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Abstract

This thesis treats a number of instrumentation and control problems related to autono-
mous Unmanned Aerial Vehicles (UAV’s). Autonomous Micro Air Vehicles (MAV’s)
are of special interest to the Author. These are characterised by their small size, typi-
cally below 10kg takeoff weight. Due to their small size, normal avionics are not suited
for MAV’s. Instead it is more appropriate to use standard model airplane components
and actuators. This has the added benefit of reducing the vehicle cost. However this
also means that the vehicle designer has to characterise and design many of the instru-
ments and actuators used for MAV’s.

The first part of this thesis concentrates on obtaining an aerodynamic model for a
canard configuration fixed wing UAV. Particular emphasis is placed on treatment of
uncertainties in the model and the resulting influence on the UAV dynamics. A model
of an electric propulsion system is also proposed, based partly on propeller characteris-
tics obtained by comparing the geometry of the propeller with that of a propeller with
known characteristics.

Model airplane actuators are a logical choice for MAV’s because of there availability,
price and performance. It is however difficult to obtain published data concerning the
dynamics of these actuators. For these reasons a part of this thesis treats the procedure
used in experimentally identifying a dynamic model of model airplane actuators. It is
shown that a particular make of actuators employ a proportional-derivative bang-bang
controller scheme. As a result of this observation, a feedback linearization scheme is
proposed and simulated for this type of actuator.

Different lateral guidance strategies are discussed based on the assumption that the
desired flight path of the UAV is defined by a number of “waypoints”. It is shown that
a “moving point” guidance strategy has certain advantages with respect to autopilot
implementation and smooth transition from one heading to another in the vicinity of a
waypoint.

The most critical flight phase with respect to guidance and navigation accuracy is the
approach and landing. In order to accomplish an autonomous landing it is important to
be able to determine the position of the UAV with great accuracy and reliability. The
only practical system for accurate navigation at the present, which does not require
expensive ground based equipment, is the satellite based Global Positioning System,
commonly known as GPS. However this alone does not have sufficient accuracy for
the task. By using a differential positioning approach involving a ground based GPS
receiver at a known location, it is possible to construct a Differential GPS (DGPS).
Such a system has been implemented and studied in detail using a pair of commercially
available receivers. It is shown through analysis of experimental data that the most sig-
nificant error source in DGPS systems is multipath, caused by reflections of the signal
from objects in the vicinity of the receiver antennas. Furthermore it is shown that these
errors can be correlated with the receiver Signal to Noise Ratio (SNR). Using this
information a kinematic Kalman filter is proposed for filtering the raw measurement
data. “Simulation” of this filter using actual measurement data shows that a significant
improvement in positioning accuracy is obtained.



Finally some issues relating to the design of an Inertial Navigation System (INS) and
realtime synchronized instruments are discussed.



Resume

Denne afhandling behandler en række instrumenterings og styringsproblemer med
relation til ubemandede fly. Små selvstyrende ubemandede fly udgør et specielt inter-
esseområde for forfatteren. Disse fly har typisk en startvægt på under 10kg. På grund af
deres lille størrelse er normale fly instrumenter og aktuatorer uegnet til brug i små ube-
mandede fly. Istedet er det mere fordelagtigt at bruge modelfly komponenter og aktua-
torer. Det har den ekstra fordel at det reducerer fartøjets pris drastisk. Desværre
medfører det også at konstruktøren skal tage et større ansvar for at karakteriserer og
designe flere af instrumenterne og aktuatorerne til små udemandede fly.

I den første del af denne afhandling opstilles en aerodynamisk model for et ubemandet
fly af ente typen. Modellen omfatter et begrundet skøn over usikkerheden af kritiske
aerodynamiske egenskaber og belyser deres indflydelse på flyets opførelse. En model
af et elektrisk fremdrivningssystem er også opstillet. Den inkluderer en semiemperisk
model af en propel med fast stigning.

Modelfly aktuatorer er et logisk valg til små ubemandede fly på grund af deres
tilgængelighed, pris og gode ydeevne. Desværre er det svært at skaffe tilgængelige data
for deres dynamiske respons. Derfor omhandler en del af afhandlingen en eksperimen-
tiel metode til at bestem en dynamisk aktuator model. Brug af denne metode har vist at
den undersøgte aktuator bruger en bang-bang styring. Som resultat af denne observa-
tion er der foreslået en general metode til at lineariserer aktuatoren ved hjælp af
tilbagekoblingslinearisering.

