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Abstract

We consider an important generalization of the vehicle routing problem with time windows

in which a fixed cost must be paid for accessing a set of edges. This fixed cost could reflect

payment for toll roads, investment in new facilities, the need for certifications and other costly

investments. The certifications and contributions impose a cost for the company while they

also give unlimited usage of a set of roads to all vehicles belonging to the company. Different

versions for defining the edge sets are discussed and formulated. A MIP-formulation of the

problem is presented, and a solution method based on branch-and-price-and-cut is applied to

the problem. The computational results show that instances with up to 50 customers can be

solved in reasonable time, and that the branch-cut-and-price algorithm generally outperforms

CPLEX. It also seems that instances get more difficult when the penalized edge sets form a

spanning tree, compared to when they are randomly scattered.

Figure 1: Main road net in Switzerland. To access all the red edges, a vignette needs to be paid.
A transportation company may choose to avoid the toll roads and only use the ordinary highways

1 Introduction

In certain real-life situations the cost of a connection does not entirely depend on the cost of the
individual links (edges). Frequently, in real life, a fee must be paid by the company for allowing its
vehicle to access roads, areas, bridges or other. Such a fee may in some cases only be required to
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(c) Accessible edges when the two
edge sets shown are paid for.

Figure 2: The graph of a) all three edge sets b) two edge sets and c) another two edge sets

be paid once by the company and is in such cases independent of the number of vehicles accessing
any edge in the set. Companies routing in an area with many ferry connections may pay to access
a set of ferries owned by a company at a monthly rate or at a reduced price. Here, it is important
to determine which ferry companies it is most profitable to use. The same applies to Toll roads and
bridges, where some countries charge a company based tax for accessing all freeways in the country
(see Figure 1). In war zones or areas of unrest a company may need to get a certification allowing
its vehicles to travel on certain protected roads or to enter certain protected zones. Even though
in some cases the access is to be paid only for the vehicle accessing the edge set the company
will often wish to sign up all its vehicles for robustness and easy administration purposes. Yet
another situation where a set of edges can be accessed at a fixed cost is in cases where there is
an option of investing in a facility. In such problems, referred to as location-routing problems,
there is often a fixed charge connected to a facility and location. Nagy and Salhi [19] give an
extensive survey of location-routing problems covering many different routing problems combined
with facility location problems. Belenguer et al. [2] recently presented a branch-and-cut method
for the location routing problem. In all of the mentioned cases there is a fixed charge for accessing
a set of edges. Apart from considering multiple depots, the problem in [2] can be seen as a special
case of the model presented in this paper.

The problem of minimizing the overall cost when planning routes that have a cost associated
with sets of edges is in this paper investigated as a generalization of the well known problem of
routing vehicles with capacity and service time window restrictions (VRPTW).

In the version of the VRPTW considered here the edges of the graph belong to different sets.
Once the cost of accessing the set is paid all vehicles can access the edges in the set. However,
there might still be a price associated with each of the edges used. Note that the price for
accessing the set is paid at most once. This cost has an influence on all the routes since once
the access price is paid the edges can be accessed by another vehicle without paying the access
price again. This makes the cost of the different vehicle routes interdependent. We will denote
the considered problem an edge set vehicle routing problem with time windows (ESVRPTW). In
Figure 2 an example of a network with the edges partitioned into different sets is shown. Figure
2 a) shows the entire set of edges, and b) and c) show accessible edges when paying for different
combinations of two edge set. Clearly the ESVRPTW is NP-hard as it is a generalization of the
VRPTW problem. We will in this paper present a model for the problem and a Danzig-Wolfe
decomposition similar to the classical decomposition of the VRPTW.

The paper is organized as follows. In the following section we give a rough overview of literature
for the vehicle routing problem with time windows and describe relevant results that can be used for
solving the ESVRPTW. Section 3 presents a MIP model for the ESVRPTW and in Section 4 the
decomposition of the problem into a Master and subproblem is described. Moreover the solution

2



method and valid inequalities are described. In Section 5 various extensions of the ESVRPTW
model are discussed. In Section 6 the test instances are described. Section 7 reports computational
results, and finally the paper is concluded in Section 8.

2 Literature review

To the best of our knowledge, the problem of routing vehicles with an edge set cost has not
yet been investigated in the published literature. However, the underlying problem, the vehicle
routing problem with time windows (VRPTW), has been extensively studied. The vehicle routing
problem was introduced in 1959 by Danzig and Ramser in [6] as the truck dispatching problem.
Many different exact and heuristic methods have been applied to the problem. The basis of
the research in this paper is in the exact methods. In 1981 Christofides et al. [4] presented a
decomposition generating q-routes for the capacitated VRP. One of the first exact methods for
the VRPTW was by Kolen et al. [15] using the ideas presented in [4] and applying them to the
VRPTW. This was later included in a branch-and-price method by Desrochers et al [9].

In 1987 a benchmark suite was presented for the VRPTW [21] making it easy to compare
solution methods and the research society has been enticed by the problem of solving these tests.
Recently there has been a strong development in solution times and problem sizes solved to
optimality. In 1999 Kohl et al. [14] and Cook and Rich [5] both applied branch-cut-and-price to
the VRPTW.

