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Preface
The work reported in this PhD thesis, entitled "Models and statistical analysis of
organic micropollutants in groundwater-based drinking water resources", was con-
ducted at the Department of Environmental Engineering (Technical Unversity of
Denmark), under the supervision of Professor Philip Binning and Professor Hans-
Jørgen Albrechtsen. The PhD project ran from June 2008 to June 2011 and was
funded by the Technical University of Denmark, Copenhagen Energi and the Dan-
ish Agency for Science Technology and Innovation funded project RiskPoint - As-
sessing the risks posed by point source contamination to groundwater and surface
water resources. The study included an external stay of one month at the Leibniz-
Institute of freshwater ecology and inland fisheries in October 2010.

The PhD thesis consists of a synopsis and 3 papers prepared for scientific journals.
In the synopsis, the papers are referred to by roman numbers:

I. Malaguerra, F., Chambon, J. C., Bjerg, P. L., Scheutz, C. and Binning P. J.
Development and sensitivity analysis of a fully-kinetic model of sequential
reductive dechlorination in groundwater, submitted to Environmental Science
& Technology.

II. Malaguerra, F., Albrechtsen, H-J. and Binning P. J. Contamination of drink-
ing water supply wells by pesticides from surface water resources, submitted
to Journal of Hydrology.

III. Malaguerra, F., Albrechtsen, H-J., Thorling, L. and Binning P. J. Pesticides
in water supply wells in Zealand, Denmark: a statistical analysis, submitted
to Science of the Total Environment.

The papers are not included in this www-version, but can be obtained from the
Library at DTU Environment
Department of Environmental Engineering
Technical University of Denmark
Miljoevej, Building 113
DK-2800 Kongens Lyngby, Denmark
(library@env.dtu.dk)
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Summary
The access to safe drinking water is essential for the well being of the population.
The spread of micropollutant contamination jeopardise many freshwater reservoirs,
and is a serious threat for human health, especially because of its long-term effects.
To asses the threat of contamination, models are required to study the main con-
tamination pathways, and to make predictions of pollution fluxes. Groundwater is
used as drinking water in many countries because subsurface processes can miti-
gate pollution and purify the water by removing xenobiotic compounds. However,
groundwater often interacts with surface water, which is more vulnerable to con-
tamination, and can transfer pollution to groundwater.

The fate of micropollutants in aquifers is influenced by many factors: sorption,
degradation and dilution are processes that can interact together and create very
complex systems, which are difficult to model. The identification of dominant
processes is an essential step in the understanding of system behaviour, because
it enables the development of simplified models that can approximate the fate of
contaminants with the best trade-off between model complexity and reliability of
results. In this thesis, global sensitivity analysis techniques are used to assess de-
tailed models in order to identify the main processes involved in the degradation
of chlorinated solvents in the subsurface, and in the transport of pesticides from
surface water into nearby wells in confined aquifers. Statistical techniques are also
employed to identify large-scale contamination processes by examining observa-
tions of contamination in drinking water wells in Zealand, Denmark.

Results show that persistent compounds in surface water can leach into nearby
pumping wells even if an impermeable clay layer overlies the well screen. Thus
aquitards may not provide adequate protection against contamination by micropol-
lutants in surface water, as generally thought. Results also show that the fermenta-
tion of organic compounds and the sulphate concentration in groundwater govern
the success of sequential reductive dechlorination in aquifers, and that the simula-
tion of chlorinated aliphatic hydrocarbon degradation cannot be approximated by
simple models without losing the ability to simulate important system behaviour.
The statistical analysis of contaminant concentrations in Danish drinking water
wells demonstrates that drinking water well contamination by BAM, a pesticide
metabolite, is mainly a problem in urban areas, and that in Zealand, wells close to
surface water are generally more vulnerable to pesticide contamination.
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Dansk sammenfatning
Adgang til sikkert drikkevand er essentielt for befolkningens sundhed. Spredning
af organiske forureninger truer mange ferskvandsreservoir og udgør en alvorlig
helbredstrussel, ikke mindst pa grund af deres langtidseffekter. For at imødegå
sådanne trusler er der behov for at udvikle modeller til at studere de væsentligste
forureningsveje og til at beregne forureningsbelastningen. I mange lande benyttes
grundvand til drikkevand, da en række processer under grundvandsdannelsen kan
reducere forureningen og rense vandet ved at fjerne de organiske forureninger.
Overfladevand forurenes derimod lettere og i det omfang der er kontakt mellem
overfladevand og grundvand, kan dette føre til grundvandsforurening.

Skæbnen af de organiske forureninger i grundvandsmagasiner er påvirket af mange
faktorer: sorption, nedbrydning og fortynding er variable processer, der kan påvirke
hinanden og skabe et meget komplekst system, som er vanskeligt at modellere.
Således er identifikation af de dominerende processer et centralt trin i forståelsen
af systemets opførsel, da det muliggør udvikling af forsimplede modeller, som
kan estimere de organiske forureningers opførsel med den bedste balance mellem
modellens kompleksitet og resultaternes pålidelighed. I dette PhD-arbejde er de-
taljerede modeller koblet med "global sensitivity analysis"-teknikker for at iden-
tificere hovedprocesserne i nedbrydning af klorerede opløsningsmidler i under-
grunden og i transport af pesticider fra overfladevand til nærliggende boringer
i grundvandsmagasiner under lerlag. Ved at undersøge data over forureninger i
drikkevandsboringer på Sjælland med statistiske teknikker blev der identificeret
stor-skala forureningsprocesser.

