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Abstract. A description is given of the physical basis for ap­

plying track structure theory in the determination of the effec­

tiveness of heavy-ion irradiation of single- and multi-hit tar­

get systems. 

It will be shown that for applying the theory to biological sys­

tems the effectiveness of heavy-ion irradiation is inadequately 

described by an RBE-factor, whereas the complete formulation of 

the probability of survival must be used, as survival depends on 
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1. INTRODUCTION 

Clinical experience in radiotherapy is based on the use of low-

LET radiation in which the absorbed dose is a sufficient de­

scription of the radiation field. In the case of high-LET 

radiation such as neutrons, heavy ions, and IT-mesons we have a 

completely different situation since the radiation field now 

consists of a distribution in energy and particle type. Pri­

mary and secondary ions, secondary electrons, and gamma-radi­

ation will interact differently with the dose meter or tissue 

being irradiated and thus contribute to the total effect in a 

very complex way. The result is that measurement of the ab­

sorbed dose no longer suffices to predict the effect that we 

are seeking, as a one-to-one correspondence between dose and 

its effect no longer exists. Use of simple conversion factors 

like RBE for calculating the effect of a given dose is not a 

particularly useful method and in most cases it will give the 

wrong result. 

Even where it is merely a question of correlating dose and ef­

fect proportionately the situation quickly gets complicated 

since one must correct for the particle type, energy spectrum 

of the particles, as well as tissue type. In short, for high-

LET irradiation isodose contours aro isoeffect contours only if 

the particle spectrum remains constant. Further, the dose-ef­

fect curve will vary with materials and particles. 

When speaking of the response of a detector or tissue to ion­

izing radiation of various types or qualities we use a concept 

called the relative biological effectiveness, RBE for short, 

and express it as a function of LET, as shown in Pig. 1. RBE 

is giver as the ratio of the dose of low-LET radiation, usually 

with 200 kVp x-rays as reference, to that of high-LET radiation 

necessary to produce the same effect. The curves in Fig. 1 

show clearly that different biological systems display a marked 

variation in their RBE-LET characteristic with the value of LET 

for maxi. lm RBE varying by a factor of 10 from one system to the 

other. Further, cells show initially an increase in RBE with 
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increasing LET followed by a decrease at very high LET, whereas 

the bacteria systems like most physical detectors display a 

monotonically decrease in RBE with increasing LET and with RBE 

always less than unity. This leads to the impossibility of 

distinguishing between low- and high-LET radiation without 

specifying the material under irradiation. In other words, LET 

is not a useful parameter for describing the sensitivity of 

different materials to ionizing radiation. We must instead 

start looking for better parameters to distinguish low- from 

high-LET radiation. 

2. GENERAL DESCRIPTION OF THE TRACK STRUCTURE THEORY 

The track structure theory has been developed to describe the 

blackness of photographic emulsions around the path of a heavy 

particle. Photographic emulsions consist of silver halide 

crystals embedded in a gelatine base. Various chemicals may be 

added in ppm-amounts to alter the sensitivity of the emulsion 

sharply. An example of a heavy ion emulsion track is shown in 

Fig. 2. It is evident that the track is very irregular and in 

the beginning the developed grains are very scattered while 

only at the end of the particle range, where the ion has given 

up almost all its energy, is the track continuous. The first 

irregular part is in many respects analogous to the cluster 

theory in radiation chemistry. This theory considers the in­

teraction between radiation and matter to occur in discrete 

steps with about 50-100 eV deposited in a cluster of excited 

and ionized atoms or molecules. The radiation effects arise 

from reactions in the clusters and the diffusion of reactive 

species, mainly radicals from the clusters. LET gives only the 

mean distance between clusters and no indication of their 

spatial distribution, which again points to the poor predictive 

value of LET. 

The silver halide crystals are about 0.2 vm in average physical 
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dimension; with a density of about 9 this corresponds to about 

2 ym at unit density. The photographic emulsion may be thought 

of as a matrix of radiation-sensitive elements each consisting 

of a silver halide crystal responding to the average dose to 

the element. 