Some of the most recent developments in solving the VRPTW are described in [1], [8],[11], and
[13]. Both Jepsen et al. [11] and Baldacci et al. [1] use the valid cuts suggested by Lysgaard et al.
[18] to separate candidate sets for branching. Even though the cuts in [18] are implemented for the
capacitated vehicle routing problem (CVRP) they may be used for the VRPTW, as the solutions
to the VRPTW problem are a subset of the solution to the corresponding CVRP. Jepsen et al.
[11] implemented a branch cut and price algorithm with a label-setting bi-directional algorithm for
elementary shortest paths developed by Righini and Salani [20]. Jepsen et al. added the subset-
row (SR) inequalities on the master problem variables and modified the subproblem to include
the reduced cost from these inequalities. These SR inequalities are included by both Desaulniers
et al. [8] and Baldacci et al. [1] in their algorithms.

Desaulniers et al. in 2008 [8] further improved the results by using Tabu search for finding
improving routes in the subproblem and generalized the k-path inequalities originally formulated
by Kohl et al. [14]. Baldacci et al. [1] relaxed the subproblem so that the routes are the so called
ng-routes which are not necessarily simple. To find the ng-routes Baldacci et al. [1] developed
a dynamic programming algorithm. The ng-routes are used for bounding, and branching is only
done whenever enumeration is not possible.

In this paper we formulate the ESVRPTW and solve it using the solution method used by
Jepsen et al. [11] on the VRPTW as this method can be easily adapted to solve the ESVRPTW.

3 The Model

The mathematical model is based on the model presented in [11]. Given the following sets:

C The set of customers

R The set of edge groups

V The set vertices representing the customers in C and the depot defined as 0

A The set of arcs (i, j) in V and Ar is the set of arcs (i, j) belonging to the group r ∈ R

K The set of vehicles
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The variables are defined as:

xv
ij Indicator variable indicating if the arc (i, j) is used by vehicle v ∈ K

yr Indicator variable which is one if an edge from group r ∈ R is used and zero otherwise

tvi The time vehicle v visits i ∈ V .

The parameters are defined as:

D The capacity of the vehicles

di The demand which must be delivered to vertex i ∈ V . The demand at the depot is zero

ai The availability time for customer i ∈ C

bi The required completion time for customer i ∈ C

cij The cost of using an arc (i, j) ∈ A

cr The cost of accessing the arcs in group r ∈ R

Since the problem is a generalization of the VRPTW the model presented here for the ESVRPTW
is the standard VRPTW model presented by Kallehauge in the survey [12], with an additional set
of constraints used to formulate the edge set costs. The cost of the edge sets are inserted into the
objective. In the presented model the assumption is that each edge belongs to exactly one set,
however, alternatives to this assumption are discussed in Section 5.

Min:
∑

v∈K

∑

(i,j)∈A

cijx
v
ij +

∑

r∈R

cryr (1)

s.t. yr −
∑

v∈K

xv
ij ≥ 0 ∀r ∈ R, (i, j) ∈ Ar (2)

∑

v∈K

∑

(i,j)∈A

xv
ij = 1 ∀i ∈ C (3)

∑

i,∈C

xv
i0 =

∑

i∈C

xv
0i ∀v ∈ K (4)

∑

(ji)∈A

xv
ji −

∑

(ij)∈A

xv
ij = 0 ∀i ∈ C, ∀v ∈ K (5)

∑

(ij)∈A

dix
v
ij ≤ D ∀v ∈ K (6)

ai ≤ tvi ≤ bi ∀ i ∈ V, v ∈ K (7)

(tvi + θij)x
v
ij − tvj ≤ 0 ∀ v ∈ K, (i, j) ∈ A (8)

xv
ij ∈ {0, 1} ∀ (i, j) ∈ A, v ∈ K (9)

yr ∈ {0, 1} ∀ r ∈ R (10)

tvi ∈ Z
+
0 ∀ i ∈ V, v ∈ K (11)

The objective (1) is the sum of the cost on the edges accessed and the sum of the cost of accessing
the sets of the edges accessed. The constraints (2) ensure that if an edge in a set is used then the
cost of accessing the set is paid. Note that the integrality of the xv

ij variables implies integral yr

variables. Constraints (3) ensure that every customer is visited. Constraints (4) ensure that all
vehicles start and end their journey at the depot. Constraints (5) ensure that vehicles arriving at
a customer also leaves the same customer. Constraints (6) ensure that the capacity of a vehicle is
not exceeded. Constraints (7) ensure that customers are visited in their respective time window.
Finally, constraints (8) ensure that the vehicles travel a connected path. The variables xv

ij and
yr are in (9) and (10) defined to be binary and the variable tvi is in (11) defined to be a positive
integer.
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3.1 Tightening of the edge set constraints

In the ESVRPTW each costumer must be visited exactly once. This requirement is ensured by
constraints (3) and can be used to tighten the constraints in (2). Since each costumer is visited
once, we know that if several edges belonging to the same set leave the same costumer then at most
one of them can be used, and if one of them is used then the cost of the set must be accounted
for.

f

g

i h

j

Figure 3: Bound on outgoing edges

From this observation we can construct the constraints:
∑

v∈K

∑

(i,j)∈Ar

xv
ij ≤ yr ∀i ∈ C, ∀r ∈ R (12)

In this case the integrality of the x variables again imposes the integrality of the y variables and
the number of constraints in (12) is |C|. Note that constraints (12) do not apply to the depot as
more than one edge belonging to a group may leave the depot. Therefore the constraints of type
(12) cannot entirely replace the constraints (2). However, by formulating a new set of constraints
(see (13)) similar to the constraints (12) for edges entering every costumer then the constraints
(2) can be replaced by 2|C| constraints.