Disse analyser viste, at sværtnedbrydelige forureninger i overfladevand kan trænge
ned til nærtliggende produktionsboringer - selv om de er dækket med lerlag. På
denne måde ser det ud til, at vandstandsende lag ikke, som hidtil antaget, altid
yder tilstrækkelig beskyttelse mod forurening med organiske stoffer. Etablering
af sekventiel reduktiv deklorering er styret af fermentering af organiske stoffer og
sulfatkoncentrationen i grundvandet, og simulering af nedbrydning af klorerede al-
ifater er meget vanskelig at beskrive med simple modeller uden at miste evnen til at
simulere systemets opførsel. Statistiske analyser af forureningen af danske drikke-
vandsboringer viste, at koncentrationen af BAM, et pesticidnedbrydningsprodukt,
navnlig er et problem i bymæssige områder og at på Sjælland er boringer tæt på
overfladevand generelt mere følsomme over for pesticid forurening.
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1 Introduction
In the past, mankind has been plagued by countless epidemics of water-transmitted
diseases caused by the failure of water treatment systems. Even today, pathogenic
contamination of drinking water still poses the most significant health risk to hu-
mans. About one fifth of human population does not have access to safe water, and
pathogens in water still cause more than 2 millions deaths every year in the poorest
parts of the World (WHO, 2011).

In developed countries, microbiological contamination of drinking water is still
sporadically encountered (Furtado et al., 1998; Szewzyk et al., 2000; Lahti, 1995),
but the major threat to drinking water safety is now contamination by micropollu-
tants (Schwarzenbach et al., 2006) such as: pesticides, pharmaceuticals, detergents,
hormones, petrochemicals and industrial solvents (Schipper et al., 2008; Kolpin
et al., 2002; Doong and Lin, 2004; Rivett et al., 1990). Some of these substances
are known to be carcinogenic, teratogenic or behave as endocrine disruptors, and
many of them provoke adverse effects to humans even at very low concentrations
(ng/L) (Cantor, 1997; Leeuwen, 2000; Kilburn, 2002; Westerhoff et al., 2005).

To protect consumers against these threats, many countries have enacted laws and
promoted monitoring campaigns to ensure that micropollutant concentrations in
drinking water remain below safety thresholds (e.g. European Union directive
98/83/EC (EC, 1998)). Over the last few decades, it has become evident that
investing and legislating for the protection of water bodies against pollution is
more effective than complex treatment of water sources after pollution had oc-
curred (Chave, 2001). With this in mind the European Union has introduced the
EU Water Framework Directive (EC, 2000), which requires governments to con-
duct comprehensive risk management, from the water source to the end of the water
pipe.

In order to assess the risk of contamination of drinking water resources, models
must be developed to predict pollution fluxes into water bodies and contaminant
concentrations in drinking water. But modelling the fate of micropollutants in the
environment is challenging, since natural systems are usually too complex to be
effectively described by mathematical equations. Moreover, the description of the
processes affecting contaminant fate requires competences in various scientific dis-
ciplines (hydrogeology, chemistry, microbiology), which are sometimes difficult to
unify. An effective way to deal with such a high level of complexity is to develop
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models at different scales, and identify dominant processes at several levels that
can be coupled to provide comprehensive models.

Degradation of organic pollutants in groundwater is often studied at the small scale
because is dominated by microbiological processes occurring in the pore space
of sediments (Thullner et al., 2005). Detailed models simulating the degradation
of pesticides (Sniegowski et al., 2009; Wilde et al., 2009), chlorinated solvents
(Becker, 2006; Duhamel and Edwards, 2007; Kouznetsova et al., 2010) and other
organic compounds (Watson et al., 2003; Rolle et al., 2008) exist, but they are
usually very complex, attempting to describe the many biogeochemical interac-
tions (Matott and Rabideau, 2008). These models therefore require simplification
(Hunter et al., 1998; Hu and Huang, 2002).

Scaling is a major issue in model construction. Sources of contamination and
drinking water wells are often separated by distances ranging from few meters to
kilometres (Bauer et al., 2004; Troldborg et al., 2008; Kohfahl et al., 2009), and
therefore transport models of contaminants in aquifers have to be considered at
these scales. However, the simulation of mechanisms leading to contaminant at-
tenuation (e.g. sorption, degradation, mixing) can be computationally prohibitive
(Robinson et al., 2000). So, the dominant processes must be identified and incor-
porated in simpler models, which run faster and are easier to calibrate.

Upscaling of transport models to predict contamination at large scale (>10 km) is
often not feasible because of computational limitations and aquifer heterogeneities
(Quinlan et al., 1996; Robinson et al., 2000). Deterministic models can therefore
not be used, and different tools are required to simulate dominant processes at the
large-scale. A statistical analysis of contaminant observations can reveal relation-
ships between measurable parameters (e.g. aquifer characteristics (Worrall and
Kolpin, 2004; Rowe et al., 2007), contaminant properties (Worrall and Thomsen,
2004), agriculture types (Nolan et al., 2002; Shomar et al., 2006)) and pollutant
concentrations in drinking water wells, and provide insights on the mechanisms of
contamination.

Mathematical procedures such as Global Sensitivity Analysis and regression anal-
ysis, can identify dominant processes in complex deterministic models (Saltelli
et al., 2000; Campolongo et al., 2007) or in extensive observation datasets (Klein-
baum and Klein, 2010; Weisberg, 2005), and can provide new insight on process
understanding (Kitano, 2002).
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Although these techniques have been used in many scientific disciplines (Fieberg
and Jenkins, 2005; Chu et al., 2007; Kontoravdi et al., 2008), they are usually
not employed in models simulating micropollutant transport and degradation in
groundwater, which are often limited to model calibration to laboratory or field
observations.

1.1 Objectives
The aim of this PhD study is to develop models to describe the processes leading
to the contamination of drinking water wells, and to identify dominant processes
of micropollutant contamination at different scales using sensitivity analysis tech-
niques and statistical analysis. The goal is to improve the understanding of con-
tamination pathways of selected compounds and to provide guidance on how to
limit the contamination of drinking water wells. Specific objectives have been:

• Understand how the success of chlorinated solvent degradation is linked to the
biogeochemical processes in groundwater (e.g. redox zonation).

