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a b s t r a c t

Tethered satellite formations have recently gained increasing attention due to future

mission proposals. Several different formations have been investigated for their

dynamic properties and control schemes have been suggested. Formulating the

equations of motion and investigation which geometries could form stable formations

in space are cumbersome when done at a case to case basis, and a common framework

providing a basic model of the dynamics of tethered satellite formations can therefore

be advantageous. This paper suggests the use of graph theoretical quantities to describe

a tethered satellite formation and proposes a method to deduce the equations of motion

for the attitude dynamics of the formation in a compact form. The use of graph theory

and Lagrange mechanics together allows a broad class of formations to be described

using the same framework. A method is stated for finding stationary configurations and

an upper limit of their number is determined. The method is shown to be valid for

general tethered satellite formations that form a tree structure.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Tethered satellite formations have been proposed in
several contexts, especially in relation to remote sensing
and space stations [1]. Several potential applications have
been investigated in the literature. An elevator system for
a space station using tethers was investigated in [2] and
space elevators connecting Earth and space were sug-
gested in [3]. Tether systems were proposed as atmo-
spheric probes in [4], for interferometer missions [5], for
space webs [6], and tethers are being considered for solar
sail electric propulsion [7]. The dynamic properties and
analysis of stability are essential for these applications.

Chain structures were studied by [8,9], ring structures
were investigated by [10], hub-and-spoke structures by
[11,12]. Anchored structures, also refereed to as double
pyramid formations, were analysed in [13,11]. Ref. [11]
suggested formations referred to as hub-and-spoke,
which consist of a main satellite and a number of sub-
satellites tethered to the main one. Closed-hub-and-
spoke, where the sub-satellites are connected to each
other, was also studied. The fact that not all topologies
are stable was illustrated by the finding in [11] that
interconnecting the sub-satellites in the hub-and-spoke
structure turned out unstable and an anchor satellite
was needed to obtain a stable topology. Significant effort
have hence been given the study of specific structures,
and a more generalized framework could be advanta-
geous taking the number of proposed structures into
account.

The chain structure is the kind of formation that has
received the greatest attention. Chain topologies with a
small number of satellites, three or four, were studied in
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[14,15], and [8,9] extended the analysis to general N-body
chains. The simplest case of a chain topology is the one
with two tethered satellites. The research on this problem
is very mature and it is not in the scope of this article to
give an overview of this field. For N-body chain structures,
the equations of motion were deduced in [8] for in-plane
and out-of-plane dynamics, and a simple relation was
found between the natural frequency of in-plane and out-
of-plane motions. The model was expanded in [16] to
consider a varying tether length, flexibility of the tether
and a non-circular orbit. The stationary configurations
situated in the orbit plane of an N-body chain were
found in [9] through an investigation of the stationary
points of the potential energy and an upper limit on total
number of stationary points was determined. The inves-
tigation was further expanded in [17] to also include the
out-of-plane dimension of the configuration space.
Another approach to determine stationary configurations
of satellite formations was made in [18] where the
equations of a stationary configuration were deduced
assuming that two satellites of the formation could affect
each other by a radial force. The general results on
modeling of N-body TSS chains and assessment of which
topologies would be stable, are essential for mission
studies. Similar results are therefore needed for more
general topologies.

This work considers tethered satellite formations
forming a tree structure, i.e. a structure without cycles.
Generic modeling, which is cumbersome with present
methods, is made significantly simpler by employing
graph theoretical quantities to describe tether formation
and combine these with the Lagrange formalism to for-
mulate generic equations of motion. This is shown to lead
to a dynamic model where topology is parametrized
through a path matrix that describes the topology. The
equations of motion are deduced for a formation with
constant-length tethers using the path matrix as para-
meter. The dynamics is derived for motion in the orbit
plane as well as generally for motion in three dimensions.
The dynamic equations for an N-body formation are well
known for chain structures [8] and the contribution of
this work is the generalization to tree structures, which is
obtain by parameterizing the dynamics through the
topology graph. This paper also includes a method to
determine the stationary configurations of N-body trees
in the orbit plane. The stationary configurations have
previously been investigated for chain structures [9], but
the generalization to tree structures is a novel contribu-
tion of the present paper.

The outline of the remaining part of the article is as
follows. Means for a topology description of the tethered
satellite formation are introduced in Section 2. Section 3
treats the derivation of the equations of motion for the
motion in the orbit plane. Stationary configurations in the
orbit plane are dealt with in Section 4 where a method for
finding all such configurations is stated and the config-
urations are classified according to the number of vertical
tethers in a configuration. Section 5 uses a Y-formation
with four tethers to exemplify the investigation of
stationary configurations. Section 6 offers conclusions of
the work.

