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DIFFRACTION STUDIES OF ORDERED PHASES AND PHASE TRANSITIONS: 

A synchrotron x-ray scattering study of monolayers of CF4 

adsorbed on graphite 

and 

A neutron scattering study of the diluted uniaxial dipolar 

coupled ferromagnets LiTb.3Y.7F4 and L1H0.3Y.7F4 

K. Kjær 

Abstract. Two investigations are reported here. First, mono­

layers of CF4 physisorbed on the (001) face of graphite have 

been studied by means of x-ray diffraction experiments carried 

out at the electron storage ring DORIS in HAMBURG. The exfoliated 

graphite substrate UCAR-ZYX was used in order to obtain a large 

area for adsorption and hence a large sample. Four two-dimensio­

nal solid phases of the CF4 films were seen, including a struc­

ture which is 2 * 2 commensurate relative to the substrate. On 

compression (by variation of coverage or temperature), this phase 

transforms to a uniaxially compressed structure ("stripe" phase). 

Further, at higher coverages a hexagonal structure was seen, in­

commensurate relative to the substrate, and at low temperatures 

and coverages, a complicated structure emerged, giving three 
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close diffraction peaks in the powder pattern. Data are presented 

characterizing the meltings and commensurate to incommensurate 

transitions. 

Complementary to the synchrotron x-ray data, a presentation of 

the theory of synchrotron radiation is given. 

The second investigation was of the ferromagnetic phase tran­

sitions in the randomly diluted, dipolar coupled uniaxial ferro-

magnets LiTb.3Y.7F4 and LiH0.3Y.7F4 by neutron diffraction at 

the RISØ DR 3 reactor. Crystals were grown, the expected 

(Scheelite) structure was confirmed and the structural parameters 

were refined for the Tb compound on the basis of a neutron dif­

fraction structural study. Mounted in a ^He-^He dilution refri­

gerator, the crystals were cooled to their Curie points of 0.49 

and 0.36K for the Tb and the Ho compound, respectively. Just 

above the phase transition, the critical neutron scattering of 

either crystal exhibits the asymmetry characteristic of a dipolar 

coupled uniaxial ferromagnet; however, an anomaly appears at low 

momentum transfers for the Tb compound only. Further, data are 

presented for che magnetic Bragg scattering of both crystals. 

This report has been submitted to Danmarks Tekniske Højskole 

(The Technical University of Denmark) in partial fulfilment 

of the requirements for obtaining the degree lie. techn. 

(Ph.D.). 
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1. INTRODUCTION 

1»1. Motivation 

For the order (positional order, magnetic (spin) order etc.) 

obtained in condensed matter systems, the concept of spatial 

dimensionality is of considerable importance. In general, this 

is so because the dimensionality determines the amount of phase 

space available to long-wavelength, low-energy fluctuations 

which tend to destroy the order. This was realised by Peierls, 

Landau and others, who proved that the positional order in a 

two-dimensional harmonic crystal is unstable against destruction 

by long-wavelength phonons (Ref. 1.1). At the higher dimension­

ality of three, such a model is stable. This is the general ef­

fect: A lowering of the dimensionality eventually destroys the 

order. 

For condensed matter systems of sufficiently high dimensio­

nality to attain long ranged order, the next question concerns 

the manner in which this order disappears when the temperature 

is raised, i.e. the nature of the phase transition from the 

ordered to the disordered state. Here, too, the dimensionality 

is observed to play an important part: The critical exponents, 

describing the singular variation of thermodynamic quantities 

near a phase transition, are observed to depend not on the de­

tails of the interactions in the system, but only on its di­

mensionality and a few other general properties (notably the 

symmetry of the system) (ref. 1.2). 

1.2. Diffraction experiments 

X-ray and neutron scattering (or diffraction) experiments are 

two very ueeful techniques for investigating questions such as 

those mentioned above. X-rays are scattered strongly by elec­

trons, and therefore, an x-ray scattering experiment gives the 
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Fourier-transformed electronic pair correlation function and, 

by inference, the correlation function of the atoms. Thus, the 

range and general nature of the positional atomic order can be 

measured. Thermal neutrons by their interaction with the nuclei 

can provide the same information, but in addition the neutrons 

interact with (electronic) magnetic moments, so that the mag­

netic (spin-) correlation function can be measured. 

1.3. Systems 

The work reported below has been on two classes of systems which 

can be thought of as representing opposite extremes of spatial 

dimensionality (D). Also, the complementary diffraction techni­

ques described above were used. Here, only a brief introduction 

to each is given, and the details are deferred till later. 

Chapter two concerns the low-D limit and describes experiments 

on monolayers of CF4 gas physisorbed on the (001) face of a 

graphite substrate. The layers can be thought of as two-dimen­

sional systems. X-ray diffraction was used to determine the 2D 

positional order of the CF4 molecules. 

The x-ray source was the electron storage ring DORIS at Deutches 

Electronen Synchrotron (DESY), Hamburg. (A presentation of the 

theory of synchrotron x-ray radiation is given in Appendix A of 

this report). 

Chapter three describes magnetic neutron scattering measurements 

carried out at the RISØ DR 3 reactor. The systems investigated 

were crystals of the Rare Earth Scheelite family. These are 

tetragonal crystals containing magnetic Rare Earth ions (formula 

LiRF4, where R = Rare Earth). When the Rare Earth is Terbium or 

Holmium, ferromagnetic ordering of the Rare Earth spins occurs 

at low temperature, due to the magnetic dipolar interaction be­

tween the spins. As explained in Chapter three, insofar as the 

critical phenomena at the ferromagnetic phase transition are 

concerned, the systems can be thought of as simulating four 

spatial dimensions! (The systems are at upper marginal dimen-
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sionality>. In the crystals investigated here, the magnetic ions 

were randomly diluted by replacement by non-magnetic Yttrium 

ions, leading to the formulae LiTb.3Y.7F4 and LiH0.3Y.7F4. These 

systems, then, are random magnets at marginral dimensionality. 

References 

1.1. See: IMRY, Y. (1978) CRC Crit. Rev. Solid State Mater. Sci. 

jj, 157-74. 

and 

VILLAIN, J. (1980) in: "Ordering in strongly fluctuating 

condensed matter systems. Edited by T. Kiste (Plenum Press, 

New York) p. 222 (Nato Advanced Study Institutes Series: 

Series B, Physics, 50) 

and 

NELSON, D.R. and HALPERIN, B.I. (1979). Phys. Rev. B: 

Condens Matter ]±, 2457-84 

and 

references quoted in these papers. 

1.2. See: Phase transitions and critical phenomena (1976). Edited 

by DOMB, C, and GKEEN, M.S. (Academic Press, New York). 

http://LiTb.3Y.7F4
http://LiH0.3Y.7F4


- 8 -

2. MONOLAYERS OF CF4 PHYSISORBED ON GRAPHITE 

By means of x-ray diffraction, monolayers of CF4 physisorbed on 

the 001 face of graphite were studied. The exfoliated graphite 

substrate UCAR-ZYX afforded a large total area for adsorption. 

Use of a diffractometer at the electron storage ring DORIS 

enabled the collection of a large amount of diffraction data 

at adequate resolution. 

Several two-dimensionally crystalline phases of the CF4 films 

were soen, including a commensurate 2 * 2 structure. On varia­

tion of temperature or coverage thij phase experienced a uni­

axial compression, thus transforming to a so-called striped 

structure. At higher coverages an isotropic, compressed phase 

was seen, and at low temperature and coverages a complicated 

structure giving three close diffraction peaks appeared. The 

characterization of these phases and their meltings and other 

phase transitions was aided by analyzing the observed diffrac­

tion response in terms of simple calculated line shapes. 

2.1. Introduction 

2.1.1. Theories of two-dimensional systems 

Two- (and one-) dimensional condensed matter systems are attrac­

tive to theorists for two reasons: Firstly, they are often 

easier to handle than their higher-dimensional analogues, and 

secondly new, exciting phenomena are predicted. A celebrated 

case in point is the "Ising" model of one-dimen?ional spins on a 

square lattice which was solved exactly^«1^, an<j for wnich a 

state of true long-range spin order is found below a second-order 

transition with non-classical critical exponents. 

For other two-dimensional (2D) systems, absence of true long-

range order (LRO) is predicted. Most interesting here is the 
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case of a 2D harmonic solid, for which a state of "quasi LRO" is 

predicted2*7, in which the usual Bragg reflections of diffraction 

experiments i.e. delta function terms in the scattering function 
-*• 

S(Q), where Q is the scattering vector are replaced by algebraic 
singularities at low-order reciprocal lattice points, 

+ • -*• -2+v * -> 
S(Q) - |Ghk - Q|

 G , nQ - |Ghkl
2 . 

Other interesting phenomena include second-order melting of this 

"quasi LRO" solid, and a resulting "hexatic liquid" with expo­

nential decay of positional order, yet still a quasi-long-ranged 

orientational order2'^. 

2.1.2. Gases physisorbed on the (001) face of graphite 

The above-mentioned predictions make real 2D systems very in­

teresting for experiments, although such systems aren't easy 

to come by. Experimentally accessible systems include single 

crystal surfaces, thin layers adsorbed there upon, and thin, 

freely suspended films of liquid crystals. 

Among the adsorbate-on-a-substrate systems, gases physisorbed 

on the (001) face of graphite are quite attractive for a number 

of reasons. The adsorption potentials for inert gases and among 

simple molecular gases are of the -100K order of magnitude, 

allowing reversible ad- and desorption at convenient tempera­

ture. Moreover, several exfoliated graphites are available, in­

cluding Graphoil2«20 and UCAR-ZYX2«20. These offer a large area 

for adsorption (30, resp. 3 m2/gram substrate)2«21. Their main 

difference is the size of coherently diffracting 2D crystallites, 

which is about 110 A2*20 for Grafoil and about 1600 A2«20'2«5 

for ZYX. 

An interesting feature of the (exfoliated; graphite substrate 

is that adsorption takes place layer by layer. This is illustra­

ted (for CP4) in Pig. 2.1. 
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Fig. 2.1. Isotherm of CF4 adsorbed on exfoliated 

graphite, reproduced from Ref. 2.17. The graph shows 

the adsorbed amount of qas P versus the equilibrium 

pressure of the three-dimensional gas phase (norma­

lized by the bulk vapour pressure P«), at 77.3 K. 

The step-like character of the curve reflects the 

adsorption layer by layer. Four layers can be dis­

tinguished here. The amount of gas is given relative 

to the amount needed to complete the first layer, 

and the pressure is normalized by the pressure for 

equilibrium with infinitely many layers, i.e., with 

bulk CF4. 

This means that by adsorbing the right amount of gas one can 

prepare a sample consisting of one layer, or a fraction of one 

complete layer. 

The graphite substrate thus makes a two-dimensional experiment 

possible by confining the adsorbate to a 2D geometry. At the 

same time, forces from the adsorbate may prejudice the 2D charac-
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ter of the adsorbed gas system. Clearly, gas atoms strongly 

chemisorbed onto specific sites on (say) a metal surface have 

poor 2D properties, so far as their translational degrees of 

freedom are concerned. The graphite surface, however, exerts 

sufficiently weak forces parallel to the surface, that incom­

mensurate 2D solid phases, 2D liquids and 2D dilute gas phases 

are observed in diffraction experiments on Ar, Kr, Xe, CH4, N2 

and other gases physisorbed en exfoliated graphite substrates2.21. 

As an added bonus, when the natural lattice constant of the 

adsorbate comes sufficiently close to a repetition length of 

the graphite, lock-in or incommensurate-to-commensurate tran­

sitions occur. 

Hexagonal Incommensurate phases 

When the adsorbate's equlibrium lattice constant shows a suf­

ficiently large misfit, relative to that of the substrate, a 

Hexagonal Incommensurate (HI) solid ?D phase will result. This 
is the case for Ar^« 1*2.30 an<j xe

2«8'2.22f ancj for Kr2.23,2.24f 

CH 4
2 , 2 5 and N2 at suitable coverages and temperatures. For 

these not too small misfits, the lateral forces from the sub­

strate will average out. Thus, the HI phases can be considered 

good approximations to truly 2D solids, so that these phases 

and their melting transitions can be studied. 

Commensurate phases 

When the natural lattice constant of the adsorbate is (nearly) 

commensurate with that of the (001) graphite surface, an 

epitaxial or commensurate structure will result, in which the 

adsorbate is in registry with the substrate. Such phases have 

been observed for Kr2,27, N2
2'26 and CH 4

2 , 2 5 (the / J * / ! 

R 30° structure) and for CF4 (2 * 2 R 0° structure) (Ref. 2.13 

and this work). The CF4 commensurate structure is illustrated 

in Fig. 2.2. 
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Fig. 2.2. Commensurate 2 * 2 structure as deduced 

for CF4 physisorbed on graphite. Every vertex of the 

hexagon network represents a carbon atom in the top 

layer of a graphite (001) surface. The clover leaves 

and the tristars represent tha projection of the 

tetrahedral molecules. Outlined are the unit cells 

of the 2 x 2 structure and (smaller cell) of the 

graphite lattice (1 * 1 structure). As shown, there 

are eight adsorption sites (1-8) within a 2 * 2 unit 

cell (i.e., eight sublattices). 

These commensurate structures will inherit long-range positional 

order (LRO) from the 3-dimensional substrate and can therefore 

not be considered as 2D crystals in the sense of having continu­

ous symmetry translational degrees of freedom. 
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Commensurate to incommensurc.ce transitions 

When the adsorbate's natural lattice constant is varied away 

from the commensurate value (i.e., by variation of coverage or 

temperature), competing forces will be acting on the adsorbate, 

namely: 1) the periodic potential from the substrate, which 

favours a commensurate structure, and 2) the adsorbate-adsorbate 

interactions, which favour a homogeneous, incommensurate struc­

ture. When the latter forces become sufficiently strong, a com­

mensurate-to-incommensurate (C-I) transition will occur. Figure 

2.3 depicts (in reciprocal space and for the case of a com­

pressed incommensurate structuce) the three "normal modes" of 

this distortion: An isotropic compression, and uniaxial com­

pressions along two different symmetry axes. The uniaxial modes 

were not seen in experiments for a long time, but have recently 

been observed in N2 layers (Ref. 2.10) and CF4 layers (this 

work). 

http://incommensurc.ce
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(a) 

(b) 

(c) 

(d) 
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Fig. 2.3. Reciprocal lattices of commensurate and 

incommensurate adsorbed structures. 

a: Commensurate structure, e.g., 2 * 2 or /T x /§" 

structure. 

b-d: Simple compressed structures, relative to (a). 

b: Hexagonal incommensurate structure. Note that all 

the six low-order reciprocal lattice vectors have 

the same length. 

This type of structure has been observed in layers 

of Kr, CH4 and CF4. 

c: Uniaxially compressed structure, as observed in 

N2 layers. Four low-order Bragg points are at a 

scattering angle slightly larger than that for the 

commensurate structure (a), and the remaining two 

are four times further away. 

d: Uniaxially compressed structure, strain axis 30° 

from that in (c). (c) and (d) exhaust the uniaxial 

deformations (along symmetry directions) of a hexa­

gonal structure. In (d), there are two reciprocal 

lattice vectors orthogonal to the strain direction. 

Their lengths are therefore unchanged in the com­

pression. The remaining four low-order reciprocal 

lattice vectors are stretched, however. This type 

of structure has been observed in CF4 layers on 

graphite (this work; "stripe phase"). 
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Domains 

In the incommensurate phase, near a C-I transition, the two 

competing interactions (substrate-adsorbate and adsorbate-ad-

sorbate) will be of comparable strength. To analyze this situ­

ation, imagine however that the periodic potential from the 

substrate is turned off: A homogenous, incommensurate 2D adsorb-

ate crystal will result. When the substrate potential perturbs 

this equilibrium state, the most economical response will be for 

the most of the particles to move towards the nearest minimum of 

the potential, thereby forming domains of locally nearly commen­

surate structure, while the excess particles (for a denser in­

commensurate phase) are accommodated in domain walls where the 

density is substantially higher. At the other end of the scale, 

i.e. if the periodic potential is assumed to be dominant, per­

fectly commensurate domains would result separated by walls of 

very high density. This line of reasoning is illustrated in Fig. 

2.8a on page 49 below. 

Thus, the concepts of domains and domain walls are central to 

the physics of C-I transitions2-7»2.28,2.29. 

Further away from the C-I transition, the "domains" will be 

quite small, and the width of the "domain walls" will extend 

right through the "domain". Thus, the domain concept loses its 

significance here, and the substrate potential plays only a 

minor role in the physics of the incommensurate phase, since 

it averages out even on a rather fine-grained scale (averaging 

over few neighbouring particles). 

2.1.3. CFA physisorbed on graphite 

Nitrogen and Argon on graphite were the first systems to be in­

vestigated by (neutron) diffraction experiments2.26,2.30f fol­

lowed by Kr, Xe and CH4. These systems all were found to have 

the /J x /J commensurate structure, and/or nearby hexagonal in­

commensurate structures. The discovery (Ref. 2.13) that mono­

layers of the larger CF4 molecules have a 2 * 2 commensurate 

phase made this system an obvious candidate for one with new 
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phenomena, and a synchrotron x-ray scattering study was per­

formed. As reported below, this was rewarded by the discovery 

of a very rich phase ditgram, including the first observed uni-

axially incommensurate phase (case (d) in Pig. 2.3 above; soon 

afterwards, the complementary mode of distortion, case (c), was 
o in 

observed to be effective in N2 monolayers** ) . 

The rest of this chapter is organized as follows: 2.2 reports 

on the experimental method, results and discussion are in 2.3 

which includes two earlier published reports, and 2.4 concludes 

the chapter on CP4 monolayers on graphite. Furthermore, Appendix 

A reviews the theory of synchrotron, wiggler and undulator radi­

ation. 

2.2. Experimental procedure 

The data were taken with an x-ray diffractometer at the electron 

storage ring DORIS at DESY, Hamburg. As the properties of syn­

chrotron radiation are reviewed in some detail in Appendix A, it 

is sufficient to recall here that the electrons, when accelerated 

in a bending magnet of the storage ring, emit an intense elec­

tromagnetic radiation, the spectrum extending well into the 

x-ray region. The machine parameters were 3.3 GeV and (on average 

average) 50 mA. With an electron orbit radius of 12.12 m, this 

yields a critical wave length of 1.88 A. The diffractometer was 

situated 20 m from the source. It is shown in Fig. 2.4. At the 

selected wave length, A = 1.76 A, the calculated flux at the 

entrance slit A1 is about 2 • 10^ photons per second per square 

millimeter per 10~4 relative bandwidth AX/A. 

As described in Refs. 2.1 and 2.2, the slit A1 (4 mm) defines 

the white beam that impinges on the monochromator, consisting 

of two parallel Germanium (111) crystals M and M. The crystals 

were actually offset about 1 millidegree from parallel; this 

suppresses 3rd and higher orders of the beam while still trans­

mitting most of the 1st-order intensity. After the sample S in 

the cryostat, the slit A2 (1 mm) and a position-sensitive x-ray 

detector (PSD) a distance L2 • 550 mm away, define the direction 
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Fig. 2.4. Top view of the x-ray diffTactometer. 

of scattered rays. The PSD signal was analyzed by a multi-channel 

analyzer into channels of 0.35 mm each. (It's intrinsic resol­

ution is better than 0.1 mm) 

At A = 1.76 A, this yields a resolution FWHM (4* sinQ/A) * 

0.0064 A"1, in good agreement with observed values. The con­

tribution from the aberrations in the monochromator to this 

width is negligible. This resolution was chosen to match the 

coherence length of the ZYX substrate approximately. 

The sample cell S has beryllium windows and is mounted in a 

Displex cooler, C, also with Be windows. Thus, temperatures 

down to 10 K were accessible. Via a capillary the cell is con­

nected to the gas-handling system which as shown includes a 

barometer and the standard volume V. Further shown in the figure 

are evaluated beam tubes and an ionisation chamber used for moni­

toring the monochromatic beam intensity. 

The average (001) direction of the ZYX substrate was vertical, 

i.e. orthogonal to the scattering plane. 
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2,3. Results and discussion 

This paragraph is organized as follows: First cone reprints of 

the previously published papers: Phys. Rev. B 26, 5168 (1982), 

which was the first account of this work to appear, and Surf. 

Sci. 125, 171 (1983), a contribution to the "2nd Trieste Inter­

national Symposium on the Statistical Mechanics of Adsorption", 

Trieste, 26-29 July (1982). Then some further analyses follow. 

This method of presentation will necessarily result in some 

repetitions, with which the reader must be asked to bear. 
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2 . 3 . 1 . Published papers 

PHYSICAL REVIEW B VOLUME 26. NUMBER 9 1 NOVEMBER 1*2 

Monolayers of CF4 adsorbed on graphite, studied by synchrotron x-ray diffraction 

K. Kjær. M Nielsen, and J. Bohr 
Ruø Sationai Laboratory. DK-4000 Roskilde. Dtnmark 

H. J. Lauter 
Institut Laue-Laitftvi*. I56X. 39042 Grrnobie Ctdtx. France 

J. P. McTague 
Brookhann Motional Laboratory. Upton. Mew York 11973 

(Received 6 May I9S2) 

With synchrotron »-ray diffraction we have measured the phase diagram of CF4 mono­
layers adsorbed on the graphite substrate UCAR-ZYX. We have found four two-
dimensional crystalline phases including the 2 x 2 commensurate structure. Between this 
and the denser incommensurate hexagonal phase we find an axially compressed phase in­
terpreted to be the stripe domain structure. Our data indicate that the order-disorder tran­
sition >melting) of the 2x2 commensurate phase as well as melting of the stripe and of the 
hexagonal incommensurate phases arc continuous. 

INTRODUCTION 

Physisorbed monolayers on graphite of rare-gas 
atoms or of simple molecules have been studied ex­
tensively in recent years with the main purpose of 
describing the nature of phase transitions in two-
dimensional systems. The transitions studied in 
most detail are melting of the incommensurate 
free-floating solid (Ar (Ref. I) and Xe (Ref. 2) 
monolayers], order-disorder transition (melting) of 
the commensurate v 3 \ v 3 structure iKr (Ref. 3) 
and He I Ref. 4) monolayers], and the 
commensurate-incommensurate {C-D .rans.tion 
[Kr.5 H:. and He (Ref. 6) monolayers]. We report 
here on diffraction studies on monolayers of CF4 

adsorbed on the graphite substrate UCAR-ZYX. 
The CF4 layers on graphite constitute a funda­

mentally different system from that of the rare-gas 
monolayers because of two factors. First, the ad­
sorbed panicles are larger and thus commensura-
tion occurs at the 2 x 2 structure instead of at the 
denser v ' l x v l structure. Second, the preferred 
adsorption site is assumed to be above the vertex 
points of the graphite honeycomb structure, whit 'i 
have a symmetry different from that of the center 
positions taken up by the rare-gas commensurate 
layers, but similar to that of oxygen atoms chem-
isorbed on Nil 111) surfaces.7 

Figure 1 shows the honeycomb structure of the 
(0002) graphite surface and the CF4 molecules in 
the commensurate 2x2 structure. They are shown 
with a three-fluorine plane parallel to the graphite 

surface and the projections of the Lennard-Joncs 
spheres of the fluorines are shown shaded. At the 
temperatures where the 2 x 2 structure exists, the 
molecules will have large-amplitude rotational oscil­
lations. In the figure the lowest-energy config.ira-

FIG. I. Schematic arrangement of (he CF» molecules 
on (he (0002) surface of graphite, in (he 2 \ 2 commensu­
rate structure. They are shown by the projection (shaded) 
of (he Lennard-Jones spheres of (he fluorines (using the 
diameter of neon: 2"V = 3.17 A) assuming (hat (he mol­
ecules have a three-fluorine plane parallel to (he substrate 
and are located above (he ven ex points. Molecules are 
rotated away from the high-symmetry orienta(ions. Bro­
ken line shows (he unit cell of (he 2 -< 2 structure. 
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lion is shown as estimated from the potentials of 
Ref. t. The molecules are rotated away from a 
symmetric orientation by the interaction with the 
substrate. Within the unit cell of the 2 \ 2 structure 
Fig. 11. there are four equivalent adsorption sites 

per molecule and four more sites connected with the 
former by a IOT rotation. Further, the above-
mentioned rotation may be chosen clockwise or 
counterclockwise. Therefore, the order-disorder 
transition of the 2 X 2 structure is different from the 
three-state Potts transition4 applying for the 
v 3 \ v 3 phase and is to be described by a Heisen-
berg model with cubic anisotropy or by an king 
model.* For the iC-I) transition between the 2 x 2 
structure and the denser ncommensurate hexagonal 
structure, the different symmetry has the following 
implication: If a hexagonal structure existed with a 
layer density a little above the commensurate densi­
ty, this would give a superstructure of domains10 in 
which the domain walb form triangles instead of 
hexagons as for the slightly incommen«. rate Kr 
layers." A triangular superstructure would in the 
crossing points of the domain walls have six walk 
meeting, and this would involve a high wall-
crossing energy. According to Ref. 12 this favors 
the alternative domain configuration, the stripe 
structure, in which the domain walk are parallel 
lines with no walk crossing. The latter model is 
found to describe our results, and this is the first 
observation of the stripe structure in monolayers 
adsorbed on graphite. The existence of this phase 
allows us to study the following transitions: com­
mensurate 2 x 2 to stripe structure, stripe to incom­
mensurate hexagonal structure, and melting of the 
stripe phase into an isotropic fluid. 

The measurements were done with an x-ray spec­
trometer at the storage ring DORIS at Deutsches 
Elektronen-Synchrotron (DESY) in Hamburg. The 
instrument is described in Ref. 13 and consists of a 
monochromator with two parallel Get III) crystals 
and a position sensitive detector as analyzer. The 
graphite substrate is a stack of UCAR-ZYX strips 
contained in an ali metal sample cell with Be win­
dows, and the cell was mounted in a Displex cryr> 
stat. 

PHASE DIAGRAM 

The diffraction from the CF4 monolayers was 
measured exclusively in the region near the (10) re­
flection of the 2 x 2 structure. At the higher-order 
reflections the intensity was insufficient to obtain 
useful groups. Data were taken as function of tem­

perature and CF4 coverage, and Fig. 2 shows the de­
rived phase diagram. At coverage less than 0.7« 
I we use as unit of coverage the amount oi gas which 
would give one ideal and completed monolayer with 
the 2 \ 2 structure ,̂ we observe triple-point behavior 
between dilute gas G>. liquid • LK and commensu­
rate 2 x 2 phase IO. The gas-liquid coexistence line 
is drawn in accordance with the critical point taken 
from Ref. 14. With decreasing temperature the 
coexisting gas plus the 2 X 2 phase go into the coex­
isting gas plus stripe <S> phase at 65 K. Belo« 57 
K coexistence between gas and a "three-peak struc­
ture" HP) is observed. The nature of this three-
peak structure is not interpreted and will not be dis­
cussed further here.'5 The stripe structure is ob­
served in a rather broad region around the 2 x 2 
phase, and at higher layer density the hexagonal in­
commensurate structure (/) was found. The nature 
of the phase transitions between the different phases 
is indicated by either single lines (continuous transi­
tions) or by shaded coexistence regions first-order 
transitions). However, the phase diagram is tenta­
tive and several ambiguities remain. In the diffrac­
tion data there is no distinct difference between the 
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FIG. 2. Phase diagram of CF, on (0002> graphite. C. 
5. /. and 3P denote ihe 2x 2 commensurate, stripe, hex­
agonal incommensurate, and three-peak structures, and L 
represents a two-dimensional liquid. Full lines indicate 
phase boundaries and broken lines show transition* of 
solid phases in coexistence with (he dilute-gas phase not 
shown in the figure). Coexistence regions are shaded. 
Points denote diffraction measurements in the following 
sense: O. liquid. \ . single 2 < 2 prak at 1.475 A '. • . 
two peaks with 1:2 intensity ratio. 3 one peak at 
C > 1475 A-'. 7 . three peaks. 0. four peaks 'coex­
istence of 3/> and /). 
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gas plus homogenous solid i say 2 \ 2 phase) and the 
homogenous solid phases, and thus the correspond­
ing phase lines are uncertain. A very- noticeable ef­
fect is that the homogenous 2x2 structure is not 
found at the coverage 1 but rather near 0.8. This 
must imply that the 2 x 2 phase contains a high 
concentration of vacancies or a nonideal behavior of 
the substrate. The total substrate surface area was 
determined before and after the measurements by 
measuring Ar vapor-pressure isotherms at T = 65 
K. and reference to diffraction measurements on Kr 
monolayers using the same sample cell.1" The Ar 
isotherms give a practical check on the area of ad­
sorption on an uncalibrated seal«*. The absolute 
scale of the area was determined in more complicat­
ed measurements where a series of diffraction scans 
are measured at low temperature for adsorbed 
monolayers of Kr with increasing coverage. The 
sharp onset of the commensurate-to-incom­
mensurate phase transition defines the coverage giv­
ing the v 3 x v 3 monolayer. 

