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TENSION STIFFENING
The uncracked part of the concrete still contri-
butes to the strength after cracking is initiated.
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This can be modelled based on the fracture 
energy by an interaction stress contribution as 
suggested by Cervenka et al. and Feenstra 
and de Borst. 
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FRACTURE ENERGY
The fracture energy is a material invariant that 
coresponds to the area beneath the stress-
plastic displacement (or cracking) diagram.

Element is too large

Compressive behaviour Tensile behaviour; combined concrete and interaction stress contribution

The reinforcement 
ratio is too small

Element is too smallElement is too large

Problems in the Ambient Condition
A validity range for the element size and a 
minimum reinforcment ratio is formulated.

MOTIVATION
For FE-analysis of reinforced concrete at elevated temperatures the current material models yield convergence problems for 
different mesh sizes. For ambient conditions, it has been established that using a fracture energy based material model cir-
cumvents this issue. It is therefore relevant to extend these models to the elevated temperature conditions.
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Compressive Fracture EnergyTensile Fracture Energy

Based on the model by Terro, GfT follows the decay 
of tensile strength;

GcT is found for the models by;
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Eurocode 2GfT = x(T) . Gf

EVOLUTION OF FRACTURE ENERGY WITH TEMPERATURE
The inherent fracture energies are found as function of temperature for the existing elevated tempe-
rature behaviour models for concrete.

And the models including the effect of the 
load induced thermal strains (LITS) by;

EXAMPLE
REINFORCED CONCRETE SLAB
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The validity range for the element size:

Tmax = 715 oC and the hence

72.5 mm < h < 129.6 mm

The level of reinforcement is found to be 
suifficient.

Concrete grade C30 and steel Grade 500 and
GcT as is computed as inherent in Eurocode 2.
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CONCLUSION
- GfT follows the decay of material strength.

- There is a significant spread in the existing
  compressive post-peak behaviours.

- The LITS does not appear to influence GcT.

- For the considered example, analysis 
above 800 oC will not converge.
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