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Abstract

Mining for associations in large scale graphs is a problem of both theoretical and
practical importance, e.g., study of social networks, market basket analysis and
collaborative filtering, and in web scale text processing. As these problems mount
the need for computationally efficient tools that can accurately predict relations
and also provide relevant insight in underlying mechanisms, becomes urgent. The
infinite relational model (IRM) has been proposed as a Bayesian generative model
for graphs. Generative models can provide accurate predictions and through infer-
ence of relevant latent variables they can inform the user about mesoscale struc-
ture. The IRM forms a low-rank probabilistic representation of a bipartite network
by co-clustering, ie., coordinated grouping of each mode to best model the graph.
A benefit of the IRM over existing co-clustering approaches is that the model ex-
plicitly exploits the statistical properties of binary graphs and allows the number
of components of each mode to be inferred from the data. We present experimen-
tal results on much larger IRM’s than previously analyzed. This is made possible
by the observation that the structure of the bipartite IRM is very well suited for
GPU computing. The GPU implementation achieves a speedup of two orders of
magnitude relative to conventional CPUs for model estimation in networks with
N = 107−109 connections.

1 Introduction

Co-clustering also denoted bi-clustering and two-mode clustering is the simultaneous clustering of
rows and columns in a matrix. Co-clustering has already gained popularity in several fields, in-
cluding bio-informatics for identification of co-regulated genes and gene functional annotation [12],
collaborative filtering and market basket analysis for identification of user and product segments
[22], text miming [5, 3, 23] for identification of related terms and documents, and social network
modeling to find relationships between agents and behavior [1, 7]. Many co-clustering methods have
been proposed including the iterative refinement approach of Hartigan [9], heuristics for grouping
columns and rows in an adjacency matrix [21], spectral [5] and information theoretic approaches
[4], and methods inspired by community detection in complex networks [20, 7]. For reviews on
co-clustering, see also [13, 12, 7]. In this contribution we consider the specific case of co-clustering
of binary data, i.e., for which co-clustering becomes the analysis of bipartite graphs. This type of
relational data is typically represented by the adjacency matrix A ∈ BI×J , where Aij = 1 if entity
i is related to entity j and Aij = 0 otherwise. We are interested in approaching co-clustering by
generative models. Generative models serve the two main purposes in machine learning namely, to
identify predictive relations and, via the inference of relevant latent variables, to provide interpre-
tation and domain insight. Bayesian generative models such as the relational model [11, 23] and
the stochastic block model [17, 7] have previously been proposed for analysis of binary relations.
The so-called infinite relational model (IRM) for bipartite graphs is based on the decomposition
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Figure 1: Illustration of the relational model for bipartite graphs. The adjacency matrix A is ac-
cording to the co-clustering approach decomposed into row and column clustersZ(1) andZ(2) such
that ηlm gives the extend in which row group l is related to column group m. Contrary to other
co-clustering approaches the relational model is specialized for the modeling of binary graph data
based on the Bernoulli likelihood as measure of deviation in reconstruction and automatically infers
the numbers of row and column clusters from a potential infinite number of clusters.

A ≈ Z(1)>ηZ(2), where Z(1) and Z(2) are latent binary clustering assignment matrices while ηlm
indicates how group l in Z(1) is related to group m in Z(2), see also figure 1. The IRM can be
considered a lossy compression/low-rank approach where the bipartite graph is compressed into
blocks of homogenous regions in the graph. The IRM can lead to insight in the domain as the latent
variables provide for detection of communities, see e.g., the analysis of unipartite graphs by the
IRM [11, 14]. A further strong benefit of the IRM over existing co-clustering approaches is that the
numbers of row and column clusters L and M are inferred from data. Thus, the IRM has already
proven useful in the analysis of a variety of complex networks [11, 23, 14], however, these previ-
ous analyzes have been limited to networks of only a few million links. The IRM has not yet been
applied to realistic, web scale, networks of say 108 − 1010 links.