In the region where three of the phases in Fig. 2. 
/. 5. and 3/\ come together, the phase diagram is 
not known, but a pronounced first-order transition 
is observed from 3P to / and from / to 5. 

Figure 3 shows the position of the observed 
Bragg peaks as function of temperature for three 
different coverages. The signature of the C phase is 
a single peak at the position Q = 1.475 A - 1 which 
is half the ( 10) reciprocal-lattice vector of the gra­
phite honeycomb structure. The stripe structure is 
characterized by two peaks, and the distance be­
tween them is a measure of the axiul compression. 
Our conjecture that the 5 phase of Fig. 2 has the 
stripe structure^ rests on the following observa­
tions: When we move out of the 2x 2 region either 
by decreasing the temperature or by increasing the 
coverage, we observe that the single (10) reflection 
of the 2x2 structure splits into a double peak such 
that the low-Q component remains at the commens­
urate position Q- 1.475 A"1, and the other one 
moves to slightly higher Q values. There is a con­
stant ratio of 1:2 between the intensity of the two 
peaks, the low-Q component being the smallest. 
The distance between the peaks is a continuous 
function of temperature and cov.Tge. This is ex­
plained by an axial compression of the structure or 
a corresponding expansion of (he reciprocal lattice 
as is shown in the upper part of Fig. 3. The diffrac­
tion from an idea! stripe structure comprises extra 
peaks (satellites) on both sides of the doublet 
described above. These are due to the periodic den­
sity modulation associated with the difference of 
layer density in the middle of the domains and in 

FIG. 3. ta) Points and dashed lines: reciprocal lattice 
of the uniaxially compressed (stripe) structure. (No satel­
lite reflection points are shown.) Full lines: reciprocal 
lattice of the 2 \ 2 structure. ib> Reciprocal lattice of the 
2 \ 2 structure, ic) Peak positions vs temperature for 
three different coverages. In the upper panel, the filled 
circles represent the signal from the / phase coexisting 
with the three-peak structure. Lines are guides to (he 
eve. 

the domain walls.'* However, if the walls are very 
broad, the satellite intensity is weak. We have not 
observed any such satellites. 

When the temperature is lowered through 57 K 
at coverages less than 0.76 the double peak of the 
stripe phase changes into three peaks. Very close to 
the transition the diffraction response gets broad, 
and we cannot conclude whether this transition is of 
first or second order. The positions of the three 
peaks are Q = 1.465, 1.486. and 1.518 A - 1 , and 
these as well as the transition temrx.aiure are ill-
dependent of coverage in the solid plus gas coex­
istence regime. At coverage 0.8 the 3/> structure 
coexists with the incommensurate hexagonal phase 
observed at higher density. The latter component 
gives a single peak, in the upper panel of Fig. 3 at 
Q = 1.502- 1.508 A"'. The nature of the iP phase 
has recently been discussed on the basis of neutron 
scattering results." however, more information is 
needed ro conclude on the structure of this phase. 

Figure 4 shows the intensity of the (10) Bragg 
peak of the 2x2 phase at four different coverages. 
Below the liquid point at the triple-point line, at a 
coverage 0.74. the intensity of the (10) peak disap-
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FIG. 4. Peak intensity of the 2x2 reflection at 1.475 
A - ' vs temperature at four different coverages. All the 
diffraction groups represented in the figure had the reso­
lution width of the instrument, corresponding to a coher­
ence length of L > 1100 A. From above, the panels show 
melting of the homogenous 2x2 phase, "pressure-
broadened" decrease of 2 X 2 intensity due to coexistence 
with a dense liquid, and (lower two panels) sharp triple-
point transition from 2x2 plus diluie-gas coexistence to 
liquid plus gas coexistence. 

Melting of the latter was studied in i constant cov­
erage scan at p=1.0. A set of (10) diffraction 
groups typical for a continuous melting transition 
was observed. Above the melting temperature 7"w 

the groups broaden. They can be fitted by powder-
averaged Lorenzian functions'-: with correlation 
lengths 5 which ideally should diverge at TM but in 
practice are limited by finite-size effects. We find 
that 5 varies from § > 1200 Å below TM, a limit set 
by our instrumental resolution, to f = 170 A at 6 K. 
above TM. This is a much slower variation than ob­
served for Xe and Ar films"1 on the same substrate, 
but more studies are necessary before this can be in­
terpreted. 

The phase diagram of CF4 on graphite has earlier 
been studied by neutron diffraction." The result 
was different from ours reported here, due to the 
lower resolution of the neutron scattering technique. 
In particular the stripe phase was not seen. Also 
low-energy electron diffraction measurements have 
been performed on this system.18 The 2x2 struc­
ture was identified and around 60 K a rotated 
slightly incommensurate structure was observed. 
The latter observation is difficult to combine with 
our interpretation. 

pears discontinuously at the triple point. For cover­
age 0.76 the intensity decreases gradually as we go 
through the liquid plus solid coexistence region. 
However, at the triple point there should be an 
abrupt decrease of intensity as we go from solid 
plus gas coexistence to solid plus liquid coexistence. 
Thus the liquid plus solid region of Fig. 2 may be 
incorrectly indicated, but further measurements are 
needed to solve this problem. The upper panel of 
Fig. 4 shows that at coverage 0.80 the 2 x 2 phase 
has a very sharp melting transition: The intensity 
disappears within 0.1 K. This transition isanalo-
gous to the melting of the commensurate v 3 X v 3 
phase of Kr on graphite described by the three-state 
Potts model with a continuous transition. For CF4 

monolayers the symmetry is different as discussed 
above, and it would be of particular interest to 
study the melting by diffraction in the same detail 
as has been done for Kr.3 It should be noted that 
the phase diagram of Fig. 2 shows that the transi­
tion changes over from first order to second order 
with increasing coverage, and this is analogous to 
what was found for Kr on graphite-1 and discussed 
theoretically in Ref. 17. 

At higher coverages first the C phase changes 
into the stripe phase, the melting of which is dis­
cussed in the next section, and then the dense in­
commensurate hexagonal structure is formed. 

PHASE TRANSITIONS INVOLVING 
THE STRIPE PHASE 

Two transitions involving the stripe phase, S in 
Fig. 2, were studied in detail, namely C to 5 and S 
to L. Figure 5 shows some observed diffraction 
groups near the (10) reflection of the 2x2 structure 
when we go from C to 5 by changing temperature 
at constant coverage near the top of th.; C-phase re­
gion in the phase diagram. In the upper panel, at 
T = 80.01 K, we have the typical single group of 
the 2x2 structure at Q = 1.475 Å - 1 with the War­
ren line shape." The full line is the fitted diffrac­
tion profile with a Gaussian coherence length6 of 
L = 1100 A, which is determined by the spectrome­
ter resolution. Presumably the intrinsic coherence 
length of the 2x2 structure is longer, and given 
by the ZYX substrate to be L ~ 1600 Å.13 When we 
go through the C-to-S transition, the double peak of 
the 5 phase develops in a continuous way. Clearly 
the groups in Fig. 5 at 74.96 or 70 K cannot be con­
structed as coexistence groups between the upper-
panel group and one of the others. The full lines 
are fitted curves assuming a uniaxial compression 
of the monolayers in the direction shown in the 
upper panel of Fig. 3. The integrated intensities of 
the two peaks have the ratio 1:2. The position of 



- 24 -

5172 KJAER, NIELSEN, BOHR, LAUTER, AND McTAGUE 26 

FIG. 5. Measured diffraction intensities (circles) and 
fitted line shapes \full lines) at constant coverage for four 
different temperatures. Upper panel: single 2 x 2 peak of 
resolution limited coherence length L = 1100 A. Lower 
three panels: double peaks in 1:2 integrated intensity ra­
tio, characteristic of the stripe phase. Left peak has 
Li = 1100 Å and right peak has L : (fitted) = 500-600 
A. Gaussian cross sections have been used in the Warren 
(Ref. 6) formula for both peaks for simplicity. 

the low-Q component is fixed at Q = 1.475 A , 
and the htgh-2 component is shifted outwards ac­
cording to the increasing compression as T is 
lowered. For the group at 7 = 74.96 K, which is 
very close to the transition, this shift is 
&Q=0.0073 Å - ' corresponding to an axial strain 
of e=0.0066 or a domain wall separation of 40 lat­
tice distances which is ~200 A. In the calculation 
of the curves fitted to the double groups of Fig. 5 
we have assumed that the low-g component has the 
same Warren line shape as the group of the pure 
2 x 2 structure with L -1100 A. For the high-Q 
component we also used, for simplicity, the Warren 
line shape, but let the Gaussian coherence length 
vary, and best fits were obtained with L =600 A. 
In fact, different types of line shapes are expected 
for the two components if the uniaxial compression 
does not alter the range of coherence of the two-

dimensional (2D) crystal in the direction perpendic­
ular to the strain while fluctuations of the local-
strain amplitude limit the correlation length in the 
parallel direction. The statistical accuracy of our 
data points does not allow a detailed analysis of line 
shapes, but in principle the groups describe the type 
of fluctuation existing in the S phase.19:o 

The phase transition C—»S was studied in a series 
of scans for coverages between p = 0.57 and 0.83, 
and the same behavior as that of Fig. 5 was ob­
served. This also applies for p<0.79, where the 
phase transition occurs with the solid coexisting 
with a dilute gas. Thus the driving mechanism for 
this transition is of a different kind from that 
operative in the commensurate-incommensurate 
transition of Kr, where a considerable spreading 
pressure is needed.13 However, CD4 monolayers on 
graphite undergo the transition from v 3 X v'3 to a 
more dilute incommensurate hexagonal structure at 
r ~ 5 0 K, also in a phase coexisting with its dilute 
gas.21 This transition is thus analogous to the C-
to-S transition of the CF4 layers in the sense that it 
is the change of the amplitudes of the thermal oscil­
lations of the molecules which drives the change of 
phase. An important factor must be the molecular 
rotations, and it would be of particular interest to 
study this by nuclear magnetic resonance. It should 
also be noted that the relatively high concentration 
of vacancies in the solid phases may be an impor­
tant factor for the transition. 

Although the observed diffraction groups near 
the C-to-5 transition rather clearly indicate a con­
tinuous phase transition, there can of course be a 
small not resolved discontinuity of the order param­
eter in the transition. The separation 1Q of the two 
groups of the 5 phase varies in our data from 
A0=0.03 Å - 1 to AQ =0.006 A"1, the smallest 
value we can resolve. An indication that there may 
be a small first-order jump is that we saw a small 
hysteresis when a set of groups like those of Fig. 5 
was measured with increasing and decreasing tem­
perature. This could be as large as 1 K but many 
groups would be needed for a precise determination 
of the hysteresis. Hysteresis of the C-to-5 transition 
has been discussed theoretically in Ref. 10 and may 
in fact not require a first-order transition. 

As shown in Fig. 2 the stripe phase for a range of 
densities melts into a liquid. This raises the follow­
ing question: How can the uniaxially compressed 5 
phase transform into an isotropic fluid? Figure 6 
shows a constant coverage scan through the melting 
transition. The general feature seems to be that the 
double peak of the S phase gradually becomes a sin­
gle, broad, liquidlike group by both the high- and 
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FIG. 6. Constant coverage scan through the melting 
transition of the stripe phase. Circles: measured intensi­
ties. Lines: fitted curves. Upper panel: single broad 
peak fitted by a Gaussian Warren line shape (L = 200 A). 
(Alternative line shape discussed in text.) Second panel: 
double peak fitted by two Warren line shapes of coher­
ence lengths L 1=600 and L: = 350 A, in 1:2 intensity ra­
tio. Lower two panels: double peak fitted by Gaussian 
Warren line shapes in 1:2 intensity ratio. Left peak has 
L, =1100 A (resolution limited), and right peak has L-_ 
(fitted) = 500-600 Å. 

the low-Q component being broader and broader 
through the transition. However, the scatter of the 
data points of the 7=85.98 K group does not al­
low a definitive conclusion in this regard. T.ie 
change of the splitting &Q is only a minor effect. 
The full lines in Fig. 6 show the fitted groups where 
we again have used Gaussian structure factors in 
the Warren-line-shape formula for simplicity. As 
discussed above, the low-g component of the double 
group is insensitive to fluctuations in the lattice 
parameter in the direction of the uniaxial compres­
sion, and a correct line-shape calculation should in­
volve an anisotropic and non-Gaussian structure 
factor around the reciprocal-lattice points of Fig. 
3(a). Although the quality of our data does not al­
low such detailed analysis, they do indicate that 
when approaching the melting transition, there exist 

fluctuations in the S phase which change the struc­
ture factor in both directions. 

We have also fitted the liquidlike scattering pro­
file of the upper panel of Fig. 6. at T =86.73 K. to 
a powder-averaged Lorenzian structure factor." We 
find that the correlation length is ^ 3 0 0 A. a value 
similar to what was found in liquid Xe (Ref. 2) and 
liquid Ar Ref. 1) near the melting transition be­
tween the liquid and an isotropic incommensurate 
solid with hexagonal structure. As Xe and Ar 
layers have continuous melting transitions, the in­
trinsic correlation lengths of the liquids diverge at 
the melting points, but finite-size effects limit the 
value and give rise to a "rounding" effect very close 
to the transition. A value of i = 300 A is within 
this rounding regime of the transition. Thus the 
liquid phase just above theS-to-Z. melting transition 
is. within the accuracy of our data, equivalent to the 
liquid phase of adsorbed Xe or Ar, bu' it would be 
of interest to study this with much improved inten­
sity. 

Contrary to the two phase transitions described 
above the transition from stripe to the hexagonal in­
commensurate phase appeared to be distinctly of 
first order. In constant coverage scans at p = 0.85 
and 0.87 we measured groups in the shaded coex­
istence region of Fig. 2. which could be constructed 
as weighted sums of the S- and /-phase signal. W'e 
do not have sufficient data to decide whether the 
coexistence region extends all the way to the melt­
ing line as indicated in the tentative phase diagram 
of Fig. 2. The first order character of the S-lo-I 
transition is theoretically expected.|: 

CONCLUSION 

The study of the CF4 films has shown that they 
have a rather complicated phase diagram with at 
least five different phases in the monolayer regime. 
At present our experimental information about the 
system is very limited; in particular no measure­
ment or calculation of the rotational state or the po­
sition of the adsorbed molecules has been per­
formed. Despite this, diffraction measurements can 
identify phases already discussed theoretically12•'" 
and give important information about the nature of 
the phase transition between structures with dif­
ferent symmetries. Most significant in our data is 
the clear evidence that the commensurate-to-
incommensurate transtion between the 2x2 struc­
ture and the denser hexagonal structure takes place 
through the intervening uniaxially compressed 
phase, the stripe domain structure. The C-to-S, the 
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S-to-L, and the I-io-L transitions are continuous, or 
at least very weakly of first order if so, whereas S to 
/ and }P to / are of first order. Our diffraction 
data also give some information about the fluctua­
tions near the continuous phase transitions: It is 
clear, e.g., that the structure factor near the 
reciprocal-lattice points of the stripe phase n.e an­
isotropic near the C-to-S transition but become 
more isotropic very near the melting line of the 
phase diagram. However, a detailed analysis of the 
functional form of the structure factors requires 
much higher scattering intensity than was available 
in our measurements. 
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The quasi-two-dimensional solid and fluid phases of CT4 physisorbed on the (001) surface of 
graphite were studied hy means of X-ray diffraction at the electron storage ring DORIS. Hamburg. 
Four crystalline phases were observed, one of which is a registered 2 x 2 structure. On variation of 
lemperature or coverage, the system experiences a phase transition from the 2 x 2 structure to a 
umamally compressed or "sinpe" phase. This is unusual among gas-monolayer systems. Only al 
higher coverages does an isotropically compressed phase appear. Al low temperatures we see a 
complicated structure giving three closely spaced diffraction peaks. We present diffraction data 
which characterize the melting of tl-e siripe and the hexagonal incommensurate phases 

I. Introduction 

Monolayers of gases adsorbed on graphite are approximately realisations of 
two-dimensional models of current interest, and, as such, are receiving much 
interest (see, e.g., refs (1-6)). 

The CF4 layers are different from the extensively studied rare gas mono­
layers [1-6) because of two factors. Firstly, the adsorbed particles are larger 
and thus commensuration occurs at the 2 x 2 structure instead of at the denser 
fi x / j structure. Secondly, assuming that the admokcules have a three-fluo­
rine plane parallel to the substrate, the most plausible adsorption site is above 
the vertex points of the graphite honeycomb structure, and these have a 
symmetry different from that of the centre positions takei; up by the rare gas 
commensurate layers |2I]. 
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Concerning the commensurate-incommensurate transition, our results indi­
cate that the (C-I) transition leads from the 2 x 2 phase to a uniaxially 
compressed structure in which there must be a superstructure of domains with 
parallel walls {stripe structure [IIJ). This is the first observation of the stripe 
structure in monolayers adsorbed on graphite. At higher coverages a hexagonal 
incommensurate structure is formed. Thus, several new phase transitions may 
be studied. The choice by the system of this stripe structure may be connected 
to the symmetry of the adsorption site [21]. 

2. Experimental technique 

The same setup as described in ref. [12] was used. The diffraction data were 
measured on an X-ray spectrometer installed at the stonge ring DORIS at 
DESY in Hamburg. The monochromator has two parallel Ge(lll) crystals. A 
position sensitive detector is used as analyser. The graphite substrate is a slack 
of UCAR-ZYX strips contained in an all metal sample cell with Be windows, 
and the cell was mounted in a Displex cryostat. 

3. Phase diagram, stripe phase 

Data were taken as function of temperature and CF, coverage, and fig. I 
shows the tentative phase diagram. At sub-monolayer coverages a triple point 
behaviour was observed between dilute gas (G). liquid (L) and commensurate 
2 x 2 phase (C). The gas-liquid coexistence line is drawn in accordance with 
the critical point taken from ref. {13} With decreasing temperature the coexist­
ing gas + 2 x 2 phase go into the coexisting gas + stripe (S) phase at 65 K. 
Below 57 K coexistence between gas and a "Three-Peak Structure" (3P) is 
observed. The nature of this "3P Structure" will not be discussed further here 
[ 14]. The stripe structure is observed in a rather broad region around the 2 x 2 
phase, and at higher layer density the hexagonal incommensurate structure (I) 
was found. The nature of the phase transitions between the different phases is 
indicated by either single lines (continuous transitions) or by shaded coexis­
tence regions (first order transitions). The unit of coverage (p) is the amount of 
gas which would compiete an ideal 2 x 2 structure. A very noticeable effect is 
that the homogenous 2 x 2 structure is not found at the coverage 1 but rather 
near 0.8. This must imply (hat the 2 x 2 phase contains a high concentration of 
vacancies or a non-ideal behaviour of the substrate. The total substrate surface 
area was determined before and after the measurements by measuring Ar 
vapour pressure isotherms and reference to diffraction measurements on Kr 
monolayers using the same sample cell [121. In the region where three of the 
phases in fig. 1, I, S and 3P. come together, the phase diagram is not known. 
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l i g I . Phase d iagram of CF, on (001 ) graphite C . S. I amt .11* denote the 2 x 2 commensura te , 
stripe, hexagonal incommensurate and " t h r e e peak" structures, and L represents a t w o - d i m e n -
Monal l iquid. N o l shown is the di lute 21) gas a l low coverages F u l l l i n « indicate phase boundaries 
and broken lines show iransilion.s of solid phases in coexistence w i t h the di lute gas phase (no t 
shown in the figure). Coci istcncc regions are shaded Points denote d i f f rac t ion measurements in 
the fo l lowing sense: ( O ) l iquid; ( X ) single 2 x 2 peak at 1 4 7 5 A '; < • ) t w o peaks w i t h 1 :2 
intensity rat io. ( D ) one peak at Q > 1.475 A '. ( v j three peaks. (<^>) four peaks (coexistence of 3P 
and I). 

but a pronounced first order transition is observed from 3P to I and from I to 
S. 

Fig. 2 shows the position of the observed Bragg peaks as a function of 
temperature for three different coverages. The signature of the C phase is a 
single peak 3t the position Q = 1.475 Å ' which is half the (10) reciprocal 
lattice vector of the graphite honeycomb structure. The stripe structure [11] is 
characterized by a double peak, and the distance between them is a measure of 
the uniaxial compression. When we move out of the 2 x 2 region either by 
decreasing the temperature or by increasing the coverage, we observe that the 
single (10) reflection of the 2 X 2 structure splits into a double peak such that 
the low Q component remains at the commensurate position Q- 1.475 A" ', 
and the other one moves to slightly higher Q values. There is a constant ratio 
of 1 : 2 between the intensity of the two peaks, the low Q component being the 
smallest. The distance between the peaks is a continuous function of tempera-
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Fig. 2. (a) Points and dashed lines, reciprocal lattice of the uniaxially compressed ("stripe") 
structure (no satellite reflection points are shown): full lines: reciprocal lattice of the 2x2 
structure, (b) Reciprocal lattice of the 2 x 2 structure, (c) Peak positions versus temperature for 
three different coverages. In the upper panel, the filled circles represent the signal from the I phase 
coexisting with the 3P structure. The lines are guides to the eye. 

ture and coverage. This is explained by an axial compression of the structure or 
a corresponding expansion of the reciprocal lattice such as shown in the upper 
part of fig. 2 [15]. 

At low coverages (p < 0.76) and temperatures (T < 57 K) we see the three-
peak structure. At higher coverages this phase coexists with the hexagonal 
incommensurate structure, so that four diffraction peaks are observed (fig. 2c. 
upper panel). 

The phase diagram of CF4 on graphite has earlier been studied by neutron 
diffraction [14]. The result was different from ours reported here, due to the 
lower resolution of the neutron scattering technique. In particular the stripe 
phase was not seen. Also LEED measurements have been performed on this 
system [17], The 2 x 2 structure was identified and around 60 K a rotated 
slightly incommensurate structure was observed. The latter observation is 
difficult tc combine with our interpretation. 
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4. Line shape analysis 

The peaks from the 2 x 2 phase are well fitted by a powder-and-nh 
averaged Gaussian (Warren line shape [6|) of coherence length /. = 1KX) A. 
representing the combined effect of the 1600 A coherence length of the ZYX 
substrate [ 12] and the instrumental resolution. For the liquid, a powder-and-tili 
averaged two-dimensional Lorenizian cross section (2| is applicable, and (his 
also fits (he peaks from (he hexagonal incommensurate (I) structure well. (We 
shall not discuss here the ideal scattering function of the I phases (1.2].) In our 
data the coherence length £, of this two-dimensional Lorenizian varies from 
HO A for the weakest liquid scattering peaks to 1600 A for the peaks from the I 
solid. For these peaks, the abovementioned effective Gaussian resolution 
function also contributes to (he width. We have not attempted to deconvolute 
(his contribution. For (he stripe phase we assume (hat the scattering function is 
anisotropic, being approximately Gaussian in the direction perpendicular to 
the strain, while fluctuations in the local strain amplitude lead (o a one-dnnen-
sional Lorentzian shape in the parallel direction. 

S(g„ + g ) a e x p ( - ^ ) ' , . 

Q0 being a Bragg point of (he stripe reciprocal lattice. Upon powder-and-(il( 
averaging, this leads to the abovementioned Warren line shape for (he low-(? 
component of (he stripe doublet, while the high-0 peak is approximately 
described by a tilt-averaged Lorentzian, the powder-averaging being redundant 
when the Gaussian is narrow compared to the one-dimensional Lorentnan. 
These line shapes were found (o describe (he stripe phase doublet quite well. 

For (he 3P structure it was noticeable that the widths of the three peaks 
were different 

5. Meltings and other phase transitions 

The s(ripe doublet develops from the single peak of the 2 x 2 phase in what 
seems to be a continuous transition [21]. 

Contrarily, the transition from (he stripe (o the hexagonal incommensuraie 
structure appeared to he disiinetly of firs! order. The transition takes place 
through a coexistence region, in which the diffraction signal can be constructed 
as the weighted sum of the S- and I-phase signals. 

The melting of the S phase was studied in constant coverage scans at 
p = 0.85 and p = 0.90. Fig. 3a shows some of (he da(a for coverage p = 0.90. At 
low temperatures (lowest panel) we see two peaks of separation AQ = 0.030 
A "' corresponding lo a s(rain < = 0.027 As (he temperature is raised, the peak 
separation varies little, but the high-@ peak broadens. Close (o (he transition 
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Fig. 3a Constant coverage scan through the melting transition of the stripe phase: circles. 
measured intensities, lines, fitted curses (lineshapes discussed in tent). Upper panel: single broad 
peak fitted by a two-dimensional Lorenizian lincshape <{2 - 225 A). Second panel: double peak 
fitted by two lineshapes with length parameters L - 600 A (Gaussian) and i, - 200 Å (one-dimen­
sional Lorenizian). in I 2 intensity ratio Lower two panels: double peaks fitted by two lineshapes. 
Oaussuns (resolution limned). L =» 1100 A. and ihigh-p peaks) one-dimensional Lorenman with 
i, -275 and 350 A. 

(7M = 86 K) the low-f̂  component experiences some broadening, too. Finally. 
a single broad peak to the high-(2 side of the 2 x 2 peak position emerges and 
(his liquid-like structure factor could be seen in a temperature range of about 
1.5 K above the transition. Thus, the transition seems most likely to be 
continuous The full lines in the figure are fits of the line shapes described in 
the previous section: For the liquid, a two-dimensional Lorentzian. and for the 
solid, a Gaussian and a one-dimensional Lorentzian locked in a 1:2 ratio of 
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Fig. 3b. Constant coverage scan through the melting of the hexagonal incommensurate phase. For 
simplicity, all peaks are filled by (powdcr-and-lill averaged) two-dimensional Lorentzjans as 
discussed in text. From above, the correlation lengths are i2 - 110. 200. 400. 1000 and 1600 Å. 

integrated intensities, the coherence length of the \ow-Q peak being fixed at 
L = 1100 A except very near the transition. The fitted parameters are repre­
sented in panel B of fig. 4. 

From a theoretical point of view, there is need of an investigation of 
possible mechanisms for a continuous freezing transition in which the isotropic 
liquid transforms to the uniaxial solid, and of the resulting diffraction lin-
eshapes. 

For completeness we show data for the melting of the hexagonal incom­
mensurate solid at p = 1.00 (fig. 3b). Panel A of fig. 4 shows the continuous 
variation of peak position, width and intensity through the melting point taken 
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to he 7\, ~ S6 k. at which point the peaks start to broaden quick.lv The peak 
position varies little, and no distinct feature of this parameter marks the 
transition. The data indicate that the I to L melting transition of ( K, is 
continuous. 

Panels C and D of fig. 4 show for comparison the data for two other 
melting transitions of incommensurate 2D solids on graphite: Dense mono­
layers of xenon and submonolaycrs of argon. 

Comparing the four transitions, it is apparent that the region of the CF4 

hexagonal incommensurate solid extends over 0 1 in reduced temperature 
7/'7"M. a much wider range than for any of the other films. The dense Xc 
layers show a very steep decrease of correlation length in the liquid. These 
differences are not understood. 