Forskellige laterale styringsstrategier bliver diskuteret med hensyn til deres evne til at
styre et ubemandet fly langs en rute defineret ved et antal ‘waypoints’. Det vises at en
styringsstrategi baseret på at styre imod et punkt som løber langs den ‘ideelle’ rute har
et antal praktiske fordele.

Landningen er den mest kritiske fase for et ubemandet selvstyrende fly med hensyn til
præcis styring og navigation. Det satellitbaserede GPS system er det eneste
tilgængelige system til præcis navigation uden dyrt og kompliseret jordudstyr. Des-
værre er selv præcisionen af GPS ikke tilstrækkeligt til sikker og præcis autonom land-
ing. Ved at bruge et Differentielt GPS system baseret på en ekstra GPS modtager på en
kendt position, kan nøjagtigheden øges betragteligt. Et sådant system er blevet kon-
strueret baseret på to kommercielt tilgængelige modtagerer. Ved forsøg med dette sys-
tem har det vist sig at den største fejlkilde består i refleksion af signalet fra bygninger
og andre genstande i nærheden af modtager antennen. Det er har dog vist sig at disse
fejl kan korreleres med signal-støj forholdet som bestemmes af modtageren. Udfra
dette er det lykkedes at konstruerer et kinematisk Kalman filter baseret DGPS system
med forbedret nøjagtigheden.

Tilsidst omtales nogle betragtninger vedrørende konstruktionen af en inertial ‘plat-
form’ og synkroniserede realtids instrumenter.
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Chapter 1

Introduction to UAV systems

1.1 UAV definitions and categories:

The term Unmanned Aerial Vehicle (UAV) is a generic term for unmanned aircraft. In
practice the term UAV is reserved for vehicles which contain an active payload and
some kind of “intelligence” or guidance. This means that even though a radio control-
led model plane is unmanned, it is usually not considered as belonging to the UAV cat-
egory. Also military target “drones” are usually not considered as belonging to the
UAV category since they usually do not contain an active payload or perform a “self
contained” mission.

The broad UAV category is further subdivided into subcategories:

• Remotely Piloted Vehicles (RPV’s): A class of UAV’s which are piloted by an
remote operator (pilot) using a telecommand system. The primary feedback mecha-
nism is usually a vehicle mounted forward looking vision system. The operator flies
the vehicle by directly manipulating the control surfaces through the telecommand
system.

• Micro Air Vehicle (MAV): A small UAV usually limited to less then about 10 kg
takeoff mass. Since such a small vehicle is obviously incapable of carrying a human
payload, it is unnecessary to specify that it is unmanned.

• Autonomous Unmanned Aerial Vehicle: An UAV which is capable of flight without
constant human control. This is in itself a broad category; the simplest system con-
sists of some kind of onboard autopilot and navigation system which enables auton-
omous flight between operator defined waypoints. More advanced systems enable
autonomous takeoff and landing, thus completely eliminating the need for operator
piloting skills. At an even higher level are systems which are able to make autono-
mous mission decisions. This might entail changing the mission plan in response to
onboard sensor readings. This could be useful in cases where tracking of some kind
of “target” is required or in responds to failure of the telecommand system or vehi-
cle critical systems.

1.2 Past and future UAV applications:

The concept of an unmanned aircraft is almost as old as flight itself. The main UAV
application in the past has been military reconnaissance. This is motivated by the desire
to reduce the risk of pilot death or capture during often dangerous combat reconnais-
sance missions. Significant early examples of this includes the use by the US airforce
of converted airlaunched target drones for post strike damage assessment in Vietnam.
Incidentally these missions where so secret that the mere existence of these units where
only acknowledged several years after the Vietnam war. Separately, the Israeli airforce
developed a range of simple small slow flying reconnaissance RPVs. Early versions
where apparently used in Lebanon from the late 1970’s.
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While military applications of UAV’s will undoubtedly continue and escalate in the
future, the primary interest of this author lies in the civilian field. The civilian applica-
tions of UAV’s roughly fall into two categories.