• Evaluate the possibility of simplification of a complex model of chlorinated
aliphatic hydrocarbon degradation using Global Sensitivity Analysis.

• Identify the geological conditions and drinking water well characteristics which
can lead to micropollutant leaching from surface water to groundwater, thereby
jeopardizing drinking water quality.

• Identify large-scale contamination patterns of drinking water wells by pesti-
cides on the Zealand island, Denmark, and suggest processes responsible for
contaminant spread.

• Provide probabilistic estimates of drinking water well contamination by pes-
ticides in the Zealand island, Denmark, and propose possible explanations of
contamination mechanisms.

The thesis develops models and applies statistical analysis at several scales to iden-
tify the dominant processes affecting micropollutant contamination of drinking wa-
ter supplies. Paper I deals with microbial processes involved in reductive dechlo-
rination of chlorinated solvents occurring at the pore scale (<1 cm), Paper II con-
siders interactions between surface water and groundwater at the field scale (0.5-2
km), and Paper III study contamination of drinking water wells by pesticides at
the regional scale (>10 km).

3



1.2 Contaminant considered
The study focuses on contamination by pesticides and chlorinated solvents, since
they are the most frequent cause of groundwater pollution in developed countries
(Pankow and Cherry, 1995; Gilliom et al., 1999) and because of their ubiquity,
mobility and toxicity (Abelson, 1990; Arias-Estevez et al., 2008).

Pesticides are chemical products that are applied to kill a more or less broad
spectrum of organisms. Herbicides, which aim to control weeds growth, are the
most common pesticides in several countries (EUROSTAT, 2007). Herbicides are
mainly used in agriculture, but are also employed for domestic purposes and to
manage recreational areas (golf courses, parks, sports fields, etc.) (Grube et al.,
2011).

Unlike pesticides, chlorinated solvents are used in industry and not purposefully re-
leased into the environment. Tetrachloroethene (PCE) and trichloroethene (TCE)
are the most important chlorinated solvents being extensively used since the 1950s
as solvents in dry cleaning facilities and as degreasing agents in industry (Pankow
and Cherry, 1995; Jackson, 2004). These compounds occur in groundwater due to
leakage from underground storage tanks (Häggblom and Bossert, 2004). Chlori-
nated solvents are denser than water, and so they can easily reach the deepest parts
of the aquifers and jeopardize drinking water safety.

1.3 Structure of the thesis
The structure of the thesis is as follows. Chapter 2 focuses on the pathways of
drinking water well contamination and provides an overview of the processes af-
fecting pollutants transport and degradation. Chapter 3 presents the methods used
to identify dominant processes affecting drinking water contamination, and the
techniques used to i) model the fate of contaminants in aquifers, ii) investigate
model behaviour using Global Sensitivity Analysis, and iii) determine contami-
nation trends using statistical tools. Chapter 4 concludes the thesis and discuss
further research needs.
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2 Pathways of contamination
The major pathways of contamination of drinking water wells are shown in Figure
2.1. When the source of contamination is limited to a small area (e.g. landfills,
machine shops, dry cleaning facilities, etc.), then it is defined as a point source. In
this case the contamination appears as a plume of high contaminant concentration,
which can pass through the unsaturated zone and reach the water table (Chris-
tensen et al., 2001). Depending on the local hydrogeological settings, the plume
can travel in groundwater and eventually contaminate a drinking well (Figure 2.1-
A) (Troldborg et al., 2010), or a surface water body (Figure 2.1-B) (Conant et al.,
2004).

Point 
Source

Diffuse
Source

Pumping
Well

Stream

A

B

C D

E

Figure 2.1: Pathways of drinking water well contamination: (A) transport from point source to
DWW, (B) transport from point source to surface water, (C) infiltration from surface water and
leaching into DWW, (D) transport from diffuse source to DWW, and (E) transport from diffuse
source to surface water via water runoff.

Pesticides, are purposefully released on the soil surface over large areas. Degrada-
tion processes can occur in the topsoil due to the presence of oxygen and intense
microbial activity (Rodriguez-Cruz et al., 2006). However, some pesticides can
leach into groundwater (Figure 2.1-D) (Flury, 1996) or can be directly transported
to the closest surface water body by surface runoff during precipitation events (Fig-
ure 2.1-E) (Kreuger, 1998). Drinking water wells are often placed near surface wa-
ter, since streams and rivers often overly more permeable sediments and because
the water table is close to the surface, and so pumping cost are reduced. However,
the lowering of the water table by pumping wells can invert the natural flow from
the groundwater to the stream, inducing infiltration of surface water and contam-
inants to groundwater and consequently to the well (Figure 2.1-C) (Winter et al.,
1998).
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Point sources, diffuse sources, surface water and drinking water wells are often
very close to each other (Figure 2.2). Thus, the pathways in Figure 2.1 can coexist
in a small area.

Figure 2.2: Example of the concomitant presence of point sources of pollution (red areas), sur-
face water (dark blue lines), drinking water wells (light blue points) and diffuse sources (the
agricultural fields are visible in the aerial photo), in Zealand, Denmark.

In the next subsection, we will review the processes governing the transport of
contaminants i) from the source to surface water, ii) from surface water to nearby
drinking water wells, and iii) from the source directly into water wells.

2.1 From contaminant source to surface water
Surface water bodies are linked to groundwater flow systems, and the flux between
surface water and groundwater is dominated by the landscape type and the climate.
In lowland regions the water flows most often from groundwater to streams (Dahl
et al., 2007). Contaminants in groundwater are thereby transported into surface
water.
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The organic matter content of riparian areas, the zones in proximity of streams and
rivers, is often higher than elsewhere, due to the deposition of particulate organic
matter during floods (Baker et al., 2000), delivery of carbon by plants roots and
litter (Bowden et al., 1993), and deposition of stream algal production (Jones et al.,
1995). In addition, the water table is usually close to the surface in these areas, and
organic matter mineralization may be slow (Leisman, 1953). Organic matter in
riparian zones can be oxidized by several electron acceptors, which can be present
in-situ or provided by the groundwater flow, such as oxygen (O2), nitrate (NO−3 ),
ferric iron (Fe(III)), manganic manganese (Mn(IV)), sulfate (SO2−

4 ) and carbon
dioxide (CO2) (Dahm et al., 1998). Hence, strong redox gradients and intense
microbial activity commonly occur at the groundwater-surface water interface.

