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Abstract

We consider the second-order conic equivalent of the classic knapsack polytope where
the variables are subject to generalized upper bound constraints. We describe and compare
a number of separation and extension algorithms which make use of the extra structure
implied by the generalized upper bound constraints in order to strengthen the second-order
conic equivalent of the classic cover cuts. We show that determining whether a cover can be
extended with a variable is NP-hard. Computational experiments are performed comparing
the proposed separation and extension algorithms. These experiments show that applying
these extended cover cuts can greatly improve solution time of second-order cone programs.

1 Introduction

We consider the second-order conic equivalent of the classic knapsack polytope, where the variables
are subject to so-called generalized upper bound (GUB) constraints. In the following we first define
what is understood by GUB constraints, and then define the second-order conic knapsack polytope.

Let N be a finite index set and let Q1, . . . , Q|K| be a division of N into |K| independent sets.
i.e.,

⋃

k∈K Qk = N , and Qi ∩Qj = ∅, ∀i, j ∈ K, i 6= j. GUB constraints are a set of constraints of
the form

∑

i∈Qk

xi ≤ 1, ∀k ∈ K,

where x ∈ {0, 1}|N |. In the following we will also refer to the sets Q1, . . . , Q|K| as GUB-sets.

For a subset S ⊆ N and k ∈ K, define S∩k := S∩Qk and S\k := S\Qk, and for some v ∈ R|N |

define v(S) :=
∑

i∈S vi. For a binary vector x ∈ {0, 1}|N |, define Sx := {i ∈ N : xi = 1}. Let

f : 2|N | → R be a set function defined as

f(S) := a(S) + ω
√

d(S),

where a ∈ R
+|N |
0 , d ∈ R

+|N |
0 , and ω ≥ 0. The polytope considered here is

X :=







x ∈ {0, 1}|N | : f(Sx) ≤ b,
∑

i∈Qk

xi ≤ 1, ∀k ∈ K







,

where b ≥ 0. We denote X the second-order conic knapsack polytope with GUB constraints. We
use the term second-order conic because the constraint f(Sx) ≤ b is equivalent to the second-order
cone constraint: ax+ ω‖Dx‖2 ≤ b, where Dii =

√
di, and Dij = 0 for i 6= j.
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The motivation for considering the function f is that constraints of the form f(Sx) ≤ b arise
when modelling certain types of chance-constraints of the form: prob (ax ≤ b) ≥ ǫ, where a is an
n-vector of random variables, x is an n-vector of binary variables, b ∈ R, and ǫ ∈ [0, 1]. If each
variable ai is normally distributed with mean µi and variance σ2

i , and ǫ ≥ 1

2
, the above chance-

constraint can be formulated as the second-order cone constraint (see e.g. Boyd and Vandenberghe
(2004)):

n
∑

i=0

µixi +Φ−1(ǫ)
√

σ2
i x

2
i ≤ b,

where Φ is the cumulative distribution function. Since x2
i = xi for binary variables, the above is

equivalent to f(Sx) ≤ b with a = (µ1, . . . , µn), d = (σ2
1 , . . . , σ

2
n), and ω = Φ−1(ǫ).

The motivation for considering GUB constraints is the same as for the linear case: GUB
constraints may be used the strengthen cover inequalities. Note that if one changes the “≤” to
“=” in the GUB constraints the techniques described here are still applicable.

As mentioned earlier, we focus on cuts derived from X . The literature pertaining to these kind
of cuts is quite sparse: Atamtürk and Narayanan (2010) and Cezik and Iyengar (2005) describe
rounding cuts, Atamtürk and Narayanan (2009a) describe lifting procedures and Atamtürk and
Narayanan (2009b) consider the sub-modular knapsack polytope, which is the same as the polytope
considered here except that there are no GUB constraints, and f need only be sub-modular. For
this polytope, the authors describe the conic equivalent of cover inequalities known from mixed
integer linear programming, and present a heuristic for separating them based on a LP-relaxation
of the separation problem. They additionally describe procedures for extending and lifting cover
inequalities in order to strengthen them. As mentioned the polytope considered by the authors
does not include GUB constraints, and this work can be seen as an extension to the case where
GUB constraints are present.

Cover inequalities for linear knapsack constraints was introduced independently by Balas
(1975), Hammer et al. (1975), and Wolsey (1975). Both Balas (1975) and Wolsey (1975) treat the
lifting of such cover inequalities. Complexity results for obtaining lifted cover inequalities can be
found in Zemel (1989) and Hartvigsen and Zemel (1992). If GUB constraints are present, these
may be used during lifting to further strengthen the cover inequalities. Lifting has in this setting
been treated by Johnson and Padberg (1981), Wolsey (1990) and Nemhauser and Vance (1994).
The separation problem has been examined by a number of people: Ferreira et al. (1996), Klabjan
et al. (1998), and Gu et al. (1999) show that the separation problem for different classes of cover
inequalities is NP -hard, while Crowder et al. (1983) have shown that the problem is equivalent
to solving a knapsack problem. A number of exact and heuristic methods exists for solving the
separation problem, see for instance Gu et al. (1998) for an investigation of algorithmic and im-
plementational issues with respect to branch-and-cut algorithms. For some recent surveys, see for
instance Atamtürk (2005) or Kaparis and Letchford (2010).

The contribution of this work is the proposal and analysis of a number of separation and
extension algorithms for cover inequalities for second-order conic knapsack constraints in the
presence of GUB constraints. As a theoretical results we show that the problem of determining
whether a cover may be extended with a variable isNP-hard. Through computational experiments
on a set of generated test instances the different proposed algorithms are compared with respect
to time used and bounds produced. We show that the application of extended cover inequalities
can greatly improve the solution time of second-order cone programs.

The outline of the remaining paper is as follows, in Section 2 covers, extended covers, and
extended covers under the presence of GUB constraints are introduced, in Section 3 a number of
algorithms for extending covers are proposed, in Section 4 separation of covers are introduced,
and a number of separation algorithms are proposed, in Section 5 the efficiency of the proposed
algorithms are evaluated on a set of generated test instances, we conclude in Section 6.
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2 Cover inequalities

A subset C ⊆ N is called a cover for X if f(C) > b. A cover C is called a minimal cover if the
above property is not satisfied for any C′ ⊂ C. If C is such that |C∩k| ≤ 1, ∀k ∈ K, we call it a
base cover. Given a cover C, the following inequality is valid for X (see Atamtürk and Narayanan
(2009b))

∑

i∈C

xi ≤ |C| − 1. (1)

Example. Consider the polytope






3x1 + 4x2 + 2x3 + 3x4 + 1x5 +
√
2x1 + 1x2 + 2x3 + 1x4 + 10x5 ≤ 7

x1 + x2 ≤ 1, x3 + x4 + x5 ≤ 1
x1, . . . , x5 ∈ {0, 1}.