• Law enforcement and search and rescue: This basically uses the UAV in a recon-
naissance mode to search for suspects or survivors. An advanced application would
be autonomous search and tracking using electro-optical payloads with onboard pat-
tern recognition.

• Environment monitoring and mapping: This type of mission uses the UAV as an
instrument platform to scan a geographical region using one or more environmental
sensors. The type of sensors can roughly be divided into two types; remote sensing
and in-situ sensors. Remote sensing sensors would in most cases be some kind of
electro-optical camera system. The primary advantages of using airborne electro-
optical sensors instead of satellite systems, are that airborne systems can avoid
cloud cover by flying below the cloud base, in addition an airborne system can be
used on demand and provide near real time data of high resolution. Another group
of measurements which can be extremely useful are in-situ measurements of air
borne pollution. For this latter application, the most interesting region is close to
ground level. This means that an UAV capable of flying close to the ground would
be a particularly valuable asset for these missions.

Military applications of UAV’s have been primarily concerned with eliminating the
need for an onboard pilot and crew, of course this lowers the cost of the vehicle, as well
as fuel costs, because a smaller vehicle is needed for a given payload. However for
many potential civilian applications this would not provide a major mission cost reduc-
tion since a pilot would still be needed even though he or she is located on the ground.
A more drastic mission price reduction could be achieved if the pilot was replaced by a
“mission manager” which could be responsible for overall mission planning, payload
supervision and overall operations, but would not be required to manually pilot the
UAV. This of course requires that the UAV should be capable of both autonomous
navigation, control and guidance during all phases of flight.

Another important issue for civilian UAV applications is the complexity of launch and
recovery operations. Many early and some contemporary military UAV’s use special
launch and recovery systems such as catapults, parachutes and airbags (to cushion
ground impact). These systems may be well suited to military operations in places
without adequate prepared takeoff and landing fields. However most of these systems
are costly in terms of operations and maintenance. Even in the best of circumstances
they need workers to prepare and load catapults, retrieve vehicles and repack para-
chutes and airbags. In addition there is a high degree of uncertainty involved in para-
chute assisted landing because it may be difficult to predict the exact point of impact.
This gives a relatively high risk of ground impact damage due to ground obstacles.

We can thus assume that a successful civilian UAV should be able to perform a con-
trolled landing in a small predefined area regardless of wind and weather. This can
either be achieved using conventional landing procedures on a small prepared surface
or alternatively a vertical takeoff and landing capability can be used to land in a very
small area.
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1.3 Autonomous UAV systems:

From the preceding discussion it is clear that a successful civilian UAV should be
capable of autonomous control, navigation, guidance and takeoff and landing. To
accomplish this the following systems are necessary:

• A reliable aerial vehicle with suitable control surfaces, actuators and propulsion sys-
tem.

• A mathematical model of the vehicle and actuator response of sufficient accuracy to
simulate the behaviour of the vehicle and allow for control system design.

• A low level control system capable of following a prescribed flight path, with suffi-
cient robustness to allow for model uncertainties and nonlinearities in a reliable
manner.

• A guidance system to generate the reference flight path from a user defined mission
description.

• An accurate navigation system capable of determining the 3 dimensional position of
the UAV in real time with sufficient accuracy to achieve autonomous approach and
landing capabilities.

• An Inertial Navigation System (INS) capable of determining the orientation of the
vehicle relative to the ground.

• An “airdata” system capable of determining the flightspeed relative to the atmos-
phere.

1.4 Scope of this thesis:

Due to the diverse range of subjects involved in instrumentation and control of UAV’s,
it has not been possible for the author to cover all these in this thesis. The author has
concentrated on doing some of the basic “groundwork” necessary for actually design-
ing and building an autonomous Micro Air Vehicle.
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Chapter 2

Aerodynamic Model

2.1 Aeroplane aerodynamics

An aeroplane can be defined as a heavier then air vehicle that predominately uses aero-
dynamic forces to generate lift. In traditional fixed wing configurations, the aerody-
namic lift is predominately generated by air flowing around dedicated lifting surfaces.
Depending on the type of configuration, the lifting surfaces have names such as; wings,
main wing (typically the largest wing on a vehicle), canard, horizontal tail and so on. It
can be shown that in order to minimize the drag due to lift (so called induced drag) for
a subsonic aeroplane, it is an advantage to have long wings (a large “wing span) (see
(Ref. 8, chapter 4) for details). This typically leads to wings with a large span and small
chord (the longitudinal dimension of the wing), as shown for the conceptual design
below:

Since the wings have a much larger across stream then streamwise dimension (a large
aspect ratio), the flow around the wings will be predominately two dimensional. It is
difficult to give a comprehensive and at the same time simple explanation of the lift
generation process. The airflow around a two dimensional wing is characterized by
predominately frictionless (inviscid) flow which can be described by Laplace equation.
However at the same time it can be shown that lift can only be generated if the so
called “Kutta” condition is imposed at the trailing edge (the rear) of the airfoil (see
(Ref. 3) section 9.3 for details). The Kutta condition basically states that real air cannot
flow at infinite speeds around a sharp corner. This is due to the nonzero air viscosity.
Combining the predominately inviscid flow with the Kutta condition at the trailing
edge gives a flow that everywhere follows Laplace equation, except in the wake of the
airfoil (the streamline that originates at the airfoil trailing edge).

FIGURE 2.1 3D view of conceptual canard configuration UAV design
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It can then be shown that in subsonic two dimensional airfoil flow, lift is generated by
two airfoil properties; “camber” and “angle of attack”. Camber is commonly seen as
the airfoil geometry where the top of the wing is more curved then the bottom. How-
ever lift can just as well be generated by a symmetrical wing set at an angle of attack to
the freestream. For a well designed airfoil at low angles of attack, the lift is propor-
tional to both the airfoil camber and the airfoil angle of attack (see (Ref. 8, chapter 4)
for details). The lift of any real airfoil or wing is limited by flow separation, which sim-
ply stated is the inability of the air to follow the contours of the top wing surface at
large angles of attack. The resulting loss in lift is commonly called stall. As we shall
see later, stall limits, among other things, the minimum flight speed of the aeroplane,
which is of great significance in determining the minimum takeoff and landing dis-
tances.

2.2 6-DOF kinematic model

In order to treat longitudinal and lateral dynamics and kinematics in a unified
approach, it is appropriate to introduce a 6 degree of freedom (6-DOF) model of UAV
motion relative to the earth. To this end, we will use the following orthogonal cartesian
coordinate systems:

• Earth fixed coordinate system with unit vectors , and : This coordinate

system approximates the local geoid with a “flat earth” approximation. By conven-
tion points in the local vertical downwards direction, points in the local true

north direction and points in the local east direction.

• Vehicle coordinate system with unit vectors , and : This coordinate sys-

tem has the same orientation as the Earth fixed coordinate system, but moves with
the vehicle (UAV) center of gravity (CG).

• Body fixed coordinate system with unit vectors , and : This coordinate

system is fixed to the body of the UAV. By convention comprises the longitudi-

nal axis of the UAV, pointing forward. points out through the right side of the

vehicle, and points out through the bottom of the UAV.

All these coordinate systems are “right hand oriented”, i.e. they follow the “right hand
convention”. This means that they can be made to coincide, purely by rotations and
translations.

The relations between these three coordinate systems can be shown schematically
below:

FIGURE 2.2 Coordinate system transformations

exe eye eze

eze exe

eye

exv eyv ezv

exb eyb ezb
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eyb

ezb

Earth fixed Vehicle Body fixed
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Where P is the coordinate of the CG of the UAV in earth coordinates and Mvb is the
transformation matrix describing the rotations that brings the vehicle coordinate system
into alignment with the body (fixed) coordinate system.

The following figure shows how the body coordinate system is fixed to the body UAV:

We will later return to the problem of how to determine the transformation matrix Mvb
between vehicle and body coordinates.

2.3 Aerodynamic forces

When considering an aerodynamic model for a UAV, we must decide what purpose
such a model must serve:

• The aerodynamic model of the UAV must enable the calculation of aerodynamic
forces and moments on the UAV, with sufficient accuracy for design and simulation
of open and closed loop response of the UAV in the design flight envelope of the
UAV.

• The framework of the model must make it possible to examine robustness to model-
ling errors by identifying and varying stochastic parameters that have a large influ-
ence on the response and stability of the vehicle.