It is widely recognized that riparian areas can mitigate the release of nitrate and
ammonium from groundwater into surface water, because of high denitrification
rates and ammonium nitrification during seasonal sediments dry-down (Barling
and Moore, 1994). Moreover, the presence of organic matter increases soil sorp-
tion capacity for pollutants such as pesticides, soluble metals and phosphorous
(Lowrance et al., 1984; Vidon et al., 2010; Krutz et al., 2006). However, riparian
zones are physically and chemically heterogeneous (Valett et al., 1997; Doppler
et al., 2007; Kalbus et al., 2009; Schornberg et al., 2010). The degradation of con-
taminants is unevenly distributed at the groundwater-surface water interface due
to the variability in redox conditions and spatial heterogeneity of water seepage
(Conant et al., 2004).

In rivers and streams, the water flow through bank sediments creates a mixing zone
where groundwater is brought in contact with freshly infiltrated surface water. This
region of mixing is called the hyporheic zone and hosts intensified biogeochemical
activity (Sophocleous, 2002), which creates a barrier against pollution leaching
from upper aquifers (Lewandowski et al., 2011).

Although many organic compounds are better mineralized under aerobic condi-
tions (e.g. BTEX (Lu et al., 1999), MTBE (Schmidt et al., 2004), phenols (Bro-
holm and Arvin, 2000), and some pesticides (Larsen and Aamand, 2001)), many
highly halogenated molecules need anaerobic conditions to be degraded (Fetzner,
1998), since they are metabolized as electron acceptors (Holliger and Schumacher,
1994). The presence of high level of organic matter is therefore necessary to pro-
duce enough molecular hydrogen (H2) via fermentation, which is subsequently
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used by dehalogenating bacteria to break the bond between carbon and the halo-
gen (Wiegel and Wu, 2000; Heimann et al., 2007). Nevertheless, poorly halo-
genated compounds, which are commonly produced by the degradation of more
halogenated compounds, are usually more easily degraded under aerobic condi-
tions (Fetzner, 1998). Thus, the succession of anaerobic and aerobic environments
close to surface water can facilitate the complete degradation of halogenated com-
pounds. Vinyl chloride, for instance, is a highly toxic degradation product result-
ing from the sequential anaerobic dechlorination of tetrachloroethene (PCE) and
trichloroethene (TCE), is not very degradable under anaerobic conditions since
only few bacterial strains are able to extract the remaining chlorine atom (Holliger
et al., 1998), whereas it is quickly oxidized in the presence of oxygen (Tiehm et al.,
2008).

Paper I aims to model TCE degradation under the complex geochemical condi-
tions found in riparian areas, where reduced conditions prevail and electron donors
are in ready supply. The study employs this complex model to identify the main
processes influencing dechlorination of TCE and discuss the possibilities of model
simplification.

Another mechanism of surface water contamination is the transport of contami-
nants by runoff water during precipitation events. Pollutants deposited on the soil
surface can be quickly transported into nearby streams by Hortonian flow, thus,
contaminants are not infiltrating in subsurface and microbial degradation cannot
occur. This process is particularly important for the transport of phosphate (Mc-
dowell and Sharpley, 2001) and agrochemicals (Kreuger, 1998), especially those
which are highly sorbed and degraded in subsurface (e.g. glyphosate) (Borggaard
and Gimsing, 2008).

2.2 From surface water to pumping wells
Water filtration has been known to occur through riverbanks for many years (Eckert
and Irmscher, 2006), and artificial recharge of groundwater by surface water is
a major part of drinking water production in many countries (e.g. Netherlands,
Germany, Hungary, Finland, France and Switzerland (Tufenkji et al., 2002)). In
the metropolitan area of Berlin, Germany, approximately 70 % of drinking water is
sourced from bank filtrate (Heberer et al., 2004), and interest in riverbank filtration
is increasing all over the world because of its ability to provide safe drinking water
at a relatively low cost.
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Bank filtration can effectively remove pathogens (Havelaar et al., 1995; Dash et al.,
2008), nitrate (Grischek, 1998), and attenuate contamination due to by pesticides
(Verstraeten et al., 2002) and pharmaceutical residues (Greskowiak et al., 2006).

Many processes attenuate contaminant levels when water is transported from sur-
face water to groundwater and drinking water wells. Suspended solids are elimi-
nated by mechanical filtering in the riverbed (Schubert, 2002). Sorption and degra-
dation of contaminants can occur in the hyporheic layer due to the presence of
organic deposits, high microbial activity and the constant supply of oxygen from
surface water (Tufenkji et al., 2002; Kohfahl et al., 2009). Moreover, sorption and
mixing processes taking place in the zone between the surface water bodies and
water wells can diminish the impact of surface water contamination on drinking
water (Hiscock and Grischek, 2002). The main processes taking place during bank
filtration are presented in Figure 2.3.

RechargeBorehole

Bank
Filtrate

Mixing

Mixing

Groundwater flow

River

Filtration
Biodegradation
Adsorption
Chemical precipitation
Redox reactions

Figure 2.3: Processes acting during bank filtration. Modified from Hiscock and Grischek (2002)

However, contaminant attenuation by bank filtration is not sufficient to ensure safe
drinking water if the contaminants are poorly degradable or if the water travel time
between surface water bodies and the well is too short (Schwarzenbach et al., 1983;
Tufenkji et al., 2002), e.g. during flood events (Mauclaire and Gibert, 1998).

