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Preface
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carried out during a six moth external research stay at the Institute for Atomic

and Molecular Physics (AMOLF) in Amsterdam, the Netherlands. The work

described in this thesis covers a broad range of multiple scattering experiments

in the realm of quantum optics and can be naturally divided in two main

topics; the experimental demonstration of spatial quantum correlations and

light localization induced by multiple scattering in disordered nanophotonic

structures.
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tence of spatial quantum correlations which we demonstrated experimentally

in the �rst part of this thesis. The studies on spatial quantum correlations

have only been possible due to a very close collaboration with DTU Fysik.

During that time we faced and solved many experimental challenges and I

want especially thank my co-supervisor Ulrik L. Andersen and Alex for many

motivating discussions. The samples for this experiments were provided from

Elbert, Ivo, and Allard P. Mosk at the University Twente, the Netherlands,

which I acknowledge gratefully.

Later in the project, I had the pleasure to visit the photon scattering group

at AMOLF where I worked independently and could choose the focus of my

research. This group has a large expertise on the fundamental properties of
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multiple scattering media that helped me in furthering my project. In particu-

lar, I am very grateful to Prof. Ad Lagendijk and his group for their hospitality

and many open discussions. My stay in Amsterdam was very stimulating and it

was encouraging to experience this exiting research environment. I would like

to thank Ramy, Sanli, Paolo, and Otto for a the insights of multiple scattering

and many social events.

The last part of this thesis concerned the investigation of disordered pho-

tonic crystal waveguides. This would not have been possible without the fab-

rication of the samples carried out by Søren, which I would like to highlight

and acknowledge. The good work environment among the many di�erent peo-

ple of the Quantum Photonics group involved in this project, allowed us to

obtain good results. I would like to thank David for working together on the

measurements of the localization length in passive photonic crystal waveguides.

Luca and Henri for performing the experiments on quantum dots embedded in

photonic crystal waveguides which have been used to investigate the statistical

properties of Anderson localization. I would like to thank Peter Lodahl be-

cause he not only supervised us but also had many inspiring ideas that made

the project on Anderson localization possible. With all people in the nano

photonic cluster I had an uncountable number of interesting discussions about

Anderson localization of light and I am very happy about that. I also ap-

preciated the communication between experimentalists and theoreticians who

always had an open door for me, in particular Johan and Philip. Both helped

me to understand the theory behind the experiments and contributed to the

calculations on spatial quantum correlations and the Green's function formal-

ism. A special thank to Mads for a pleasant time while sharing the o�ce, listen

to my Danish attempts, and many good table soccer tournaments. Furthermore

I would like to thank Serkan, Kristian, Jin, and Qin for the good atmosphere

and collaboration.

I had a very pleasant time at DTU but also outside of my work environment,

where Martin, Elaine, Alex, and Elizaveta became good friends of mine. Most

importantly, I am grateful to Lena for the unique time in Denmark and the

support, especially by distracting me from physics.

Stephan Smolka
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Abstract

This thesis reports results on quantum properties of light in multiple-scattering

nano-structured materials.

Spatial quantum correlations of photons are demonstrated experimentally

that are induced by multiple scattering of squeezed light and of purely quan-

tum origin. By varying the quantum state of the light source, positive and

negative spatial quantum correlations are observed. Angular-resolved measure-

ments of multiply scattered photons show the in�nite range of the correlation

function in the di�usive regime. The multiply scattered light is characterized

in frequency-resolved quantum noise measurements as well as in time-resolved

photon-coincidence measurements and the experimental results are in excellent

agreement with the quantum theory of multiple scattering. Probing the noise

properties of light in the coherent backscattering cone reveals an enhancement

factor of the multiply scattered photon �uctuations that is larger than the pre-

dicted enhancement of the backscattered light intensity. Characterizing the

quantum properties of multiply scattered light forms the basis for studies of

quantum interference and quantum entanglement in disordered media.

Anderson localization of light is demonstrated in disordered photonic crystal

waveguides. Transmission measurements show that the localization length is

strongly dispersive, allowing the control of one-dimensional Anderson localiza-

tion of light. The statistical properties of Anderson localization are probed by

embedding quantum dot light sources in disordered photonic crystal waveg-

uides. From photoluminescence measurements, the spectral distribution of

Anderson-localized modes is determined. Comparing the experimental data

with one-dimensional analytical calculations provides a novel method to un-

ambiguously distinguish Anderson localization from losses.





Resumé

Denne afhandling beskriver kvanteegenskaberne af lys, der undergår multipel

spredning i nanostrukturerede medier.

Lysets rumlige kvantekorrelationer, der er forårsaget af multipel spredning

af "squeezed" lys og derfor af ren kvantemekanisk oprindelse, er demonstreret

eksperimentelt i denne afhandling. Positive og negative rumlige kvantekor-

relationer er målt ved at varriere lyskildens kvantetilstand, og vinkelopløste

målinger af multipel spredte fotoner viser kvantekorrelationernes ubegrænsede

rækkevidde in det di�userende regime. Det multipel spredte lys er karakteris-

eret gennem frekvensopløste målinger af kvantestøjen samt tidsopløste foton-

korrelations målinger, og de eksperimentelle data stemmer meget godt overens

med kvanteteorien for multipel spredning. Målinger af lysets støjegenskaber

i den kohærente bagsprednings regime afslører en forstærkning i de multipel

spredte fotoners �uktuationer der er større end den forventede forstærkning af

den bagspredte intensitet. Den eksperimentelle demonstration af rumlige kvan-

tekorrelationer og karakteriseringen af kvantetilstanden af det multipel spredte

lys danner basis for studierne af kvanteinteferens og kvantesammen�ltring i

uordnede medier.

I denne afhandling demonstreres Anderson lokalisering af lys i uordnede

fotonisk krystal bølgeledere eksperimentelt. Målinger af transmission viser, at

lokaliseringslængden er stærkt dispersiv, hvilket muliggør kontrol over den en-

dimensionelle Anderson lokalisering af lys. De statiske egenskaber af Anderson

lokalisering er påvist ved at indlejre kvantepunkter i uordnede fotonisk krystal

bølgeledere, og den spektrale distribution af Anderson lokaliserede tilstande

er bestemt gennem målinger af fotoluminescensen. Sammenligning mellem

eksperimentelle data og en-dimensionelle analytiske beregninger vises som en

ny metode til utvetydigt at skelne mellem Anderson lokalisering og tab.
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Chapter 1

Introduction

Multiple wave scattering in disordered systems has fundamental and practical

importance in a diverse range of disciplines, such as optics [1, 2], microwaves

[3], acoustics [4], and seismology [5]. In case of light, multiple scattering can be

applied to, for example, increase the information capacity in optical communi-

cation [6, 7]. Furthermore, it plays an important role in quantum optics and

quantum information science, where it is essential to enhance the interaction

between single photons and quantum emitters [8]. Here, disorder is usually seen

as a nuisance since it limits the performance of nanophotonic devices, that are

inherently sensitive to fabrication imperfections [9, 10]. According to the com-

mon belief, disorder inhibits the observation of any quantum phenomena after

averaging over an ensemble of disorder realizations. So far, all experiments con-

cerning multiple scattering have been in the regime where a classical description

su�ces. Only recently, fundamentally new physics has been theoretically pre-

dicted in a quantum optical description of multiple scattering [11, 12, 13, 14],

as will be experimentally shown during the course of this thesis.

The direction of propagation through a disordered nanostructure resem-

bles a random walk, from which the medium becomes opaque. The intensity

guided through the di�erent trajectories of the medium interferes resulting in

a complex intensity distribution. After averaging over all possible realizations

of disorder, interference e�ects generally disappear and the light transport is

1



2 Chapter 1. Introduction

described by di�usion theory. Under conditions where multiple scattering is

strong, light di�usion is modi�ed leading to spatial intensity correlations [15].

Ultimately, localized modes are formed, turning disorder into an e�cient re-

source for con�ning light in nanophotonic structures [16, 17].

The interaction between light and matter lies at the heart of quantum op-

tics. Ground-breaking experiments on the interaction of individual quantum

systems, such as quantum teleportation [18] and strong light-matter coupling

[19], have advanced the fascinating prospects of quantum communication and

quantum computing. During the past decades, tremendous progress has been

made to enhance the light-matter interaction by, for example, con�ning light

in highly engineered cavities [20]. Quite remarkably, an alternative route to-

wards light con�nement exploits multiple scattering as �rst proposed by P.W.

Anderson [21]. Light propagation is inhibited and the envelope of the ensemble

averaged intensity pro�le decays exponentially from the source on a typical

length scale called localization length. Anderson localization is a universal in-

terference phenomenon that has been observed for, e.g., light [22, 17, 3], sound

waves [23], and matter waves [24]. Observing Anderson localization in com-

pletely disordered systems is very challenging, though. S. John introduced an

alternative approach to Anderson localization [25]. Instead of using entirely

disordered samples, he proposed theoretically that light localization occurs in

periodic dielectric materials, called photonic crystals, after inducing only a

slight amount of disorder.

This thesis contributes to two �elds of research of multiple scattering in the

realm of quantum optics exploiting multiple scattering as a resource, rather

than as a nuisance.

In the �rst part of this thesis, predicted spatial quantum correlations of

purely quantum origin and induced by multiple scattering are demonstrated

experimentally. As a consequence, the number of photons scattered into one

direction can be predicted from the number of photons detected in a di�er-

ent direction. The quantum nature of light is exploited by the �uctuations in

the multiply scattered photons. For the �rst time, ensemble-averaged photon

�uctuations reduced beyond the classical limit are observed, showing that non-

classical properties of light survive the complex stochastic process of multiple

scattering, thereby disproving the common belief that quantum properties of
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light are fragile. Remarkably, the spatial quantum correlations give rise to sig-

ni�cant deviations in the transport of photon �uctuations as compared to the

transport of light intensity in multiple scattering media. The obtained results

constitute the �rst experiments in the realm of multiple scattering that cannot

be explained by classical means and can be potentially used for breaking the

classical limit on the information capacity.

The second part concerns the light con�nement in disordered nanostruc-

tures. In particular, Anderson-localized cavity modes are generated by de-

liberately adding disorder in photonic crystal waveguides. For the �rst time,

emitters are embedded into disordered photonic crystal waveguides and cou-

pled to an Anderson-localized mode. Thereby, the emission rate of an embed-

ded semiconductor quantum dot can be strongly enhanced. The experimen-

tal conformation of Anderson localization is recurrently debated since it can

usually not be distinguished from losses such as light leakage or absorption

[26, 27]. Here, a fundamentally di�erent approach is developed by utilizing

many quantum dots embedded in the disordered structure. The quantum dot

photoluminescence is exploited to probe the statistical properties of Anderson

localization. Using this approach the localization length and the loss length

can be measured independently in the photonic crystal waveguide. Addition-

ally, a thorough analysis is presented to estimate the localization length from

transmission measurements in photonic crystal waveguides without embedded

emitters. The obtained results on disorder-induced light con�nement provide

an e�cient platform for disorder-robust quantum electrodynamics and o�er a

new approach to test fundamental questions of Anderson localization.

The outline of the thesis is as follows: In Chapter 2, a continuous-mode

quantum theory of multiple scattering is derived and compared to quan-

tum noise measurements of photon �uctuations. Positive and negative spa-

tial quantum correlations induced by multiple scattering of squeezed light are

demonstrated. Chapter 3 discusses experiments on spatial photon coincidence-

measurements of multiply scattered light. The photon �uctuations in a single

optical speckle are studied in angular-resolved measurements. The spatial pho-

ton correlation function between two di�erent directions is found to be in�nite

in range and its strength can be tuned by varying the quantum state of the

incident light source. Further experiments in the coherent backscattering cone



reveal enhanced backscattered photon �uctuations that are larger than the en-

hancement factor of two predicted for the intensity transport. Furthermore, the

coherent backscattering cone is investigated in the few photon regime using a

spontaneous down-conversion light source.

Chapter 4 provides analytical calculations to determine the statistical prop-

erties of Anderson localization in disordered one-dimensional systems. A trans-

fer matrix theory method and a Green's function formalism are used to study

transmission and local density of states distributions. From the frequency

dependence of the local density of states, the spectral linewidth of Anderson-

localized modes is calculated. Chapter 5 demonstrates the control of Anderson-

localization in disordered photonic crystal waveguides. The extinction mean

free path is studied in transmission measurements and identi�ed with the local-

ization length at the vicinity of the waveguide mode band edge. The extinction

mean free path is found to be disorder dependent and strongly dispersive, which

is con�rmed by measurements of the transmission distributions. Chapter 6 re-

ports on measurements that probe the statistical properties of Anderson local-

ization by embedding quantum dots inside photonic crystal waveguides. The

spectral distribution of Anderson-localized modes is used to estimate the local-

ization length and to distinguish Anderson localization from losses. A single

quantum emitter is coupled to an Anderson-localized mode leading to enhanced

light-matter interaction. Finally, the conclusions are presented in Chapter 7.



Part I

Light propagation in a

multiple scattering medium

5





Chapter 2

Quantum correlations

induced by multiple

scattering of light

2.1 Introduction

Recently, the interest in multiple scattering experiments utilizing the quantum

properties of light has increased rapidly [28, 29, 30, 31, 32]. The theoretical

framework for a quantum optical description of multiple scattering was derived

by Beenakker and co-worker. They related the scattering matrix to the pho-

ton statics [11] and calculated the impact of gain and absorption in multiple

scattering media on the quantum state of the transmitted light [13]. Lodahl,

et al. carried out the �rst quantum optical experiments by investigating the

transmission of photon �uctuations through a multiple scattering medium in

the di�usive regime [28]. Further experiments showed that classical intensity

correlations [15] change the transmitted photon probability distributions [29].

So far, quantum optical variables have only been measured in very few multi-

ple scattering experiments that only have focused on the regime of a classical

light source. To enter the quantum regime of multiple scattering, nonclassical

7
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light sources are required. An example is the quantum mechanical general-

ization of the spatial intensity correlations [15]. This theoretically predicted

spatial quantum correlation function is induced by multiple scattering of light

and shows an entirely di�erent behaviour for classical and nonclassical light

sources, respectively [12, 14, 32, 33].

This chapter presents the �rst experimental observation of spatial quan-

tum correlations induced by multiple scattering of squeezed light [30]. In order

to motivate the experiments, the fundamental concepts of multiple scattering

are introduced in Section 2.2. After a brief review of the classical descrip-

tion, a continuous-mode quantum theory of multiple scattering is developed in

Section 2.3. Section 2.4 presents measurements on multiply scattered photon

�uctuations. Using a squeezed light source, spatial quantum correlations are

investigated and the results are discussed in Section 2.5.

2.2 Fundamentals of multiple scattering

Any inhomogeneities originating from particles of di�erent shape and size cause

scattering of the waves along di�erent directions. If the impurities are randomly

distributed over the entire medium, the waves might be repeatedly scattered

and the ballistic propagation is not su�cient to describe the light transport

(Fig. 2.1). The direction of propagation tends to be lost and the medium

becomes opaque. The average distance between two scattering events is de�ned

by the scattering mean free path, ℓs. Multiple scattering occurs if the sample

size, L, exceeds ℓs. For uncorrelated scatters, the scattering mean free path

can be evaluated from the density of the scatter, ρ, and the average scattering

cross-section, σs

ℓs =
1

ρ σs
. (2.1)

The scattering cross-section describes the scattering strength between the in-

cident wave and the particle. When the medium shows isotropic scattering in

all directions, ℓs might simply be identi�ed with the transport mean free path

ℓ. In the weakly multiple scattering regime, with λ ≪ ℓ ≪ L, the di�erent pos-

sible light trajectories through the medium interfere leading to the formation

of a complex spatial intensity distribution of the light exiting the sample, cf.
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ba

z

Figure 2.1: a, When light enters a randomly disordered medium, it is split

into a multitude of di�erent trajectories that perform a random walk through

the medium. Thereby the di�erent light trajectories can interfere with each

other. b, Measured spatial intensity distribution of light transmitted through

a multiple scattering medium displaying a volume speckle pattern.

Fig. 2.1b. To characterize a complex system with randomly distributed scat-

ters, it is essential to investigate physically predictable variables after ensemble

averaging over all possible realizations of disorder. In this process, interference

e�ects tend to vanish, and light transport is described by a di�usion process.

The light propagation in a random multiple scattering medium requires

solving Maxwell's equations, taking into account the shape, size and position

of each scatter. Neglecting interference e�ects after ensemble averaging sim-

pli�es the calculation. The transport of the ensemble-averaged light intensity,

I(r⃗, t), is then approximated by a random walk and can be viewed as a di�usion

process. The di�usive light transport describes almost all physical processes of

multiple scattering in three-dimensional disordered media. The light propaga-

tion follows in absence of absorption the di�usion equation [15]

∂

∂t
I(r⃗, t) = D∇2I(r⃗, t) + S(r⃗, t), (2.2)

where S(r⃗, t) describes the light source. The transport through the medium is

quanti�ed by the di�usion constant, D = veℓ/3, with ve being the energy veloc-

ity. When the di�usion constant decreases, the transport process slows down.

Light transport in di�usive media is very di�erent as compared to ballistic light

transport in homogeneous media where the intensity decays exponentially (law

of Lambert-Beer).

An important parameter in the realm of multiple scattering is the transmis-

sion through the medium. Here we distinguish between the ensemble-averaged
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transmission, Tb, in a certain direction, b, and the total transmission that is

integrated over all angles, T , where the bar denotes the ensemble average. The

transmission through a sample with a slab geometry1 can be calculated ana-

lytically from the di�usion equation. The di�usion equation for the intensity

requires extrapolative boundary conditions with I(z) = 0 at z = −ze1 and

z = L + ze2 with L being the system length and ze1,2 being the extrapolation

lengths. The extrapolation lengths account for internal re�ections at the sample

interfaces and simpli�es to ze = 2/3ℓ for vanishing re�ections [34, 35]. Incor-

porating the boundary conditions to the stationary di�usion equation leads to

the total transmission [36]

T =
ℓ+ ze1

L+ ze1 + ze2
× (1−Rsurf) . (2.3)

In addition, we introduce the sample surface re�ection Rsurf to account for the

light that is re�ected on the incident surface and does not enter the multiple

scattering medium. Hence, the total transmission is directly related to the

transport mean free path and sample thickness and is often approximated to

T ≃ ℓ/L.

Under conditions where multiple scattering is strong, the di�usion process is

modi�ed leading to spatial intensity correlations. These correlations imply that

the multiply scattered light intensity observed at one position depends on the

intensity at another position even after ensemble averaging over all realizations

of disorder. A general de�nition of the spatial intensity correlation function

between two di�erent angular directions b0 and b1 is given by [37]

C
(C)
ab0a′b1

≡ Tab0Ta′b1

Tab0 × Ta′b1

, (2.4)

where a, a′ are the incident light directions. One distinguishes three di�erent

types of transmission correlations, C
(C)
ab0a′b1

= C(1) + C(2) + C(3). The �rst

term is of the order of unity and refers to the short range correlations that

dominates for very small angles between b0 and b1. C(2) describes the long-

range correlation of the sample [37]. The correlation scales with g−1. g =
∑

a T

is the conductance of the sample and de�ned as the total transmission summed

over all incident directions. The last term, C(3), is the optical analogue of the

1The system is assumed to be in�nite in x and y direction and �nite in z = 0 . . . L.
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Universal Conductance Fluctuations [38] and scales with the inverse square of

the conductance.

2.3 Continuous-mode quantum theory of multi-

ple scattering

One of the fundamental principles of quantummechanics concerns the quantiza-

tion of the electric �eld. As a consequence, vacuum �uctuations were predicted

that are associated with the zero point energy and can be used to, e.g., explain

the spontaneous emission processes. The quantized electric �eld, expanded in

terms of plane waves, takes the form [39]

E⃗(r⃗, t) =
∑
k⃗

ϵ⃗k⃗ âk⃗ e
−iω t+ik⃗ · r⃗ +

∑
k⃗

ϵ⃗k⃗ â
†
k⃗
eiω t−ik⃗ · r⃗, (2.5)

where k⃗ is the wave number, ϵ⃗k⃗ is a normalization constant and ω is the fre-

quency. The operators â and â† are referred to as the electric �eld annihilation

and creation operators, respectively. The photon number operator is de�ned

as n̂ = â†â. The quantum mechanical expectation value of the photon number

operator, denoted by ⟨. . .⟩, corresponds to the classical intensity of the light

�eld, i.e., I ∝ ⟨n̂⟩. Fluctuations in the number of photons are given by the

variance in the photon number: ∆n2 ≡ ⟨n̂2⟩ − ⟨n̂⟩2 and reveal the quantum

nature of light. Due to the Heisenberg uncertainty principle intrinsic quantum

�uctuations are always present. Although of inherent quantum origin, photon

�uctuations are classi�ed as either classical or non-classical if similar �uctua-

tions can be induced by classical light sources or not. The classical boundary

corresponds to Poissonian photon statistics where the variance in the photon

number �uctuations equals the mean number of photons. A purely quantum

regime exists where photon �uctuations are reduced beyond the classical limit

leading to sub-Poissonian photon statistics. A single-photon state, which can

be generated by the decay of an excited emitter [40], will ideally have vanish-

ing photon �uctuations. Sub-Poissonian photon statistics can be generated in

bright beams containing many photons. An example of such a quantum state is

the amplitude squeezed state, that can be generated by a quadratic nonlinear

process and possess strongly reduced photon �uctuations [41].
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â
a

â
a’

â
b

â
b’

Figure 2.2: Scheme to illustrate the quantum theory of multiple scattering. The

annihilation operator, âa, represents a single quantum state of light that couples

to the input mode a of the disordered medium. After multiple scattering, the

light exits the medium in di�erent angular directions b with the electric �eld

transmission coe�cients tab. The direction corresponds to di�erent k⃗-vectors

of the incoming and outgoing light. All other incident channels a′ ̸= a and b′

couple vacuum �uctuations into the medium that need to be incorporated in

the quantum description.

The theoretical model describing light propagation through a non-

absorbing, multiple scattering medium is based on quasi one-dimensional cal-

culations that are a very good approximation to three-dimensional systems

[11, 13]. An illustration of the model is shown in Fig. 2.2 where an incident

quantum state enters the medium in direction a. This direction is determined

by the wave vector k⃗. The angular frequency, ω, de�nes the length of the wave

vector vector, i.e., k = |⃗k| = nω/c, with c being the vacuum speed of light

and n the refractive index. The continuous mode annihilation operator of the

spatial output mode b is related to the annihilation operators of all incident

modes a′, b′,

âb(ω) =
N∑

a′=1

ta′bâa′(ω) +
2N∑

b′=N+1

rb′bâb′(ω). (2.6)

The summations are evaluated for all N input and N output modes. t, r are

the electric �eld transmission and re�ection coe�cients which are assumed to

be frequency independent within the spectral range of interest.

Light beams are time-dependent since they do not continue forever and

often exhibit variations on time-scales comparable to the observation time [42].
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In the continuous-mode theory, a collimated light beam is considered as a

superposition of modes with a multitude of wave vectors pointing in the same

direction, e⃗k = k⃗/|⃗k|. This leads to a dispersion relation and the frequency,

ω, can be considered as the characteristic variable instead. Introducing the

continuous-mode theory allows us to consider the dispersion relation to be

continuous. The continuous-mode annihilation and creation operators between

two di�erent spatial directions a and a′ is then de�ned as[
âa(ω), â

†
a′(ω

′)
]
= δ(ω − ω′)δa,a′ . (2.7)

This expression incorporates the continuous frequency relation (Dirac delta

function δ(ω − ω′)) and the discrete number of spatial directions since a mul-

tiple scattering sample exhibits only 2N uncorrelated input and output modes

(Kronecker delta δa,a′). The photon number operator per angular frequency

(photon �ux) can be written as n̂a(ω) = â†a(ω)âa(ω).

2.3.1 Spatial quantum correlation function

spatial
correlations

light source

Figure 2.3: Illustration of a multiple scattering process leading to spatial quan-

tum correlations. A light source illuminates a medium consisting of a random

distribution of scatters. The number of photons exiting the medium in a speci�c

direction can be anti correlated with the number of photons in another direc-

tion, and this correlation depends on the quantum state of light illuminating

the medium.

In this section we derive the spatial quantum correlation function between

two di�erent output directions of a multiple scattering medium. Figure 2.3

illustrates the nature of spatial quantum correlations that can be obtained

by correlating the number of photons at two di�erent output directions. The
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spatial quantum correlation function between two di�erent output directions

b0, b1 and frequencies ω, ω′ is de�ned as

CQ
b0b1

(ω, ω′,∆ω) =
⟨: ñb0(ω,∆ω)ñb1(ω

′,∆ω) :⟩
⟨ñb0(ω,∆ω)⟩ × ⟨ñb1(ω

′,∆ω)⟩
. (2.8)

⟨: · · · :⟩ is the quantum mechanical expectation value of normally ordered op-

erators that is given by the photon detection process [39] and the bars refer to

the classical ensemble average. The need for two averages is due to the fact

that both quantum �uctuations and random multiple scattering are stochastic

processes. Eq. (2.8) represents a frequency-resolved measurement that is lim-

ited by the resolution bandwidth ∆ω. Here, we introduce the experimentally

relevant dimensionless photon number within the resolution bandwidth ∆ω

ñ(ω,∆ω) =

∫ ω+∆ω/2

ω−∆ω/2

n̂(ω′) dω′. (2.9)

In the following we want to relate the annihilation and creation operators of

the multiply scattered light to the incident light source. We insert Eq. (2.9) in

Eq. (2.8) and obtain

CQ
b0b1

(ω, ω′,∆ω) =

∫ ω+∆ω/2

ω−∆ω/2
dωx

∫ ω′+∆ω/2

ω′−∆ω/2
dωy ⟨: n̂b0(ωx)n̂b1(ωy) :⟩∫ ω+∆ω/2

ω−∆ω/2
dωx

∫ ω′+∆ω/2

ω′−∆ω/2
dωy ⟨n̂b0(ωx)⟩ × ⟨n̂b1(ωy)⟩

. (2.10)

First, we calculate the quantum mechanical expectation values. Based on

Eq. (2.6) we can evaluate ⟨n̂b(ω)⟩ and get

⟨n̂b(ω)⟩ =
∑
a′,a′′

t∗a′bta′′b⟨â†a′(ω)âa′′(ω)⟩

=
∑
a′,a′′

t∗a′bta′′b⟨n̂a(ω)⟩δa′,aδa′′,a

= Tab⟨n̂a(ω)⟩, (2.11)

where Tab = t∗abtab is the intensity transmission coe�cient. In Eq. (2.11) we

exploited that the light source only couples to the input mode a and the av-

erage number of photons in all other input modes equals ⟨n̂a′ ̸=a,b′(ω)⟩ = 0. In

order to calculate the photon �uctuations (discussed further below), we express

the numerator in Eq. (2.10) by unordered operators which equals the ordered

expression for b0 ̸= b1, i.e., ⟨: n̂b0(ωx)n̂b1(ωy) :⟩ = ⟨n̂b0(ωx)n̂b1(ωy)⟩. A detailed
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derivation is shown in Appendix A. As a result we get

⟨n̂b0(ωx)n̂b1(ωy)⟩ = t∗ab0tab1⟨n̂a(ωx)⟩δ(ωx − ωy)δb0,b1

+Tab0Tab1 (⟨n̂a(ωx)n̂a(ωy)⟩ − ⟨n̂a(ωx)⟩δ(ωx − ωy)) .