In the case of biological systems the sensitive element is 

usually assumed to be the cell nucleus which has a diameter of 

a few ym, i.e. approx. the same as the silver halide crystal at 

unit density. It may be more correct to consider the DNA mol­

ecule as the sensitive element. DNA is very twisted and, ex­

cept at cell mitosis, bound to the cell membrane. The size of 

DNA as the sensitive element is not well defined; another com­

plication is that energy can move extensively within the DNA 

molecule up to several hundreds of base pairs from where the 

energy originally was deposited. 

In physical detectors the sensitive element may vary in size 

from that of a single molecule, e.g. the dye film dose meter, 

up to several nm in cases where collective phenomena play a 

role as they do in scintillator solutions. 

The response of physical and biological systems to low-LET 

radiation may often be described by a multi-hit model which 

includes a parameter m that may be thought of as a measure of 

the number of times the sensitive element must be hit by an 

electron which deposits energy in the element. In track struc­

ture theory m is called the "hittedness". 

Photographic emulsions may vary from 1- to 8-hit detectors ac­

cording to the chemical nature of the additives or the use of 

various development procedures, and may thus mimic various bio­

logical as well as physical systems. The probability for acti­

vation of a sensitive element can be described by Poisson stat­

istics with P = activation probability - [1- exp(-D/D._)]m. 

D3_ is a characteristic dose corresponding to each element re­

ceiving one hit on the average, while m is the hittedness of 

the detector. Some detectors like LiF-TLD show a mixed 1- and 

2-hit response. 
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1-hit response is characteristic of most physical detectors. 

An ideal 1-hit detector has the following properties: 1) a 

linear dose response up to doses comparable to D,-, 2) absence 

of dose-rate effects since the sensitive elemant may be acti­

vated by a single electron, and fading or repair is disre­

garded, 3) in a log-log plot all dose-response curves will be 

45 lines no matter if the radiation is of high- or low-LET, 

and 4) RBE will decrease monotonically with LET as shown in 

Fig. 1 for bacteria. For a 1-hit detector where activation 

may be brought about by a single electron passing through the 

element, RBE must always be less than or eqial to unity. 

In less-sensitive photographic emulsions the silver halide 

crystal must be hit more than once by electrons, resulting in 

a supralinear dose-response for low-LET radiation. An example 

of this is shown in Fig. 3. The figure closely resembles a 

survival curve for biological systems and indicates that physi­

cal detectors suitably chosen may be used to study radiation 

effects on biological systems, e.g. at low doses. 

In the case of multi-hit detectors, i.e. with m > 2 RBE may be 

both larger and smaller than 1 depending on LET. By concen­

trating the absorbed energy on a small area around the particle 

track RBE may become greater than one. If the concentration 

becomes too high, i.e. the dose surpasses D__, RBE starts to 

fall due to an overkill effect as may also be seen from the 

POisson statistics. This describes the variation of RBE in 

cell systems with LET as shown in Fig. 1. 

The study of heavy ion tracks in a photographic emulsion, as 
2) 

shown in Fig. 2, has led Katz and coworkers to distinguish 

between two types of activation processes: "gamma-kill" and 

"ion-kill". Gamma-kill designates an activation of the sensi­

tive element arising from hits by electrons from low-LET radi­

ation or 6-rays produced by different ions. Thus there is no 

spatial or temporal correlation between the electrons that hit 

the sensitive element. 

In the ion-kill mode the element is activated directly by the 
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ion passing through it or else the ion passes so close to the 

element that it is inactivated by the tangle of 6-rays emanating 

from the particle track. Gamma-kill is possible only with a 

beam of particles and the probability of gamma-kill will depend 

on the density of particles and thus on dose. At low doses 

gamma-kill will be very unlikely since the mean density of elec­

trons decreases in proportion to the dose, whereas the prob­

ability for gamma-kill will vary with D m, m being the hitted-

ness. 

The distinction between the two inactivation modes is mainly 

that ion-kill relates to a single particle where the probability 

for the effect is described by a cross-section. For a particle-

beam the number of sensitive elements inactivated by ion-kill 

will vary in direct proportion to the dose, since the number of 

particles decreases linearly with dose. According to this point 

of view, a single electron cannot lead to ion-kill. Thus there 

will be no effect of a single electron passing through a multi-

hit detector. 