The set C′ = {1, 2}, is a cover, but not a base cover as x1 and x2 are in the same GUB-set. The

set C = {1, 4} on the other hand is a base cover. Both C and C′ are minimal.

2.1 Extended cover inequalities

Given a cover C, the corresponding cover inequality may be strengthened by including additional
variables. When chosen appropriately these variables will add to the left-hand side of (1) without
raising the right-hand side. The process of adding variables to an existing cover is called extending

the cover and can be seen as a lifting procedure where lifting coefficients may only take values
0 or 1. Atamtürk and Narayanan (2009b) describe a procedure for extending a minimal cover,
when no GUB constraints are present. This procedure may still be used when GUB constraints
are present, but the resulting cover inequalities may be weaker, than if GUB constraints are taken
into account.

2.2 Extended cover inequalities with GUB constraints

We now describe how GUB constraints can be used to strengthen cover inequalities. For some
n ≥ 0, and subset S ⊆ N , define W(S, n) := {T ⊆ S : |T | ≥ n ∧ |T∩k| ≤ 1, ∀k ∈ K}, i.e., the set
of all subsets of S, of at least size n, which contain at most one element from each Qk. We call a
subset C ⊆ N an extended cover of size n ≥ 0 if S is a cover ∀S ∈ W(C, n). An extended cover
is called minimal if C is not an extended cover for any n′ < n. Note that a base cover C is an
extended cover of size |C|.
Proposition 1. If C is an extended cover of size n, then the following inequality is valid for X

∑

i∈C

xi ≤ n− 1.

Proof. Let x ∈ X . Assume for the sake of contradiction that
∑

i∈C xi ≥ n. Let S = C ∩ Tx. We
have x ∈ X ⇒ Tx ∩ Qk ≤ 1, ∀k ∈ K ⇒ S ∩ Qk ≤ 1, ∀k ∈ K, and |S| = ∑

i∈S 1 =
∑

i∈C∩Tx
1 =

∑

i∈C xi ≥ n. Thus S ∈ W(C, n), which is a contradiction since f(Sx) ≤ f(Tx) ≤ b.

Example (continued). Assume the set C is extended with the element x2 resulting in the set

C′′ = {1, 2, 4}. W(C′′, 2) = {{1, 4}, {2, 4}}, and since {1, 4}, and {2, 4} are both covers, the set

C′′ is an extended cover of size n = 2 and the inequality x1 + x2 + x4 ≤ 1 is thus valid. C′′ is

also an extended cover of size n = 3, but C′′ would then not be minimal resulting in the weaker

inequality x1 + x2 + x4 ≤ 2.

Proposition 2. Let C be an extended cover and let i∗ ∈ Qk\C for some k∗ ∈ K, be such that

f(S ∪ {i∗}) = a(S) + ai∗ + ω
√

d(S) + di∗ > b, ∀S ∈ W(C\k∗

, n− 1), (2)

then C ∪ {i∗} is an extended cover.
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Proof. Let T ∈ W(C ∪ {i∗}, n). If i∗ 6∈ T , then T is a cover by assumption. Assume i∗ ∈ T , then
T = S ∪ {i∗} for some S ∈ W(C\k∗

, n − 1), and thus f(T ) = f(S ∪ {i∗}) > b, and T is thus a
cover.

Proposition 2 suggest a method for extending a cover: Start with identifying a base cover,
create some ordering of the variables currently not in the cover, then one at a time check if one of
the variables not in the cover can be included by evaluating condition (2). This may be done by
solving the following optimization problem:

OPT :
ν = min a(S) + ai∗ + ω

√

d(S) + di∗

s.t. S ∈ W(C\k∗

, n− 1).

If ν > b, the variable can be added to the extended cover. OPT is the constrained minimization
of a submodular function. For surveys of submodular function minimization we refer to Fujishige
(2005), and Iwata (2008).

Example (continued). Consider again the extended cover C′′ = {1, 2, 4}. We have two GUB-

sets: Q1 = {1, 2} and Q2 = {3, 4, 5}. Assume we are considering extending C′′ with the variable x5.

In this case i∗ = 5 and k∗ = 2. We have W(C′′\2, 1) = {{1}, {2}}, and since 3+ 1+
√
2 + 10 > 7,

and 4 + 1 +
√
1 + 10 > 7 the cover may be extended with x5.

We now show that solving OPT isNP-hard. First note that OPT is equivalent to the following
conic quadratic integer program (CQIP):

min
∑

i∈C\k∗

aiyi + ai∗ + ω

√

∑

C\k∗

diyi + di∗ (3)

s.t.
∑

i∈C∩k

yi ≤ 1 ∀k ∈ K, k 6= k∗ (4)

∑

i∈C\k∗

yi ≥ n− 1 (5)

yi ∈ {0, 1} ∀i ∈ C\k∗

, (6)

where yi = 1 if and only if the set S contains the ith element. Constraints (4) ensure that S
contains at most one element from each GUB-set, and Constraints (5) ensure that S constains at
least n− 1 elements.

Proposition 3. Solving the optimization problem (3)-(6) is NP-hard.

Proof. For ease the exposition, let I = C\k∗

= {1, . . . , p}, let K = K\{k∗}, let Qk = C∩k∀k ∈ K,
let m = n− 1, and let ai∗ = di∗ = 0. The problem considered is

P :

min
∑p

i=1
aiyi + ω

√
∑p

i=1
diyi

s.t.
∑

i∈Qk
yi ≤ 1 k ∈ K

∑p

i=1
yi ≥ m

yi ∈ {0, 1} ∀i = 1, . . . p.

If the second part of the objective is zero (e.g. ω = 0), the problem may be solved in polynomial
time using a simple greedy algorithm: Let ak = min{ai ∈ Qk}. Now choosing the m smallest
values of ak gives an optimal solution y′ with value l. The solution l is a lower bound for the
general problem P .