This means that the constraints (2) in the model can be replaced by the constraints:

∑

v∈K

∑

(j,i)∈Ar

xv
ji ≤ yr ∀i ∈ C, ∀r ∈ R (13)

∑

v∈K

∑

(i,j)∈Ar

xv
ij ≤ yr ∀i ∈ C, ∀r ∈ R (14)

These tighter constraints will in the following replace constraints (2) in the model.

4 Solution method

The branch-cut-and-price method has with success been applied to the VRPTW problem and the
best results for finding exact solutions to the problem have been produced using this method (see
Jepsen et al. [11], Desaulniers et al. [8] and Baldacci et al. [1]). Since the problem ESVRPTW is a
generalization of the VRPTW the solution methods for the VRPTW may successfully be applied
to the ESVRPTW. Therefore we will apply the BCP algorithm to the VRPTW using cuts for
the original formulation of the VRPTW presented by Fukasawa et al. in [10] and by Lysgaard et
al. [18] for the CVRP. This corresponds to the algorithm developed by Jepsen et al. [11] for the
VRPTW problem. Jepsen et al. also introduced the Subset Row valid inequalities into the master
problem formulation. We will later argue that these cuts can with the same benefits be applied
to the ESVRPTW.

The ESVRPTW can be decomposed into a master and pricing problem using the standard
VRPTW Dantzig-Wolfe decomposition where, the pricing problem is to find a elementary shortest
path problem with resource constraints.
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4.1 Master Problem

The master problem is similar to the standard VRPTW decomposition master problem presented
by Desrochers et al. [9]. However, the cost of the edge sets are kept in the master problem and
these costs will be reflected in the dual variables from the solution of the linearly relaxed master
problem.

Min:
∑

p∈P

∑

(i,j)∈A

cijαijpλp +
∑

r∈R

cryr (15)

s.t.
∑

p∈P

∑

(j,i)∈Ar

αjipλp ≤ yr ∀i ∈ C, ∀r ∈ R (16)

∑

p∈P

∑

(i,j)∈Ar

αijpλp ≤ yr ∀i ∈ C, ∀r ∈ R (17)

∑

p∈P

∑

(j,i)∈A

αjipλp = 1 ∀i ∈ C (18)

λp ∈ {0, 1} ∀ p ∈ P (19)

yr ∈ {0, 1} ∀ r ∈ R (20)

The set P contains routes satisfying the time window constraints and the capacity constraints.
When λp is one then route p ∈ P is used and λp is zero otherwise. The constant αijp is one if the
edge (i, j) ∈ A is used by the route p and zero otherwise. Constraints (16) and (17) corresponds to
the constraints (13) and (14) which ensure that access to the edges used is paid once if an edge is
used in one of the selected routes. Constraints (18) ensure that every customer is visited exactly
once by the set of routes selected. The master problem can be recognized as a set partitioning
problem with side constraints. It is important to note that the constraints (16) and (17) do not
change the domain of valid solutions but only affect the value of the solutions.

4.2 Sub problem

The linear relaxation of the master problem can be solved through delayed column generation. The
pricing problem is the elementary shortest path problem with resource constraints. Let φ′

ir ∈ R

be the dual variables of constraints (16) and let φir ∈ R be the dual variables of constraints (17).
Let πj ∈ R be the dual variables of constraint (18) and let π0 = 0, φ′

0r = 0 and φ0r = 0. Then,
the reduced cost for a route in the pricing problem becomes:

c̄p =
∑

(i,j)∈A

cijαijp −
∑

(i,j)∈A

πjαijp −
∑

r∈R

∑

(j,i)∈Ar

φ′
irαjip −

∑

r∈R

∑

(i,j)∈Ar

φirαijp (21)

=
∑

(i,j)∈A

(cij − πj)αijp −
∑

r∈R

∑

(i,j)∈Ar

(φir + φ′
jr)αijp (22)

This can be transformed to the elementary shortest path problem with resource constraints
(ESPPRC) where each edge (i, j) has the cost c̄ij = cij − πj −

∑

{r|(i,j)∈Ar}
(φir + φ′

jr). The
resource constraints included in the elementary shortest path problem are the demand picked up
along the route and the time accumulated along the route. The demand of the customers visited
by the route must be less than the capacity and the customers must be visited within their time
window. The ESPPRC pricing problem can be solved by a label-setting bidirectional shortest
path algorithm developed by Righini and Salani [20]. The domination criteria presented by De-
saulniers et al. [7] for removing all labels which are not efficient Pareto optimal, given that the
resources are additive or the function on them is strictly de-/in-creasing, can be used here. How-
ever, when introducing the SR cuts which will be described later the objective is no longer additive
and the function used is not strictly de-/in-creasing. In [3] Blander Reinhardt and Pisinger cover
several different ESPPRC problems with objectives containing functions which are not strictly
de-/in-creasing.
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4.3 Cuts

After adding route variables to the master problem it is investigated if cuts can be added to the
master problem. If the added cuts are valid inequalities derived from the original formulation (2)
to (10) then the dual can be transferred directly to the cost of the arcs. Such cuts could be capacity
inequalities, strengthened capacity inequalities, framed capacity inequalities, strengthened comb
inequalities, multi star inequalities and generalized large multi star inequalities. However, if the
cuts added are in the form of the paths variables the dual cost can be more complicating to transfer
as the dual of the constraints may be activated not only by a single edge but a combination of
edges. However, the subset row cuts have with success been introduced into the master problem
variables by Jepsen et al. [11]. Jepsen et al. [11] developed a method of handling the reduced cost
of a route for the ESPPRC where the objective contains a function which is not strictly in- or de-
creasing as a result of the reduced cost achieved from the Subset Row cuts.