The tracks of heavy ions shown in Fig. 2 are due to ion-kill. 

The irregular part of the track is called "grain-count", while 

the continuous portion is called "track-width". Grain-count is 

typical for fast heavy ions with low charge, e.g. protons, 

while track-width is encountered with ions of low velocity and 

high effective charge and correspondingly high LET. 

3. DESCRIPTION OF THE THEORETICAL MODEL 

3) 
The track structure theory as developed by Katz and coworkers 

is based on the often overlooked fact that regardless of the 

primary type of radiation, whether gamma- or x-rays, electrons, 

neutrons, heavy particles or v-mesons, the interaction between 

radiation and matter is mediated via secondary or higher-order 

electrons. 
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For purposes of calculation the detectors are assumed to be 

much more sensitive towards ionization than excitation, i.e. 

they are relatively insensitive to uv irradiation. This is the 

case for most physical detectors and almost all biological sys­

tems . 

To get a better understanding of the secondary electron spec­

trum, we must look at the ionization cross-section as a func­

tion of the energy. This is shown in Fig. 4. From the figure 

it is evident that the two curves for molecular hydrogen and 

nercury are almost identical despite their large difference in 

atomic number. 

Typically, a lower limit for ionization is observed around 

10 eV with a maximum value for the cross-section at 100 eV 

followed by a slow decrease to almost zero at 10 keV. This 

indicates that the main part of the ionization is caused by 

electrons in the energy range 10 eV to 10 keV. 

64 Figure 5 shows the slowing-down spectrum in aluminium of Cu 
198 

and Au 8-rays of 0.57 and 0.96 MeV maximum energy, respect­
ively. Despite the large difference in initial energy the 
spectra are almost identical below 10 keV. This indicates that 
as long as the primary energy of the electrons is large com­
pared with 10 keV the shape of the slowing-down spectrum for 
low energies will be independent of the primary source of the 
electrons. 

The detector response, which is proportional to tYé product of 
the spectrum for the ionization cross-section and the spectrum 

for slowing down of the electrons, must be the same for every 

type of low-LET radiation as long as the reference radiation 

with which it is compared has an energy considerably higher 

than 10 keV. 

The conclusion to be drawn from this is that radiation effects 

of low-energy electrons will be identical to damage from every 

other type of low-LET radiation. Thus the problem of effec­

tiveness of high-LET radiation concentrates on finding the dose 
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distribution around the particle track. The calculated dose 

distribution may then be converted to a distribution of radia­

tion effects when the dose-response characteristics of the de­

tector are known from experiments with low-LET radiation. 

The shape of the dose-response curve for a system irradiated 

with gamma-rays is of great importance for determining this 

curve for various types of high-LET radiation. The dose-re­

sponse curve for gamma-rays is used to translate the radial 

distribution of dose around the ion track into a radial distri­

bution of the probability for the effect. 

Damage at low doses will typically be important at radial dis­

tances of up to 0.1 ym from the center of the ion path. In 

this range the dose will be high and possibly surpass the 

characteristic dose. The relation of the energy deposited in 

the high-dose area near the ion track to the total energy de­

posited is of prime importance in determining the effectiveness 

of various radiation qualities. 

If the dose-response curve for gamma-rays is purely exponential 

the dose response for any ionizing radiation will also be expo­

nential and RBE will never exceed unity, according to particle 

track structure theory. If the survival curve for gamma-radi­

ation exhibits a shoulder, the shape of the dose-response curve 

may be different for other kinds of radiation qualities and RBE 

may be greater than unity. This last situation is much more 

complex and will be the subject of a later section. 

The description of the track structure model will initially be 

restricted to 1-hit detectors since computationally they are 

less complicated, but the principles are identical for multi-

hit detectors. 

In the model it is assumed that the detectors consist of radi­

ation-sensitive elements in the shape of small cylinders with 

diameter and length equal to 2a and with the cylinder axis 

parallel to the particle track at a distance t from the center 

of the track as shown in Fig. 6. 
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With the cylinders placed as shown they will experience a 

strongly varying dose around the track of the ion, but for the 

determination of damage the mean dcse to the cylinder must be 

calculated. 

