown by substituting (A-1) into (A-2) that

L r0zroð Þ
Lt

z
L r0zroð Þ Uizu0i

� �
Lxi

~0

L r0zroð Þ Uizu0i
� �

Lt
z

L r0zroð Þ Uizu0i
� �

Ujzu0j

� �
zpij

� �
Lxj

~0

L Pzp0ð Þ
Lt

~c2 L r0zroð Þ
Lt

ðA� 3Þ

One obtains by subtracting further the incompressible mean flow equations from Eq. A-3 :

Lr0

Lt
z

L r0zroð Þu0i zr0Ui

� �
Lxi

~0

L r0zroð Þu0i zr0Ui

� �
Lt

z
L r0zroð Þu0i zr0Ui

� �
Ujzu0j

� �
zroUiu

0
j zp’ij

� �
Lxj

~0

Lp0

Lt
{c2 Lr0

Lt
~{

LP

Lt
:

ðA� 4Þ
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Defining fi~ru0izr0Ui, Eq. A-4 turns out to be:

Lr0

Lt
z

Lfi

Lxi

~0

Lfi

Lt
z

L
Lxj

p’dijzfi Ujzu0j

� �
zroUiu

0
j

h i
~0

Lp0

Lt
{c2 Lr0

Lt
~{

LP

Lt
,

ðA� 5Þ

which is Eq. 2.

Transactions of the Canadian Society for Mechanical Engineering, Vol. 35, No. 1, 2011 56