4.3.1 Valid Inequalities in the original form

Many valid inequalities have been developed for the VRPTW problem. These valid inequalities
will also be applicable for ESVRPTW problem as the ESVRPTW problem does not change the set
of feasible solutions but only changes the objective function. Valid inequalities for the VRPTW
are described in [10], [16] and [18]. The valid inequalities in the original form applied are, as
mentioned previously, the capacity inequality, the strengthened capacity inequality, the framed
capacity inequality, the strengthened comb inequality, the multi star inequality and the generalized
large multi star inequality. These have all been developed for the capacitated vehicle routing
problem CVRP but also apply to the VRPTW. However, since they are developed for the CVRP
problem they do not include the time window restrictions to possibly tighten inequalities. The
separation algorithm used is that described by Lysgaard et al. [18] and accessible in the framework
developed by Lysgaard [17].

4.3.2 Valid Inequalities in the master problem form

In [11], Jepsen et al. developed the Subset-Row (SR) inequalities to generate cuts in the set
partitioning formulation of the master problem. The SR inequalities are inspired by the clique
and odd hole inequalities for the set-packing problem.

The inequalities are not based on the edges directly but on the route variables and formulated
as follows:

(Subset-Row:)
∑

p∈P

⌊

1

k

∑

i∈S

αip

⌋

λp ≤

⌊

|S|

k

⌋

(23)

Where S is a subset of the constraints (18) and 0 < k ≤ |S| and

⌊

1

k

∑

i∈S

αip

⌋

=









1

k

∑

i∈S

∑

(i,j)∈δ+(i)

αijp









Clearly, if λp has a binary value satisfying the customer constraint (18) then the SR inequalities
(23) will also be satisfied. However, when solving the linearly relaxed master problem λp are re-
laxed to linear variables between zero and one then there might be solutions where the inequalities
(23) are not satisfied. These inequalities are limited to the set of (18) constraints and can therefore
easily be introduced in the ESVRPTW problem. Moreover the effect from introducing the SR
cuts into the ESVRPTW should be the same as in the VRPTW as the set of feasible solutions do
not differ between the ESVRPTW and the VRPTW.

The problem with these inequalities is that the dual of each inequality can not be mapped
directly to the cost of the individual edges. Using the notation from Jepsen et al. [11] we let
the dual variable of a SR inequality be σ we can then formulate the dual cost of a route p as
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ĉp = c̄p + σ
⌊(

∑

i∈S

∑

(i,j)∈δ+(i) αijp

)

/k
⌋

. Note that the reduced cost σ is not activated before

at least k vertices in the set S has been visited. Therefore to introduce the reduced cost of these
constraints into the pricing problem the ESPPRC needs to be modified. As mentioned in Section
4.2, the ESPPRC is solved with a label-setting algorithm using domination for the time, load
and cost criteria. Let L be a label at a node v so that each label L at v represents a path from
the depot to v. The usual dominance criteria which holds for additive costs is that a label is
dominated if there exists another label at the same vertex where all criteria are less than or equal
to the dominated labels criteria values. However, this does not hold for the reduced cost introduced
by the SR inequalities. One label may be better than the other even if the labels have the same
or worse cost. We work with the cuts not allowing two or more routes to visit two vertices from
a set of three customers, k = 2 and |S| = 3.

To solve this problem Jepsen et al. [11] modified the domination rule for the cost criteria in the
ESPPRC. The modification consists of subtracting the reduced cost σq from a label Li. Where the
cost of cut q is included in label i and not included in dominated label Lj so that the domination
rule for the cost of two labels at the same vertex becomes:

ĉ(Li) −
∑

q∈Q

σq ≤ ĉ(Lj)

Where Q is the set of SR cuts with sets of three customers where Li has visited two vertices in
the set S and Lj has not and σq < 0 . The domination rules for the remaining constraints are
kept the same. For further details see Jepsen et al. [11].

4.4 Branch-and-cut-and-price

The branch-cut-and-price algorithm is commonly used for solving integer problems to optimality.
Below we describe the algorithm with some of the conditions selected in the method used here
included.

The branch-cut-and-price algorithm:

Step 1: Choose an unprocessed node. The node with the lowest lower bound. If the lower bound
of a node is above the upper bound then the node will be removed from the unprocessed
node list.

Step 2: Solve the LP relaxed master problem.

Step 3: search for routes with negative reduced cost using heuristic methods. If any found add
up to 400 to the master problem and go to step 2. The heuristic used is a simplified version
of the ESPPRC algorithm.

Step 4: Solve the pricing problem to optimality. If routes with negative reduced cost are found
then add them to the master problem and go to step 2. If no routes with negative reduced
cost are found then update the lower bound if the lower bound above the upper bound then
remove the node from the unprocessed node list and goto step 1.