We can also find an upper bound on an optimal solution value of P as follows: Let D =
ω
√
∑p

i=1
di, then the optimal solution value is not bigger than u = l+D. To see this, assume an

optimal solution has value larger than l +D, now construct a new solution corresponding to y′,
clearly

∑p

i=1
aiy

′
i + ω

√

diy′i ≤ l+D.
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In order to prove that P is NP-hard, we consider the decision problem:

P ′ :

∑p

i=1
aiyi + ω

√
∑p

i=1
diyi + s = E

∑

i∈Qk
yi ≤ 1 k ∈ K

∑p

i=1
yi ≥ m

yi ∈ {0, 1} ∀i = 1, . . . p
0 ≤ s ≤ D.

The variable s is a slack variable, and since u − l = D we can restrict s to be between 0 and D.
Other cases of E are treated as follows: if E < l, we answer “no”, while if E > l +D we answer
“yes” returning y′ as a certificate.

Consider the NP-complete two-partition problem (see Karp (1972)): Given a set of positive
integers, W = {w1, . . . , wq}. Is it possible to separate them into two sets, W1 and W2, such that
∑

i∈W1
wi =

∑

i∈W2
wi = C = 1

2

∑q

i=1
wi?

We reduce the two-partition problem to P ′ as follows. Let p := 2 · q, and for i = 1, . . . , q set
ai := 2Dwi, aq+i := 0, di := 0, dq+i := wi, set K := {1, . . . , q}, Qk := {i, k + i}∀k ∈ K, m := q,

E := 2DC +
√
C, and ω := 1. This leads to the following instance of P ′:

∑q

i=1
2Dwiyi + ω

√
∑q

i=1
wiyq+i + s = 2DC +

√
C

yi + yk+i ≤ 1 k ∈ K
∑2q

i=1
yi ≥ q

yi ∈ {0, 1} ∀i = 1, . . . p
0 ≤ s ≤ D.

The constraints yi + yq+i ≤ 1 and
∑2q

i=1
yi ≥ q together imply that yi + yq+i = 1.

Assume that two-partition has a feasible solution, i.e., there exists a binary vector y, such that
∑q

i=1
wiyi = C. Setting yq+i = 1− yi, we find a solution to the above problem with s = 0.

Now assume the above problem has a feasible solution. The second part of the objective
satisfies

0 ≤
√
∑q

i=i wiyq+i + s ≤ 2D.

This means that if

∑q

i=1
2Dwiyi +

√
∑q

i=1
wiyq+i + s = 2DC +

√
C,

then both the following constraints are satisfied

∑q

i=1
wiyi = C

√
∑q

i=1
wiyq+i + s =

√
C.

(7)

To see this assume
∑q

i=1
wiyi 6= C. This means

∑q

i=1
wiyi = C − k for some k ∈ Z. We have

2D(C − k) +

√

√

√

√

q
∑

i=1

wiyq+i + s =2DC +
√
C ⇒

√

√

√

√

q
∑

i=1

wiyq+i + s =
√
C + k2D

{

> 2D, if k ∈ Z+

< 0, if k ∈ Z− .

both of which are contradictions.
But the first equation of (7) above means we have found a solution to the two-partition problem.

In the next section we give a number of algorithms, which can be used to check the condition
of proposition 2. The effectiveness of the proposed algorithms will be evaluated in section 5.

5



3 Algorithms for extending cover inequalities

First observe that it is not necessary to solve OPT to optimality in order to decide whether a
variable xi can be added to the extended cover C. Given a lower bound LB on ν, the variable
may be added if LB > b. Finding a lower bound may be computationally easier, but the resulting
cover inequalities may be weaker, because certain variables, which could have been added to the
cover, were not. There is thus a trade-off between the time spend extending the covers, and the
strength of the resulting cover inequalities.

We now give a generic extension algorithm, which can be used with any procedure giving a
lower bound on ν, starting with some initial base cover, C, of size n = |C|. In the following, unless
otherwise stated, we will assume that the variable considered for extension has index i∗ ∈ N and
belongs to the GUB-set with index k∗ ∈ K. Assume that given some extended cover C, the
function LB(C, i∗) gives a lower bound on OPT . Let I = N\C, and assume that I is given some
ordering. Different orderings will result in different extended covers. As the final aim is to find a
violated cover inequality, and variables with a large value in the current solution is beneficial in
this regard, the set I is sorted non-increasingly w.r.t. this value. The generic extension algorithm
is shown in Algorithm 1.

Algorithm 1 Generic algorithm for extending a base cover C

Require: The initial base cover C to be extended.
Let I = N\C.
Sort I non-increasingly w.r.t. the value of corresponding variables.
for all i∗ ∈ I do
LB ← LB(C, i∗).
if LB > b then
C ← C ∪ {i∗}.

end if
end for
return C

In the following a number of lower bounding approaches along with an optimal solution ap-
proach is described. The latter is included in order to evaluate the lower bounding approaches.
Any of these approaches can be used for calculating LB(C, i∗) in Algorithm 1.

3.1 Optimal

As we saw in the previous section OPT can be formulated as a CQIP. The resulting problem, is the
minimization of a sub-modular function over a convex set. Atamtürk and Narayanan (2008) treat
such a minimization problem using a cutting plane approach. For the computational experiments,
we do however not employ this approach, but instead give the above model to a CQIP solver.
Note that the optimization may be halted as soon as the current lower bound is above b.

3.2 Lower bound 1

A simple lower bound is relaxing the CQIP (3) - (6) by allowing the yi’s to take fractional values.
In the following we denote this bound by LB1.

3.3 Lower bound 2

Consider the minimization problem:

ν′ = za + zd,
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where

za = min
∑

i∈C\k∗

aiyi + ai∗ (8)

s.t.
∑

i∈C∩k

yi ≤ 1 ∀k ∈ K, k 6= k∗ (9)

∑

i∈C\k∗

yi ≥ n− 1 (10)

yi ∈ {0, 1} ∀i ∈ C\k∗

, (11)

and

zd = min ω

√

∑

C\k∗

diyi + di∗ (12)

s.t.
∑

i∈C∩k

yi ≤ 1 ∀k ∈ K, k 6= k∗ (13)

∑

i∈C\k∗

yi ≥ n− 1 (14)

yi ∈ {0, 1} ∀i ∈ C\k∗

. (15)

ν′ is a lower bound on ν, since the above optimization problem is a relaxation of OPT. The two
optimization problems, (8) - (11), and (12) - (15), are solved independently of each other. A solu-
tion to the first problem can be found as follows in: Let Imin = {imin

1 , . . . , imin
k∗−1

, imin
k∗+1

, . . . , imin
|K| },

where imin
k = argmin{ai : i ∈ C∩k}. If a C∩k = ∅, then no imin

k is included. Order Imin non-
decreasingly by the value of ai. A solution is the first n − 1 elements of Imin. A solution to the
second problem can be found similarly. The running time is O(|Imin| log |Imin|). In the following
this bound is denoted LB2.