• In addition the aerodynamic model should be able to predict the quantitative behav-
iour of the UAV in all practical deviations from the design conditions. I.e. the model
should predict if a certain abnormal flight condition converges towards or diverges
from the “normal” flight envelope.

FIGURE 2.3 Body fixed coordinate system.
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2.3.1 A framework for aerodynamic forces

As a first step in deciding the framework of the model, we can determine which aero-
dynamic variables that influence the aerodynamic forces and moments. These aerody-
namic variables can be divided into the following categories:

1. The steady motion of the UAV through the atmosphere, in a straight flight path.

2. The curvature of the flight path relative to the atmosphere.

3. Rotation of the UAV relative to the flight path.

4. Unsteady motion of the atmosphere (gusts and turbulence).

5. Activation of control devices (elevator, ailerons, rudder, flaps, speed brake, etc.).

6. “Power” setting of propulsion system(s).

Before going into detail, a few assumptions about the aerodynamic forces are in order:

1. The aerodynamic forces do not depend on the orientation of the UAV relative to the
earth.

2. Aside from control deflections, the UAV is symmetrical about the ( , ) plane.

3. The aerodynamic forces are deterministic functions of the motion of the UAV rela-
tive to the (moving) atmosphere and of the control deflections.

2.3.1.1 Steady motion of the nonrotating UAV relative to the stationary
atmosphere

It is apparent that three independent variables are sufficient to describe this motion:

The airspeed U, the angle of attack α and the sideslip angle β.

Definition:

The vector (UAV longitudinal axis) can be made to point in the same direction as
the airspeed vector v, by the following rotations of the body fixed coordinate system:

1. A rotation of -β around the vector.

2. A rotation of -α around the new vector.

The airspeed U is the length of the airspeed vector v.

The resulting coordinate system , , is denoted the flight path coordinate sys-
tem.

exb ezb
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ezb
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exf eyf ezf
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The relation between the flight path coordinate system and the body coordinate system
is shown below:

2.3.1.2 Flight path curvature

The curvature of the flight path is by definition the partial derivative of the change in
flight path direction, per unit distance travelled. We will represent the flight path cur-
vature as two independent curvatures κa and κb. The longitudinal curvature κa will
defined as the curvature of the flight path in the negative ezf direction, while the lateral
curvature κb will be defined as the curvature in the positive eyf direction. This implies
that κa has the same sense as α, and κb has the same sense as β.

FIGURE 2.4 Flight path coordinate system.

FIGURE 2.5 Flight path curvature.

exb

exf

eyb

eyf

ezf

ezb

β

αv

κa

κb

eyf

ezf

v

exf



Chapter 2

14 Aerodynamic forces

With this definition of κa and κb, the curvatures may be computed as:

• κa is equal to the rate of rotation of the flight coordinate system around the eyf axis,
divided by the flight speed U.

• κb is equal to the rate of rotation of the flight coordinate system around the ezf axis,
divided by the flight speed U.

2.3.1.3 Rotation relative to the flight path

We have already introduced the angle of attack α and the sideslip angle β, as angles
describing the stationary difference between the longitudinal axis of the body coordi-
nate system and the velocity vector. In a dynamic sense, we must however also account
for the aerodynamic forces due to rotation around the velocity vector. For this purpose
we will introduce the flight coordinate system roll rate ωrf.

Thus, we will characterize rotation relative to the flight path by , and ωrf.

2.3.1.4 Atmospheric motion

In general the atmospheric motion consists of several phenomenon; steady wind, sto-
chastic turbulence and gusts and wind shear. In reality these are often interrelated. For
the purpose of calculating the aerodynamic forces due to these natural motions of the
atmosphere, it is desirable to obtain a simple description with the following properties:

• Unified treatment of longitudinal and lateral response.

• Same method for stochastic and deterministic atmospheric motion.

• Quantitative correct treatment of some nonlinear gust related phenomenon (i.e. gust
induced flow separation).

The first requirement, entails a 3 dimensional description. The second requirement can
be fulfilled by considering the atmospheric motion input to the aerodynamic model, as

FIGURE 2.6 Rotation around the flight path.
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a general temporal and spatial function. The third requirement implies that the total
flow field due to aircraft and atmosphere motion, must be determined before calculat-
ing the total aerodynamic forces (instead of summing the forces from each contribution
afterwards).