2. Formation topology description

Consider a tethered satellite formation consisting of
massless tethers connecting satellites in a tree structure.
The limitation to a tree structure is introduced to simplify
the equations of motion by avoiding algebraic constraints
associated with cycles within a formation. In a tree
structure with nþ1 satellites there are n tethers, with
each tether connecting two satellites. Each satellite is
modeled as a point mass mi for i¼ 0, . . . ,n and tethers are
modeled as rigid rods of constant length lj for j¼ 1, . . . ,n.
The total mass of the system is denoted m¼

Pn
i ¼ 0 mi and

the relative mass of each satellite is mi ¼mi=m for
i¼ 0, . . . ,n. The relative masses and the length of the rods
are collected in the diagonal matrices K 2 Rðnþ1Þ�ðnþ1Þ,
K¼ diagðm0,m1, . . . ,mnÞ, and L 2 Rn�n, L¼ diagðl1,l2, . . . ,lnÞ.
The formation is described by a connected, directed graph
representing masses as nodes and rods as edges. The
notation mi and lj is reused to denote the nodes and the
edges of the graph. The graph forms a rooted tree where
the node m0 represents the root. The root of the tree can
be chosen arbitrarily. It is assumed, without loss of
generality that each edge is directed away from the root
and that the edge lk is connected to and directed towards
mk. The formation topology can then be described by the
incidence matrix B 2 Rðnþ1Þ�n where each row represents
a node and each column an edge. The incidence matrix B
with elements Bij is defined as

Bij ¼

1 if lj is connected to and pointing

away from mi,

�1 if lj is connected to and pointing

towards mi,

0 if lj is not connected to mi:

8>>>>>><>>>>>>:
ð1Þ

With the assumption of a tree structure, the incidence
matrix B has full rank and by removing one row from B a
square matrix of full rank is formed. This square matrix is
called the basic incidence matrix or the reduced incidence
matrix with respect to the node corresponding to the
removed row. The basic incidence matrix A 2 Rn�n

describes the structure with respect to the root that is
the sub-matrix of B which excludes the first row. The path
from a node mi to the root is unique and can be described
as a column of the path matrix P 2 Rn�n. The ith column
represents the directed path from mi to m0 such that,

Pji ¼

1 if lj is in the path from mi to m0

directed towards m0,

�1 if lj is in the path from mi to m0

directed towards mi,

0 if lj is not in the path from mi to m0:

8>>>>>><>>>>>>:
ð2Þ

All non-zero elements of P are negative due to the
definition of the direction of the edges. The basic inci-
dence matrix and the path matrix are related as each
others inverse

P ¼ A�1, ð3Þ

according to [19, Theorem 2.10, pp. 55–56].
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Some sets connected to the graph are introduced in
the following. These sets are used in connection with the
determination of the stationary configuration of the
formation. The set Tj comprise the nodes in a sub-tree
rooted at mj. The sub-tree occurs when the graph is
divided into two disjoint connected graphs by removing
the edge lj. After introducing Tj, the path matrix can be
written as

Pji ¼
�1 for i2Tj,

0 for i=2Tj:

(
ð4Þ

Definition (2) is valid for a tree structure with arbitrary
directed edges, while (4) is only valid assuming edges are
directed away from the root.

The set J includes an arbitrary combination of edges.
The set can be decomposed into sets Jk for k¼ 1, . . . ,‘ each
describing a connected structure. It is assumed that the
elements of the set Jk are not connected to elements in Jp

for kap, this means the decomposition is minimal in the
sense that ‘ is as small as possible. The complement of the
set J is denoted J and the cardinality of these sets are
denoted jJj and jJ j, respectively. The set of neighboring
edges of lj is denoted Nj, meaning that the edge lk is
included in Nj if one of the two nodes incident with lj is
also incident with lk. The notation NJ ¼ ð

S
i2JNiÞ\J is used

for the neighboring edges of J. The notation is illustrated
by an example in Appendix A.

3. Equations of motion

The equations of the attitude motion of the satellite
formation are derived in this section. The derivation
follows the derivation in [8], but takes the general tree
structure into account. To describe the attitude motion of
the formation the orbit frame is introduced. The frame is
centered at the center of mass (CM) of the formation and
has the x-axis along the position vector from the Earth to
the CM and the z-axis perpendicular to the orbit plane.
The masses of the formation are described by a position
vector ri ¼ ½xi yi zi�

T for i¼ 0, . . . ,n and a vector along
the positive direction of each rod is introduced as
qj ¼ ½xj Zj zj�

T for j¼ 1, . . . ,n (see Fig. 1). Using the path
matrix, the position of mi for i¼ 1 . . .n can be found
relative to m0. To be able to describe the position of all
masses, including m0, by a single expression, the path

matrix is expanded to ~P 2 Rn�ðnþ1Þ such that ~P ¼ ½0n P�.
The additional column of zeros 0n 2 R

n can be interpreted
as representing the path from the root node to itself. This
path does not contain any edges. Using ~P the position
vector of each mass can be written as a sum along the
path to the mass

ri ¼ r0�
Xn

j ¼ 1

~Pjðiþ1Þqj for i¼ 0, . . . ,n: ð5Þ

The sign of the sum originates from the fact that the
vectors qj are pointing away from the root, while the
paths are directed towards the root. Since the frame is
centered at the CM, the position vectors obey the relationP

imiri ¼ 0, which combined with (5) leads to the position
vector of m0

r0 ¼
Xn

j ¼ 1

qj

Xn

k ¼ 1

~Pjðkþ1Þmk: ð6Þ

Substituting (5) back into (6) the position vectors of the
masses in the formation are

ri ¼�
Xn

j ¼ 1

~Pjðiþ1Þ�
Xn

k ¼ 1

~Pjðkþ1Þmk

 !
qj

¼
Xn

j ¼ 1

Xn

k ¼ 1

~Pjðkþ1Þðmk�dikÞ

 !
qj, ð7Þ

where dik is Kronecker’s delta. Eq. (7) gives the relation
between the position of mi and the directions of the rods
lj. By collecting xi in a vector x 2 Rnþ1 and xj in a vector
n 2 Rn defined as

x¼ ½x0 x1 . . . xn�
T , ð8Þ

n¼ ½x1 x2 . . . xn�
T , ð9Þ

the relation of the x-component of (7) can be written in
the compact form

x¼CPTn: ð10Þ

The components of the matrix C 2 Rðnþ1Þ�n are given as

Gik ¼ mk�diðkþ1Þ: ð11Þ

Introducing y,z 2 Rnþ1 similar to x and g,f 2 Rn similar to
n, the relations can be expanded to the position along the
y- and z-axis as

y¼CPTg, ð12aÞ

z¼CPTf: ð12bÞ

Note that the original path matrix P is used in this
relation, not the expanded version ~P .

In the following, the equations of motion are derived
under the assumption of constant length rods and a CM
following a circular orbit with orbital rate o. For simpli-
city, we first restrict the derivation of the dynamics of this
formation to the motion in the orbit plane. The derivation
for the general three dimensional motion is included in
Appendix B. Due to the assumption of a circular orbit, o is
constant, and the true anomaly n¼ot is introduced as the
time variable for the system. The in-plane angles yj are
chosen as generalized coordinates and are collected in the
vector h¼ ½y1, . . . ,yn�

T . The in-plane angle yj is defined

+CM

m0

m1

m2

m3

m4

r0

4

x

y

�3

�3

�4 �2

�1

�

�1

�2

Fig. 1. A tethered satellite formation in the orbit plane.
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with respect to axes parallel with the orbit frame centered
at the initial node of lj, as seen in Fig. 1. The vectors along
the rods are then

qj ¼
ljcosyj

ljsinyj

" #
: ð13Þ

The velocity of each mass in the inertial frame can be
written as V i ¼VCMþvi for i¼ 0, . . . ,n, where VCM is the
velocity of the CM and vi is the velocity of mi relative to
the CM. The relative velocity is

vi ¼
o _xi�oyi

o _yiþoxi

" #
, ð14Þ

where (d) denotes the first derivative with respect to n
relative to the orbit frame. The total kinetic energy of the
formation can be written as

T ¼ m

2
jVCMj

2þ
Xn

i ¼ 0

miVCM � viþ
1

2

Xn

i ¼ 0

mijvij
2: ð15Þ

Only the last term of (15) contributes to the equations of
motion, since the first term is constant and the second
term vanishes in Lagrange’s equation. With an assump-
tion that the length of each rod lj is much smaller than the
orbit radius, the potential energy of the system can be
approximated by

V ¼ VCMþ
o2

2

Xn

i ¼ 0

miðjrij
2�3x2

i Þ, ð16Þ

where VCM is the constant orbital energy of the circular
orbit, which will not contribute to the attitude motion.
From the energy functions the equations of motion can be
found using Lagrange’s equation

d

dn
@T
@ _yj

�
@T
@yj
þ
@V
@yj
¼ 0, j¼ 1, . . . ,n: ð17Þ

Inserting (15) and (16) in (17) results in the equations of
motion

M €hþG¼ 0, ð18Þ

where

M¼ EsinyLGLEsinyþEcosyLGLEcosy, ð19aÞ

G¼ ðEsinyLGLEcosy�EcosyLGLEsinyÞð2IþE _y Þ
_y

þ3EsinyLGLEcosy1n: ð19bÞ

The matrices Ecosy 2 R
n�n and Esiny 2 R

n�n are diagonal
matrices with cosyj and sinyj, respectively, at the jth
diagonal entry. Similarly E _y 2 R

n�n is diagonal with _yj at
the jth diagonal entry. All elements of the vector 1n 2 R

n

equal 1. All parameters of the model are then collected in
a single matrix LGL where

G¼ PCTKCPT : ð20Þ

Here G 2 Rn�n is referred to as the mass matrix of the
system. The mass matrix will be investigated further in
the next section, in connection with determination of
stationary configurations of the system.