6. Conclusion 

The study of the CF4 films has shown that they have a rather complicated 
phase diagram with at least 5 different phases in the monolayer regime At 
present our experimental information about the system is very limited, in 
particular no measurement nor calculation of the rotational state or the 
position of the adsorbed molecules has been performed. Despite this, diffrac­
tion measurements can identify phases already discussed theoretically (I LIS] 
and give important information about the nature of the phase transitions 
between structures with different symmetries. Most significant in our data is 
(he clear evidence that the commensurate to incommensurate transition be­
tween the 2 x 2 structure and the denser hexagonal structure takes place 
through the intervening uniaxially compressed phase, (he stripe domain struc­
ture. The C to S. (he S to L and (he I to L transitions are continuous, or at 
least very weakly of first order if so. whereas S to I and 3P to I are of first 
order. Our diffraction data also give some information about the fluctuations 
near the continuous phase transitions: The diffraction peaks from the stripe 
phase could be fitted by line shapes derived by assuming anisotropic fluctua­
tions and structure factors that are anisotropic near (he Bragg points. The 
simple model assumed here can certainly be improved. More detailed measure­
ments of the line shapes would then be needed, requiring much higher intensity 
than was available in our measurements. 
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2.3.2. Line shape analysis. Warren line shape 

In this and the next section we give an account of the line 

shapes used to analyse the data. 

The observed diffraction line shapes are strongly modified by 

the special nature of the sample, which is a powder of two-di­

mensional (2D) crystallites, but with some preferred orientation. 

First, however, we must consider the scattering function of the 

average crystallite in the powder. 

The momentum transfer is Q = kf - kir which we resolve in com-

ponents in the crystallite plane and orthogonal to it, Q = Q n + 
- » • 

Qv. For a large 2D crystal, with long-range positional order 

(LRO), the scattering function is 

• ~ * * * 
SJQ) « ^*\F£(Q)\S2(Qh-G) 

Here, P2 is the structure factor. The sum is over the reci­

procal lattice points (£) of the 2D crystal, and the 2D delta 

function defines the "Bragg rods" of the 2D crystal. Near a 
- * • 

reciprocal lattice point G we make the further decomposition 
- » • - » • - » • - * 

Qh = 3* + Qt» along and across the G vector. 

For at crystal of finite size L, the delta function is replaced 

by a (sin(Q*L/2)/sin(Q»a/2))2 form where a is the lattic constant, 

The oscillating tails of this form which corresponds to a sharp 

cut-off in rsal space are unrealistic2«3r an<j following Warren
2** 

we replace it by a Gaussian 

SW(Q) * exp( -
L 2 *Qh2 

4» ' 

where iQ s 0 - G. To within 6 per cent, S^ has the same width as 

the (sin(Q'l/2)/sin(Q*a/2)2 form. It is appropriate for a com­

mensurate crystal (C), with 2D LRO imposed by the substrate. For 

the ZYX substrate, L » 1600 A2-5. 
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Next, Srø must be averaged over all orientations of the crystal­

lites in the plane, (powder average) 

_ + i 2m 

Sw(QU = — / do) S w [Qi cosu, (H sinui) 
2TT 0 

By approximating the circle by a straight line we get 

sw(Qa) « exp( ) . 

Finally, we must average over the distribution of crystallite 

normals (tilt average). We take the probability for a crystallite 

normal deviating the angle 9 from the vertical to be exp(-92/w2jf 

with FWHM(9) = 18 degrees for the ZYX substrate. Following 

J. Bohr2-*> we take the angle between a crystallite normal and 

the momentum transfer Q of the diffractometer to be (V2-9 Q), 

and further, the azimuth of the normal (around Q) to be ty, and 

express the powder- and tilt-averaged intensity as 

_e2/w2 
<S>(Q) « / / S(Qcos90)e dfl 

0O *
 9o* 

where 

d« = cos90 d90 d* 
9o* 

and 

cos 9 = cos90 cos'J' . 

In principle, <S> must finally be convoluted with the resolution 

function of the instrument as derived in 2.2. 

For simplicity, the resolution was, however, accounted for by 

replacing the true coherence length 1600 A with the value Leff = 

1100 A. 



- 39 -

2.3.3. Other line shapes 

For phases other than the commensurate structure, different 

line shapes are observed and predicted from theories. A simple 

approximation to this problem is to us2 an effective coherence 

length in the Warren line shape. This provides a family of 

curves with the asymmetry characteristic of the experimental 

method, and a variable width. (This approach was used for simp­

licity in the Phys. Rev. paper above). 

A more thorough approach is to substitute the appropriate line 

shape for the delta function in the formulae of Section 2.3.2. 

For the 2D liquid phase (L), assuming isotropic exponential 

decay of correlations, a 2D-Lorentzian is in order2•22f 

S2DL<Q> ' <1 + C2 Afl8)"1 ' 

where 52 *-s t n e correlation length. This form must in prin­

ciple be convoluted with the "Warren" Gaussian describing the 

finite size; however, when C2 *
s n o t t o° long, this can be 

ignored. Using the same approximation as before, the powder 

average leads to 

s2Di(Qa) "
 (1 + 52 AQ*>~1/2 • 

For the (hexagonal) incommensurate solid phase (I), algebraic 

decay of positional order is expected2«7, leading to 

Sn.(Q) « |AQhr
2+nG , nG « IGI

2 

This form, appropriate for an infinite crystal, must be con­

voluted with the finite size function Sy, 

S„ - / d2Q Sn.(Q ) SW(Q-Q ) . 

This can be done analytioally2«3. 

However, Heiney et al.2»8 found that their high-quality data 

for the incommensurate solid phase of xenon on ZYX could be 

fitted equally well by the above-mentioned Lorentzian and by 
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Sn. The signal-to-noise ratio in the CF4 data is not nearly as 

good, and therefore, the 2D-Lorentzian was used in the further 

analysis of the I phase of CF4 for simplicity. 

For the stripe phase (S), anisotropic fluctuations are expected, 

since the adsorbate is commensurate with the substrate in one 

direction only (namely, the direction orthogonal to the strain 

(1)). Thus we are led to the simple ansatz 

SS(Q) « exp ( -
L 2 AQj 

4 if 
(1 + C2 AQ2 J"1 

in terms of wave vector components along the strain (||) and 
-*• -*• -*• 

orthogonal to it (l): Qn = Q|| + Qi. The second factor de­

scribes of course an assumed exponential decay of correlations 

in the strain direction, convoluted, in principle, with the 

finite size function Sw. This function is represented in Fig. 

2.5 by the anisotropic ellipses. 

Fig. 2.5. Fluctuations in reciprocal space, for the 

stripe phase (S) of CF4. 1) Commensurate reciprocal 

lattice points. 2) Incommensurate points. 

The powder average leads for the commensurate points to 

. • L 2 &Ql 
Ss(Qz) •. exp( rrj-) 

4TT 
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while for the incommensurate points, when the Gaussian is some­

what narrower than the Lorentzian, we get 

4 
S S (QA) « (1 + i\ ' - AQ?)"1 

3 

Thus only the projected width of the 1D Lorentzian, /3/2 • 1/5-| , 

is seen in the powder scan2-^. 

Sets of curves <S>(Q) were computed, using the formulae in this 

and the preceding section, for use in fitting the data. A com­

puter program developed by J. Bohr2*11 was used to perform the 

tilt average. 

The results are summarized in the nomogram, Fig. 2.6. 

Examples of the Gaussian line shape <S^> are shown in Figs. 5 

and 6 of the Phys. Rev. paper and in Fig. 2.7 below; of the line 

shape <Sg> in Fig. 3a of the Surf. Sci. paper; and of <S2DL> in 

Fig. 3b of the Surf. Sci. paper. While the quality of the data 

do not allow an unambiguous choice of line shapes, it must be 

said that the calculated line shapes reproduce the overall fea­

tures of the data quite well. The I and L phase date were fitted 

notably better by the 2D Lorentzian <S2DL > than by the Gaussian 

<SW>. 



- 42 -

102 103 

REAL SPACE LENGTH (A) 



- 43 -

Fig. 2.6. For practical purposes, the asymmetrical 

lineshapes calculated for gas layers on ZYX graphite 

can be characterized by their width to the left side 

(WLS), defined as shown in the insert. The figure 

shows the WLS as function of the real space length 

parameters for the various line shapes used: 

_ 2 2 -

?i: One-dimensional Lorentzian, SgfQ^) « (1 + £f AQ|) 

For the stripe phase of CF4 monolayers the direction 

of fluctuations is 30° from the incommensurate Bragg 

vector, and consequently, the ?i must in this case 

be corrected, i.e., €i(true, CF4) = 

^3/2 • 51(fitted or read from nomogram). 

The parameters used in the calculation were the lowest 

reciprocal lattice vector of the ( 2 x 2 ) structure, 

tQ = 1.475 A"
1, and the (002) mosaic FWHM = 18°. 

L: Gaussian describing finite size in <ai: otherwise 

perfectly long-range ordered 2D crystal; 

L2 AQ| 

SW(Q*) * exp( — ) . 
4 TT 

Same parameters. 

s>2' Two-dimensional Lorentzian, 

S 2 D L ( Q Z )
 a (1 + 52 ArJ2t)~1/'2. Same parameters. 

$2: Same cross-section as previous, but calculated 

for TQ = 1.703 A"
1 = (10)/3„/3. 
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2.3.4. Phase diagram 

This section discusses some details of the phase diagram. 

C-L coexistence; 

As pointed out in the published papers, a discrepancy may exist 

between the asserted phase diagram and the data at the melting 

of the commensurate (C) phase: As drawn in Fig. 2 of the Phys. 

Rev. paper, the phase diagram predicts for the melting at cover­

age P = 0.76 a ca. 50% decrease in intensity as the temperature 

is raised beyond the C-L-G triple point T3 = 75.6 K. This is not 

borne out by the available data (Fig. 4 of the Phys. Rev. paper). 

The correction involved may be quantitative (pulling the lower C 

phase boundary down to P = 0.76 + e would solve the problem) or 

qualitative (the topology may be wrong in this corner of the 

phase diagram), but more data are obviously needed to reach a 

firm conclusion here. 

3P, S, and I phases: 

The region of the phase diagram where these three phases meet 

was left blank in the publications, since no diffraction groups 

were obtained in that region. By introducing an I-S-3P triple 

point and an S-3P-G triple point it is possible to connect the 

phase diagram in a topologically sound way but a large density 

of diffraction groups would be needed to verify any such hypoth­

esis. Also, good resolution would be required, since interpreta­

tion of the diffraction signal from coexisting I + 3P, I + S and 

S + 3P phases is needed. 

One-dimensional liquid: 

On the basis of theoretical analysis, P. Bak and T. Bohr^«^ 

have proposed several more subtle changes to the phase diagram. 

For the stripe phase, they predict anisotropic fluctuations, much 

as outlined in Section 2.3.3: long-ranged order (LRO) (limited 

only by finite size) parallel to the domain walls, and quasi-LRO 

(i.e., algebraic decay of correlations) perpendicular to the 

walls, (along the strain direction). Bak and Bohr also predict 

the existence of a new phase between the S and L phases and be-
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tween the S and C phases. This new phase has exponential decay 

of correlations in the strain direction, and still LRO in the 

perpendicular direction. Thus, it is a "one-dimensional liquid". 

(Bak and Bohr elect to denote it "2 * 1 phase", in view of the 

discrete translational symmetry arising from the substrate po­

tential ). 

This means that two of the transitions involving the stripe 

phase are modified (according to Bak and Bohr) to become: 

Melting: 

S (with 1D LRO * ID algebraic decay) 

-»• "2 x i» (ID LRO * ID exponential decay) 

•*• L (2D exponential decay) 

and Incommensurate to Commensurate transition: 

s + »2xi» + c(2D LRO) . 

An experimental test of this hypothesis would involve detailed 

line-shape studies and would probably be extremely difficult 

for the latter transition, since we here have the two powder 

peaks of the stripe phase merging in the transition. While the 

situation is intrinsically better for the melting, the present 

data do not warrant such a line-shape analysis (as commented in 

Section 2.3.3). Qualitatively, the data are probably consistent 

with the behaviour predicted by Bak and Bohr (see Fig. 3a of the 

Surf. Sci. paper). 

In any case, the apparently continuous melting of the stripe 

phase is an intriguing transition which could well warrant 

further detailed study. 

Liquid with Ising transition: 

Bak and Bohr2-12 aiSo predict another transition, within the 

liquid (L) phase. Assuming that, in the I phase, only 4 of the 8 

sublattices are populated, they predict that this exclusive 

occupation will persist into the L phase during the I * L 

(melting) transition. Then, at a higher temperature, this pre­

ferential occupation would disappear in a transition with Ising 
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symmetry. It seems improbable, however, that this new transition 

would have much impact on the diffraction signal in a powder 

scan. 

Also, the basic assumption of preferential occupation need not 

be correct. Indeed, Fig. 2.8a below shows a quite plausible 

domain structure in the I phase, populating all eight sublat-

tices equally. 

2.3.5. Three peak structure 

The lowest panel of Fig. 2.7 shows the diffraction response from 

the 3P structure. 

For the 3P group in the figure, the integrated intensity ratio 

is 15:31:54, and this ratio doesn't vary much with temperature 

and coverage. Note also the different peak widths, corresponding 

to 1100, 700 and 500 A in coherence length. 

Several plausible models for the 3P structure present them­

selves, but must, however, be rejected on closer scrutiny. iSee 

also Ref. 2.13). 

Monoclinic cell with one molecule: 

Such a structure could of course be adjusted to fit the observed 

peak positions: 1.466, 1.487 and 1.516 A~1. Then the intensity 

variation must come from the variation of the CF4 molecular 

form factor with orientation. Calculation shows that the form 

factor varies less than 25% at momentum transfer 1.475 A in any 

one plane through the molecule, so this possibility must be dis­

carded. 

Domain structure: 

We cannot interprete the data as a satellite reflection pattern 

from some kind of domain structure, simply because the peaks do 

not index like that. Also, the intensity would seem to be dis­

tributed too evenly in this case. Specifically, the calculation 

summarized in Fig. 2.9 concentrates much more of the intensity 

in a main peak. 
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Fig. 2.7. Diffraction groups as a function of tem­

perature for a CF4 coverage P = 0.71. With decreasing 

temperature, first the 2 * 2 structure (upper two 

panels) changes into the stripe phase (next three 

panels). Below 56K, the 3P structure appears. Each 

solid phase coexists with the dilute gas phase at this 

coverage. The full lines are fits of (Gaussian) Warren 

line shapes with variable coherence lengths (except for 

commensurate peaks at 1.475 Å-1, for which L = 1100 Å). 
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Monoclinic cell with several molecules; 

Of course, a model with more degrees of freedom could fit both 

the intensities and peak positions. A larger unit cell would, 

however, give rise to new reflections in the powder pattern. 

Such reflections were looked for, in vain, in a neutron dif­

fraction study by H.J. Lauter et al.^-13^ 

Bulk condensation; 

For completeness, the observed peak positions were compared 

with the reported diffraction patterns of powdered 3D CF4 crys­

tals'-1^ This allowed the exclusion of the possibility that 

we were observing a 3D (bulk) condensate of CF4. 

Thus, the riddle of the three peak structure remains unsolved. 

It is possible that a LEED study could shed some light on the 

problem, since, by this method, some information about the 

orientation of the adsorbate relative to the substrate could be 

obtained. 

2.3.6. Satellite reflections 

The periodic potential from the substrate must in principle 

cause a density modulation in the (S and I) incommensurate 

phases, causing satellite reflections to appear. When the po­

tential is strong, the ground state of an incommensurate phase 

will consist of domains of locally commensurate configurations, 

delimited by sharp domain walls. For a weaker potential relative 

to the adsorbate forces, the domain walls will be broader until, 

for a compleately flat substrate, a homogeneous incommensurate 

phase results. We have not observed any satellite reflections in 

the S or I phases of CF4 on graphite, so the domain walls must 

be fairly broad. 

Ihis statement can be made more quantitative and simultaneously 

some general ideas about slightly incommensurate phases'«15,2.16 

can be spelled out more clearly if a specific model of the do­

main structure is assumed and subjected to calculation. 

The domain structure (for the hexagonally incommensurate I 

phase) illustrated (for the rather large strain e • - 0.091) in 
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Fig. 2.8a has the following properties: All eight sublattices 

of the commensurate 2 * 2 structure are populated. The displace­

ment vectors between neighbouring domains are the nearest neigh­

bour vectors between the threefold coordinated adsorption sites. 

The triangular domain shape reflects the threefold coordination 

of the sites. The domain size is chosen so that the domains form 

a superstructure; this is possible for a set of strain values e 

which is dense at e = 0. Two adjacent triangles make up the unit 

cell and define translation vectors of :he superstructure. The 

reciprocal lattice of this superstructure is illustrated by the 

(fine) triangular lattice in Fig. 2.8b. This reciprocal lat­

tice results also from a more general argument, also illustrated 

in Fig. 2.8b, by which the satellite reflection vectors are 

generated from the mismatch between the substrate reciprocal 

lattice points (r.l.p.) and the nearest r.l.p. of the adsorbate. 

The satellite intensities were calculated for the sharp domain 

walls shown in Fig. 2.8a and also for various more relaxed 

walls producing eventually the strain-free incommensurate phase. 

The specific relaxation illustrated in Fig. 2.9c was assumed. 

A triangular domain containing a N2 particles can be thought of 

as consisting of * N rows of equidistant particles. Since the 

structure amplitude of a row can be expressed simply, only ' N 

terms need be summed numerically for each structure amplitude. 

These single-crystal structure amplitudes are then normalized 

by the supercell area, squared, and a sum over terms of equal 

momentum transfer gives the powder pattern. This method of cal­

culation is similar to the one presented in Ref. 2.18 for the 

hexagonal domains of the ABC structure. 

Results are illustrated in Fig. 2.9a and b for a strain e = 

-0.048. Calculations were performed for various strains down to 

e = 0.0005, i.e. a very slightly incommensurate structure, and 

gave qualitatively similar results as a function of the fraction 

of particles residing in the walls. It is notable that the satel 

lite intensities near the 1.475 A"^ commensurate Bragg position 

are always less than 15% of the main peak, and that several sat­

ellite peaks have comparable intensities. Satellites as intense 

as those in Fig. 2.9.1 and 2 would probably be recognizable in 
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Fig. 2.8. a) Plausible triangular domain structure of 

a hexagonal incommensurate solid. The structure is 

slightly compressed relative to the commensurate 2 * 2 

structure and populates all eight sublattices of the 

2 * 2 structure. Pull and broken lines indicate domain 

walls. Pull lines also show the unit cell of the super 

lattice of the modulated structure. The nominal density 

("x-ray density") of the structure shown is P = 1.19 2 

1-2e. 

b) The corresponding reciprocal lattice: 

x, reciprocal lattice point (r.l.p.) of the 

graphite lattice. 

or additional r.l.p.s of the 2 x 2 structure. 

•, r.l.p.s. of the compressed structure. 

The star of modulation vectors shown near the graphite 

r.l.p. (x) define the reciprocal lattice of the super 

structure, i.e., the satellite reflections present near 

the main r.l.p.s of the compressed structure (•), as 

shown by the triangular lattice (thin lines). 
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Fig. 2.9. Calculated powder averaged satellite intensities 

vs. momentum transfer for a triangular domain structure 

similar to that shown in Fig. 2.8a. Nominal density ('x-ray 

density*) P = 1.098 = 1-2e. 

(a)-(b): Intensities near the reciprocal lattice 

points. (10)2x2 t
1-475 A~1/ (a)) and 

(11)2x2 (2.555 A
-1, (b)). marks the 

commensurate reflection position. 

(c): Displacements relative to the 2 * 2 structure, 

versus position along a line from the centre 

of one domain (C) across the domain wall (W), 

to the centre of the next domain (C). 

(1)-(4): Various relaxations of the domain structure. 

(1): Narrow walls as shown in Fig. 2.8a. 

(2)-(3): Parabolic relaxation of the displacements 

away from the wall. 

(4): Homogeneously strained adsorbate lattice 

(corresponding to zero substrate potential), 

leading of course to zero satellite inten­

sities. 

our data, so it may be tentatively concluded that Pig. 2.9.2c is 

a bound on the sharpness of the domain wall. For the I phase data 

presented in Pig. 3b of the Surf. Sci. paper, the strain e varies 

from -0.031 to -0.020. 

2.4. Conclusion 

In conclusion, the work reported above has shown that Cr"4 mono­

layers physisorbed on the (001) race of graphite have an in­

teresting phase diagram including in particular the stripe phase 

which is connected to the commensurate 2 * 2 phase and to the 

liquid phase by what appears to be second-order phase tran­

sitions. Also, the hexagonal incommensurate phase was seen to 

melt continuously. 
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Simple line shapes, corrected for the orientation distribution 

of the substrate, were used to fit the observed diffraction 

groups. 

Some problems remain, e.g., concerning two corners of the phase 

diagram. Also, a model for the three peak phase has not resulted 

from this work (nor from the complementary neutron scattering 

data (Ref. 2.13)). 

More information could probably be obtained by detailed line 

shape studies of the meltings of the incommensurate phases and 

also of the commensurate to stripe structure transition. This 

will, however, require a higher flux than was available in the 

experiments reported here. The wiggler port presently being 

prepared at the storage ring DORIS2*31 will improve the situ­

ation, making these and many other new experiments possible. 
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3. A NEUTRON SCATTERING STUDY OF DILUTED DIPOLAR ISING 

FERROMAGNETS 

Using neutron diffraction, the dipolar-coupled Ising ferromag-

nets LiTbF4 and LiHoF4 were studied when the magnetic ions were 

randomly diluted by yttrium ions. Two crystals were grown: 

LiTb.3Y.7F4 and LiH0.34.7F4 and found to be isostructural with 

the concentrated crystals. Both ordered ferromagnetically, below 

Curie points of 0.49 and 0.36 K respectively. The magnetization 

as well as the critical magnetic fluctuations were studied. A 

slow saturation with temperature of the magnetic moments was ob­

served. The critical scattering of the LiH0.3Y.7F4 was consistent 

with that predicted for a dipolar Ising magnet (and found exper­

imentally in LiTbF4). In contrast, the critical scattering of the 

LiTb.3Y.7F4 was found to contain an anomalous component at small 

angles. This may be connected to the enhanced significance with 

dilution of the split ground state of the Tb ion and to anomalies 

observed in the (bulk) susceptibility of the system. 

3.1. Introduction 

The compounds LiRF4 with R representing a heavy rare earth ion 

or yttrium, all crystallize in the tetragonal 3ah.&elit@ struc­

ture. Under the influence of the crystalline electric field 

actting on the rare earth ions, LiTbF4 and LiHoF4 become uniaxial 

(or Ising) magnets, ordering ferromagnetically at sub-liquid-

helium temperatures. There is compelling experimental evidence 

that the magnetic dipolar interactions between the rare earth 

magnetic moments are dominant over any "exchange" interactions. 

The peculiar nature of the dipolar interaction (long ranged and 

anisotropic) leads to an ordered state consisting of needle-

shaped magnetic domains. Likewise, the precursor fluctuations 

above the Curie point exhibit a marked anisotropy, the correlated 

regions becoming again very long needles as the transition is 

approached. Therefore, as has been shown in the literature (refs. 

http://LiTb.3Y.7F4
http://LiH0.34.7F4
http://LiH0.3Y.7F4
http://LiTb.3Y.7F4
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3.43-44, 3.47, 3.24, 3.31 and 3.40) and as will be developed be­

low, the systems can be thought of as simulating a four-dimen­

sional behaviour, i.e. LiTbF4 and LiHoP4 are systems at upper 

marginal dimensionality. Because of this, theories predict that 

the critical phenomena near the magnetic phase transition will 

be mean field like except for logarithmic correction terms. These 

predictions have been verified in great detail for LiTbP4 (see 

refs. 3.14-15, 3.31, 3.34-35, 3.48). 

Theoretical predictions for a lattice of dipolar-coupled Ising 

spins, some of which are randomly absent (a random magnet) 

suggest subtle changes to tne critical phenomena, still retain-
3 4Q ing the essentially mean field-like features . LiTbF4 and 

LiHoF4 lend themselves to an experimental study of such phenom­

ena, since crystals can be grown in which the magnetic ions are 

replaced partly with closed shell yttrium ions. 

Susceptibility studies on diluted crystals LiTbpY-j_pF4 have been 

reported^*19-23. j n contrast with theory, a marked departure 

from mean field theory was observed in the susceptibility criti­

cal exponent Y, which rose well above unity as the concentration 

was lowered. 

An important aspect in understanding the behaviour of LiTbpY-|_pF4 

may well be the "ground state" of the Tb ion wl ich is in fact a 

pair of close lying singlets. At p = 1 this groundstate split­

ting is unimportant, but as the net magnetic forces are lowered 

with dilution, the splitting gains significance. This complica­

tion is absent for the LiHOpY-|_pF4 crystals, since the Ho ion 

has a true doublet ground state. 

A neutron diffraction study, reported in this chapter, was under­

taken in order to gain information about the microscopic be­

haviour of the LiTbpYi_pF4 and LiHopYi_pF4 systems and to assess 

the influence of the ground-state splitting. After several growth 

attempts, crystals of LiTb.3Y.7F4 and LiH0.3Y.7F4 were obtained 

and these formed the basis for the investigation. 

http://LiTb.3Y.7F4
http://LiH0.3Y.7F4
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The rest of the chapter is organized as follows: 3.2 presents 

the previously available experimental and theoretical infor­

mation about the rare earth 3^heelize crystals. In 3.3 the ex­

periments performed are described, and the results are presented 

and discussed. Finally, 3.4 concludes the chapter. 

3.2. Review of the experimental and theoretical situation 

In this paragraph we review some of the experimental information 

regarding the rare earth Ss'mslizss. Also the relevant theoreti­

cal aspects are reviewed or developed. Only information relevant 

for the subsequent analysis will be reviewed, so completeness is 

not the aim. 

3.2.1. Crystal structure 

The compounds LiRF4 (with R representing: a) a heavy rare earth: 

Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or r,u, b) yttrium, c) a mixture 

of these or d) yttrium with a small doping of any of the rare 

earth ions) form tetragonal crystals isomorphous to the mineral 

Scheelite (CaW04)
3*1 »3-2,3.3,3.4 The space group is 1 4 ^ (No. 

88, C4h). There are four formula units in the centered tetra­

gonal cell, in the positions given in Table 3.1. 

The structure may be (partly) visualized in the following manner. 

Within 5 per cent, the lattice constants of the tetragonal crys­

tal obey c = 2a (cf. Table 3.4 on page 88). The metal ions be­

tween ul am occupy the sites of an fee lattice with lattice con­

stants (a, a, -j- c = a). 

In the figure, it may be seen that each Li ion is surrounded by 

a Fluorine tetrahedron (Li-F distance = 1.90 A). The rare earth 

ions are surrounded by two Fluorine tetrahedra of different shape 

(R-F distances = 2.26 and 2.31 A). 
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Table 3.1. The (scheelite) structure of the compounds 

LiRF4, (R = heavy rare earth or yttrium). Origin at 

inversion point. All coordinates must be shifted by 

(0,0,0) and by the body-centering translation (3C) 

(̂, ^, -J). In the body centered cell, there are 

four formula units, i.e., Z = 4, 

Ion 

Li + 

R3+ 

Coordinates 

* (0, J, J) 

± (0, \ , |) 

, BC 

, BC 

Wyckoff 
Label3«5 

4a 

4b 

Site 
symmetry 

? 

I 

F" ± (x,y,z ; 

x", \ - y,z ; 

J - y» } + x( 4 + z ; 

4- + y»i-x,-4-+z),BC 

The structure is shown in Fig. 3.0. 

Fig. 3.0. Diastereogram. 
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Projection. 

Fig. 3.0. Projection and diastereogram^,77 0f the 

structure of LiTb^Y^F^ using atom positions from 

Table 3.5. 

Large spheres: Tb/Y. 

Smaller spheres: Li. 

Dots: F. 

For clarity, the origin in the figure is shifted to 

coincide with one of the Li positions. 
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3.2.2. Crystal field and single-ion magnetic properties 

In the crystalline electric field (CEF) from the surrounding 

crystal, the (2J + 1) times degenerate free ion Multiplet 
2s+1Lj of the 4f electrons is split into a series of CEF levels, 

the energies of which extend over several hundreds of kelvins. 

Specifically the level schemes for LiTbF4 and LiHoF4 are shown 

in Fig. 3.1 (reproduced from ref. 3.6). 
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Fig. 3.1. Crystal field levels for Tb3+ and Ho3+ in 

scheelite crystals. (Reproduced from Ref. 3.6). 

The response of a free R3+ ion to a magnetic field is given by 

the Zeeman expression (MKSA units) 

• free + 
V • X H = U0 

gjj'(J+l)u| 
• H 

3kBT 
(3.1) 

where v is the induced magnetic moment, H is the magnetic field, 

gj is the Lande factor for the multiplet 2S+i L.T. 