What is really desired is a description, that allows the three main “modes” of the air-
craft to be excited by gusts: Pitch, yaw and roll. This can be ensured by the following
atmospheric motion variables.

• Wind vector wgf(s) at the vehicle CG, where the subscript “f” denotes flight coordi-
nates and the parameter “s” is distance along the flight path.

• Wind roll rate ωw(s) about the flight path direction.

This description implicitly assumes the “frozen gust assumption”. Where the time var-
iation of the atmospheric wind is assumed negligible in the timespan the vehicle uses to
travel through a gust. This simplifies calculation of the aerodynamic forces on the vehi-
cle, because the individual components of the vehicle are influenced by the same gust
delayed by a timespan, equal to the longitudinal position of the aerodynamic compo-
nent, divided by the flightspeed of the vehicle.

2.3.1.5 Control surfaces

Control surfaces, are defined as any individually controllable variable geometry of the
aeroplane, used to control the orientation and/or the trajectory of the vehicle. The con-
trol deflections are given by the control vector ηj:

• The aerodynamic forces due to control deflections, are assumed instantaneous so
that the aerodynamic forces only depend on the instantaneous value of ηj.

FIGURE 2.7 Atmospheric wind components.
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In general, any modification of the aerodynamic shape of the vehicle will result in a
new flow pattern around the entire aeroplane. Thus in principle, all aerodynamic coef-
ficients should be re-evaluated for each possible control deflection and control deflec-
tion combinations. This is of course a practical impossibility, especially when
considering multiple controls.

2.3.1.6 Propulsion system(s)

We will assume that the main propulsion system is one or more propellers, driven by
an electric motor using onboard electric power stored in some sort of high performance
rechargable battery system.

2.3.2 Force and moment systems

In general the dynamics of a rigid body can be determined from the force vector F(t)
and torque vector M(t), acting through the CG of the body. For practical purposes it is
appropriate to split the force and moment vectors into scalar components, referenced to
an ortogonal cartesian coordinate system. This gives three force components and three
torque components:

• Fx, Fy and Fz in the positive ex, ey and ez directions respectively.

• Mxx, Myy and Mzz in the positive ex, ey and ez directions according to the “right
hand” rule.

There is no clear cut “best” coordinate system for the forces and moments. In general
different coordinate systems each have favourable properties:

FIGURE 2.8 Force and moment components.
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• The Earth fixed coordinate system with unit vectors , and is best suited

for integrating the forces to obtain the trajectory (Newtons second law), assuming
that the Earth fixed coordinate system is an inertial system.

• The Body fixed coordinate system with unit vectors , and is best suited

for integrating the moments to obtain the angular velocity relative to the Earth fixed
coordinate system.

• The Flight path coordinate system , and is best suited for determining the

aerodynamic forces and moments.

It is possible to use all of the above coordinate systems in the same model, by applying
the appropriate transformation matrices.

2.3.3 Aerodynamic coefficients

The atmosphere is composed of a mixture of gases, normally called “air”. The physical
properties of air that are important from an aerodynamic point of view are:

• The density ρ; together with the airspeed determines the aerodynamic forces on a
vehicle.

• The viscosity µ; determines the type of flow and skin friction.

• The speed of sound c; determines the effect of compressibility.

Without going into details, we can use the flight speed UTAS and characteristic length
“d” to obtain the following nondimensional parameters:

• The Reynolds number (Re):

• The Mach number (M):

It can be shown experimentally that for Mach numbers less than 0.3, the effects of
compressibility is negligible. If the Re is higher than approximately 105, the air flow
will be mostly turbulent and most aerodynamic forces will be the result of inertial
forces, rather then viscous forces. However the Re still plays a role in determining the
flow field. Especially the onset of flow separation and stall is governed by the Re up to
above Re = 107.

It can be shown through dimensional analysis that the effects of the air speed and den-
sity can be combined into a single parameter “q” called the dynamic pressure, that
directly determines the aerodynamic forces:

(2.3.1)

Which is in fact the pressure, relative to the atmosphere at rest, measured by an open
ended forward pointing tube, closed at the other end.