The distribution of dose around the track may be calculated 

from the Bethe equation which gives the number of 6-rays per 

unit energy interval and per unit path length along the par­

ticle track in connection with a formalism for the energy de­

position or range-energy relation of low-energy electrons. 

Without going into detail the dose distribution may be calcu­

lated from 

D6(z,B,t,ao) = -^2 
ira_ 

ft+a. 

t-a. 

D6(z,B,t)-A(ao,t)dt (1) 

with 

D6(z,B,t) 2TTtdt 

rtO 
max 

dn(w ) 

do> 

di, 

du 
£=£ 
dt 

du (2) 

Dx(z,3/t,a ) is the average dose to a sensitive element of 
o o 

radius a placed at a distance t from the path of the moving 

ion of effective charge z and velocity 3 relative to the vel­

ocity of light. A(at) is a geometrical factor determined by 

the size and position of the sensitive element at a distance t 

from the particle track. (2Trtdt)~ is a volume element per 

unit path length along the track, "r-t the stopping power for 
. . . dt 

6-rays, and nta)r the energy distribution of 6-rays given by 
du> 

r 
the Bethe equation: 

dn(u ) r _ 2irNe 
4 

jei£ (3) 

mc w_ 
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N is the number of free electrons per unit volume in the detec­

tor, e and m the charge ard mass of the electron, c the vel­

ocity of light, z f f the effective charge of the ion, and 8 the 

velocity of the ion relative to that of light. 

The Bethe equation is invalid at small ranges, i.e. at low elec­

tron energies, where binding effects play a role. This problem 

may be avoided by considering separately an area of radius a 

with the center placed at the center of the path of the ion. 

The total energy deposited by the 6-rays with range exceeding 

a is calculated from the Bethe equation. The energy deposited 

in the core, i.e. the central element, may be found as the dif­

ference between the total energy loss per unit path length 

given by the LET and the energy deposited in the track, i.e. in 

the area outside the central element of radius a . 
o 

It will take us too far to go into the details of the calcu­

lations of the dose distribution, but the calculated mean dose 
— 2 2 

to the sensitive element DB /z -- normalized with respect to 

z -c$~ is shown in Fig. 7 as a function of the distance t from 
err 

the center of the track. From this figure it follows that 

1) for distances t < a , i.e. within the core, D varies in 
2 -2 °-2 

proportion to z , J a , or that the mean dose in the core 

is inversely proportional to the square of the radius of the 

sensitive element, and 2) for t > 3a the dose varies with 
2 -2 -2 -° 

z __B t such that the mean dose D is independent of the size 

of the sensitive element at distances greater than 3 times the 

radius of the sensitive element. In all cases the mean dose 
2 - 2 2 -? 

varies with z f fB , which points to z e ^ 8 " as an important 
parameter. 

The effect of the dose will be described as already indicated 

by the Poisson equation: 

P(z,e,t,aQ) = 1- exp(-D(z,B,t,ao)/D37)/ (4) 

with D(z,$,t,a ) as the mean dose to a sensitive element at a 
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distance t from the track. P(z,B,t,a ) denotes the fraction of 
o 

sensitive elements lying at a distance t from the track that is 

inaccivated by the incoming ion. 

The total effect is calculated by integration of the probability 

from t = 0 to the maximum range of the 6-rays. This integration 

gives the probability (i.e., cross-section) for inactivation 

oT(z,B,ao) = 2TT 

max 

P(z,B,t,ao)tdt . (5) 

The sensitivity of a detector towards heavy ions is defined as 

the ratio of the total cross-section o to the total energy 

E,T deposited, while the sensitivity of the detector to low-

LET radiation is given by 1/D -. The relative biological ef­

fectiveness, RBE, defined as the ratio of the sensitivities, is 

given by 

Sensitivity to low-LET k = 1/D37 (6) 

Sensitivity to heavy ions k. = 0-/E- (7) 

ki V D 3 7 
RBE = T± = T

F
 ? / (8) 

K ET 

The total energy deposited in a volume element, V, may be ex­

pressed as E_ = V»D assuming unit density. A Taylor expansion 

of the exponential term in the expression for P(z,6,t,a ) gives 

P(z,e,t,a0) ~ D/D 3 ? - Jj(D/D3?)
2 + (9) 

which shows that for values of D << D,-, a is given by 
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o ~ D/°-»7 t o a 9°°^ approximation, leading to a value of RBE 

equal to unity. 