The change in redox conditions induced by surface water infiltration can also neg-
atively impact drinking water quality, for example by increasing hardness and am-
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monium concnetrations, or by producing smelly sulphurous compounds, and lead-
ing to high levels of dissolved iron and manganese (Hiscock and Grischek, 2002;
Farnsworth and Hering, 2011). Therefore secondary treatment of abstracted water
is sometimes necessary.

Surface water can be a substantial component of the water abstracted from a drink-
ing water well, even when infiltration from surface water resources is unwanted
because of its poor quality, or other water resources are available (Hunt et al.,
2005). Contamination by polluted surface water has been documented in deep
confined aquifers (Borchardt et al., 2007; Hunt et al., 2010), even though they are
widely assumed to be a source of safe water due to their disconnection from the
surface. Thus, contamination of persistent compounds in surface water can seri-
ously threaten all types of groundwater-based drinking water resources.

These recent findings motivate the investigation of the connection between surface
water and drinking water wells in confined aquifers (Paper II). Some pesticides
regularly found in surface water are known to be extremely persistent and mo-
bile in groundwater. Therefore, if the bank filtration processes are insufficient to
prevent their infiltration into groundwater, and if there is an hydraulic connection
between surface water and drinking water wells, then pesticides in surface water
can jeopardize drinking water quality even in confined aquifers.

2.3 Direct contamination
In many cases, the groundwater abstracted from drinking water wells has not
been in contact with surface water, but is directly infiltrated from precipitation.
Thus, contaminants at the surface (spills from underground tanks, leaching land-
fills, spread of agrochemicals, etc.) can travel through the vadose zone, reach the
water table, and subsequently be transported into drinking water wells.

The water travel time between the surface and the well, and therefore the risk of
well contamination, is often linked to the depth of the well and the geology. In
fact, water in well-confined or deep aquifers is usually safe because it is very old
water that has not been contaminated.

However, preferential flow paths caused by fractures in confining layers (Harrison
et al., 1992; Ross and Lu, 1999), or hydraulic short-circuits in defective borehole
seals (Avci, 1992; Landon et al., 2010), may allow fast contaminant transport from
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the surface into drinking water wells. Leaching and infiltration of contaminants
is also strongly climate-related, because the climate affects recharge (Giambelluca
et al., 1996) and dry climate extremes can lead to cracks and macro fissures which
facilitate preferential flow processes (Bergström, 1995).

Contaminants can be degraded as they are transported to drinking water wells
(Christensen et al., 1994), but degradation rates in groundwater can be very low
due to the lack of electron donors or acceptors (Phelps et al., 1994). The most en-
ergetic electron acceptors (O2, NO3) are often depleted in shallow aquifers (Postma
and Jakobsen, 1996), while deeper aquifers are often dominated by sulphate re-
ducing or methanogenic conditions (Lovley and Chapelle, 1995). Thus, the energy
available for contaminant oxidation is small (Stumm and Morgan, 1996) and pol-
lution degradation rates can be slow (Christensen et al., 2001).

Some strongly sorbed compounds are immobilized in topsoils for a long time
(Clausen et al., 2004) and can then pose a threat to groundwater many years after
their use. For example BAM, a degradation product of the pesticide dichlobenil:
BAM is the most common contaminant of Danish drinking water (Thorling et al.,
2010), even though dichlobenil has been banned since 1997.

In Paper III, statistical methods are applied to study large-scale patterns of contam-
ination, in order to identify the processes dominating the spread and attenuation of
some key contaminants. The study determines whether the contaminants in drink-
ing water wells are due to direct contamination (Figure 2.1-D) or surface water
intrusion (Figure 2.1-C).
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3 Identification of dominant processes
Numerical modelling is an essential tool for the prediction of contamination spread
and for quantifying pollution concentrations in aquifers (Barry et al., 2002). The
pathways described in the previous chapter can be modelled in various ways and
with different levels of complexity. The aim of this chapter is to provide an
overview of the tools that can be used to simulate the fate of contaminants in
aquifers, and to provide insights on how to identify the most important processes
involved in drinking water well contamination.

3.1 Modelling the fate of contaminants in aquifers
Since contaminants in saturated sediments are transported by water, the first step to
predict pollutants migration is to determine the water velocity field. In the presence
of a pumping well, the natural flow of water in the aquifer is strongly disturbed, and
the complexity of the flow field increases. Moreover, inconstant abstraction rates
induce rapid changes of the water velocity field, which represent an additional
challenge in groundwater flow modelling. The flow of groundwater in a confined
aquifer can be described by the equation:

Ss
∂H

∂t
= ∇ · (K · ∇H)−W (3.1)

Where H is the hydraulic head, Ss is the specific storage (representing the elas-
tic storage of the system), K is the hydraulic conductivity tensor and W is a term
including sinks and sources. Analytical solutions to predict water streamlines and
particle pathways in groundwater exists (Bear, 1972), but usually require strong as-
sumptions, which are rarely met in real cases. Numerical solutions based on finite
differences (McDonald and Harbaugh, 1988) or finite element schemes (Kolditz
et al., 1998) are much more flexible, allow groundwater flow fields to be modelled
for any aquifer geometry, and can easily handle spatial heterogeneities of hydraulic
conductivity. Nevertheless, the flexibility comes at a computational cost, which can
be a barrier when constructing very detailed models.

Solutes in groundwater are transported by advection (movement of the solute along
with water), and dispersion (spreading of the solute due to diffusion and hydrody-
namic water-soil interactions), and are affected by sorption (chemical interaction
with the soil matrix, e.g. adsorption, ion exchange) and degradation.

13



Mathematically, the transport of an aqueous component is described by the advection-
dispersion equation:

R
∂C

∂t
+∇ · (vC)−∇ · (D∇C) = −κC (3.2)

Where v is the pore water velocity, D is the dispersion tensor, R is the retarda-
tion factor and κ is a term describing the form of the degradation process. The
advection-dispersion equation is usually solved using numerical methods and many
computer codes have been developed for this purpose (Zheng and Wang, 1999;
Kipp, 1997).