Step 5: If any violated cuts are found then add them to the master problem and go to step 2

Step 6: Mark the node as processed. If the solution to the LP relaxed master problem is integer
then update the upper bound. If the solution is fractional then branch and add the children
to the list of unprocessed nodes. Go to step 1.

The branching used is described in more detail in the next subsection.
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4.5 Branching

For VRPTW the branching is most commonly done on edge variables. We have chosen to do
branching on the group variables as well. Branching on the group variables can reduce the depth
of the search tree as the edges to branch on are restricted. Moreover the number of group variables
is comparably small. The node with the lowest lower bound is chosen for branching. The branching
candidates are selected as the groups first and otherwise the edges where they are separated by
using the branching strategy presented by Fukasawa et al. [10] where branching occurs on a set of
customers S ⊂ C by having one branch with one vehicle covering the set S. This is represented by
constraint

∑

v∈K

∑

(i,j)∈δ+(S)(x
v
ij +xv

ji) = 2 where δ+(S) is the edges leaving the set S. The other
branch has at least two vehicles covering the customers in the set S represented by constraint
∑

v∈K

∑

(i,j)∈δ+(S)(x
v
ij + xv

ji) ≥ 4. To separate candidate sets the Lysgaard cut library [17] is
used. From preliminary tests it was clear that branching on the group variables tended to improve
the solution time for the problem significantly.

5 Closely related formulation and problems

Clearly, there are different versions of the problem where the edges are part of a set. It has been
assumed that the edges only belong to one set, however there could be cases where the edges
belong to more than one set. If an edge can belong to one set there can be different ways to add
the charge. The simple choice would be that the cost must be paid for all the sets an edge belongs
to. This problem can be formulated with the constraints (13) and (14) with the only difference
that an edge may be included in more than one constraint for each node. Other alternatives are
discussed in this section.

5.1 Edges belonging to multiple sets

Another variant could be that for an edge belonging to several sets, the access cost only needs to
be paid for one of the sets to which the edge belongs. This can be formulated as:

xij −
∑

(i,j)∈r∈R

yr ≤ 0 ∀(i, j) ∈ A (24)

This constraint is very similar to constraints (2); however, in this case the integrality of the
xij variables does not necessarily imply integrality of the yr variables. Note, that when replacing
constraints (16) and (17) with (24) each edge (i, j) in the ESPPRC sub problem will have cost cij−
πj−θij where θ is the dual variable for the constraints (24). This will not add any complications to
the ESPPRC algorithm as the cost of a path remains additive and the non additive cost introduced
by the SR cuts are handled as in the VRPTW.

5.2 Accessing a set of reduced prices

In some cases one may access edges belonging to a set without paying for accessing the set but
by paying a more expensive price for using each edge. For instance, instead of buying company
access to all freeways in a country, one may be allowed to pay with cash at the barrier to each
road. These cash prices are expensive but may be attractive if there is a very limited usage of the
edges in the set. This extension is easily handled in our model by duplicating each edge, where
one edge belongs to an edge set, and the other edge correspond to cash payment.

xzr

ij −
∑

r∈(i,j)

yr ≤ 0 ∀(i, j) ∈ A (25)

where xzr

ij is the edge between i and j which becomes accessible when paying the price for
accessing the set r.

9



In this case each edge xzr

ij in the ESPPRC will have the cost czr

ij −πj − ζij where ζij is the dual
variable of the respective constraint of type (25) and the cost of the edges not in sets will simply
have the cost cij − πj .

6 Test data

Following the tradition in VRP problems, the test data are based on the Solomon instances [21]
making it possible to relate our results to the existing literature. We have generated test instances
based on the RC201 to RC204 and C101 to C109 instances by assigning subsets of edges to disjoint
groups, and associating a fixed cost with each group. For the RC201 to RC204 Solomon instances
different categories of test instances have been constructed. The instances can be grouped into
two categories:

1. random sets: In these instances, the edges in each set are randomly selected. These
instances should reflect a toll on accessing bridges, tunnels or ferries. These facilities are
randomly scattered in the plane, but frequently a set of facilities is run by the same operator.

2. spanning tree sets: In these instances the selected edges form cheap spanning graphs of
a randomly selected subset of vertices. Each subset of vertices consists of half of the total
number of vertices. This case should reflect payment of toll on motorways. Motorways
usually form a spanning network covering the main cities in a country.

In all test cases, each edge is assigned to at most one edge set.
For each Solomon instance, test instances containing 3, 5 and 8 edge sets were generated, each

having an associated cost for accessing the set.
For the random edge sets instances, 50% of the edges are assigned to groups with an addi-

tional cost. For each combination of Solomon instance and number of groups, two test instances
were generated: one case with the costs of an edge set group calculated as β = 5% of the average
cost of the edges in the group multiplied by the number of vertices in the set, and another case
using the same calculations with β = 10%.

In the case of spanning tree sets, the cost of a given set is chosen as the most expensive
edge in the graph minus the average value of the edges in the given set. This implies that sets
containing cheaper spanning trees (i.e. fast transportation times) are more costly than the sets
containing more expensive spanning trees.