4. Stationary configuration in the orbit plane

In this section, the stationary configurations of the
system are investigated. We restrict the investigation
to the stationary configuration in the orbit plane. The
in-plane stationary configuration can be treated sepa-
rately, since the motion in the orbit plane is restricted
to an invariant manifold in state space (see Appendix B). It
should, however, be emphasized that stationary config-
urations exist, which are not situated in the orbit plane. In
[17] these general stationary configurations have been
investigated for a chain structure. The present investiga-
tion follows the same steps as [9] and is based on the
same properties but are extended to the present case of a
tree structure, making use of the graph-based parameter-
isation of the topology.

4.1. Properties of mass matrix

For the analysis of the stationary configuration the
mass matrix G is of significant importance. We therefore
start this section by stating some properties regarding G,
which will be used when finding and analyzing the
stationary configuration of the formation. Proofs of the
properties of this section can be found in Appendix C.
From (20) the matrix W 2 Rn�n is defined as W ¼CTKC

such that the mass matrix can be written as

G¼ PWPT : ð21Þ

From the definition of C in (11) the elements of W can be
found as

Wik ¼ midik�mimk: ð22Þ

The matrix W is clearly symmetric and obeys the follow-
ing property.

Property 1. The matrix W is positive definite and the

elements of the inverse matrix are given as,

W�1
ki ¼

1

m0

þ
dki

mi

: ð23Þ

Property 1 serves mainly to prove the statements regard-
ing G in the next property.

Property 2. The mass matrix G is symmetric and positive

definite. The elements of its inverse satisfies the property that

G�1
jk ¼ 0 for k=2Nj4jak.

The last point in Property 2 states that the transformation
of G into an identity matrix can be made by linear
combinations consisting only of columns corresponding
to neighboring edges. This point is similar to Property 1 in
[9]. The assumption k=2Nj is equivalent to j=2Nk, which
must be the case since G is symmetric.

The elements of G can be formulated by means of the
sub-trees Tj of the graph introduced in Section 2. This
formulation is useful when proving Property 3 and it will
be treated further in the proof of that property. First the
sum Mjk is introduced as

Mjk ¼
X

i2Tj\Tk

mi: ð24Þ
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The definition is based on the nodes of two arbitrary sub-
trees in the graph, Tj and Tk. The sum is taken over the
intersection of the two trees, hence for Mjk to be different
from zero Tj must be a sub-tree in Tk or vice versa. Using
Mjk the elements for G can be written as

Gjk ¼Mjk�MjjMkk: ð25Þ

Note that Mjj sums the nodes in the sub-tree Tj and is
therefore always different from zero.

When solving the equation leading to the stationary
configuration a reduced version of the mass matrix will
occur. From an arbitrary set of rods J with complement J

the reduced mass matrix bG 2 RjJ j�jJ j is defined by remov-
ing the rows and columns corresponding to rods in the set
J. We connect a reduced graph with the set J. The graph
occurs when the edges in the set J are removed from the
graph as shown in Fig. 2. The reduction is done based on
the decomposition of J¼

S
kJk introduced in Section 2.

Each component Jk forms a tree. The tree Jk can be
assumed rooted at a node mi if all edges j 2 Jk are included
in sub-tree Ti. The mass mi is denoted the root of Jk. The
sub-tree Ti can be decomposed into Jk and a number of
sub-trees. When the tree Jk is removed from the graph,
these sub-trees are connected to the root of Jk. The
following property, which is illustrated in Fig. 2, shows
a relation between the graph reduced by the set J and the
reduced matrix bG .

Property 3. Consider a graph reduced by the set J¼
S

kJk

and the roots mi of Jk. Assume that the nodes mi are assigned

the sum of the nodes in the sub-trees Jk, while the remaining

nodes stay unchanged. Then the mass matrix of the reduced

graph will equal the reduced mass matrix bG of the original

graph.

The important point regarding Property 3 is that bG is the
mass matrix for a different graph, hence the statement in
Property 2 also applies to bG . When working with the
reduced graph we keep referring to the rods according to
the original graph. This also applies when referring to
rows, columns, and elements of the corresponding
matrices and vectors.

The next property addresses the similarity betweenbG�1
and G�1.

Property 4. Assume that j,k 2 J such that the element bG�1

jk

exists, then

bG�1

jk ¼ G�1
jk for j,k=2NJ : ð26Þ

This property states that the common elements of a row

of bG�1
representing an edge with no neighbors in J is

unchanged compared to G�1, hence the reduction only
introduces a local change in the inverse mass matrix.
Furthermore, using Property 2 it can be seen that the

elements excluded from the row compared to G�1 in this

case equal zero. Note that bG�1
is symmetric, hence the

property could just as well be explained with respect to
columns.