Going back to the track profile in Fig. 7, the effectiveness 

may be explained qualitatively from a horizontal line drawn at 
— 2 2 

D = D_7B /z f f. If this line lies above the plateau of the 

dose profile at the actual a , D/D^_ will always be less than 1 

for all sensitive elements affected by the ion with no loss in 

effectiveness; this leads to RBE = 1. If the horizontal line is 

below the plateau, D/D^7 will be greater than unity with result­

ing overkill and waste of energy in a part of the sensitive el­

ements. By the same analogy as before, we see that for D(z,8, 

t,a ) >> D--, o_ is less than D/E> leading to a value of RBE 

below unity. 

The radiation sensitivity for different ions, k., as a function 

of LET and atomic number is shown in Fig. 8. From this figure 

it follows that k. is a multi-valued function of LET which again 

points to LET as a poor parameter for describing radiation sen­

sitivity. 

When considering a thick target, where the ion either loses a 

major part of its energy or is brought to a complete »top, it 

is necessary to perform a track segment calculation. In this 

method the target is divided into a number of segments within 

which the effective charge and relative velocity may be con­

sidered as constant. For each segment the mean LET, the in-

activation cross-section a , the energy deposited E_, and RBE 

may be calculated. The total RBE for the target is calculated 

as the mean RBE over all segments, where the RBE for each seg­

ment is weighted with the energy deposited in the segment in 

proportion to the total energy lost in the target. 

4. EFFECT OF HIGH-LEV RAJDJ^TION ON BIOLOGICAL SYSTEMS 

The simple exponential character of the dose-response curve for 

gamma-rays used for physical detectors assumes that the inacti-
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vation probability is independent of previous radiation history. 

This means, e.g. that the response to a total dose D is the same 

whether the dose is given as a single dose or in several frac­

tions over a time span that is short compared with the physical 

stability of the detector. This property is used in integrating 

dose meters in radiation protection. 

These detectors will be 1-hit detectors, i.e. a single electron 

passing through the sensitive area may activate it. Such a de­

tector shows no dose-rate effect and the particular effect of a 

particle beam may be described by a cross-section, with the 

total effect calculated as the product of the effect of a single 

particle times the number of particles in the beam. 

Some physical detectors and most biological systems show a more 

complex dose-response curve. This may be ascribed to the re­

quirement that either the target must be hit more than once by 

electrons in order for inactivation to occur or there are sev­

eral targets that must be hit and inactivated. Examples in the 

field of physical detectors include some of the glow-curve 

peaks in LiF-TLD and some photographic emulsions 

In the multi-hit single-target model the inactivation prob­

ability is given by 

P(z,B,t,ao) = [1- exp(-D(z,B,t,ao)/D37)]
m (10) 

with m being an integral number larger than 1, Fig. 9. As is 

customary in radiation biology, instead of P we may calculate 

the surviving fraction by the equation 

S = l-P(z,6,t,ao) = l-ll- exp(D(z,6,t,ao)/D37)]
m (11) 

A typical survival curve for a biological cell system i3 shown 

in Fig. 10. 
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The sigmoid curve in Fig. 9 clearly demonstrates that in con­

trast to a physical detector the response to a given total dose 

depends on the number of fractions used to give the dose. Ex­

perimental evidence shows that the response decreases with the 

number of fractions for a given total dose. 

Biological systems nor- ally exhibit a dose rate effect with a 

decrease in effect for a given dose once the dose rate drops 

below 1 Gy min- . 

The shoulder on the survival curve may be ascribed to an ac­

cumulation of sublethal damage corresponding to the inability 

of a single electron passing through the cell to kill it. 

This electron may, however, take it to a metastable state which 

may proceed to inactivation by further absorption of energy 

from one or more electrons. The dose rate effect is probably 

due to the presence of repair systems which may partially or 

wholely repair the damage produced by a single electron and 

thus remove the cell from the metastable state in a competition 

with total inactivation of the cell by further absorption of 

energy. 