For the Solomon instances RC201 to RC204, test cases were generated with 15, 20, 30 and 40
customers. For the instances C101 to C109, test cases were generated containing 50 customers
using random edge sets. We only consider test cases up to 40 customers for the RC201 to RC204
instances, since many instances with 40 customers were not solveable within the given time limit.
Instead we have run larger instances with 50 customers for the C101 to C109 instances, as these
are know to be easier from the VRPTW literature.

7 Results

The program has been implemented in C++ using the COIN bcp library and CLP as the linear
programming solver. The test have been run on a Linux machine with a 64 bit Intel Xeon 2.67
GHz CPU. The edge set constraints have been implemented in the framework by Jepsen et al.
[11] provided to us by the authors. On the RC202 - RC204 tests with 20 customers we have tested
the effect of running branch-cut-and-price with Lysgaard [17] cuts only, the SR cuts [11] only,
both the Lysgaard and SR cuts, and without any cuts. In Table 1 the solution times for the four
algorithms and for CPLEX are shown. In about half of the instances, CPLEX is not able to solve
the routing problem within the time limit. For all four branch-and-price and branch-cut-and-price
algorithms the solution was found within 500 seconds. We have ranked the results of the four
branch-cut-and-price algorithms by solution times. In Table 1 the rank of a solution is stated
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instance opt solution solution times
test groups cost β objective groups CPLEX bcp L+SR Bp bcp SR bcp L
rc201 3 05 4239 3 *0.06 1.22 (3) 1.16(1) 1.22(3) 1.20(2)
rc201 3 10 4912 2 *0.06 0.97(1) 0.99(2) 1.01(3) 1.05(4)
rc201 5 05 4539 4 *0.06 1.09(1) 1.23(4) 1.18(3) 1.16(2)
rc201 5 10 5787 4 *0.1 10.43(3) 7.36(1) 10.83(4) 7.86(2)
rc201 8 05 4878 5 *0.09 1.62(2) 1.52(1) 1.66(3) 1.71(4)
rc201 8 10 5847 3 *0.05 4.880(2) 4.030(1) 5.04(4) 4.14(2)
rc202 3 05 3723 2 473.82 *13.55(1) 14.86(2) 16.85(3) 21.76(4)
rc202 3 10 4371 2 200.65 11.22(3) *10.17(1) 14.49(4) 10.85(2)
rc202 5 05 4120 3 200.19 10.26(2) *9.40(1) 11.71(4) 11.51(3)
rc202 5 10 4969 2 96.86 32.47(3) 13.83(2) 56.17(4) *13.44(1)
rc202 8 05 4166 3 25.54 *9.96(1) 10.13(2) 17.06(4) 11.75(3)
rc202 8 10 5115 4 *8.07 37.30(3) 24.54(1) 45.20(4) 25.13(2)
rc203 3 05 3371 1 - *29.07(1) 29.19(2) 30.30(3) 54.01(4)
rc203 3 10 3694 1 - *25.08(1) 28.43(3) 29.38(4) 27.85(2)
rc203 5 05 3635 2 - *44.34(1) 44.66(2) 47.71(3) 58.24(4)
rc203 5 10 3968 1 3571.92 *24.33(1) 27.76(3) 32.11(4) 26.28(2)
rc203 8 05 3545 2 - *75.54(1) 81.25(2) 88.53(3) 100.63(4)
rc203 8 10 3954 1 6294.51 *42.05(1) 44.43(3) 48.35(4) 43.32(2)
rc204 3 05 3148 1 - *130.83(1) 147.04(3) 183.59(4) 136.88(2)
rc204 3 10 3471 1 - 452.81(4) 112.62(2) 303.24 (3) *89.45(1)
rc204 5 05 3414 2 - *123.00(1) 205.80(3) 153.72(2) 308.24(4)
rc204 5 10 3797 1 - 315.28(3) 121.67(2) 397.13(4) *106.00(1)
rc204 8 05 3215 1 - 100.40(3) *43.06(1) 119.16(4) 54.43(2)
rc204 8 10 3507 1 - *46.61(1) 61.35(4) 54.26(2) 60.78(3)

Average Rank 1.88 2.04 3.46 2,58

Table 1: RC201-RC204 instances with 20 customers, random sets. If the algorithm has not terminated

within 7500 seconds it is indicated with ”-”. The best running time for each instance is marked with a

”*”. L indicates that the cuts implemented in Lysgaard are used, SR indicates that SR-cuts are used,

while SR+L indicates that both families of cuts are used.

in paranthesis after the solution time. The average of the ranks is calculated for each solution
algorithm and shown in the last line of Table 1.

It is seen that CPLEX is the fastest for 7 instances, while the branch-cut-and-price algorithm
using both Lysgaard cuts and SR cuts is the fastest for 11 instances. The branch-cut-and-price
algorithms using only one of the cut families are only fastest for 3 instances. The ranking average
clearly shows that the branch-cut-and-price algorithm using both Lysgaard and SR cuts has the
best average rank. Therefore the branch-cut-and-price algorithm used for the tests in Tables 2, 3,
4 and 5 includes the Lysgaard and SR cuts.