Depending on the solute and the sediments matrix, sorption can be described in
different ways and the retardation factor R can assume various forms. Linear,
Freundlich, Langmuir and Toth isotherms are the most used sorption models (Barry
et al., 2002). For the simplest model, the linear isotherm, the retardation factor is
given by:

R = 1 +
ρb

n
Kd (3.3)

Where Kd is the sorption coefficient, ρb is the sediments bulk density and n is
the soil porosity. Similar relationships can be established for the other isotherms,
but it should be noted that the sorption model can affect the performance of the
numerical solution (Sheng and Smith, 1999).

Organic chemicals in aqueous systems can be degraded by abiotic or biotic pro-
cesses. However, biologically mediated transformations are usually several orders
of magnitude faster than chemical reactions (Barry et al., 2002). Biogeochemical
processes involved in compound degradation (e.g. mineralization) can be modelled
either as equilibrium reactions or using kinetic rate laws.

Biodegradation can be modelled as being at equilibrium if changes in solute and
bacterial populations are faster than changes due to water flow, or if sources and
sinks of the compound occur at stable rates (Postma and Jakobsen, 1996). If a sys-
tem is at equilibrium, the law of mass action states that the distribution of solutes in
water depends on an equilibrium constant, which is linked to the thermodynamics
of the reaction considered (Barry et al., 2002). Thus, the solute concentration is
obtained by the solution of a system of multiple equilibrium equations which can
easily be solved numerically (Parkhust and Appelo, 1999).
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However, many groundwater systems are not at the equilibrium and therefore an-
other modelling approach is needed. Moreover, equilibrium models do not provide
information on system dynamics and so degradation times cannot be estimated.
Kinetic modelling of organic degradation requires equations describing transfor-
mation rates, which reflect the dynamic behaviour of microbial colonies.

If the only factor affecting the biodegradation rate is the concentration of a sub-
strate, then the factor κ in Equation 3.2 is a constant and degradation can be
described by a first-order kinetic model. However, it is known that degradation
rates are slower for low substrate concentrations, and so Michaelis-Menten models
(Michaelis and Menten, 1913), which were developed for the study of enzyme-
substrate reactions, are commonly used. In this case, the factor κ in Equation 3.2
is given by:

κ =
kmax

Ks + C
(3.4)

Where C is the substrate concentration, kmax is the maximum rate of substrate
transformation and Ks is the half saturation constant. The Michaelis-Menten for-
mulation can be extended to take in account other limiting factors (Watson et al.,
2003), inhibiting species (Schäfer et al., 1998), and substrate competition (Mösche
and Jördening, 1999).

The solution of the differential equations describing solute degradation can be nu-
merically challenging, especially when many species are considered and when so-
lute concentrations range over several orders of magnitude. Thus, reactive trans-
port models need much more computational power than conventional groundwater
flow and transport models. Computer power can be a serious limitation when con-
sidering three-dimensional domains or during model calibration.

Several models have been developed to simulate the fate of contaminants during
batch (Watson et al., 2003; Kouznetsova et al., 2010) and column (1D) experiments
(Horner et al., 2007; Haest et al., 2010). Reactive transport models have been
also applied to simulate the migration of contaminant plumes in two-dimensional
(Christ and Abriola, 2007; Chambon et al., 2010) and three-dimensional (Prommer
et al., 2006; Mao et al., 2006) domains.

In Paper II a three-dimensional reactive transport model is used to simulate the
fate of three pesticides being transported from surface water into a nearby drinking
water well. In Paper I a reactive model of TCE degradation based on Michaelis-
Menten kinetic has been developed.
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3.2 Global Sensitivity Analysis
Sensitivity analysis is an essential step in the model building process, since it al-
lows the quantification of the relative influence of input variables on the designed
output variables (Archer et al., 1997). Sensitivity analysis is usually employed to
quantify the effect of parameters uncertainty on the output uncertainty, in order to
determine which factors must be better determined (Saltelli et al., 2004).
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Figure 3.1: Models are used to describe processes observed in laboratory experiments. Then,
Global Sensitivity Analysis is applied to study the relative importance of the model parameters
and to identify parameter interactions. Finally, information on model behaviour is used to improve
the process understanding. The schema refers to the study presented in Paper I.

However, sensitivity analysis can also be used to improve conceptual system un-
derstanding and to identify the essential mechanisms determining a given model
output (Kitano, 2002) (Figure 3.1). It can be used to assess the relative importance
of mechanisms controlling a system and to discover interactions among processes
(e.g. Fieberg and Jenkins (2005); Chu et al. (2007); Kontoravdi et al. (2008); Hol-
stein and Wirtz (2009); Sivakumar (2008); Kitano (2002); Fishtik et al. (2000);
Turányi (1990); Tuljapurkar (1982)). Such a sensitivity analysis is applied here in
Papers I and II.

Mathematically, sensitivity is a measure of the response surface of a model vari-
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able. The model space includes all the possible values of a variable, and the model
response is the ensemble of model evaluations for the model space. Figure 3.2
shows an example of a response surface for a 2-parameter model.
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Figure 3.2: Example of a model response for a two parameter model. The response surface is
created evaluating the model for every parameter couple.

At any point of the model space, one measure of sensitivity of a variable is defined
by the gradient of the response surface and the sensitivity measure can be obtained
by a simple derivative (Saltelli et al., 2004):

SIi =
∂Y

∂Xi

(3.5)

Where Y is the output of interest and Xi is an input factor.

However, Equation 3.5 is a point measure, which can be inappropriate to describe
the behavior of a model over its entire input space, since the model response for
a particular parameter or input variable might vary (sometimes rapidly and dis-
continuously) within the model space (Beven, 2009). Global Sensitivity Analysis
(GSA) tools address this limitation and provide a better description of the model
over the full extent of the model space.