The parameters m and D,- can be calculated from the survival 

curve in Fig. 10. D,- is found from the slope of the linear 

part and m, often called the extrapolation number, by extra­

polating the linear region to D = 0 which will give S = m for 

D = 0. 

The survival curve in Fig. 10 is often described by a two-com­

ponent expression either 

S = 1-tl- exp(-(aD+6D2))] (12) 

or 

S = e-D/Dl x [l,(l-e-D/D2)lm (13) 
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The first expression, Eq. 12, is the so-called a-B or Rossi-
7) Kellerer model . a is supposed to be very small relative to 

8 for low-LET radiation so that inactivation or cell-killing 

occurs by absorption of energy in two independent steps, a is 

related to the mean lineal dose (Y_) over a distance of 1 ym 

simulating a cell nucleus as the sensitive element, a in­

creases with Y leading to a relatively large contribution from 

one-step processes with increasing LET with a corresponding de­

crease of the shoulder on the survival curve. 

Much work has been devoted to the measurement of Y for differ­

ent radiation qualities. The model has had sone success in 

correlating changes in Y with those in a and B- The problems 

encountered in giving an explanation of the variation of S with 

LET over a large range in LET have led to increasing complexity 
8) 

in the model , while at the same time experiments with super-
9) 

soft x-rays (E < 3 keV) have suggested that energy deposition 

over a distance of a few nm should be used in the calculation 

and measurement of Y . The model may be fitted to a large 

amount of data, but has little predictive value. 

The other two-component model, Eq. 13, is often used in radio-

biology. In opposition to this model it may be said thet if 

D./D- > 0.1 the single-step mechanism is dominant for all 

values of D; this leads to an RBE never larger than unity. On 

the other hand, the term e~ 1 has no influence if D^/V- < 

0,02. The model gives no indication of how D and D_ varies 

with LET. 

Both two-component models, Eqs.12 and 13, divide the damage to 

cells into two types: one type which may be repaired (cf. the 

shoulder on the survival curve and the term l-[l-e" 37] ) , 

and a second type called irreparable damage. 

The Cohen-model , Eq. 13, for calculating effects from radio­

therapy at low-LET assumes that D./D- is 0.5 with about 1/3 of 
11) the cells killed in a single-step process 

The Rossi-Kellerer model, Eq. 12, assumes that for irreparable 
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damage to occur two sublethal events have to exist within a 

distance of 1 ym. A fuller description of the Rossi-Kellerer 
7 8 9) model and microdosimetry may be found in the literature ' . 

Recognizing the shortcomings of the Rossi-Kellerer model, Katz 

has developed his track structure model to encompass biologi­

cal systems. The point of view is again a two-component model. 

By analogy with particle tracks in enulsions, Katz uses the 

name ion-kill for a process, where cell-killing occurs follow­

ing the passage of a single particle through a cell, or alter­

natively the cell lies so close to the ion path that killing 

is effected by the tangle of 6-rays ejected from the ion track. 

The probability for ion-kill may be described by a cross-sec­

tion. 

Biological systems may alternatively accumulate sublethal dam­

age corresponding to the requirement that several targets in 

the cell must be hit in order that the damage be expressed. 

Cells may be killed by being hit by 6-rays from two or more 

different particles. This mode is called gamma-kill with an 

obvious analogy to low-LET radiation which mainly causes damage 

in this manner. 

Mathematically this may be expressed by the equation 

P = V\ (14) 

with ir. = probability for ion-kill and ir = probability for 

gamma-kill, ir is given as 

ty = [1- exp(-(l-A)D/D37)]
m (15) 

with A equal to the fraction of energy deposited in an ion-kill 

mode. Similarly TT. may be given by 
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ir. = 1-e 

a 

-aD/L (16) 

where L is the LET for the ion. o may be calculated as already 

described for physical detectors 

a(z, B,a .D-j-.m) = 2TT 0 37 

max 
P(z,e.t,ao»D37,m)tdt , (17) 

with 

P(z,3#t,a ,D ,m) = 1- exp[-D(z,B,t,a )/D__)] 
0 3/ o 37 

m (18) 

The result of this integration is shown in Pig. 11 for differ-
2 2 2 

ent values of z,@ and m, with o/a as a function of z A B . 
K is related to the physical dimension of the cell and combines 