We now show that LB1 is stronger than LB2, i.e., LB2 ≤ LB1.

Lemma 1. Let µ∗ be the optimal solution to the the minimization problem:

min
∑

i∈I

fiµi

s.t.
∑

i∈Qk

µi ≤ 1 ∀k ∈ K
∑

i∈I

µi ≥ m

µi ∈ {0, 1} ∀i ∈ I,

where fi ≥ 0 ∀i ∈ I, m ≥ 0, Qk ∩ Qk′ = ∅ ∀k, k′ ∈ K : k 6= k′, and
⋃

k∈KQk = I. Then for any

fractional solution µ̃: fµ∗ ≤ fµ̃.

Proof. Let µ̃ be the optimal solution, where the integer constraints have been relaxed. It is enough
to show that fµ∗ = fµ̃. We can assume there are at least least two fractional variables, since
otherwise, the single fractional variable can be fixed to 0, producing an integer solution, µ∗, with
fµ∗ ≤ fµ̃ because fi ≥ 0 ∀i ∈ I, and because of the optimality of µ̃ we have fµ∗ = fµ̃.

Let µ̃i, µ̃j , be two fractional variables. Assume w.l.o.g. that fi ≤ fj . Let ǫ = min{1− µ̃i, µ̃j}.
Then updating µ̃i := µ̃i + ǫ, and µ̃j = µ̃j − ǫ produces a new feasible solution, µ̃′, with fµ̃′ ≤ fµ̃
and at least one less fractional variable. Again because of the optimality of µ̃ we have fµ̃′ = fµ̃.
Iterating this process produces an integer solution.

Proposition 4. LB2 ≤ LB1.

7



Proof. For ease of exposition assume ai∗ = di∗ = 0. This assumption does not affect the cor-
rectness of the proof. Let I = C\k∗

, let ỹ be a (fractional) solution to the optimization problem
corresponding to LB1, and let ya, and yd be (integer) solutions to the two optimization problems
corresponding to LB2. Assume LB1 < LB2. We have

LB1 =
∑

i∈I

aiỹi + ω

√

∑

I

diỹi <
∑

i∈I

aiy
a
i + ω

√

∑

i∈I

diydi = LB2 ⇐⇒

∑

i∈I

aiỹi −
∑

i∈I

aiy
a
i < ω

√

∑

i∈I

diydi − ω

√

∑

i∈I

diỹi.

Because of Lemma 1 we have
∑

i∈I aiỹi −
∑

i∈I aiy
a
i ≥ 0, while again because of Lemma 1 and

because the square root function is increasing, ω
√

∑

i∈I diydi − ω
√
∑

i∈I diỹi ≤ 0, which is a

contradiction.

4 Separation of cover inequalities

Disregarding GUB constraints, the separation of a cover inequality is the process, when given
a fractional solution x∗, to find a cover C, such that

∑

i∈C x∗
i > |C| − 1, i.e., a violated cover

inequality. As described by Atamtürk and Narayanan (2009b), a violated cover inequality can be
separated (if one exists) by solving the minimization problem:

η =min

n
∑

i=1

(1− x∗
i )yi (16)

s.t.
n
∑

i=1

aiyi + ω

√

∑

i∈N

diyi ≥ b+ ǫ (17)

y ∈ {0, 1}|N |, (18)

where ǫ is some small positive number. If η < 1, then a violated cover inequality has been found.
Even though η ≥ 1, a cover has been identified, and an attempt at extending the cover can be
made. After extending the cover, the corresponding extended cover inequality may be violated,
even though the original cover inequality was not.

When GUB constraints are present we instead wish to solve the above problem with the
following set of constraints added:

∑

i∈Qk

yi ≤ 1, ∀k ∈ K. (19)

This ensures that the resulting covers are base covers. Again if η < 1, a violated cover inequality
has been found. In any case, a base cover has been found, and the earlier described generic
extension algorithm coupled with a bound may by applied.

Atamtürk and Narayanan (2009b) solve the separation problem (16) - (18) heuristically based
on the rounding of solutions to an LP -relaxation of an equivalent problem. Their approach does
however not carry over well to the case with GUB constraints. In the following we describe
a number of approaches for constructing good candidate base covers, which are to then to be
extended using the genetic extension algorithm described earlier (see Algorithm 1) in conjunction
with one of the lower bounds previously prestented.

4.1 Algorithms for separating base covers

The algorithms for separating base covers, should identify a number of good candidate base covers
for extension. A good candidate for a base cover may be one, where the corresponding cover
inequality is close to, or is violated, but it may also be one which is easy to extend.
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4.1.1 Separation algorithm 1

For the first separation algorithm, we simply solve the separation problem (16) - (19), by giving
it to a CQIP solver. The problem (16) - (19) is however not a CQIP in its present form and is
thus reformulated as follows before being given to the solver:

η =min

n
∑

i=1

(1 − x∗
i )yi (20)

s.t.

n
∑

i=1

aiyi + ωz ≥ b+ ǫ (21)

z2 ≤
∑

i∈N

diyi (22)

∑

i∈Qk

yi ≤ 1 ∀k ∈ K (23)

y ∈ {0, 1}|N |, z ≥ 0, (24)

where we have introduced the variable z. Because the separation problem for classic knapsack
constraints is NP-hard(see Ferreira et al. (1996), Klabjan et al. (1998), and Gu et al. (1999)),
the above problem is likewise NP-hard, and the problem can thus be computationally cumber-
some, and is primarily included to evaluate the remaining separation algorithms. The separation
algorithm is depicted in Algorithm 2.

Algorithm 2 Heuristic for finding violated cover inequalities

Require: Current solution x∗.
Solve the problem (20) - (24) by the use of CQIP solver.
if feasible solution found then
Extend the found cover C using the generic extension algorithm and one of the bounds.
if C constitutes a violated cover inequality then
return C

end if
end if
return no cover found.