(2.12)

In the experiment, we record the correlation function for frequencies within the

resolution bandwidth, ωx−ωy < ∆ω and can therefore integrate Eq. (2.10) (for

small ∆ω) ∫ ω+∆ω/2

ω−∆ω/2

dωx δ(ωx − ωy) ≈ δω,ωy . (2.13)

After evaluating the quantum mechanical expectation values, we now focus

on the classical ensemble average. The photon number operator, n̂a(ω), of the

incident quantum state of light is not a�ected by multiple scattering. In order

to perform the ensemble average of Eq. (2.11) and Eq. (2.12), only the trans-

mission coe�cients, Tab and Tab0Tab1 , need to be calculated. This results in the

dimensionless spatial quantum correlation function between two independent

output modes of a multiple scattering medium, b0, b1, and light coupling into

a single input mode a

CQ
ab0ab1

(ω,∆ω) =
⟨ña(ω,∆ω) ña(ω,∆ω)⟩ − ⟨ña(ω,∆ω)⟩

⟨ña(ω,∆ω)⟩⟨ña(ω,∆ω)⟩
× C

(C)
ab0ab1

.

(2.14)

ña(ω,∆ω) depicts the photon number within the bandwidth ∆ω (Eq. (2.9)).

The spatial intensity correlation, C
(C)
ab0ab1

(Eq. (2.4)), reveals the classical in-

tensity correlations of multiply scattered light and equals one in the di�usive

regime. Thus, the spatial quantum correlation function is the quantum optical

generalization of the spatial intensity correlations. In Eq. (2.14) we assumed

that than ω and ω′ cannot be distinguished within the resolution bandwidth

∆ω. Alternatively, the spatial quantum correlation function can be expressed

as

CQ
ab0ab1

(ω,∆ω) =

[
1 +

Fa(ω,∆ω)− 1

⟨ña(ω,∆ω)⟩

]
× C

(C)
ab0ab1

, (2.15)

where Fa(ω,∆ω) ≡ ∆ñ2
a(ω,∆ω)/ ⟨ña(ω,∆ω)⟩ is the dimensionless Fano factor

and ∆ñ2(ω,∆ω) = ⟨ñ(ω,∆ω)2⟩ − ⟨ñ(ω,∆ω)⟩2 is the variance in the photon
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number �uctuations within the bandwidth ∆ω. The Fano factor gauges the

variance in the photon number �uctuations of the light source entering the

multiple scattering medium in direction a. The size of the Fano factor de-

termines the transition from the classical (Fa(ω,∆ω) ≥ 1) to the nonclassical

regime (Fa(ω,∆ω) < 1). Here it becomes apparent that a quantum state of

light does not only depends on the angular frequency ω but also on the band-

width. Using nonclassical light opens the door to a genuine quantum regime

where 0 ≤ CQ
ab0ab1

(ω,∆ω) < 1, corresponding to spatially anti-correlated pho-

tons. Such spatial quantum correlations are of in�nite range in the sense that

the magnitude is independent of the angular di�erence of the two uncorre-

lated output directions, which translates into a spatial separation in the far

�eld. This is an example of the fundamentally new phenomena that arise in

quantum optical descriptions of multiple scattering of light.

2.3.2 Photon number �uctuations

The mean number of transmitted photons through a multiple scattering

medium is obtained from the sum over all output modes, ⟨n̂T (ω)⟩ =
∑

b⟨n̂b(ω)⟩.
The variance in the transmitted photon �uctuations is the sum of the individual

output modes and the cross-correlations between di�erent modes

∆n2
T (ω) =

∑
b

∆n2
b(ω) +

∑
b0

∑
b1 ̸=b0

⟨n̂b0(ω)n̂b1(ω)⟩ − ⟨n̂b0(ω)⟩⟨n̂b1(ω)⟩.

(2.16)

It turns out that cross-correlations are signi�cant in a multiple scattering

medium and give rise to spatial quantum correlations. The variance in the

photon �uctuations (Eq. (2.16)) can be evaluated in a similar way as presented

for the spatial quantum correlation function. In the experiment it is not feasible

to collect the multiply scattered light from all output modes and the collection

e�ciency is smaller than one. We therefore introduce the overall detection e�-

ciency, η. The ensemble-averaged variances in the detectable multiply scattered
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photon �uctuations are calculated to be (see Appendix A for details)

∆ñ2
T (ω,∆ω) = ηT ⟨ña(ω,∆ω)⟩

+η2T
2⟨ña(ω,∆ω)⟩ (Fa(ω,∆ω)− 1) , (2.17)

∆ñ2
R(ω,∆ω) = η

(
1− T

)
⟨ña(ω,∆ω)⟩

+η2
(
1− T

)2 ⟨ña(ω,∆ω)⟩ (Fa(ω,∆ω)− 1) . (2.18)

The total transmitted and re�ected variance, respectively is represented by

∆ñ2
T,R(ω,∆ω) and T is the ensemble-averaged total transmission coe�cient.

The calculations are carried out in the di�usive regime in the limit of a large

number of optical modes, N . Therefore the additional contribution due to

coherent backscattering can be neglected in the total re�ection coe�cient R =

1−T . In the di�usive regime, the spatial quantum correlation can be evaluated

from the ensemble average total transmitted photon �uctuations

CQ
ab0ab1

(ω,∆ω) = 1 +
FT (ω,∆ω)− 1

ηT ⟨n̂a(ω,∆ω)⟩
, (2.19)

with FT (ω,∆ω) being the ensemble-averaged Fano factor of the total trans-

mitted light. Note that this result only holds in the di�usive regime where the

average sample transmission, Tab, is assumed to be identical in all directions

b. A similar result can be calculated for the spatial quantum correlation in

re�ection geometry.

So far, we have calculated the variance in the multiply scattered photon

number and the spatial quantum correlation function in the frequency-domain.

A possible experimental setup to measure∆ñ2
T (ω,∆ω) and CQ

ab0ab1
(ω,∆ω) con-

sists of a photodiode that converts the photons into a photo-current. A spec-

trum analyzer measures the variance of the Fourier transformed photo current

at a frequency ω within the resolution bandwidth, ∆ω, that is proportional to

the variance in the photon �uctuations, ∆ñ2(ω,∆ω). Since the proportionality

constant is not known and depends on the device settings, we utilize the fact

that a coherent quantum state is de�ned by ∆ñ2
c(ω)/⟨ñc(ω)⟩ = 1. Thus, the

spectrum analyzer can be used to compare an unknown quantum state of light

with a coherent light source which exhibits the same average number of pho-

tons, ⟨ñ(ω,∆ω)⟩ = ⟨ñc(ω,∆ω)⟩. We can extract the Fano factor independent
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on the device parameter

F ≡ ∆ñ2(ω,∆ω)

⟨ñ(ω,∆ω)⟩
=

∆ñ2(ω,∆ω)

∆ñ2
c(ω,∆ω)

. (2.20)

A second important parameter to derive the spatial quantum correlation

function involves the estimation of the mean photon number, see Eq. (2.19).

The time-dependent annihilation operator is de�ned via a Fourier integral

â(t) =
1√
2π

∫ ∞

−∞
dω â(ω)ei ω t, (2.21)

with the corresponding commutator relation (substituting Eq. (2.7))[
â(t), â†(t′)

]
=

1

2π

∫ ∞

−∞

∫ ∞

−∞
dω dω′ [â(ω), â†(ω′)

]
eiωt e−iω′t′

= δ(t− t′). (2.22)

Instead of measuring ⟨n̂(ω, δω)⟩ directly, we detect experimentally the mean

photon number in the time domain, ⟨n̂(t,∆T )⟩, within the time interval ∆T ,

that is related to the frequency domain via related via (Eq. (2.21))

⟨n̂a(t,∆T )⟩ =
∫ t+∆T

t

dτ ⟨â†a(τ)âa(τ)⟩

=
1

2π

∫ t+∆T

t

dτ

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ ⟨â†a(ω)âa(ω′)⟩e−i(ω′−ω)τ . (2.23)

If ∆T (ω − ω′) ≫ 1 then the last equation simpli�es to

⟨n̂a(t,∆T )⟩ ≈
∫ ω0+

∆ω
2

ω0−∆ω
2

dω ⟨â†a(ω)âa(ω)⟩. (2.24)

Thus we can link the mean photon number in the time domain to the mean

photon number in the frequency domain

⟨n̂a(t,∆T )⟩ ≈⟨n̂a(ω0,∆ω)⟩. (2.25)

It is important to realize the di�erence between ∆ω and δω caused by the de�-

nition of our quantum state. In the experiment the mean number of photons is

dominated by a coherent light beam centered around ω0 with a line width ∆ω.

However, the Fano factor is investigated at a sideband frequency ω within the

bandwidth δω. We assume that Fa(ω, δω) is approximately constant through-

out the frequency interval of the quantum state, [ω ± δω
2 , ω0 ± ∆ω

2 , ω′ ± δω
2 ].
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2.4 Quantum noise measurements

2.4.1 Experimental setup

BS

PPKTP
Pump

DB

D
0.63
NA

SampleDf

SA
FM

Figure 2.4: Sketch of the experimental setup. Vacuum squeezing is generated

in an optical parametric ampli�er with a periodically poled potassium titanyl

phosphate (PPKTP) nonlinear crystal, overlapped with a displacement beam

(DB) on a beam splitter (BS), and directed onto the sample (S). The �ip mirror

(FM) is used to choose between transmission and re�ection measurements. The

multiply scattered light is imaged onto a photo-detector (D) and its photon

�uctuations are recorded using an electronic spectrum analyzer (SA).

The experimental setup to study the photon �uctuations of multiply scat-

tered light is schematically shown in Fig. 2.4. As a nonclassical light source

we use squeezed light generated in a second-order nonlinear process at a wave-

length of λ = 1064 nm corresponding to a frequency of ω0 = 2.8 · 1014Hz [41].
This versatile nonclassical source features continuous tuning between classical

and nonclassical photon �uctuations. The photon �uctuations are recorded

with a photo detector. The DC voltage of the photo detector is related to the

light intensity, i.e., the average number of photons per second, ⟨n̂(t)⟩. The

AC voltage of the photo detector contains the time-dependent �uctuations.

An electrical spectrum analyzer computes the frequency-resolved variance in

the photon �uctuations, ∆n2(ω,∆ω) at the sideband frequency ω relative to

the carrier frequency of the light source, ω0. This experimental technique is

called quantum noise measurement and allows us to investigate relative pho-

ton �uctuations within our experimental resolution bandwidth ∆ω = 300 kHz,

that is set by the spectrum analyzer. As a detection frequency we choose

the resonance frequency of the photo detector, ω = 3.93MHz. Figure 2.3
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Figure 2.5: Measured photon �uctuations of the squeezed light source depend-

ing on the relative phase between the squeezed vacuum generated in the optical

parametric ampli�er and the bright displacement beam (black circles). The

gray triangles plot the measurement of a coherent laser representing the classi-

cal limit. We obtain a squeezing of 0.52±0.02 (≈ −3 dB) and an anti-squeezing

of 4.6 ± 0.2 (≈ 7dB). The detection frequency in the experiment is 3.93MHz

and the resolution bandwidth of the spectrum analyzer is 300 kHz.

plots the recorded variance in the photon �uctuations of the light source. The

classical limit (gray triangles) is recorded by blocking the squeezed vacuum

beam and measuring the bright displacement beam. When the squeezed vac-

uum is unblocked, it interferes with the displacement beam and the photon

�uctuations of the nonclassical light source are recorded. The change in the

average number of photons by unblocking the squeezed vacuum is negligible

and ⟨n̂a(ω,∆ω)⟩ is approximated to be the same as from the bright displace-

ment beam ⟨n̂c(ω,∆ω)⟩. This allows us to estimate the Fano factor of the light

source, Fa(ω,∆ω) (cf. Eq. (2.20)). The phase of the displacement beam, ∆ϕ, is

scanned with a mirror that is mounted on a piezo-electric element (see Fig. 2.4).

Thereby the photon �uctuations of the incident light are continuously tuned.

As shown in Fig. 2.5 (black circles) the photon �uctuations of the nonclassical

light source (Fa(ω,∆ω) = 0.52± 0.02) can be reduced below the classical limit

(Fa(ω,∆ω) = 1) and excess �uctuations can be induced above the classical

limit (Fa(ω,∆ω) = 4.6± 0.2). The uncertainty in the Fano factor is estimated
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Figure 2.6: a, Measured inverse total transmission through the multiple scat-

tering samples versus sample thickness obtained using an integrating sphere.

The back surface of the samples with a glass interface is illuminated under

an angle θ = 90◦. b, Similar measurement method as in a, but in this case

the front surface of the sample is illuminated. The red lines represent a linear

�t to the data whereby the transport mean free path and the extrapolation

lengths are obtained. The extrapolation lengths and the surface re�ection de-

pend on the refractive indices of the surrounding materials for which we used

nglass = 1.45 and nair = 1.0.

over 18 full periods of ∆ϕ = 0 . . . 36π. Further details on the characterization

of the light source can be found in Appendix B.1.

The multiple scattering experiment is conducted by focusing the nonclas-

sical light onto either the front surface or the back surface of the sample, cf.

Fig. 2.4, to perform total transmission and total re�ection measurements, re-

spectively. The multiply scattered light is collected with a microscope objec-

tive (NA = 0.63). In the re�ection geometry the contributions from single-

scattering events are avoided by illuminating the sample surface under a steep

angle. The multiple scattering samples consist of titanium dioxide that has

been grounded into strongly scattering particles with a typical size of 200 nm.

The thicknesses of the samples range between L = 6− 20µm.

The ensemble-averaged total intensity transmission coe�cient T is the char-

acteristic parameter of the multiple scattering medium entering in the quantum

optics theory (Eqs. (2.17)-(2.19)). Independent measurements of T for all fab-
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ricated samples are therefore important. T was obtained experimentally using

an integrating sphere with two entrance ports. A detector was mounted on one

port and the samples on the second port. We record the total transmitted in-

tensity IT through a sample and the light intensity I0 without the sample, and

extract the total sample transmission T . To obtain the ensemble-averaged total

transmission T = IT/I0 we have measured at 6 di�erent positions on the sam-

ple. Small changes in the transmission coe�cients were observed depending on

which of the two sample surfaces were illuminated, since they are surrounded

by di�erent dielectric media (glass and air, respectively). The inverse of the

total transmission depending on the sample thickness is shown in Fig. 2.6a, b.

Fitting the experimental data of the inverse total transmission measured for

both sample surfaces with theory (Eq. (2.3)), we estimate a transport mean free

path of ℓ = (0.9±0.3)µm and extrapolation lengths of ze1 = (4.3±0.3)µm and

ze2 = (4.6 ± 0.3)µm, respectively. Note that ℓ ≪ L, which con�rms that the

multiple scattering samples are in the di�usive regime. The e�ective refractive

index of the samples can be obtained from the extrapolation lengths [35] and

is n = 2.0 ± 0.4. The average number of scattering events taking place in the

multiple scattering process is given by N ∝ (Le�/ℓ)
2 where Le� = L+ ze1+ ze2

is the e�ective sample thickness including interface e�ects [43]. For our sam-

ples we estimate N ≈ 300 − 1000 scattering events depending on the sample

thickness quantifying the complexity of the multiple scattering process.

2.4.2 Photon �uctuations of multiply scattered light

Figure 2.7a shows the measured photon �uctuations, recorded in re�ection, for

squeezed light illumination of a multiple scattering medium with a thickness

of L = 20µm (black circles). The data are taken at a speci�c sample posi-

tion, representing a single realization of disorder. The re�ected photon �uc-

tuations from multiply scattered photons di�er clearly from the classical limit

(FR(ω,∆ω) = 1). In particular, we record both, classical and nonclassical pho-

ton �uctuations depending on ∆ϕ. Using the total transmission con�guration

of our setup allows us to measure transmitted photon �uctuations through a

multiple scattering medium. The results are exemplary shown for L = 6µm

in Fig. 2.7b. The variations in the transmitted photon �uctuations are smaller

than in the re�ection geometry. This fact originates from a higher re�ection
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Figure 2.7: Measured photon �uctuations after multiple scattering recorded in

a, re�ection geometry (L = 20µm) and b, transmission geometry (L = 6µm),

respectively. The photon �uctuations of the total re�ection for a squeezed light

source (black circles) and the classical limit (gray triangles). Depending on the

phase of a displacement beam, photon �uctuations below or above the classical

limit are detected.

than transmission of our samples and is especially pronounced in the variance

in the photon �uctuations since they scale with the square of the transmission

and re�ection coe�cients, respectively (cf. Eqs. (2.17) and (2.18)).

In order to compare the experiment with theory, we have to perform an

ensemble average over di�erent realizations of disorder. First, we tune the rel-

ative angle ∆ϕ over 18 full periods (0 . . . 36π) at a single sample position. All

data that are multiple of ∆ϕ+2N π correspond to the same incident quantum

state of light and can be averaged to account for any instabilities of the light

source. The statistical ensemble average is obtained by repeating the procedure

for six di�erent sample positions. Figure 2.8 shows the transmitted, ensemble-

averaged photon �uctuations depending on the incident quantum state of light

for L = 6µm. The photon �uctuations are found to be linear dependent on the

Fano factor of the light source, Fa(ω,∆ω), which is in perfect agreement with

the quantum theory of multiple scattering. Starting from Eq. (2.17), we sub-

stitute ⟨n̂T (ω,∆ω)⟩ by ηT ⟨n̂a(ω,∆ω)⟩ and obtain the experimentally observed

linear dependence in the di�usive regime FT (ω,∆ω) = 1+ ηT (Fa(ω,∆ω)− 1),

with T as a sample speci�c constant. Note that the plotted data in Fig. 2.8



24 Chapter 2. Quantum correlations induced by multiple scattering of light

0 1 2 3 4 5

1.0

1.2

1.4
D
n

2 T
/<

n
T
>

Dn
2

a
/<n

a
>^

^

Figure 2.8: Ensemble-averaged transmitted photon photon �uctuations de-

pending on the photon �uctuations of the incident light source. The sample

thickness is L = 6µm and the dashed line represents the classical limit. The

error bars represents the standard deviation of the ensemble average. Further-

more they include the propagated error of the individual measurements, caused

by instabilities in the light source.

represent the direct measurement and are not corrected by the collection e�-

ciency, η, of the setup. For a nonclassical light source (Fa(ω,∆ω) < 1), the

multiply scattered photons show reduced photon �uctuations below the clas-

sical limit. The reduction of FT (ω,∆ω) < 1 is the direct experimental proof

that nonclassical properties of light survive the complex stochastic process of

multiple scattering despite the common belief that quantum properties of light

are fragile.

We have carried out a detailed investigation of the transport of nonclassical

and classical photon �uctuations through the multiple scattering medium for

a range of di�erent sample thicknesses. Figure 2.9a and b display the detected

photon �uctuations after multiple scattering plotted versus the sample thick-

ness. Using light sources with classical �uctuations, the multiply scattered light

always displays excess photon �uctuations corresponding to the classical regime

(Fig. 2.9a). Nonclassical light allows entering the quantum regime where the

photon �uctuations are reduced below the classical limit, see Fig. 2.9b. Our
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Figure 2.9: Measured transmitted (triangles) and re�ected (circles) pho-

ton �uctuations scaled to the collection e�ciency η after multiple scat-

tering of light with classical (a, Fa(ω,∆ω) = 4.6) and nonclassical (b,

Fa(ω,∆ω) = 0.52) photon �uctuations versus sample thickness. The classi-

cal limit (∆n2
T,R(ω,∆ω)/⟨n̂T,R(ω,∆ω)⟩ = 1) marks the boundary between the

classical regime and the quantum regime. Every data point is obtained after

ensemble averaging over six di�erent sample positions. The shaded areas cor-

respond to the theoretical predictions for the di�usive regime and incorporate

the uncertainties in Fa(ω,∆ω), ℓ, η, and the extrapolation lengths. The error

bars on the sample thicknesses are only plotted once.

experimental results can be compared to the predictions from the full quantum

theory for multiple scattering of photons (Eqs. (2.17) and (2.18)). Excellent

agreement between experiment and theory is apparent from Fig. 2.9 both in the

classical and quantum regime. The shaded areas in the theoretical prediction
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represent the uncertainties in the sample transmission, incident photon �uctu-

ations, and collection e�ciency. In transmission, we infer an average collection

e�ciency of 36%, while the average value is slightly lower in the re�ection

measurements (34%). Further details on η are discussed in Appendix B.4. It

should be stressed that the comparison to theory requires no adjustable pa-

rameters, and only depends on measured parameters. It was suggested that

random scattering of waves can enhance the maximum amount of information

that can be transmitted, the so-called information capacity. This pioneering

idea is nowadays widely implemented in wireless communication systems. The

observed reduction in the photon �uctuations in the present experiment shows

that the information capacity associated with the multiple scattering channels

can be enhanced beyond the classical limit, as predicted theoretically [44].
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2.5 Observation of spatial quantum correlations
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Figure 2.10: Measured spatial quantum correlation function versus sample

thickness taken at an input power of P = 120µW for classical (Fa(ω,∆ω) = 4.6,

black points) and nonclassical (Fa(ω,∆ω) = 0.52, black triangles) photon

�uctuations of the light source. The spatial quantum correlation function is

ensemble-averaged over six data points and is found to be independent of the

sample thickness which is in agreement with theory in the di�usive regime

(horizontal lines).

The theory predicts that the multiply scattered photon �uctuations depend

on two terms varying as T and T
2
, respectively, cf. Eqs. (2.17) and (2.18).

The latter term is only observable for non vanishing spatial quantum correla-

tions, i.e., the comparison between experiment and theory allows extracting the

spatial quantum correlation function in the frequency-domain CQ
ab0ab1

(ω,∆ω)

(Eq. (2.19)). We observe that the spatial quantum correlation function

CQ
ab0ab1

(ω,∆ω) is directly accessible by measuring in addition to the photon

�uctuations at the sideband frequency ω within the bandwidth ∆ω also the de-

tection e�ciency, the mean number of photons entering the sample ⟨ña(ω,∆ω)⟩,
and the ensemble-averaged sample transmission coe�cient. As sketched in

Eqs. (2.23) - (2.25) it is possible to estimate the mean photon number from

time domain measurements having ful�lled that∆T = 1 s exceeds all other time

scales of the measurement process. From the power of the incident light, P ,
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Figure 2.11: Measured spatial quantum correlation function, CQ
ab0ab1

(ω,∆ω),

versus the mean photon �ux ⟨n̂a(t)⟩ of the incident light beam. We varied the

power between P = 20− 120µW. For classical (Fa(ω,∆ω) = 4.6, black points)

and nonclassical (Fa = 0.52, black triangles) photon �uctuations, positive and

negative spatial correlations are observed, respectively. Every data point rep-

resents an average over three di�erent positions on the sample of thickness

L = 6 µm. The curves are the theoretical predictions and the dashed line

represents the uncorrelated case.

measured with a power meter, we calculate ⟨n̂T,R(t,∆T )⟩ = P λ
h c that we iden-

tify with ⟨n̂T,R(ω, δω)⟩. We note that in the total transmission experiments

we perform a slightly di�erent ensemble average, namely ⟨n̂b0(ωx)⟩⟨n̂b1(ωy)⟩
that equals the general de�nition in the di�usive regime ⟨n̂b0(ωx)⟩ × ⟨n̂b1(ωy)⟩
(Eq. (2.8)).

In the di�usive regime, the spatial quantum correlation function is pre-

dicted to be independent of the sample thickness (Eq. (2.15)). We con�rm

this behavior experimentally, by extracting CQ
ab0ab1

(ω,∆ω) for di�erent sample

thicknesses. During the measurement, the photon �uctuations and the average

number of photons of the light source are kept constant. Figure 2.10 shows the

spatial quantum correlation function for a classical light source and a nonclassi-

cal light source depending on sample thickness. We observe negative (positive)

spatial correlations in the case where the transmitted photon �uctuations are
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in the quantum (classical) regime. The recorded spatial quantum correlation

function does not show any dependence on the sample thickness and shows

an excellent agreement to theory. According to Eq. (2.15) the strength of the

spatial quantum correlation is expected to increase when reducing the number

of photons of the incident light. This pronounced behavior is clearly demon-

strated in Fig. 2.11 and is in excellent agreement with theory. Controlling the

power of the nonclassical light source provides an e�cient way of tuning the

strength of the spatial quantum correlations.

2.5.1 Spatial intensity correlations

In order to test the validity of the di�usive approximation in our experiments,

we investigate experimentally the in�uence of spatial intensity correlations,

C
(C)
ab0a′b1

= C(1) + C(2) + C(3) (Eq. (2.4)), in strongly scattering media. In

the di�usive regime, interference e�ects vanish after ensemble averaging over

many di�erent realizations of disorder. The multiply scattered light is rep-

resented by a superposition of many statistically independent partial waves.

The probability distribution of the transmission coe�cient in a angular direc-

tion b follows the Rayleigh statistics, P (Tab/Tab) = exp(−Tab/Tab) [45, 46].

The total transmittance through the sample from direction a, Ta =
∑

b Tab,

is the sum over all outgoing directions. If the directions are uncorrelated Ta

equals a convolution of N independent Rayleigh distributions that becomes a

Gaussian distribution for large N . Experiments in strongly scattering media

have revealed deviations from the Rayleigh statistics in a single outgoing di-

rection [47] as well as non-Gaussian total transmission distributions [48]. The

deviations from the di�usive transport are dominated by long-range intensity

correlations that survive the ensemble average.

The long-range intensity correlation function for large conductances, g, is

approximately given by

C(2) ≈ 1 +
4

3g
, b ̸= b′. (2.26)

The angular di�erence between the two measured directions b and b′ is much

larger than the average speckle width to avoid any e�ects from the short-range

correlation function, C(1). The dimensionless conductance, g, is obtained by
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Figure 2.12: a, Experimental setup to measure spatial intensity correlations.

L: lens, I: iris (diameter 500µm), P: polarizer, CCD: charged-coupled device

camera. b, Scanning electron microscope image of a three-dimensional sample

consisting of strongly scattering nano wires. c, Recorded volume speckle pat-

tern with the CCD camera, illuminating the sample with a large beam diameter

and, d, small beam diameter of 1.9µm. The measured intensity is color-coded

where white pixel represent high intensities and black pixel low intensities.

summing the total transmission over all incident directions a,

g ≡
∑
a

Ta ≈ Nℓ

L
, g ≫ 1. (2.27)

Based on conservation of energy it has been shown that for a �nite number

of modes, N , in a multiple scattering medium, the conductance is �nite and

the modes in transmission and re�ection are correlated [49]. Neglecting dif-

fusive broadening, the number of modes and hence independent speckles are

determined by the area of the light that illuminates the sample N = 2π2ρ20/λ
2

[48], with ρ0 being the Gaussian beam width of the light beam. For weak

scattering in three-dimensional media N becomes very large and 4/3g can be

neglected in Eq. 2.26. If a multiple scattering medium has a small conductance,

the exponential distribution, P (Tab/Tab), deviates from the Rayleigh statistics

[50, 51]. To study the impact of C(2) on the quantum correlation function,

a direct angular-resolved measurement is required. A possible experimental

setup is discussed in Chapter 3. Here, we explore the long-range correlations

in strongly scattering media by investigating the transmission probability dis-

tribution of multiply scattered light.
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The experimental setup to measure deviations from Rayleigh statistics is

shown Fig. 2.12a. The laser beam emerging from a Ti:Sapphire laser (λ0 =

780nm) is focussed on a strongly scattering sample that consists of disordered

GaP nano wires with an e�ective refractive index n = 2.2, a transport mean

free path of ℓ = 0.27µm, and a sample length L = 4µm [52] (Fig. 2.12b).

Theses samples scatter light much stronger that titanium dioxide samples and

thus, it is more likely to observe deviations from the di�usive regime. The

multiply scattered light is collected with an aspheric lens, spatially �ltered,

and the collimated far �eld speckle pattern is imaged onto a CCD camera.