We are now ready to define the general form of the nondimensional aerodynamic coef-
ficients used to determine the forces and moments on the vehicle:

exe eye eze
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Aerodynamic force:

(2.3.2)

Aerodynamic moment:

(2.3.3)

Where F and M represent an arbitrary force and moment, Sref is a reference aerody-
namic area (wing area, body crossection...), lref is a reference aerodynamic distance
(wing chord) and C is a nondimensional aerodynamic coefficient.

In the following, it is implied that the aerodynamic coefficients are expressed in
the flight coordinate system, if nothing else is mentioned.

The nondimensional coefficients for the complete UAV, are defined below:

Lift:

(2.3.4)

Drag:

(2.3.5)

Side force:

(2.3.6)

Pitching moment:

(2.3.7)

Rolling moment:

(2.3.8)

Yawing moment:

(2.3.9)

Where is the exposed main wing area, is the mean chord of the main wing and
is the total main wing-body span.

It is important to note that capital letter subscripts “L”, “D” and “Y”, relate to forces,
while the subscripts “m”, “l” and “n” relate to aerodynamic moments (torques).

The reference point for the aerodynamic moments is the vehicle CG, unless otherwise
noted.

F qSrefC=

M qSreflrefC=

FL qSwCL≡

FD qSwCD≡

FY qSwCY≡

Myy qSwcwCm≡

Mxx qSwbwbCl≡

Mzz qSwcwC
n

≡

Sw cw

bwb
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While the aerodynamic moments, are directly related to the coordinate system axis as
defined in Figure 2.8, the lift and drag forces are defined as:

(2.3.10)

It is apparent that the lift and drag are directly related to the primary forces in the flight
coordinate system.

2.3.4 Aerodynamic modelling assumptions

In Section 2.3, the following aerodynamic variables where defined:

• The angle of attack α and the sideslip angle β.

• The longitudinal curvature flight path κa and the lateral curvature κb.

• The derivatives of the angle of attack and of the sideslip angle .

• The roll rate ωrf.

• The aerodynamic wind vector wgf(s) and the wind roll rate ωw(s).

• The control deflection vector .

• The propulsion system rotational speed Np.

Neglecting wind, control surface deflections and the propulsion system, there are 7
independent variables describing the aerodynamic state. Even assuming linearity, the
number of coefficients needed to describe the aerodynamics, would still be large. For
this reason, some assumptions regarding the structure of the aerodynamic model are
very useful.

Definition:

• The longitudinal aerodynamic system consists of the forces FL and FD and the
pitching moment Myy.

• The lateral aerodynamic system consists of the force FY and the moments Mxx and
Mzz.

Assumptions:

1. The longitudinal aerodynamic forces and pitching moment only depend on the lon-

gitudinal aerodynamic variables α, , κa, wgfx, wgfz, and Np.

2. The lateral aerodynamic force and moments only depend on lateral aerodynamic

variables β, , κb, ωrf, wgfy, ωw and , and on the longitudinal angle of attack α.

Where refers to longitudinal control surfaces and refers to lateral control sur-
faces. Some control surfaces may belong to both types, in which case the same physi-
cal control surface is treated as one longitudinal and one lateral control surface.

The primary motivation for the above assumptions, is the geometrical assumption that
the vehicle is symmetrical about the (exb,ezb) plane.

FL Fzf–≡ FD Fxf–≡

α· β·

δj

α· δaj

β· δbj

δaj δbj
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2.3.5 Longitudinal aerodynamic coefficients

A general but deterministic model of the longitudinal aerodynamic forces and
moments for small dynamic disturbances can then be expressed in nondimensional
form as:

Lift force:

(2.3.11)

It must be remembered that according to the definition of the flight path coordinate
system, the static effects of the atmospheric wind modifies the orientation of the flight
path coordinate system in such a way that the static effects of are included in . In
the same way, the “static” effects of are implicitly included in the model via the
airspeed . The direct effect of upon the lift has been ignored since it is probably
small compared to the “static” effect obtained through changes in .

Drag force:

(2.3.12)

All dynamic drag derivatives are ignored because rapid drag fluctuations usually only
have a small influence on the flight dynamics.