4.2. Equation of stationary configuration

From the equations of motion (18) a stationary con-
figuration h� in the orbit plane is found as a solution to the
equation

E�sinyGn� ¼ 0n, ð27Þ

where n� ¼ ½l1 cosy�1, . . . ,ln cosy�n�
T and E�siny denotes Esiny

evaluated at h¼ h�. The first thing to note about (27) is
that the stationary configurations are symmetric in the
sense that if h� is a stationary configuration so is
h
�
¼ p1n�h�. In a stationary configuration a rod is char-

acterized as horizontal if cosy�k ¼ 0. If siny�k ¼ 0 the rod is
vertical. Eq. (27) is in general solved by choosing a set J

containing vertical rods, hence siny�j ¼ 0 for j 2 J. Denoting
the rows of G as Gj for j¼ 1, . . . ,n, the matrix Eq. (27) can
be divided into n coupled scalar equations

siny�j GT
j n
�
¼ 0 for j¼ 1, . . . ,n: ð28Þ

From (28) it is seen that for each vertical rod one of the n

equations is solved, hence introducing J leaves jJ j equa-
tions to be solved.

Two choices of J stand out from the general solution
procedure. First J¼ | where no rods are situated in a
vertical position. In this case (27) reduces to

Gn� ¼ 0n: ð29Þ

Due to Property 2 the equation has a unique solution
n� ¼ 0n corresponding to rods situated in a horizontal
position. Each rod can have two different orientations in a
horizontal position (corresponding to symmetric config-
urations), hence there are 2n different configurations for
n� ¼ 0n. The second special case is J ¼ |, i.e. all rods are in
a vertical position. In this case, all n equations in (28) are
solved immediately. A rod in a vertical position has two
different orientations, which again leads to 2n configura-
tions. The existence of the 2nþ1 configurations in the two
special cases are independent of the parameters of the
system. These stationary configurations are similar to the
four stationary configurations induced by the gravity
gradient for a single rod in orbit.

m0

m1

m2

m3

m4

m5 m6

m7

m8 m9

l1

l2

l3

l4

l5 l6

l7

l8 l9

m0

m1,2,4,5

m3 m6

m7,8

m9

l1

l3 l6

l7

l9

Fig. 2. Graph and its by J¼{2, 4, 5, 8} reduced counterpart: (a) original

graph and (b) reduced graph.
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In the remaining cases where Ja| and Ja| Eq. (27) can
be written as

bGn̂
�

¼�
X
k2J

ĝkx
�

k, ð30Þ

where n̂
�

equals n� reduced by the set J. The vector ĝk is
the kth column of G reduced by the elements in J. Note
that ĝk does not equal the kth column of the reduced
mass matrix bG since k 2 J. Eq. (30) gives the relation
between the rods fixed in a vertical position x�k for k 2 J

and the orientation of the remaining rods are collected in
n̂
�

. The vertical orientation implies that x�k ¼ 7 lk for k 2 J,
hence (30) actually includes 2jJj equations taking all sign
combinations into account. According to Property 3 the
matrix bG has full rank, and the solution of (30) is unique
for each right-hand side. The existence of each configura-
tion can be investigated from the vector r̂ 2 RjJ j,

r̂ ¼�bL�1bG�1X
k2J

ĝkx
�

k, ð31Þ

where bL is a reduced version of L. The elements of r̂ equal
ŝj ¼ cosy�j for j 2 J . Hence the stationary configuration
exists if the absolute value of all elements of r̂ are less
than one, jŝjjo1 for j 2 J . Note that the case jŝjj ¼ 1 is not
included, since this would contradict the assumption that
j 2 J .

The similarity between G�1 and bG�1
stated in Property

4 can be used together with the knowledge of the zero
elements of G�1 from Property 2 to conclude that,

ðbG�1

j Þ
T ĝk ¼ 0 for k 2 J, j=2NJ , ð32Þ

where bG�1

j denotes the jth column of bG�1
. From (31) it is

seen that this implies that ŝj ¼ 0 if j=2NJ . The geometrical
interpretation of this property is that, in a stationary
configuration, only the neighbors of a vertical rod will
be affected, while all others will remain horizontal. Hence
it can be concluded that the stationary configuration
consists of groups of either horizontal or vertical rods,
which are separated by no more than one inclined rod.
This was also concluded in [9] for a chain structure. The
vertical groups are orthogonal to the horizontal groups
and therefore no forces can be transferred along the
inclined rods, in stationary configurations. This further-
more shows that all horizontal groups are placed along
the y-axis where the centrifugal force cancels the gravita-
tional force. A detailed stability analysis of the configura-
tions is not in the scope of this article, but the above
description indicates that all formation with one or more
horizontal groups will be unstable, since the masses of
these groups will balance at the unstable equilibrium
between the centrifugal and the gravitational force.