instance opt solution solution times
test groups cost β objective groups CPLEX Bcp L+SR
rc201 3 05 7100 3 *1.08 9.30
rc201 3 10 8396 1 *0.7 20.78
rc201 5 05 7173 2 *0.14 13.75
rc201 5 10 8512 1 *0.23 21.60
rc201 8 05 7685 4 *0.41 28.31
rc201 8 10 9031 2 *0.64 65.73
rc202 3 05 5660 2 - *52.90
rc202 3 10 6430 1 283.68 *167.84
rc202 5 05 5886 2 - *206.10
rc202 5 10 6831 1 919.49 *253.07
rc202 8 05 5915 3 2897.36 *128.22
rc202 8 10 7398 2 *328.52 3407.25
rc203 3 05 5144 1 - *104.29
rc203 3 10 5914 1 - *119.07
rc203 5 05 5429 1 - *509.70
rc203 5 10 6215 1 - *1533.37
rc203 8 05 5821 2 - *870.11
rc203 8 10 6494 0 - *1491.57
rc204 3 05 4847 1 - *262.21
rc204 3 10 5587 1 - *545.37
rc204 5 05 - - - -
rc204 5 10 5743 1 - *1621.71
rc204 8 05 - - - -
rc204 8 10 6118 0 - *3307.06

Table 2: RC201-RC204 instances with 30 customers, random sets. If the algorithm has not terminated

within 7500 seconds it is indicated with ”-”. The best running time is marked with a ”*”.
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instance opt solution solution times
test groups cost β objective groups CPLEX Bcp L+SR
rc201 3 05 8660 2 *0.47 7.73
rc201 3 10 10730 2 *0.95 28.95
rc201 5 05 9431 3 *1.14 62.16
rc201 5 10 11982 2 *6.63 127.22
rc201 8 05 10064 3 *4.85 152.61
rc201 8 10 11922 2 *2.45 348.53
rc202 3 05 7805 1 - *226.13
rc202 3 10 8841 1 - *503.73
rc202 5 05 8518 2 - *737.95
rc202 5 10 10072 1 - *3671.59
rc202 8 05 8755 2 - *4316.18
rc202 8 10 - - - -
rc203 3 05 7098 1 - *430.43
rc203 3 10 - - - -
rc203 5 05 7120 1 - *1647.74
rc203 5 10 - - - -
rc203 8 05 - - - -
rc203 8 10 - - - -
rc204 3 05 - - - -
rc204 3 10 5838 0 - *882.34
rc204 5 05 - - - -
rc204 5 10 5838 0 - *1848.44
rc204 8 05 - - - -
rc204 8 10 - - - -

Table 3: RC201-RC204 instances with 40 customers, random sets. If the algorithm has not terminated

within 7500 seconds it is indicated with ”-”. The best running time is marked with a ”*”.

Tables 2, 3 and 4 consider test instances with random sets. In Table 2 and Table 3 it is seen
that the branch-cut-and-price with both Lysgaard and SR cuts often has a significantly reduced
running time. However, for all of the instances based on RC201 CPLEX finds the solutions within
seconds and always much faster than the branch-cut-and-price algorithm. In Table 2 there are
two instances with 30 customers which cannot be solved within 7500 seconds using the branch-
cut-and-price algorithm. However, more than half of the instances cannot be solved by CPLEX
within the time limit of 7500 seconds. For the RC201 to RC204 instances with 40 customers shown
in Table 3 only the RC201 instances were solved by the branch and bound algorithm within the
time limit, and 9 instances were not solved by the branch-cut-and-price algorithm within the time
limit.

Table 2 and Table 3 show the running time for instances generated from RC201 to RC204
with respectively 30 customers and 40 customers. The running times in Table 2 show that the
branch-cut-and-price for most of the instances runs much faster than CPLEX. The same is true for
the running times in Table 3 when only considering instances where at least one of the algorithms
terminated within the time limit.

Notice, that most of the instances not solved by CPLEX within the time limit were solved by
branch-cut-and-price. Half of the instances were solved in less than 600 seconds (10 minutes).

For the C101-C109 instances with 50 customers shown in Table 4 the results are more mixed.
CPLEX is the fastest for easy instances, while the branch-cut-and-price algorithm has some com-
putational overhead which only pays off for the difficult instances. The branch-cut-and-price al-
gorithm solves significantly more instances within the time limit, although there are two instances
solved by CPLEX which cannot be solved by branch-cut-and-price within the time limit.