3 S(S + 1 )-L(L+1) 
g j = _ + 

2 2J(J+1) 
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uB is the Bohr magneton and uQ = 4**10 Vs/Am is the vacuus 

oermeabilitv. x£ree is the free ion oolarizabilitv. 
i. 

For the Ho34" ion in the LiHoF4 crystal field, the ground level 

is a doublet as shown in Fig. 3.1. At temperatures that are low 

compared with the energy of the first excited level (9R), the 

single ion response to a magnetic field becomes 

v = x°. H 

Relative to the tetragonal axis, the ionic polarizability tensor 

x°> is diagonal and has components in the basal plane ( i) and 

along the c axis (II) given by 

(gj.n ) 2 u3 
X = »o (3.2) 
Tl,|| 4kT 

where the g-factors for the ground-state doublet are given by 

9i,|| = 2<1|c 9 j • j 1 # | | |0>c , (3.3) 

when the basis states |1>c and |0>c of the doublet are chosen 

as eigenstates of both the CEF operator and the time reversal 

operator. Jj_ i i are angular momentum operators. For the Ho 

doublet, gi = o, since adjacent uj-values do not occur (Fig. 

3.1). Thus, LiHoF4 is a uniaxial or Ising magnet, the magnetic 

moment being confined to the tetragonal axis. 

The case of LiTbF4 is slightly more complicated. As shown in 

Fig. 3.1, the Tb3+ ion has two low-lying singlets split by 

A = 1.34 K3'7. As derived in Appendix B, the polarizability for 

the singlet-singlet case is 

2 2 */2 
o <ss9> WB t a n h v r ~ 

ssXT " M° — 4 VT" (3'4> 

where the "g-factor" for the close pair of singlets is 

ssg = 2<1|c qj3z |0>c . 
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Since the singlet states have time-reversal symmetry and ad­

jacent M,j-values do not occur, all other matrix elements such 

as <l|c J |1>C or <l|c Jx !0>c are zero. Thus also LiTbF4 is an 

Ising magnet, modified, however, by the splitting & of the ground 

levels which, as shown in Appendix B, corresponds to a transverse 

magnetic field. 

For the other LiRF4 crystals, both gi and g.| are non-zero. Thus, 

the magnetic moment in these crystals is a truly 3-dimensional 

vector: the crystals are Heisenberg magnets (with some magnetic 

anisotropy}. For the diluted crystals LiRpYi-pF4 the same gig and 

gx values are found as for the concentrated crystals * ' . 

Thus, the crystal field at a rare earth ion seems to be indepen­

dent of the ions present at other rare earth sites. 

3.2.3. Collective magnetic properties 

Ferromagnetism has been observed in LiTbF4
3-12'3-3'3-14'3*15 

and LiHoF4
3*6'3-16'3-17'3'18 below Curie points Tc of 2.87 and 

1.55 K, respectively. Also the corresponding diluted crystals 

LiRpYi_pF4 are seen to order, at least for concentrations p > 

0.15 (R = Tb) 3- 1 9 - 3- 2 3' 3- 4, respectively, p > 0.3 (R = Ho) 3- 4. 

The transitions are continuous. A mean field theory including 

only magnetostatic dipolar interactions between the ionic mag­

netic moments comes up with Curie-Weiss temperatures for ferro­

magnetic ordering that are close to the observed TQ-values, indi­

cating that exchange contributions to the ordering field are 

small. We review first a mean field theory for magnetic ordering 

characterized by a non-zero wavevector3*24 in the long wavelength 

limit. This sheds some light on the detailed origin of the 

ordering field, and further, the anisotropy of the fluctuations 

is established. Mean field theory for a zero wave vector may also 

be applied. We comment on the connection between the two ap­

proaches. With reference to Appendix B, the effect of the ground-

level splitting in the Tb compounds is addressed. 
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3.2.4. Mean field theory for magnetic ordering at non-zero 

wave vector 

He follow the exposition given in Ref. 3.24. The theory applies 

strictly to the hoimiurn compounds where the ground level is a 

true doublet. 

For any mode of magnetic ordering u(site i) = <u^>(mode), the 

corresponding susceptibility per ion x^0 is given by 

*? = 1 . l ( » o d e , 
vmode T 
XT 

where the Curie-Weiss temperature 9(node) for the mode of or­

dering considered is the energy (in temperature units) gained 

by a particular spin $(site i) by taking its mean value 

<i*i>(mode) in the presence of the field from the other spins 

which are held equal to their mean values <£.:>(mode). kg9(raode) 

is thus found as a sum over the lattice of the interaction ener­

gies of the spins. Prom Eq. (3.6) it is seen that as T • 9 from 

above, XT * "• Below T = 9 (= Tc in mean field theory) the spins 

order in the pattern of the particular mode. The actual mode of 

ordering, then, will be the mode having the highest value of 9. 

In the LiRF4 compounds, the magnetic ions occupy two Bravais 

sublattices 1 and 2 (not four, since a primitive unit cell with 

2=2 could be chosen instead of the (Z=4) centered tetragonal 

cell). We specifically consider modes --£ magnetic ordering in 

which the magnetic moments are »(r^) = w^'e'^^i or H20 e i 

for a site r^ on either sublattice (1 or 2;. Then Eq. (3.6) 

becomes 

o • -1 1 • 

x • x (Q) - 1 • 9(Q) , (3.7) 
T =T = T x 

where the susceptibility XT(Q) is a 2*2 matrix defined by 

W1(Q) * H,(Q) 
( * ) * XT(Q) ' ( • ) <3-8) 
W2(Q) • H2(Q) 
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describing the response to a magnetic field varying as e~iQ*r 

and having amplitudes H-|(Q) and H2(Q) on either sublattice. The 

matrix 

9
n ( Q )

 92i(Q) 
9(Q) = ( • ) 

92i(Q) 9il(Q) 

contains the interactions of the spins within a sublattice (8n) 

and the interaction of a spin with the spins of the other sub-

lattice (92l)* * denotes complex conjugation. Including only the 

magnetostatic dipolar interactions and putting the origin on a 

point of sublattice 1, the energy of the interaction between the 

spin at ? = o and the other spins on the sublattice is 

vo <9|| WB> 2
 r -i0#r 3z2-r2 

4* 4 * r5 
r*o 

where the sum is over the other sites of sublattice l. The inter-

sublattice value 92lt^) is given by the corresponding sum over 

sublattice 2. Within mean field theory, the Curie-Weiss tempera­

tures for the diluted crystals LiRpYi_pF4 scale with the concen­

tration p of the magnetic ions. Ordering means a finite response 

w to zero field H in Eq. (3.8), i.e. 

• . »M(Q) o 
X T ( Q ) ~ ' ( • ) = ( ) 

U2(Q) 0 

or, using (3.7), 

9
n(Q)-T eJ^Q) Ul(Q) 0 

(a • fl > > • ( ) » ( > , (3.10) 
921(Q) 911(Q)~T U2(Q) 0 

an eigenvalue problem for the Curie temperature T * T^ and the 

ordering mode (i»i(\?), i»2(Q)). Equation (3.10) can describe any 

mode of ordering (including non-zero Q and different amplitudes 

on the sublattices). Since the observed ordering is ferromagnetic 

we now consider the limit Q * 0. In this limit ©21 becomes 
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real * (9^ is always real since each sublattice has inver­

sion symmetry), and the two solutions to Eqs. (3.10) are 

TC = 9(Q) = 9 n + 921 , M! = U2 (3.11) 

corresponding to ferromagnetic ordering, and 

TC = 9 n - e21 , U] = - u2 > 

describing antiferromagnetic ordering with opposite spins on the 

two sublatices. Holmes, Als-Nielsen and Guggenheim^-24 h a v e 

evaluated the total ferromagnetic Curie-Weiss temperature 9(Q) 

defined in Eq. (3.11) numerically for LiTbF4. Apart from the 

scale factor in Eq. (3.9), 9(Q) depends only >#n the structure, 

uo (9||WB)2 

*B9(Q) = P * 4 • s(Q) (3.12) 
4TT 4 

where 

+ -iQ*r 3Z2_^2 
s(Q) = I e — (3.13) 

r*o 

is a SUIT, over all the spin sites. 

Since the structure is nearly the same for all of the LiRpYi_pP4 

compounds (see Tables 3.4 and 3.5 below), so also is the lattice 

sum s(Q), so that the results of Ref. 3.24 are generally appli­

cable. Figure 3.2 shows the results of Ref. 3.24. 

Notable in the figure is the discontinuity at Q = 0. The long 

range of the dipolar interaction in Eq. (3.13) leads to con­

ditional convergence of the sum s(Q = 0 ) ; and the sums s(5 * 0) 

become discontinuous at Q + 0 for an infinite crystal, as seen 

in the figure. This has to do with so-called demagnetization 

effects and has some interesting consequences for the resulting 

ordered state: 
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O 05 10 <5 20 25 

WAVE NUMBER Q. (S"'l 

Fig. 3.2. Normalized ferromagnetic dipole sum s(Q) 

for the LiRF4 compounds (Eq. 3.13), arrived at by 

scaling the results of Ref. 3.24 according to Eq. 

(3.12). As indicated, the intercepts at Q = 0 are 

S3 and (S3 - si), where si - S4 are defined in Eq. 

3.14 below. Further, the curvatures at Q = 0 are 

S4(<0) for the (Qo»0,0) curve and (S2 + S4MX)) for 

the (0,0,Qo) curve. 

- » • -*• 

The highest 8(Q) occurs for Q + 0 as assumed in the analysis 

above. However, 9(QZ << Qx + 0) is larger than 9(QX << Qz + 0) 

(which is in fact negative). Thus, the resulting ordered state 

must be described by wave vectors $ - 0, Qx,y >> Qz' a n d that 

implies a structure of magnetic domains whose extent along the 

Ising axis (ca. 1/QZ) is much larger than the transversal di­

mension (ca. VQx,y)- That is, the magnetic domains are in the 

shape of thin needles parallel to the Ising axis. This result is 

perhaps not so spectacular, since it is well known that all fer-

romagnets form domains of different orientation in zero field as 

a result of dipolar interactions, or - putting it differently -

the domains are formed to minimize the magnetic field energy. 

However, for most exchange coupled magnets this effect is 

spurious in a sense in that it results from dipo.ar interactions 

which contribute negligibly to the ordering energy. For the 

LiRpYi_pF4 compounds, as will be shown, the dipolar interaction 
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contributes most of the ordering energy, at the same time as 

causing the ordered state to split up in domains. 

The above conclusions are borne out as well by a mean field 

theory which keeps Q = 0 from the beginning, as will be seen in 

the next section. Here we take advantage of the present 

^-dependent formulation to calculate the fluctuations in the 

paramagnetic phase. 

In Ref. 3.24, the following limiting formula for the dipolar 

lattice sum is arrived at: 

s(Q) = - s1 (-?-) + s2 Qf + s3 + s4 |Q|
Z , (3.14) 

\Q\ 

for Q + 0, where the parameters are given in Table 3.2 below. 

The above-mentioned discontinuity is borne out by this equation. 

The Curie-Weiss temperature for ordering is 

1 Mo ^||UB>2 

TC(MF) = eQ = 9(Q2 « Qx • 0) = p • — 4 • s3 . 
ke 4 n 4 

(3.15) 

From (3.7) we find the long wavelength susceptibility per ion, 
X
T(Q) =

 X n + x 2i: 

XT a t _ 9(Q) 

X(Q) T 

T-90 S1 Qz 2 s2 - s4 

— — + — (—) Q£ Q2 

9o s3 |Q| s3 s3 

^ „ , • „ Q« 2 
-2- (1 + 52 [|Q|2 + g (-§-) - h Q2]) , (3.16) 
52 IQI 
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where we have introduced the correlation length, reduced tempera­

ture and correlation length amplitude: 

-1/2 
5 = Co t 

MF 

T-80 

tMF = TT ' 

-s4 V2 
C0 = ( ) 

S3 

and the asymmetry parameters 

S1 
g = > o , 

-s 4 

S2 
h = > o . 

-s 4 

In Table 3.2 we give numerical values for the mean field par­

ameters introduced above. 

The quantity derived in (3.16) is of considerable importance, 

being essentially the Fourier transform of the spin-spin cor­

relation function3.37,3.38 

+ •+•-»• 

XT(Q) • _ -iQ#r 
' T • xT(Q) ' I e < s (t) • s(t)>T (3.16b) 

xS * * * 
sites r r=o r 

where, as indicated by the argument t, the spins are observed 

simultaneously. 
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Table ).2. Parameters for the dipolar Ising magnets tiRpYi.pF^ R = Ho, 

Th. The lattice sums SJ-S4 were calculated in Ref. 3.24, usinq the parameters 

for LiTbF4, a = 5.181 A and c = 10.873 A. Since the compounds are quantitat­

ively almost isostructural, the values apply, to a good approximation, to all 

the crystals. The ordering temperature l0 scales - within mean field theory 

with the concentration p and the square of the magnetic moment. 

3 ; ! > 3 i 

LiHOpYi_pF4 

13.8 , 0 

L i T b p Y 1 _ p F 4 

17.8 , 0 

1 uo 9 ' • 'JB p 

U 0 ^ l l u B > 

'0"P,ST.— S3 

p - 2 9 . 6 p - 4 9 . 3 

p - 2 . 3 9 p - 3 . 9 7 

K-A3 

3 1 

s? 

3 3 

3<t 

.1720 

.239 

.0805 

- . 1 0 9 5 

A"3 

A"1 

A"3 

A"1 

~ S 4 ' 
^o = ( ) 

1/2 

1.17 

1 .57 
- s 4 

A-2 

h = 
s 2 

2 . 2 

The form (3.16) then implies that, as T • T^ and 5 + m, spin cor­

relations extend over distances of the order of C in the a-b 

plane and over distances 

,1/2 . (3.16c) 

in the c direction. This is easily seen3«31 by deriving the 

half-maximum contour from (3.16). Thus the precursor fluctua-
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tions has the "long needle" character of the ordered phase, as 

indeed they must in a second-order phase transition. For any 

given spin, the number of spins well correlated with it, or the 

volume of correlation, must then vary as 

5 • 5 • 5|, - C4 . 

3.2.5. Mean field theory for zero wave vector 

We imagine a sample with a uniform (single domain) ferromagnetic 

magnetization and calculate the mean field sustaining this con­

figuration. From a microscopic point of view, the spins are situ­

ated in a vacuum, and thus the energy of a spin u is simply 

^o * 
- yz * Bz = " uz * yo ' Hz = ~ vz ' — s(Q = 0) • <u2> 

4ir 

in terms of the magnetic induction density Bz, the magnetic 

field Hz, the mean value of the spins <uz> and the dipole sum 

s(Q = 0) introduced in the preceding section, 

r. 3z2-r2 

s(Q = 0) = I — 
sites r5 

in 
sample 

-*• 

Here we encounter the problem that s(Q = 0), albeit independent 

of the size of the sample, is dependent on its shape Mathemat­

ically, this is because the dipole sum is conditionally conver­

gent. Following Lorentz3*25, we derive the shape dependence by 

writing 

1 - 3z2-r2 

H Z * — I <^z> — — 
4" r5 
sites 
within 
sphere 

where the contribution from the spins within a chosen imaginary 

sphere are evaluated exactly once and for all, and the rest of 

1 . <»z> 3z2-r2 
•r / dV 
4* v-Spin r5 

rest 
of 
sample 
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the spins are treated in a continuum approximation, i.e. in 

terms of the magnetization <*1>/Vspin* The larger the sphere, the 

better the approximation. As derived in elementary text books, 

the latter contribution is constant throughout a sample in the 

shape of an ellipsoid and can be expressed in terms of equivalent 

polarization charges on the imaginary sphere and on the surface 

of the sample, with the result 

<uz> 
z = — ssphere(Q 5 °> * <yz> + <" ~ N) • (3.17) 

4* ** 3 Venin 

Here the dipole sum s(Q = 0) is evaluated for a large sphere, 

and the standard demagnetization factor N has been introduced. 

Of course, N = 1/3 for a sphere. We include for completeness a 

field H e x t from external sources and display the resulting 

equation. 

<wz> i <Mz> <Wz> 
«z = - j — ' sSpnere

 + - ' TT + (- M • ) + H e x t 

4* 3 Vgpin V s p i n 

(a) (L) (d) (e) 

(3.18) 

(a: anisotropy field; L: Lorentz field; d: demagnetizing; 

e: external; d+e: internal field. Maxwell field; a+L+d+e: 

local field). 

The nomenclature is rich. The term "local" for the field actu­

ally experienced by the spins seems well chosen. The macroscopic 

Maxwell equations consider only averaged quantities such as the 

magnetization <Mz>/VSpin and thereby miss the two first terms. 

These in turn are the "anisotropy" field (which indeed is zero 

in high, e.g., cubic, symmetry) and the (everpresent) "Lorentz" 

field. Finally, the "demagnetizing" field (formally arising 

from polarization charges on the surface of the sample) indeed 

reduces the externally applied field, thereby also reducing the 

resulting magnetization. 
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From (3.17) the Curie-Weiss temperature is derived: 

k 9 = p . _ . L. . (S(Q = 0) + (- - N)) 
4K 4 V s p i n 3 

(3.19) 

Thus, assuming single domain magnetization, we come up with a 

shape-dependent ordering temperature. (Such shape dependence is 

discussed in Refs.3*26~3 • 30 ). 

It is apparent, however, that a sample of any shape can lower 

its energy by breaking up in domains of zero demagnetization 

factor, i.e., long thin needle-shaped domains in the ferromag­

netic phase. This is the same domain structure as predicted in 

the previous section. (Such a domain structure has indeed been 

observed for LiTbF^ and LiHoF^ by neutron scattering3*3'~32 

and optical techniques3* ̂ , 3.1 7, 3.18.j 

There is, of course, also quantitative agreement between the 

two formulations of mean field theory. Using the parameters for 

LiTbF4
3 , the lattice sum s(Q = o) was calculated in Ref. 3.33, 

with the result s = 0.02308 A"3. This is in good agreement with 

the spherical average of Eq. (3.14), 1/3 • (- s-|) + S3 = 

0.02317 A-3. More interestingly, the parameter directly giving 

the Curie-Weiss temperature, s(Q = 0) + 4ir/3VSpin equals 

0.0805 A-3, in agreement with S(QZ << Qx + 0) = S3. 

Next, we include the ground-level splitting of the Tb3+ ion in 

the description. The susceptibility in the paramagnetic phase is 

(ss^V 2 1 A/2 6 "1 

x = u0 • • (coth —- ) (3.20) 
ss T 4 A/2 kT A/2 

where 9 is the Curie-Weiss temperature for zero splitting of the 

levels. Thus the mean-field transition temperature is suppressed 

from Tc(MF) = 9 to a value given by 
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A / 2 k 9 ii on 

coth = (3.21 ) 
kTc A/2 

and for k9/(A/2) l e s s t n a n o n e' t n e system never orders. In the 

ordered phase the magnetisation curve can be constructed by the 

usual self-consistent method: An assumed mean magnetic moment " P> 

leads to a molecular field given by (3.17), which must in turn 

stabilise the assumed moment <u> in accordance with the calcu­

lated single-ion magnetization curve w = u(H,T). 

The magnetic moment at zero temperature is suppressed below the 

value (gus/2) applying for zero-level splitting. The analysis 

in Appendix B shows that, within the mean field approximation, 

the effect of the level splitting is negligible for values of 

k9/(A/2) greater than five, say. 

3.2.6. Dipolar interactions 

We review the evidence for dominant dipolar interactions between 

the magnetic moments in LiTbF4 and in LiHoF4. Table 3.3 gives 

the observed transition points T^, and Curie-Weiss temperatures, 

8, and compares them to the calculated mean-field (MF) value 

using only the dipolar interactions. The mean-field approximation 

overestimates TQ by ignoring the fluctuations close to the tran­

sition but compares well with the experimental 9 which are 

measured well above TQ, where the fluctuations are small. Thus, 

the contribution of exchange forces to the ordering is estimated 

by 

9exch ~ 9dip,mean field " 9meas* 

This leads to the conclusion that for LiTbF4, the exchange con­

tribution is minus ten per cent. For LiHoF4, the exchange has 

the same absolute magnitude, suppressing the observed Curie-Weiss 

temperature by about 20 per cent. 

The same result was reached (for LiTbF^) by Holmes et al.^'^, 

who, by comparing their neutron diffuse-scattering data to the 

cross-section calculated with dipolar interactions only, were 
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Table 3.3. 1) Calculated dipolar-only Curie-Weiss temperatures 

using a) g j; = 17.8 for LiTbF4 and b) g|| = 13.3 for LiHoF4. 

2) Observed Curie-Weiss temperatures, from the T-dependence of 

the reciprocal susceptibility well above Tc [except c), which 

was based on data inunediately above TQJ. 3) Observed transition 

points. 

1)9dip 2)9meas 3)TC,meas 
Ref. 

K K K 

LiTbF4 3.6 2.86 3.12 
3.97a 

3.72 2.865 3.34 

3.57 3.9 

LiHoF4 2.0 1.30 3.6 
2.39b 

1.50C 

1 . 9 * . 1 

1.53 

1 .52 

3 .16 

3 . 9 

3 .17 

1.54 3.18 

able to conclude that an assumed nearest and next nearest neigh­

bour exchange coupling is so large as to lower the Curie-Weiss 

temperature by about 12 per cent. 

Thus, the magnetic dipolar interaction is the dominant force be­

tween the spins. 
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3.2.7. Critical phenomena 

The mean-field theory (MF) outlined above contains predictions 

about the singular variation of various quantities near the fer­

romagnetic phase transition: The interior susceptibility, ..orre-

lation length and spontaneous magnetization vary as 

Y = 1 
X i n t x(Q 

A<Tt 

f - ' 
' ' O 

2 « Qx > 

A>n 

T - T c -v 

T C 

0) T -T c -Y 

"'V 

» - 1/2 . 

Tc-T B 
<w> - ( ) , 0 = 1 / 2 . 

Tc 

For completeness, the heat capacity Cp can be calculated also, 

with the result that Cp shows a finite jump at TQ, i.e. we can 

write for the singular part. 

CP 
T-TC 

TC 
a = o 

Also, the full (long wavelength) Q-dependence of x(Q) was de­

rived (Eq. 3.16). 

It is well known that experiments on critical phenomena disprove 

the quantitative results of simple mean-field theory. Better 

agreement is obtained by various other theoretical methods, in 

particular by the so-called Renormalization Group (RG) tech-

niques^«39f which come up with critical exponent <*,6,Y and v dif­

ferent from the MF values quoted above. The general result of 

RG theory is that for systems of spatial dimensionality (d) 

larger than a marginal dimensionality (d* = 4) MF predicts the 

critical phenomena correctly; for d = d* = 4, there are only 

small logarithmic correction factors which can be calculated 

exactly within RG; whereas for d < d*, RG yields critical ex­

ponents different from the MF values (and in most cases the ex-
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ponents can only be calculated approximately). Since only 

d < 3 < d* = 4 is accessible in real physical systems, this cor­

respondence with the simple theory may seem of little practical 

value. 

The condition d > d* = 4 for MF to apply comes about because MF 

ignores the effect of fluctuations on the thermal averages in 

question. In particular, long wavelength fluctuations are im­

portant because they have low energies, and spatial dimensional­

ity affects the critical phenomena by the amount of phase space 

available for long wavelength fluctuations3-40. 

We can now argue heuristically that the dipolar-coupled Ising 

magnets concerning us here are a special case for the following 

reason * ; As T • T^ and the correlation length Z * m, the 

volume of correlation varies as C'S'Si. « Z (as derived above), 

simulating a four-dimensional system. Thus the system is at̂  

marginal dimensionality: d* = d = 3 for a dipolar coupled Ising 

magnet. 

This result is borne out by a full Renomalization Group analysis 

of the system3'42~3.46# The RG theory can be worked out exactly 

in this case and the predictions are 

1/3 
Cp - I In t/t0| , (3.23) 

1/2 1/3 
M - t |ln t/t0| , (3.24) 

XT(Q) C2 

x? ..?._?. Q z . 2 

Q 

(3.25) 

1+52(Q2+g|/| -hQ2) 

7 -1 I/3 

C2 « t ]|ln t/tQ| , (3.26) 

T-TC 
t = 

TC 



- 30 -

i.e., the predictions of MF theory modified by logarithmic cor­

rection factors. The term ln{t0) actually represents higher-

order terms in the correction factor (i 1̂  lnllnti). In (3.25), 

the parameters g and h are different from their MF values (Table 

3.2), and vary slowly with temperature, but the fundamental ani-

sotropy in the diverging fluctuations is obvious1/ retained. The 

following relation connecting the amplitudes in (3.23-3.26) was 

also derived:3**7 

'2'!!Cp t2/kB • ̂ 7 ;ln t/V <3.27) 

As discussed in the preceeding section, a non-dipolar term is 

present in the Hamiltonian describing LiTbpYi_DF4 and 

LiHOpYj_pF4. The influence of this term on the critical phenomena 

has been addressed in Ref. 3.44. The conclusion of this paper is 

that between the phase transition point and a certain crossover 

reduced temperature tx, (i.e., 0 < t < tx) the dipolar inter­

actions will dominate the critical phenomena, leading to the 

results (3.23 - 3.27) above. 

tx is given by 

tx ~ (dipolar term)/(exchange term), 

i.e., tx ~ 5-10 for the scheelite crystals considered here. Thus, 

the results (3.23-3.27) can probably be applied to the scheelites. 

(It must be noted, though, that ref. 3.44 deals with a ferro­

magnetic exchange term, whereas a term detracting from the mean 

dipolar forces is observed in LiTbpYi_0F4 and LiHOpYj_pF4). 

On the experimental side, much detailed work has been done on 

LiTbF4. Specific heat data could be fitted
3,48 with Eqj (3.23), 

neutron scattering data 3.31, 3,40 confirmed Eqs. (3.2^-26) and 

- together with the specific heat data3«4** _ the amplitude re­

lationship (3.27). The spontaneous magnetization was measured 

by neutron diffraction3*3 and by means of light scattering3«14. 

The full equation of state v - v (H,t) was measured3-15 and 

found to agree with the theory3«42. Also, the susceptibility 

x(Qz << Qx * 0) was measured
3,35. 
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Although standard power laws with empirical exponents (a, 3,>,v) 

could in some cases fit the data as well as RG Bqs. (3.23-27), 

all of the data are in agreement with the RG predictions and, 

further, several non-trivial amplitude relations, e.g., Eq. 

(3.27) and relations between amplitudes (understood in Eqs. 

(3.23-27)) above and below TQ have been confirmed. Therefore, it 

seems well warranted when several authors call LiTbF* one of the 

best understood systems in the field of critical phenomena. For 

LiHoFA the data is less abundant. The susceptibility was measured 

and found to agree equally well with Bqs. (3.25-26) and with the 

standard power law.3-36 

A measurement of the spontaneous magnetization yielded signifi­

cantly better agreement with the proposed Eq. (3.24) than with 

any power law.3.18 

3.2.8. Dilution by yttrium 

Renewed interest in the rare earth scheelites was spurred by the 

theory of Aharony3-49 on the random Ising dipolar-coupled magnet. 

Using the renormalization group technique to study a magnetic 

lattice in which some of the spins are absent (at random), he 

concluded that below a cross-over (reduced) temperature tx given 

by 

lln txl « (p(1-p))"
3 , (3.28) 

(p being the fraction of spins present), a new type of critical 

behaviour was to be expected: The singular part of the heat ca­

pacity should vary as 

Csing " " |ln t | V 2 exp(-2(D|in t|)1/2) , (3.29) 

D = 0.11795 ... 

and the correlation length and susceptibility as 

X * 52 " t'1 exp((D|ln t|)1/2). (3.30) 
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Finally, 

•) 7 1 lin t| ]/2 
5 5 M Csing t /kB " - — , < — ) • <3-31> 

A general argument3*^ suggests that a new type of singular be­

haviour is to be expected on random dilution of systems having 

a diverging heat capacity Cp. As the heat capacity shows a weak 

logarithmic singularity (Eq. 3.23), the "marginal" change fro. 

logarithmic correction factors (Eqs. 3.23-27) to those of Eqs. 