4.1.2 Separation algorithm 2+3

This separation algorithm orders the variables, within each Qk, by a weight calculated on the basis
of the current fractional solution. Then a set C is created containing the |K| largest-weighted
variables. If C is not a cover, a new set C is created where the second largest-weighted variable
from some Qk replaces the current variable from the same set and so on. The algorithm progresses
until a cover is found or there are no more variables. Let x∗ be the value of the current solution
and let w(xi) be the weight associated with the variable xi. We investigate two different weight
functions: 1) w(xi) = x∗

i , and 2) w(xi) = (x∗
i −1)/(ai+ω

√
di), giving rise to separation algorithm

2, and 3 respectively. Crowder et al. (1983) use a weight-function similar to 2) for the linear case.
Algorithm 3 gives the details of these algorithms.
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Algorithm 3 Heuristic for finding violated cover inequalities

Let C be the largest-weighted variable from each Qj w.r.t. the current fractional solution x∗

and weight function w.
Mark the variables in C.
while there are unmarked variables do
if C is a cover then
Extend C.
if C constitutes a violated cover inequality then
return C

end if
end if
Add to C the largest-weighted unmarked variable and remove from C the variable from the
same Qj as the newly added variable.
Mark the newly added variable.

end while
return no cover found.

5 Computational experiments

5.1 Test instances

In order to evaluate the different algorithms, a number of test instances are generated of the form:

max
∑

i∈N

cixi (25)

∑

i∈N

aimxi + ω

√

∑

i∈N

d2imxi ≤ bm m = 1, . . . ,M (26)

∑

i∈Qk

xi ≤ 1 k ∈ K (27)

x ∈ {0, 1}|N | (28)

The size of N used is {50, 75, 100}. The size of M used is {10, 20}. The value for ω used is 3.
For each instance the values of ci is chosen at random in the integer interval [1; 1000], the values of
aim is chosen at random in the integer interval [0; 100], and the values of dim is chosen at random
in the integer interval [0; aim]. The GUB-sets, Qk, are created such that they are disjoint, each set
contain a random number of variables in the interval [0.1 ·N ; 0.3 ·N ], and such that

⋃

k∈K Qk = N .
The value of bm is set as

bm = β ·





∑

i∈S

aim + ω

√

∑

i∈T

d2im



 ,

where S is the index-set of variables with the maximal value of aim within each Qk, and T is
likewise the index-set of variables with maximal value of dim within each Qk. The value of β
used is {0.3, 0.5}. For each combination of N , M and β five instances are generated, giving a
total of 60 test instances. These instances along with the source code is available for download at
http://diku.dk/~laurent.

5.2 Test setup

For the computational experiments, we use ILOG CPLEX 12.1 (CPLEX), which solves conic
quadratic relaxations at the nodes of a branch-and-bound tree. CPLEX heuristics are turned
off, and a single thread is used. When comparing to CPLEX, the MIP search strategy is set to
traditional branch-and-bound, rather than the default dynamic search. The reason for this is that
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we wish to investigate the effect of adding extended cover cuts using the proposed algorithms
and bounds, and not to compare branch-and-bound with with extended cover cuts to dynamic
search (it is not possible to add cuts in CPLEX while retaining the dynamic search strategy).
When CPLEX is used in connection with a separation algorithm (separation algorithm 1) or for
calculating a bound (OPT and LB1) all settings are left at their default (except for the number
of threads, which is set to one).

Experiments were performed on a machine with 2 Intel(R) Xeon(R) CPUs @ 2.67Ghz (16
logical cores), with 24 GB of RAM, and running Ubuntu 10.4.

5.3 Cuts

Depending on the combination of separation algorithm and bound used for the generic extension
algorithm, cutting is either applied only at the root node, or locally throughout the branch-and-
bound tree. Cutting throughout the tree turned out to be effective for the “fast” separation
algorithms and bound arguments, but for the more computationally expensive the overhead of
cutting in each node was to high. Table 1 lists how cutting is applied for the different combinations.
In the following Sep1(conic), Sep2(x-sort), and Sep3(x/coef-sort) respectively refers to separation
algorithm 1, 2, and 3, and Exact(conic), LB1(lprelax), and LB2(minsum) respectively refers to
solving OPT , and the lower bounds LB1 and LB2.

Sep1(conic) Sep2(x-sort) Sep3(x/coef-sort)

Exact(conic) root root root
LB1(lprelax) root root root
LB2(minsum) all all all

Table 1: Table indicating whether cuts are applied only at the root (root) node, or throughout the
branch-and-bound tree (all).

5.4 Results

We first compare the different combination of separation algorithms and bounds used for the
generic extension algorithm, next we examine the effect of extending covers as compared to not
extending them, and finally we examine the effect of using the GUB information to extend covers
as compared to not using this information.

In the tables to come, the column rgap is the average optimality gap at the root node after
addition of cuts. The rgap is calculated as (UB−UB∗)/UB∗, where UB is the value at the root
node, and UB∗ is the optimal solution. If no combination of algorithms could solve a given instance
to optimality within the given time limit of 3600 secs, then UB∗ is the best found solution across
all the examined algorithms. In order to avoid cases with UB∗ = 0, we add 1 to the objective
function. For the combination of separation algorithms and bounds where cutting is only applied
at the root node, the column cuts is the average number of cuts added at the root node, while for
the combinations where cutting is applied throughout the branch-and-bound tree, the column is
the average number of cuts added per node, and the number in parenthesis is the number of cuts
added at the root node. nodes is the average number of nodes of the branch-and-bound tree, rt
is the time used in the root node in seconds, and time is the average total time used in seconds,
where the number in parenthesis is how many of the 5 instances were solved to optimality within
the time limit. Bold font indicates that all instances where solved to optimality.

Comparison of separation algorithms and bounds The branch-and-bound algorithm is
run for each combination of separation algorithm and bound argument. Table 3, Table 4, and
Table 5 contains the results for separation algorithm 1, 2, and 3 combined with the different
bounds. Results from CPLEX can be seen in Table 2.
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CPLEX

N M β rgap cuts nodes rt time

50
10

0.3 77.8 0 865 0 2(5)
0.5 22.87 0 1737 0 9(5)

20
0.3 147.59 0 1335 1 11(5)
0.5 38.83 0 2108 0 83(5)

75
10

0.3 80.24 0 2954 0 32(5)
0.5 21.12 0 3594 0 55(5)

20
0.3 183.4 0 2338 2 29(5)
0.5 25.06 0 4724 2 760(4)

100
10

0.3 57.69 0 4664 0 187(5)
0.5 7.78 0 1613 0 13(5)

20
0.3 155.09 0 5175 3 1035(4)
0.5 23.9 0 9279 3 2674(2)

Agg. time 4889(55)

Table 2: Results from CPLEX

We first consider the CPLEX results. As can be seen from Table 2 all instances could be solved
up to N = 75, and m = 10. One instance can not be solved for N = 75 and M = 20, while for
N = 100 all instances can be solved for M = 10, while 6 instances can be solved for M = 20.
CPLEX solves a total of 55 instances using in total 4889 seconds.