Di�erent realizations of disorder are recorded by rotating and translating the

sample. It is essential to measure independent speckle pattern and therefore

the speckle correlation length is estimated for each measurement. Hence, we

determine the rotation and translation length of the sample using a motorized

rotation and translation stage. In order to observe any deviations from di�usive

light transport, the illumination area on the sample should be small to obtain

a small number of modes. The beam waist at the focal point of the microscope

objective is estimated to be ρ0 = 1.9µm.

Figures 2.12c and 2.12d show the recorded speckle pattern when the sample

is not in the focus and is in the focus of the microscope objective, respectively. It

is clearly visible that the number of modes, i.e., the number of speckles, reduces

when the illumination area on the sample surface decreases. In accordance to

Eq. (2.27) the conductance decreases simultaneously. To observe long-range

correlations we focus tightly on the sample surface. Calculations show that

di�usive broadening increases the beam width slightly and we expect to mea-

sure a minimum conductance of g ≈ 100 corresponding to a maximum spatial

intensity correlation function of C(2) = 1.014. Since the average spatial width

of the speckles is very large in Fig. 2.12d, we have to record many independent

speckle pattern (sample displacement) to obtain a su�cient ensemble average

and prove the statistical signi�cance of eventual deviations from the di�usion

transport. While recording the speckle pattern, the experimental conditions

should be constant since any correlations induced by the experimental setup

cause deviations from the Rayleigh statistics and C(2) = 1, respectively.

The transmission probability distribution of a single speckle in the di�usive

regime is plotted in Fig. 2.13a. Each pixel on the CCD camera (cf. Fig. 2.12c)
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Figure 2.13: a, Measured transmission probability distribution for a single

speckle in the di�usive regime with sab = Tab/Tab. The gray line represents

the Rayleigh statistics. b, The probability distribution, P̃ (sab) shows the same

data as in a but normalized to the Rayleigh statistics, P (sab) = exp(−sab).

represents a transmission Tab. In order to get a statistical ensemble average,

we record 100 di�erent speckle pattern. The average pixel intensity de�nes

Tab. At a �rst glance, the experimental data follow an exponential decay,

exp(−Tab/Tab) (gray line), that is predicted by the Rayleigh statistics. A nor-

malization of the data to the Rayleigh statistics reveals deviations, presented

in Fig. 2.13b. We observe �uctuations in the experimental transmission dis-

tribution which we attribute to the slightly nonlinear response of the CCD

camera. Thus, for a weakly focussed light source onto a very strongly scatter-

ing sample as used here, we do not �nd signi�cant deviations from the di�u-

sive regime. Within the experimental accuracy, our experiment can therefore

be approximated by the di�usion theory and the spatial quantum correlation

function can be extracted from total transmission measurements. By replac-

ing the CCD camera with an array of photo diodes (with a linear response),

angular-resolved photon �uctuations could be investigated in quantum noise

measurements. This would allow us to estimate the impact of classical inten-

sity correlations such as C(2) on the spatial quantum correlation function.
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2.6 Conclusion

Multiple scattering was found to induce in�nite range spatial correlations that

are of a purely quantum origin. A continuous-mode quantum theory was de-

veloped to describe multiple scattering in the realm of quantum optics. Using

squeezed light source, the quantum nature of multiply scattered light was in-

vestigated by evaluating the variance in multiply scattered photon �uctuations.

Both positive and negative spatial quantum correlations were observed when

varying the quantum state incident to the multiple scattering medium, and

the strength of the correlations was controlled by the number of photons. Our

experimental results were in excellent agreement with the developed theory. A

very interesting extension to this work would be to send two di�erent quantum

states of light inside a multiple scattering medium and to investigate predicted

quantum interference that survive multiple scattering [53, 54].





Chapter 3

Photon Statistics in

disordered media

3.1 Introduction

The photon statistic of a light source determines whether it is described to

be classical or nonclassical. One method to study multiply scattered photon

�uctuations is the quantum noise measurement, as discussed in Chapter 2. Al-

ternatively, the arrival time of the individual photons can be recorded, leading

to a photon counting statistic that determines the mean photon number and

its variance in the time-domain [29]. So far, quantum properties of multiply

scattered light have only been investigated by performing a spatial average

over the entire volume speckle pattern. In order to measure spatial quantum

correlations directly or to observe quantum interference of multiply scattered

photons, it is essential to investigate the quantum nature of light for di�erent

angular directions separately.

This chapter concerns angular-resolved measurements to study photon

counting statistics of multiply scattered light in a single optical speckle. Sec-

tion 3.2 discusses the direct measurement of spatial photon correlations. This

35
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is the spatial analogue to the Hanbury Brown and Twiss experiment [55] gen-

eralized to a multiple scattering setting. We perform a detailed study of the

angular and temporal dependence of the photon correlation function. When

interference survives the ensemble average, the light transport shows devia-

tions from the di�usion theory. One example is the coherent backscattering

of light [56, 57]. Constructive interference of counter-propagating light paths

results in an enhanced backscattered intensity. For the direct backscattering

direction, the multiply scattered light intensity is twice as high as expected

from di�usive light transport. In Section 3.3, the backscattered photon �uctu-

ations are investigated using angular-resolved photon counting statistics. The

ensemble-averaged variance in the backscattered photon �uctuations that ex-

hibit the same polarization as the light source (coherent backscattering) is much

larger than the variance in backscattered photon �uctuations in the orthogo-

nal polarization (di�usive transport). This enhancement is found to be larger

than the corresponding enhancement of the coherently backscattered intensity.

These experiments explore the complex interplay between interference e�ects

in strongly scattering media and the quantum nature of light.

3.2 Angular-resolved photon-coincidence mea-

surements

In Chapter 2, the spatial quantum correlation was extracted from total trans-

mission noise measurements of multiply scattered light in the frequency domain.

Here, we measure directly spatial time-correlations of photons that are induced

by multiple scattering of light. Since we use exclusively a classical light source

in the following experiments, we refer to this type of correlation as spatial pho-

ton correlations. In accordance with the de�nition in the frequency domain

(Eq. (2.8)), we de�ne the dimensionless spatial photon correlation function

between two angular directions b0 and b1 as

CQ
b0b1

(t, t′,∆t) =
⟨: n̂b0(t,∆t)n̂b1(t

′,∆t) :⟩
⟨n̂b0(t,∆t)⟩ × ⟨n̂b1(t

′,∆t)⟩
. (3.1)

The classical ensemble average of the stochastic process of multiple scattering

is denoted by the bars. The normally ordered quantum mechanical expectation
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value of the numerator represents the coincidence counts between two detec-

tors within the time interval ∆t and averaged over many time intervals. We

de�ne the �ux operator n̂(t) = â†b(t)âb(t) (see Eq. (2.21)) that, when integrating∫ t+∆t

t
dt′ ⟨n̂(t′)⟩, we obtain the dimensionless mean photon number n̂b(t,∆t)

within the measurement time ∆t [33]. We further consider a stationary light

source whose statistical �uctuations do not change in time. The spatial cor-

relation function therefore only depends on the time di�erence τ = t′ − t of

the measurement between b0 and b1 and the time argument t can be neglected.

Similar to measurements in the frequency-domain,[28, 30] the quantum prop-

erties of light can be probed in the time-domain. A single photon counting

detector records n photons within a time interval ∆t. The mean number of

photons ⟨n̂(∆t)⟩ as well as the variance in the photon number �uctuations,

∆n2(∆t) = ⟨n̂2(∆t)⟩ − ⟨n̂(∆t)⟩2, are obtained by counting photons in many

time intervals ∆t. Figure 3.1 plots a stream of photons that is recorded by

a single photon counting detector. Both, the average number of photons and

the variance in the photon �uctuations are dependent on ∆t. The Fano fac-

tor, F (∆t) ≡ ∆n2(∆t)/⟨n̂(∆t)⟩ illustrates that it is possible to probe di�erent

quantum states of light by changing the time interval ∆t (see Appendix B.5).

In the following this property is exploited to investigate the quantum nature

of multiple scattering.

Utilizing the continuous mode quantum theory to relate the spatial pho-

ton correlation function to the annihilation and creation operators of the light

source. Having an incident light wave in direction a, we get

CQ
ab0ab1

(τ,∆t) =
⟨: n̂a(∆t)n̂a(τ,∆t) :⟩

⟨n̂a(∆t)⟩2
× C

(C)
ab0ab1

. (3.2)

The �rst term on the right side represents the second order coherence function

of the light source, g(2)(τ), while the latter factor is due to spatial intensity

correlations (Eq. (2.4)). For the selected case of a thermal light source we have

[42]

CQ
ab0ab1

(τ) =
[
1 + exp

(
−π(τ/τc)

2
)]

× C
(C)
ab0ab1

, (3.3)

with τc being the coherence time. Here, ∆t is chosen in such a way that the

Fano factor of the light source, Fa(∆t), re�ects the characteristics of thermal

light, Fa(∆t) = ⟨n̂a(∆t)⟩+1. In contrast photons of a coherent light source are
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n(t, t )D 2
n(t+ , t )D 2Dt2

...

n(t, t )D 1n(t+ , t )D 1Dt1
n(t+N , t )D 1Dt1

...

Figure 3.1: Photon counting detection in the time-domain. A photon detector

records the arrival times of photons (spheres) from a light source. The photon

stream can be divided in N equidistant time intervals, ∆t1, to determine the

mean photon number ⟨n̂(∆t1)⟩. Changing the interval length from ∆t1 to ∆t2

results in a di�erent average photon number and in a di�erent variance in the

photon �uctuations.

uncorrelated (Fa(∆t) = 1) and the angular photon correlation function equals

the classical intensity correlation function.

3.2.1 Experimental setup

The experimental setup is displayed in Fig. 3.2. As a light source we use a

continuous wave Ti:Sapphire laser (λ = 780 nm) that is focused onto a ground

glass plate. Super-Poissonian photon statistics are obtained by a superimposing

coherent beams with random amplitudes and phases. For that purpose the

ground glass plate is rotated slowly and only fraction of the transmitted light

is collected using an iris with an aperture that is smaller than the average

speckle size of the scattered light generated by the ground glass plate [58, 59].

The collimated light beam is then focussed onto the front surface of a multiple

scattering medium consisting of titanium dioxide nano-particles1 (L = 6.3 ±
0.2µm, ℓ = 0.9 ± 0.1µm [60]). Two single photon counting detectors (D1,

D2) are positioned behind the sample to record multiply scattered photons at

di�erent angular directions. Detector D1 can be rotated to vary the angle ∆Θ

between both detectors. We avoid the contribution from ballistic propagation of

light through the multiple scattering medium by only collecting light polarized

perpendicular to the incident light polarization.

1Di�erent sample batch as in Chapter 2.4 but same fabrication process.
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Figure 3.2: a, Sketch of the experimental setup. L: lens, G: ground glass plate

that can be rotated as indicated by the arrow, I: iris, P: polarizer, F: 10 nm

interference �lter, ∆Θ: angle between detector D1 and D2; a: incident light

channel; b0, b1: exit light channels. To probe di�erent realizations of disorder

the sample can be displaced. Optional a neutral density �lter (OD) with an

optical density of of OD= 2 · 10−5 can be inserted in front of detector D1 to

attenuate the light beam. b, Recorded photon counting distribution, P (n(∆t)),

of the light source on detector D1 after the neutral density �lter using a time

interval of ∆t = 266µs to bin the measured photons. The photoncounts n(∆t)

have been measured N times. c, Same as measurement as in b using a time

interval of ∆t = 100µs.

In order to characterize the quantum properties of the light source, we

measure the photon statistics, i.e., we create a histogram from the number of

photons, n̂a(∆t), that are detected within ∆t. This distribution determines

directly the variance in the photon �uctuations. To this end, the sample is

removed and D1 is positioned in the light beam emerging from the source. The

light source has been attenuated with a neutral density �lter to protect the

photon counting detector. Figure 3.2b displays the measured super-Poissonian

photon statistics for ∆t = 266µs yielding FOD(∆t) = ⟨n̂OD(∆t)⟩ = 29. The

properties the light source without attenuation is calculated using the sepa-
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Figure 3.3: a, Speckle pattern that was obtained by rotating detectorD1 behind

the sample. b, Angular intensity correlation function C(1)(∆Θ) of the speckle

pattern, shown in a. The full width at half maximum (straight line) represents

the average width of the speckles.

rately measured optical density, OD= 2 · 10−5, of the �lter. We obtain a Fano

factor of Fa(∆t) ≡ (FOD(∆t) − 1)/OD + 1 = 14 · 105 and a mean number of

photons of ⟨n̂a(∆t)⟩ = ⟨n̂OD(∆t)⟩/OD = 14 · 105. Hence, the light source in-

cident on the multiple scattering medium exhibits the properties of thermal

light and is called Gaussian radiation source.[58] By varying ∆t, the photon

counting distribution changes. Figure 3.2c shows exemplarily the measured

(attenuated) photon statistics for ∆t = 100µs with a corresponding Fano fac-

tor of FOD(∆t) = 17 and mean number of photons of ⟨n̂OD(∆t)⟩/OD = 10.

By removing the ground glass plate in the incident light beam, we measure

FOD(∆t) = 1, independent of ∆t, re�ecting the coherent state of the continu-

ous wave Ti:Sapphire laser.

We ensue to probe di�erent speckles, i.e. independent output modes b0 and

b1, by determining the average speckle width, α. A typical intensity speckle

pattern of multiply scattered light is shown in Fig. 3.3a, recorded by moving

detector D1 behind the sample. From the angular-resolved speckle pattern we

calculate the intensity correlation function C(1)(∆Θ) [61]

C(1)(∆Θ) ≡
∫

dΘ
δI(Θ)δI(Θ +∆Θ)

σ(∆Θ)× σ(Θ +∆Θ)
, (3.4)

where δI(Θ) = I(Θ) − I(Θ) denotes the intensity �uctuations and σ(∆Θ) =
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I(Θ)2 − I(Θ)
2
is the variance of the intensity distributions. The full width at

half maximum of C(1)(∆Θ) is determined by the average speckle width that

is calculated to be α = 1.5◦ (Fig. 3.3b). To ensure light collection from only

a single speckle spot on each detector, corresponding to a single output mode,

the apertures in front of the photon counting detectors have to be adjusted

accordingly. In the following experiments, the angle between both detectors,

∆Θ, is chosen to be much larger than the width of a single speckle. Thereby

independent output modes are probed and the C(1)(∆Θ) correlation function

does not contribute to the photon correlation function.

3.2.2 Angular and temporal dependence of the spatial pho-

ton correlation function

We measure the spatial photon correlation function (Eq. (3.1)) between two an-

gles by recording simultaneously the ensemble-averaged number of photons in

each direction (⟨n̂b0(∆t)⟩, ⟨n̂b1(∆t)⟩) as well as the ensemble-averaged photon-

coincidences between detector D1 and D2 (⟨: n̂b0(∆t)n̂b1(τ,∆t) :⟩). The en-

semble average is achieved after repeating the measurement at 200 di�erent

sample positions (indicated by the arrows at the sample in Fig. 3.2) corre-

sponding to di�erent realizations of disorder. The experimental con�gura-

tion further allows us to measure independently classical intensity correlations

C
(C)
ab0ab1

(cf. Eq. (2.4)). For this purpose we record the ensemble-averaged

number of photons ⟨n̂b(∆t)⟩ on each detector and the joint ensemble average

⟨n̂b0(∆t)⟩⟨n̂b1(∆t)⟩ on both detectors.

First, the spatial photon correlation function is studied depending on the

average number of photons and Fano factor of the incident light �eld. Fig-

ure 3.4 shows the measured ensemble-averaged spatial photon correlation func-

tion between detector D1 and D2 that is induced by multiple scattering of light

(see Eq. (3.1)). The quantum properties of the light source are changed by

varying ∆t. For light sources with super-Poissonian probability distributions

(Fa(∆t) > 1) we measure a decrease of CQ
ab0ab1

(0,∆t) with increasing number of

photons and slower increasing Fano factor (gray data points). On the contrary,

we observe that CQ
ab0ab1

(0,∆t) is independent of the incident number of pho-

tons for a coherent light source, as obtained by removing the ground glass plate
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(black data points). In order to compare the experimental data with theory

(Eq. (3.3)) we measure, in addition to CQ
ab0ab1

(0,∆t), also the intensity correla-

tions induced by the multiple scattering medium. Afterwards, the Fano Factor

of the light source is determined with detector D1 as a function of ∆t by re-

moving the sample. The experimental data are found to be in good agreement

with theory without any adjustable �tting parameters. The slightly smaller

predicted values of the angular photon correlations (gray line in Fig. 3.4) are

attributed to variations in the rotation speed of the ground glass plate over

time, which in�uence the Fano factor. For very low number of incident pho-

tons we observe a saturation at CQ
ab0ab1

(0,∆t) ≈ 2.9 corresponding to very short

time intervals ∆t. This e�ect we attribute to the properties of the light source.

The phase of an otherwise coherent light source is scrambled by the rotating

glass plate imposing an upper limit on the ratio (Fa(∆t)−1)/⟨n̂a(∆t)⟩ and the

correlations, respectively, for times ∆t smaller than the time scale on which the

phase distortion occurs. These results demonstrate that the quantum aspects

of multiple scattered light depend sensitively on the investigated timescales,

even though samples with static disorder are probed. Thus, the strength of

the angular photon correlation function can be controlled by varying ∆t and

the number of photons and the Fano factor of the light source, respectively,

illuminating the multiple scattering medium.

In the di�usive regime, spatial photon correlations are predicted to be in-

�nite in range, i.e., to be independent of the exit direction. This holds if the

distance between the two coincidence detectors is much larger than the average

speckle width and the classical intensity correlation function C(1)(∆Θ) can be

neglected. Figure 3.5a plots the spatial photon correlation function as a func-

tion of the angle ∆Θ between the detector D1 and D2 for a coherent and for a

Gaussian radiation source. The error bars in CQ
ab0ab1

(0,∆t) arise mainly from

uncertainties in the classical intensity correlations caused by a �nite number

of disorder realizations contributing to the ensemble average. In good agree-

ment with theory we do not observe a dependence of the photon correlations

on the angle between the direction of multiply scattered light con�rming that

the spatial photon correlation function is in�nite in range.

In order to investigate the temporal dependence of the spatial photon cor-

relations, a relative time di�erence, τ , is induced between detector D1 and D2.
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Figure 3.4: Photon correlation function CQ
ab0ab1

(0,∆t) depending on ⟨n̂a(∆t)⟩
and Fa(∆t) (top axis) that is measured by slowly rotating the ground glass

plate of the light source (gray circles). Measurements for a coherent state show

that CQ
ab0ab1

(0,∆t) is independent of ⟨n̂a(∆t)⟩ (black squares, Fa(∆t) = 1)).

The theoretical predictions contain no free �tting parameters (solid curves).

Figure 3.5b presents the spatial photon correlation function depending on τ

using a Gaussian radiation source. As the time di�erence increases, a clear de-

cay of CQ
ab0ab1

(τ,∆t) is observed. Fitting the experimental results with theory

(Eq. (3.3)), the coherence time of the Gaussian radiation source is determined

to be τc = 750µs. The coherence time describes the dephasing of a light source,

i.e. the average time interval between phase distortion �uctuations of the light

source. Only coherence times of the light source can be resolved that are larger

than ∆t, i.e., the experimentally measured photon statistic does not contain

information about photon �uctuations on shorter timescales. As τc > ∆t we

resolve the coherence time of our Gaussian radiation source. The magnitude

of spatial intensity correlation function does not exhibit any time dependence.

Thus, the time response of CQ
ab0ab1

(τ,∆t) only originates from the quantum

properties of the light source, namely a temporal bunching of photons. τc is

therefore a property of the light source that survives the complex process of

multiple scattering of light con�rming that there exists quantum properties

that are robust against disorder. For comparison, the temporal dependence
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Figure 3.5: a, Angular dependence of CQ
ab0ab1

(0,∆t) for a coherent light source

(black squares) and a Gaussian radiation source (gray circles). Detector D1 is

rotated behind the sample to change ∆Θ. The straight lines are the theoretical

predictions assuming that the classical intensity correlations equal to unity. b,

Measured temporal dependence of the spatial photon correlation function for

a Gaussian radiation source (gray circles) and a coherent light source (black

squares), plotted with representative selected error bars. The straight gray line

is a �t to the data with the coherence time as a free parameter. The black line

represents the theory for a coherent light source.

of the spatial photon correlation function is investigated for a coherent light

source, too (Fig. 3.5b). We �nd a good agreement between experiment and the-

ory, which predicts that the spatial photon correlation function is independent

of τ and equals unity for a coherent light source.

3.3 Quantum properties of light in the coherent

backscattering cone

The second part of this chapter is devoted to the quantum properties of multi-

ply scattered light in the realm of coherent backscattering. Coherent backscat-

tering arises from constructive interference of counter-propagating waves, as

illustrated in Fig. 3.6a. A plane wave enters a disordered medium and is mul-

tiply scattered. During the propagation through the medium the wave splits
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Figure 3.6: a, Illustration of coherent backscattering. An incident plane wave

(wave vector k⃗i) is multiply scattered inside a disordered medium and exits the

medium with a wave vector k⃗s. For each random path (solid curve) exists a

counter-propagating path undergoing the scattering events in a time-reversed

order (dashed curve). The path length di�erence depends on the distance d

and the scattering angle Θs. The coherent backscattering cone arises after

summing over all path contributions by performing an ensemble average. b,

Simulation of the coherent backscattering cone as a function of the scattering

angle in x and y direction. The parameter used for the simulation are |⃗k|ℓ = 7.4

and ε = 2 (see Appendix C.3).

up in a multitude of di�erent paths. The solid curve in Fig. 3.6a depicts one

possible path where the wave enters at position A and exits the medium af-

ter many scattering events at position B. The angle between the wave vector

of the incident wave, k⃗i, and the scattered wave, k⃗s, determines the scatter-

ing angle Θs. Surprisingly, for each random path a counter-propagating path

exists, i.e., a plane wave enters the medium at position B and is scattered

in time-reversed order (dashed line). The counter-propagating wave exits the

medium at A under the same angle Θs [62]. The path di�erence between the

wave exiting at A and the wave exiting at B depends on Θs and the distance

d = λ0 cosΘs between A and B inducing an angle-dependent interference pat-

tern in the far �eld. In the case of exact backscattering (Θs = 0mrad), all

counter-propagating waves interfere constructively, independent on d. For in-

creasing Θs the far �eld pattern depends strongly on d. Figure 3.6b illustrates

a simulation of a coherent backscattering cone [63]. The backscattered inten-

sity for Θs = 0mrad is exactly twice as high as it is predicted by the di�usion
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approximation corresponding to a maximum enhancement factor of ε = 2.

3.3.1 Experimental setup

The width of a coherent backscattering cone depends strongly on the scattering

strength of the sample. Scattering is most pronounced when a large change

in the refractive index occurs over length scales that are comparable to the

wavelength of light. We have studied macroporous, single-crystalline gallium

phosphide (GaP) samples with a refractive index of n = 3.3 and negligible

absorption for light around λ = 800 nm. The thickness of the sample and the

size of the voids can be controlled by electrochemical etching [64].

The experimental setup used to measure coherent backscattering is pre-

sented in Fig. 3.7. As a light source (λ = 780nm) we either use a Ti:Sapphire

laser or a spontaneous parametric down-conversion source (discussed below).

The collimated light beam is directed onto a multiple scattering medium us-

ing a beam splitter. The backscattered photons from the sample, that are

transmitted through the beam splitter, can be detected in an angular-resolved

measurement within a backscattering range of Θs = −200mrad . . . 200mrad.

The angular resolution, ∆Θs, is varied by changing the iris aperture in front

of detector D2. The angle-dependent transmission through the beam splitter

has been measured independently. This allows us to account for losses at the

beam splitter and deduce the variance in the photon �uctuations directly at the

sample surface. The statistical ensemble average over di�erent realization of

disorder is achieved by slowly rotating the sample while recording the multiply

scattered light. A challenge of coherent backscattering experiments is the con-

tribution of single scattering events. They do not have a distinct time-reversed

path and contribute to a background intensity that reduces the enhancement

factor. The direct re�ection can partly be avoided by tilting the sample relative

to the incident light. The polarization of the multiply scattered light is selected

with a polarizer.

In order to characterize our setup, the coherent backscattering cone of the

GaP sample is studied with a reference setup that has an angular resolution

of ∆Θs = 5mrad [60]. First, the ensemble averaged light intensity is mea-

sured depending on Θs, for the same polarization as the incident light beam
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Figure 3.7: Scheme of the experimental setup. As a light source a Ti:Sapphire

(Ti:Sa) laser (gray dashed-dotted line) and spontaneous parametric down-

conversion (SPDC) light source can be used. The black dashed line illustrates

the ultra violet (UV) pump laser beam to generate a SPDC photon pair (solid

gray lines, signal and idler photon). The idler photon serves as a trigger and

is detected with detector D1 while the signal photon is used for the coherent

backscattering experiment. The beam width of the light sources is approx-

imately 2mm. Detector D2 records multiply scattered photons and can be

rotated behind the sample. The rotation precision is 1.7mrad. The thickness

of the GaP sample is L = 10.3µm with a sample re�ection larger than 90%.

B: beam block, BS: 2 inch 50:50 beam splitter, I: iris, IF: 10nm interference

�lter at λ = 780 nm, L: lens, P: polarizer, S: sample that can be rotated. The

elements placed directly in front of the detectors (I, L, IF) are positioned inside

a tube that is mounted on the detector in order to suppress stray light from

the surrounding.

I∥(Θs). Afterwards, the measurement is repeated for the orthogonal polar-

ization, I⊥(Θs). The contribution of the coherent backscattering is visualized

by plotting the ratio I∥(Θs)/I⊥(Θs), as displayed in Fig. 3.8a. A �t to the

data gives a transport mean free path of ℓ = 0.8µm, an extrapolation length

of ze = 0.7µm, and an enhancement factor of ε = 1.84 (cf. Appendix C.3).

The enhancement-factor is close to two proving that single scattering events

and absorption do not a�ect the measurement signi�cantly. The small round-

ing at Θs = 0mrad can be attributed to the experimental resolution. Next,

the coherent backscattering cone is studied with our setup, as illustrated in
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Figure 3.8: Coherent backscattering cone of a porous GaP sample at λ =

780nm. a, Measured in a reference setup and, b, in the setup shown in Fig. 3.7

using a continuous wave Ti:Sapphire laser. The gray curve in the left panel

is a �t to the experimental data. The obtained �tting parameters are used to

calculate the gray curve shown in right panel. The curve does not contain any

adjustable parameter and is determined by the angular resolution of ∆Θs =

60mrad of the setup.

Fig. 3.7. As a light source, the Ti:Sapphire laser is used. For experiments in

the few photon regime (discussed below), a low angular resolution is required

to collect a su�cient amount of backscattered photons from di�erent angles.

Figure 3.8b displays the coherent backscattering cone, that has been measured

with a resolution of ∆Θs = 60mrad. We observe a rounding of the cone as

compared to Fig. 3.8a. In order to model the experimental data, we apply an

angular average to the �t-function of the reference measurements. The result-

ing function is plotted as a gray curve in Fig. 3.8b and in agreement with the

experimental data proving the applicability of the setup.