In this contribution we investigate the feasibility of GPU based inference for the IRM and find
significant performance advantages over traditional CPU calculation, yielding 102 speed-ups on a
single graphics card. To the best of our knowledge this is the first attempt at large scale co-clustering
of bipartite graphs on GPUs. Finally we demonstrate our capability to analyze real-life complex
networks that are orders of magnitude larger than previous attempts based on the IRM.

2 Methods

The generative process for the the Relational Model [11, 23] also denoted the Stochastic Block
Model [17] is given by:
� Sample the row cluster probabilities, i.e. µ(1) ∼ Dirichlet(α(1)/K(1)e(1)).
� Sample row cluster assignments, i.e. i = 1, . . . , I z(1)

i ∼ Discrete(µ(1)).
� Sample the column cluster probabilities, i.e. µ(2) ∼ Dirichlet(α(2)/K(2)e(2)).
� Sample column cluster assignments, i.e. j = 1, . . . , J z(2)

j ∼ Discrete(µ(2)).
� Sample between cluster relations, i.e. l = 1, . . . , L and m = 1, . . . ,M ηlm ∼ Beta(β+, β−).
� Generate links, i.e. i = I, . . . , J and j = 1, . . . , J Aij ∼ Bernoulli(z(1)

i ηz
(2)
j ).

Where K(1) and K(2) denote the number of row and column clusters respectively whereas e(1) and
e(2) are vectors of ones with size K(1) and K(2).1

Blocked Gibbs Sampling in the IRM
As the Dirichlet distribution is conjugate to the Discrete distribution and the Beta distribution is
conjugate to the Bernoulli distribution both µ(1), µ(2) and η can be integrated out analytically (i.e.
collapsed). Furthermore, the limits K(1) → ∞ and K(2) → ∞ (i.e., a priori assuming a potential
infinite number of clusters in mode one and two) forming the Infinite Relational Model (IRM)
has an analytic solution given by the Chinese Restaurant Process (CRP) [23, 11] also denoted the

1According to the generative process the probability of observing a link is governed by the class assignment
of the ith and jth nodes, i.e. z(1)

i and z(2)
j as well as the inter-group relations η where ηlm gives the probability

of observing a link between class l and class m. Links in the graphs are conditionally independent given their
respective node assignments.
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Dirichlet Process (DP) [6, 15]. The analytic integration of µ(1), µ(2) and η introduce however
dependence between the nodes within a mode such that the assignments of each node in mode one
or two no longer can be updated in parallel. Rather than collapsing parameters of the model blocked
sampling can be invoked which potentially also result in better mixing [10, 24]. The CRP/DP can be
approximated by the truncated stick breaking construction (TSB), see also [10, 24]. The truncation
error becomes insignificant when the model is estimated for large values of K(1) and K(2), see also
[10]. The blocked sampling based on TSB result in the following updates for the IRM parameters
P (z(1)

i = l|A,Z(2),µ(1),η) ∝ µ(1)
l exp(

∑
m,j log( ηlm

1−ηlm
)Aijz

(2)
mj + log(1− ηlm)z(2)

mj),

P (z(2)
j = m|A,Z(1),µ(2),η) ∝ µ(2)

m exp(
∑
l,i log( ηlm

1−ηlm
)Aijz

(1)
li + log(1− ηlm)z(1)

li ),
P (ηlm|A,Z(1),Z(2), β+, β−) ∼ Beta(Ne(l,m) + β+, No(l,m) + β−),
µ

(1)
l = v

(1)
l

∏l−1
l′=1(1− v

(1)
l′ ), where v

(1)
l ∼ Beta(1 + n

(1)
l , α(1) +

∑K(1)

l+1 n
(1)
l ), v(1)

K(1) = 1,

µ
(2)
m = v

(2)
m

∏m−1
m′=1(1− v

(2)
m′ ), where v

(2)
m ∼ Beta(1 + n

(2)
m , α(2) +

∑K(2)

m+1 n
(2)
m ), v(2)

K(2) = 1.

where Ne(l,m) =
∑
ij z

(1)
li Aijz

(2)
mj and No(l,m) =

∑
ij z

(1)
li z

(2)
mj − No(l,m) denote the number

of links and non-links between group l and m respectively. In [24] blocked sampling based on TSB
was found to perform as well as collapsed sampling.