We next compare the results of each combination of bound with separation algorithm 1 (Ta-
ble 3), and compare these to CPLEX (Table 2). As can be seen, in general the impact of adding
cuts using separation algorithm 1 has some effect on the computational time. For Exact(conic)
and LB1(relax) the number of instances solved remains the same (55) but the computational time
is reduced to 4131 and 4161 seconds respectively compared to the 4889 seconds of CPLEX. For
LB2(minsum) the effect of cutting is quite noticable, the total number of solved instances increases
to 59, and the total computational time is reduced to 1228 seconds. All combinations improves
the root gaps compared to CPLEX. With respect to root gaps the best combination among the
three is, as expected, Sep1+Exact(conic), but the time used at the root node is also the largest,
which is also as expected. The combination Sep1+LB2(minsum) produces in general better root
node gaps than Sep1+LB1(lprelax) using less time at the root node. Overall Sep1+LB1(lprelax)
performs the best.

We next make a comparison, with separation algorithm 2 (Table 4). In general considerable
more cuts are added at the root node, and as a consequence the root gap is lower than for
separation algorithm 1. This may seem odd, as the separation problem is solved to optimality for
separation algorithm 1. The reason is, separation algorithm 1 only attempts to extend the single
cover corresponding to the solution of (20)–(24), while separation algorithm 2 will run through a
number of covers, trying to extend each one. Extending the cover corresponding to the solution of
(20)–(24) might not result in a violated inequality, while extending some of the covers examined
by separation algorithm 2 might. The numerous covers examined by separation algorithm 2,
also explains why Sep2+Exact and Sep2+LB1 spends considerably more time spend in the root
node, than their counterparts for separation algorithm 1. The additional cuts separated by the
combinations of Exact(conic), and LB1(lprelax) with separation algorithm 2 does however not
outweigh the additional time spend in the root node compared to separation algorithm 1, and
the total computational time increases to respectively 13836 and 7077 seconds, while only a single
extra instance is solved for LB1(lprelax). As the size of N grows, we see a clear advantage of
using separation algorithm 2 with LB2(minsum), both compared to separation algorithm 1 and
to CPLEX. This combination solves all 60 instances using only 132 seconds.

Finally considering separation algorithm 3 (Table 5), we see that the results are very similar to
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Sep1(conic)+Exact(conic) Sep1(conic)+LB1(lprelax)

N M β rgap cuts nodes rt time rgap cuts nodes rt time

50
10

0.3 0.4 35 1 8 8(5) 5.78 40 19 3 3(5)
0.5 21.23 6 1597 4 12(5) 21.11 11 1663 2 11(5)

20
0.3 28.38 55 70 14 14(5) 33.87 50 95 7 7(5)
0.5 32.79 24 1526 11 51(5) 33.48 23 1970 3 85(5)

75
10

0.3 36.62 18 1365 5 17(5) 40.15 21 1346 3 14(5)
0.5 16.68 18 3104 13 68(5) 17.2 22 3504 3 113(5)

20
0.3 16.94 47 72 18 19(5) 34.7 51 136 10 12(5)
0.5 20.7 20 5189 31 822(4) 22.56 16 4860 12 780(4)

100
10

0.3 51.44 14 2135 6 16(5) 53.08 12 2638 2 16(5)
0.5 5.91 12 1365 31 46(5) 5.81 17 1623 5 47(5)

20
0.3 87.48 32 816 22 44(5) 91.04 33 883 7 26(5)
0.5 22.07 17 7906 55 3016(1) 22.46 14 10635 15 3048(1)

Agg. time 4131(55) 4161(55)

Sep1(conic)+LB2(minsum)

N M β rgap cuts nodes rt time

50
10

0.3 2.22 45(42) 4 1 1(5)
0.5 21.2 696(8) 191 1 12(5)

20
0.3 25.41 91(51) 16 2 4(5)
0.5 32.9 949(24) 228 1 28(5)

75
10

0.3 35.48 276(22) 59 1 5(5)
0.5 17.3 1768(21) 467 1 47(5)

20
0.3 20.73 84(50) 14 4 5(5)
0.5 22.17 3296(14) 686 6 123(5)

100
10

0.3 52.29 414(13) 100 1 9(5)
0.5 5.69 769(19) 223 2 23(5)

20
0.3 92.59 256(32) 40 3 9(5)
0.5 22.11 5450(20) 1087 12 962(4)

Agg. time 1228(59)

Table 3: Results from combinations of separation 1 and the different bounds.

separation algorithm 2, but the performance is slightly worse. This is not so surprising as the only
difference between separation algorithm 2 and 3, is the weight assigned to each variable, when
these are sorted.

If we compare the separation algorithms, separation algorithms 2, and 3 outperforms separation
algorithm 1. The main reason is that for separation algorithm 1, a conic quadratic program needs
to be solved, which is slow compared to the sorting done for separation algorithms 2, and 3. Also
more cuts, can be separated per call, for the two latter, as more than one cover is attempted
extended. There seems to be a slight advantage to using separation algorithm 2 over separation
algorithm 3, which seems to imply that the fractionality of a variable is more important than its
weight, when attempting to find a violated inequality.

Comparing the different bounds LB2(minsum) has a clear advantage compared to the others.
This is primarily because it is fast, and can thus be used to separate cuts throughout the branch-
and-bound tree.