(3.28-31) is perhaps not so surprising.3.49 

The rare earth scheelites LiTbF4 and LiHoF4 naturally lend them­

selves to experimental investigations of these phenomena, as the 

magnetic ions can be replaced with closed-shell Y 3 + ions with 

little distortion of the surrounding crystal structure or of the 

crystalline electric field on the rare earth ions present. An im­

portant question in this context is that of the existence of any 

correlation of the occupation of the Y/Tb/Ho sites, since such a 

correlation could probably influence the critical behaviour mark­

edly. On macroscopic scales, such correlations (or clustering) 

can be easily detected, and on a scale or microns, the corre­

lations can be assessed by monitoring the characteristic X-ray 

fluorescense as an electron beam is swept over the sample in an 

electron microscope (EDAX technique), or by other similar methods 

relying on characteristic radiation from atoms or nuclei. Further, 

a sharp phase transition may itself be taken as evidence for the 

absence of clustering on scales larger than the correlation 

length. 

Yi trium-diluted crystals LiTbpY-|_pF4 were studiad for p = 0.5 

and 0.3 in Refs. 3.19-3.21 and for eight concentrations 

p > 0.15 in Refs. 3.22 and 3.23, by susceptibility measurements. 

The crystals were fourd to order ferromagnetically. At the 

higher concentrations, the data could be fitted by both the non-

classical laws (3.25-26) and (3.30) as w«2ll as by the empirical 

power law x " t~Y, with Y rather close to one. For lower concen­

trations, only the power law could fit the data and the exponent 

Y departed markedly from unity in good agreement with the semi-

empirical relation 
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TC(p=1) 
y(P) = Y(P = i) . 

TC(P) 

Reference 3.51 argues that this departure from the predicted be­

haviour (3.29-31) may come about because the true critical region 

shrinks to be inaccessible close to Tc as p + o. 

A cruder feature is the dependence of the transition point itself 

upon the concentration, i.e. Tc = Tc(p). Within mean field theory 

for the LiTbpYi_pF4 crystals, Tc is given by Eq. (3.21) (see Fig. 

B.2) 

A/2 k6 k8(p=1) 
coth = = p • , 

kTc A/2 ^ A/2 

i.e., Tc first decreases linearly with p, then bends down and be­
comes zero when 

A/2 
p = p0 = = 0.19 , 

k6(p=1) 

using A/k = 1.34 K and 9(p = 1) = 3.6 K. MF theory overestimates 
3 S 2 

Tc, of course. Scaling the interactions * to reproduce the ob-

s?rved Tc(p = 1), one arrives at p0 = 0.23, and good agreement is 

obtained with the observed Tc(p), except at small p, where ferro-

magnetism is observed below p0. This may be caused by the (hyper-

fine) interaction between the electronic and nuclear magnetic 

moments which may become important at the very low temperatures 

relevant in this limit3,51'3'52 (Tc (p = 0.15) = 0.13 k
3* 5 1). 

For the diluted LiHOpYi«pF4 crystals, MF arguments, of course, 

predict transition temperatures proportional to p, since the 

ground state is degenerate. No work seems to have been done on 

these crystals prior to that reported here below. 

3.3. Experiments, results and discussion 

We present here the experimental results of this stud-,. Single 

crystals of LiTb.3Y.7F4 and LiH0.3Y.7F4 were grown. The struc­

ture (i.e., the fluorine positions) of the Tb compound was found 

http://LiTb.3Y.7F4
http://LiH0.3Y.7F4
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by a neutron structure determination. The spontaneous magneti­

zation curve was derived from the intensity of magnetic Bragg 

reflections when the crystals were mounted in a 3He - ^He dilu­

tion refrigerator on a neutron diffractometer, and also by neu­

tron scattering the fluctuations near the transition were deter­

mined. 

3.3.1. Crystal growth3•54 

Crystals of LiTb.3Y.7F4 and LiH0.3Y.7F4 were grown by spon­

taneous nucleation from the melt. Several unsuccessful attempts 

were made, the failure of which could be attributed to insuf­

ficient purity of the starting materials. 

Terbium and holmium trifluoride^«55 an(j yttrium trifluoride
3-5^ 

in the molar ratio of 30:70 were mixed with lithium fluoride. 

Relative to the peritectic points calculated from the data in 

Refs. 3.1 and 3.2 the mixture was LiF-rich by ca. one molar per 

cent. For the holmium compound, 7r.iF3.57 was used to avoid neu­

tron absorption by the (7.5 per cent abundant) *>Li nuclei. The 
3 C O 

resulting 50 g of chemicals were mixed with 8 g of NH4F»HF *
JO 

and put in a 50 ml platinum crucible which was then placed in 

the INCONEL oven. Several times the oven was evacuated and 

flushed with grade N48 Argon. Following this, the temperature 

was raised to 300°C overnight, while the oven was flushed with 

1 atm. argon gas. This was to obtain dehydrolysation and fluori-

sation of any oxides formed3^3. Subsequently, the temperature 

was raised another 100°C and the system was pumped and flushed 

with argon at low pressure for several hours to remove volatile 

reaction products, including HF. Then, at a 1 atm. argon flow, 

the temperature was raised to 1000°C, the flow was stopped and 

the melt was allowed to mix for at least 15 hours. With a temper­

ature gradient cl as much ar 70°C over tne crucible (to avoid 

supercooling) the temperature was then lowered through the tem­

perature range of (incongruent) solidification (815°C to 695°C 

from Ref. 3.1, 3.2) at a rate of 2 °C/h. 

The oven was allowed to cool and the boule was extracted. By in­

spection, by X-ray Laue back-reflection pictures and by the sub­

sequent neutron diffraction study it was established that the 

http://LiTb.3Y.7F4
http://LiH0.3Y.7F4
http://7r.iF3.57
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right phase had been obtained. As established by the Laue pic­

tures/ the Li(Ho,Y)F4 boule contained quite a few single crystals. 

These were separated by crushing the boule and the largest single 

crystal was selected for the neutron study. The Li(Tb,Y)F4 boule 

contained large single crystals, and large pieces could be cut 

from it with a string saw. 

To establish the chemical composition and homogeneity, a piece 

of Li(Tb,Y)F4 crystal was polished, coated with a carbon film 

and placed in an electron microscope3«59. Maps of the terbium 

and yttrium X-ray L-fluorescence were recorded as the 40 keV 

electron beam was swept over the sample. Negative intensity cor­

relations between the two maps were looked for and not found on 

length scales of micrometers to 0.2 mm. Such correlations would 

be evidence of variations in the Tb:Y ratio over the sample. 

Quantitatively, the observed intensities yielded Tb concentra­

tions of around p = 0.32, but the accuracy of this number is 

uncertain3.60. The composition was taken to b that of the melt: 
natLiTb_Y1_F4 and

 7LiHopY-| _F4, with p = 0.30 ± 0.02. 

Another check on the homogeneity is provided by the sharpness of 

the ferromagnetic phase transition (see Fig. 3.3 below). By fit­

ting the observed magnetic Bragg intensity with a power law 

I * (Tc-T)' smeared with a Gaussian distribution of Tc, the 

standard deviation OTQ/TQ was found to be 0.04 for LiH0.3Y.7F4 

and 0.06 for LiTb 3Y>7F4. From the known
3*23 Tc(p) curve this 

gives a(p) = 0.01 for LiTb.3Y.7F4 and (assuming Tc(p) to be 

linear) a(p) = 0.008 foe the LiH0.3Y.7F4 crystal. These numbers 

must be regarded as upper bounJs, as the data were not corrected 

for critical scattering. A sharp peak in the critical scattering 

was observed when the LiH0.3Y.7F4 crystal was passed through the 

the transition point. Interpreting the temperature width of this 

peak as solely due to a T^-smearing yields the same upper bound 

<j(p) = 0.008. 

3.3.2. Structure refinement of LiTb -,Y T F 4
3 , 6 1 

In order to verify that the structure of the intermediate com­

pound LiTb.3Y.7F4 i3 indeed isomorphous to the kno*m structures 

http://LiH0.3Y.7F4
http://LiTb.3Y.7F4
http://LiH0.3Y.7F4
http://LiH0.3Y.7F4
http://LiTb.3Y.7F4
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of the LiRF^ crystals3* , 3 * ' * 3 and in particular to determine 

the small quantitative deviations from, e.g., the LiTbF4 struc-

ture3.3f a conventional neutron structure analysis was performed. 

A single crystal of natLiTb>3Y 7F 4 was ground to a sphere of di­

ameter 4.0 mm. It was mounted on a four-circle diffractometer, 

in a monochromatic beam of wavelength * = 1.070 A produced by 

Bragg reflection in a Beryllium (G32) monochromator crystal of 

a thermal neutron beam from the Risø DR 3 reactor. At room tem­

perature (295 K) 1283 reflections and at low temperature3.62 

(175 K) 1213 reflections were measured within a sphere of sin 9/A 

< 0.79 A-1. Peak and background were located in the measured pro­

files (intensity vs. crystal rotation) by an automatic computer 

routine3-63/ an(j tne resulting integrated intensities were cor­

rected for absorption3-65 (using the linear absorption coef­

ficient u = 0.70 cm"1 3.64). 

Observed structure factors F^ in arbitrary units were deduced, 

F^ * sin(29)*(integrated intensity). Assuming the space group 

I4-|/a, the structure factors were averaged over each form {hkl} 

of symmetry-related reflections, giving about 290 reflections 

for each temperature and inte-rnal consistency R-factors of 2.7%, 

2 2 2 
R I IF • <F >\/l F 
*nt hkl °'3S O D S 0 D S 

About 100 reflections that are forbidden in I4i/a symmetry were 

measured and found to be zero or very small. They were not in­

cluded in the subsequent refinement. 

The observed structure factors F^.6 were compared to the calcu­

lated ones 

2 r • • 1 • = • 2 Fu, , = lij bjexp(iTTj) exp(- - T-UJ-T)| , (3.32) 
hkl J J J 2 J 

where, for atom j at position r-j, bj is the scattering length and 

the anisotropic thermal vibrations enter through the Uj-matrix. 

t = hå*+k6*+*<5* is the Bragg vector, |t| = 4*«sine/A. 



- 87 -

Starting from the parameters of LiTbF4
3,3, the structure of 

LiTb.3Y.7F4 was refined by minimizing the expression 

r -2 Fobs 2 2 2 

hkl hkl Enjci calc 

Here the observed intensities are corrected for extinction by 

the isotropic factor Ehfcjjg) which depends on the adjustable 

parameter g3«66, k is a scale factor. The standard deviation 
ahkl o f Fobs w a s b a s e d o n counting statistics or on the scatter 

of data within a form jhkl}, whichever yielded the larger value. 

The structure could be refined within the Scheelite structure 

(Table 3.1), with resulting R-factors 

2 2 2 
R = I IF -E kF I/£F 

hkl obs hkl hkl obs 

of 3.7 and 3.3 per cent tor he room temperature and cold data. 

The refined extinction parameter g equals 4900 ± 150, correspond­

ing to a fLorentzian) mosaic distribution of width 6.7 seconds of 

•j:*c (HWHM). Allowing the individual scattering lengths bj to vary 

did not yield significantly lower R-values nor change the bj from 

their nominal values b(natural lithium) = -0.214, b(Tb) = b(Y) = 

0.76 and b(F) = 0.56 x 1012
 Cm. The weak reflections were con­

sistently observed stronger than the calculated values. A cor­

rection for an assumed 2nd-order contamination of the monochro­

matic beam of 0.5% or 2% did not remedy this discrepancy. Thus 

we assume that the extra intensity comes from multiple scattering. 

In Table 3.4 the lattice constants of the LiRF4 crystals are 

compared, and Table 3.5 shows the results of this structural 

analysis and compares it to other known structures. 

In conclusion, the structure of LiTb>3Y>7F4 has been shown to be 

isomorphous to the mineral scheelite (Table 3.1). The adjustable 

parameters (fluorine coordinates) of the structure have been 

determined and shown to be close to those of LiTbF4 and LiYbF4. 

Thus, accurate structure factors are available. These, however, 

when small do not compare well with the measured intensities, 

probably because of multiple scattering. 

http://LiTb.3Y.7F4


- 88 -

3.3.3. Low-temperature set-up 

For the low-temperature measurements described in the following 

sections, the samples were mounted in a 3He-*He dilution re-

frigerator3.69. The samples were thermally anchored to the mixer 

chamber through a copper pin. A calibrated germanium thermistor 

on the mixer chamber was used as thermometer, the conductance 

being measured by an a.c. bridge. An electric heater on the mixer 

chamber was used to control temperature, as a proportional con­

trol loop was established by means of a d.c. output from the 

bridge and an amplifier. Temperatures down to 0.090 K were ob­

tained. 

Table 3.4. Lattice constants of the scheelite crystals LiRF4, 

for various ions R, 

R 

y 

y 

Eu 

Gd 

Tb 

Tb 

Tb 

Dy 

Ho 

Er 

Tm 

Yb 

Yb 

Lu 

H0.3Y.7 

Tb.3Y.7 

Tb.3Y.7 

Tb.3*.7 

a 

A 

5.26(3) 

5.175(5) 

5.228(5) 

5.219(5) 

5.200(5) 

5.192(3) 

5.181(3) 

5.188(5) 

5.175(5) 

5.162(5) 

5.145(5) 

5.132(5) 

5.1335(2) 

5.124(5) 

5.146(1) 

5.18(1) 

5.186(5) 

5.130(1 ) 

c 

A 

10.94(3) 

10.74(1) 

11.03(1) 

10.97(1) 

10.89(1 ) 

10.875(6) 

10.873(6) 

10.83(1) 

10.75(1) 

10.70(1) 

10.64(1 ) 

10.59(1) 

10.588(2) 

10.54(1) 

10.758(1) 

10.83(1) 

10.826(5) 

10.735(1) 

c/a 

2.08 

2.077 

2.110 

2.102 

2.094 

2.095 

2.099 

2.087 

2.078 

2.073 

2.067 

2.064 

2.063 

2.057 

2.090 

2.09 

2.087 

2.093 

temp. 

room 
« 

n 

n 

n 

295 K 

100 K 

room 
n 
n 

n 

n 

if 

n 

1 K 

295 K 

175 K 

1 K 

ref. 

3.1 

3.67 
n 

n 

n 

3.3 

3.3 

3.67 
It 

ft 

n 

» 

3.2 

3.67 

this work 

n 

ti 

n 
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The nacLiTb>3Y>7F4 sample used in the low-temperature measure­

ments was cut and polished to a plate parallel to the a-b plane, 

2.6 mm thick by 65 mm^, the thickness being chosen to approxi­

mately match the absorption length for 5-meV neutrons, v~^ = 

3.9 mm3*64. The copper pin ended in a pair of chaps which could 

hold the platelet firmly. The 7LiHo 3Y 7F4 sample was cut from 

the largest singly crystalline piece to a quasi-regular shape of 

6 x 6.5 x 8 mm3 (a * a * c). At 5 meV, u_1 = 12 mm3«64. The 

crystal was held to the copper pin by a copper brace and was 

polished where it would make contact with the copper. The latter 

design proved inferior to the former in that longrr equlibrium 

times were observed. The equilibrium of sample temperature was 

monitored by observing the magnetic Bragg intensity as a func­

tion of time at fixed temperature of the 3H;»-4He mixer chamber 

and equilibrium times were in the order of tens of minutes and 

hours, respectively, for the two designs. 

The copper was masked from the neutron beam by cadmium foil. 

3.3.4. Magnetic ordering 

Both crystals were seen to order ferromagnetically below Curie 

temperatures of (0.493 ± .005)K (LiTb.3Y#7F4) and (0.360 ± 

,002)K (LiH0.3Y.7F4), through second-order phase transitions. 

This was evidenced by a continuous increase in the intensity 

of the magnetic Bragg reflections (103), (301) and (305) (Fig. 

3.3a & b). For the holmium compound, a peak in the critical 

scattering also marked the cransition (Fig. 3.3c). 

Details of the data taking are given in the following sections. 

http://LiH0.3Y.7F4


Table 3-5. The known structures of L1RP4 crystals. The temperature parameters L) are defined 

in Eq. (3.32), For LiTb_ 3Y 7F4 , the quoted uncertanties derive from the uncertanties of 

measured F2-values, i.e. are exclusive of any systematic errors. The two values given for the 

fluorine y-coordinate ir. the Tb 3 compound refer to two different settings of the tetragonal 

right-hand coordinate system relative to the crystal. 

U1 1 l>22 U33 U12 Ul3 U 2 3 terai>. raid. ref. 

atom x y z , . . 

A2 A2 *2 *2 

LiTbF4 

LlTb.3V.7P4 

LlYbF4 

LI 

Tb 

F 

Ll 

Tb 

F 

Ll 

Tb/Y 

F 

Li 

Tb/Y 

F 

Ll 

Yb 

F 

0 

a 
,2198(1) 

0 

0 

.2199(2) 

a 
0 

.21987(8) 

or 

a 
0 

.21914(8) 

or 

0 

0 

.2166(6) 

1/4 

1/4 

.411911) 

1/4 

1/4 

.4107(2) 

1/4 

1/4 

.08606(7) 

.41394 

1/4 

1/4 

.08671(8) 

.41329 

1/4 

1/4 

.41CK6) 

1/8 

5/8 

.4 5601 1 ) 

1/8 

5/8 

.4563(2) 

1/8 

5/8 

.45618(4) 

1/8 

5/8 

.45623(4) 

1/8 

S/8 

.4564(3) 

.0202(24) 

.0125(5) 

.0162(3) 

.0163(35) 

.0092(7) 

,012/:4| 

.0121(5) 

.0054(2) 

.0104(2) 

.0086(5) 

.0035(21 

.0066(2) 

.02017) 

.0073(1) 

.013(1) 

= U| 

="1 

.0177 

= U| 

-Ul 

.0124 

-Ul 

*U, 

.0101 

=Ul 

""1 
.0066 

"Ul 

>u, 

,011( 

3) 

4) 

2) 

2) 

) 

,0268(16) 

.0110(3) 

.0172(3) 

.0178(21 I 

.0089(4) 

.0127(4) 

.01651101 

.0050)3) 

.0110(2) 

.0118(10) 

.0025(3) 

.0058(3) 

.023(15) 

.002911) 

.008(1) 

0 

0 

.003512) 

0 

0 

.0014(4) 

0 

0 

-.003311) 

0 

0 

-.001711) 

0 

0 

.0043(8) 

0 

0 

.0040(2) 

0 

0 

.0016(31 

0 

0 

.0039«1) 

0 

0 

.0019(1) 

0 

0 

.0033(9) 

0 

0 

.0030(2) 

0 

0 

.0010(3) 

0 

0 

-,0029(1) 

0 

0 

-.0013(1) 

0 

0 

.0028(9) 

295 K 

-
-

100 K 

-
-

295 K 

175 K 

room 

1.07 A 

neutrons 

1.07 A 

neutrons 

MoKu 

X-rays 

3.3 

this work 

3.2 
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L i T b0.3Y07F4 
(1.0.3) 

LiHoa3Ya7F4 

(1.0.3) 

i 

1 LiHoa3Ya7F4 -
(0.03.0.0) 

1.2 1.3 

Fig. 3.3. Neutron intensity vs. reduced temperatures T/Tc< 

a) (103) Bragg intensity from LiTb.3Y.7F4, Tc = 0.493 K. 

b) (103) Bragg intensity from LiH0.3Y.7F4, Tc = 0.360 K. 

c) Critical scattering from LiH0.3Y.7F4 at (0.03»a*,0,0 ), 

TC = 0.360 K. 

3.3.5. Spontaneous magnetization 

By means of double-axis neutron diffraction, che spontaneous 

magnetization versus temperature was measured. For a ferro­

magnetic crystal, the elastic cross-section at Bragg setting 

Q - *hkl is 

da 2 2 
— « F + F 
dft nuc magn 

(3.33) 

http://LiTb.3Y.7F4
http://LiH0.3Y.7F4
http://LiH0.3Y.7F4


- 92 -

For unpolarized neutrons, there are no interference terms be­

tween the two contributions3,70. The nuclear structure factor is 

given by Eq. (3.32) above, and at the low temperatures relevant 

here, the thermal vibrations (U) can be set to zero. The mag­

netic contribution, which arises from the interaction between 

the magnetic moments of the neutron and the 4f-electrons, takes 

the form3«70 

9 + "*• 

T~ iTT-; 2 2 , <u> „ „ B sin3 ./ lz r j 
F = I * 2.7fm-f( —)«Vl - —? • p • 1 - J magn u x 2 j mag 

B 
(3.34) 

Here <v> is the magnetic moment per magnetic ion in the crystal, 

2.7 fm is the magnetic scattering length per Bohr magneton, and 

the magnetic form factor f is the Fourier transform of the 

4f-electronic magnetization density (spin and orbital contri­

bution)3,70. The normalization is: f(0) = 1. f may be calculated 

lor the free R3 + ions on the basis of self-consistent wavefunc-

tions3,7^. In a crystal, the crystal field gives rise to a form 

factor anisotropy which can be calculated in first-order pertur­

bation theory3.71. As this effect is on the one per cent level, 

it '..ill be ignored hre. The polarization factor (1 - T^/T2)1/2 

in Eq. (3.34) comes from the anisotropy of the dipolar interac­

tion between the neutron and the 4f-electrons, and is written 

here for a Ising magnet. Finally, the geometrical structure 

amplitude of the R3+ sites (L mag»«») enters, weighted (under 

the I |2 brackets) by the fraction p of spins present. 

It follows from (3.33-3.34) that the magnetization may be found 

by measurement of the Bragg intensity above and below Tc, 

<n>T/PB
 s C • (I(T)/I(T > Tc) - 1 )

1 / 2 (3.35) 

This v.as done for LiTb,3Y#7F4 using 13.9 meV neutrons and the 

(103) and (301) reflections. The very weak (103) reflection 

(see Table 3.6 below) is convenient because a relatively large 

ratio of magnetic to nuclear Bragg intensity is obtained. How­

ever, in the structure analysis, poor agreement was obtained 
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between the measured and refined intensities for the (103) and 

other weak reflections. Neither of these considerations apply 

to the stronger (301) reflection (Table 3.6). Consistent results 

were obtained with increasing and decreasing temperature, and 

the data from the two reflections could be scaled to fall on the 

same curve. Using 15.7 meV neutrons and the (103) reflection, 

the magnetization of the LiH0.3Y.7F4 crystal was also studied. 

Here the rocking curve was measured many times at each mixer 

temperature setting until a constant intensity was obtained. 

Some raw data were shown in Pig. 3.3a&b, and Fig. 3.4 compares 

the magnetization data with those for LiTbF4 and mean field 

theory. Apparent in the figure is the very slow saturation in 

the diluted crystals. 

It is not known how much of the rounding of the intensity curve 

(Fig. 3.3) is critical scattering and how much results from a 

distribution of transition temperatures over the crystal. If no 

correction is applied, a pronounced rounding of the magnetiz­

ation curve near Tc results (Fig. 3.4a). If all of the intensity 

above the nominal Tc is attributed to critical scattering and 

the data just below Tc are corrected, assuming that the critical 

scattering intensities are equal at (Tc + AT) > Tc and 

(Tc - 1/2 AT)
 3*72, magnetization curves with a vertical tangent 

at Tc are obtained (Fig. 3.4b). The values of the magnetization 

critical exponent 8 which result from this analysis are 0.47 ± 

0.02 (Tb compound) and 0.48 ± 0.03 (HO compound. 

Absolute values of the magnetic moment may also be derived, 

since the scale factor c in (3.35) is easily found from Eqs. 

(3.33-3.34), 

IFnuc| 
c = _ _ (3.36) 

I2.7 fm-f/l-TJj/T^p.Lj mag e
i?'?j 

In Table 3.6 the c-values and the resulting magnetizations are 

displayed and compared with the data for the pure crystals. 

http://LiH0.3Y.7F4
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Fig. 3.4(a). Reduced magnetic moment versus reduced tem­

perature for LiRF4 crystals. 

•, R = Tb.3Y.7 
o, R = H0.3Y.7 

V, R = Tb (from Ref. 3.3) 

Broken lines are guides for the eye only. Full lines re­

present mean field theory (Appendix B). 

Lower curve: A = 0 (true doublet); 

upper curve: k9/(A/2) = 1-3 (two singlets), 

(b): Magnetization curves for LiTb.3Y.7F4 and 

LiH0.3Y.7F4, corrected for critical scattering (see 

text). 

Notable in the table is the 40% discrepancy in the Tb.3 data and 

the 15% uncertainty in the Ho,3 datum resulting from the scatter 

of data for the three Bragg points. The Poisson uncertainty is 

well below either of these values. The scale factor, c in Eq. 

(3.36), was calculated for both crystals using the structural 

parameters found for LiTb.3Y.7F4 at 175 K (Table 3.5) and free-

ion form factors from Ref. 3.71. Although c depends sensitively 

on the t-tructure for the weak (103) reflection, the resulting 

uncertainty on c is estimated not to exceed 15% and is less for 

the stronger r?flections. We discuss sources of error in the 

determination. Due to extinction, the measured intensity may in-

http://LiTb.3Y.7F4
http://LiH0.3Y.7F4
http://LiTb.3Y.7F4
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Table 3.6. Low-temperature magnetic moments. For LiH0.3Y.7F4, the 

(103) reflection was measured vs. temperature, and at a few selec­

ted temperatures, the (301) and (305) reflections were measured 

in order to check on the scale of the magnetization, and the 

quoted uncertainty in u derives from the scatter thus observed. 

The u-values for LiHoF4 are from g-factor measurements and from 

the saturation magnetization in a field. 

Tc hkl lpnuc|2 c w(T=o) Ref. 

K 2 10"24cm2 J|B 

LiTb.3Y.7F4 0.493 103 0.212 4.08 3.6 This 

±.005 301 2.53 10.50 5.0 work 

LiTbF4 2.87 3011 8.9 3.3 

400-1 

LiH0.3Y.7F4 0.360 103 .359 5.16 4.6±.6 This 

±.002 301 2.99 10.6o| work 

305 1.03 9.33 

6.7 - 3.6, 

LiHoF4 1.55 (000) 7.0 3.16, 

3.17 

crease less-than-proportionally to the cross-section, (3.33). 

This is difficult to address theoretically for the irregular 

sample shape used. However, extinction would tend to give a 

larger apparent magnetization from the weaker (103) reflection. 

Another source of error is multiple scattering. This would affect 

the weak reflection (103) most, and give lower apparent ionic 

moments. 

In the structure determination, most of the weak reflections in­

cluding the (103) were observed stronger than the refined struc­

ture factors, in evidence of multiple scattering. At the lower 

neutron energies used in the magnetization measurement, multiple 

scattering is less probable, but a calculation for the actual 

scattering geometries gave several reflections close to the Ewald 

sphere for the (103) spectrometer settings for the two diluted 

crystals. A quantitative correction has not been attempted, but 

http://LiH0.3Y.7F4
http://LiTb.3Y.7F4
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if, as in the structure analysis, the nuclear (103) intensity was 

enhanced as a result of multiple scattering, a too small magnetic 

moment would be derived. 

In spite of these difficulties, the reduction of the T = 0 mo­

ments below those observed in the pure crystals (Table 3.6) is 

probably significant. Such a reduction is theoretically expected 

for the LiTb.3Y.7F4 crystal (Fig. B.2 and k9/(V2) = 1.6 yields 

a 22% reduction in mean field theory), but for the Holmium com­

pound we expect the ions to saturate completely at low tempera­

ture (unless the crystal field levels are different from those of 

the pure magnet, and in view of the evidence presented in Refs. 

3.6-3.17 (see Section 3.2.2), this seems very unlikely). Thus, 

the apparent reduction needs to be understood theoretically, and 

on the experimental side, better data would be of value, either 

from bulk magnetization measurements or by neutron scattering 

(e.g., measuring many magnetic reflections from a small spherical 

sample). Temperatures down to the 0.100 K range or less are, how­

ever, needed for a reliable extrapolation to zero. 