GPU Computing Aspects
Our implementation consists of a CPU part for sampling η, µ(1), µ(2) and a GPU part for sampling
Z(1), Z(2). The main reason for not keeping everything in GPU code is that only the sampling of
the cluster assignment matrices exhibit an arithmetic intensity sufficient for taking advantage of the
GPU architecture, furthermore the limited amount of GPU memory force us to discretize the sam-
pling into suitable sized subproblems where asynchronous operations can be used to hide the asso-
ciated memory latency when transferring data between the host memory (CPU) and device memory
(GPU). The greatest challenge in the development of high performance GPU applications is to keep
device memory latency low and thereby all threads occupied with arithmetic operations [18, 19].
Unfortunately sparse matrix representations often result in scattered memory accesses thereby mak-
ing efficient memory segmentation difficult. Performing sparse matrix operations on CUDA capable
GPUs have already been analyzed [2], but since the posterior likelihood of Z(1) and Z(2) contain
structure that can be exploited to yield a more efficient memory pattern, no existing implementation
seems ideal. To minimize the memory footprint of the cluster assignment matrices we utilize the
property that a node can only belong to a single cluster, hence they are encoded as vectors where
each entry corresponds to the respective cluster number. With respect to the adjacency matrix A,
we presort each mode according to node degree and chunk it into aligned blocks of memory where
each entry encodes the position of a link. Using the proposed format the calculation of AZ(2)>

and A>Z(1)> (constituting the main computational bottleneck in the updates of Z(1) and Z(2) re-
spectively) correspond to incrementing link counts in the dense result matrix directly indexed by
our sparse representation. The implemented memory layout minimizes thread divergence and pro-
vides coalesced memory transfers in A, whereas the scattered accesses in Z can be cached in local
memory. Remaining dense matrix operations are handled using the CUBLAS library, whereas we
utilize yet another custom CUDA kernel to sample the cluster assignment matrices done by applying
inverse transform sampling requiring a stream of uniform random numbers per thread. Since present
devices have no built-in random number generator, pseudo random numbers are generated in GPU
code using a hybrid of a Linear Congruential Generator (LCG) and a combined Tausworthe gen-
erator that has been shown to remove all the statistical defects observed in each separate generator
[16].

3 Results and Discussion

In order to evaluate the speedup of GPU computation over traditional CPU computation we analyze
synthetically generated graphs, varying the number of nodes, links and clusters2. Figure 2 shows the
speedup that our GPU implementation3 achieve over the semantically equivalent CPU implemen-
tation. The speedup is positively correlated with the number of links and clusters, since increasing

2Hardware configuration; Intel Core i7-920 2.66GHz with 24 GB of memory, NVIDIA C1060 Tesla with 4
GB of memory. Ubuntu 9.10, Linux kernel 2.6.31, NVIDIA CUDA driver version 256.40.

3The illustrated results are for floating point precision.
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these will improve the overall arithmetic intensity. Increasing in the number of nodes while keeping
the number of links fixed yields a negative impact in the speedup, because increasing the sparsity re-
duces the load on each parallel processing GPU thread. For 512 clusters our implementation reaches
more than a 140 times speedup. With respect to numerical precision we have for the synthetical data
not observed any significant difference between floating and double precision as measured in terms
of AUC scores (p = 0.05). However, for even larger problem sizes we foresee that floating point
precision might lead to slower convergence as rounding errors accumulate in the inverse transform
sampling algorithm. Thus, in terms of speed there may exist a tradeoff between slower conver-
gence in terms of floating point rounding errors and slower calculation in terms of double precision
arithmetic.
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Figure 2: The speedup for GPU over CPU computing. The number of nodes for the two modes are
here identical. Left panel; speedup for 128 clusters in each mode, middle panel; speedup for 256
clusters in each mode, right panel; speedup for 512 clusters in each mode.