In order to better illustrate the advantage of cutting compared to CPLEX, Table 6 shows
the results of CPLEX side-by-side with the best combination, i.e., separation algorithm 2, using
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Sep2(x-sort)+Exact(conic) Sep2(x-sort)+LB1(lprelax)

N M β rgap cuts nodes rt time rgap cuts nodes rt time

50
10

0.3 0.0 70 0 146 146(5) 0.67 120 2 57 57(5)
0.5 17.12 52 1112 155 161(5) 17.54 58 1175 64 68(5)

20
0.3 19.64 129 28 700 700(5) 26.33 192 27 186 187(5)
0.5 26.51 92 1097 400 496(5) 28.43 102 1742 98 232(5)

75
10

0.3 20.57 113 103 699 699(5) 25.32 175 199 186 187(5)
0.5 14.7 55 2635 271 400(5) 15.3 79 3191 77 270(5)

20
0.3 13.52 161 12 998 998(5) 9.52 290 15 460 460(5)
0.5 18.13 84 3881 644 1412(4) 19.57 99 4327 210 1158(4)

100
10

0.3 31.58 125 244 1710 1711(5) 36.73 231 477 428 431(5)
0.5 4.79 35 785 339 348(5) 5.12 48 1518 63 215(5)

20
0.3 42.1 277 58 2481 2776(5) 39.66 342 109 885 887(5)
0.5 20.76 65 6961 1101 3989(1) 21.03 76 9223 228 2925(2)

Agg. time 13836(55) 7077(56)

Sep2(x-sort)+LB2(minsum)

N M β rgap cuts nodes rt time

50
10

0.3 0.73 96(95) 1 0 0(5)
0.5 17.29 931(56) 113 1 1(5)

20
0.3 24.64 194(126) 17 1 1(5)
0.5 27.56 1290(97) 140 1 3(5)

75
10

0.3 24.59 375(145) 33 1 2(5)
0.5 14.57 2592(82) 238 0 5(5)

20
0.3 12.43 238(206) 8 3 3(5)
0.5 18.62 5013(111) 410 15 30(5)

100
10

0.3 37.19 652(160) 48 1 2(5)
0.5 4.92 1702(47) 165 2 5(5)

20
0.3 44.64 504(304) 32 6 7(5)
0.5 20.73 13624(85) 860 21 71(5)

Agg. time 132(60)

Table 4: Results from combinations of separation 2 and the different bounds.

LB2(minsum).

Effect of extending covers In order to examine the effect of extending cover inequalities, we
compare the results from running the best separation algorithm (separation algorithm 2), with
and without the the bound resulting from the exact solution of OPT . The reason for using this
bound, even though it is slow, is that it is optimal and should thus best illustrate the root bound
quality gained from using extension. Cutting was in both cases only applied at the root node. As
can be seen from the results in Table 7 there is a clear gain in quality of the root bound, in the
number of cuts added, and in the number of branch-and-bound nodes, when extension is used.
The use of the slower exact extension however means that the time spend cutting at the root node,
does not translate into a gain in total solution time.

Effect of using GUB information In order to examine the effect of using the GUB information
when extending a cover, we perform two experiments. In the first experiment we compare the
results of two runs, using separation algorithm 1 along with the optimal bound, i.e, solving OPT .
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Sep3(x/coef-sort)+Exact(conic) Sep3(x/coef-sort)+LB1(lprelax)

N M β rgap cuts nodes rt time rgap cuts nodes rt time

50
10

0.3 0.0 69 0 145 145(5) 0.47 108 4 57 57(5)
0.5 18.54 32 1120 169 175(5) 18.97 31 1560 45 55(5)

20
0.3 25.43 91 30 463 463(5) 27.79 157 40 152 152(5)
0.5 28.38 64 1049 398 420(5) 30.81 63 1737 96 176(5)

75
10

0.3 22.74 102 137 685 685(5) 25.81 164 264 137 138(5)
0.5 16.38 42 3432 289 672(5) 16.39 53 3517 64 367(5)

20
0.3 11.59 200 20 1562 1599(5) 13.18 298 13 321 321(5)
0.5 20.6 53 3943 710 1469(4) 21.35 59 4500 155 935(4)

100
10

0.3 35.36 134 253 1942 1944(5) 42.36 196 612 254 258(5)
0.5 5.17 23 1163 411 507(5) 5.84 23 1729 56 769(5)

20
0.3 44.88 309 123 3364 3784(5) 41.38 438 74 731 732(5)
0.5 22.76 36 8416 906 3810(1) 22.03 30 8144 170 3355(1)

Agg. time 15673(55) 7316(55)

Sep3(x/coef-sort)+LB2(minsum)

N M β rgap cuts nodes rt time

50
10

0.3 0.0 106(106) 0 0 0(5)
0.5 20.42 868(24) 159 0 1(5)

20
0.3 24.45 212(138) 17 1 1(5)
0.5 29.78 1111(62) 166 1 3(5)

75
10

0.3 27.22 373(146) 38 1 2(5)
0.5 16.28 2381(54) 432 0 12(5)

20
0.3 11.96 295(246) 15 3 4(5)
0.5 21.26 4155(52) 597 7 40(5)

100
10

0.3 39.33 625(172) 69 1 2(5)
0.5 5.75 879(31) 184 1 4(5)

20
0.3 46.13 539(393) 23 5 7(5)
0.5 22.04 12336(34) 1674 13 270(5)

Agg. time 347(60)

Table 5: Results from combinations of separation 3 and the different bounds.

In the first run the GUB information is used, while in the second run it is not. Not using
the GUB information means removing constraints (4) and constraints (23) from their respective
mathematical programs. In both cases cutting is only applied at the root node. As can be seen
from the results in Table 8 using GUB information results in an improvement of the root gap.
This does however not translate into a better total solution time.

In order to get a better indication of the usefulness of using GUB information, we con-
duct a second experiment. In this experiment we compare the best separation and bound,
i.e., Sep2+LB2(minsum), with an implementation of the separation and extension algorithm
of Atamtürk and Narayanan (2008), which does not make use of GUB information. We do not
include their advanced lifting procedure, but only their extension algorithm. The ordering of the
variables used when extending is the same as for the other bounds examined. Cuts are applied
throughout the branch-and-bound tree for both algorithms. As can be seen from the results in
Table 9 there is a clear gain from employing GUB information when separating and extending
cuts. It is surprising that for some of the instances so few cuts are separated at the root node
by our implementation of the separation and extension described by Atamtürk and Narayanan
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CPLEX Sep2(x-sort)+LB2(minsum)

N M β rgap cuts nodes rt time rgap cuts nodes rt time

50
10

0.3 77.8 0 865 0 2(5) 0.73 96(95) 1 0 0(5)
0.5 22.87 0 1737 0 9(5) 17.29 931(56) 113 1 1(5)

20
0.3 147.59 0 1335 1 11(5) 24.64 194(126) 17 1 1(5)
0.5 38.83 0 2108 0 83(5) 27.56 1290(97) 140 1 3(5)

75
10

0.3 80.24 0 2954 0 32(5) 24.59 375(145) 33 1 2(5)
0.5 21.12 0 3594 0 55(5) 14.57 2592(82) 238 0 5(5)

20
0.3 183.4 0 2338 2 29(5) 12.43 238(206) 8 3 3(5)
0.5 25.06 0 4724 2 760(4) 18.62 5013(111) 410 15 30(5)

100
10

0.3 57.69 0 4664 0 187(5) 37.19 652(160) 48 1 2(5)
0.5 7.78 0 1613 0 13(5) 4.92 1702(47) 165 2 5(5)

20
0.3 155.09 0 5175 3 1035(4) 44.64 504(304) 32 6 7(5)
0.5 23.9 0 9279 3 2674(2) 20.73 13624(85) 860 21 71(5)

Agg. time 4889(55) 132(60)

Table 6: Comparison of best combination to CPLEX.

