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ABSTRACT   

In its standard version, our BioPhotonics Workstation (BWS) can generate multiple controllable counter-propagating 
beams to create real-time user-programmable optical traps for stable three-dimensional control and manipulation of a 
plurality of particles. The combination of the platform with microstructures fabricated by two-photon polymerization 
(2PP) can lead to completely new methods to communicate with micro- and nano-sized objects in 3D and potentially 
open enormous possibilities in nano-biophotonics applications. In this work, we demonstrate that the structures can be 
used as microsensors on the BWS platform by functionalizing them with silica-based sol-gel materials inside which dyes 
can be entrapped. 
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1. INTRODUCTION  
Optical trapping was first reported by Ashkin1 in 1970 and has been attracting more and more attention these days 
especially in biological fields because it enables us to manipulate microscopic objects three-dimensionally in real-time 
without any mechanical contact with them2. The technique generally uses the forces of radiation pressure arising from 
the momentum of light itself. Among many systems currently developed for optical trapping, our BioPhotonics 
Workstation (BWS) has some advantages over other systems; it can generate multiple controllable counter-propagating 
beams to create real-time user-programmable optical traps for stable three-dimensional control and manipulation of a 
plurality of particles. We have traditionally used the counter-propagating geometry to achieve stable three-dimensional 
trapping while maintaining a large working distance by using microscope objectives with relatively low numerical 
apertures. The BWS affords independent control of the counter-propagating beam patterns and we have earlier exploited 
this to correctly match the corresponding set of counter-propagating beam traps3. With this trapping geometry we are 
currently able to generate around 100 dynamic optical traps using well-separated objectives, which eliminates the need 
for high numerical aperture oil or water immersion objectives required in conventional optical tweezers. This generates a 
large field of view and leaves vital space for integrating other enabling tools for probing or processing the trapped 
particles, such as linear and nonlinear microscopy or pulsed laser processing.  

Optical trapping is usually demonstrated with dielectric spheres and biological samples. But trapping applications extend 
beyond readily available samples such as custom designed two-photon polymerized (2PP) structures. Two-photon 
polymerization has emerged as a promising technique for fabrication of three-dimensional structures4. In the 2PP 
process, femtosecond laser pulses induce nonlinear absorption in a highly localized focal volume which leads to three-
dimensional micro- or nanoscopic structures. Not only does it enable flexible fabrication of polymer structures, but it 
also can be applied for fabrication of new micro/nanostructures or advanced photo-excitations which have functions for 
communicating with other materials5. By combining the functionalized 2PP structures with the BWS platform, novel 
methods for analyzing and/or processing objects can be realized independently and fully decoupled from the counter-
propagating trapping geometry. 

Considering the potential of the BWS platform in biological applications6,7, we were motivated to fabricate 2PP 
structures functionalized with fluorescent dyes which can act as sensors for specific ions or temperature in biological 
environments. This kind of optical sensor can be designed by applying conventional techniques for fiber-optic sensors 
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(optodes)8,9. While using optodes is basically an indirect sensing method and the fiber connection to external devices 
sometimes prevents flexible approach to analytes, 2PP structures are expected to work more flexibly and make it 
possible to detect environmental changes directly by monitoring the fluorescence change of the dyes on a trapping 
system. Since the surfaces of the structures obtained using normal epoxy- or acryl-based resins are chemically inert in 
general, functionalization of them directly with dye molecules is not straightforward. Therefore, we decided to first 
introduce hydroxyl and/or methoxy groups in the structures by adding a silane coupling agent with epoxy group to a 
commercially-available epoxy-based resin. These two materials can be copolymerized  through ring-opening 
polymerization process of epoxy groups, followed by developing and washing processes, possibly leading to the 
structures with hydroxyl and/or methoxy groups on the surface. The next step is to coat the obtained structures with 
silica-based sol-gel materials which entrap dyes inside them. The hydrolysis and polycondensation reactions between the 
surface and silane coupling agent in a coating solution result in covalent bond formation (-Si-O-Si-) at the interface 
between the structures and the coating materials. The highly porous nature of sol-gel materials makes them excellent 
hosts for sensing molecules, since the species to be sensed can easily diffuse towards the sensing center while the matrix 
improves biocompatibility by protecting the biological environment from any potentially toxic effects of the sensing 
dye10. 

One issue when fabricating microscopic objects using 2PP by a single laser beam is that it needs long processing times. 
The long processing time makes practical application of 2PP difficult. To solve this problem, we utilized a phase 
modulation technique with a spatial light modulator (SLM)11. The technique allows us to split one laser beam into 
multiple beams by means of computer generated holograms (CGH). Multiple focused beam spots can be created after 
focusing, depending on the spatial phase modulation. At each beam focus, the resin is photopolymerized through two-
photon absorption, which leads to the creation of polymerized materials at multiple positions at the same time. By 
combining CGH with computer-generated Fresnel lenses, a flexible and fast two-photon three-dimensional (3D) 
microfabrication can be realized. 