In the following, two experiments are presented that investigate the quan-

tum aspects of light in the realm of coherent backscattering. Section 3.3.2

focusses on the feasibility to perform multiple scattering experiments on the

level of single photons. Section 3.3.3 discusses the measurement of angular-

resolved photon statistics to characterize the variance in the photon number in

the coherent backscattering cone.
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3.3.2 Coherent backscattering in the few photon regime

Quantum entanglement [65] is a necessary basis for fundamental tests of quan-

tum mechanics such as quantum interference [66] and for applications such

as quantum cryptography [67] and quantum teleportation [18]. It describes

correlations between quantum systems, for example in the polarization of two

photons, that are much stronger than any classical correlation could be. An

interesting question is now, whether it is possible to observe quantum corre-

lations after one of the two photons undergoes a multiple scattering process.

In the di�usive regime the polarization of light is scrambled and thus, the en-

semble averaged polarization correlation between the photon pair vanishes. In

the coherent backscattering cone, the polarization correlation between the two

photons is expected to be dependent on the backscattering angle and higher

than in the di�usive regime. Eventually, quantum correlated photons might

be observable, even after the complex stochastic process of multiple scatter-

ing. The fundamental requirement to study the correlations is to detect the

initially quantum correlated photon pairs after the multiple scattering process.

Therefore, in the �rst approach we want to focus on the feasibility of a coher-

ent backscattering experiment in the few photon regime and do not aim our

attention on the generation of quantum correlated photons.

As a light source a spontaneous parametric down-conversion source is estab-

lished that generates pairs of photons [68, 69, 70]. To initiate the spontaneous

parametric down-conversion process, a femto-second pulsed laser (λ = 390 nm)

pumps a nonlinear beta-barium borate crystal generating at maximum one

photon pair per pulse (λ = 780 nm). One photon pair is composed of an idler

photon and a signal photon with orthogonal polarizations. In the experiment,

all idler photons are directed onto detector D1 while the signal photons are di-

rected onto the multiple scattering sample (Fig. 3.7). A characterization of the

light source showed that 70.000 photon pairs are generated per second. Next,

a photon-coincidence measurement between detector D1 and D2 is established

to identify the backscattered signal photons. For that purpose, we record the

number of backscattered photons during a measurement time of T = 140 s.

After postprocessing the data, we �nd that the signal photons can clearly be

distinguished from the background photons (see Appendix C.2). To improve
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Figure 3.9: Measurement of the coherent backscattering cone in the few pho-

ton regime using a triggered single photon source and an angular resolution

of ∆Θs = 60mrad. a, Detected average photocounts (∆t = 1 s) for the same

polarization (black circles) and cross polarization (gray triangles) of the light

source. b, Ratio of ⟨n̂∥(∆t,Θs)⟩/⟨n̂⊥(∆t,Θs)⟩ to display the coherent backscat-
tering cone (black circles). The theoretical prediction is represented by the gray

curve used in Fig. 3.8b without any adjustable parameter.

the experimental sensitivity, the photon-coincidence measurement is electron-

ically gated using the pulses of the ultraviolet pump laser. For visibility, the

measurement time is divided in time intervals of∆t = 1 s. The angular-resolved

mean photon number, ⟨n̂∥,⊥(∆t,∆Θs)⟩, of the backscattered signal photons for

both orthogonal polarizations is presented in Figure 3.9a. The contribution of

coherent backscattering is clearly observed in the conserved polarization, even

on the level of only a few recorded photons per second. In average only two

photons per angular position and second are detected highlighting the com-

plexity of the measurement. The low collection e�ciency originates mainly

from the low number of backscattered photons in a limited angular range and

the losses on the beam splitter. Figure 3.9b plots the corresponding coherent

backscattering cone. In order to compare the coherent backscattering cone

with the characterization measurement, the �t-function of Fig. 3.8b is plotted

in Fig. 3.9b. A good agreement is obtained between theory and experimental

data. The large �uctuations in the cone originate from the low average number

of photons.
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This experiment con�rms that the established light source is su�cient to

carry out a multiple scattering experiment in the coherent backscattering cone.

The next possible experiment could be the investigation of nonclassical corre-

lations. The idler and the signal photons could be spatially and temporally

overlapped on a beam splitter creating quantum correlated photon pairs. The

photons from one output port could be directed to detector D1 and the photons

from the second output port could be directed onto the sample and recorded

with detector D2. To detect a high initial correlation of the photon pairs, in-

terference �lter with a narrow bandwidth in front of the detectors and a good

overlap of the photons on the beam spitter are essential. The rate of entangled

photons reported with a Type-II beta-barium borate crystal (as is it used in

our case) therefore reduces to only a few thousand counts per second [70]. This

is not su�cient to conduct an angular-resolved multiple scattering experiment

within a reasonable measurement time. A further drawback of this method

is that the quantum correlation of the photons is only approximated by post-

selecting half of the total quantum state when the photons leave via di�erent

output ports of the beam splitter [68]. Recently, a light source based on PP-

KTP nonlinear crystal was presented generating 273.000 pairs of inherently

entangled photons [65]. The light source could be feasible for the investigation

of polarization correlations in the coherent backscattering cone.

3.3.3 Measurement of the photon number �uctuations

Using classical (nonclassical) light sources, we demonstrated that the ensem-

ble averaged Fano factor of multiply scattered light is reduced (enhanced) ap-

proaching one for very thick samples FT,R → 1 (Eqs. (2.17) and (2.18), Chap-

ter 2). This phenomenon originates from quantum vacuum �uctuations that

are induced by multiple scattering.

Here, we report on an increase of the Fano factor of the multiply scattered

light in the coherent backscattering cone, as compared to the Fano factor of

the coherent light source (continuous wave Ti:Sapphire laser). Figure. 3.10 dis-

plays the Fano factor of the backscattered photon �uctuations that increases

as ∆t increases. We attribute the enhancement of the Fano factor to the ro-

tation of the sample while recording the photon �uctuations. Measurements



52 Chapter 3. Photon Statistics in disordered media

10
1

10
2

10
3

10

100

1000

F
(D

t,
Q

s
)

Dt (ms)

Figure 3.10: Measured Fano factor of the backscattered photon �uctuations for

Θs = 0mrad depending on the time interval ∆t. The sample is slowly rotated

with a constant speed while recording the photon statistics.

of the backscattered photon �uctuations without rotating sample do not show

an increase in the Fano factor supporting our assumption. When the sample

rotates, the recorded photocounts of the backscattered light belong to di�erent

realizations of disorder. For short time intervals, only a few disorder realiza-

tions are averaged and we measure a Fano factor close to one. The Fano factor

increases as ∆t increases because multiply scattered photons from many dif-

ferent realizations of disorder contribute to the photon statistics. This shows a

subtle but important point: it makes a di�erent whether we evaluate the quan-

tum mechanical expectation value �rst or the classical ensemble average �rst.

In Section 3.2, ⟨n̂(∆t)⟩ has been measured whereas here we evaluate ⟨ n̂(∆t) ⟩.

Figure 3.11a plots the coherent backscattering cone of the average number

of photons for two di�erent time intervals. Both graphs are exactly on top

of each other proving that the intensity coherent backscattering cone, is not

a�ected by the sample rotation. The corresponding coherent backscattering

cone of the photon �uctuations is displayed in Fig. 3.11b. For small time in-

tervals the multiply scattered light is Poissonian distributed and the maximum

enhancement factor, εn, of the variance in the photon �uctuations equals the

intensity enhancement factor, ε. As the Fano factor increases, εn increases
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Figure 3.11: a, Measured coherent backscattering cone of the backscattered

intensity,⟨ n̂∥(∆t,Θs) ⟩/⟨ n̂⊥(∆t,Θs) ⟩, reconstructed from the detected average

number of photons. The used GaP sample has a lower re�ection and scatter-

ing strength than the one used in Fig. 3.8. Therefore, the backscattering cone

appears more narrow and has a smaller intensity enhancement factor. b, Co-

herent backscattering cone obtained from the backscattered variance in the

recorded photon �uctuations, ∆n2
∥(∆t,Θs) /∆n̂2

⊥(∆t,Θs). The angular reso-

lution in the present con�guration is ∆θ = 9mrad. The dip in the center of

the coherent backscattering cone might be due to instabilities in the rotation

speed of the sample. Further measurements showed dips at other randomly

distributed angles.

while ε does not change. This illustrates that the enhancement factor of the

photon �uctuations depends clearly on the induced excess �uctuations in the

multiply scattered light. Figure 3.12 plots the measured enhancement in the

backscattered intensity and backscattered variance in the photon �uctuations

depending on the Fano factor of the multiply scattered light. While the en-

hancement in the intensity does not change (ε = 1.3), we observe a continuous

increase in the noise enhancement up to εn = 2.6. This value is much larger

than the maximum enhancement of the backscattered intensity, ε ≤ 2 proving

that the quantum nature of multiply scattered light, explored by the photon

�uctuations, behaves fundamentally di�erent than the corresponding classical

intensity properties.
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Figure 3.12: Enhancement factor of the photon �uctuations, εn (black circles),

and the intensity, ε (gray triangles), as a function of the Fano factor of the

multiply scattered light for Θs = 0mrad. The Fano factor has been tuned by

changing ∆t.

3.4 Conclusion

We reported on angular-resolved measurements of photon counting statistics in

multiple scattering media. In the di�usive regime, the spatial photon correla-

tion function was found to be in�nite in range, i.e., independent on the direction

of propagation of multiply scattered photons. For a Gaussian radiation source,

the strength of the spatial photon correlation function decreased as the time

di�erence in the measurement between the detectors was increased. The ex-

perimental results were found to be in excellent agreement with the quantum

theory of multiple scattering. In further experiments the quantum properties

of light were investigated in the coherent backscattering regime. The coherent

backscattering cone was studied in the few photon regime using a spontaneous

parametric down-conversion light source. Using a bright coherent light source,

the variance in the photon �uctuations was found to be altered by perform-

ing a statistical ensemble average over di�erent realizations of disorder, while

measuring the photon statistics in the coherent backscattering cone. In par-

ticular, the ensemble-averaged photon �uctuations depended on the scattering
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angle and on the measured polarization. The variance in the photon �uctua-

tions showed a coherent backscattering cone with enhancement factors larger

than two representing the maximum value of the intensity enhancement factor.

We believe that the experiments will inspire future work to develop a dynamic

quantum theory in the realm of coherent backscattering. A spontaneous down-

conversion source could be utilized to generate entangled photons and study

the propagation of correlated photons in disordered media [31, 71].
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Chapter 4

Theory of one-dimensional

Anderson localization

4.1 Introduction

In a disordered medium, light is multiply scattered along di�erent directions.

Due to interference of the di�erent possible light paths inside the medium a

complex spatial intensity distribution is generated. After ensemble averaging

over all statistical realizations of disorder, interference e�ects are usually neg-

ligible and the light transport is approximated by di�usion theory. If multiple

scattering is very pronounced wave interference can lead to new physics. The

most prominent example is the formation of Anderson localization of light [21].

In this Anderson-localized regime interference causes large �uctuations in the

spatial intensity pro�le while its ensemble-averaged envelope decays exponen-

tially away from the light source [72, 73]. As a consequence, light is con�ned

by disorder on a typical length scale called localization length, ξ [74]. Ander-

son localization was introduced by P. W. Anderson to explain localization of

electrons in a random spatial potential [21] but has also been observed for,

e.g., light [22, 17, 3], sound [23], and matter waves [24]. In three-dimensional

systems a phase transition between di�usion and localization is expected when

59
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the transport mean free path, i.e., the average distance between two scattering

events, is comparable to the wave number [75]. In lower dimensions a crossover

takes places from ballistic or di�usive light transport to localization. Anderson

localization occurs in a one-dimensional multiple scattering medium, when the

sample length, L, exceeds the localization length. Con�rming Anderson local-

ization remains a major challenge since any light losses in the system, such

as leakage or absorption, lead to an exponential decay of the intensity pro-

�le as well [26, 27]. This problem has partly been circumvented by analyzing

transmission distributions [76]. However, a method to measure the localization

length, ξ, and the exponential loss length, l, is still lacking.

In this chapter, we provide a theoretical framework to calculate the statisti-

cal properties of Anderson localization in a one-dimensional disordered medium.

We develop a method to distinguish unambiguously Anderson localization from

losses by analyzing the linewidth distributions of Anderson-localized modes. In

Section 4.2 Anderson localization is theoretically studied positioning emitters

outside and inside a one-dimensional multiple scattering medium. The calcu-

lations are based on the transfer matrix theory [77] and a Green's function

formalism [78, 79]. An important property of a disordered medium is its local

density of states which is calculated analytically in the course of this chapter.

Between di�erent realizations of disorder, large �uctuations in the local den-

sity of states are observed originating from light scattering in close proximity

to the emitter [80]. Section 4.4 discusses calculated linewidth distributions of

Anderson-localized modes. These results form the basis to con�rm Anderson

localization experimentally in one-dimensional photonic structures, as demon-

strated in Chapter 5 and 6.

4.2 Light scattering and light emission in disor-

dered media

In the Rayleigh limit, light scattering on distant objects can be approximated

by light rays. As the objects get closer, interfere e�ects dominate the scatter-

ing process and multiply scattered light forms a volume speckle pattern. In

the calculations, light scattering needs to be included coherently from all ob-
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jects. This is done using an electromagnetic propagator called Green's tensor,
−→
G(r⃗, r⃗0). It describes the electric �eld at point z that originates from an oscil-

lating point source at point z0. This section discusses the analytical solution

of the Green's function in a one-dimensional disordered medium by employing

the transfer matrix theory.

4.2.1 Light transmission - transfer matrix theory

A0

B0

AN

BN

Lp z

Figure 4.1: Sketch of a one-dimensional disordered structure where the gray

tones represent di�erent refractive indices. The structure consists of N stacked

layers. The electric �eld amplitude of the incident plane wave is A0, of the

re�ected plane wave is B0, and of the transmitted plane wave is AN . Lp

determines the length of the individual layers.

Suppose an electromagnetic plane wave that travels in z-direction and ap-

proaches an interface to another medium in the xy-plane. At the interface the

wave is partly re�ected back and partly transmitted into the other medium. If

a medium consists of several stacked interfaces in the xy-plane, the re�ected

waves from the �rst interface are again partly re�ected at other interfaces re-

sulting in multiple scattering and hence, constructive and destructive wave

interference. The total re�ection of such a medium is determined by the re-

�ection at all interfaces and the thickness of the individual layers. Figure 4.1

illustrates a one-dimensional disordered medium with random variations in the

refractive index, n(z), along the z-direction. The wave vector, k⃗, always aims in

the ±z direction while the electric and magnetic �eld vectors are perpendicular

to the wave vector. Further, the electric and magnetic �eld are perpendicular

to each other and continuous across an interface1. These boundary conditions

are used to calculate the electric �eld re�ection and transmission coe�cients.

1The relative magnetic permeabilities are approximated to equal the magnetic vacuum

permeability.
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Thus, the electric �eld can everywhere be determined, once it is known at an

initial position [81].

In a one-dimensional structure, the electric �eld is a superposition of a

forward and a backward propagating plane wave with position dependent am-

plitudes, i.e.,

E(z) = A(z)ei β(z) z +B(z)e−i β(z) z. (4.1)

β(z) = k0 n(z) is the propagation constant with k0 = ω/c as the wave number.

If the electric �eld amplitude is known at position z0 it can be calculated at

another position z > z0 via(
A(z)

B(z)

)
= M

(
A(z0)

B(z0)

)
, (4.2)

where M is the transfer matrix of the disordered medium between z0 and z

that is composed of m stacked layers. Assuming z0 is located in layer j then

M is given by M = M j+m . . .M j+1M j . The transfer matrix of a single layer

with constant refractive index nj and length Lp is the product of a propagation

matrix, Mp, and an interface matrix, M I ,

Mp =

(
e−i βj Lp 0

0 ei βj Lp

)
, M I =

1

t

(
1 r

r 1

)
, (4.3)

with the electric �eld transmission and re�ection coe�cients

t =
2nj

nj+1 + nj
, r =

nj − nj+1

nj+1 + nj
. (4.4)

The fraction of transmitted and re�ected energy can be evaluated using, I =

1/2n2 c |E|2. Having established the matrices of the individual layers, we can

calculate the transmitted and re�ected electric �eld of the entire structure. We

assume an electric �eld incident on the structure from the left hand side with

amplitudes A0 and B0 (Fig. 4.1). The medium consists of N layers. Once

the electric �eld wave exits the structure on the right side of the structure, it

is not re�ected back, i.e., BN ≡ 0. The electric �eld transmission coe�cient

through the medium, tN = AN/A0 = 1/M(1, 1), can be derived from the total

transfer matrix of the medium and is given by the inverse of the transfer matrix

element M(1, 1) using AN ≡ 1. The re�ection of the medium, rN = B0/A0 is
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Figure 4.2: a, Transmission, averaged over 10,000 di�erent realizations of dis-

order, of one-dimensional structures (sample length L = 100µm) depending

on the localization length. The gray curve plots ⟨T (ξ)⟩ = exp(−L/2ξ). b,

Ensemble-averaged re�ection between two unit cells (length a = 260 nm) as a

function of localization length. The gray curve represents a background-free

powerlaw �t to the calculated data.

calculated in the same way and we get rN = M(2, 1)/M(1, 1). After AN and

BN is known, we can calculate the electric �eld at all positions.

The localization length of a one-dimensional medium is determined by the

variations in the refractive indices among the layers. For the individual layers,

the average refractive index, ⟨n⟩, is superimposed with a �at distribution within

±∆n around the average. For a �xed sample length, we calculate the intensity

transmissions, T , for many di�erent realizations of disorder. A single disorder

realization is given by a speci�c arrangement of randomly varying refractive

indices of the interfaces. A change of the refractive indices results in a new

realization. The ensemble-averaged transmission, ⟨T (ξ)⟩, decays exponentially
with the sample length and in one dimension it is directly related to ξ via [72]

⟨T (L)⟩ = e−L/2ξ. (4.5)

We can therefore relate the localization length to ∆n and Lp by estimating

the intensity transmission through many di�erent disorder realizations ⟨T (L)⟩
depending on the sample length. In our calculations we assume that all in-

terfaces are equally spaced and their distance, Lp, is much smaller than the

wavelength. We choose Lp ≈ λ0/100 to ensure that the scattered light wave
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responds to the disorder in the entire medium. The value of Lp is arbitrary and

used to determine ∆n for a speci�c localization length. The calculations are

performed in the weak scattering limit with localization lengths that are more

than 1,000 times larger than Lp. Figure 4.2a plots the calculated ensemble-

averaged transmission for a �xed sample length depending on the estimated

localization length2. The obtained intensity transmission follows exactly the

function of Eq. (4.5). Alternatively, the localization length can be determined

by ⟨lnT (L)⟩ = −L/ξ which converges faster [72, 73] because ⟨T (L)⟩ can be

dominated by anomalous transmission events such as necklace states [82].

An alternative possibility to relate the localization length to the disorder

in a system is the average re�ection, ⟨R⟩, between unit cells consisting of a

�xed number of layers. This property is independent of the sample length and

describes how much light is in average re�ected from the individual unit cells.

The average re�ectance shows a powerlaw dependence on ξ and the results are

presented in Fig. 4.2b. This functional dependence can be used to create a

disordered medium of unknown length exhibiting a certain localization length

that is determined by ⟨R⟩ and ∆n, respectively.

4.2.2 Embedded light sources - Green's function formalism

In the previous section we presented an approach to estimate the transmission,

the re�ection, and the localization length of a disordered medium. In this

section we apply the transfer matrix theory to calculate the Green's function

of a one-dimensional disordered medium. The electric �eld distribution and

the local density of states are determined by embedding light sources inside a

disordered medium. In a one-dimensional system the Green's tensor simpli�es

to the Green's function, G(z, z0). As a disordered medium we consider stacked

layers of di�erent refractive indices with an embedded monochromatic point

source, as shown in Fig. 4.3. To model the interaction between light and matter

in a disordered medium we start from the inhomogeneous Helmholtz equation

2The calculations are based on L = 100µm, λ0 = 980 nm, and ⟨n⟩ = 3.5 (gallium arsenide)

allowing us a comparison to the experiments presented in Chapter 5 and 6.
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z

l

x

Figure 4.3: Illustration of a one-dimensional disordered structure with an em-

bedded point source (red sphere). The structure is sliced to illustrate the scat-

tered wave vectors of the light (red arrows). The colors of the layers represent

di�erent refractive indices (as in Fig. 4.1). We include losses out of the struc-

ture (black arrows) to approximate the experiment and de�ne a loss length, l.

The typical length scale on which light localizes is de�ned by the localization

length, ξ.

for the electric �eld in the frequency domain [79, 83],

−∇2E(z, ω)− k20ε(z)E(z, ω) =
k20
ε0

P (z, ω), (4.6)

where ε(z) denotes the position dependent relative permittivity and ε0 is the

electric constant. P (z) acts as a source term and de�nes the polarization. For

the electric �elds we get

E(z, ω) =

∫ ∞

−∞
G(z, z′, ω)

k20
ε0

P (z′, ω) dz′, (4.7)

with G(z, z′, ω) being the electric �eld Green's function of the material system.

G(z, z′, ω) is the solution to the equation

−∇2G(z, z′, ω)− k20ε(z)G(z, z′, ω) = δ(z − z′). (4.8)

Explicit expressions of G(z, z′, ω) can often be found after expanding the

Green's function in the basis of given eigenfunctions of the system. Eq. (4.7)

can be integrated if we consider a point source at z0 with a dipole moment

d(ω) and substitute P (z) = d(ω)δ(z − z0)

E(z, ω) = G(z, z0, ω)
k20
ε0

d(ω). (4.9)

Hence, the Green's function determines the electric �eld at position z, having

a point source at z0. In a homogeneous one-dimensional medium (ε = n2 =
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const), the Green's function can be calculated analytically and describes a plane

wave [78],

G(z, z0, ω) =
i

2 k0 n
ei β |z−z0|. (4.10)

The imaginary part of the Green's function determines the one-dimensional

projected local density of states, ρ, in the medium (Appendix D.1)

ρ(z0, ω) =
k0
πc

ℑ(G(z0, z0, ω)), (4.11)

resulting in ρ(ω) = (2π c n)−1 for a homogenous medium.

While in a homogenous medium the Green's function is simply a plane

wave that has its origin at the position of the point source, scattering events

lead to modi�cations. A point source is positioned at z0 in a host layer that is

surrounded by many disordered layers. This problem can be solved analytically

[83, 84]. The derivation is self consistent and discussed in Appendix D.2. When

the thickness of the host layer, Lp, is much smaller than the wavelength the

solution simpli�es and we get for the Green's function at the source position

[85]

G(z0, z0, ω) =
i c

2ω n(z0)
× 1 + rL + rR + rL rR

1− rL rR
. (4.12)

To calculate the Green's function at all positions of the disordered medium we

divide the medium in three parts: all layers to the left of the host layer, the

host layer, and all layers to the right. The frequency dependent electric �eld

re�ection coe�cients correspond to the disordered medium to the left, rL, and

to the right, rR, of the host layer and can be evaluated using transfer matrix

theory. To calculate the Green's function at all positions of the medium, it is

decomposed in a forward propagating amplitude, A, and backward propagating

amplitude, B. The amplitudes are de�ned as AR (AL) and BR = rR AR

(BL = rL AL) for the stacked layers to the right (left) of the host layer with

G(z0, z0, ω) = AR +BR = AL +BL and

AR =
i c

2ω n(z0)
× 1 + rL

1− rR rL
, AL =

i c

2ω n(z0)
× 1 + rR

1− rL rR
. (4.13)

First, we focus on the right hand side (z > z0). The Green's function is

calculated by identifying AR and BR with A0 and B0 (Fig. 4.1) and utilizing

the transfer matrix theory (Eq. (4.2)). The position dependent Green's function
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Figure 4.4: a, Calculated intensity pro�le in a one-dimensional lossless medium

with ξ = 15µm. The thickness of the layers is LP = 10nm, the length of the

structure is 100µm, the refractive index varies within n = 3.5± 0.32, and the

monochromatic light source with λ = 980 nm is placed at z0 = 50µm. b,

Ensemble-averaged spatial intensity pro�le. The gray curve is a �t to the data

with I(z) = exp(−|z − z0|/2ξ).

equals G(z, z0, ω) = A(z) + B(z). The outlined approach can also be applied

to the left hand side of the host layer (z < z0) using AL and BL instead3

Fig. 4.4a displays the intensity pro�le, I(z), in a disordered medium with a

light source positioned in the center. The intensity shows strong �uctuations

that originate from multiple scattering of the emitted light. The spatial inten-

sity pro�le, obtained after ensemble averaging over 10,000 di�erent realizations

of disorder, is presented in Fig. 4.3b. From a �t to the ensemble-averaged in-

tensity we obtain a localization length of ξ = 15µm. This value equals the

localization length that has been used to generate the individual disordered

structures. In accordance with the prediction, Eq. (4.5), these results demon-

strate clearly the validity of our model.

So far, we calculated the Green's function assuming the excitation of a

single point source. A local spatial average over the Green's function around

the source position corresponds to the excitation of an ensemble of emitters

re�ecting the experimental situation discussed in Chapter 6. To model the

local excitation of many emitters, we can utilize that the re�ection coe�cients

3For z < z0 the order of the layers has to be reversed before applying Eq. 4.2.
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oscillate on the scale of the wavelength. If the excitation position is shifted by

∆z then rL → rL exp(i β 2∆z) and rR → rR exp(−i β 2∆z). The product rL rR

does not display the oscillations and this combination should be contained.

When we perform a spatial average over one wavelength (average over the

rapid oscillations), we can express the Greens function in terms of [85]

⟨G(z0, z0, ω)⟩ =
i c

2ω n(z0)
× 1 + rL rR

1− rL rR
, (4.14)

that is related to the so-called spatially averaged local density of states,

⟨ρ(z0, ω)⟩ = k0

πc ⟨ℑ(G(z0, z0, ω))⟨.

4.3 Fluctuations in the transmittance and the

emitted intensity

Characterizing a multiple scattering medium by its statistical means requires

an ensemble average of physical quantities. The evaluation of the probabil-

ity distribution of the transmitted light, P (T/⟨T ⟩), for di�erent realizations of
disorder is a well-established method to determine Anderson localization since

P (T/⟨T ⟩) depends sensitively on ξ. Figure 4.5a plots P (T/⟨T ⟩) deep in the

localized regime showing log-normal distributions. The crossover from local-

ization to the ballistic regime occurs for ξ = L where a very �at transmission

distribution is found (Fig. 4.5b). For even weaker scattering (ξ ≫ L) P (T/⟨T ⟩)
is normal distributed. Here, we want to emphasize that our results display very

similar transmission distributions as three-dimensional calculations [86] in pho-

tonic crystal waveguides, indicating that a photonic crystal waveguide behaves

as a one-dimensional disordered medium (see Chapter 5 and Chapter 6). Note

that a one-dimensional structure only supports one forward and one backward

propagating mode and the total transmission through the structure equals the

transmission in a single channel. Therefore, these results are di�erent from cal-

culations through a disordered waveguide that supports many spatial modes.

In the present case, the single channel transmission does not show the Rayleigh

distribution, as predicted for the transmission of a single speckle [45], neither

it recovers the characteristic deviation from the Rayleigh distribution on the

onset of localization [51].
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Figure 4.5: Transmission probability distributions in one-dimensional multiple

scattering media for di�erent localization lengths a, in the localized regime

(ξ < L) and b, for ballistic light transport (ξ ≥ L). The transmissions are nor-

malized to the average transmittance. c, d, Intensity probability distributions

of an emitter embedded at the center of a disordered medium and normalized

to the average intensity. The graphs are calculated for the same localization

lengths as used for the transmission distributions. All presented data are ob-

tained after ensemble averaging over 250,000 di�erent realizations of disorder.