(2008), but we believe that a reason could be that ILOG CPLEX 12.1 separates a number of
unspecified conic cuts, which may be similar to cover cuts without GUB information (the version
of CPLEX used in Atamtürk and Narayanan (2008) is 11.0 and does not separate any conic cuts).
We note however that the implementation still beats CPLEX.

6 Conclusion

We have described how the second-order conic equivalent of cover cuts can be extended by using
the structure imposed by GUB constraints. We have proposed a number of separation and ex-
tension algorithms, and compared these to one another and to CPLEX on a set of generated test
instances. These experiments show that a relatively simple separation and extension algorithm,
which employs the GUB constraints, can speed up the solution time considerably. Fast separation,
and extension algorithms are an advantage, since this makes it possible to cut locally through-out
the branch-and-bound tree as opposed to only in the root node.

As a theoretical contribution we have showed that the problem of deciding if a cover can be
extended with a varible is NP-hard, and have established the relation between two bounds: one
based on an LP relaxation (LB1) and the other based on decomposing the problem (LB2).
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Sep2(x-sort)+Exact(conic) Sep2(x-sort)

N M β rgap cuts nodes rt time rgap cuts nodes rt time

50
10

0.3 0.0 70 0 146 146(5) 36.34 45 270 0 1(5)
0.5 17.12 52 1112 155 161(5) 22.29 5 1758 0 9(5)

20
0.3 19.64 129 28 700 700(5) 77.54 36 669 1 6(5)
0.5 26.51 92 1097 400 496(5) 37.86 4 1926 0 85(5)

75
10

0.3 20.57 113 103 699 699(5) 56.86 35 2173 1 21(5)
0.5 14.7 55 2635 271 400(5) 19.18 10 3598 0 58(5)

20
0.3 13.52 161 12 998 998(5) 83.23 80 681 2 17(5)
0.5 18.13 84 3881 644 1412(4) 24.95 1 5155 3 887(4)

100
10

0.3 31.58 125 244 1710 1711(5) 55.32 12 3916 0 129(5)
0.5 4.79 35 785 339 348(5) 7.1 9 1512 1 13(5)

20
0.3 42.1 277 58 2481 2776(5) 100.4 64 1856 4 85(5)
0.5 20.76 65 6961 1101 3989(1) 23.6 5 9140 3 2836(2)

Agg. time 13836(55) 4145(56)

Table 7: Results from running separation algorithm 2 with and without the Exact(conic) bound.

Sep1(conic)+Exact(conic) Sep1(Conic)+Exact(conic)-GUB

N M β rgap cuts nodes rt time rgap cuts nodes rt time

50
10

0.3 0.4 35 1 8 8(5) 0.83 43 1 10 10(5)
0.5 21.23 6 1597 4 12(5) 22.13 4 1621 4 12(5)

20
0.3 28.38 55 70 14 14(5) 33.53 43 90 15 15(5)
0.5 32.79 24 1526 11 51(5) 36.32 12 2022 11 120(5)

75
10

0.3 36.62 18 1365 5 17(5) 40.53 22 1373 10 21(5)
0.5 16.68 18 3104 13 68(5) 19.15 10 3390 11 65(5)

20
0.3 16.94 47 72 18 19(5) 39.0 52 176 25 27(5)
0.5 20.7 20 5189 31 822(4) 24.61 5 5025 14 618(5)

100
10

0.3 51.44 14 2135 6 16(5) 53.92 13 2603 4 16(5)
0.5 5.91 12 1365 31 46(5) 6.53 12 1402 24 33(5)

20
0.3 87.48 32 816 22 44(5) 95.34 28 953 20 38(5)
0.5 22.07 17 7906 55 3016(1) 22.99 8 10812 36 2537(3)

Agg. time 4131(55) 3512(58)

Table 8: Results from running Sep1+Exact(conic) with and without use of GUB information.
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Sep2(x-sort)+LB2(minsum) Atamtürk and Narayanan (2008)

N M β rgap cuts nodes rt time rgap cuts nodes rt time

50
10

0.3 0.73 96(95) 1 0 0(5) 51.49 227(24) 30 0 1(5)
0.5 17.29 931(56) 113 1 1(5) 22.85 1193(1) 441 0 7(5)

20
0.3 24.64 194(126) 17 1 1(5) 76.95 342(30) 28 2 4(5)
0.5 27.56 1290(97) 140 1 3(5) 38.09 1861(1) 485 0 17(5)

75
10

0.3 24.59 375(145) 33 1 2(5) 73.67 1065(8) 163 1 11(5)
0.5 14.57 2592(82) 238 0 5(5) 19.59 3313(9) 1161 0 60(5)

20
0.3 12.43 238(206) 8 3 3(5) 114.11 412(43) 26 3 7(5)
0.5 18.62 5013(111) 410 15 30(5) 24.95 6021(1) 1433 3 179(5)

100
10

0.3 37.19 652(160) 48 1 2(5) 55.68 2011(8) 277 1 37(5)
0.5 4.92 1702(47) 165 2 5(5) 7.46 1290(3) 489 1 41(5)

20
0.3 44.64 504(304) 32 6 7(5) 123.24 1215(31) 69 6 35(5)
0.5 20.73 13624(85) 860 21 71(5) 23.78 21045(2) 3405 3 1411(5)

Agg. time 132(60) 1811(60)

Table 9: Comparison of Sep2+LB2(minsum) with Atamtürk and Narayanan (2008)
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We consider the second-order conic equivalent of the classic knapsack polytope where the variables 
are subject to generalized upper bound constraints. We describe and compare a number of separation 
and extension algorithms which make use of the extra structure implied by the generalized upper 
bound constraints in order to strengthen the second-order conic equivalent of the classic cover cuts. 
We show that determining whether a cover can be extended with a variable is NP-hard. Computa-
tional experiments are performed comparing the proposed separation and extension algorithms. 
These experiments show that applying these extended cover cuts can greatly improve solution time 
of second-order cone programs.
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