 

2. EXPERIMENTAL METHODS 
2.1 2PP processing 

The experimental setup for 2PP with an SLM is shown in Fig. 1. Amplified Ti: Al2O3 femtosecond laser pulses (Mira-
Legend, Coherent Inc.) with a pulse duration of about 120 fs, central wavelength of 800 nm and repetition rate of 1 kHz 
were used for the process. The laser pulses were reflected on a liquid crystal on silicon SLM (LCOS-SLM, X10468-02, 
Hamamatsu Photonics K.K.), which had 800 × 600 square pixels with a pixel pitch of 20 μm and that can provide a 
reflected beam with an independent phase change of up to 2π at each pixel12. The laser pulses reflecting on the SLM then 
passed through a telescope, which consisted of two concave lenses (magnification of M = 0.3), and were focused inside a 
pre-baked resin with an oil immersion objective lens (NA = 1.40; Plan Apo VC, Nikon). The resin was prepared by 
mixing SU-8 3035 (NIPPON KAYAKU) and 3-glycidyloxypropyltrimethoxysilane (Aldrich) in 2:1 volume ratio. The 
mixture was then spin-coated on a cover glass substrate and pre-baked at 95 ˚C for 1 hour. The substrate was placed on a 
3D translation stage and the spatially phase modulated beam was focused at multiple positions inside the resin. The 
processing of the structures was observed with a CCD camera and back illumination with a red LED lamp, although the 
resin shows only a slight change after laser irradiations because the refractive index change of SU-8 occurs not in the 
irradiation process but in the post-baking process. The laser beam power was controlled at 30 mW with a neutral density 
(ND) filter, and the exposure time for each hologram was controlled at 30 ms with a mechanical shutter. The translation 
stage, LCOS-SLM and mechanical shutter were controlled by a personal computer. The CGHs were calculated by a 
simple iterative-Fourier-transform algorithm (IFTA) in which the optimization are made by setting a non-zero amplitude 
to the dark pixels as well as adding a dummy area outside the signal area. A calculated CGH with 512 × 512 pixels was 
displayed in the central region of the active area of the LCOS-SLM. The 3D processing was performed by simply 
superimposing phase Fresnel lens onto the CGH, which leads to a focus shift of multiple spots generated by each 
hologram. By switching these combined CGHs layer by layer, fast 3D processing was achieved. 

It should be noted that for the structure to be released from the substrate after developing but not to be washed away, the 
3D writing should start from an inside point of the resin and end at an interface point between the glass and the resin. 
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Figure 1. Experimental setup for 2PP fabrication with an SLM. M1, M2: dielectric mirrors;  

L1: a lens of f = 500 mm; L2: a lens of f = 150 mm; DM: a dichroic mirror which reflects light of 750-850 nm; 
OL: an objective lens; MP: a metal plate. 

 

2.2 Functionalization 

The laser-processed resin was first post-baked at 95 ˚C for 15 minutes, followed by developing for 15 minutes in a SU-8 
developer (NIPPON KAYAKU) and rinsing with isopropanol. To activate the surface silanol groups of the fabricated 
structure, the substrate was then dipped in 0.1 M aqueous solution of hydrochloric acid for 10 seconds and dried in air. 
Preparation of sol-gel solution for coating was performed according to the work reported in literature13. A prehydrolysed 
solution was prepared by heating an ethanolic solution containing tetramethoxysilane (TMOS), water and hydrochloric 
acid in the following molar ratio: 1 TMOS: 3 EtOH: 5 × 10-5 HCl: 1 H2O at 100 ˚C for 1 h. Then, 
cetyltrimethylammonium bromide (CTAB) was dissolved in ethanol and added to the prehydrolysed solution together 
with an additional amount of water and HCl. The final molar ratio was 1 TMOS: 20 EtOH: 0.004 HCL: 5 H2O:0.10 
CTAB. The final solution was then stirred for four days at room temperature. 1 ml of a dye ethanol solution (0.13 mM) is 
then mixed with 1 ml of the sol and left under stirring for several hours. A typical dye used in this work was Fluo-5N 
(Invitrogen). Coating of 2PP structures were performed by spin-coating the resulting solution on the glass substrate with 
the structures and then the coated structures were gently released from the substrate by a glass needle and dried in air at 
room temperature. We also spin-coated the sol on a clean cover glass to investigate the response of the sol-gel film. 
Before use, the coated structures and films were placed in pure water to remove excess and unbound dyes. 

2.3 Analysis  

An FE-SEM (JSM6700F, JEOL) and a Raman microspectrometer (Nanofinder30, Tokyo Instruments; wavelength=633 
nm, NA=0.6) was used to investigate and analyze the 2PP fabricated structures. The response of the sol-gel film coated 
on a cover glass was measured using a spectrofluorometer (Fluoromax-P, Jobin Yvon Horiba). The response of the sol-
gel coated structures was observed using a fluorescence microscope with excitation at 490 nm. These fluorescence 
measurements were performed by first immersing the structures or the film into solutions with various concentrations of 
calcium ions for 10 minutes and then drying them in air for a few minutes. 