Table 5 contains the test results for instances RC201 to RC204 with spanning tree sets. For
the RC201 instances, CPLEX solves the instances within a second and considerably faster than
the branch-cut-and-price algorithm. For the RC202 to RC204 instances the branch-cut-and-price
algorithm solves the problem faster than CPLEX. The last instance has not been solved within
the time limit by any of the algorithms. In general the branch-cut-and-price algorithm solves
considerably more problems to optimality than CPLEX within the given time limit.
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Instance opt solution Solution Times
test groups cost β objective groups CPLEX Bcp L+SR
c101 3 05 5683 3 *0.99 37.61
c101 3 10 7052 3 *0.66 162.79
c101 5 05 6749 2 *1.04 574.34
c101 5 10 7725 3 *1.08 135.60
c101 8 05 7125 3 *2.27 1037.11
c101 8 10 8138 2 *1.4 570.75
c102 3 05 5304 2 - *322.95
c102 3 10 - - - -
c102 5 05 5741 2 - *1210.31
c102 5 10 - - - -
c102 8 05 6201 1 - *6932.81
c102 8 10 - - - -
c103 3 05 4801 1 - *2158.50
c103 3 10 5081 0 - *535.76
c103 5 05 4979 1 - *5999.15
c103 5 10 5081 0 - *252.92
c103 8 05 5081 0 - *854.73
c103 8 10 5081 0 - *923.91
c104 3 05 - - - -
c104 3 10 - - - -
c104 5 05 - - - -
c104 5 10 - - - -
c104 8 05 - - - -
c104 8 10 - - - -
c105 3 05 5421 2 *36.90 394.63
c105 3 10 6228 0 *121.33 -
c105 5 05 5838 2 *705.29 1686.57
c105 5 10 6228 0 *124.26 1932.97
c105 8 05 6083 1 *852.82 5477.76
c105 8 10 6228 0 *31.51 2906.03
c106 3 05 5600 2 *2.05 147.36
c106 3 10 6870 1 *3.05 458.43
c106 5 05 6428 2 *5.82 2652.120
c106 5 10 7317 1 *2.65 6803.880
c106 8 05 6896 2 *4.53 1340.30
c106 8 10 7378 0 *1.66 1453.82
c107 3 05 5204 2 *364.35 439.94
c107 3 10 6032 0 *1506.13 -
c107 5 05 5618 1 *2250.54 2945.98
c107 5 10 6032 0 *3385.01 7312.24
c107 8 05 5700 1 *220.37 1164.84
c107 8 10 6032 0 5519.13 *1692.73
c108 3 05 5076 1 - *1260.62
c108 3 10 - - - -
c108 5 05 5325 - - *1124.48
c108 5 10 5747 0 - *3845.29
c108 8 05 5628 1 - *2362.47
c108 8 10 5747 0 - *5474.220
c109 3 05 - - - -
c109 3 10 - - - -
c109 5 05 - - - -
c109 5 10 5022 0 - *428.11
c109 8 05 5022 0 - *2730.11
c109 8 10 5022 0 - *804.76

Table 4: C101-C107 instances with 50 customers, random sets. If the algorithm has not terminated

within 7500 seconds it is indicated with ”-”. The best running time is marked with a ”*”.

8 Conclusion

The vehicle routing problem with time windows and fixed costs for accessing an edge set (ES-
VRPTW) has been presented in this paper. To the best of our knowledge, it is the first time
this type of problem has been investigated. A mathematical model has been presented for the
ESVRPTW. We have applied the branch-cut-and-price method to the problem and shown that
including the SR cuts and the cuts implemented in Lysgaard [17] for the VRPTW and CVRP
improves the solution times for this problem. Many related routing problems may with advan-
tage be implemented this way using the extensive research available for the CVRP and VRPTW
problems.
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instance opt solution solution times
test customers groups objective groups CPLEX Bcp SR+L
rc201 15 3 2618 1 *0.05 0.75
rc201 15 5 3153 3 *0.04 1.98
rc201 15 8 3474 4 *0.06 1.92
rc202 15 3 2478 2 176.17 *5.03
rc202 15 5 2773 2 33.74 *9.13
rc202 15 8 3154 4 93.06 *40.43
rc203 15 3 2400 0 556.14 *5.37
rc203 15 5 2665 1 268.44 *16.88
rc203 15 8 2982 2 4342.91 *151.65
rc204 15 3 2240 0 - *6.21
rc204 15 5 2526 1 6698.49 *36.80
rc204 15 8 2859 2 2438.21 *402.83
rc201 20 3 3733 2 *0.02 0.26
rc201 20 5 4302 3 *0.03 1.34
rc201 20 8 4931 3 *0.05 2.42
rc202 20 3 3464 1 107.58 *3.88
rc202 20 5 3862 2 56.45 *1.25
rc202 20 8 4635 4 1276.84 *163.60
rc203 20 3 3042 0 - *7.09
rc203 20 5 3366 1 - *136.39
rc203 20 8 4120 3 - *2986.15
rc204 20 3 2845 0 - *6.82
rc204 20 5 3301 1 - *1160.77
rc204 20 8 3790 2 - *6469.83
rc201 30 3 5599 1 *0.11 4.44
rc201 30 5 6204 2 *0.34 12.57
rc201 30 8 6998 4 *0.24 37.11
rc202 30 3 4832 1 - *21.95
rc202 30 5 5478 2 - *99.57
rc202 30 8 6431 5 - *1482.03
rc203 30 3 4418 1 - *14.01
rc203 30 5 5191 2 - *374.77
rc203 30 8 5877 4 - *4458.23
rc204 30 3 4292 0 - *24.82
rc204 30 5 4953 2 - *5606.51
rc204 30 8 - - - -

Table 5: RC201-RC204 instances, spanning tree sets. If the algorithm has not terminated within 7500

seconds it is indicated with ”-”. The best running time is marked with a ”*”.
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We consider an important generalization of the vehicle routing problem with time windows
in which a fixed cost must be paid for accessing a set of edges. This fixed cost could reflect
payment for toll roads, investment in new facilities, the need for certifications and other costly
investments. The certifications and contributions impose a cost for the company while they
also give unlimited usage of a set of roads to all vehicles belonging to the company. Different
versions for defining the edge sets are discussed and formulated. A MIP-formulation of the
problem is presented, and a solution method based on branch-and-price-and-cut is applied to
the problem. The computational results show that instances with up to 50 customers can be
solved in reasonable time, and that the branch-cut-and-price algorithm generally outperforms
CPLEX. It also seems that instances get more difficult when the penalized edge sets form a
spanning tree, compared to when they are randomly scattered.
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