Since both G and bG have full rank, the described
method will result in all possible stationary configura-
tions of the system. The total number of possible
stationary configurations can be found by realizing that
the set J can be chosen in 2n different ways. Each rod have
two possible orientations, hence there are 2jJj2jJ j ¼ 2n

possible orientations for each choice of J. This leads to a
total number of possible configurations of 22n. This limit is
the same as was obtained for a chain structure in [9].

5. Example

This example will consider five satellites and four
tethers in a Y-formation as illustrated in Fig. 3. The nodes
m0 and m2 are marked to better illustrate the formation.
This is also done in the Figs. 4–6. The incidence matrix of
the Y-formation is given as

B¼

1 0 0 0

�1 1 0 0

0 �1 1 1

0 0 �1 0

0 0 0 �1

26666664

37777775: ð33Þ

Using this incidence matrix and (21) the mass matrix is

G¼

m0ð1�m0Þ m0m2,3,4 m0m3 m0m4

m0m2,3,4 ð1�m0�m1Þm2,3,4 ð1�m0�m1Þm3 ð1�m0�m1Þm4

m0m3 ð1�m0�m1Þm3 ð1�m3Þm3 �m3m4

m0m4 ð1�m0�m1Þm4 �m3m4 ð1�m4Þm4

266664
377775,

ð34Þ

m0

m1

m2

m3 m4

x

y

Fig. 3. Y-formation.

Fig. 4. Y-formations with jJj ¼ 0 or jJj ¼ 1: (a) J¼ |, (b) J¼{1}, (c) J¼{2},

and (d) J¼{3}, {4}.
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where m2,3,4 ¼ m2þm3þm4. The inverse is given as

G�1
¼

m0þm1
m0m1

� 1
m1

0 0

� 1
m1

m1þm2
m1m2

� 1
m2

� 1
m2

0 � 1
m2

m2þm3
m2m3

1
m2

0 � 1
m2

1
m2

m2þm4
m2m4

26666664

37777775: ð35Þ

According to the previous section, the total number of
possible stationary configurations is 256 for this example.
The qualitatively different configurations are illustrated in
Figs. 4–6. The configurations are found by fixing the
masses uniformly and adjusting the length of the rods
to illustrate the formation best possible and ensure that a
stationary configuration actually exists. It is emphasized
that the figures only exemplify configurations, since for
each choice of J, there exist 16 configurations divided
into 8 symmetric pairs. The formations illustrate that a
horizontal rod only affects its neighboring rods, while the
remaining rods will maintain their vertical orientation. It
is also seen that masses not connected to a rod in the set J

are placed along the y-axis. Examining the configurations
it is seen that rods that are neither vertical nor horizontal,
and are connected to a group at both ends, separating two
groups of either horizontal or vertical rods. Such rods
cannot affect either of the groups with forces, since the
configuration is stationary.

6. Conclusions

With the aim of easing the task of modeling dynamics
of tethered satellite formations, and determine stationary
configurations, this paper combined graph theory with
Lagrange formalism to obtain a generic framework for
modeling. Imposing an assumption of a tree structure on
the formation, enabled the path between the satellites,
along the tethers, to be unique. Furthermore it allowed
the paths from sub-satellites to a main satellite to be
described by a single matrix quantity. A generic method
for modeling was obtained by using this path matrix
together with Lagrange formalism and the equations of
motion were derived for both the in-plane motion and for
the general three dimensional case. Constant-length rigid
tethers and a circular orbit were assumed for the forma-
tion. The assumption of a tree structure simplified the
equations, since the absence of algebraic constraints
around cycles in the formation resulted in a formulation
where each tether represents a single degree of freedom.
A particular feature of the methodology was that the
equations of motion were given in a matrix formulation,
with the desirable property that all physical parameters,
as well as the formation description, were captured
by a single matrix. Furthermore, a method of finding
the stationary configurations in the orbit plane was
suggested, using the generic equations of motion. These
configurations were classified based on the numbers of
rods situated in a vertical equilibrium position and the
upper limit of stationary configurations was determined
to be the same as that of a chain structure. The method
could be expanded to take stationary configurations
into account that were not situated in the orbit plane.
This would complicate the method and an upper limit
would need be established for this case. The main advan-
tage of the modeling based on graph theory presented
in this article is that a broad class of formation
can be treated collectively, and that both dynamic and
stationary properties can be dealt with through this
formalism.

Fig. 5. Y-formations with jJj ¼ 2: (a) J¼{1, 2}, (b) J¼{1, 3}, {1, 4}, (c)

J¼{2, 3}, {2, 4}, and (d) J¼{3, 4}.

