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Abstract. Quantification of specific compounds in a food-matrix is a
very important factor for an overall quantification of the quality. Near
infrared (NIR) hyperspectral imaging is a powerful technique to quan-
tify specific constituents as well as its spatial distribution of the food-
matrix. Hyperspectral imaging is however very expensive. We propose a
way to design a simple measurement system consisting of a NIR sensi-
tive monochrome camera together with a small set of optical filters to
estimate and visualize a specific food compound without requiring a full
hyperspectral device. Based on a set of hyperspectral measurements of
beef and physical and chemical analysis of the fat within the beef, we
propose a method to design a set of ideal Band Pass Filters (BPF), as
small as possible while still maintaining predictability of fat content. The
results show that 2 filters is a suitable amount of filters for prediction.

Keywords: NIR hyperspectral imaging, Optical filter, Beef, Content

1 Introduction
Traditionally quality evaluation of food has been done using visual inspection,
chemical measurements or sensory testing. These methods are destructive, time-
consuming and/or subjective, which calls for other quantification methods. Re-
cently non-destructive methods for evaluation of food quality as well as visualiza-
tion of the spatial distribution of constituents, by using (NIR) hyperspectral in-
formation have emerged [1]. Although hyperspectral image data is very versatile
and contains much information, the measurement system is extremely expensive
to install in a food factory. As another approach based on hyperspectral data,
a method designing the optical transmission for the optical filter to modulate a

23



2

RGB camera’s spectral sensitivity and to highlight an object’s spectral features
is proposed [2][3].

We propose a simple measurement system consisting of a NIR monochrome
camera together with a small set of optical filters to estimate and visualize a
specific food compound without use of a hyperspectral device. We use the fat
content in raw beef as the target. Currently in Japan, the quality evaluation of
beef carcasses is performed manually by a grader. In this grading, only visual
inspection is used. Marbling, which is the amount and distribution of fat in the
meat is the most important factor. Based on a set of hyperspectral measurements
and physical and chemical analysis of fat within the beef, we propose a method
to design a set of optical Filters, which accurately is able to predict the amount
and distribution of this fat.

2 Materials and methods
2.1 Samples and measurements
A total of 126 meat samples consisting of various parts from three 25-month-old
Japanese black cattle were collected. After about 60 days of ageing at 0 − 5◦C,
the beef carcasses were kept at −25◦C to maintain the fat properties during
storage and transportation.

The fat content used for reference values was analyzed by physical and chem-
ical method. Automated Soxhlet extraction equipment (Soxtherm416, Gerhardt,
Germany) was used to obtain the fat percentage.

The hyperspectral measurements were performed by a NIR hyperspectral
imaging system consisting of a linear image sensor (Spectral Camera SWIR;
SPECIM Spectral Imaging Ltd, Finland), a linear slide table and halogen light
sources (MH-M15, 150 W; Hataya Ltd, Japan). The hyperspectral camera works
in the wavelength range of 970-2500 nm with a bandwidth of 6.3 nm at a resolu-
tion of 320 pixels (X-axis). We acquired samples at a resolution of 380µm/pixel
over a rectangular region of 120×130mm by moving the slide table. The exposure
time was 3.0 ms.

2.2 Calculation of filter transmission intensity
The MATLAB 7.5 (R2007b; The MathWorks Inc., Natick, MA, USA) software
package was used to analyze the hyperspectral image data. Optical filters were
designed as ideal (rectangle-shaped) BPF and an assumption was made that
a measurement using an optical filter consists of three images; a dark current
image (IDark), a white standard image (IWhite) and a sample image (ISample).
To remove the effects of dark current, spectral features produced by the light
source, and flat field inhomogeneities, we use IR as a model parameter calculated
from measured images or hyperspectral images by