3.3.6. Critical scattering 

In the study of phase transitions, the ability of diffraction 

methods to measure the spatial correlation of the fluctuations 

is of considerable value. In the case of magnetic systems, neu­

tron diffraction remains the only technique available. The dif­

ferential cross-section for diffuse magnetic scattering of ther­

mal neutrons^'37 ^y an ising magnet is 

do k' j j * 
— - « — (1 - Q*/Q^) • S(Q,u>) . (3.37) 
diJdu k * 

Here, k and k' are the incident and final wave vectors corres­

ponding to energies E and E*; Q = k - k' and hw * E-E' are the 

transfers of momentum and energy. S is the Fourier-transformed 

spin-spin correlation function 

http://LiTb.3Y.7F4
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S(Q,o>) « / dt I e i u t e i Q* ( r'~ r ) <S2(r, t=o) • S2(r'rt)>T 
-*• + 
r,r« 

(3.38) 

where the sum is over magnetic ion sites. Near a 2nd-order phase 

transition the scattering will be almost purely elastic^*7^. 

Then, the intensity measured by a two-axis neutron diffractometer 

will be to a good approximation proportional to 

do , do p 5 •*• 

= / d u _ _ « (i - Q^/Q^) • S(Q) , (3.39) 

• iQMr'-r) . * - • , 
S(Q) « I e <S2(r, t=o) Sz(r , t=o>T (3.40) 'T 

' T • xT(Q) « XT(Q)/X§ (3.41) 

as derived in Ref. 3.37. 

If dipolar interactions dominate the fluctuations in the diluted 

c ystals, this cross-section will be of the form (3.16) or (3.25) 

which, as mentioned in the preceeding paragraph, becomes ex­

tremely compressed in the c*-direction, corresponding to the 

super-diverging longitudinal correlation length, Eq. (3.16c). 

Thus, to measure the correlation function by two-axis neutron 

diffraction, very good resolution is needed, at least in the 

c*-direction. As shown by Als-Nielsen^»31, the solution to this 

problem is to measure XT(Q) near the (000) Bragg point, i.e. 

by small-angle neutron scattering (SANS). 

A SANS instrument is being developed^«75 at the cold neutron 

source of the Risø DR3 reactor. This instrument will be ideally 

suited to measure the cross-section (3.25). As the instrument 

was still under construction at the time of the work reported on 

here, conventional double-axis diffractometers at the cold neu­

tron source were used with tight Soller collimators (Fig. 3.5a). 



RG. (002L̂ _ 

ki 

Sample C^^) 

(a) 

»I 

(c) 
Fig. 3.5. a) Double-axis diffTactometer in real space, n^ is the mosaicity of 

the (pyrolytic graphite) monochromator crystal, and 01-03 are angular colli-

mations. b, c) Scattering triangles for the sample. After the monochromatizaticn, 

the neutrons have a spread in energy and direction (contours M). Assuming elastic 

scattering by the sample, the resulting Q-resoiution (contours T) is very much 

compressed in the small-angle case (b). Tn the calculation, the parameters of 

line two in Table 3.7 below were used. The resolution contours are shown x25 ex­

panded relative to the scattering triangle. 



Table 3.7. Instrument parameters in the critical scattering measurements, n̂  and 01-03 

are defined in Figure 3.5, and Rx, Ry and Rz are the calculated dimensions (FWHM) of the 

resolution function Rz is proportional to the scattering vector Q. The calculated Rx values 

were in good agreement with the measured widths of the direct beam. 

0M k E 0! a2 03 Rx Ry Rz/Q 

monochromator A~^ meV A~* A"'' 

LiTb.3Y.7F4 PG(002) 30' 1.55 5.02 30' 10' 10' 0.0070 0.05 0.0023 

TAS VI (flat) 

'LiHo>3Y7F4 " 30" 1.14 2.71 32' 14.4' 13.5' 0.0066 0.05 0.0029 

TAS VII 

to 

http://LiTb.3Y.7F4
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Looking at Fig. 3.5b it is easy to see that although the neu­

trons incident on the sample have a spread in both energy and 

direction (contour M), the resulting ^-vector resolution (contour 

T) must become narrow in the z-ditection as the scattering angle 

23 + 0, assuming only that the scattering is elastic. 

Critical scattering from LiTb.3Y.7F4 and LiH0.3Y.7F4 was measured 

using the instrument parameters given in Table 3.7. Given in the 

table are also the calculated Gaussian resolution widths Rx»Ry 

and Rz, using the theory of Møller & Nielsen * . 

The background, as measured at high temperatures (T > 2TC) has 

been subtracted in the data displayed below. 

3.3.7. Critical scattering from LiHo,3Y.7^4 

Figure 3.6 shows data for LiH0.3Y.7F4 just above T<> 

As seen in the figure, the scattering is very anisotropic. To 

see whether the dipolar cross-section 3.25 fits the data we need 

to convolute it with the calculated resolution function (Table 

3.7), i.e. we compare the measured intensity with 

I(Q) = / d3Q» • R(Q-Q') • -^ {Q') (3.42) 
d« 

da 

da (Q) s 

1+€2 

3o 

^ Qz 2 

( Q 2 + g ( — ) ) 
Q 

(3.43) 

The term hQ2 from Eq. (3.25) has been omitted from (3.43) since 
- * • - * • - * • 

it is negligible for the Q vectors in Pig. 3.6. R(Q-Q') is a 

Gaussian of widths Rx, Ry and Rz (FWHM). Since, as seen in the 

figure, Rx and Rz are narrow compared with the features of the 

observed scattering, we may well put 

http://LiTb.3Y.7F4
http://LiH0.3Y.7F4
http://LiH0.3Y.7F4
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Fig. 3.6. Critical scattering from 7LiHo#3Y>7F4 at 1.4% 

above Tc = 0.360 K. The intensity is normalized by the 

extrapolated maximum intensity I0 = I(QZ << Qx * °) 

and contour lines are shown for I/I0 = 0.1 to 0.7 in 

steps of 0.1. Note the xlO expansion of the Q2-scale in 

the upper part of the figure. Also shown are the calcu­

lated resolution widths Rz « Q and Rx. 

R(Q-Q') « 5(Qx-Qi) ' 6 ( Q Z - Q 2 ) • e 

4 ln2-(Qy-Qy)
2 

(3.44) 

retaining only the large vertical resolution width Ry. By fit­

ting Eqs. (3.42-3.44) to intensities measured at Qz = 0 we have 

extracted the correlation length 5 and the amplitude aQ, which 

is proportional to the internal susceptibility x(Qz << Qx
 + 0)/xr-

Subsequently, by fitting Eqs. (3.42-3.44) to full two-dimensional 

intensity distributions we have extracted values for the param­

eter g. 

On axis data. Scans were made along the Qx-axis in reciprocal 

space for several temperature settings. For the low counting 

rates obtained, the time needed for thermal equilibrium after 

small temperature changes was only a small fraction of the coun­

ting time. Figure 3.7 shows some of the data. 
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As seen in the figure, the line shape (3.42-4) fits the data 

quite well. The resulting x squared (x^) for the fits are in 

the range 0.7-1.7, and the correlation length ? and the extra-

polated (Q * 0) cross-section o0 may be extracted. 

Two-dimensional data. The fingerprint of the dipolar cross-sec­

tion (3.43) is the peculiar variation with Qz. Full I(QX» Qz) 

intensity profiles were measured at two temperatures above TQ. 

Figure 3.8 shows again the data represented in Fig. 3.6 (T = 

0.3650 K). Keeping aQ and 5 fixed at the values derived from a 

Qz = 0 cut in the data, the only adjustable parameter in (3.43) 

is the asymmetry parameter g. Allowing g to vary, the data are 

well represented by the dipolar cross-section. 

0.00 0.05 0.10 
CLIÅ'1) 

Fig« 3.7. Measured critical scattering I(Qx*0) from 
7LiHo#3Y#7F4 at temperatures T » 0.3650, 0.3674, 0.3705, 

0.3733 and 0.3824 K (o,V). The full lines are the best 

fits of the Lorentzian cross-section (3.43) convoluted 

with the vertical resolution (3.44). 
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Fig. 3.8. Critical scattering l(Qx, Qz) from 
7LiHo>3Y 7F4 at 0.3650 K * Tc • 1,014 (•). The full 

lines are a simultaneous fit of Eq. (3.42-3.44) to 

all the data points, allowing only the asymmetry 

parameter g to vary. 

One more data set KQ X* Qz) was obtained at a higher temperature 

(0.3824 K, not shown). The results of the fits are given in 

Table 3.8. 

As was the case for LiTbF4
3, , g is changed somewhat from the 

mean field value as the phase transition is approached. The good 

fits of the dipolar cross-section to the data lead us to con­

clude that for LiHo#3Y#7F4, the dipolar interaction between the 

spins is dominant and that the random dilution by the nonmag­

netic yttrium ions has not changed the behaviour from that of 

the pure crystal other than by reducing the transition tempera­

ture. 
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Table 3.8. Results of fitting Eqs. (3.42-3.44) to the measured 

critical scattering I(QX, Q2) fro™ LiHo 3Y 7F4. 

T 

(K) 

0.3650 

0.3824 

mean fie 

T-Tc 

TC 

1.4% 

6.2% 

Id 

g 

(A~2) 

1.92±0.3 

1.86±.10 

1.57 

No. of 

points 

250 

54 

-

x2 

(-) 

2.1 

1.6 

-

Correlation length and susceptibility. Figure 3.9 shows the fit­

ted, resolution corrected transverse correlation length squared 

5^ (in the a-b plane) and compares it to the data for LiTbF^ 

(Kef. 3.31) and to mean field theory. Apparent in the figure is 

that the correlation lengths observed in the holmium compound are 

larger (by a factor of ~ 2) than those of LiTbP4, at the same re­

duced temperature. This effect may be understood in terms of the 

reduction of the transition points Tc below the values predicted 

by mean field theory, 9 = 3.6 K for LiTbF4 and, (scaling this 

number by the concentration and the magnetic moment), 9 = 0.6 for 

LiH0.3Y.7F4. Thus, Tc/e = 0.80 and 0.60, respectively. Although 

long-range order does not occur till below T^, the fluctuations 

at T >> TQ are well described by mean-field theory, which pre­

dicts that the fluctuations will diverge at r: - 9 > T^. Thus, 

the fluctuations observed in the real physical system are en­

hanced when the transition temperature is suppressed as a result 

of, e.g., competing interactions3.76. it would be interesting to 

see if the large suppression of T^ in the randomly diluted magnet 

can be understood theoretically. For comparison, the mean field 

predictions are shown in the figure (dotted lines). 

Figure 3.10 shows the extrapolated deconvoluted intensity at 

zero momentum transfer, <?0, being proportional to the suscepti­

bility, oQ « xT(Qz << Qx * 0)/x°.. xT(0)/x°» may be found on an 

http://LiH0.3Y.7F4
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Fig. 3.9. Squared correlation lengths 52 for 
7LiHo>3Y>7F4 (o), from I(QX) scans corrected for 

the vertical resolution. Full lines are (upper 

curve) the best fit power law % = CQ • ((T-Tc)/Tc) 

yielding v = 0.59 ± 0.02 and S2 - 10 A2; and 

(lower curve) the data for LiTbF4 (Ref. 3.31). 

The dotted curves are the prediction of mean-field 

theory (MF), C2 = 52 • e/(T-6), with 52 = 1.37 A2 

and 8 = 3.6 K (LiTbF4), resp. 0.60 K (LiHo^Y.-^) 

- v 

absolute scale by extrapolating to high temperatures, where 

X T(0)/XT * 1»
 T n i s extrapolation has been attempted for the 

LiH0.3Y.7F4 data in the figure. However, since good data have 

not been obtained at very high temperatures, the extrapolation, 

and thus the scale of X T(0)/XT\ is somewhat uncertain. In com­

parison with the data for LiTbF4 (for which the extrapolation 

was performed with better accuracy) it is very plausible that 

the susceptibility (or fluctuation amplitude, Eq. (3.40)), is 

larger for LiH0.3Y.7F4, in accordance with the results for the 

correlation length and with the argument given above. 

http://LiH0.3Y.7F4
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Fig. 3.10. Extrapolated susceptibility 

ao(" XT (Qz << Qx + 0)/x?> f o r LiHo.3Y.7F4 <°> 
and LiTbF4 (lower full curve; from Ref. 3.31). 

7 <JQ is given in intensity units (counts per 10 

monitor counts; right-hand scale) x/x° may be 

obtained to scale by extrapolation to high tem­

peratures (left scale). This extrapolation is, 

however, uncertain for LiH0.3Y.7F4 (broken line). 

The upper full line is a power law fit x " (AT)~Y, 

yielding T = 1.38 ± 0.10. 

3.3.8. Critical scattering from LiTb.3Y.7F4. 

Figure 3.11 shows scattering data for LiTb.3Y.7F4 just above T^, 

As for LiH0.3Y.7F4, the scattering is very anisotropic. However, 

near the forward direction, for momentum transfers Qx < 0.03 A"
1, 

http://LiH0.3Y.7F4
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Fig. 3.11. Scattering I(QX, Qz) from LiTb.3Y.7F4, 

at T = 0.500 K = 1.014 • Tc. Intensity, represented 

by contour lines, is in units of counts pe second. 

Note the xlO expansion of the Qz scale in the upper 

part of the figure. Also shown are the calculated 

resolution widths (FWHM) Rz « Q and Rx. 

a sharp rise in the intensity is seen above that predicted by 

the cross-section (3.43). Qualitatively, similar features were 

observed at two higher temperatures. This is seen more clearly 

in Fig. 3.12 which represents data obtained on axis I(QX, 0). 

In the figure, the full lines are fits of simple Lorentzians, 

effectively representing the cross-section (3.43) convoluted 

with the vertical resolution. The extra intensity observed at 

low momentum transfers is indicated by the broken lines which 

are guides to the eye. The background (subtracted in the figure) 

was measured at high temperatures T * 2 Tc and was of the order 

of 70-100% o f t n e resulting signal close to Tc (upper-most curve 

in Fig. 3.12) for all momentum transfers. Errors in the back­

ground subtraction are estimated to be of the order v," 15% for 
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Fig. 3.12. Scattering I(QX, 0) from LJTb.3Y.7F4 in the 

paramagnetic phase (at temperatures 0.500 K = 1.014 • Tc 

(o), 0.530 K » 1.075 • Tc (V) and 0.570 K * 1.16 • Tc 

(•). Full lines are fits of Lorentzians (no resolution 

correction). Broken lines are guides to the eye. 
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Fig. 3.13. Critical scattering from LiTb#3Y,7F4 
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a) Scattering in zero field for Qz • 0 and Qx * 0.018 

(•), 0.024(7) and 0.036 A-1 (D). 

b) Qz • 0, Qx » 0.018 A"
1 and Bappl - 0.05 Tesla along 

the z (or c) axis, (o) 
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low momentum transfers Qx ~ 0.02 A~ and less for the higher 

scatterina angles. 

The measured intensities in Fig. 3.12 obviously cannot be ex­

trapolated to zero momentum transfer to give the susceptibility 

and the correlation length. If an extrapolation is made on the 

basis of the data for larger momentum transfers Qx > 0.03 A~ 

(the [full line] Lorentzians in the figure), the resulting sus­

ceptibilities vary by only a factor of 3 and the correlation 

length S varies only from 16 to 21 A, in going from 16% to 1.4% 

in reduced temperature (T-Tc)/Tc. A proper correction for the 

vertical resolution would not change this conclusion signifi­

cantly. 

The scattering was followed as a function of temperature above 

and below Tc at constant momentum transfers Qx (Fig. 3.13(a)). 

h steady increase of intensity was observed even below Tc, no 

feature marking the transition point. For comparison, a signifi­

cant peak at Tc was seen in the scattering from LiHo.3Y#7F4 

(Fig. 3.3) and LiTbF4 (Ref. 3.31). In LiTbF4, the intensity I(T) 

was observed to rise again when the temperature was lowered below 
3 31 

ca. 0.99 • Tc . This effect was attributed to scattering from 
magnetic domains and was seen to vanish in modest magnetic 

3 32 fields . To check whether the observed scattering below Tc 

could be attributed to magnetic domains, we applied a field along 

the c-axis of the platelet-shaped sample. For the obtainable 

fields of 0.05-0.07 Tesla or less, no qualitative change in I(T) 

was observed, Fig. 3.13b. As this applied field would be suf­

ficient to produce a nonzero internal field for magnetizations 

of 1 Bohr magneton per magnetic ion present, we may conclude that 

magnetic domain scattering is not the reason for the rising in­

tensity below TQ. 

3.4. Conclusion 

The data presented for LiTb#3Y<7F4 point to several anomalies 

in the physics of this system: The diffuse neutron scattering 

(Figs. 3.11 and 3.12), although exhibiting the a-symmetry pre-
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dieted for a dipolar coupled system, possesses an anomalous com­

ponent at small momentum transfers. Secondly, no distinct fea­

ture in the diffuse scattering marks the transition point (Fig. 

3.13). Thirdly, the very slow saturation of the magnetic moment 

is notable (Fig. 3.4). Finally, the small magnetic moment 

(3.6-5 U{j) reached at low temperatures is an interesting fea­

ture. It would be useful to confirm this result with greater 

precision by an independent method. 

Theoretically, the observed behaviour cannot be explained at 

present, although it is plausible to speculate that the split 

ground state of the Tb ion is responsible in the presence of the 

dipolar interaction and the random dilution for producing the 

observed behaviour. The very different behaviour of the Ho system 

would seem to support this view. 

Experimentally, a neutron study of the crossover from the well-

understood LiTbF4 scattering to the data presented here would 

be in order. As noted above, bulk susceptibility studies (Refs. 

3.19-3.23) showed a continuously increasing deviation of the 

critical exponent Y from the mean field value of unity. 

Next we consider the results for the LiHo#3Y#7F4 system. Here it 

is apparent that the critical scattering (Figs. 3.6-3.8) above 

Tc is very well described by the cross-section (3.43), describing 

a dipolar coupled system. Also, TQ was marked by a peak in the 

scattering, as expected. For the parameters derived by fitting 

the cross-section (3.43) to the data, the correlation length 

(Fig. 3.9) and the susceptibility (Fig. 3.10), it is noticeable 

that the scale of the diverging quantities is much larger than 

predicted by mean field theory or observed for LiTbF4. As dis­

cussed, this may be seen as a result of the significantly de­

pressed transition temperature. 

The critical exponent for the correlation length, v « 0.59 ± 

0.02, is quite close to the mean field value of v * 1/2, and 

the quality of the data does not permit to rule out the possi­

bility of a mean-field-plus-small-corrections form such as Eqs. 

(3.26) or (3.30). In contrast, the susceptibility diverges ac-
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cording to the power law t~y with Y = 1.38 ± 0.10, deviating 

significantly from any mean-field-like form. Concerning the mag­

netic moment, an unexpected s1ow saturation with temperature was 

observed as well as a reduced low-temperature magnetic moment. 

Generally, the LiHo^Y -j**4 system thus seems to be better under­

stood than its Tb counterpart. Even so, there is room for many 

more experiments: A basic assumption in the analysis presented 

here is that the concentrated Tb and Ho systems are equivalent. 

This seems to be borne out by bulk susceptibility and magnetiza­

tion measurements, but a neutron diffraction experiment on 

LiHoF4 would be of value. Also, a study of the LiHopYi-pF4 series 

by a variety of methods could help to complete the understanding 

of the diluted dipolar coupled Ising magnets. 
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4. CONCLUSION 

Detailed conclusions for each of the two parts of the work re­

ported have been given at the end of the suspective chapters. 

More generally, a large set of data has been presented for the 

CF4 monolayers, demonstrating the existence of four 2D solid 

phases, including the "stripe" structure. Also, the phase tran­

sitions have been characterized. 

For the diluted dipolar Ising magnets, neutron-scattering data 

have been presented for 30% concentration of Terbium and of 

Holmium ions. However, more data will be needed on tne Li(Tb:Y)F4 

and Li(Ho:Y)F4 phase diagrams before a comprehensive understand­

ing can be reached of the interplay of magnetic dipolar forces, 

randomness, and crystalline electric field in these systems. 
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APPENDIX A 

ON THE RADIATION FROM ULTRARELATIVISTIC ELECTRONS IN 

BENDING MAGNETS, WIGGLERS AND ONDULATORS 

This appendix treats the radiation emitted by ultrarelativistic 

electrons in accelerators and storage rings while traversing 

bending magnets, wigglers and undulators. Detailed derivations 

are presented of the results given in the literature. Prior to 

the spectral analysis, the temporal evolution of the fields is 

studied, the method of calculation being non-quantum. The dif­

ferences of the characteristics of the devices are emphasized. 

Perfect electron beam optics are assumed in the analysis. 
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A.I. Introduction 

The synchrotron radiation from particles in accelerators, which 

was once considered a nuisance to high-energy physics, has now 

become an important tool of solid state physics. The character­

istics - both of the synchrotron radiation proper, emitted from 

long bending magnets, and of the radiation from wigglers and un-

dulators (arrays of alternating magnets) - are treated exten­

sively in the literature. 

This appendix gives derivations of the spectra etc., displaying 

the details of the calculations for the convenience of the 

reader. Also, the differences between the devices are addressed. 

The following paragraph reviews the electromagnetic theory re­

levant to the problem, establishing in particular the system of 

units. Also some general characteristics of the radiation from 

ultrarelativistic charges are derived. Paragraph 3 is concerned 

with particles in one bending magnet and emphasizes the distinc­

tion betwee.. a "long" and "short" magnet. The fourth paragraph 

considers a wiggler made by an array of such homogeneous magnets 

and paragraph 5 treats in detail the case where the magnetic 

field is tapered so as to produce a sinusoidal trajectory. 
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A.2. The radiation by accelerated charges. General consider­

ations 

A.2.1. Units and fundamental equations 

MKSA units are employed. In this system, the Maxwell equations 

read 

• 
• * • - * • * 

7 x E = - B 

• 
+ + • * • • * • 

V x H = J + D 
(A.2.1) 

•+• • 

7 • D = P 

* + 

7 • B = 0 

-*• - * • - * • 

E being the electric field, H the magnetic field, D the dielec-
•+ •+ 

trie displacement density, B the magnetic induction density, J 

the density of current and P that of charge. In a vacuum the 

fields are connected by the equations 

* + • • 

D = eQ E , B = UQ H , 

u0 = 4* • 10~
7 Vs/Am , u0 eQ c

2 = 1 , 

c denoting the velocity of light. The Poynting vector, giving 

the power per unit area transported by the field is 

S = E * H = p"1 E * B . 

For reference we give also the classical electron radius, the 

fine-structure constant and the Bohr magneton in these units: 
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e2 
re = = 2.82 • 10~15 m , 

4«e0mc 

e^ . 
af = — = (137.04) ] , E 4ne0hc 

eh 
uR = * 0.927 • 10 Z 3 Am2 , 

2m 

the electronic charge and mass being (-e) and m. 

When the source of the field is a moving point charge q, in terms 

of the variables defined in Fig. A.2.1 the Liénard-Wiechert sol­

ution (Ref. A.1, S 14.1) reads: 

Erad(r0/t) = [—-](f) , 
4 i t / e 0 / w 0 K 3 R 

C.2 .2 ) 

B r a d ( r Q , t ) = c"1 n ( t ' ) * E ( r Q , t ) , 

with 

o ( t ' ) = [n x ((n - l) * 3 ) ] ( f ) . (A .2 .3 ) 

Omitted in (A.2.2) are terms of order 1/R2, since only the term 

retained represents a field carrying power away. This is seen 

from the Poynting vector which falls off only as 1/R2: 

S(rQ,t) = • |E(r_,t)|2 • n(t') 
cu0 

q 2 „2 a 
4*c4*e0 K6R2 

[—r-:}(t') (A.2.4) 
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m: 

trajectory 

observer 

Fig. A.2.1. The geometry of the point charge problem. The vari­

ables of the Lienard-wiechert solution, some of which are shown 

in the figure, are the following: 

Vacuum; Parameters eQ, yQ, c = (
e
0w0) 

-1/2 

Particle; Charge q. 

Trajectory 

Normalized velocity 

r = rp(f ), 

$(t') = c"1 • (d/df)rp(f). 

Normalized acceleration l(t') » e"1 • (d2/dt,2)r_(t'). 

Observer; r = r0 , all t. 

(continued on next page) 
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Text to Fig. A.2.1 continued 

Particle 
-+ - * • - * • 

to observer; Connecting vector R(t') = r0 - rp(t'). 

Distance R(t') = |R(t')l. 

Unit vector n(t') = R(f)/R(t'). 

Retardation; Radiation emitted at time t* reaches the observer 

at the retarded time 

t = t' + c-1 • R(t*). 

The derivative of this is the "slope": 

< = dt/df = 1 - n(t') • B(t') 

A.2.2. The field from an ultrarelativistic particle 

In terms of the usual normalized velocity 

ø = |l| - - ldr/dt'| , 
c 

the ultrarelativistic case is defined by the inequalities 

Ee 
Y = (1 - ø2)-1/2 = >> i f 

mc^ 

1 
1 - * a << 1 . 

2Y2 

Referring again to Figure A.2.1, we get for the "slope" 

< = dt/dt' = 1 - 6cos6 * (1 + Y2e2) . (A.2.5) 
2Y2 

From (A.2.5) two conclusions are drawn; 
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(i) It is seen from (A.2.4) that the emitted radiation will be 

sharply peaked in the forward direction. Indeed most of the ra­

diation is emitted in a cone of an angular width of several X(1/Y) 

around the forward direction. 

(ii) If the particle emits radiation during a time At' without 

changing its direction very much, then the radiation illuminates 

an observer standing at an angle 9 from the forward direction 

during a time interval of only 

&t' 
At = < • At' = (1 + y292) . (A.2.6) 

2Y2 

Of course, the frequencies of the signal are shifted by the re­

ciprocal factor: 

"typ = <YP/K ~~ uiyp • 7 ^ 7 2 '
 (A*2*7) 

As will be seen in the next paragraph this Doppler-like mechan­

ism is in part responsible for the high frequencies observed in 

the synchrotron radiation. 

It is instructive to rederive the results (i) and (ii) by some 

elementary reasoning in a frame of reference K+ in which the 

particle is momentarily at rest. To be specific, in the labora­

tory frame K let 

rp(f =0) = 0 , 

3(f = 0) = ze+ , 

so that 

x(t'), y(t') = 0 + order((t')2) , 

z(t') = e+t' + order((t')2) , 

and let frame K+ move uniformly with the same velocity 3+z re-
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lative to K. The description in K+ of the movement of the par­

ticle is obtained by a Lorentz transformation: 

x+ = x, y+ = y , 

Z + = 7 (Z - 6+ Ct'), 

t,+ = Y (f - 3+ z/c), 

Y = (1 - (S+)2)-V2 , 

yielding, of course, 

x+ = xp(t') = 0 + order((t,+)2), 

y+ = yp(t') = 0 + order((t
,+)2), 

z+ = 0 + order((t,+)2), 

• + = t'/Y. 

Now, in K+ the movement is momentarily non-relativistic, and 

the radiation caused by it is well-known (and follows from 

(A.2.2-4): The power flux is 

q2(3)2 „ 
S+ = - sm^* n , 

(4irR)2ce0 

+ being the angle between n and 3. This is a simple dipole pat­

tern. The transformation of time intervals and frequencies fol­

lows from the Lorentz transformation: 

At'+ = At'/ir , ">typ = utyp * Y ' (A.2.7') 

and, since the particle is momentarily unrelativistic in K+, 

the same frequencies are seen by an observer here, i.e., At+ = 

At + = At /Y, u>£ = u>t • Y. (A.2.7') is the usua time-

dilatation. To get back to frame K we must transform both the 

frequencies and the direction of propagation (the wave-vectors) 

by a relativistic Doppler-transformation (as derived in § 11.4 of 

Ref. A.1): The frequencies observed in K are given by 

1/Y . 1/Y . <">' 
u » u+ = u>+ - — ( A . 2 . 8 ) 

1-3+COS9 K K 
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where 9 is still indicated in Fig. (A.2.1). The corresponding 

angle &+ in K+ is related to 9 by the equation 

sin9 + 
tan9 = . (A.2.9) 

Y(cos9+ + 0+) 

Thus, all directions of propagation in K+ (except for the "back-

hard cone" 9+ = TT) are concentrated - in K - in the "forward 

cone" 9 = o of width ~ 1/Y. In conclusion, by a ".ine of reason­

ing relying on a knowledge of relativity and not on a detailed 

study of the Liénard-Wiechert solution (A.2.2-4) we have con­

firmed the observations (i) and (ii) above. 