The simplest way to globally assess model sensitivity is to perform a factor screen-
ing, which aims to identify the most influential factors in a model, without provid-
ing quantitative information about the uncertainty propagation. Each input factors
can be ranked in order of importance, but it is not possible to quantify how much
a given factor is more important than another (Saltelli et al., 2000). These meth-
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ods are able to provide important information at a very limited computational cost,
and they are usually employed in the assessment of models whose evaluation is
computatioonnally expensive.

Many screening methods exist (e.g. (Box and Hunter, 1957; Cotter, 1979; Andres,
1997; Bettonvil and Kleijnen, 1997)), but the Morris method (Morris, 1991; Cam-
polongo et al., 2007) is by far the most popular (Francos, 2003; Brockmann and
Morgenroth, 2007; Pappenberger et al., 2008; Haest et al., 2010).

In the Morris method, a regular n-dimensional grid is constructed over the model
space, where n is the number of parameters (Figure 3.3), and the elementary effect
di associated to each input factor is then defined as:

di(x) =
[y(x1, x2, . . . , xi−1, xi + ∆, xi+1, . . . , xk)− y(x)]

∆
(3.6)

for i = 1, 2, . . . , n and ∆ being a multiple of the grid step size. The mean of the
distribution of elementary effects for each input factor is then used to define the
importance of each factor and allows the ranking the parameters according to their
importance.
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Figure 3.3: Example of a screening path using the Morris method for a model with 3 parameters.
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GSA methods that are able to provide quantitative uncertainty estimates are most
often based on Monte Carlo techniques employing a variety of sampling strategies
and sensitivity measures (Saltelli et al., 2004). Random sampling has the advantage
of producing unbiased estimates of the mean and standard deviation of the output,
but the use of stratified sampling (e.g. the latin hypercube sampling (Stein, 1987)
or the quasi-random sampling (Sobol, 1990)) can provide a better coverage of the
space of the model inputs (Saltelli et al., 2000).

Variance-based GSA methods provide the most interesting sensitivity measures
because they can determine the part of the total model variance that is due to each
input factor, i.e. they can quantify how much model uncertainty is attributable to
each parameter. In fact, the aim of variance-based methods is to decompose the
variance of the model output Y as follows (Saltelli et al., 2004):

V ar(Y ) = V ar(E(Y | Xi)) + E(V ar(Y | Xi)) (3.7)

Where Xi is a parameter, Var(E(Y | Xi)) is the expected reduction of model out-
put variance if parameter Xi is known (also called the main effect of Xi) and
E(Var(Y | Xi)) is the expected remaining model output variance if Xi is known.
The first order sensitivity index Si is then defined as:

Si =
V ar(E(Y | Xi))

V ar(Y )
(3.8)

Equation 3.7 can be extended to take in account the variance induced by parameter
interactions (Saltelli et al., 2000).

Two main variance-based methods are currently used: the Fourier amplitude sen-
sitivity test (FAST) (Cukier et al., 1973, 1975), and the Sobol sensitivity indexes
(Sobol, 2001). The main difference between the two methods is the technique used
to solve a multidimensional integral needed to provide the sensitivity indexes: the
FAST approach uses a Fourier transform approximation, while the Sobol method
solves the integral with a Monte Carlo method. The calculation of sensitivity in-
dices can be very computationally demanding, since the number of samples needed
to approximate a multivariate function grows exponentially with the number of
parameters. However, this issue can be solved using High Dimensional Model
Representations (Rabitz and Aliş, 1999; Alis and Rabitz, 2001; Ziehn and Tomlin,
2009), which approximate the model output by polynomials and do not consider
high-order interactions.
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Knowledge of the amount of model variance that is attributable to each parameter
can be used to identify the parameters that can be fixed in a model, thereby sim-
plifying the model and making it easier to run and to calibrate, without loosing
important model behavior. Moreover, sensitivity analysis can be used to determine
and prioritize which parameters must be better estimated (for example by field
measurements or laboratory experiments) to achieve a lower level of model output
uncertainty.

3.3 Statistical analysis
The identification of dominant processes using global sensitivity analysis can be
assimilated to an inductive process: the model is first built by assembling well-
established mathematical equations. Then, after having tested its validity against
data, the model is used in conjunction with sensitivity analysis techniques to draw
conclusions about the importance of the parameters, and therefore of the processes
underlying them. This is a bottom-up approach, where model complexity is built
up by joining simple model components.

Another way to investigate which processes are the most influential in a given sys-
tem is by performing a statistical analysis of observed data. Statistical tools can
be used to identify hidden in the observation data. This kind of analysis repre-
sents a more deductive approach because it tries to reduce observed complexity by
establishing significant relationships.

Statistical analysis cannot directly identify the processes involved, but can be used
to limit the number of possible explanations responsible for a certain observation.
Experience is needed to construct hypothesis about the relationships between ob-
servations, which can then be tested to find those most consistent with the data. A
fundamental limitation of statistical approaches is that correlation does not imply
causation: it may be that a cause-and-effect relationship is present between two
correlated variables, but the presence of correlation cannot exclude the possibility
that another process is responsible for such a link (or that there is no link at all).

Correlation analysis is widely used to investigate factor dependencies (Hamby,
1994), because it provides descriptive statistical measures of the degree of associa-
tion between two or more variables. Correlation coefficients are usually employed
with inferential statistical tests to test the hypotheses concerning the correlation co-
efficient (for example statistical significance). Many correlation coefficients have
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been developed, and their use depends on the type of relationship expected and on
the statistical distribution of the data. The Pearson correlation coefficient deter-
mines the degree to which a linear relationship exists between variables (Sheskin,
2000), and assumes that the data are normally distributed. The Spearman (Spear-
man, 1904) and Kendall (Kendall, 1938) correlation coefficients do not require
data normality and are able to identify non-linear relationships, provided they are
monotonic. Both methods are based on calculating correlation coefficients on the
variable ranks instead of on their values.