 

 

3. RESULTS AND DISCUSSIONS 
Since we used a resin prepared by mixing SU-8 and 3-glycidyloxypropyltrimethoxysilane in 2:1 volume ratio, the 
surface chemical property of the fabricated structures are supposed to be modified as illustrated in Figure 2. The 
fabricated structures are expected to have hydroxyl and/or methoxy groups derived from 3-
glycidyloxypropyltrimethoxysilane, which play important roles in forming covalent bonds between the surface of the 
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polymer and a sol-gel coating. We confirmed this by the observed difference between the coating strengths; the sol-gel 
coating on SU-8 film was easily peeled off from a polymerized SU-8 surface upon immersion in water, while it stuck 
stably to the surface of a modified SU-8. 

 
Figure 2. Schematic representation of chemical steps for functionalization 

Figure 3 shows an SEM image of the fabricated structures. Since we used 18 holograms in total for each structure, laser 
processing for each structure was finished within 1 s. Although the processing can be finished much faster than that of 
conventional scanning system, the fabricated structures are not smooth and sometimes randomly rough because of the 
inhomogeneous nature of laser spots created by the SLM and the constraint on spacing between spots imposed by the 
discrete Fourier transform procedure. However, considering long processing times of conventional 2PP systems, we 
believe that our multi-focus approach using LCOS-SLM is acceptable when the smoothness and fineness of the 
structures are not necessarily required. Introducing additional algorithms such as corrections to the optimal-rotation-
angle method would improve the uniformity of the spots14, 15, and the spatial configuration of the focus spots could also 
be optimized (e.g., by using the method reported by Bengtsson et al16). The poor quality of the structures might also be 
due to the high repetition rate of the femtosecond laser, i.e., the high energy of single pulses, which possibly causes 
boiling or destroying of the resin. We need to investigate and improve these points further in future works. 

 
Figure 3. SEM images of the obtained 2PP structures 
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Figure 4 shows the fluorescence emission spectra of the sol-gel film coated on a cover glass. It can be seen that the 
entrapped calcium indicator (Fluo-5N) in sol-gel matrix exhibits an emission band around 530 nm whose intensity 
depends on the concentration of calcium ion. It is clear that the entrapped dyes remain sensitive in the sol-gel matrix. We 
also confirmed that the response was reversible and reproducible even after several measurement cycles. Although there 
was also the leaching of dye molecules out of the matrix to some extent, we think this is not of much concern for short 
time or disposable use of the sensors. 

 
Figure 4. Fluorescence emission spectra of sol-gel film coated on cover glass. 

 

Figure 5 shows fluorescence microscope images of a 2PP structure with sol-gel coating. These images were captured in 
the same optical condition before (a) and after (b) immersing it in a 10mM solution of calcium ions. We can clearly see 
the difference which arises from the response of the entrapped calcium indicators. The sol-gel matrix contained only one 
dye in this work, but multiple dyes can also be combined in a single matrix, so that a reference standard can be used to 
minimize possible errors. Additionally, we can potentially entrap any dye inside the matrix. Metal nanoparticles, 
quantum dots and even enzymes can also be entrapped. By introducing these structures on the BWS platform, a real-time 
and flexible measurement of biologically important ions and temperature would be realized. 

 

 
Figure 5. Fluorescence images with excitation at 490 nm: (a) sol-gel coated structure in water and (b) in 10 mM Ca2+ 

solution. The structure were immersed in the respective solution for 10 minutes and dried before measurements.  
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4. CONCLUSION 
We used 2PP processing and surface modification to fabricate functionalized microstructures which can act as sensors 
for calcium ion. Commercially-available SU-8 was modified by mixing with 3-glycidyloxypropyltrimethoxysilane in 
order to introduce hydroxyl and/or methoxy groups on the surface of the fabricated structures. To speed up the 2PP 
processing, we utilized phase modulation technique with a SLM. Although the processing can be finished much faster 
than that of conventional scanning system, it turns out that the fabricated structures are rough because of the 
inhomogeneous nature of laser spots created by the SLM and the constraint on spacing between spots imposed by the 
discrete Fourier transform procedure. Functionalization of the structures was performed by coating them with silica-
based sol-gel materials which contain fluorescent calcium indicator inside. The fluorescence measurements showed that 
entrapped dyes remain sensitive in the sol-gel matrix, indicating the potential of the coated structures as sensors in 
biological environments. Future work will focus on real-time measurement of the change of biological environment 
using the fabricated structures as user-controlled sensors in the BioPhotonics Workstation. Entrapping various other 
materials inside the sol-gel coating should also be investigated.  
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