IR =
ISample − IDark

IW hite − IDark

=

∫ λlong

λshort

ISample(λ) − IDark

IW hite(λ) − IDark

dλ

Where {IDark, IWhite(λ), ISample(λ)} is hyperspectral data, λshort and λlong

are the wavelength edges of the BPF. When calculating IR , the spectra {
ISample(λ), IWhite(λ) } were interpolated by cubic spline to 1,000 wavelength
points between λshort and λlong .
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2.3 Design of optical filter property
The filter properties were modeled by using the center wavelength (λc) and the
half-bandwidth (wh). We limited the minimum bandwidth of BPF to 50 nm,
because too narrow BPFs cannot obtain enough luminance, which will cause
reduction of the signal-to-noise ratio. The maximum bandwidth was limited to
1,000 nm, because very wide BPFs are hard to implement as a real optical fil-
ter. The wavelength range was also limited from 1,000 nm to 2,300 nm, because
shorter/longer wavelength ranges of hyperspectral data could not provide suf-
ficient intensity. With a spectral resolution of about 6.3 nm, meaning a total
number of wavelength-points of 206. Even if the edges of BPFs are limited to
these wavelength-points, every possible combination of n BPFs is ≃ 104n. There-
fore “brute-force search” is not suitable for more than 2 or 3 filters in terms of
searching time.

Multiple Linear Regression (MLR) was used to estimate parameters for linear
models using filter transmission intensities as variables. To create and evaluate
the estimation models, samples were divided into calibration and validation sets.
Calibration samples were selected randomly (Nc = 84) and remainder were used
as validation samples (Nv = 42). These sample sets were fixed to compare the
results of different feature selection method.

Filter feature selections were done using leave-one-out cross validation, to
minimize the root mean square error of cross-validation (RMSECV ) given by

RMSECV =

√∑
(yc − ỹc)2

Nc

where yc is the reference value, and ỹc is the predicted value of the calibration-
set in cross validation. Furthermore the standard error of calibration (SEC) ,
the root mean square error of calibration (RMSEc) and the standard error of
prediction (SEP ) were calculated as

SEC =

√∑
(yc − ŷc)2

Nc − n − 1
, RMSEc =

√∑
(yc − ŷc)2

Nc

, SEP =

√∑
(yv − ŷv)2

Nv

where ŷc is the predicted value of the calibration-set using the model, n is the
number of filters, yv is the reference value of the validation-set, and ŷv is the
predicted value of the validation-set using the model.

We compared the following three feature selection methods.

Stepwise random selection In this method one needs to define the number
of filters. A scoremap and a countmap is maintained for each filter which is used
for deciding the final properties for the corresponding filter:

1. Generate the {m, (m + 1), (m + 2), ..., n}-th filters randomly.
2. Calculate n filter outputs of each calibration sample.
3. Make a MLR model by using the calculated filter outputs and the corresponding

reference values of the calibration-set.
4. Calculate the RMSECV for the calibration-set.
5. Add the RMSECV value to the n points in the scoremap. Also add 1 to the n

points in the countmap.
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6. Repeat step 1 to 5 sufficiently many times.

The scoremaps and the countmaps are made for each m-th filter individually,
and have coordinate points corresponding to every filter feature (λc, wh).

7. Remove 0-count points both in the m-th countmap and the m-th scoremaps. Then
make a mean scoremap by dividing the m-th scoremap by the m-th countmap.

8. Choose a point that minimizes the mean scoremap. This is then fixed as the m-th
filter (λcm , whm)

9. Repeat steps 1 to 8 n times with the {1, 2, ..., (m − 1)}-th fixed filters.

Finally, local optimization (constrained nonlinear optimization) is performed
using the result as a starting guess, minimizes

min

√∑Nc
i (yi −

∑n
j f(λshort(j), λlong(j), xi))2

Nc

 , f(λshort, λlong, x) =

∫ λlong

λshort

xdλ

s.t. (1000 ≤ λshort, λlong ≤ 2300), (50 ≤ λlong − λshort ≤ 1000)

where x is reflectance (hyperspectral data) of a sample. In this method, a
filter feature which has small average error in many trials of various feature
combinations, is assumed to contain useful information for estimation.

Forward selection method Inspired by the classic variable selection technique
also known as forward selection [4], the forward selection method calculates
RMSECV for all possible filters and selects the filter (λC1 , wh1) which minimizes
this metric. This filter (λC1 , wh1) is fixed at the found feature and the procedure
is then repeated for next filter (λC2 , wh2) . The m-th filter (λCm , whm) is chosen
with (m− 1) fixed filters. The wavelength of the BPF edges are discrete values.

At the m-th filter selection step, this method consider the combination of
(m−1) filters already fixed and m-th filter. Contrary to this the stepwise random
selection method considers the combination of n filters at every step.