Statistical tests can be applied to draw inferences (i.e. derive conclusions) on par-
ticular data characteristics. A binomial test, for instance, can be used to test if the
occurrence of an event (e.g. the frequency of contamination) in two datasets is
significantly different (Paper III). T-tests and Mann-Whithney U-tests will be used
to determine if the means of two distributions (e.g. mean pollution concentrations)
are different and if one is significantly higher than the other, while Siegel-Tukey
tests and F-tests can be used to compare the variance (e.g. pollution variability) be-
tween two datasets. Inference tests can also be employed to assess the goodness of
fit of regression models dealing with probabilities (Hosmer and Lemeshow, 2000;
Sheskin, 2000), where standard measures (e.g. Root Mean Squares) cannot be
applied.

In many cases it is desired to use existing data to predict the value of the response
for a given set of variables. Regression analysis investigates relationships between
variables and provides a mathematical model to use for predictions. The aim of the
regression analysis is to find a function f :

Y ≈ f(X, β) (3.9)

where Y is the output of interest (the dependent variables), X are the indepen-
dent (explanatory) variables and β are parameters that have to be estimated. For
example, for drinking water well contamination, the concentration of pollutants
at the well or the probability of contamination are possible dependent variables,
and the well characteristics (well depth, well age, distance to surface water,. . .) are
potential independent variables.

The choice of the function f depends on the purpose of the model and on the
nature of the process explaining the dependence. Linear regression, where Y is a
linear combination of X and β, is the most popular type of regression. But when Y
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is a probability estimate, logistic regression is usually used (Walker and Duncan,
1967). The mathematical formulation of the logistic model is:

Y =
1

1 + e−(βo+β1X1+β2X2+...+βpXp)
(3.10)

Where X1, X2, . . . , Xp are the explanatory variables, βo is the model intercept and
β1, β2, . . . , βp are parameters. The advantage of a logistic model of probability is
that it provides only values between 0 and 1, which is not always true for other
possible models (Kleinbaum and Klein, 2010).

Regression techniques have been used to assess contamination by pathogens (Howard,
2003; Bargellini et al., 2011), Volatile Organic Compounds (Squillace et al., 2004;
Wu et al., 2009), nutrients (Bruningfann et al., 1994; Goss et al., 1998), heavy met-
als (Pekey et al., 2004; Twarakavi and Kaluarachchi, 2005) and pesticides (Worrall
and Kolpin, 2004; Frans, 2008).
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In Paper III, logistic regression is used to estimate the risk of contamination of
drinking water wells by pesticides with concentrations above the detection limit
(0.01 µg/L), and above the maximum allowable concentration (0.1 µg/L) (Figure
3.4). The explanatory variables in the logistic model were: the well depth, the
thicknesses of clay, sand and chalk layers overlying the well screen, the distance
between the wells and surface water, the distance between the wells and the con-
taminated sites, and the landuse.
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4 Conclusion and perspectives
Contamination of groundwater-based drinking water resources is a serious issue
in many countries. Mathematical models can be used to understand contamina-
tion processes and to provide predictions for water resources management. The
processes governing the fate of contaminants in the subsurface are complex and
it is important to identify the dominant factors in order to provide good system
approximations.

This study employed statistical tools and global sensitivity analysis techniques to
investigate the transport of pesticides in surface water into drinking water wells in
confined aquifers, the degradation of chlorinated aliphatic hydrocarbon in a com-
plex geochemical environment, and the main paths of drinking water well contam-
ination by pesticides in Zealand, Denmark.

The following key findings have been made:

• The fermentation of organic compounds and sulphate concentration govern
the success of sequential reductive dechlorination in anaerobic aquifers.

• Simple models cannot describe chlorinated aliphatic hydrocarbon degradation
without loosing important system behaviours.

• Reductive dechlorination cannot occur in the presence of readily biodegrad-
able iron, while dehalogenating bacteria can outcompete iron reducing bacte-
ria as the iron bioavailability decreases.

• Persistent compounds in streams can leach into nearby pumping wells even
if an impermeable clay layer overlies the well screen. Thus aquitards may
not provide adequate protection against contamination by micropollutants in
surface water, as generally thought.

• Drinking water well contamination by BAM, the most frequent contaminant
in Danish groundwater, is higher in wells located in urban areas.

• In Zealand, wells close to surface water are generally more vulnerable to pesti-
cide contamination, possibly because of contamination leaching from surface
water bodies.

• Sandy layers can provide better protection against the leaching of oxidizable
pesticide than clay aquitards, because more likely to host aerobic conditions.
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4.1 Perspectives
The work carried out in this PhD thesis has identified some further research needs
to achieve a better understanding of the pathways involved in drinking water well
contamination by micropollutants:

The transport of micropollutants from streams into drinking water wells in
confined aquifers could be verified experimentally using a transect of monitoring
wells between the stream and the pumping well. Comparison of the time series
of stream water quality with observed groundwater levels should enable the risk
of pesticide leaching from surface water to be identified. The major issue in this
experiment will be the time needed to observe contaminant breakthrough, since the
travel time through the clay layer will be long.

The dechlorination model is very sensitive to the fermentation process, because
the fermentation of organic compounds is governing the rate of hydrogen produc-
tion. A great deal of research is currently being carried out on the production of
hydrogen in bioreactors, but few studies have investigated the production of molec-
ular hydrogen in natural environments from different fermentable compounds. A
better description of the fermenting processes would improve the reliability of se-
quential dechlorination models in aquifers.

The logistic models developed in this study are based on an actual database. It
would be interesting to extend these models to make them time-dependent. In fu-
ture, for instance, BAM contamination will reach deeper aquifers, while the stock
in the topsoil will be gradually depleted. Thus, future models could indicate that
shallow wells are less vulnerable to contamination.
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