The total emitted intensity of an embedded emitter in a one-dimensional

system is proportional to the local density of states and can be calculated from

the Green's function4. Figure 4.5c displays the emitted intensity probability

distributions for the same localization lengths, as used in Fig. 4.5a. A very

di�erent behaviour is observed by comparing the probability distributions of

the emitted intensity with the transmission distributions. In contrast to the

4The intensity depends on the radiative decay rate of the emitter. Therefore, the emitter

needs to be excited continuously.
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Figure 4.6: Direct comparison of transmission (dashed gray) and emitted

intensity (black) probability distributions deep in the localized regime for

1: ξ = 0.05L, 2: ξ = 0.1L and 3: ξ = 0.15L. All distributions are found to

be log-normal distributed.

transmission, the intensity remains log-normal distributed when approaching

ξ = L (discussed below). For ξ > L the emitted intensity approaches a normal

distribution in the weak scattering limit, as illustrated in Fig. 4.5d. We �nd

that the emitted intensity distribution is independent of the emitter position

inside the medium. A detailed study of the di�erences between the transmission

and the emitted intensity deep in the localized regime is presented in Fig. 4.6.

Both quantities are log-normal distributed but do not follow each other for the

same localization length. To validate our model with analytical predictions we

compare the transmission distributions with [87]

P (lnT ) = A

√
ξ

4π L
exp

(
− ξ

4L
×
(
lnT +

L

ξ

)2
)

(4.15)

and �nd an excellent agreement. Note that this expression only holds deep

in the localized regime for negligible ballistic light transport. As for the

transmission, the intensity distributions are predicted to show log-normal tails

P (ln I) ∝ exp
(
−const (ln I)2

)
[85] that we recover with our calculations, too.

Deep in the localized regime, the distribution of the total transmittance is

broader than of the intensity. This behavior is due to the fact that the
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Anderson-localized modes are con�ned inside the sample. The modes are not

in�uenced by the boundary conditions and the transmission is almost zero for

the majority of disorder realizations. Rarely, a very high sample transmission

(T → 1) can be measured that originates from so-called necklace states [82]

and give rise to the transmission broad distribution (dashed lines in Fig. 4.6).

4.3.1 Impact of losses

In the localized regime, the ensemble-averaged intensity decays exponentially.

Light losses, such as light leakage or absorption, lead to an exponential decay

of the intensity pro�le, too [26, 27]. In our calculations losses are incorporated

by including an imaginary part in the refractive index with an associated loss

length l = 1/k0ℑ(n). The measured e�ective localization length in transmission

measurements is called extinction length, ℓe, and de�ned as

1

ℓe
=

1

ξ
+

1

l
. (4.16)

In presence of a �nite loss length, ℓe appears shorter than ξ. Therefore, con-
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Figure 4.7: a, Transmission and b, emitted intensity probability distributions

for ξ = 25µm for di�erent amount of losses induced in the disordered medium

(L = 100µm). A lossless medium is represented by l = ∞.

�rming Anderson localization utilizing transmission measurements might be

misleading. Here, the distribution in the transmittance can serve as a rough

estimate of losses. Figure 4.7a shows that in absence of losses the most likely
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transmission is much lower than the average transmission. As losses increases

the log-normal distribution converges to a normal distribution and the most

likely transmission approaches the average transmission. In contrast to the

calculations where ξ is varied (Fig. 4.5b), the distribution changes directly

from log-normal to normal. The emitted intensity probability distribution

approaches a normal distribution with increasing losses, too (cf. Fig. 4.7b).

However, we cannot distinguish between changing the loss length and chang-

ing the localization length. Lossless media with a certain localization length

exhibit a speci�c transmission and intensity distribution. These distributions

are found to be very similar to distributions that are obtained from disordered

lossy media that have an accordingly smaller localization length. This can be

explained by the fact, that losses shorten e�ectively the sample length to Le�.

The distributions only depend on the ratio ξ/L which is in presence of losses

given by ξ/Le�. To obtain the same ratio (same distributions), ξ needs to be

reduced.

a b
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Figure 4.8: a, Contour plot of the variances of the transmission �uctuations,

var(T/⟨T ⟩), and b, emitted intensity �uctuations, var(I/⟨I⟩). The calculations
are presented as a function of loss length and localization length. The sample

length is L = 100µm. The gray dashed contour line in b represents the variance

in the emitted intensity �uctuations that can be measured for ξ = L in absence

of losses. By inducing losses in the medium the variance decreases (when ξ is

�xed). Thus, var(I/⟨I⟩) = 0.51 serves as a criterion for Anderson localization.

Each transmission (intensity) distribution corresponds to a certain variance

in the transmission (intensity) �uctuations. The calculations of the variance are

plotted in Fig. 4.8. The Figure shows that the variance decreases with increas-
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ing losses and increasing localization length. A. A. Chabanov et al. applied

this behavior to establish a criterion for Anderson localization that holds even

in presence of absorption [3]. Our calculations con�rm their results, predicting

that if the variance of the transmission distribution exceeds var(T/⟨T ⟩) > 0.2

the sample localizes5 (ξ < L). Similarly, we de�ne a criterion for Anderson lo-

calization that concerns the �uctuations in the light emission from an emitter

embedded in a disordered medium. As for the transmission the intensity �uc-

tuations decrease with increasing localization length and decreasing loss length,

presented in Fig. 4.8b. We �nd that the �uctuations in I/⟨I⟩ are much larger

than in T/⟨T ⟩. If the variance in the intensity �uctuations exceeds the value

var(I/⟨I⟩) ≥ 0.51 then ξ is smaller than L and Anderson localization occurs in

one-dimensional disordered samples (dashed line in Fig. 4.8b). This result is

general and independent on the losses and the sample length.

4.4 Quality factor distributions of Anderson-

localized modes

The response of a disordered medium to the incident light wave is strongly

frequency dependent. This provides an alternative to obtain a new realiza-

tion of disorder by �xing the refractive indices of the layers and changing the

frequency of the light source instead. The frequency dependent transmission

through a disordered medium is shown in Fig. 4.9a. Clear distinct optical

modes with high transmission can be observed belonging to di�erent realiza-

tions of disorder. Thouless showed that the average spectral linewidth width

of the modes δλ and average distance between those modes ∆λ serve as a cri-

terion of Anderson localization of light, namely δλ/∆λ < 1 [88]. Thus, the

modes are not only spatially localized but also spectrally distinct. This does

not apply in the ballistic and di�usive regime where modes overlap spectrally.

Embedding an emitter enables us to calculate the frequency dependence of the

local density of states (Eq. (4.12)). Figure 4.9b plots the corresponding total

emitted intensity for a light source positioned in the center of the disordered

medium. Comparing Fig. 4.9 a and b, we �nd modes with enhanced intensity

at similar positions re�ecting that we investigate the same structure. The lo-

5Their de�nition of ξ di�ers from our de�nition [72] by a factor of two. Hence, we have to

compare our result at ξ = L/2 with their result and get the same variance var(T/⟨T ⟩) = 2/3.
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Figure 4.9: a, Calculated transmission spectrum through a disordered medium

depending on the wavelength of the light source positioned outside of the

medium. The localization length is ξ = 0.4L. b, Normalized emission spec-

trum of an emitter embedded in a disordered medium that corresponds to the

emitter decay rate. The monochromatic light source is placed at the center of

a multiple scattering medium (same disorder realization as in a). c, Spatially

and spectrally resolved local density of states (LDOS) of a disordered medium

using the same parameters in the calculations as in panel a and b. The LDOS

is normalized to its maximum.

cal density of states for a one-dimensional medium in the localized regime is

depicted in Fig. 4.9c. In accordance with the expectation, large �uctuations

are observed. The Anderson-localized modes are spectrally well-separated and

spatially con�ned due to the disorder in the sample.

The spectral extension of an Anderson-localized mode can be characterized

by the quality factor (Q factor), as used for traditional cavities [20]. It is

de�ned as the ratio of the central wavelength and its mode linewidth. In an

extensive analysis Q factors of Anderson-localized modes are calculated in a

small spectral region for many di�erent realizations of disorder. The obtained

Q factor distributions of Anderson-localized modes are plotted in Fig. 4.10a and

found to be in agreement to the predicted log normal distributions [89, 90]. The

long tails of the distributions describe a non-vanishing probability to observe

very high Q factors. This probability increases when the ratio ξ/L decreases,

as shown in Fig. 4.10b. Moreover, each Q factor distribution can uniquely be

assigned to a localization length which is essential to compare experimental
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data and theory. We highlight that all presented calculations are general and

only depend on ξ/L.

4.4.1 Impact of losses

One important result of Section 4.3.1 is that losses in a disordered medium

reduce the �uctuations in the transmission and emitted intensity distributions.

The Q factor determines the dwell time, τ , that a photon stays inside the

optical mode without exiting the sample or being absorbed, i.e., Q = τ ω. Fig-

ure 4.11a displays the Q factor distributions depending on the loss length, l,

obtained after evaluating the linewidths of 100, 000 Anderson-localized modes

that belong to di�erent realizations of disorder. In absence of losses the Q fac-

tors of Anderson-localized modes are log-normal distributed. With increasing

losses the distributions are found to be truncated. This shows that not only

a �nite system size but also losses limit the maximum dwell time before the

photon leaks out of the structure or gets absorbed. The Q factor in a medium

that exhibits losses can be expressed as

Q−1 = Q−1
0 +Q−1

l , (4.17)
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Figure 4.10: a, Q factor probability distributions in lossless one-dimensional

media. The distributions are shown for di�erent localization lengths relative

to the sample length. b, Ensembles averaged Q factor, ⟨Q⟩, as a function

of localization length. An increase in the average Q factor re�ects a higher

probability to observe large Q factors.
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where Q0 corresponds to the mode quality factor in absence of losses. Ql

represents the degradation of the quality of light con�nement due to the losses in

the medium and thus is related to the loss length. Starting from the generalized

eigenproblem of the wave equation of a source-free medium (Eq. (4.6), where

P (z, ω) = 0) we can account for losses using perturbation theory. In particular

we are interested in the frequency perturbations ∆ω that result from small

perturbations ∆ε in the relative permittivity

∆ω = −ω

2

⟨E(z)|∆ε|E(z)⟩
⟨E(z)|ε|E(z)⟩

+O(∆ε2), (4.18)

where E(z) describes the electric �eld in the lossless unperturbed medium. If

we now separate the relative permittivity in a real and an imaginary part,

ε = ε′ + iε” we get for ε” ≪ ε′

∆ω = −ω

2

⟨E(z)|ε”|E(z)⟩
⟨E(z)|ε′|E(z)⟩

= −ω ε”

2ε′
⟨E(z)|ε′|E(z)⟩m
⟨E(z)|ε′|E(z)⟩t

. (4.19)

The subscripts denote the perturbation in the material (m) and in the total

sample (t). Hence, the last term refers to the fraction of the sample that is

being perturbed which is approximately one in our case. The perturbations in

the relative permittivity lead to changes in the frequency resulting in frequency

perturbations ∆ω. Furthermore we can relate relative permittivity to the re-

fractive index, (n′ + i n”)2 = ε′ + i ε”, and by substituting Q = ω/(2∆ω) we

get Q = n′/(2n”). According to Lambert Beer's law the intensity loss length

is related to the refractive index l = 1/(k0 n”) resulting in the �nal expression

Ql =
n′ π

λ
l, (4.20)

with n′ being the average real part of the refractive index. Utilizing Eq. (4.17)

the distribution of the measuredQ factors is given by P (Q) = P (Q0)
dQ0

dQ , where

P (Q0) is determined by the ratio ξ/L [89]. The resultant Q factor distributions

in the presence of losses is then de�ned as

P (Q) = − exp

(
− (µ− log(−QQl/(Q−Ql)))

2

2σ2

)
× Ql H(−Q+Ql)√

2π σ(Q−Ql)
. (4.21)

The localization length determines the parameter of the lognormal distribution,

σ and µ, H is the heaviside step function. A �t to the data (Fig. 4.11a) reveals
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Figure 4.11: a, Truncated log-normal Q factor distributions depending on the

loss length in a disordered medium (ξ = 13µm). b, Plot of the average Q factor

(represented by the contour lines) depending on loss length and localization

length. The simulated structures in a, b, have a sample length of L = 100µm

and the emitter wavelength in the calculations varies within λ = 970 . . . 990 nm.

a linear dependence of the maximum Q factor and the loss length. Remarkably,

losses can truncate high Q factors, even though the loss length is of the order of

10mm while the sample length is only L = 100µm (Fig. 4.11b). In order to test

our �ndings of Eq. (4.21) we estimated l from the �tted Ql and ind a perfect

agreement to the initial parameters for the loss lengths used in the calculations

showing the consistency of our model. Further investigations show that the

�tted for loss lengths, l > L, the characteristic parameter of the underlying

log-normal distribution does not change but is only truncated. This allows us

to distinguish between Anderson localization and losses in a one-dimensional

structure. Each localization length is related to an unique log normal Q factor

distribution while each loss length cuts the distribution at a characteristic value.

A drawback of a highly engineered cavity is the reduction of itsQ factors due

to fabrication imperfections. On the contrary, a Q factor distribution formed

by Anderson localization is inherently robust against disorder. For studies of

enhanced light-matter interaction [91], it is essential that a system exhibits

tightly con�ned optical modes with a high Q factor and a small mode-volume.

Anderson-localized modes are very promising since their Q factor distributions

provide non-vanishing probability to observe a large Q (Fig. 4.10a). Further-



more, the average mode volume that a photon explores in a disordered structure

decreases as ξ decreases. Thus, the light-matter interaction in disordered pho-

tonic structures can be enhanced by decreasing ξ, and minimizing losses in the

structures, reaching eventually strong coupling between light and matter [92].

4.5 Conclusion

In conclusion, analytical calculations were presented to determine the transmis-

sion and the local density of states in a one-dimensional disordered medium.

The statistical properties of Anderson localization were investigated by means

of the transmission distributions and transmission �uctuations placing a light

source outside of the structure. The emitted intensity distribution of a light

source embedded inside a disordered structure was calculated and the �uc-

tuations of the intensity were used to establish a new criterion for Anderson

localization. By changing the frequency of the light source, the Q factor dis-

tributions of Anderson-localized modes were calculated. In presence of losses,

these distributions were found to be truncated which can possibly be used to

distinguish between Anderson-localization and losses.



Chapter 5

Controlling Anderson

localization in photonic

crystal waveguides

5.1 Introduction

Indications of three-dimensional Anderson localization of light have been ob-

served in entirely disordered samples like powders [17, 16] or dielectric layers

[93, 82]. In these systems no control can be exerted over the frequency or

spatial extent of the localized modes. A promising proposal on how to con-

trol multiple scattering is to induce a slight amount of disorder in periodic

nano-structures called photonic crystals [25]. In an ideal photonic crystal the

light propagation is described by Bloch modes [94]. Breaking the symmetry of

such structures leads to multiple scattering of light. The interference of mul-

tiply scattered light can form Anderson-localized modes appearing at random

positions in the system but in a restricted frequency range close to the pho-

tonic crystal bandgap. Contrary to non-dispersive systems, photonic crystals

o�er the possibility to modify the photonic density of states with respect to

a homogeneous medium that controls Anderson localization through a highly

dispersive localization length.
79
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The �rst experimental signature of light con�nement in disordered pho-

tonic crystal waveguides was presented by J. Topolancik et al. [95]. Close to

the waveguide mode band edge, they observed spatially and spectrally con-

�ned modes. However, they did not investigate ensemble-averaged quantities

such as the localization length to prove Anderson localization. Despite this

ground-breaking experiment, the experimentally observed deviations from the

light dispersion in photonic crystal waveguides were not attributed to disorder

induced Anderson localization of light [96, 97, 98, 99].

This chapter is devoted to studies of light propagation in disordered pho-

tonic crystal waveguides. Chapter 5.1.1 introduces the fundamental properties

of photonic crystals and the impact of disorder. In Section 5.2, we show ex-

perimentally how to control and tune accurately the localization length, ξ,

and the frequency range where Anderson-localized modes appear, exploiting

the dispersion in a photonic crystal. Contrary to earlier experiments we do

not focus on single measurements, but investigate the statistical properties of

Anderson-localization utilizing di�erent realizations of disorder. In particular,

we present ensemble-averaged measurements of the extinction mean free path,

ℓe, which describes the attenuation of the light transmission along the waveg-

uide. We con�rm that the strongly con�ned modes appearing for high density

of states, where we approximate ℓe ≈ ξ, are due to one-dimensional Anderson

localization. In addition, we interpret our experimental data of the wavelength-

dependent localization length with a model that links the localization length

explicitly to the density of states. Finally, we investigate the probability distri-

bution of the transmitted light and con�rm the dispersion in the localization

length.

5.1.1 Disordered photonic crystal waveguides

A two-dimensional photonic crystal is a dielectric material that consists of a tri-

angular periodic lattice of air holes etched in a high refractive index membrane.

The periodic lattice forms a frequency bandgap where light propagation is sup-

pressed. A one-dimensional waveguide for light can be created by omitting a

row of air-holes in the periodic lattice. (Fig. 5.1a). To investigate the impact

of disorder on the light propagation, the hole positions are varied randomly in
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1 m�a b

Figure 5.1: a, Scanning electron microscope image of a photonic crystal waveg-

uide. b, Photonic crystal waveguide with δ = 6% engineered disorder (stan-

dard deviation relative to the lattice constant). The white circles represent the

hole positions in an ideal structure without disorder. Imperfections can lead

to multiple scattering and Anderson-localized modes form spontaneously. The

shaded areas illustrate the localized light intensity and the arrows depict the

wave vectors of Anderson-localized modes.

the three rows above and below the waveguide using a Gaussian random num-

ber generator function (Box-Muller). The degree of disorder in each sample,

δ, is characterized by the standard deviation of the hole positions relative to

the lattice constant within δ = 0, 1, . . . , 6, 9, 12% (Fig. 5.1b). Details of the

fabrication process is described in Appendix E.1.

A complete bandgap for light can be achieved in three-dimensional pho-

tonic crystals, whereas in two dimensions a bandgap only exists for transversal

electromagnetic waves. The optical modes, that the structure sustains, can

be calculated numerically [100]. The corresponding dispersion diagram of our

samples is shown in Fig. 5.2a. As design parameters we used a lattice constant

of a = 240 nm, a �lling fraction f = 0.330± 0.006 , the refractive index of gal-

lium arsenide under ambient conditions of n = 3.54, and a membrane height of

160±5nm. The gray shaded area displays the optical bandgap that can be con-

trolled by varying the fabrication parameters. Introducing a one-dimensional

waveguide breaks the crystal symmetry and creates optical modes inside the

bandgap that are con�ned to the waveguide (gray graphs). Due to the under-

lying periodicity, the light propagation in an ideal photonic crystal waveguides
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Figure 5.2: Calculated dispersion diagram of a photonic crystal waveguide. a,

Band structure of the supported transverse electromagnetic modes in the ideal

photonic crystal without a waveguide (black graphs). For a limited frequency

region the crystal does not provide optical modes (gray shaded area). All modes

above the light line (dashed) are radiation modes out of the membrane plane

and are not con�ned by the crystal. Introducing a waveguide in the structure

gives rise to two defect modes (gray graphs) with orthogonal polarization in-

side the bandgap (gray shaded area). The wave vector of these two modes

always points along the waveguide forming a one-dimensional system for light

propagation. b, Dispersion relation of a guided defect mode as a function of

wavelength. The group index, ng, diverges, when the spectral mode band edge

is reached.

is described by extend Bloch-modes following a dispersion relation ω(k) [94].

The frequency of light is denoted as ω and k is the absolute value of the wave

vector. The slope of the lower waveguide mode in Fig. 5.2a becomes in�nitely

small as k increases. This re�ects an increase in the group index, ng = ∂k
∂ω ,

which can be illustrated in a waveguide mode dispersion relation (Fig. 5.2b).

The divergence of the group index corresponds to the spectral mode band edge

which is calculated to be 915 nm. The corresponding density of states, DOS, is

proportional to the group index. The group velocity is inversely proportional

to ng and is slowed down as the group index increases [101]. Here, we introduce

two regimes: ng ≤ 10 is called the low-density of states regime while ng > 10

is referred to as the high-density of states regime.
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In a photonic crystal waveguide scattering events change the direction of

light propagation resulting in a forward and in a backward propagating Bloch-

mode. The distance between two scattering events is de�ned as the scattering

mean free path, ls, and can be related to the localization length via ξ ≈ N · ℓs
[72, 102]. N is the number of spatial electromagnetic modes that equals one

in our single-mode waveguides. In order to relate ξ to the density of states,

we model the function ξ(DOS). Two separate mechanisms determine ℓs: the

excitation of the scatterer and the radiation from the scatterer. The coupling

to the scatterer is described by the density of states of the excitation beam

[103], i.e., the waveguide mode. The second process is described by the local

density of states. The local density of states equals the density of states of

the waveguide mode ignoring the contributions of coupling to leaky radiation

modes and modi�cations deep in the localized regime [104, 105]. This applies

to every scattering event giving rise to a modi�ed scattering cross section σ in

photonic crystal waveguides scaling as σ ∝ DOS2(ω). The scattering mean free

path in a random medium in the independent-scattering approximation can be

expressed as ℓs = 1/ρsσ (cf. Eq. (2.1)), where ρs is the density of scatterers. For

one-dimensional single-mode photonic crystal waveguides we therefore predict

ξ ∝ DOS−2(ω). (5.1)

In the next section the extinction mean free path is determined in photonic

crystal waveguides as a function of the optical wavelength and the developed

model (Eq. (5.1)) is applied to the experimental data.

5.2 Measurement of the extinction mean free

path

5.2.1 Experimental setup

To investigate Anderson localization in photonic crystal waveguides we mea-

sure the light intensity in the waveguide as a function of distance from a light

source, as illustrated in Fig. 5.3. A continuous wave Ti:Sapphire laser, tuneable

within λ = 700 nm− 1000 nm, is coupled into a single mode tapered �ber with
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Figure 5.3: Illustration of the experimental setup to investigate Anderson lo-

calization of light in photonic crystal waveguides. Light is coupled into the

waveguide with a tapered �ber. Light scattered from the waveguide is col-

lected with a microscope objective (NA= 0.8), spectrally �ltered (L: lens, I:

iris), and recorded with a detector placed behind the spectrometer (S). The

polarization of the detected light is selected with a polarizer (P).

a tip diameter comparable to the waveguide width. The evanescent mode of

the �ber couples to the propagating mode of the waveguide by placing the �ber

tip close to the waveguide. We measure the wavelength-dependent out-of-plane

scattered light intensity from the top of the membrane, using a microscope ob-

jective, as a function of the distance z from the light source, i.e., the �ber tip.

The distance is varied by scanning the objective along the waveguide. We probe

di�erent spatial realizations of disorder, that are, di�erent parts of the sample

by moving the �ber together with the objective along the waveguide. The mea-

surement starts at z = 150µm from the �ber tip to avoid any spurious e�ects

due to the evanescent �eld from the �ber or light not coupled to the waveguide

mode. Details of the experimental setup are discussed in Appendix E.2.

Fig. 5.4a shows a single disorder realization measurement of the scattered

light intensity versus the distance from the �ber tip, z, in the high-density

of states regime (λ = 916 nm). We did not induce any additional disorder in

the photonic crystal waveguide (δ = 0%) and the sample is only a�ected by

intrinsic unavoidable disorder induced by the fabrication process. The strong

�uctuations in the light intensity correspond to speckles that originate from

multiple scattering. The spectrum of the scattered light intensity, shown in

Fig. 5.4b, proves that the �uctuations are restricted to the vicinity of the mode
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Figure 5.4: a, Measured intensity �uctuations in the high-density of states

regime depending on the distance form the light source for λ = 915 nm. b,

Spectrum of the light intensity, recorded at a �xed distance, z0 = 150µm, from

the �ber tip. Large �uctuations are observed close to the calculated mode band

edge at λ = 915 nm.

cut-o� where multiple scattering of light is pronounced. The strong random

�uctuations in the light intensity are a signature of one-dimensional Anderson

localization. Since our waveguides do not have an abrupt termination (the

wafer is not cleaved), these resonances are not Fabry-Perot-like. The modes

appear to be spatially and spectrally separated, which constitutes a criterion

for Anderson localization [88].

5.2.2 Ensemble-averaged measurements

In the Anderson-localized regime the �uctuating light transmission, T (L), de-

cays exponentially after ensemble averaging versus sample length L with (Chap-

ter 4.2) ⟨ln T (L)⟩ = −L/ξ. We assume that the scattered out-of-plane light

intensity at a given position of the waveguide, I, is proportional to the total

light transmission at the same position, i.e., that there is no signi�cant spa-

tial dependence of the out-of-plane scattering process. Any loss mechanisms

of the light trapped in a photonic crystal waveguide in�uences the measured

decay length. In the presence of losses, we have ⟨ln(I(z))⟩ = −z/ℓe, where the
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Figure 5.5: a, Recorded intensity �uctuations from a single measurement along

the photonic crystal waveguide depending on wavelength and distance from the

light source. The intensity is normalized to its maximum value. b, Ensemble-

averaged light intensity, obtained after repeating the experiment at eight dif-

ferent regions of the samples.

extinction mean free path, ℓe, for a single-mode waveguide is de�ned as

ℓe
−1 = ξ−1 + lout

−1 + li
−1. (5.2)

li is the material inelastic absorption length and lout is the loss length asso-

ciated with out-of-plane losses. A further parameter can be important is the

suppression of light propagation due to the bandgap of the photonic crystal

and can be expressed by the imaginary part of the wave number ℑ(k−1
0 ). How-

ever, we argue that this term does not dominate for investigations of Anderson

localization at the band edge of the waveguide mode where we have a non-

vanishing density of state but should be considered for experiments deep inside

the bandgap.

To prove Anderson localization (ξ < L), we measure the ensemble-averaged

light leakage intensity from top of the waveguide versus z and wavelength

(Figs. 5.5a and b). A single disorder realization measurement in our setup

con�guration consists of a scan of I(z) for 150µm < z < 280µm. The number

of di�erent disorder realizations that we can perform without adding repeated

statistics to the ensemble average is limited by the sample length, L = 1mm.

For a detailed investigation of the localization length, we estimate the slope

z/ℓe separately for all wavelengths within a restricted region of 1nm. Fig-

ure 5.6 shows the linear �t of ⟨ln I⟩, along the waveguide with δ = 0 % for two
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Figure 5.6: Fit of the ensemble-averaged light intensity in a photonic crystal

waveguide with δ = 0 % as a function of the distance from the source for two

wavelengths: λ1 = 890 nm (gray squares) and λ2 = 916 nm (black circles). The

spectral resolution is 1nm and the slope of the �tted lines equals to the inverse

of the extinction mean free path.

di�erent wavelengths λ1 = 890 nm and λ1 = 916 nm (gray and black plot, re-

spectively). The wavelength corresponds to the low- and high-density of states

regime (DOS ∝ ng, cf. Fig. 5.2b). For these spectral positions we extract the

extinction mean free path ℓe(λ1) = (161± 16)µm and ℓe(λ2) = (30± 2) µm.

The �uctuations in the experimental data originate from not fully ensemble-

averaged speckles. To test the degree of convergence of the ensemble average to

⟨ln I(z)⟩ = −z/ℓe, we measured the goodness of the �ts by performing a χ2 -

analysis [106] depending on the number of disorder realizations. Figure 5.7

shows that the χ2 - value decreases as the realizations increases, con�rming

an improved �t quality. The goodness of the �t does not seem to level o� at

the optimum value χ2 = 1 that would prove that the single-exponential model

is correct. Deviations from perfect verticality of the side walls of the air holes

can break the symmetry in the out-of-plane direction and couple TE- and TM-

polarized waveguide modes [95]. This polarization mixing mechanism may lead

to multi-exponential decay of the ensemble-averaged transmission which is not

resolved in the present experiment.
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Figure 5.7: Plot of the �t-goodness, χ2, that ⟨ln(I(z))⟩ = −z/ℓe represents the

ensemble-averaged light transmission versus number of disorder realizations for

the same wavelengths, λ1 and λ2, used in Fig. 5.6 (same color code). The curves

are guides-to-the-eye.