Forward selection with local optimization After each forward selection
step, local optimization (same to stepwise random selection method) is per-
formed using the result of the forward selection method as a starting guess.

3 Results and discussion
Table 1 shows the statistics of results for the calibration and validation samples
found by the physical and chemical analyses. The samples have a rather wide
distribution.

Table 1. Statistics for reference values in each data set

Number Mean[%] SD[%] Min[%] Max[%]

Entire set 126 30.92 14.66 5.25 71.23

Calibration set 84 30.36 13.99 5.25 63.50
Validation set 42 32.04 16.03 8.98 71.23

Figure 1 shows an example of the result of stepwise random selection for n=6
with the area-averaged reflectance spectra from all 126 samples. The number of
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repetitions for each selection step is 105. Figure 3 shows the mean scoremaps.
The minimum point (the selected condition) is indicated by a magenta mark in
each of the maps. Figure 2 shows an example of the plot of the evaluation values
for n= 1 to 10. In this result, local optimization decreases the RMSECV , and
increases the SEP .

Figure 4 shows the result of the forward selection method, while figure 5
shows a plot of the evaluation values. Although the RMSEc continues to de-
crease at least until 10 filters, the SEP begin to increase after 6 filters, and the
RMSECV is not improved after 3 filters. Also the 4-7th filter is exactly similar,
it’s impractical to implement a real optical filter individually.

Figure 6 shows the modifications achieved by local optimization after each
forward selection step. It appears that there are few or no modifications. Fig-
ure 7 shows a plot of the evaluation values. Local optimization decreases the
RMSECV slightly, however the SEP is increased. This might indicate that the
local optimization causes overfitting.

In summary, local optimization decreases the RMSECV , however, it does
not necessarily mean the model’s accuracy improves. In this case, 2 filters might
be enough for prediction.

In previous work [1], which uses hyperspectral data and PLS1 regression, the
SEP is 4.81. In that study, spectral correction (multiplicative scatter correction)
was used. Because the purpose is to implement a real optical filter, we use raw
reflectance spectra without any spectral correction. We achieve a minimum SEP
around 5.0. This could indicate that our results demonstrate sufficient accuracy.

In this study, similar RMSECV curves but different SEP curves are ob-
tained. Accuracy has not improved even we increase the number of filters to
more than 2. This might mean that the prediction of the fat content is rather
easy, because it was high in fat.

In future work, we will apply these methods to the estimation of fatty acid
content, which is more difficult to predict than fat content because the content
is much lower. Also, we will apply imaging to visualize the food composition. To
improve the accuracy, we will add a combination of filter output values to the
estimation model, and perform selection of them.
References
1. Kobayashi, K., Matsui, Y., Maebuchi, Y., Toyota, T., Nakauchi, S.: Near infrared

spectroscopy and hyperspectral imaging for prediction and visualisation of fat and
fatty acid content in intact raw beef cuts. J. Near Infrared Spectrosc.,18,301–
315(2010)

2. Nishino, K., Nakamura, M., Matsumoto, M., Tanno, O., Nakauchi, S.: Optical Filter
for Highlighting Spectral Features Part I: Design and Development of the Filter
for Discrimination of Human Skin With and Without an Application of Cosmetic
Foundation. Optics Express, 19, 6020–6030(2011)

3. Nishino, K., Nakamura, M., Matsumoto, M., Tanno, O., Nakauchi, S.: Optical Fil-
ter Highlighting Spectral Features Part II: Quantitative Measurements of Cosmetic
Foundation and Assessment of their Spatial Distributions under Realistic Facial
Conditions. Optics Express, 19, 6031–6041(2011)

4. Wilkinson, L., Dallal, G.E.: Tests of significance in forward selection regression with
an F-to enter stopping rule. Technometrics.,23,377–380(1981)

27



6

Fig. 1. An example of the result of step-
wise random selection (n = 6)

Fig. 2. An example of individual error
measures (for n=1-10) for stepwise random
selection
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Fig. 3. An example of an evaluation map of stepwise random selection (n = 6)

Fig. 4. The result of forward selection
(n=10)

Fig. 5. Error measures for forward selec-
tion

Fig. 6. Modifications of the BPFs found
by local optimization after each forward
selection step (n=1-10)

Fig. 7. Error measures for forward selec-
tion with local optimization
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