— 12) multiplicative factors in D 

It is evident in the figure that the envelope for the multi-hit 
2 2 

curves (m j> 2) changes s3ope with increasing z A B and reaches 
2 2 2 a plateau value a « 1.47ra at z Af. = 4 corresponding to the 

value where the track in the emulsion changes from grain-count 

to track-width. In cellular systems track-width is analogous 

to the deposition of all energy in the ion-kill mode, i.e. A=l. 
2 2 For z A 3 < 1, a may be approximated by 

o(z,B,ao,D37,m) = oQ'll- exp(-z2AB2)lm (19) 

with o = 1.4ira , 
o o 

Both theory and experiment give values of a that in most cases 

differ by an order of magnitude from the geometrical cross-sec­

tion of the cell or cell nucleus. This has lead Katz to treat 
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o as a cellular parameter and to assume that Fig. 11 gives a 

satisfactory description of the relative variation of o. 

In the model for describing the survival curve we now have four 

cellular parameters a , K, D37,and m, which together with the 

ion parameters z and 6 determine A and o. However, it must be 

pointed out that it is not possible to separate ion- and cellu­

lar-parameters since all are needed in the calculation of the 

dose distribution and implicity of A. Katz rightly points out 

that this eliminates the possibility of describing high- and 

low-LET radiation without specifying which cellular system is 

considered. This follows directly from the equation for A 

A = [1- exp(-z2AS2)]m (20) 

At low values of A we are dealing only with gamma-kill, i.e. 

the radiation is equivalent to low-LET radiation. With the 

same values of z and 0 in another cell system we may have A=l, 

i.e. only ion-kill. This example demonstrates the futility of 

distinguishing low- and high-LET radiation. 

The cellular parameters D-- and m can be calculated from sur­

vival curves following gamma-radiation, a and < may be calcu­

lated from survival curves in experiments with heavy ion ir­

radiation through the equations 

(—) = - (21) 

" { i ,
D _ = I + (1-A)'D37 <"> 

From A, z, and 6, K and a may be calculated from these equa­

tions. As an example of the use of this method, Fig. 12 shows 

how the model may be fitted to experimental data. 
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The functional expression for the dose-response curve allows 

the calculation of two important biological parameters RBE and 

OER (Oxygen Enhancement Ratio), and their variation with LET. 

To illustrate the problems associated with RBE, Fig. 13 shows 

survival curves for low- and high-LET radiation with A=0.2 for 

the same cell system. It is evident that RBE increases with 

decreasing dose. This is due to the shoulder on the low-LET 

survival curve, whereas the high-LET curve is almost purely 

mono-exponential. The increase in RBE is due to the ion-kill 
2 2 process. For a fixed dose RBE will increase with z /$ until 

a maximum RBE is reached at A <* 0.5, when approximately equal 

amounts of energy are absorbed in the two modes. At still 

2 2 

higher values of z /B , A •* 1 and RBE decreases due to over­
kill close to the ion path as exemplified in the description 

of the physical model. Close to the ion path the energy de­

posited will be much higher than necessary for cell-killing. 

This is analogous to the track-width regime in emulsions. The 

decrease in RBE at very high LET may be seen in Fig. 12. 

From a comparison of the expressions for survival at high-LET 

S = [exp(-0D/L)]•[!-[!- exp(-(l-A)«D/D37)]
m] (23) 

and at low-LET 

S = l-ll- exp(-D/D3?)]
m (24) 

it is clear that RBE will increase with decreasing D. In the 

Rossi-Kellerer model RBE varies in proportion to D" ' . 

Studies of RBE at low neutron doses give very high values up to 

400 for cataract formation in mice . The variation of RBE 

with dose in these studies may be simulated by track structure 

theory using cellular parameters of Hela cells. 
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This increase in RBE at low doses is of paramount importance in 

the context of radiation protection. Since it is difficult to 

measure the effect of low-LET radiation at low doses the RBE 

concept loses much of its value. 