The dispersive behavior of the measured extinction mean free path after

ensemble averaging is presented in Fig. 5.8 (black empty circles). We observe

a 5-fold variation in ℓe with wavelength. For low-density of states, numerical

simulations of Bloch-mode scattering in photonic crystal waveguides predict

that out-of-plane losses dominate over backscattering losses [86]. Thus, we

assume that in this spectral range lout becomes comparable to ξ and a�ects the

measured extinction mean free path signi�cantly. This is con�rmed by the fact

that we cannot observe pronounced intensity �uctuations for λ < 900nm (see

Fig. 5.4b). For high-density of states (λ > 900 nm) the backscattering process

is expected to dominate and we attribute the variation in ℓe to a dispersive

localization length. By assuming ℓe ∼= ξ in the high-density of states regime, we

observe that the localization length reaches its minimum value of ∼ 27± 1µm

and becomes much smaller than the sample length, giving rise to strongly

con�ned modes. The dispersive behavior of the localization length gives directly

control over the extension of the modes, that can be varied by tuning the

wavelength. We can also carefully control the frequency range of the localized-

modes just by varying the fabrication parameters (typically a and f), thus,

tuning the waveguide mode.
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Figure 5.8: Plot of the extinction mean free path, ℓe, of the photonic crystal

waveguide with δ = 0% as a function of the wavelength (black empty circles).

The extinction mean free path is found to be strongly dispersive and reaches

a minimum for high-density of states (λ > 900 nm). Losses mainly a�ect the

extinction mean free path for very low-density of states (λ < 890nm). Here, the

length, lout, associated to out-of-plane losses (blue points) is comparable to the

localization length. For higher-density of states, we can model the extinction

mean free path with ξ ∝ DOS−2 (red curve). The dashed black curve is the �t

to the data including wavelength-independent out-of-plane losses in the model

and assuming the same waveguide mode band edge as for the solid curve.

Next, we compare our predictions ξ(DOS) ∝ DOS−2 (Eq. (5.1)) with the

experimental results. The red curve in Fig. 5.8 represents the best �t to our

data using the calculated density of states of the ideal photonic crystal structure

(Fig. 5.2b). In the �t, we varied the waveguide mode band edge wavelength,

λb, and the number of experimental data points that are included in the �t.

In particular, the theory is predicted to deviate from Eq. (5.1) for high-density

of states and for very low-density of states (discussed below). For each λb and

number of considered data points, we can estimate the goodness of the �t. The

corresponding χ2 distribution depending on λb and the upper limit of density

of the states for which the model can be applied is shown in Fig. 5.9. For this

particular sample the mode band edge is found to be λb = 902 nm, being in

agreement to the calculated mode band edge of 915 ± 15nm. The theoretical
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Figure 5.9: Fit of the spectral mode band edge wavelength, λb. Measured

goodness, χ2, that the function ℓe ∝ DOS−2 represents the experimental data

(δ = 0%). The goodness is shown depending on the upper limit of the density of

states for which the model is assumed to break down. The �t quality improves

as χ2 decreases.

accuracy is limited by the uncertainties of the fabrication parameter. From

the measured extinction mean free path (Fig. 5.8) we observe that the model

breaks down deep in the Anderson localization regime (λ > 900nm) where

recurrent scattering occurs and the independent-scattering approximation is

not valid anymore. The breakdown of our model may also be related to the

fact that it is based on the calculated density of states of the ideal structure

without disorder, which is modi�ed in real structures [107].

The experimental data also depart from the model for very low-density of

states, which we attribute to non-negligible out-of-plane losses. The sample

material, gallium arsenide, has a very low optical absorption coe�cient (<

100 cm−1 at a wavelength of λ = 915nm) corresponding to li > 1m. This value

might be reduced by surface e�ects at the holes of the photonic crystal, but

is still expected to be much larger than the sample length. Thus, absorbtion

e�ects in the sample can be ignored. Therefore, we assume that the attenuation

of the light transmission is due to out-of-plane scattering and light localization.

Using Eq. (5.2), we extract lout from the di�erence between the modeled ξ (red

curve in Fig. 5.8) and the measured ℓe. Surprisingly, we observe an increase
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Figure 5.10: Extinction mean free path, ℓe, depending on the wavelength mea-

sured in photonic crystal waveguides with various amounts of disorder δ = 0%

(gray ◦), 6% (black N), and 12% (black ⋄). The solid curve is a �t to the data

of δ = 6% assuming a constant loss length of lout = 260µm. The inset shows

the di�erence between the maximum and minimum ℓe as a function of δ.

of lout with increasing density of states (blue points in Fig. 5.8), which is in

contrast to recent predictions [86]. Using the estimated parameter from the

lossless model (red line) and including a constant out-of-plane extinction length

as a free parameter, we �t the experimental data (black dashed line in Fig. 5.8).

From the �t we obtain lout ∼ 550± 150µm, which is indeed comparable to our

estimation of the localization length in the very low-density of states regime.

The model including a constant lout is not found to be in good agreement to

the data indicating a dispersive behavior in the out-of-plane loss length.

The e�ect of disorder on the extinction mean free path is plotted in Fig. 5.10

showing the measurement of ℓe in samples with increasing amount of disor-

der. The inset displays the di�erence between the maximum and minimum

extinction mean free path (△ℓe) that occurs in the low- and high-density of

states regime, respectively. △ℓe decreases with disorder, reaches a minimum

for δ = 6% and increases for δ > 6%. We explain the decrease of △ℓe for weak

disorder by an increase of the out-of-plane light losses [86]. The increase for

δ > 6% is surprising and re�ects the complex interplay between dispersive out-

of-plane losses and the disorder induced in the photonic crystal waveguide. A
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similar behavior has been found in numerical simulations of disordered three-

dimensional photonic crystals in the absence of losses where the localization

length reaches a minimum for an optimum amount of disorder [108]. This

con�rms the non-trivial relation between localization and disorder in photonic

crystals.

5.2.3 Out-of-plane scattered intensity probability distribu-

tions
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Figure 5.11: Distributions of out-of-plane scattered light intensity in the pho-

tonic crystal waveguide with δ = 6% for low- and high-density of states (gray

and black histograms). The black curve and gray curve show the calculated

one-dimensional transmission probability distributions applying the transfer

matrix theory using sample a length of L0 = 250µm, a out-of-plane loss length

of lout = 260µm and a localization length of ξ = 90µm (high-density of states)

and ξ = 230µm (low-density of states), respectively.

A further approach to con�rm Anderson localization is to investigate the

transmission probability distributions (Chapter 4.3). Figure 5.11 compares the

distributions of the out-of-plane scattered light intensity in a photonic crys-

tal waveguide (δ = 6%) for low- and high-density of states (gray and black

histogram), respectively. The normalized out-of-plane scattered light intensity,
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I/⟨I⟩, is measured at a �xed distance from the �ber tip (z0 = 250µm) for 8 dif-

ferent disorder realizations. In order to increase the statistics, we collect I/⟨I⟩
at di�erent wavelengths, λ = (885 ± 10) nm, and λ = (915 ± 10) nm. For low-

density of states, we measure a Gaussian-like intensity distribution centered

around I/⟨I⟩ = 1. This behaviour is expected for the transmission probabil-

ity distribution in one-dimensional samples when the out-of-plane extinction

length is comparable to the localization length and to the sample length, i.e.,

the measurement distance z0 (Chapter 4.3). On the contrary, for high-density

of states, the distribution broadens and the deviation from a Gaussian is pro-

nounced. This behavior can only be explained with a localization length that

is much shorter than z0 and lout. The di�erence between the distributions for

low- and high-density of states is a clear proof of a reduction in the localiza-

tion length as the density of states increases. To con�rm this, we model our

experimental distributions using a transfer matrix theory formalism including

losses (cf. Chapter 4). We obtain a good agreement by �tting our experimen-

tal distributions with one-dimensional transmission probability distributions.

The constant loss length included in the calculations, lout = 260± 100µm, was

determined by �tting the experimental data with ℓe
−1 = Aξ−1+ lout

−1 (A rep-

resents a �tting constant). The rather large error in the loss length arises from

the fact that the �t is sensitive to λb. The corresponding �tting curve is shown

as a black line in Fig. 5.10. A good agreement between the theoretical trans-

mission distributions and the experimental intensity distributions in Fig. 5.11

supports our approximation that the out-of-plane scattered intensity is propor-

tional to the transmission through the photonic crystal waveguides. Further-

more it emphasizes that the light con�nement in photonic crystal waveguides

can be attributed to one-dimensional Anderson localization. We note that the

intensity probability distributions do not provide a very precise way to distin-

guish between di�erent values of the localization length and the out-of-plane

extinction length since di�erent sets of (ξ, lout) can give rise to very similar

distributions (see Figs. 4.5, 4.7). The experimental data are limited by �nite

statistics.



5.3 Conclusion

In conclusion, we have demonstrated the close relation between Anderson lo-

calization of light and the photonic density of states in photonic crystal waveg-

uides, which was predicted but not yet demonstrated experimentally. The close

relationship between the localization length and the density of states allowed

us to control accurately the optical properties of Anderson-localized modes ap-

pearing in the high-density of states regime of photonic crystal waveguides.

This is of fundamental importance since it imposes limitations for traditional

slow-light devices based on photonic crystal waveguides such as single-photon

sources [105]. At the contrary the strongly con�ned Anderson-localized cavities

with tailored properties open a new route to explore cavity quantum electro-

dynamics or random lasing.

The presented experiments utilized disorder in the �rst three rows next

to the waveguide while the remaining photonic crystal was unperturbed. It

would certainly be interesting to investigate Anderson localization in photonic

crystal waveguides depending on the number of rows that are disordered. An-

other promising experiment in the Anderson-localized regime could be a study

of broader waveguides by omitting several rows in the periodic lattice. This

might create a few spatial modes and additional intensity correlations could

arise, for example very pronounced long range correlations. Furthermore, two-

dimensional disordered photonic crystal membranes o�er the possibility to in-

vestigate two-dimensional Anderson-localization of light.



Chapter 6

Probing Anderson

localization with quantum

emitters

6.1 Introduction

So far, Anderson localization has been experimentally probed by placing a light

source outside of a disordered medium and analyzing its transmission proper-

ties. Most experiments investigated spatial, spectral, or temporal transmission

properties of disordered media [17, 76, 82]. In Chapter 5, the localization length

in disordered photonic crystal waveguides was determined from transmission

experiments by measuring the extinction mean free path, ℓe. In the high-density

of states regime, ℓe was attributed to the localization length. Con�rming An-

derson localization in transmission measurements is recurrently debated since

the light losses strongly in�uence the measurement of the extinction mean free

path. So far, no experiments have been presented where the localization length

and the loss length have been quanti�ed simultaneously using a direct mea-

surement method.

95
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In this chapter, a new approach is demonstrated by employing the light

emission from quantum dots embedded inside disordered photonic crystal

waveguides. Thereby, we access experimentally unexplored signatures of

Anderson localization. The quantum dots excite very e�ciently Anderson-

localized modes in the high-density of states regime as opposed to transmis-

sion measurements where only a poor coupling to Anderson-localized modes is

achieved. Internal emitters are therefore very promising to investigate statisti-

cal properties of Anderson localization. As proposed in Chapter 4, we compare

the Q factor distributions of Anderson-localized modes our calculations and

estimate the localization length, ξ, and the loss length, l. The obtained results

con�rm unambiguously Anderson localization in the investigated disordered

photonic crystal waveguides. The spectral �uctuations in the quantum dot light

intensity are compared to calculations of the light emission in one-dimensional

media.

6.2 Light sources embedded inside disordered

photonic crystal waveguides

6.2.1 Experimental setup

The statistical signatures of Anderson localization in disordered photonic crys-

tal waveguides are probed in a confocal microscope setup, as illustrated in

Fig. 6.1a. The design of the disordered photonic crystal waveguides is similar

to those that have been used to study light propagation (Chapter 5). In ad-

dition, a layer of self-assembled indium arsenide quantum dots with a density

of ≈ 80µm−2 is grown in the center of the gallium arsenide membrane. The

quantum dots emit light within a broad spectral range from λ ≈ 905nm to

λ ≈ 990nm. Anderson localization is expected to arise in the high-density

of states regime around the vicinity of the mode band edge that is designed

to be at λ = 977 nm. The membrane height is 150nm, the lattice constant

is a = 260 nm, the radius of the holes is r = 78 nm, and the samples have a

length of L = 100µm. As for the passive waveguides, the disorder is induced

by varying randomly the hole positions in the �rst three rows above and be-
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Figure 6.1: Experimental scheme to probe Anderson localization with quantum

emitters. A laser (dashed gray line) is focussed onto a disordered photonic

crystal waveguide under cryogenic conditions. Thereby, a layer of quantum dots

is excited in a di�raction limited region around the waveguide. The quantum

dots are illustrated by white triangles in the scanning electron microscope image

of the photonic crystal waveguide membrane (left panel). The quantum dot

photoluminescence (solid gray line) is recorded using a confocal microscope

setup with a dichroic mirror (DM), spatially �ltered with a �ber, and spectrally

�ltered with a spectrometer. The signal can be either recorded with a charged-

coupled device camera (CCD) or with a avalanche photo detector (APD).

low the waveguide with a standard deviation of δ = 0, 1, . . . , 6% relative to

the ideal lattice. The photonic crystal waveguides are placed in a Helium �ow

cryostat and cooled down to a temperature of T = 10K. Light merging from

a continuous wave Ti:Sapphire laser (λ = 850 nm) is focussed through a mi-

croscope objective (NA = 0.65) onto the photonic crystal waveguide exciting

locally the embedded quantum dots above saturation. The emitted light from

the quantum dots radiated out-of-the photonic structure is collected through

the same microscope objective and separated from the re�ected excitation light

using a dichroic mirror. Afterwards the photoluminescence is spatially �ltered

restricting the collecting spot to a small region around the waveguide with a

diameter of 1.4µm. The intensity is spectrally �ltered with a spectrometer

(spectral resolution 50pm) and recorded with a charged-coupled device cam-

era or a single photon detector, respectively. The sample position is controlled

with nano-stages to change the excitation position along the waveguide (spatial

scan resolution of 0.3µm). Further details of the experimental setup can be

found in Ref. [105].
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Figure 6.2: Measured intensity that is emitted from the quantum dots, while

scanning along the waveguide for three di�erent amount of disorder induced in

the photonic crystal waveguide. From left to right: a, δ = 1%, b, δ = 3%,

c, δ = 6%. The quantum dot photoluminescence in the high-density of states

regime exhibits large �uctuations which is a strong indication of a coupling to

Anderson-localized modes.

Fig. 6.2 displays the recorded spectral photoluminescence from quantum

dot ensembles, while scanning along a photonic crystal waveguide for di�erent

amount of disorder (δ = 1, 3, 6%). In agreement with transmission measure-

ments (Chapter 5), we observe close to the calculated waveguide mode band

edge (high-density of states regime) spectrally separated Anderson-localized

modes. These con�ned modes appear at random spectral and spatial positions

along the waveguide. The intensity exhibits large �uctuations and varies over

three orders of magnitudes as predicted for the localized regime [3]. While the

spatial extension of the individual localized modes varies, the average extension

is determined by the localization length. The spectral range of the modes is

found to be dependent on δ. For a low amount of disorder Anderson-localized

modes appear in a spectral region of only ∆λ = 5nm. On the contrary, strong

intensity �uctuations are observed within ∆λ = 15 nm for δ = 6%. This might

be explained by a disorder dependent breakdown of the dispersion relation.

6.2.2 Probing Anderson localization via intensity �uctua-

tions

A well-established method to investigate Anderson localization is to study the

normalized �uctuations in the sample transmittance for many di�erent real-
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Figure 6.3: Spectral signatures of Anderson-localized modes. Photolumines-

cence spectra of two di�erent spatial positions (black and gray, δ = 1%). Sev-

eral Anderson-localized modes appear at each spatial position and are found to

be spectrally well-separated. The entire spatial range consists of 350 recorded

spectra. The vertical black dashed lines represent the lower and upper limit

(λmin and λmax) where the intensity �uctuations occur. The inset shows the

recorded raw data with pronounced background light originating from the light

emission of the quantum dots that do not couple to the photonic crystal waveg-

uide mode. The dashed line in the inset is a linear �t to the data.

izations of disorder [109]. The corresponding total transmission distribution

changes signi�cantly as the localized regime is approached (cf. Fig. 4.5 in

Chapter 4). Instead of measuring the transmission, we study in the present

experiment the normalized �uctuations and distributions of the quantum dot

photoluminescence. Since the localization length is strongly dispersive, the

analysis is restricted to the narrow spectral region where Anderson-localized

modes can be observed. All recorded spectra that belong to a single spatial

scan along the waveguide are cropped to the same spectral region, de�ned by

the range of pronounced intensity �uctuations (dashed lines, Fig. 6.3). To ac-

count for the inhomogeneous broadened light emission of the quantum dots,

we �t the spectra with a linear function and subtract it from the signal (inset

Fig. 6.3).
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Once the spectra a preprocessed, the photoluminescence probability distri-

bution can be extracted, as presented in Fig. 6.4a, b. The intensity proba-

bility distribution P (I/⟨I⟩) is obtained by measuring the wavelength depen-

dent intensities Iλ,z at all spatial positions z. For each position the spec-

trally ensemble-averaged intensity ⟨Iz⟩ is calculated. In very good agreement

to our calculations, the individual distributions P (Iλ,z/⟨Iz⟩) do not show a

pronounced dependence on z. For a better signal to noise ratio we incorporate

all measured intensities Iλ,z/⟨Iz⟩, normalized to their position z. Thus, we get

P (I/⟨I⟩) with Iϵ{Iλ,z/⟨Iz⟩ |λmin ≤ λ ≤ λmax, 0 ≤ z ≤ L}.

The �uctuations in the emitted light intensity provide an important statis-

tical property characterizing Anderson localization of light. A detailed study of

the measured intensity distributions are displayed in Fig. 6.4 for two di�erent

degrees of disorder. The recorded intensity probability distributions (Fig. 6.4)

display large �uctuations that are more than 20 times above and 10 times below

the average intensity, respectively. Under high excitation powers the emission

rates of the excited QDs are strongly in�uenced by the local density of states

of the photonic crystal waveguide, resulting in a so-called Purcell-enhanced

photoluminescence intensity [110]. The local density of states at the position

of an emitter determines its decay rate by counting the electromagnetic modes

projected along the emitter dipole orientation. The experimental data are �t-

ted with the spatially averaged local density of states probability distribution

of a lossless disordered medium having the localization length as the only free

parameter (red curves in Fig. 6.4). Due to the high density of quantum dots

(density ≈ 80µm−2), the di�raction limited excitation spot (≈ λ) excites an en-

semble of quantum dots. In a disordered medium the environment of the emit-

ter normally changes on length scales much smaller than our excitation area

and thus our theoretical model resembles the spatial average of the local density

of states on the length scale of λ which is also called mesoscopic local density of

states [85], as outlined in Chapter 4. The comparison of experiment and theory

was performed by calculating the �t goodness, χ2(ξ), of the theoretical distri-

bution, PT (I/⟨I⟩) and the experimental distribution, PE(I/⟨I⟩), depending on
the localization length1: χ2(ξ) =

∑
I/⟨I⟩

[
| log(PT (I/⟨I⟩))− log(PE(I/⟨I⟩))|2

]
[106]. We are interested in �tting the tail of the distribution and investigate

1χ2(ξ) is not weighted with the experimental error, that is set to ∆PE(s) = 1. The error

might be overestimated resulting in χ2(ξ) < 1.
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Figure 6.4: Measured intensity probability distribution in the Anderson-

localized regime for a, δ = 2% and b, δ = 6%. The intensity, I, is normalized

to the average intensity, ⟨I⟩. The red curves represent the �tted spatially av-

eraged local density of states probability distribution (averaged over λ). The

theoretical predictions are obtained from calculations in absence of losses with

ξ as the only free parameter (a, ξ = 19µm, b, ξ = 23µm). For comparison, the

transmission probability distribution is plotted for the same localization length

(δ = 2%: gray dashed line with ξ = 19µm). c, d, Measured �t goodness, χ2,

depending on localization length and loss length. For each pair, (ξ, l), the cor-

responding spatially averaged local density of states distribution is compared

with the experimental data. A lower χ2 results in a better �t.

the logarithm of the functions. Remarkably, the long tails of all investigated

experimental distributions (I > ⟨I⟩) follow the trend of the theoretical pre-

dicted spatially averaged local density of states supporting that the photonic

crystal waveguide behaves as a 1D system. We would like to underline that

an improvement of the �t to the experimental data is expected by employing

a full 3D far-�eld calculation of the photonic crystal waveguide, taking into

account the modulation of the light intensity emitted by the QDs embedded in

the photonic crystal when radiated out of the structure. Our results reveal the

complex interplay between the intensity �uctuations and the local density of
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states �uctuations [85] in the Anderson-localized regime. Very recently, local

density of states �uctuations have been studied in disordered media and varia-

tions of a factor of two have been measured in the the di�usive regime [111, 112].

Our calculations show that the �uctuations are much more pronounced in the

localized regime which could possibly open a new route to investigate how the

local density of states �uctuations manifest themselves in spatial intensity cor-

relations in the far �eld [80]. We note that the corresponding transmission

distributions do not show an agreement with the experimental data (dashed

curve in Fig. 6.4a), highlighting the fundamental di�erence between our exper-

iments and prior statistical analysis of Anderson localization carried out with

light sources positioned outside the disordered medium [17, 3, 23, 82].

Including losses in the calculations, the measure of the �t goodness, χ2(ξ, l),

can be estimated for di�erent loss and localization lengths, as displayed in

Figs. 6.4c and d. It is clearly visible that we obtain a good agreement between

theory and experiment over the entire range in l. The emitted intensity prob-

ability distributions are therefore not suitable to distinguish between ξ and l

(see Chapter 4.3). A �t of the experimental data with the spatially averaged

local density of states distribution in a lossless medium shows an increase in

the localization length versus δ. A longer localization length results in less

�uctuations in the intensity of Anderson-localized modes which reduces the

probability to observe very high intensities (I ≫ ⟨I⟩). This behaviour can

be experimentally observed (Figs. 6.4a and b). The corresponding normalized

variances in the quantum photoluminescence, var(I/⟨I⟩), of all samples are

found to be larger than one (Chapter 4.3.1), proving Anderson localization in

the disordered photonic crystal waveguides with δ = 0, 1, . . . , 6%.
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6.2.3 Quality factors of Anderson-localized modes

Figure 6.5: Experimental Q factor distributions of the Anderson-localized

modes depending on the amount of disorder in the crystal (gray bars). The

black curves are calculations and represent the best �t to the experimental data

using a one-dimensional model including losses, as presented in Chapter 4.4.

An important parameter of an Anderson-localized mode is the mode quality

factor, Q. The Anderson-localized modes appear as peaks in photoluminescence

spectrum excited by the (inhomogeneously broadened) quantum dot ensemble.

The linewidths of the peaks re�ect the mode quality factors in the high exci-

tation power limit [110]. To investigate the individual modes in our samples,

the photoluminescence spectra are analyzed along the waveguide (see Fig. 6.2,

Appendix E.3). The evaluated Q factor distributions appear very broad and

values ranging from Q = 200 to Q = 13, 000 have been measured. The recorded

Q factor distributions are shown in Fig. 6.5. We observe a strong dependence

of the width and the average value of the distributions on the disorder param-

eter δ. This feature can be attributed to changes in the localization length

and loss length (see below). We highlight that Q factors have been measured

(Q ≈ 13, 000) that are comparable to state-of-the-art nano cavities in ordered

photonic crystals with embedded quantum dots [92].

The Q factor distribution allows us to determine ξ and l by comparing ex-
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Figure 6.6: Probability, P (ξ, l), that the predicted Q factor distributions (de-

pending on ξ and l) represent the experimental distributions (Fig. 6.5). For

visibility we plot the separately calculated probabilities exemplarily for δ = 0%,

δ = 4% and δ = 6% that is scaled by a factor of two. P (ξ, l) is shown on a

linear scale.

periment with theory. In particular, we estimate the probability, P (ξ, l), that

a predicted distribution (Chapter 4.4), models the experimental data. For that

purpose, we compare the number of observed Anderson-localized modes, Nj ,

within a speci�c Q factor range, Qj , with the theoretical calculations. The size

of the Q factor range of bin j is determined by the bin size of the histogram, cf.

Fig. 6.5. In accordance with the Bayer's theorem [113], we de�ne the likelihood

function, P (N1, . . . , Njmax |ξ, l) =
∏jmax

j=1 pj(Nj |N (T )
j (ξ, l)) conditional on ξ and

l. pj is a Poissonian probability density function. It represents the likelihood

that the number of measured Anderson localized modes, Nj , of bin j can be

described by a Poissonian distribution having a mean value N
(T )
j (ξ, l). Here,

N
(T )
j (ξ, l) belongs to the calculated probability distribution of bin j for a spe-

ci�c set of (ξ, l). The results of the evaluated probabilities, P (ξ, l), depending

on ξ and l, are presented for δ = 0%, 4% and 6% in Fig. 6.6. We observe

large probabilities only in a very restricted range of ξ and l. Furthermore,

the probabilities are found to depend strongly on the disorder induced in the

photonic crystal waveguide. This can be explained by the presence of losses
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Figure 6.7: Localization lengths and loss lengths in disordered photonic crystal

waveguides. a, Estimated localization lengths from the Q factor measurements,

plotted as a function of δ (black circles). The gray triangles are determined

from the emitted intensity distributions (Fig. 6.4), applying a theoretical model

without losses. b, Estimated loss lengths from Q factor distributions versus

disorder. The error bars represent the standard deviation in the probabilities.

The black curves are guides-to-the-eye.

that suppress long scattering paths and thereby truncate the long tails of the

Q factor distributions. As a result we obtain very unique distributions. The

calculated Q factor distributions corresponding to the largest value of P (ξ, l)

are in good agreement with the measurements (solid curves in Fig. 6.5). To

con�rm the results, a χ2 - analysis is performed, where all calculated distri-

butions are �tted to the experimental distributions yielding the same ξ and

l. These results display that the average value of the Q factor distributions

increase and their widths broaden as the localization length shortens and the

loss length increases.

Fig. 6.7a displays the localization length as a function of δ. The estimated

localization lengths, ranging from ξ = 6.9 ± 1.5µm (δ = 1%) to 15 ± 2.3µm

(δ = 1%), are found to be much smaller than the sample length of L = 100µm,

con�rming the one-dimensional criterion for Anderson localization. As we vary
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δ from 0% to 6%, we observe a signi�cant increase in ξ by a factor of two.

We attribute this to a smearing of the local density of states at the waveguide

mode band edge [101]. Thus, the group velocity increases and light becomes less

sensitive to multiple scattering. This demonstrates a fundamental di�erence

of Anderson localization in slightly disordered periodic structures [25, 108] as

compared to entirely random samples where ξ decreases with increasing disor-

der [17]. Furthermore, we plot the localization lengths estimated from the the

measured intensity distributions (Fig. 6.7b, gray triangles). The trend of ξ ver-

sus δ is similar to the observed trend from the Q factor distributions supporting

the results with an independent method. The estimated localization lengths

are not expected to match since the intensity distributions are compared to

calculations in a lossless medium. We also observed similar localization lengths

in the high density of states regime in disordered photonic crystal waveguides

without embedded quantum dots (ξ ≈ 30µm, cf. Chapter 5). Our estimated

values are slightly lower which might be explained by extra scattering contri-

bution of the quantum dots.