Fig. 6. Y-formations with jJj ¼ 3 or jJj ¼ 4: (a) J¼{1, 2, 3}, {1, 2, 4},

(b) J¼{1, 3, 4}, (c) J¼{2, 3, 4}, and (d) J¼{1, 2, 3, 4}.
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Appendix A. Example of notation

This appendix contain a short example of the notation
used in connection with the description of the satellites
formation. The formation with ten satellites and nine
tethers shown in Fig. A.1 is used to illustrate notation.
The corresponding incidence matrix and path matrix are

B¼

1 0 0 0 0 0 1 0 0

�1 1 0 1 0 0 0 0 0

0 �1 1 0 0 0 0 0 0

0 0 �1 0 0 0 0 0 0

0 0 0 �1 1 1 0 0 0

0 0 0 0 �1 0 0 0 0

0 0 0 0 0 �1 0 0 0

0 0 0 0 0 0 �1 1 1

0 0 0 0 0 0 0 �1 0

0 0 0 0 0 0 0 0 �1

26666666666666666664

37777777777777777775

,

ðA:1Þ

P ¼

�1 �1 �1 �1 �1 �1 0 0 0

0 �1 �1 0 0 0 0 0 0

0 0 �1 0 0 0 0 0 0

0 0 0 �1 �1 �1 0 0 0

0 0 0 0 �1 0 0 0 0

0 0 0 0 0 �1 0 0 0

0 0 0 0 0 0 �1 �1 �1

0 0 0 0 0 0 0 �1 0

0 0 0 0 0 0 0 0 �1

266666666666666664

377777777777777775
:

ðA:2Þ

Some of the sets introduced are listed in Table A.1 for the
graph of the example in Fig. A.1.

Appendix B. Equations of motion in three dimensions

A two degree of freedom model taking both in-plane
and out-of-plane motion into account is deduced in this
appendix. The procedure is identical to the one used for
the in-plane motion in Section 3, but the derivation
becomes more cumbersome due to the additional states
and the interaction between in-plane and out-of-plane
motions. Denoting the out-of-plane angle j, the vectors
along the rods can be written as

qj ¼

ljcosyjcosjj

ljsinyjcosjj

ljsinjj

2664
3775: ðB:1Þ

The relative velocity of the mass mi is expanded with an
out-of-plane component, compared to (14)

vi ¼

o _xi�oyi

o _yiþoxi

o_zi

264
375: ðB:2Þ

The kinetic and the potential energies are unchanged
compared to (15) and (16). Inserting the energies includ-
ing the out-of-plane motion into Lagrange’s equation, the
system can be written as

M11 M12

MT
12 M22

" #
€h

€u

" #
þ
G1

G2

" #
¼ 0, ðB:3Þ

where the matrices can be found to be

M11 ¼ EsinyEcosj ~GEsinyEcosjþEcosyEcosj ~GEcosyEcosj, ðB:4aÞ

M22 ¼ EcosyEsinj
~GEcosyEsinjþEcosj ~GEcosj,

þEsinyEsinj
~GEsinyEsinj ðB:4bÞ

M12 ¼ EsinyEcosj ~GEcosyEsinj�EcosyEcosj ~GEsinyEsinj, ðB:4cÞ

G1 ¼ ðEsinyEcosj ~GEcosyEcosj�EcosyEcosj ~GEsinyEcosjÞ

�ðð2IþE _y Þ
_hþE _j _uÞ�2ðEsinyEcosj ~GEsinyEsinj

þEcosyEcosj ~GEcosyEsinjÞðIþE _y Þ
_u

þ3EsinyEcosj ~GEcosyEcosj1n, ðB:4dÞ

G2 ¼ ðEcosyEsinj
~GEcosyEcosjþEsinyEsinj

~GEsinyEcosjÞ

�ðð2IþE _y Þ
_hþE _j _uÞ�Ecosj ~GEsinjE _j _u

þ2ðEsinyEsinj
~GEcosyEsinj

�EcosyEsinj
~GEsinyEsinjÞðIþE _y Þ

_u

þ3EcosyEsinj
~GEcosyEcosj1nþEcosj ~GEsinj1n: ðB:4eÞ

The matrices Ecosj and Esinj are defined similarly to Ecosy and
Esiny, while E _j is defined in the same way as E _y . All
parameters are collected in the matrix ~G ¼ LGL, in the same
way as for the in-plane motion. The equations shows that
motion in the orbit plane does not give rise to a motion out of
the plane, hence the in-plane motion compose an invariant
manifold. By contrast, the opposite is not the case. An out-of-
plane motion will excite the in-plane dynamics.

m0

m1

m2

m3

m4

m5 m6

m7

m8 m9

l1

l2

l3

l4

l5 l6

l7

l8 l9

Fig. A.1. Graph of a rooted tree.

Table A.1
Definition of sets occurring in the graph in

Fig. A.1.