At high-LET radiation with A « 1 a linear extrapolation is poss­

ible from high to low doses since the damage occurs along the 

particle track and the only observable difference between high 

and low doses is the number of tracks. With low-LET radiation 

where only gamma-kill exists the cell must be hit more than 

once. This leads to,e.g.,a quadratic extrapolation from high 

to low doses and a generally much lower risk at lower doses 

than with the usual linear extrapolation used in radiation 

protection. A thorough review of RBE for neutrons is found in 

ref. 14. 

The oxygen enhancement ratio denotes that at low-LET D^ 7 is 

approximately 3 times higher when cells are irradiated under 

normal oxygen tension than when irradiation is carried out 

under anaerobic conditions. The final explanation of the oxy­

gen effect is not possible at present. However, the main 

opinion is that it is due to competition between oxygen, which 

is a biradical, and repair systems containing molecules with 

sulphydryl groups for reaction with radicals formed by radia­

tion. If O reacts with the radicals peroxy-radicals are 

formed which cannot be repaired. 

The oxygen-effect at high-LET radiation is due to the gamma-

kill mode and it follows that OER will decrease with increasing 

LET. For a given cellular system and an ion beam with known 

z and & the OER may be calculated from the ratio of the slopes 

of the survival curves at high doses expressed by Eq- 22. This 

leads to the following equation 

oM/L + (1-A)D!J7 

OER = -H ff (25) 

aQ /L+ (1-A)D37 
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with the subscripts N and O used for irradiation carried out 

under nitrogen and oxygen, respectively, a and o are ident­

ical. This follows directly from the equation for a. When 

A=l, OER becomes equal to 1. 

The lower OER of high-LET radiation is the main drive behind 

the application of high-LET radiation in radiation therapy of 

cancer since many tumors are presumed to contain a considerable 

number of hypoxic cells. These cells will be radiation resist­

ant, requiring doses for eradication far above what normal tis­

sue will tolerate. There is no biological basis for assuming 

that cancerous tissues will have an RBE different from normal 

tissues, disregarding possible differences in the OER. 

The equations for ion- and gamma-kill are valid only for mono-

energetic ions. This is an ideal case not found in practice 

because of the energy dispersion present after the traversal 

through only a few pm of tissue. 

This problem may be solved mathematically by dividing the en­

ergy spectrum into a series of discrete components homogeneous 

in z and 6. The total ion-kill probability will be the product 

of this probability for these separate and independent compo­

nents. The total gamma-kill probability is calculated from the 

total dose deposited in the gamma-kill mode; it may be summar­

ized from the separate components inclusive of an eventual con­

tamination of the beam with y-rays. Since the total cell-kill­

ing probability is 7'.ven by *.*•* the survival S is given by 

S = [expt-o^Aj'FjH'll-U- exp(-I(l-Aj)'Dj/D37)]
m] (26) 

where A. equals the proportion of the dose deposited by compo­

nent j in the ion-kill mode and F equals the flux of component 

J. 
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This formalism can account for the slowing down of a heavy ion 

beam including secondary particles. It may also be used for 

neutrons with known energy spectra of secondary, tertiary, 

quarternary, etc. parti cles. 

In many respects this formalism is too unhandy. The situation 

may be simplified by the introduction of an equivalent radia­

tion field. This is defined as having the same ir., ir , and D 

(total dose) as the mixed field. The equivalent field is only 

a computational simplification and may be impossible to realize. 

An important advantage of this method is that it becomes much 

easier to simulate the effect of mixing the high-LET field with 

Y-rays. This modality is used in many of the present treatment 

protocols for neutron therapy, and the equivalent field sim­

plifies the calculation of the optimal mixture of the two radi­

ation types. 
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Fig. 6. Schematic representation of the radiation 

sensitive elements around the path of an ion for 

calculation of the extended target dose. 



- 36 -

lor* ur' ur« io-5 " i o « " 10-3" "ir? 
Ilcm) 
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axis of the path of an ion. Parameters are the radius 

(a) of the sensitive element and the ion velocity (6) 

relative to that of light. 
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Fig. 9. Inactivation probability P as a function 

of normalized dose D/D3- with the extrapolation 

number m as a parameter. 
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Fig. 11. Inactivation cross-section as a function 
2 2 

of z A 3 with the extrapolation number m as a para­
meter. For the sake of clarity the curves are dis­
placed by the exponent s on the vertical axis. 
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