The loss length depending on δ is plotted in Fig. 6.7b (black circles). We

�nd that l exceeds ξ by factors between 30 and 80 and that the loss length

is reduced when the disorder increases. Recent simulations predict a change

in the loss length l of more than one order of magnitude between δ = 0%

and δ = 6% considering light scattering out of the disordered photonic crystal

membrane [86]. In contrast, we only measure a factor of three, indicating

the presence of additional losses that dominate over light leakage for small δ.

Such loss contributions could be absorbing surface states at the membrane and

reabsorption or scattering from quantum dots. For δ = 0% the loss length is

predicted to be much larger (ltheo = 5000µm). Remarkably, as the disorder

increases, we obtain a good agreement with the predicted out-of-plane losses

yielding ltheo < 500µm for δ = 6% (see Appendix E.3.2). The estimated loss

lengths are con�rmed by transmission measurements on waveguides without

embedded emitter where a �t to the measured extinction mean free path yield

loss lengths that are of the same size (Chapter 5.2). We �nd that it is crucial

to include losses in our model since we only obtain a poor agreement with the

experimental Q factor distributions if losses are neglected.

We want to emphasize that the Q factor distributions are much more robust
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against additional experimental �uctuations in the collected photoluminescence

and therefore a sensitive probe of Anderson localization of light. For low den-

sity of states we found a strong dispersion of the localization length (Chapter 5)

which might be also present in the localized regime and is not covered by our

calculations. This, however, is experimentally not observed within the investi-

gated spectral region. In particular, we do not �nd any Q factor dependence

on the wavelength and thus, approximate the dispersion-free analytical calcu-

lations to the experiment.

6.2.4 Coupling of quantum dots to Anderson-localized

modes
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Figure 6.8: Spectral detuning, ∆, of a single quantum dot relative to an

Anderson-localized mode. a, Quantum dot decay curves in resonance (black)

and out of resonance with the localized mode (gray). b, Decay rates versus

detuning of a single quantum dot (black) and mode emission spectrum (gray)

that has been measured by exciting quantum dots ensembles above satura-

tion. These measurements have been carried out by Luca Sapienza and Henri

Thyrrestrup.

Fluctuations in the local density of states can be measured directly via

time-resolved photoluminescence spectroscopy. For that purpose we use the

same setup, as sketched in Fig. 6.1 and generate picosecond pulses with the

Ti:Sapphire laser (λ = 850 nm, pulse length: 2 ps, repetition rate: 75 MHz).

A single quantum dot is repeatedly excited below its saturation at a certain
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position of the waveguide and the emission time is recorded. Collecting many

single-photon events allows us to record a decay curve representing a histogram

of detection events versus time. Two examples of decay curves for a single

quantum dot tuned on- and o�-resonance with an Anderson-localized mode

are presented in Fig. 6.8a. We tune the quantum emission frequency relative

to the Anderson-localized mode by varying the temperature of the sample. The

quantum dot decay rates are extracted by �tting the measured decay curves

with several exponential functions. The fastest component extracted from the

�t corresponds to the rate of the quantum dot, which is most e�ciently coupled

to the optical mode and is directly proportional to the local density of states.

The slower decay components are due to residual quantum dot recombination

processes, e.g., dark excitons. O� resonance, the quantum dot decay rate is

inhibited due to the two-dimensional photonic band gap leading to an emis-

sion rate of 0.5 ns−1. On resonance, a decay rate of 7.9ns−1 is measured that

originates from the high local density of states created by Anderson localiza-

tion. Quantum dots that are far detuned from an Anderson-localized mode

can couple to the slowly propagating mode of the photonic crystal waveguide

[104, 105].

Fig. 6.8b shows the detailed tuning of a single quantum dot through the

spectral pro�le of an Anderson-localized mode. Here, we extract at maximum

a 15 fold enhancement in the quantum dot day rate. It proves that the lo-

cal photonic environment changes signi�cantly over a small spectral range and

supports strongly the observed �uctuations in the quantum dot photolumines-

cence. The enhancement is mainly restricted to the linewidth of the optical

mode. This is a further indicator that we can directly probe the local density

of states in the Anderson-localized regime with intensity �uctuations emitted

from quantum dot ensembles.

6.3 Conclusion and outlook

In conclusion, we probed statistical properties of Anderson localization by plac-

ing emitters inside a multiple scattering medium. We observed large �uctu-

ations in the emitted intensity from quantum dots embedded in disordered



photonic crystal waveguides and attributed them to rapid changes in the local

density of states in the localized regime. The Q factors of Anderson-localized

modes were found to vary over three orders of magnitudes and were used to

estimate the localization length and loss length. The Q factor distributions de-

pended strongly on ξ and l, and were controlled by changing the disorder in the

structure. All experimental data were found to be consistent with the calcu-

lations proving that the investigated waveguides behave as a one-dimensional

system in the localized regime. We believe that the results will pave a new

route to test fundamental questions in the realm of Anderson localization and

form a basis for studies on disorder-induced cavity quantum electrodynamics

experiments [91].

A further experiment could be the investigation of a recently proposed type

of spatial intensity correlation [114]. B. Shapiro showed that the so-called C(0)

correlation function originates from a light source embedded inside a multiple

scattering medium and can dominate over all other spatial intensity correlations

(see Eq. (2.4)). A scattering process close to the source generates a secondary

wave that propagates together with the primary wave along two di�erent di-

rections via a di�usion process. Thus, the far �eld points are correlated. It

has been predicted that the C(0) correlation equals the local density of states

�uctuations [80, 115]. So far, C(0) correlations have been studied experimen-

tally inside three-dimensional random media probing individual emission rates

of embedded emitters. A promising medium to observe C(0) correlations could

be a photonic crystal. While in random powders the measured local density of

states �uctuations are rather weak [111], photonic bandgap materials exhibit

very strong local density of states �uctuations. We suggest that embedded

emitters in two-dimensional photon crystal membranes might be a good can-

didate to study the C(0) correlation function, in particular in the realm of

Anderson localization of light.





Chapter 7

Conclusion

Multiple scattering in the realm of quantum optics enables the investigation

of fundamentally new phenomena that cannot be explained classically. This

thesis reported on experiments that are of purely quantum origin and are found

to be in very good agreement with the developed theoretical predictions. In

the second part of this thesis, Anderson localization of light was investigated in

disordered photonic crystal waveguides. The localization length, a key param-

eter to quantify Anderson localization, was probed via the light propagation in

transmission-like experiments and via the photoluminescence of quantum dots

embedded inside photonic crystal waveguides.

Photon �uctuations are an important property to characterize the quantum

state of light. A squeezed light source was established allowing a continuous

tuning from a classical to a nonclassical light source. Experimentally recorded

photon �uctuations of multiply scattered light proved directly that nonclassical

properties of light survive the complex stochastic process of multiple scattering

even after ensemble averaging over di�erent realizations of disorder. Quantum

noise measurements as well as photon-coincidence measurements revealed spa-

tial quantum correlations that are induced by multiple scattering of light and of

purely quantum origin. As predicted by the developed continuous mode quan-

tum theory of multiple scattering, both positive and negative spatial quantum

correlations were observed when varying the quantum state of the squeezed

111



light source. Angular-resolved measurements with single photon counting de-

tectors explored the photon probability distribution of multiply scattered light

in the time domain. This method showed that the spatial quantum correla-

tion function is in�nite in range and the strength of the correlations can be

controlled by the number of the incident photons.

When interference e�ects survive the statistical ensemble average over all

realizations of disorder, the light transport shows deviations from the di�usive

regime such as in the coherent backscattering cone. Within this Ph.D. project,

the quantum properties of light in the coherent backscattering regime were

addressed experimentally. Using a spontaneous down-conversion light source,

the backscattering cone was investigated in the few photon regime. Recording

the photon probability distributions, the enhancement factor in the photon

�uctuations were found to be larger than two which is the classical limit of

the intensity enhancement. The presented experiments on spatial quantum

correlations and photon �uctuations of multiply scattered light are essential for

a fundamental understanding of multiple scattering in the realm of quantum

optics and form the basis for new theoretical predictions. Randomly disordered

media might open a new route to enhance the information capacity beyond the

classical limit. These results depict the multitude of new phenomena encoded

in the quantum optical properties of multiply scattered light and might inspire

new experiments on, e.g., quantum entanglement of multiply scattered photons.

When multiple scattering becomes very pronounced, light can localize in

disordered media. This interference phenomenon was demonstrated in disor-

dered photonic crystal waveguides. Transmission measurements showed that

the extinction length is strongly dispersive and can be identi�ed with the lo-

calization length in the high-density of states regime of the waveguide mode

allowing the control of one-dimensional Anderson localization of light. So far,

Anderson localization was probed by placing a light source outside a disordered

medium and analyzing the transmission properties. In this thesis an alternative

approach was studied by embedding light sources inside a multiple scattering

medium in form of quantum dots in disordered photonic crystal waveguides.

From the photoluminescence of the quantum dots, the spectral distribution

of Anderson-localized modes was determined. The Q factors of Anderson-

localized modes resulted in very broad Q factor distributions that were found
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to depend strongly on the localization length and loss length. A comparison of

the experimental results with analytical calculations of one-dimensional disor-

dered structures determined the localization length and loss length. The losses

and the localization length were found to increase as the disorder in the pho-

tonic structures increases. All experimental data are found to be consistent

with developed analytical calculations proving that the investigated waveg-

uides behaved as a one dimensional system in the localized regime. The results

demonstrated a new approach to test fundamental questions in the realm of

Anderson localization. Improving the fabrication process might result in pho-

tonic crystal waveguides with less imperfections and hence less losses, enabling

experiments on disorder-induced cavity quantum electrodynamics in the regime

of strong coupling.





Appendix A

Details on the quantum

theory of multiple

scattering

This appendix provides details to derive the variance in the photon number

after multiple scattering of light within the framework of a continuous-mode

quantum theory. A light source couples to the input mode a of a multiple

scattering medium and the multiply scattered light exits the medium along

di�erent directions b0, b1. In order to calculate the variance in the transmitted

photon �uctuations and the spatial quantum correlations, we need to evaluate

the term ⟨n̂b0(ωx)n̂b1(ωy)⟩. Using ⟨n̂a′ ̸=a⟩ = 0∧ ⟨n̂b⟩ = 0 two terms contribute

to the result,

⟨n̂b0(ωx)n̂b1(ωy)⟩

=
∑

a′,a′′,a′′′,a′′′′

t∗a′b0ta′′b0t
∗
a′′′b1ta′′′′b1⟨â

†
a′(ωx)âa′′(ωx)â

†
a′′′(ωy)âa′′′′(ωy)⟩

+
∑

a′,b′,b′′,a′′

t∗a′b0rb′b0r
∗
b′′b1ta′′b1⟨â

†
a′(ωx)âb′(ωx)â

†
b′′(ωy)âa′′(ωy)⟩.

(A.1)
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The �rst non-vanishing term in the last expression is given by

⟨â†a′(ωx)âa′′(ωx)â
†
a′′′(ωy)âa′′′′(ωy)⟩

= δa′,aδa′′′′,a

(
⟨n̂(ωx)⟩δ(ωx − ωy)δa′′,a′′′

+(⟨n̂a(ωx)n̂a(ωy)⟩ − ⟨n̂(ωx)⟩δ(ωx − ωy)) δa′′,aδa′′′,a

)
, (A.2)

where δ(ωx − ωy) describes the result of the continuous-mode commuta-

tion relation in the frequency domain. The second non-vanishing term of

⟨n̂b0(ωx)n̂b1(ωy)⟩ results in

⟨â†a′(ωx)âb′(ωx)â
†
b′′(ωy)âa′′(ωy)⟩

= ⟨â†a′(ωx)
(
δ(ωx − ωy)δb′,b′′ + â†b′′(ωy)âb′(ωx)

)
âa′′(ωy)⟩

= ⟨â†a′(ωx)âa′′(ωy)⟩δ(ωx − ωy)δb′,b′′ + ⟨â†a′(ωx)â
†
b′′(ωy)ab′(ωx)âa′′(ωy)⟩

= ⟨n̂a(ωx)⟩δ(ωx − ωy)δb′,b′′δa′,aδa′′,a + ⟨â†a′(ωx)âa′′(ωy)⟩⟨â†b′′(ωy)ab′(ωx)⟩

= ⟨n̂a(ωx)⟩δ(ωx − ωy)δa′,aδa′′,aδb′,b′′ . (A.3)

Thus, we get

⟨n̂b0(ωx)n̂b1(ωy)⟩

= t∗ab0tab1⟨n̂a(ωy)⟩δ(ωx − ωy)

(∑
a′′

ta′′b0t
∗
a′′b1 +

∑
b′

rb′b0r
∗
b′b1

)
+|tab0 |2|tab1 |2 (⟨n̂a(ωx)n̂a(ωy)⟩ − ⟨n̂a(ωx)⟩δ(ωx − ωy))

= t∗ab0tab1⟨n̂a(ωx)⟩δ(ωx − ωy)δb0,b1

+Tab0Tab1 (⟨n̂a(ωx)n̂a(ωy)⟩ − ⟨n̂a(ωx)⟩δ(ωx − ωy)) . (A.4)

The last expression is a very important result since it allows us to calculate

the spatial quantum correlation function as well as transmitted and re�ected

photon �uctuations. The equivalent result using normal ordered operators is

⟨: n̂b0(ωx)n̂b1(ωy) :⟩ = Tab0Tab1 (⟨n̂a(ωx)n̂a(ωy)⟩ − ⟨n̂a(ωx)⟩δ(ωx − ωy)). Due

the experimental detection scheme, we always measure normal ordered opera-

tors.

Next, we want to calculate the variance in the total transmitted photon
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�uctuations. In accordance with Eq. (2.16), the variance is given by

∆ñ2
T (ω) =

∫ ω+∆ω/2

ω−∆ω/2

dωx

∫ ω′+∆ω/2

ω′−∆ω/2

dωy{∑
b

(⟨n̂b(ωx)n̂b(ωy)⟩ − ⟨n̂b(ωx)⟩⟨n̂b(ωy)⟩)

+
∑
b0

∑
b1 ̸=b0

(⟨n̂b0(ωx)n̂b1(ωy)⟩ − ⟨n̂b0(ωx)⟩⟨n̂b1(ωy)⟩)
}
.(A.5)

The two sums in the last equation can be evaluated separately. The �rst sum

leads to (Eq. (A.4))

∑
b

[⟨n̂b(ωx)n̂b(ωy)⟩ − ⟨n̂b(ωx)⟩⟨n̂b(ωy)⟩]

=
∑
b

Tab⟨n̂a(ωx)⟩δ(ωx − ωy)

+
∑
b

T 2
ab (⟨n̂a(ωx)n̂a(ωy)⟩ − ⟨n̂a(ωx)⟩δ(ωx − ωy)− ⟨n̂a(ωx)⟩⟨n̂a(ωy)⟩) .

(A.6)

The double sum that originates from the cross correlation in Eq. (A.5) gives

∑
b0

∑
b1 ̸=b0

⟨n̂b0(ωx)n̂b1(ωy)⟩ − ⟨n̂b0(ωx)⟩⟨n̂b1(ωy)⟩

=
∑

b0,b1 ̸=b0

Tab0Tab1

(
⟨n̂a(ωx)n̂a(ωy)⟩

−⟨n̂a(ωx)⟩δ(ωx − ωy)− ⟨n̂a(ωx)⟩⟨n̂a(ωy)⟩
)
. (A.7)

In the di�usive regime, the ensemble averaged second order transmission coef-

�cient is given by Tab0Tab1 ≈ (1 + δb0b1) (1 + 4/3g) ≈ Tab
2
[15]. Furthermore,

the ensemble averaged transmission through each channel can be approximated

to be the same, T ≈ N ×Tab. As a result we get the ensemble average variance



in the total transmitted photon �ux

⟨n̂T (ωx)n̂T (ωy)⟩ − ⟨n̂T (ωx)⟩⟨n̂T (ωy)⟩

= N × Tab⟨n̂a(ωx)⟩δ(ωx − ωy)

+N × Tab
2
(⟨n̂a(ωx)n̂a(ωy)⟩ − ⟨n̂a(ωx)⟩δ(ωx − ωy)− ⟨n̂a(ωx)⟩⟨n̂a(ωy)⟩)

+(N2 −N)× Tab0Tab1

×
(
⟨n̂a(ωx)n̂a(ωy)⟩ − ⟨n̂a(ωx)⟩δ(ωx − ωy)− ⟨n̂a(ωx)⟩2

)
= T ⟨n̂a(ωx)⟩δ(ωx − ωy)

+T
2
(⟨n̂a(ωx)n̂a(ωy)⟩ − ⟨n̂a(ωx)⟩δ(ωx − ωy)− ⟨n̂a(ωx)⟩⟨n̂a(ωy)⟩) .

(A.8)

Using Eq. (A.5) and Eq. (A.8), we can calculate the integrated dimensionless

variance in the photon �uctuations in the di�usive regime within the measure-

ment bandwidth ∆ω

∆ñ2
T (ω) = T ⟨n̂a(ω)⟩+ T

2 (
∆n2

a(ω)− ⟨n̂a(ω)⟩
)
, (A.9)

where the bars denote the ensemble average over all realizations of disorder.



Appendix B

Details on the spatial

quantum correlation

experiment

The following Appendix reviews details of the squeezed light source (Chap-

ter 2) as well as details of the fabrication of titanium dioxide samples, and the

detection e�ciency of the setup to measure spatial quantum correlations. Fur-

thermore, the light source is discussed that is used to carry out angular-resolved

measurements (Chapter 3.2).

B.1 Nonclassical light source

As a nonclassical resource we use vacuum squeezed light [41] generated through

a periodically poled KTiOPO4 (PPKTP) crystal implemented in a bow tie

shaped optical parametric ampli�er [116, 117], as shown in Fig. B.1. The non-

linear medium is pumped with a continuous wave laser (Diabolo, Innolight) at a

wavelength of λ = 532nm. The spontaneous parametric down-conversion pro-

cess generates photon pairs that are in resonance with the cavity (λ = 1064 nm).
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Figure B.1: Scheme of the experimental setup to generate quadrature squeezed

light. MC: mode cleaning cavity, OPA: Optical parametric ampli�er, PP-

KTP: periodically poled potassium titanyl phosphate nonlinear crystal, BS:

99:1 beam splitter, DB: displacement beam with a variable optical phase, ∆ϕ,

relative to the squeezed vacuum, FM: �ip mirror, D: photo diode.

The correlation between the photon pairs results in reduced photon �uctuations

below the classical limit. A fraction of the cavity mode is coupled out at one

mirror of the cavity, called vacuum squeezed light. One of the cavity mirrors

is mounted on a pre-loaded mirror holder with a piezo-electric element to ad-

just the optical path length of the cavity. The optical parametric ampli�er is

stabilized over several hours with a counter-propagating beam (λ = 1064 nm)

using the Pound-Drever-Hall locking technique that controls the piezo-electric

element [118]. The �rst key parameter of the cavity is its Finesse that has to

ful�ll two requirements. On the one hand, the Finesse should be high to de-

crease the spectral bandwidth of the down-conversion process and to increase

the number of round trips of the correlated photon pairs. On the other hand,

many correlated photons should be coupled out. A measurement to estimate

the Finesse of our cavity is shown in Fig. B.2a. We scan the mirror (mounted

on a piezo-electric element) and record the transmission through the cavity on
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Figure B.2: a, Transmission through the cavity while slowly scanning the op-

tical path length of the cavity. From the full width half maximum (FWHM)

and the free spectral range (FSR) the Finesse of the cavity can be calculated.

b, Ampli�cation (black circles) and attenuation (gray triangles) of the electric

�eld inside the optical parametric ampli�er depending on the pump power and

using a seed laser.

detector D1. The Finesse yields F = 52 having a cavity linewidth of 10.5MHz.

A second important parameter is the ampli�cation and attenuation of the elec-

tric �eld in the cavity at λ = 1064 nm generated by the spontaneous parametric

down-conversion depending on the pump power. To amplify or attenuate the

cavity �eld, a laser with λ = 1064nm is coupled into the fundamental cavity

mode and co-propagates with the pump beam inside the cavity. This seed

laser is varied in phase with respect to the pump beam causing a ampli�cation

(attenuation) of the electric �eld in the cavity. An attenuation of −3.8 dB is

observed determining the maximum vacuum squeezing (Fig. B.2b). Note that

the seed beam is blocked when the vacuum squeezed light is generated. There-

fore, the seed laser is not included in the setup (Fig. B.1). Further details are

discussed in Ref. [119].

The bright squeezed light source is generated by overlapping the vacuum

squeezing with a second laser beam (λ = 1064nm) on a beam splitter. The

second laser beam is called displacement beam since its phase ∆ϕ can be varied

with respect to the vacuum squeezing. Note that a gaussian mode pro�le is

required to mode match the light beams on the beam splitter. Thus, the pump
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Figure B.3: a, Measured photon �uctuations in the time domain of the quadra-

ture squeezed light source depending on the phase ∆ϕ of the bright displace-

ment beam. For comparison the measured photon �uctuations of a coherent

displacement beam is plotted in b. The plots contain approximately 5.5M data

points linearly distributed over a phase variation between the signal mode and

the displacement beam from 0 to 2π. c, Corresponding reconstructed Wigner

function of the measured quadrature squeezed light source and d, the coherent

beam. The Wigner function is obtained from the time resolved measurements

using a homodyne setup.

laser, lock laser, and displacement beam propagate through a high �nesse cavity

�rst, denoted by MC1 and MC2. A further advantage of the mode cleaning

cavities is that they suppress any excess noise providing a shot noise limited

beam at very low sideband frequencies.

The vacuum squeezed state is characterized by the technique of quantum to-
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mography where the Wigner function is reconstructed based on phase-sensitive

measurements of the quantum �uctuations in the time domain, see Fig. B.3a.

The time resolved signal is down mixed at a frequency of 3.93MHz and low

pass �ltered with a bandwidth of 150 kHz. Afterwards the Wigner function is

reconstructed using an iterative maximum-likelihood reconstruction algorithm

[120]. The Wigner function is a quasi probability distribution that quanti�es

the fundamental uncertainties in the real and imaginary part of the quantized

electric �eld, which we refer to as x and p, respectively. From Fig. B.3c we ob-

serve that the vacuum squeezed state has strongly reduced �uctuations in the

x amplitude at the expense of enhanced �uctuations in the p amplitude [121].

The �uctuations of the x amplitude are reduced below the classical limit set by

the noise of a coherent state. These nonclassical �uctuations are mapped onto

a bright squeezed quantum state containing many photons due to interference

of the vacuum squeezed state with light from a laser (displacement beam) on

a beam splitter, see Fig. B.1. For comparison, we plot in Figs. B.3b and d

the time dependent photon �uctuations and the Wigner function of a coherent

light source, respectively. It is clearly visible that the Wigner function does not

show reduced �uctuations in the x and p quadrature and the variance in both

quadrature is one. In accordance with the Heisenberg uncertainty principle,

this represents the classical limit.

B.2 Detector calibration

The multiple scattering sample is illuminated by the squeezed light as explained

in the main text. The total transmission (re�ection) is detected with a highly

sensitive InGaAs-resonance detector (photo diode: ETX 500T, Epitaxx). An

electrical spectrum analyzer is used to measure the variance in the photocur-

rent that is proportional to the photon number �uctuations at the detector

resonance frequency of 3.93MHz. The detector has a bandwidth of 315 kHz

as shown in Fig. B.4a. We ensure that the detector has a linear response by

measuring the direct (DC) and alternating (AC) voltage of the photodiode (the

photo current of the diode is converted into a voltage with a transimpedance

ampli�er) versus power of the coherent laser beam. Fig. B.4b displays a linear

dependence of the DC voltage as function of the laser intensity that is recorded
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Figure B.4: a, Detector response to a shot noise limited laser that exhibit fre-

quency independent photon �uctuations. The highest sensitivity of the detector

is at 3.9MHz. The bandwidth is given by a 3dB decrease in the detector sen-

sitivity and estimated to be 315 kHz. b, DC voltage and AC voltage response

of the detector depending on the incident light intensity measured with a volt-

meter and a spectrum analyzer at a frequency of 3.9MHz, respectively. The

straight lines are a �t to the experimental data.

independently with a power meter. The alternating voltage represents the vari-

ance in the photon �uctuations of the laser beam showing a linear dependence

versus laser power, too. This is expected since the intensity of a coherent laser

beam scales linear with the variance in the photon �uctuations, i.e., ⟨n⟩ = ∆n2

proving that the laser indeed emits a coherent state and that the detector works

in its linear regime. The experiments are performed with optical powers of the

light source larger than P = 5µW where signal is 6.5dB larger than the dark

noise level of the detector.

B.3 Fabrication of titanium dioxide samples

The multiple scattering samples are prepared by spreading suspensions of tita-

nium dioxide particles on microscope cover glasses resulting in a typical sample

size of 35mm x 18mm. A typical scanning electron microscope picture of the

sample with nano particles is shown in Fig. B.5a. After evaporation of the liq-

uid, the thicknesses of the samples are measured by scanning each sample using
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the tip of a micrometer-screw. The statistics in the thickness determination

is obtained by probing 20 di�erent positions on the samples. The central area

of each sample is left untouched to avoid damage using this contact technique

(Fig. B.5b). We restricted our measurements to a small central area of each

sample. Note also that all thickness measurements are carried out far from

the sample border where surface tension of the suspension will lead to large

variations in the sample thickness. The average thicknesses of the samples are

displayed in Fig. B.5c. All samples exhibit a smooth variation in thickness

across the sample. The errorbars should therefore be considered as an up-

per boundary since they are obtained by characterizing inhomogeneities of the

whole sample rather than the small area used for optical characterization.
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Figure B.5: a, Scanning electron microscope image of the multiple scattering

medium consisting of titanium dioxide that has been grounded into strongly

scattering particles with a typical size of 200 nm. The samples were fabricated

by E. G. van Putten, I. M. Vellekoop, and A. P. Mosk at the University of

Twente. b, Scanning of a sample at di�erent positions with the tip of a microm-

eter screw to obtain the average sample thickness. A thickness of L = (6±2)µm

is measured for the illustrated sample. c, Overview of the measured thicknesses

for all samples that have been used in the experiment.
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B.4 Detection e�ciency of the experimental

setup

A crucial issue in the estimation of the spatial quantum correlation function is

to detect a large amount of transmitted or re�ected photons in order to observe

any nonclassical e�ects. In order to compare our experiments to theory an

independent measurement of the overall detection e�ciency, η, is needed. η is

de�ned as the ratio of the intensity of the multiply scattered light imaged onto

the squeezing detector Idet relative to the intensity transmitted through the

sample T × I0

η =
Idet

T × I0
. (B.1)

An integrating sphere is used to detect the total sample transmission T =

Tsurf(θ)Ts which is the product of surface transmission, for an angle of inci-

dence θ, and the transmission through the multiple scattering medium. Tsurf(θ)

describes the interface re�ection and can be estimated from the Fresnel rela-

tions. Using an e�ective refractive index of n = 2.0 ± 0.4, as obtained from

the total transmission measurements, we get Tsurf(0
◦) ≈ 94% after averaging

over two independent polarizations and for illumination of the glass side of the

sample.

In the re�ection geometry, it is desirable to remove direct re�ections due

to single-scattering events from the multiply scattered distribution of light.