(a) sets regarding edges

Nj Tj

j¼1 {2, 4, 7} {1, 2, 3, 4, 5, 6}

j¼4 {1, 2, 5, 6} {4, 5, 6}

j¼9 {7, 8} {9}

(b) sets regarding the set J

NJ Jk

J¼{2, 4, 5, 8} {1, 3, 6, 7, 9} {2, 4, 5}, {8}

J¼{1, 7, 9} {2, 4, 8} {1, 7, 9}

J¼{3, 5, 6} {2, 4} {3}, {5, 6}
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Appendix C. Proof of properties

Proof of Property 1. To prove that W , Wik ¼ midik�mimk, is
positive definite, it is used that W is symmetric. The
Sylvester Criterion [20, 7.2.5, p. 404] states that a Hermi-
tian is positive definite if the determinant of all upper left
sub-matrices as well as the matrix itself are positive
definite. First W is rewritten in the matrix form

W ¼ ~K�llT , ðC:1Þ

where ~K 2 Rn�n is a diagonal matrix ~Lik ¼ midik and
l¼ ½m1 . . . mn�

T . The matrix determinant lemma can be
used to find the determinant of the sub-matrices. The
upper left square matrices can be found by truncating ~K
and l. The truncated versions containing ‘ elements are
denoted W‘ , ~K‘ 2 R

‘�‘ and l‘ 2 R
‘. The matrix determi-

nant lemma states that detðAþuvT Þ ¼ ð1þvT A�1uÞdet A,
which, applied to the sub-matrices, leads to

det W‘ ¼ ð1�l‘
~K
�1

‘ lT
‘ Þdet ~K‘ ¼ m0þ

Xn

j ¼ ‘þ1

mj

0@ 1AY‘
j ¼ 1

mj40:

ðC:2Þ

For ‘¼ n the determinant of W is

det W ¼
Yn

i ¼ 0

mi40, ðC:3Þ

which means that W is positive definite. The inverse of W
can be found from (C.1) using the Sherman–Morrison
formula [20, 0.7.4, pp. 18–19]

W�1
¼ ~K

�1
þ

1n1T
n

m0

: & ðC:4Þ

Proof of Property 2. Since P has full rank and W is
positive definite, it can be concluded, using [20, 7.1.6,
p. 399] that G¼ PWPT is symmetric and positive definite.
The last part of the property states that G�1

jk ¼ 0 for
k=2Nj4jak. This is proved using the fact that P�1

¼A,
hence G�1

¼ AT W�1A. The product is easily found since
each column of A has no more than two non-zero
elements. Denoting the initial nodes of lj and lk by mp

and mq, respectively, the inverse matrix can be written as

G�1
jk ¼

1

mj

djk�
1

mp

dpk�
1

mj

djqþ
1

mp

dpq, ðC:5Þ

assuming that mpam0 and mqam0. The first term repre-
sents the diagonal of G�1. The next terms include the
entries of upper and lower neighbors of lj in the path to
the root. The last term represents the situation where lj
and lk have a common upper neighbor. Hence only entries
representing neighbors of lj are different from zero in the
jth column of G�1. Similar calculations show that the
property is also valid in case mp¼m0 and/or mq¼m0. &

Proof of Property 3. First it is proved that Gjk ¼Mjk�

MjjMkk, using the fact that the jth row of P can be
expressed by means of the sub-tree Tj as in (4). By
insertion it is seen that the first part of the product

G¼ PWPT can be written

ðPWÞji ¼
Xn

k ¼ 1

PjkWki ¼�
X
k2Tj

mkdikþ
X
k2Tj

mkmi ¼�midijþmiMjj,

ðC:6Þ

where dij ¼ 1 if i 2 Tj, and zero otherwise. The elements of
G are then found,

Gjk ¼
Xn

i ¼ 1

ðPWÞjiPki ¼�Mjj

X
i2Tk

miþ
X
i2Tk

midij ¼Mij�MiiMjj,

ðC:7Þ

hence (25) is proved. The sum of the nodes in a sub-tree Tj

is not affected by the reduction, which together with (25)
proves the property. &

Proof of Property 4. Denote again the nodes incident to lj
by mj and mp, and assume that mpam0. The elements of
G�1 are given in (C.5), which is also valid for bG�1

using the
node values of the reduced graph. If G�1

jk ¼ 0 then k 2 Nj or
equivalently, j 2 Nk. This can only be changed by the
reduction if there exists an edge q 2 J such that q 2 Nj

and q 2 NJ . This implies that j 2 NJ and k 2 Nk, which is in
contradiction to the assumption, hence the property holds
for G�1

jk ¼ 0. The entry G�1
jk a0 if j¼k or k 2 Nj (equivalent

j 2 Nk). This neighboring relation cannot be changed by the
reduction since j,k=2J. The quantity G�1

jk only depends on mj

and mp, which will only change by the reduction if there
exists an edge q 2 J incident to mj or mp. This means that
q 2 Nj and consequently j 2 NJ , which is again in contra-
diction to the assumption. Hence the property is proved for
mpam0. A similar argument can be made for mp¼m0. &
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