We conclude the paragraph by noting a few more results which 

will be needed. The rate of eroittance of energy in all direc­

tions (the power) is (Ref. A.I, § 14.2) 

2 ! dEe 2 
p = 1. Y^ ((-^) ( ) ) , 

2 q2 1 2 _dp / 1 #
d Ee. 

3 4*£0 c3m2 dt' c2 d f 

2 q2 1 dPu dPu 
P = (sum over u) 

3 4,reo c3m2 d T d T 

in terms of the four-momentun 

P * (Py) = (Pf iEe/c) 

and the particle's proper time 

dT = dt'/Y . 

This becomes, using frame-dependent quantities, 

(A.2.10) 

2 
P = - - 3 — Y6 (I3|2 - |e x S|2) . (A.2.11) 

3 4ffert 

Using (A.2.10) or (A.2.11) and Newton's law, 
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F = dp/dt' = (d/dt')(mcY3) , 

one can express the power in terms of the applied forces along 

the velocity and perpendicular to it: 

P » - -3 (P + Y F ) . (A.2.12) 
3 4neQ m2c3 I I i 

Thus, for comparable components of force applied to a hyper-

relativistic particle, the parallel component may safely be 

ignored in calculating the radiation. Incidentally, in terms 

of components of acceleration things look different: 

2 q 2 1 A • o j • o 
P = — — * Y4 ( ( 8 M r • Y^ + (øj.)*) . (A.2.13) 

3 4ire0 c
 M 

However, comparable components of force is the more realistic 

assumption. 

A.3. The "synchrotron radiation" from an ultra-relativistic 

electron in a bending magnet 

This is the classical problem, treated by (among others) Refs. 

A.2 and A.3 and in the text book by Jackson (Ref. A.1). The cal­

culations are given in some detail below. 

A.3.1. Preliminary calculations 

The most interesting radiator is an electron, of charge q = (-e). 

In a homogenous magnetic field B, the radius of curvature will be 

mcY Ee Ee/GeV 
P = ' = — — = 3.33 meters • B'e cBe B/Tesla 

I y» A J* 

Specifically, in terms of orthogonal unit vectors (x,y,z), let 

the trajectory be 
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rp(t') = XP sin 
c6t' - c3f 

+ yp (1 - cos } , 

* - c8t' - cBt* 
0 = x8 cos • y3 sin , 

P P 

- cø* c3f - c8z c3t' 
= -x sin + y cos , 

p p p p 

as shown in Fig. A.3.1; and without loss of generality, let the 

observer be in the x-z plane, at an angle 9 from the x-y-plane 

(orbit plane) - and at a very large distance r0 from the ring. 

Fig. A.3.1. The geometry of the bending magnet problem. 

The setting of Ref. A.1 is used. 

Then, since the radiation is concentrated in the "forward cone", 

only angles 9 £ 1/Y will be relevant, and likewise, only a 

segment of the trajectory such that 
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icf/t < l/Y (A.3.1) 

will contribute to the observed field. This will allow for some 

approximations. 

The -i'-t ;zzz:v fro« electron to observer is constant (since 

rQ >> everything) , 

n = x cos9 + ^ sin9, 

and the iisza^.zz the light »ust travel is 

R(t') » rQ - n • r p(f) 

c3f 2 r0 - P • cos9 • sin (in retardation) 

2 r0 (in denominator) . 

The retarded ti-.e at which the radiation is observed is 

c3f 
t = t' + r0/c - P/C cosQ sin 

P 

(A.3.2) 
1 -jo 1 •> YC 2, 

* r./c + It' C1 + Y 9 ) + - f J (—) } , 
° 2Y2 3 p 

to lowest orders in the small parameters 1/Y, 9 and (3ct'/P)f 

and the slope becomes 

cSt* 
< » 1 - 8cos9 cos 

1 0 - - ct' 2 
= (1 + Y 29 2 + Y2 ( ) ) 

2 Y 2 P 

So far we have followed the approach of Jackson (Ref. A.I), who 

now proceeds directly to the spectral analysis. Here, we shal| 
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push the investigation as far as possible while operating in the 

"time domain". The --v-rr̂ r* J appearing in Bqs. (A.2.2-4) is given 

in terms of its components along a set of orthonormal vectors 

more convenient than (x,y,z). These are 

n, e.. 5 y , ei = n * Cii = -x sin9 + z cos9 . 

€ji is almost parallel to the acceleration and ei almost orthog­

onal to it. The field of course has transverse polarization, n*£ 

= 0, and the remaining two components are calculated to be 

• c , c3t'. c 1 , 9 o c3t' 2, 
c. , • o = — «Bcos9-cos } = il + v'ez - yz ( ) } , 
u p P P 2y2 p 

• c cBt' c 1 c8t' 
e i • a - — • sin9 • sin 3 • 2Y9 • Y . 

P p p 2y2 P 

A.3.2. The electric field. Long or short magnet 

According to (A.2.2), the two components of the eleztri? f 

are 

c B t ' 
cos - 3cos9 

e , , - E ( r o f t ) « * 
cf lt ' 3 4 * e 0 r 0 p ( i _ 3 c o s 9 c o s ) 

1 + (Y9)2 . ( ) 
- E 0 '4 S 

0 Y c f 2 3 
( 1 + ( Y 9 ) 2 + ( , ) 

P 

(A .3 .3 ) 
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cSt' 
• + e sin9 sin 

:i-E(roft) = S 
c3f 3 

4neorop (i-ø c o se cos ) 

Yct' 
Y9 • 

- E0-8 £ _ 
- Yct' 2 3 

(1 + (Y0)2+( ) ) 
P 

introducing 

E„ i - — • Y4 ( A . 3 . 4 ) 
•"o 4ire 0 r 0 P 

as the natural scale of the field. 

Equations (A.3.2-4) give the temporal evolution of the classical 

field at the point of observation. Let us examine the time 

scales. If the electron machine were perfectly circular, the re­

petition rate of the electron would be 

W° c 
ZT" ~ *o x - ' 2* 2*p 

and according to (A.3.1), the radiation received at rQ is emitted 

within a time interval of 

At' ~ (1/Y) • (1/f0) • 

Then, according to (A.3.2) and to the general arguments of the 

preceding chapter, the light is received (at a time - r0/c later, 
of course) within a time interval of 

At - (1/Y 2) • At' 2 (1/Y3) • (1/f0) , 

and typical frequencies of the signal will be of the order of 
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LU 

tLU 

o 2 -

-1 

Electric field 1 1 
parallel 

A —perpendicular-

'4H 

j _ i 
-0.5 0.0 0.5 

fc*(t-r0/c) 

Pigure A.3.2. The electric field, versus time, from a long bend­

ing magnet, as measured at a large distance r0 at various angles 

9 from the plane of the orbit. The field is given in terms of 

eV 
4ne0»p»r, 

and the time is given in terms 

quency is 

uc 1 3 c-, 
c 2tr 2ff 2 P 

of 1/fc, where the critical fre-
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2 l f f = 2ir • - Y 3 f 0 = - Y3 - , c 2 ° 2 P 
(A.3.5) 

the factor (3/2) being introduced for later convenience. A plot 

of the field versus time is shown in Fig. (A.3.2). 

The above calculations pertain to a long magnet, i.e. one that 

bends the path of the electron by more than (1/Y) (Ref. A.4). If 

the magnet is short, only a window of the functions in Fig. 

(A.3.2) will be observed. This is sohetched in Fig. (A.3.3). 

(a) 

field 
A 

-+ 

(1) 

(b) 

<(2) 

time 

Fie. A.3.3. a: The electric field from a short bend-

ing magnet, as seen by an observer viewing the magnet 

tangentialiy (1) and off-tangentially (2). 

b: The geometry of the problem. 

In terms of the length L of the magnet, the condition for a long 

(short) magnet is 

L/P >> 1/Y (L/P << 1/Y) . 

For a short magnet, the time of emittance is only 

At' = L/c * (P/C) • (L/P) << (P/C) • (1/Y) , 
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and the width of the observed spectrum will then be 

2 3 3 
ft ~ Y % • P/L » - YJf0 = fc(long magnet) 
short 2 

magnet 

For the rest of this paragraph, we shall consider only long 

magnets. 

A.3.3, Analysis of the field from a long bending magnet 

We now proceed to calculate the distribution w. r. to angles and 

polarization states of the intensity of the field. Two cases are 

considered, namely 

(i) the ring contains only one electron, 

(ii) a current I circulates in the ring. 

In case (i), the signal (A.3.3) will be repeated at the rate 

f0 = C/2*P (if the ring has no straight sections). Thus, a line 

spectrum of fG and its harmonics will result. However, for an 

X-ray machine, hfc = 10 keV, and Y ~ 10
4 (Ee = Ymc

2 = 5 GeV), 
— 8 so the spacing of the harmonics will be hfQ =10 eV. This will 

hardly be resolved by any X-ray experiment. Anyway, to be 

specific, in the following the energy from one electron passing 

the bending magnet cnee will be calculated. In case (ii), the 

different electrons will be considered to radiate independently 

of one another, so that the power will be proportional to the 

current. In case (ii), the imperfect beam optics will certainly 

cause the line spectrum to be completely smeared. If the energy 

(angular energy density, etc.) from one electron is e, then the 

power P from a current I will be 

P = (I/e)e . (A.3.6) 

Also we remark at this point that the two modes of polarization, 

being orthogonal, will contribute independently to the energy 

and related quantities: 
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e = e , | + e i . 

Now for the c a l c u l a t i o n s . A reduced t ime v a r i a b l e ( T ) w i l l be 

needed: 

Y c f d t ' P 
T : 

/ l + Y 2 9 2 dx YC 
a t - P i r-

, = / l + ( Y 9 ) 2 , 

t = r n / c + (1 + Y 2 e 2 ) 3 / 2 ( T + 1/3 T 3 ) , 
° 4 (u„ 

dt d t ! 3 N o o o/o 
— = < + (1 + Y2e2)3/2 # 
d t dT 4 w~ 

N = 1 + T 2 . 

Then 

• 1 1 - T 2 1 N - 2 T 2 
e I I "E = E^ • 4 = E^ • • 4 J O ( 1 + Y 2 e 2 ) 2 N 3 ° ( 1 + Y 2 Ø 2 ) 2 N 3 

•*• Y9 T 

1 ° ( 1 + Y 2 e 2 , 5 / 2 N 3 

According t o ( A . 2 . 4 ) , t h e two c o n t r i b u t i o n s to t h e Poynt ing vec­

t o r a r e 

c e 2 Y 8 16 1 - T 2 2 

M 4 w 4 i r e 0 P 2 r 0
2 ( 1 + Y 2 6 2 ) 4 N 3 

- • * ce^Y 2 Y 8 6 4 Y 2 6 2 T 2 

4 n ' 4 i r e o p 2 r 0
2 ( 1 + Y 2 8 2 ) 5 N 6 

and the energy per s o l i d a n g l e i s 
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- = r2 / S d t = ^ C1 + Y 2 e2 ,3 /2 J N . s . d T , 
d« u

 t = _ „ 4 uic 

de c e 2 Y 8 3 1 . ( 1 - T 2 ) 2 

(——\ = . - • 16 I dT 
d £ i | | 1 6 w 2 e 0 p 2 „ c 4 ( 1 + Y 2 9 2 ) 5 / 2 N 5 

c e M 2Y8 217T 

16it2enp2 i») 8 ( 1 + Y 2 6 2 } 5 / 2 

o^ c 
(A.3.7) 

de ce2Y8 3 Y 29 2 T 2 

(i'l = 16w2e0p2Uc * (1+Y
292)V2 * 64 ^ dT 

ce2Y8 15^^262 

16Tr2e0P
2'Dc 8(1+Y 29 2) 7 / 2 

The energy per radian of curvature along the electron beam then 

is 

1 de r V 2 de 1 " de 
— ee = = J — cos6d9 = — J — d( Y9) , 
2* e d* -7T/2 dfl Y -oo d^ 

e e being the total energy emitted by an electron making one 

revolution in a machine of constant radius P. Integrating (3.7), 

we get 

de c e 2 Y 7 

- — — — — — . 4 TT f 
d * 1 6 * 2 e 0 P 2 u c 

de 7 de 

d<J> i i 8 d4> 
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de 1 de 

d<fr x 8 d<l> 

Thus the energy per electron per turn is 

4ir e 2 Y 4 4if r e 
e 3 4ire0P 3 P 

- e 9 4 

( A . 3 . 8 ) 

4 * Be 3 CY 3 4 * -> 

T ' 2 = F r e , B * e * c Y ' 

and the power for current I is 

4ir iey4 4* I re 0 * 
p = = mc^Y* 

x 3 4ne 0 p 3 e P 

4TT Be2cY3 4n •, 
= — I r i - r e B - c Y J . 

J 4ne 0 mc i i J 

Considering a magnet of length L < 2np this is reduced to 

L 2 I r e m c 2
 4 2 Irec

2B2eY2 

PT(L) = PT = L • Y4 = L • 
1 2np I 3 PD2 3 m„2 

(A.3.9) 

ep^ J mc 

(A.3.9' ) 

From general considerations, using (A.2.13) with 

3c c 1 c 
0| | = 0, 8i - — * - (1 -) » - , 

P P 2Y 2 P 

one gets the energy 

1 2np 2 e2Y4 c 2 
e = — p • . (—) 

f0 c 3 4ne0c P 
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in accordance with (A.3.8). Thus, the power is given correctly 

by the approximations except for errors of the order of (1/Y^). 

Putting numbers into (A.3.8-9) yields 

ee = 88.5 keV • 
(Ee/GeV)

4 

p/meters 

= 26.8 keV • (Ee/GeV)
3 • (B/Tesla) , 

(Ee b^ing the energy of the electron), and this voltage needs 

to be supplied by the r.f. cavities. The power then becomes 

Px = 38.5 kW • 
I (Ee/

GeV>4 

Amps p/meters 

I B Ee 3 
= 26.8 kW • — • — • ( ) 

A T GeV 
t 

I 2 . ,o ,n^ra PT(L) = 1.27 kW • — • (B/T)* • (E0/GeV)* • (L/meters) 

I Ee 4 L/m 
= 14.1 kW • — • ( ) • 

A GeV (P/m)z 

Going backwards we can express the various differential powers 

in terms of Pj, noting that the energies will be related to ee 

in exactly the same manner: 
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7 1 
P|| = - P! , Pi = - P! , 

dP 
d* (I I 

( i 
(total 

1 <pll 
= — * (Pi , 

2* (Pi 

dP pI 21 1 
(—) = Y • • — • 
dO || 2* 32 (1+Y292)5/2 

(A.3.9") 

dP PI 15 I2*2 

( = Y • ' — • 
dO i 2* 32 (1+Y282)7/2 

The rest of the analysis concerns the frequency domain. We must 

then consider 

1 
E(w) = - = / e i u t E(t)dt . 

/2ir _» 
(A.3.10) 

With this normalization, Parsevals theorem reads 

/ |E(t)|2 dt = / |E( o») | 2 du = 2 / |E( ui) | 2 du,r 

restricting to positive frequencies. Thus, using (A.2.4), the 

energy per solid angle is 

2r ̂  a> 

— = — 2 - / iE( co) | 2 dUp 
dO cn0 0 

de 
(A.3.9") 

From (A.3.11) we identify the spectral brightness (energy per 

solid angle per absolute bandwidth or photons per solid angle 

per relative bandwidth): 
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de de/hu) 2ro , - -
= = |E(u) | 2 . (A.3 

d^ dhu) d^ dnw/fiu hcu0 

The Fourier transformation (A.3.10) is difficult, e.g. 

" $(t'(t)) . . 
E(u) « / — —— e^t d t 

t=-» <(t'(t))3 

or 

* ™ 3(f) 
E(u) « / — ei

ut(t') dt' 

t'=-» <(t')2 

A partial integration (Ref. A.1, § 14.5), however, yields 
• - e ( - i t t ) ) 1 _ + 

E(a) = — • -= • J ( n x ( n x 3 ( t ' ) ) ) e l t 0 * t ( t 

4 i t / e 0 / u 0 r 0 /2n t ' = - » 

(A.3 

in which the remaining complexity arises mainly from the re 

ed time in the exponential. Using 

~ - + * ct1 ct' 
£|l • (nM'^SIt'))) * -£|| * 3 = - S sin = - , 

. + •*• c t 1 

e1 * (nMnx8)) * -£j_ • 3 = -sin9 • 3 cos = -6 , 

and the approximation (A.3.2) for t', this becomes 
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lu ir 

e | | • E(u) = . 7=r e c 

4We 0 / u 0 r 0 / 2T 

, C t ' r i o ) t ' , _ - 1 YC , - , , 
/ exp[ { l+y2a2 + _ ( _ t

,
) 2 } ] d t ' , 

-oo p 2^2 3 P 

i ur 

ej_»E(u) = -(same fraction)*e "^ / 9 • exp[same exponent ]dt' 

Introducing 

YCt' 0) 

T = , C = ( 1 + Y 2 9 2 ) 3 / 2 , 

p/ 1 + Y292 2UJC 

names are given to the integrals (Ref. A.1, § 14.6) 

, ct' , , P 1 + Y 2 9 2
 r 3 , i2, 

/ exp[ J dt' = / T exp(i — ST {1 + —})dt 
P c Y2 2 3 

P 1+Y2e2 2 
— ' - = • ! • K2/3(5) , (A.3.14) 

c Y2 <3 ' 

r Q ri.. p Y9/1+Y2e2 3 T2 
J 9 * exp[ Jdt' = J exp(i - CT {i + —})dT 

c Y 2 2 3 

(A.3.15) 

P Y9* » / 1 + Y 2 9 2 2 

the K's being modified Bessel functions (Ref. A.1, § 3.7), de­

fined by 
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K V ( É ) = - i v + 1 ( H v < T ) ( U ) ) = - i v + 1 ( J V ( U ) + i N u ( U ) 

( I_ V (C) - I v ( 5 ) ) , I v ( ? ) = i ' u J v ( i S ) , 
2s in*v 

in terms of Hankel ( H ^ 1 ) ) , Bes se l ( J ) and Neur^nn (N) f u n c t i o n s . 

Thus t h e f i e l d s a r e 

•»• e*w p 1 + Y 2 9 2 2 
Ei i ' E ( u ) = . . — K 2 / 3 ( ? ) , 1 ' 4ir/2^ / e 0 / i i o r 0 c Y

2 ^ ' 

(A.3.16) 

1 e'w P Y9/l+Y292 2 
1 i 4ir/Ti ^e./wn rn c Y2 /J 1/3 

and insertion into (A.3.12) yields the spectral brightness for 

current I, being the power per solid angle per absolute photon 

energy bandwidtn or photon rate per solid angle per relative 

bandwidth: 

dP dP/fiuj P i 'Y 3 3 
» » • {—) • F S (5 ,Y9) . (A.3 .17) 

dft dhu dfl dfiu/fi« hu»c 2TT 

Here fo l lowing Ref. A .4 , t h e u n i v e r s a l b r i g h t n e s s func t i on in 

(A.3 .17) i s 

p s ( 5 ' Y 9 ) = rhro fK2/3 (C) + -rrr? K?/3 ^)J * 
1+Y292 1+Y 28 2 

(I I) (1) 
(A.3.18) 

where the contribution from each polarization state is indicated, 

Integration over angles gives the result (Ref. A.1) 

dP dP/fiw p I 
—T ' — - • S(u/uc) , (A.3,19) 
dhw dliw/liiii hu>c 
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where the universal spectral function is (Ref. A.4) 

9̂ 3 " 
S('o/u>c) = .r K5/3(r,)dn . 

8w 
(A.3.20) 

"/*, 

The functions Fs(5,o) and S(±/*c) are plotted in Fig. A.3.4 and 

tabulated in Table A.3.5. 

huj/hujc or Xc/X 

Fig. A.3.4. The universal functions describing synchrotron radi­

ation, 

F8(5,0) = S
2
 K 2 / 3 (C, . (̂ -, K 2 / 3 (-=-, , 

9/1 -
S(»/«c) = — J K5/3 (njdn 

8* <•/»„ 

plotted versus the normalized frequency /̂"»c« T n e plots wpre 

prepared on the basis of a table of Bessel functions in Ref. A.7, 
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Table A.3.5. The universal functions 

9̂ 3 r 
S(-/-*c> * - — -' K5/3(n)dn » 

8' \r 

Fs(5,0) = 5
2K§/3(U = Ty

2K2/3ty/2) ' 

= <*/«, 

The table was prepared on the basis of a table of Bessel func­

tions in Ref. A.8. 

•/»'-/-„ 

• : . : • } • : : 

y . K l y 
y . j y . L y 
j . y y 4 y 
•:-.i-Oif-> 
y . y y i y 
•> .?: • : -> 
•?.>:•;••>« 
O . l i y y 
: < . y 4 y y 

^ . « w 
y . y - : " y y 
y . y ' y y 
O . y S y y 
y . y ? 0 y 
y . l y y y 
y. :5*v 
y . l y y y 
y . : ^ y y 
y . J y y y 
y . J ^ . y y 
0 . 4 y y y 
j . 4 * y y 
i . ^ y y y 
y . T f y y 
y . c y y y 
y . é S y y 
y . ' y y y 
y . r ^ . y y 
y . i w y 
y . i ^ y y 
•V . -yyy 

S t . / * . ) 
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- .•> * E - y l 

: . : i ? E - y -
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5 . 4 . > 2 £ - y : 
5 - ^ i 4 E - y : 
5 . l 5 i £ - y : 
5 . y I ! - E - y l 
4 . : ;* '?£-yl 
4 . r 4 5 E - y ; 
4 . t y 5 E - y i 
4 . 4 o S £ - o : 
4 . : ^ ' . E - y I 

F S ( C , D > * 

rKWY/2) 

. : . * rEE-o : 
~ . i r=E-y : 
: . : * ? £ - * : . • 
: . * ; : E - O : 
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l . . i v 5 E - y l 
1 . J l l E - y : 
1 . 4 1 i £ - y ; 
l .T .y iJE-yl 
l . : - 2 l £ - y ; 
2.2*?E-vl 
2 . 5 4 I E o : 
i.r—E-O: 
2. -?r5£- i>I 
i . l 4 y £ - y ; 
i . i r r E - y i 
3 . 3 * w E - y l 
i . 4 * y £ - y l 
5 . 5 5 2 E - y I 
5 .*y- ;E-y< 
L . € 4 4 E - y l 
5 . * 7 y £ - y i 
5 . * S 5 E - y l 
i . i t S r - E - y : 
i . i i r r E - y l 

y s . 
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Putting nunbers into the formulae of this chapter, we get the 

critical parameters: 

3 fie 3 (Ee/GeV)
3 

fi*_ = Y J = 2.219 keV • — 
2 P p/meters 

3 hc2Be , -, 
= — Yz = 0.663 keV • (B/Tesla) • (E^/GeV)* , 

mcJ 

(A.3.5') 
4* -> . p/meters 

X_ = — P/Y3 = 5.589 A 
J (Ee/GeV)

J 

4* rac2 .o . --) 1 
» Y z = 18.64 A • (E./GeV) * • (B/Tesla)-1 . 
3 cBe 

The (frequency integrated) brightness (A.3.9"), the spectral 

brightness (A.3.17) and the spectrum (A.3.19) give: 

dP pI* Y 21 MW Ee 5 1 1 p -1 
— = • — =18.1 • ( ) •(—)•(—) 

d2|9-0 2* 32 sterad GeV A m 

(A.3.9' • ') 

MW Ee 4 I 1 B 1 

= 5.48 • { ) • (—) • (—) 
sterad GeV A T 

dP kW Ee 2 I 
_ = 8.50 • Ps( C,Y9) • ( ) • -

da dh« eVsterad GeV A 

(A.3.17') 

dP/fiw 9-j Photons Ee 2 I 
* 5.30 • 1 0 " • Pc • ( ) • -

d3 d(?n(no)) sterad»sec s GeV A 

(per unit relative bandwidth) 



- 148 -

dP kW 
- 3-09 — T • (E/GeV)2 • (I/A) d« dH*i, .„_„ eV'sterad 

! 9=o 

dP/fiw 00 Photons ~ 
= 1.93 • TO22 • (E/GeV)2 • (I/A) d^ d(ln(fiu)),^.^ sterad*sec 

' ~ c 
I 9=o 

dP W 1 
—r = 3 9 . 3 — • S(V-c) * ( > * < ) 
dĥ > eV GeV Amp 

(per unit relative bandwidth). 

1 

(A.3.19') 

dP/hu ,n Photons 1 
; = 2.49 • 10zu • S(*/<0 * (E/GeV) ' • (I/A) 

d(ln(hoi)) second ^ 

(per unit relative bandwidth). 

dP W . 
—r- = 16.1 —- • (E/GeV)1 • (I/Amp) 
d h u| J»=^ c

 e V 

dP/fiu ~n Photons , 
= 1.01 • 1020 — • (E/GeV)1 • (I/Amp) d(ln(fiw))|U_M second 

(per unit relative bandwidth). 

Concerning the polarization, we note that according to (A.3.16), 

the two components of linear polarization are in quadrature, so 

that the radiation is elliptically polarized (and horizontally 

linearly polarized in the plane of the orbit), as shown in Pig. 

A.3.6. This result may be derived as well by a symmetry argument. 

In conclusion, this paragraph in some detail has reviewed the 

theory of synchrotron radiation to provide a firm basis for com­

parison with the radiation sources described in the next para­

graphs. 
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Ei 

E„ (a) 

(b) 

(c) 

Fig. A.3.6. Ellipses of polarization for the synchrotron 

radiation at w=o>c and at various angles from the plane. 

a_: 6=0, Ei/E | j = 0, linear polarization, 

b: Y6 = 1, f,(u)c,6) = /J , 

El/E| 
/I Ki/3 (/I) 

2 K2/3 (̂ 2) 

s 0.65, elliptical polarization. 

c: Y9 >> 1, 5 >> 1, 

Kl/3 (?) 
Ei/E 

K2/3 (?) 
+ 1, circular polarization. 
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A.4. The radiation from a wiggler or ondulator 

The idea of bending the electron path more than the general 

curvature of the machine leads to the concept of a wiggler, as 

shown in Fig. A.4.la. 

The power, according to (A.2.13), will then be 

I 2 e2Y4
 r

L/c . 
pl w = " * 7 Z / <Bi> d t • 
x'w e 3 4*e0c 0 

In terms of the radius of curvature, the acceleration is 

cSj. = C2/P 

9 TOY 4 L o mc2r-Y4i L „ 
P T w = l i £ ] L / P " 2 d s = ^ S / p - 2 d s { A > 4 # 1 ) i,W 3 4*e0 0 3 e o 

integrating along the higgler. For constant P this reduces to 

(A.3.9), and generally the radiation power of the wiggler is the 

same as for a constantly curved device of the same integrated 

squared curvature. Nevertheless, interference effects may cause 

the spectrum to be very much different from the synchrotron 

radiation spectrum (A.3.18). Seemingly, the term ondulator is 

used for a device in which interference effects are important, 

whereas a wiggler is defined as having a spectrum more like the 

incoherent superposition of the spectra from the constituent 

bending magnets. Of course, the number of elements is a crucial 

quantity in this connection. For a perfectly regular array of 

2N magnets and for ideal optical properties of the electron 

beam, the power spectrum will be shifted into a fundamental 

frequency <*>i and its harmonics, the width of the peaks being 

Lin ~ (1/N)'i»>i. Thus, for more than a few elements, the inter­

ference will be very important in this case. We consider in more 

detail such an ondulator: 
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The two cases (as in Section A.3.2) of long and short magnets 

must be distinguished. Figure A.4.1bl shows an electron path 

consisting of alternating circular segments. In terms of the 

variables defined in the figure, 

a xw/4 W 4 
! » 1/Y , (A.4.2) Xw/4 P-a P 

the inequality expressing the condition for a long magnet. Each 

half-period will produce a synchrotron radiation pulse of dur­

ation ~ P/(CY3) (as in Fig. A.3.2), and an observer in the for­

ward direction according to Eq. (A.2.6) will receive the pulses 

from adjacent magnets a time (*w/2c)•(1/2Y apart. This is shown 

in Fig. A.4.1b2. The spectrum (A.3.17) will thus be split into 

harmonics of the frequency 

2ir 2*c o 
u, = — = — • 2Y Z (A.4.3) 

(VC>*<1/2Y2) Aw 

The number of harmonics of appreciable magnitude is 

uc 3 '-w/4 
//harmonics = — = — • • Y >> 1 (A.4.4) 

o>1 2TT p 

This is shown in Fig. A.4.1b3. 