To demonstrate the GPU implementation on real-life large scale data we turn to topic modeling and
consider abstracts from U.S. National Library of Medicine (PubMed) based on the bag of words
representation publicly available from [8]. Disregarding the number of occurrences of the words
we obtain the adjacency matrix A where Aij = 1 if word i occurred in document j and Aij = 0
otherwise. The PubMed abstracts contain 140K words and 8 million documents with approximately
500 million word occurrences. We analyzed the dataset based on a maximum of 500 clusters and
treated 1 % of links and an equivalent number of non-links as missing at random and analyzed
each graph five times with different randomly generated sets of links and non-links treated as miss-
ing. Each sampling iteration took less than 80 seconds and the link-predictive performance did
not significantly improve after about 100 iterations so the analysis was terminated upon 500 itera-
tions. To investigate the uniqueness of the solution we calculated the normalized mutual information
(NMI) measuring how similar the extracted clusters are across the five sampling runs and found that
NMI(1) = 0.73(0)[0.07(0)] whereas NMI(2) = 0.67(0)[0.00(0)], hence, the extracted clusters all
are quite consistent across the sampling runs and much more similar than would be expected by
random4. Finally, table 1 illustrates three representative clusters extracted by the IRM, relating to
various areas of research.

4 Conclusion

Using efficient GPU implementations we demonstrated the first large scale co-clustering results
based on the infinite relational model. In terms of scalability the current GPU implementation al-
lows us to go beyond the datasets analyzed here and make inference in even larger bipartite networks,
provided that Z(1) can fit in device memory when sampling subsets of Z(2) and vice versa. Fur-
thermore, the discretization that we apply in our current implementation makes it straightforward to
utilize systems with multiple GPUs, simply by parallel distribution of the discretized subproblems.
Finally, we note that the GPU implementation trivially generalizes to other inference approaches
such as variational Bayes [24]. Future work will focus on extending the proposed framework for
graphs with temporal dynamics, i.e. online auctions and collaborative content creation such as blogs.
We imagine a potential in exploiting random projection methods to efficiently subsample data while
still recovering network structure supported by the data within the available timeframe imposed by
online systems.

4In parenthesis are given the standard deviation on last digit and in brackets the NMI obtained by random.
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A Supplementary GPU Performance Material
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Figure 3: Shows the measured execution times used to obtain the speedup illustrations in figure 2.

B Examples of Discovered Structure in PubMed

∼ Neurology ∼ Cancer ∼ Cardiology

amygdala, ca1, ca3, caudate, cell bodies, cir-
cuitry, colliculus, dendrites, dentate gyrus, dorsal
root, dorsolateral, entorhinal, gabaergic, ganglion
cell, geniculate, innervated, interneuron, lesioned,
limbic, mesencephalic, midbrain, motoneuron,
myelinated, neocortex, neocortical, nerve fiber,
neuropil, perikarya, purkinje, putamen, raphe,
rostral, soma, somata, substantia nigra, synapse,
tegmental, thalamic, thalamus.

adenocarcinoma, adjuvant, benign, biopsies,
biopsy, breast, breast cancer, cancer patient, car-
cinoma, carcinomas, cell carcinoma, chemother-
apy, grade,histologic, histological, histologically,
histology, hyperplasia, invasion, invasive, irra-
diation,lung cancer, lymph node, lymph nodes,
malignancies, malignancy, malignant, metas-
tases, metastasis, metastatic, neoplasm, neoplas-
tic, prognostic, prostate, radiation, radiotherapy,
recurrence, tumour.

angina, antiarrhythmic, arrhythmia, arrhythmias,
atrial, atrial fibrillation, atrioventricular, atrium,
av, beat, cardiomyopathy, congestive heart, ecg,
echocardiographic, ejection fraction, electro-
cardiogram, electrocardiographic, electrophysio-
logic, end-diastolic, endocardial, epicardial, fib-
rillation, implantable, left atrial, left ventri-
cle, lv, myocardial ischemia, pacemaker, pac-
ing, pectoris, qr, right ventricular, tachycar-
dia,ventricular function, ventricular hypertrophy,
ventricular tachycardia.

Table 1: Example of three topic groups given in red, green and blue respectively extracted by the
IRM for the PubMed data.
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