To achieve this, the multiple scattering surface of the sample is illuminated

under a steep angle of θ = 69◦, whereby the direct re�ection does not pass

through the collection microscope objective. The fraction of the incident light

that is multiply scattered into the re�ection is therefore R = Tsurf(θ)Rs, where

Tsurf(69
◦) ≈ 72% is calculated from the Fresnel relations and Rs = 1 − Ts

is obtained from the total transmission measurements with the integrating

sphere. The detection e�ciency for re�ection measurements is given by

η = Idet/
(
I0 R

)
. The measured detection e�ciencies for the transmission and

re�ection experiments are presented in Fig. B.6. It is found to vary with the

thickness of the sample since the di�use light exiting the random medium is

collected with di�erent e�ciencies depending on the extent of the di�usion

process.
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Figure B.6: Separately measured overall detection e�ciency η for each sample

thickness in transmission (gray triangles) an re�ection geometry (black circles).

The error bars on the sample thickness are plotted only once.

B.5 Generation of classical photon �uctuations

Chapter. 3.2 discusses the angular-resolved measurement of the spatial pho-

ton correlation function. To observe any correlations di�erent from one (un-

correlated photons), it is important that the Fano factor of the light source,

F (∆t) = ∆n2(∆t)/⟨n(∆t)2⟩, di�ers from one. For that purpose a continuous

wave Ti:Sapphire laser is used that is focussed onto a slowly rotating ground

glass plate (Thorlabs, 600 grit polishes). Afterwards, only a spatial fraction of

the light transmitted through the glass plate is collected (cf. Fig. 3.2). The

ground glass plate causes large �uctuation in the light transmission scrambling

the coherence of the light source. In order to characterize this so-called pseudo

thermal light source [58, 59], the number of photons are investigated that arrive

within a time interval, ∆t, using a single photon counting detector. Repeating

the measurement for many time intervals, we �nd that the number of photons

varies between the measurements. A coherent light source with F (∆t) = 1

shows a Poissonian distribution in the number of detected photons while clas-

sical light sources exhibit Super-Poissonian distributions. The mean of the
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Figure B.7: Measured Fano factor, F (∆t), of our classical light source depend-

ing on (∆t)−1. The light source consists of a rotating ground glass plate that is

positioned inside a coherent laser beam. F (t)∆t is plotted for di�erent rotation

speeds of the ground glass plate.

distribution equals ⟨n(∆t)⟩ and its variance is de�ned by ∆n2(∆t). Fig. B.7

displays the Fano factor depending on (∆t)−1 showing that the Fano factor

increases as ∆t decreases. The photon �uctuations can be further tuned by

changing the rotation speed of the ground glass plate. Slower rotations cause

larger �uctuations in the light intensity between di�erent time intervals while

a fast rotation leads to intensity �uctuations within ∆t. In the experiment, the

rotation speed is kept constant and ∆t is varied to change the Fano factor.



Appendix C

Details on the coherent

backscattering experiment

C.1 Type-II parametric down-conversion light

source

An experimental realization of entangled photons has been carried out by P.

G. Kwiat et al in 1995 [68] using two overlapping rings of correlated photon

pairs that are generated by a non-linear beta-barium borate (BBO) crystal.

The polarization of the photons emitted in the di�erent rings is orthogonal

to each other and at the intersection of the rings the photons are inherently

entangled. This light source is called type-II spontaneous parametric down-

conversion (SPDC) source and di�ers from a type-I SPDC source that generates

photon pairs with the same polarization. The underlying physical principle is

the spontaneous down-conversion process where a single photon generates two

orthogonal polarized photons of lower energy emerging in an ordinary ray and

extraordinary ray, respectively. We note that a squeezed light source as it has

been described in Appendix B.1 is based on the type-I SPDC process.

Fig. C.1a shows the experimental setup to establish a SPDC source. In
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Figure C.1: a, Scheme of the experimental setup to generate photons in a spon-

taneous parametric down-conversion process. BS: beam splitter, D: dichroic

mirror L: lens, LP: long pass 550nm P: prism, SHG: second harmonic genera-

tion. b, Calculated tuning curves for a type-II SPDC using a pump wavelength

of λ = 390 nm. The black curve indicates the idler beam the red curve indi-

cated the signal beam. The angle between optical axis of the crystal and pump

beam (θ = 43.9◦) results in two rings of emitted photons illustrated by four

intersections at λ = 780nm. Inset: Recorded photon rings with the CCD cam-

era around λ = 780 nm. The opening angle of the rings is ∆α = 4.9◦. c,

Calculated tuning curves for beamlike type-II SPDC using a pump wavelength

of λ = 390 nm. Inset: Recorded collinear photon beams with the CCD camera

that originate from the SPDC source around λ = 780nm. The angle between

optical axis of the crystal and pump beam is θ = 42.7◦. The angle between the

collinear beams is ∆α = 4.2◦.
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the �rst ultraviolet light is generated: A femto-second Ti:Sappire laser (λ =

780nm, repetition rate 80MHz) is focussed on a type-I BBO crystal (Ekspla)

plate to generate photons at 390nm in the second harmonic process. The

polarization of the generated photons is vertical with respect to the optical

board and orthogonal to the incident photons. The power of the Ti:Sappire

laser can be continuously varied with a polarizing beam splitter and a λ/2-wave

plate. To avoid any stray light, the co-propagating light of the Ti:Sapphire laser

has to be �ltered out with dichroic mirrors. In addition, two dispersive prisms

separate spatially light beams of di�erent wavelengths. The remaining near

infrared light is blocked with an iris. In the second part of the experiment,

the SPDC source is realized: The ultraviolet light is weakly focussed (focal

length 300mm) onto another type-II BBO-crystal (United-Crystal) with an

anti-re�ection coating on both sides and dimensions of 6 × 6 × 2mm (width

× height × thickness). The optical axis of the second crystal is aligned to be

parallel to the optical board and exhibit an angle of 45◦ to the front surface

of the crystal. Changing the angle θ between the incident pump beam and

the optical axis by rotating the crystal results in a di�erent phase-matching

condition in the parametric down-conversion process.

To investigate the spatial emission pattern of the down-converted photons

depending on θ, the tuning curves are calculated that ful�ll the phase-matching

condition [122]

ωp = ωs + ωi,

k⃗p = k⃗s + k⃗i. (C.1)

Here, ω de�nes the angular frequency, k⃗ the wave vector, and the subscripts rep-

resent the ultraviolet pump photon, p, and the down-converted near infrared

signal, s, and idler, i, photon with ordinary and extraordinary polarization.

Fig. C.1b shows the so-called tuning curves that plot the signal and idler wave-

length and the corresponding emission angle α between pump photon and the

photon pair. The degenerated case ωs = ωi = ωp is very important since it

required to create entangled photons (vertical line at 780nm in Fig. C.1b). The

horizontal line represents the emission angle α = 0◦ when the emitted photons

co-propagate with the pump photon. From the Figure we can see that the

idler photon and the signal photon both exhibit two solutions at λ = 780nm

to ful�ll Eq. (C.1). This solutions corresponds to two overlapping circles of
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idler and signal beams. We verify experimentally the calculations by aligning

the BBO crystal to an angle of θ = 43.9◦ and placing a highly sensitive EM-

CCD camera behind the crystal. The inset in Fig. C.1b shows the recorded

rings of the down-converted photons. The agreement between theory and the

measured emission angle α is very good. At the intersection of the two rings,

the photons are entangled to each other. A drawback of this con�guration is

that only a small fraction of the emitted photon pairs can actually be used in

an entanglement experiment. Decreasing the angle between pump beam and

optical axis leads to a change in the phase-matching condition, i.e., the tuning

curves move away from each other. Fig. C.1c illustrates a special case where

the two tuning curves are tangent to each other. For the degenerated case only

one solution ful�lls Eq. (C.1) and the photon pairs are emitted in a twin-beam

con�guration [69, 70]. The divergence of the beams is less than 1◦ (calculated

0.3◦) which allows us to obtain a high collection e�ciency of the signal and the

idler photons. The inset of Fig. C.1c plots the the experimental measurement of

the twin-beam con�guration being in good agreement to the predictions. These

beams could be overlapped on a beam splitter to create entangled photon pairs

[70]. The e�ciency of the down-conversion process is extremely low (typically

10−10). A Helium-Neon (HeNe) laser is used to align the experimental setups

by overlapping it with the signal and idler beam as shown in Fig. C.1a [123].

C.1.1 Characterization of the light source

For a detailed analysis of our SPDC light source two single photon counting

detectors (Perkin Elmer, SPCM/AQRH/13) are placed at a distance of 100 cm

behind the nonlinear crystal (inset, Fig. C.2a). A histogram of the recorded

coincidence counts depending on the time delay between both detectors is dis-

played in Fig. C.2a. The plot shows a pulsed spectrum with a pulse period

of 14 ns that originates from the repetition rate of the laser. Each time the

Ti:Sappire laser sends out a pulse, photons are created in the SHG process.

Down-converted photons can be created spontaneously. In an ideal system co-

incidence events are only expected at τ = 0 time-delay. We detect uncorrelated

photon coincidences from di�erent laser pulses that originates from a limited

detection e�ciency of the detectors. The background counts have to be sub-

tracted to extract the correct number of detected correlated photon pairs. To
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Figure C.2: Characterization of the established twin-beam SPDC source. a,

Histogram of detected coincidences between signal and idler beam. The coin-

cidence events at zero time delay originate from the correlated photon pairs

that are generated simultaneously. Inset: Experimental setup to measure the

coincidences using two single photon counting detectors positioned behind the

crystal in the twin-beam rays. Two interference �lter are positioned in front

of the detectors λ = 780± 10nm. b, Number of photons created in the down-

conversion process as function of the optical power of the pump light. The

straight line illustrates the linear dependence of this process indicating that

only single photon pairs are created.

ensure that we only create a single photon pair per laser pulse, we investigate

the coincidence counts depending on the pump power of the SHG and observe

a linear dependence (Fig. C.2b). A saturation in the signal would indicate

that more than one photon pair is generated within the dead time of the sin-

gle photon detectors. The light source can be potentially used as a triggered

single photon source. When an idler photon is recorded and a signal photon

is detected simultaneously, it is a single photon because each laser pulse only

generates one photon pair [124].

C.2 Angular-resolved photon statistics

In the main text, we described a coherent backscattering experiment in the few

photon regime using the parametric down-conversion light source (cf. Chap-
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Figure C.3: a, Time-resolved coincidence counts of backscattered photons from

a multiple scattering medium for the same polarization as the light source.

The backscattering angle is Θs = 0◦ and the angular resolution is ∆Θs =

3.4◦. b, From the time-resolved measurements it is possible to create a photon

statistics of the multiply scattered signal photons. The plotted photon statistic

is measured for the same polarization as the incident the signal photons. c,

Photon statistics recorded under the same conditions as in b but measured in

the cross polarization.

ter 3.3.2). Detector D1 records the idler photons while the signal photons

are directed onto the sample. The backscattered photons are collected in

an angular-resolved measurement with a detector D2. Fig. C.3a displays the

recorded photon coincidences between idler and multiply scattered signal pho-

tons depending on the total measurement time T . The coincidences at zero time

delay mainly originate from correlated photon pairs (black data) plus some ad-

ditional background coincidence that are also present at non-zero time delays

(gray data). In Fig. C.3b the corresponding photon statistic of the backscat-

tered photons is plotted, dividing the total measurement time in time intervals

of ∆t = 1 s. For each time interval of the measurement time, the number

of background-free coincidences is calculated, i.e., the number of coincidences

within τ = 0±1.9ns minus the average number of coincidences of uncorrelated



photon pairs at non zero time delay. While the light source exhibits a count

rate 700 kHz (Fig. C.2b), the average number of photons in Fig. C.3b is 2.75Hz.

Due to the coherent backscattering e�ect, the backscattered average number

of photons for the incident polarization is higher (Fig. C.3b) than for the cross

polarization (Fig. C.3c, average count rate: 1.5Hz).

C.3 Fit to the coherent backscattering cone

We �t the enhanced backscattering cone following the theoretical description

presented in Ref. [63]. The incident angle, Θi, of the light beam is assumed

to be normal to the sample surface, i.e., µi = cosΘi = 1. The line shape of

the cone can be calculated for all scattering angles, Θs (µs = cosΘs), of the

multiply scattered light by superimposing the re�ected light that originates

from a bell-shaped di�usive background, γl(µs), and a triangular peak from

the constructive interference of counter propagating light paths, γe(µs) [125].

The latter contribution only arises for multiply scattered light with the same

polarization as the incident light. The cross polarization shows a di�usive

background which is calculated to be

γl(µs) = 3µs

(
τe +

µsµi

µs + µi

)
, (C.2)

with τe ≡ ze/ℓ. The extrapolation length of the sample is de�ned as ze and ℓ

is the transport mean free path. The triangular peak is given by

γc(µs) =
3(ε− 1)

2µi v
× 1

(a+ v)2 + u2
×
(
1 +

2 v τe
1 + τe a

)
, (C.3)

where we substituted following parameter

v ≡ 1

2

(
1

µs
+

1

µi

)
, u ≡ k0 ℓ(µi − µs), a ≡ k0 ℓ | sin θs|. (C.4)

The enhancement factor, ε, describes the backscatter intensity in the exact

backscatter direction, (Θs = 0), i.e., ε ≡ (γl + γe)/γl. In an ideal system

ε = 2 but this value can be reduced due to a limited experimental resolution,

absorption, and single scattering events. The total shape of the backscatter

cone is de�ned as (γl(µs)+γe(µs))/γl(µs). The width of the cone describes the

scattering strength of the sample and is given by k0ℓ.





Appendix D

Local density of states in a

one-dimensional medium

D.1 Local density of states in a homogeneous

medium

The projected local density of states in direction e⃗z is a classical property of

the electromagnetic �eld and is calculated as the sum over all electromagnetic

modes in the system [83]

ρ(ω, r) =
∑
k⃗,j

|e⃗z · fk⃗,j(r⃗)|
2δ(ω − ωk⃗,j). (D.1)

The eigenfrequencies are given by ωk⃗,j . fk⃗,j denotes the eigenfunctions for the

polarization, j, and wave vector, k⃗, respectively. In one dimension, of concern

here, the normalized eigenfunction can be written as

fk,j(z) =
eikz

n
√
L
e⃗k,j , (D.2)

where n is the refractive index and L the system length. The projection is

chosen in such a way that one polarization of electric �eld is orthogonal to
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e⃗z and does not contribute to the projected local density of states. Eq. (D.1)

can be evaluated by transforming the sum into an integral. For a homogenous

medium we get

ρ(ω) =
L

2π

∫ ∞

−∞
dk |e⃗z · e⃗k|2

∣∣∣∣ eikzn
√
L

∣∣∣∣2 δ(ω − ωk)

=
1

2π n2

∫ ∞

−∞
dω

n

c
|e⃗z · e⃗k|2δ(ω − ωk)

=
1

2π c n
. (D.3)

Here, we used the relation dk = (n/c) dω and that the wave vector of the electric

�eld in one dimension always points in the same direction as the system exten-

sion e⃗z · e⃗k ≡ 1. The last result is related to the imaginary part of G(z0, z0, ω)

(Eq. (4.11)). Note that for a one-dimensional medium the spontaneous decay

rate cannot be derived from Fermi's golden rule [126]. This quantity is only

de�ned in a three-dimensional medium

γ(ω) =
2π

~2
∑
k,j

|e⃗k,j · d⃗(ω)|2
~ωk

2ϵϵ0L
δ(ωk − ω), (D.4)

with d⃗ being the dipole moment.

D.2 Green's function in a disordered medium

Here, we outline the analytical solution of the Greens function in a one-

dimensional disordered medium. A possibility to account for all multiple

scattering events coherently and self-consistently is to solve the Lippmann-

Schwinger equation [83, 84]. A point source is positioned at z0 in a host layer

(layer length Lp) that is embedded between two interfaces to the left and to

the right with re�ection coe�cients rL and rR. We have calculated the full



Green's function in the host layer as

a1 =
exp(i β |z0 − z|)

1− rL rR exp (i β 2Lp)
, (D.5)

a2 =
rR exp (i β (2Lp − z0 − z))

1− rL rR exp(i β 2Lp)
, (D.6)

a3 =
rL exp (i β (z0 + z))

1− rL rR exp(i β 2Lp)
, (D.7)

a4 =
rL rR exp (i β (2Lp − |z0 − z|))

1− rL rR exp(i β 2Lp)
, (D.8)

G(z, z0, ω) =
i

2β
× (a1 + a2 + a3 + a4) . (D.9)

Two of the four terms describe a forward propagating wave and two of the

terms describe a backward propagating wave (explained below). The structure

of the terms a1, . . . , a4 represents a geometric series which can be understood

intuitively. Starting from a point source at z0, a forward propagating wave ∝
exp(i β |z − z0|) is radiated in both directions. When we calculate the Green's

function in the host layer, G(z, z0, ω) is given by a sum of waves that are

re�ected repeatedly from both interfaces of the host layer to z. Here, we discuss

a1 (Eq. (D.5)) as an example: the wave propagates from z0 to z > z0 and

changes its phase by |z − z0|. The plane wave propagates further to the right

interface, is partly re�ected back (rR), propagates to the left interface, is again

partly re�ected (rL) and propagates to z. Thereby, it collects an additional

optical path phase shift of 2Lp and it superimposes with its original wave to

exp(i β |z−z0|) [1 + rR rL exp(i β 2Lp)]. Both waves are continuously re�ected

at the interfaces as they travel through the layer and we get

a1 = ei β |z0−z| [1 + rR rL ei β 2Lp + (rR rL ei β 2Lp)2 + . . .
]

=
ei β |z0−z|

1− rL rR ei β 2Lp
. (D.10)

The other terms a2, a3, and a4 can be explained with a similar argumentation.

The forward propagating wave to the right side of the structure consist of

AR = a1 + a3 and the backward propagating wave is BR = a2 + a4. To

apply the transfer matrix theory to the left side of the host particle, we de�ne

AL = a1 + a2 and consequently BL = a3 + a4 (c.f Chapter 4.2.2).

Fig. D.1b shows the calculated Green's function for a very simple structure,

where the re�ections at the interfaces causes the irregular pattern. When the
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Figure D.1: a, Intensity pro�le in a structure with varying refractive indices, n,

in absence of losses. The light wave is incident from left outside of the medium

(at z = 0) and the the plotted distribution has been calculated with transfer

matrix theory. b, Spatial refractive index pro�le, real part, imaginary part, and

absolute value of the Green's function, having a point light source inside the

structure at z = 0 (indicated by the black circle). For visibility is the Green's

function scaled by a factor of 107.

light source is placed outside of the structure, the transfer matrix theory can

be applied to calculate the intensity distribution as plotted in Fig. D.1a.



Appendix E

Light localization in

photonic crystal waveguides

E.1 Fabrication of photonic crystal waveguides

a b c

Figure E.1: Scheme of the photonic crystal fabrication. a, unprocessed waver

consisting of GaAs (light gray), InGaAs quantum dots (black line), and a Al-

GaAs stop layer (gray). b, After electronic beam lithography the dry etching

process creates the desired hole pattern. c, In the �nal process step wet-etching

is applied to remove the AlGaAs and to release the membrane. The dimensions

are not to scale.

Two-dimensional photonic crystal membranes have many advantages com-

pared to three-dimensional structures because the fabrication process can be

carried out with well-established planar III-V semiconductor technologies. The
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samples used in this theses have been fabricated by S. Stobbe and a detailed

description can be found in his thesis [127]. Here, a simpli�ed scheme of the

process is presented. The unprocessed waver consists of from top to bottom of:

77nm gallium arsenide (GaAs) followed by a single layer of InGaAs quantum

dots (in case of the active structures), and another layer of 77nm GaAs. The

density of the grown quantum dots is approximately 80µm−2. These layers

form the membrane and are separated from the GaAs substrate by a stop-layer

of 1.6µm AlGaAs (see Fig. E.1a). First, the hole pattern is written by electron

beam lithography onto the waver. The precision of the hole positions is limited

by the electon beam and lies within a few nanometer. Then, dry-etching is

applied to the waver to create vertical holes in the waver. The etch-rate en-

sures that the holes penetrate into the AlGaAs stop layer. Side-wall tilts of the

holes are minimized by using a chemical assisted ion beam etching with ions

that propagate highly directional. Finally wet-etching removes the AlGaAs

stop-layer and releases the membrane.

The �nal membrane height of the active (passive) photonic crystals is

150nm (160nm). The lattice constant is a = 260 nm (a = 240 nm), the hole

radius is r = 78 nm (r = 79 nm). We used these values because calculations

showed that the corresponding �lling fraction yields the largest bandgap. A

one-dimensional photonic crystal waveguide is created by leaving out a row

of holes during the electronic beam lithography process. The length of the

active photonic crystal waveguides is L = 100µm. The passive samples are

with L = 1mm very long because we wanted to perform position dependent

transmission measurements along the waveguide and an ensemble average of

the recorded transmission in di�erent spatial regions of the waveguide. The cal-

culated spectral band edge of the waveguide mode is found to be λ = 977 nm in

the sample with embedded quantum dots and λ = 915nm in the sample with-

out the quantum dots containing an error of 5% due to intrinsic uncertainties

in the fabrication parameters.

The scanning electron microscope images in Fig. E.2a-c show photonic crys-

tal waveguides with di�erent amount of disorder by randomly varying the

hole positions relative to the ideal lattice for the �rst three rows below and

above the waveguide. The disorder is de�ned by the standard deviation, δ,

of the hole positions relative to the lattice constant, a. For the experiments
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a b c

Figure E.2: Scanning electron pictures of photonic crystal waveguides with

following disorder parameter a, δ = 0%, b, δ = 6%, and c, δ = 12%.

di�erent samples have been fabricated with engineered disorder ranging from

∆ = 0, 1, . . . , 6, 9, 12%. To compare the samples with and without embedded

quantum dots the fabrication process was the same.

E.2 Measurement of the out-of-plane scattered

intensity

laser

BS sample

illumination

FM
tapered
fiber

CCD

CCD

spectrometer

FM
LL I

BS

P

Figure E.3: Experimental setup to measure light transport in photonic crystal

waveguides. BS: beam splitter, CCD: charged coupling device camera, FM: �ip

mirror, spatial �lter consisting of two lenses (L) and an iris (I), P: polarizer.

The light propagation in disordered photonic crystal waveguides without

embedded quantum dots has been investigated under ambient conditions. An

illustration of the experimental setup is shown in Fig. E.3. For alignment pur-

poses the sample can be illuminated with a light bulb and imaged onto a camera
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in the detection path. Light can be coupled into the waveguide either from the

top or evanescently with a tapered �ber. As a light source we use a tunable

continuous wave Ti:Sapphire laser (motorized tuning range λ = 700−1000nm).

We use a microscope objective with a high numerical aperture (NA= 0.8) to

collect the out-of-plane scattered light from top of the waveguide. The micro-

scope objective is positioned on a motorized three-dimensional translation stage

with a spatial accuracy of 40 nm. This allows us to measure the light transport

through the photonic crystal waveguide as function of distance from the �ber

tip. A spatial �lter in the collection path ensures that we only collect light in

a di�raction limited region around the waveguide. The detected light is spec-

trally �ltered with a spectrograph (spectral resolution 0.1nm) and imaged on a

camera. The setup is fully automated, i.e., the excitation wavelength is tuned,

the microscope objective is moved and the detected light is spectrally �ltered

and recorded. Di�erent regions of the photonic crystal waveguide are probed

by moving the sample manually with a another three-dimensional translation

stage.

As a near �eld scanning probe to couple light into the waveguide, a tapered

�ber has been used. The applied fabrication method for the �ber is called tube-

etching [128] and is performed by cleaving a conventional single mode �ber with

a design wavelength of 800nm. Afterwards, the �ber is dipped into hydro�uoric

acid for two hours. The cladding around the inner �ber glass core reduces the

surface roughness signi�cantly as compared to conventional �ber etching. Fiber

tips are achieved with a high reproducibility and diameters of ≈ 500nm. An

alternative method is heating the �ber and pulling it simultaneously, but it

turned out that the quality of the tip and its thickness is lower.

E.3 Anderson-localized modes in active photonic

crystal waveguides

E.3.1 Spectral analysis

In order to obtain the Q factor distribution of Anderson-localized modes, we

embed quantum dot light sources in a disordered photonic crystal waveguide.
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Figure E.4: Spatial and spectral intensity pro�le recorded from top of a dis-

ordered photonic crystal waveguide (δ = 2%). The white circles show the

position that have been identi�ed as peaks by the postprocessing algorithm.

Ensembles of the quantum dots are excited well above saturation revealing the

spectral distribution of the modes. Fig. E.4 displays the spectra while scanning

along the waveguide. The samples have a length of L = 100µm and we recorded

350 equally separated spectra. To account for the spectral resolution of the

spectrometer, the spectra are deconvoluted with the measured instrument re-

sponse function. Afterwards a computer algorithm �nds the Anderson-localized

peaks in each spectrum and �t them with a multi-Lorentzian �t. From the �t

we can calculate the Q factor of each mode. By setting a lower limit on the

spectral linewidth (Q > 200) and on the intensity of the peak (I > 0.01 Imax)

we ensure that no background noise is �tted. Imax represents the maximum

recorded intensity. Multiply counting of the Q factors of an Anderson-localized

mode needs to be avoided since its screws the distribution. We therefore post-

process the analyzed peaks and only count one peak within a certain spectral

range over a de�ned distance. The resulting identi�ed peaks are marked as

white circles in Fig. E.4. The Figure reveals another property, a spectral shift

of the Anderson-localized modes as the spatial region approaches end facets



of the sample (z → 0, z → 100). It might be be explained by a change in

the bandgap center wavelength of the two-dimensional photonic crystal at the

ends of the sample. The spatial region for the analysis is limited accordingly

(10µm < z < 90µm), when the emitted intensity probability distributions are

evaluated.

E.3.2 Predicted out-of-plane losses

In the following the measured loss lengths (Fig. 6.7) are compared with the-

oretical predictions presented in Ref. [86]. The minimum measured localiza-

tion length in the disordered photonic crystal waveguide is ξ = 10µm and

the maximum measured localization length is ξ = 15µm, respectively. These

values correspond to an average back re�ection at the elementary unit cell,

given by the lattice constant a = 260 nm, of ⟨Ru⟩ = 0.009 and ⟨Ru⟩ = 0.005

(cf. Fig. 4.2b). Furthermore it is important to characterize the disorder in

the samples. The perturbations in the hole positions are ≈ 1nm for δ = 0%

and ≈ 0.06 · 260nm = 15.6nm for δ = 6%. Assuming that a disorder in the

hole positions results in similar properties of Anderson localization as chang-

ing the hole sizes, the perturbations can be related to the disorder parameter,

γ = 1.6 and γ = 25.2, respectively (used in Ref. [86]). Thus, the group in-

dices of our disordered photonic crystal waveguide in the investigated spectral

region are extrapolated to be ng ≈ 80 for δ = 0% and ng < 50 for δ = 6%

(cf. Fig. 2a in Ref. [86]). These results can now be applied to give a rough

estimation of the out-of plane loss Lu that we identify with our measured loss

length 1− Lu = exp−a/l. If no additional disorder is induced in the photonic

crystal waveguide, the Bloch mode scattering formalism predicts a loss length

l ≈ 5000µm (Lu = 5 · 10−5). On the contrary, for δ = 6% the loss length

decreases but is out of the range in Fig. 2b in Ref. [86]. Here, we only can give

an extrapolated upper bound that is l < 500µm (Lu = 5 · 10−4). Thus, the

loss length is predicted to vary over more than one order of magnitude.
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