The case of an ondulator built from short magnets is character­

ized by 

L/2 
•o • « 1/Y 

P 

as in Fig. A.4.1cl. Reasoning as above, we see that each bent 

section contributes a truncated synchrotron pulse (as in Fig. 

A.3.3a), these arriving (*w/2c)(1/2Y
2) apart. The spectrum thus 

consists of harmonics of (A.4.3), filling the white spectrum 

from a short magnet which extends to 

9 c 

t-'P L/2 
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Fig. A.4.1. 

a_: A general wiggler: A juxtaposition of several (possibly 

different) bending magnets. 

b_: An undulator consisting of long, homogeneous magnets. 

bl: The geometry. Transverse oscillations are shown exaggerated. 

b_2: The electric field versus time, as seen by an observer in 

the forward direction. 

b_3: The spectral brightness in the forward direction. As shown, 

for 9=0 only odd harmonics are present. This is so because the 

field is odd-half-periodic, 

E<fc + —(x
w/c)/(2 y*)) = -E(t) . 

2 w 

£: An ondulatoi: built from short magnets. 

cl: The geometry. Transverse oscillations are shown exaggerated. 

c2; E(t) vs. t. 

c3: Spectral brightness. 

Thus the number of harmonics is 

"typ Aw 
/^harmonics - = * — . (A.4.5) 

This is shown in Pig. A.4.1c2-3. If Xw = 2L, as will usually 

be the case, iA.4.5) shows that only the first few harmonics 

will be present. 

The frequencies observed at an angle 9 off-axis may also be 

derived, applying the conditions for constructive interference 

(Ref. A.5) as in Pig. A.4.2. For the radiation emitted from 

z * 0 at t' * 0 to be in phase with the radiation emitted from 

z = Xw at t' = Xw/Bc, 
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- Z 

Fig. A.4.2. Geometry for the derivation (Motz (Ref. A.5, 

1977)) of the ondulator frequency off-axis. 

Xw *wcos9 

Se c 

2TT X 
= n • — = n • — ; 

to c 

1 W o o X a — • (1+^292) 
n 2Y2 

in accordance with (A.2.7) and (A.2.8) 

In terms of numbers, the first harmonic will be 

fi«1 = 9.5 eV • (E/GeV)
2 • (Xw/meters)~

1 , 

X, = 1300 A • (E/GeV)"2 • (Xw/meters) 

Thus at 5 GeV, to get Xj = 1.54 A, Xw = 3.0 cm would be needed, 

In the next paragraph the case of a sinusoidal ondulator is 

treated, being exactly soluble. The result is a detailed knowl­

edge of the intensities, polarization etc., as well as some de­

tails concerning the frequencies which the above qualitative 

treatment has missed. 
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A.5. The radiation from a sinusoidal ondulator 

If a line spectrum is desired, one may wish to get rid of the 

higher harmonics. Plausibly, this is achieved by wiggling the 

electrons along a sinusoidal path. Equally plausible, a iragnetic 

field varying like a sine-function along the beam would seem to 

furnish such a trajectory. As will be seen from the following 

sections, the above statements are true for the case of a "weak" 

magnetic field. 

The sinusoidal ondulator has been treated by Ref. A.6 (see also 

Ref. A.4) by the introduction of a comoving frame K* as in Sec­

tion A.2.2. Below, we treat the problem from the lab. frame, 

analogously to the method in paragraph A.3. 

A.5.1. The equation of motion 

Firstly, Newton's law must be integrated. Taking (Fig. A.5.1) 

* - 2*z 
B(z) = y BQ cos , 0 < z < N • Xw 

Aw 

and zero elsewhere, this becomes 
drp - d drp d2 
— * B = (my ) = my 

dt1 dt' dt' at'2 
(~e) ' T T x B = 7-7 (my 7-7-) = my - rp(f) ; 

eBo • 2ITZ 
X = - — Z COS 

my *w 

eB0 . 2*z 
z = x cos , 0 < z < N • \w (A.5.1) 

my Xw w 

We have used the concept that as the field does no work, the 

normalized energy y is constant. At t' =0, the electron is in­

cident on the ondulator with velocity x = 0, z * cS (see Fig. 

A.5.1). The general character of the movement is obvious: The 

electron will drift down the ondulator with a mean velocity c3* 

and wiggle around this mean path. Thus we put 
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By (a) 

X 

3B..®® Ø Ø « ® 0 O 
e&CjJ 

- z 

(b) 

W Z 

F i g . A . 5 . a . 

a_: Variation of the magnetic field. 

b: Scenario at t' = 0. 

£: Definition of angles 9,*. 

x = fx(f ) , z = cø*t' + f 2(f) , (A.5.2) 

where the f's and their derivatives are small, and in particular, 

<fx> = <fz> = 0 . (A.5.3) 

Substituting (A.5.2) in (A.5.1) and taking lowest orders of the 

f's we get for fx, using the initial values fx(0) = 0, fx(0) = 0 

and (A.5.3): 
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eB0 2ncB*t* 
f„ = cB* cos x mY *w 

e B0 *w 2ircØ*t' K 2nc8*t' 
fx = sin = c • — sin (A.5.4) 

mY 2* Aw Y Xw 

(A.5.5) 

K Xw 2irce*t' 
f» = (COS ~ 1 ) f 
X 6*Y 2* X W 

re 

eB0c \w 
K = — - — = 93 • (B0/T) • (Xw/m) 

mc2 2* 

K/Y = 0.048 • (BQ/T) • (Aw/m) • (Ee/GeV)"
1 

fz we get in the same way 

e B 0 . 2TTc3* f 1 K 2 9 2TT 2 w c 3 * t ' 
fz = fx cos = (—) c" — sin 2 

mY Aw 2 Y Aw Xw 

1 K 2 c 2*cS*t' 
fz » ~ (—) ~ COS 2 (+ 5v0) (A.5.6; 

4 Y ø* Aw 

1 K 2 Aw _-, 2wc0*t' 
fz = ~ (~) — <e*) sin 2 — . 
z 8 Y 2TT X W 

(A.5.3), <5v0 = 0, and the condition z(o) = cS then determines 

1 K 2 . 1 K 2 
e* » ø . _ (_) (8*)-i « 3 - T (-) , 

4 Y 4 Y 

Y* = (1 - (8*)2)-1/2 = Y/ 
2 

J (A.5.7) 

/l + - K2 , 
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to lowest order in (K/Y). In the same approximation, energy is 

conserved by this solution: 

x2 + z2 = f2 + (c8* + f z)
2 

s (S*c)2 + f2 + 2 c0* f2 

- . - 1 K 2 
= c2 t(3*)2 + - (—) 

2 Y 

K 2 , 2ircB*f . 
+ (—) (1 - B*) (sin2 ( ) - 1/2)} 

Y Xw 

' (cø)2 , 

plus terms higher than (K/Y)2. The solution describes a uniform 

movement c8*t' and superimposed on this the (tx,tz)-movement 

describing a figure-eight of 

K xw 
half-height a = , 

Y 2ir 

(A.5.8) 
1 K 2 *w I K 

half-width w = — (—) — , w/a = - (—) . 
8 Y 2* 8 Y 

(See Pig. A.5.2a). The figure-eight arises because the trans­

verse motion takes energy away from the longitudinal motion, 

reducing the average velocity to cS* and making the z-velocity 

oscillate around this value. 

The comoving frame K* of Purcell (Ref. A.6, 1977) moves with 

constant velocity zcS* with respect to the lab. frame K, thus 

keeping up with the electron o v. the average. A Lorentz trans­

formation (as in Section A.2.2) yields the motion as seen from 

K*. The electron describes a figure-eight (see Fig. A.5.2b) of 
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c y 2rr 

* x 8 l\ / ?n 

lab. frame K 

a) 

*.. z-p*ct' 

* b) 

• 2 
* 

Pig. A.5.2. The motion of the electron in the ondulator, 

a: As seen from the laboratory. 

b: As seen from the comoving frame K*. 

K *w 
half-height a* » — — - a , 

y 2» 

1 K2 V ^ ' 
half-width w* * Y* • w » -

8 i + 1 K 2 2* 
2 

(A.5.9) 

1 / *1 w*/a* * Y* • (w/a) = - K//1 + - K^ . 
8 / 
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Of course^ a Lorentz contraction of (A.5.9) gives (A.5.8). For 

K << 1 the particle oscillates in K* like a Hertz dipole, giving 

the desired monochromatic radiation. Going back to the Lab. 

frame, the maximum deflection angle is seen to be 

* 0 = K/y . 

Thus the condition K << 1 for no harmonics is also the condition 

for "short" bending magnets. (.-.-.i K << 1 means that the trans­

verse motion is non-relativistic}. We shall restrict the calcula­

tions to this case. 

A.5.2. The radiation from a weak-field sinusoidal ondulator 

The problem is treated in a manner analogous to the treatment 

of the synchrotron radiation. However, as the motion is linear, 

the calculations are simpler. 

The -:z'.:". of the electron is 

•* * ~ . 

rp(f ) = x a (1 - cos »0t') + z c3*f , 

• - K 

S(t') = x — sin »rtt' + z 3* , 

8(t') - x — w0 cos^t* , 

K *w eB0c *w 2 
a H - T" ' — T {T] 

Y 2tr mc2 2* 

2»c 
Aw 

The observer is at a (large) distance r0, at angle 9 from the 

z-axis and angle • from the x-z-plane. Thus, (9,<M are the 

usual polar coordinates. The unit vector is then 
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p * x sin* cos* + y sin* sin* + z cos9 

= z nx + y ny + z n2 . 

and is constant for a distant observer. The l:s:zrj€ is 

R(f) * rQ - n • rp(t') 

= r0 - nz • c3*t' 

= ro ' 

the mtzriii zi-.i is 

t = ro /c + t ' ( 1 - 3*nz) = r 0 / c + *t* (A.5.10) 

and the "si:-i" i s 

1 + ( Y * 3 ) 2 
* « 1 - n • 3 » 1 - n 3* = . ( A . 5 . 1 1 ) 

2 ( Y * ) 2 

He need also to calculate the vector 5 of (A.2.3). He use the 
A 

unit vectors n (longitudinal), 

A A A A A A A 

x-(x*n}n n*(x*n) 
, and /l-(x-n)2 ^-nj 

A A 

n*x 
e-L = n * c 11

 " / M 3 ' 
analogous to the ones used in S A.3. C|| is almost parallel -

and tL is perpendicular - to the acceleration. Of course, 

n*& s 0, and the remaining components after some calculations 

become: 

• K 

o(t') » — »0 C0S<*0t' • a0 , (A.5.12) 
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ao * 

-nj-n2(nz-8*) 

/Tnl 27 
|l + (Y*9) 2{1-2COS 2*) } , 

*2 

(A.5.13) 

1 
aQ = nxn 3*/A-n| = 

1 2Y*Z 

( 2 ( Y * 9 ) 2 cos* sin*; . 

Inserting (A.5.10) in (A.5.12), the time dependence becomes 

cosu»0t' = cos i * i ( 9) • (t - r0/c) I , 

,J,1<9> s "o'* = Mo " 2(Y*>2/(1 + (Y*9)2) , 

(A.5.13') 

and according to (A.2.2} either component of the electric field 

is 

E{ZQ't] - « " ^ r 0 
(= ' *<v 

-f- K g C O S J ^ t - r Q / c ) 

( - ^ - T ( 1 + ( Y * 9 ) 2 ) ) 3 

'" I 
) • E ( r 0 , t ) = 

£ : ) 

-ea. 4(Y*) Jcos^ 1 ( t -r 0 /c) 

4 " / € o / u o ro /H-JK 2 (1 + ( Y * 9 ) 2 ) 3 

-(! + ( Y*9)2(l-2cos2l>) ) 

2 { Y * 6 ) 2 C Os» sin* 

A Fourier transformation 

NX, 
(r0/c) + * 

E(-») * _!_ r eiu>t . E(t)dt 

gives 
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E ( u ) = 

-e<j*r 4(Y*)3 

4W2We0/M0 rQ / ^ 2 ( 1 + ( Y * e ) 2 ) 3 

-(1 + ( Y*9)2( 1-2cOS2<}>) )' 

2(Y*9) 2 cos$ sin$ 

01 + W 

i^r_/c 

io+ui • 

i N* sin Nit 

u+w • 

OJ-0)-

+ e 

01—0)1 

i NTF sin Nw 

a — u)< 

(A. 5 . 1 4 ) 

It is seen that, the two components being in phase, the radi­

ation is linearly polarized for all directions and frequencies. 

The polarization is along e,. for the special directions 9 = 0 , 

(6,<j>) = (9,0) and (9, IT/2), as can be understood from the sym­

metry; and along (ej. ± Cj_) for the directions (9,<t») = ( 1 / Y , 

- V 4 ) . Restricting attention to positive frequencies, we ignore 

in (A.5.14) the term which is large only for w = - U M . Defining 

the function 

AN(hu>-hu>-,) s — 
N 

h'u1 

s i n Nu 

N T 

• 

• 

ftui-ftu)1 

hu)-ho>^ 

hu>i 

/ AN(Hco-h(D)d(hcoi ) = 1 , AN(Hu)-h<jj-|) + 5(hu)-hu)-|) as N
 + « , 

of width 

A(Ku) - fiwj/N , 

the spectral brightness (°nergy per absolute bandwidth per ster-

adian per electron) becomes 



- 164 -

de * o * o de 
— ! E ( u ) i = * AN(huj-ho)1 ( o) ) , ( A . 5 . 1 5 ) 

d2 dfiu K c u 0
 åa 

where 

£! . N . - i ! J l l - Y4 . 11 (1 + ( Y * e , 2 ) - 5 
^ 4^e0 ( 1 + J K 2 ) 3 XW 

( 1 + 2 ( Y * 9 ) 2 ( 1 - 2 c o s 2 ) ) + ( Y * 9 ) 4 ( 1 - 2 c o s 2 < p ) 2 
( ( I I ) 

( 4 ( Y * R ) 4 c o s 2 8 31021 
( 1 ) 

( 1 + 2 ( Y * 9 ) 2 ( 1 - 2 c o s 2 * ) + ( Y * 9 ) 4 ( t o t a l ) . 

The t o t a l energy in t h e s o l u t i o n i s 

de 1 2
 2TT - d £ 

e e 1 = / d (Hu ) / df l = ( — ) / d * / ( Y * 9 ) d ( Y * 9 ) • — - , 
o 4* &Q d n w ** o o å2 

4TT2 e 2 y 2 1 K2 ( 7 / 8 ( I I ) £ e i •N • ~r T7T r ' — m ' (1/8 (i) 
5 41Teo Aw (1+^K2)2 ( 1 ( t o t a l ) 

From g e n e r a l c o n s i d e r a t i o n s , using ( A . 2 . 1 3 ) , the energy must be 

N*w 2 e 2 Y 4 • 9 

c 3 4 * e 0 c 

• -, 1 K 2 e 2 c 2 - 1 - e 2
c 4 , 

<(3i)2> - -z (-) " 2 - YT2 C 2 B ° = 2 ' <B ' ' 
2 Y ( m c 2 ) 2 Y 2 2 ( E e ) 2 

4TT2 e 2 Y 2 R2 2 Y 2 e 2 c 2 , 
e . = N = NAW • - r _ <B^> ( A . 5 . 1 6 ) 

e 3 4 * e 0 Xw
 w 3 e

 m c 2 

Thus 

Si • V<1 + ^ K * > 2 
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As Hofmann (Ref. A.4, 1980) remarks, a more rigorous treatment 

will probably show the lacking energy to be found in the higher 

harmonics, and in our approximation, K << 1, the difference is 

negligible. 

The power for current I becomes 

.2„2 
2 r e e c ' Y 

mc 
<B'> NX 

w 
( A . 5 . 1 7 ) 

a s in ( A . 3 . 9 ' ) - We e x p r e s s t h e r e m a i n i n g q u a n t i t i e s in t e r m s of 

t h e power in t h e 1s t h a r m o n i c : 

pn = V < 1 + 7 R 2 ) 2 • ( A . 5 . 1 8 ) 

Pi | = ( 7 / 8 ) p x l , P i = d / 8 ) p x l , ( A . 5 . 1 9 ) 

dP 3Y*2 

— = P I 1 * 
dft IT ( 1 + ( Y * 9 ) 2 ) 5 

( 1+2(Y*9)2( 1 - 2 c o s 2 * ) + ( Y * 9 ) 4 ( 1 - 2 c o s 2 $ ) 2 ( | | ) 

(4(Y*9) 4cos 2 i |> s i n 2 $ ( L) 

(. 
H - 2 ( Y * 9 ) 2 ( 1 - 2 c o s 2 $ ) + ( Y * e ) 4 ( t o t a l ) 

dP 

dfl dKu dft d( lnKw) d« 

dP/hw dP 
= — x AN(fi<jo-fi<i>i ( 9 ) ) (A.5.21) 

The (angle integrated) spectrum might also be of interest. The 

case N • » is simple and gives the result 
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dP dP/huj 3PX 1 

dh<*> d(lnti!o) fi*i>i(o) 

3 u O) 1 a 
- ( ) - ( ) + ~ ( ) ( l i ) 
2 w-|(o) u-\(o) 2 * - | (o) 

1 O) 3 (jj 2 1 ;!> 
- ( ) - ( ) + - ( ) ( i ) 
2 w - | ( o ) ^ i ( o ) 2 ^ 1 ( 0 ) 

( A . 5 . 2 2 ) 

a 3 (jj 2 , j 

2 ( ) - 2 ( ) + ( ) ( t o t a l ) 
u) - | (o ) ^ 1 ( 0 ) ^ ( o ) 

e spectrum is zero beyond the frequency 

1^(9=0) = 
hc«2Y2 

Xw(1+1/2 K
2) 

terms of numbers the above formulae give (using K << 1) 

B 
Px = 1.27 kW • <(-)

2> • (I/Amps) • Ee/GeV)
2 • (NXw/m) , 

(A.5.17') 

dP GW 0 . 
da I = 4*64 s^eTad" ' < ( B / T ) y ' (I/A) ' (Ee/GeV> * ( NV m) 

|9=o 
(A.5.20') 

dP 

d̂  dH'J| 9s0 
|<*>*!»>l(o) 

dP/fituj (o) 

da d(lnhw))9- 0 

|(D»U-| (O) 

3Y*^ 
= - — • • PX 

N 
h(*>i 

(A.5.21') 

->7 Photons -, o 
3.05 • 10z/ • <(B/T)/> • (I/A) • (E./GeV)^ • 

secsterad e 

• (N* w/meters)
2 (per unit relative bandwidth) , 
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dP d P / f i u ^ t o ) 3PX 1 

dn a | a = M l ( O j d ( l n f i a ) > l u - u ^ o ) K V 0 ) 

( A . 5 . 2 2 ' ) 

= 2.51*1021 _^L2IL . <(B/T)2> • (I/A)«( ) • (Xw/meters) 
second meters 

(per unit relative bandwidth) . 

The power, (A.5.17), of course agrees with (A.3.9'), and since 

this power is radiated into a cone (d& ~ 1/Y2) instead of a 

sheet (d$ ~ 2*/Y), the coefficient in (A.5.20') is much larger 

than the corresponding (A.3.9'''). Also, comparing (A.5.21*) and 

(A.3.17')f and putting in reasonable numbers it is seen that if 

the desired wavelength can be reached, and if the interference is 

not smeared out by imperfect electron beam optics, a much larger 

spectral brightness is obtained from the ondulator than from the 

bending magnet. 

To conclude the paragraph, the results for the sinusoidal undu-

lator agree in general with the reasoning in § A.4. The reduction 

of the T by the factor (1 + \ K 2 ) " 1 / 2 (Eq. (A.5.7)) was derived, 

and although the detailed treatment assumed this effect to be 

negligible, Eq. (A.5.11), being general, shows that the reson­

ance frequency <*-\ and its harmonics can be tuned by varying the 

magnetic field. 

A.6. Conclusion 

The theory of synchrotron and ondulator radiation has been 

reviewed together with the relevant electrodynamics. 

One-electron interference effects have been seen to be important 

for wigglers/ondulators for the ideal electron beams considered. 
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The question, to which extend this conclusion is modified when 

beam imperfections are taken into account, has not been addressed. 

Also, the far field approximations employed may need to be re­

considered: Certainly, for a realistic geometry, the near and 

far end of an ondulator may be seen (off axis) under different 

angles, mixing the spectrum up. However, one would not expect 

to get just the usual smooth synchrotron radiation spectrum 

from a wiggler with more than a few turns. 

To get X-ray wavelengths from the first harmonic of an undulator 

would seem to be difficult. If strong, non-sinusoidal fields and 

higher harmonics are used, this, however, may be feasible. 
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APPENDIX B 

SINGLET-SINGLET MAGNETISM 

This appendix develops the theory for a magnet with two singlets 

as the lowest lying states, these being well isolated from the 

higher excited states. Section 1 derives the single ion polarisa-

bility and Section 2 and 3 are concerned with a mean field de­

scription of the paramagnetic and ferromagnetic states. We fol­

low the exposition in Ref. B.I. A review of the literature is 

given in Ref. B.2. 

B.1. Single ion theory 

For a single ion in the crystalline electric field (CEP) and in 

an applied magnetic field Hz, (Fig. B.I) the Schrodinger equation 

reads 

(HCEF + HZ) ln> = En |n> , n » 0,1 (B.1) 

where the Zeeman hamiltonian is 

HZ = ' *,o9juBJzHz ' 

We take I0>c, I1>c to be the eigenstates of #CEF'
 a n d u s e these 

states as a basis, 

|n> » I0>c C0n + 11>c Cin# n » 0,1 . (B.2) 

HQ££ is diagonal in this basis, 

-1/2 0 
ffCEF " A ' ( ) i (B.3) 

0 1/2 
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(a) (b) 

ID, * f 
A 

I0>- J_ 

/ 
I1> 

2E, 

\ IO) 

Fig. B.I. Single ion with split ground state in an 
- * • • * - * 

applied magnetic field H. a: H = 0, b: Increasing H. 

The diagonal matrix elements <n|J|n>c are zero on account of 

time reversal symmetry. Then, the Zeeman term is 

0 1/2 
HZ = - vo ' ss<3 ' WB * Hz * ( ) ' 

1/2 0 

where the g-factor of the two close-lying singlets, 

(B.4) 

ssg = 2 <1|C gaJzIO>c (B.5) 

parametrizes the surviving mattix element of J. We note in pas­

sing that if we describe the two singlets by an effective spin 

seff * 1/2, 

0>c = |sz - +1/2> , I1>( sz = -1/2> , 
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it is seen from (B.3) and (B.4) that 

ffCEF " sz and HZ ' sx • 

Thus, in the seff formalism we may treat the crystalline electric 

field as a magnetic field transversal to the real magnetic field 

H. However, this idea will not be pursued. 

Solving (B.1) we now easily get the energies 

E, = - E Q = (<i) + E|)V2 

and the perturbed states 

A 
1 + Ei Ez 

|0> = |0>c - — | 1>c 

Ez 2 + Ei 
|1>= — |0>c + |1>c , 

where 

1 
EZ 5 - yo * ss9 ' yB ' Hz 

is the Zeemann-only energy, and the denominator 

N = (2 • E1 • e| + E1))1/2 . 

[Some authors prefer the rather elegant parametrisation 

|0> = cos* |0>c - sin4> 11 >c 

11> = sin* |0>c + cos<j> |1C> , 
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where 

tan 2* = . i 
V 2 

Now we introduce the temperature T. The partition function is 

El 
Z = 2 cosh — 

kT 

and the induced moment at thermal equilibrium is 

-En/kT 

<u> = 1 <-' - 9jUBJzln> •-
n=0,1 Z 

El 
= t a n h — • <0i gjUBJz|0> 

El 1 E 2 

<u> = tanh — • — ssg • WQ • — , (B.6) 
single lcT 2 E^ 
ion 

where the magnetic field enters through E2 and Ei. The zero 

field polarizability of the singlet-singlet ion then is 

2 A/2 

U^WR) tanh zzr 
o = i. s s B kT 

4 A/2 

SSXT = UQ 

In the limit A + 0 or T * •, this expression gives the usual 

Curie law 

XT " pO 4kT 

while the limit T • 0 or i • • gives 

o „ , '<1'c : '°>c'2 

ssxo " 2 uo « 
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describing temperature-independent Van Vleck paramagnetism. 

B.2. Susceptibility 

We next include the interactions between the spins and treat them 

in the mean-field approximation. A homogenous magnetization < u> 

leads to a molecular field (s/4*) • <u>, where the molecular 

field parameter is given here for dipolar interactions, in terms 

of the lattice sum defined in (3.13) or (3.18). Hence 

o s 

<w> = S S X T ( H • — • <u>) ; 
4ir 

with the result 

ss*T _ Q s 

(SS9V
2 1 V2 kB9 "1 

XT = u (coth — ) , (B.7) 
1 ° 4 A/2 kT V 2 

Here, 

Q 1 (ss^V* s 
ke 4 4ir 

is the Curie-Weiss temperature as defined in (3.12) or (3.19) 

for the case A * o. Inserting A = 0, the familiar Curie-Weiss 

law is retrieved. 

From (B.7) the transition point TQ is determined as the tempera­

ture giving infinite susceptibility, 

A/2 *Be 
coth * . (B.8) 

kTr A/2 
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?Q is depressed below the value 9 by a factor which depends 

critically on the ratio kB3/(V2) (
see Fi9« B.2). Tc goes to 

zero as ICBV(&/2) approaches one, and for smaller values the 

system never orders. 

0 

1.0 

0.8 

0.6 

(U 

0.2 

nn 

1 i - r i 

//M/(TSSgMB) 

-

1 1 1 

1 ' • ' 

Singlet - Singlet 
Magnet 

-

-

i 

A/2 

8 

Fig. B.2. As calculated in the mean field approxi­

mation, the figure shows the reduced transition point, 

Tc/9 and reduced zero-temperature magnetic moment, 

u(T=0)/(1/2 ssgv»B)/ versus the ratio between the 

cooperative and crystal field energies, k9/(A/2). 
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B.3. Spontaneous magnetization 

The spontaneous magnetization curve is derived by a self-con­

sistent reasoning well-known from the case of degenerate states. 

That is, an assumed spontaneous magnetic moment <y>
Spont 9ives 

rise to a molecular field (s/4») • <u>Spont
 w n i ° n i-n turn must 

stabilize the assumed moment in accordance with the magnetiza­

tion curve given in (B.6), i.e., 

<il>spont<T> = <y>single <H = j ; ' <w>spont» T> > <B-*) 
ion 

Introducing the molecular field in B.6 and defining the scaled 

magnetization 

1 
ii« = <^>/(- ss9uB) ' 

we can cast (B.9) in the form 

, V 2 2 1/2 
u • • ( (M» , 2 + ( j , 

k3 (B.10) 

9 V2
 2 V 2 

= u' • tanh ((— • (u 1) 2 + ( ) ) ) 
T k9 

The zero-temperature magnetization is reduced below the value 

for a true doublet: 

1 A/2 2 1/2 
<^>spont (T-o) = - s s g n B ' (1 - (—) ) , (B.11) 

and zero if k8/(A/2) is less than one (see Fig. B.2). 

For T \ TQ, the transition temperature given in (B.8) above, 

only <w> = 0 solves Eq. (B.10). Below Tc the stable solution 

v' * 0 to (B.10) gives the spontaneous magnetization curve. The 
solution can be found either graphically (Ref. B.1 ) or simply by 

choosing P' and solving for T. Doing so, one arrives at the 
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i 1 1 r 1 1 r 

0.0 

Singlet-Singlet -j 
Magnet 

0.2 OX 0.6 0.8 
T/6 

1.0 

Fig. B.3. Spontaneous magnetization for singlet-

singlet magnet. The reduced magnetic moment, 

<u>/(1/2 ssgv»B), as calculated in mean field theory, 

is plotted versus the reduced temperature T/o for 

8/(A/2) = •», 10, i, 3, 2, 1.5, 1.2, 1.1, 1.05 and 

1.01. 
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magnetization curves shown in Fig. B.3. For k9/(A/2) > 5, say, 

the effect of the ground level splitting is seen to be very 

small. 
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