Pitching moment:

(2.3.13)

2.3.6 A simple longitudinal aerodynamic model

There are many sources of information on determining the aerodynamic coefficients of
a fixed wing flying vehicle. A complete aerodynamic discussion with (relatively) sim-
ple approximations for the aerodynamic coefficients can be found in (Ref. 1). The
USAF Datcom (Ref. 4) is a comprehensive multiple volume collection of semiemperi-
cal and analytical methods for determining the aerodynamic coefficients of most fixed
wing vehicles. The most significant aerodynamic coefficients are discussed in (Ref. 8),
in a framework suitable for conceptual and preliminary aircraft design. This reference
is highly recommended for getting a “feel” of aircraft design. The aerodynamic coeffi-
cients can at least in principle be determined using Computational Fluid Dynamics
(CFD). Finally, wind tunnel tests can be used to determine at least the static aerody-
namic coefficients. Since neither the CFD route nor a wind tunnel was available to the
author of this thesis, it was necessary to use semiemperical and simple computational
methods for this task. While the author acknowledges that the above references and
numerous others are excellent in their one right, it was also felt that for the purpose of
this thesis it was necessary to provide an aerodynamic model with special emphasis on:

• Dynamic stability and control aspects.
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• Aerodynamic coefficients in flight path axes.

• Unified treatment of the dynamic effects of atmospheric wind gusts.

• Explicit treatment of aerodynamic model uncertainties and their effects on stability
and control.

• Subsonic canard configurations.

• A self contained step by step derivation from simple aerodynamic concepts.

It is hoped that the following model will meet these objectives. It is however noted that
readers with prior aerodynamic modelling experience can skip lightly through much of
the following derivation, which may seem basic to specialists in the field.

Having introduced the longitudinal aerodynamic coefficients, the next step is to deter-
mine their numerical value for a particular airframe geometry. In this chapter we will
determine the longitudinal aerodynamic coefficients for a canard type UAV using a
very simple aerodynamic model. Using this model as a starting point we will later dis-
cuss the effects of uncertain aerodynamic forces on the dynamics and stability of the
UAV.

For the simple model we will make the following six assumptions:

1. The longitudinal aerodynamics are entirely determined by the lift and drag forces on
the wing and canard, plus the propeller thrust.

2. The lift is a linear function of the local angle of attack of the lifting surfaces.

3. The canard flap acts as a linear aerodynamic control.

4. No aerodynamic interference between the canard and wing.

5. The propeller efficiency is constant.

6. The airframe is a rigid body with rigid control surfaces.

The first step in deriving the model is to determine the local angle of attack of the
canard and the wing. The local angle of attack will be defined as the effective angle of
attack at the quarter chord “point” of the mean aerodynamic chord of a lifting surface,
including the effects of dynamic motion of the UAV and dynamic wind effects.

The angle of attack as used in Eq. 2.3.11 to Eq. 2.3.13 is the effective angle of attack
of the UAV Center of Gravity (CG)1. The effect of UAV dynamic motion and dynamic
wind effects will now be discussed.

As a first step, the effects of dynamic angle of attack changes ( ) on the effective angle
of attack of a lifting surface will be derived. A nonzero angle of attack rate, will induce

1. More correctly but seldom used: Center of Mass (CM).

α

α·
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an extra effective angle of attack contribution which is a function of the distance
between the lifting surface aerodynamic center and the CG of the UAV.

Figure 2.9 shows the situation for a single lifting surface affected by angle of attack
rate . It is assumed that the angle of attack at the CG of the vehicle is denoted by .
Assuming a moderate angle of attack gives the following expression for the deriva-
tive of the effective angle of attack with respect to the angle of attack rate:

(2.3.14)

Next we will consider the effects of the flight path curvature alone, with the angle of
attack held constant.

FIGURE 2.9 Effective angle of attack of lifting surface due to angle of attack rate.

FIGURE 2.10 Effective angle of attack of lifting surface due to flight path curvature.
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Since the flight path curvature is by definition the change in flight path angle per unit
flight path distance, it follows that difference between the effective angle of attack at
the lifting surface and at the CG is equal to :

(2.3.15)

The final step is to determine the effects of the atmospheric wind. Since the flight coor-
dinate system is defined according to the relative motion between the vehicle and the
atmosphere, the effects of constant atmospheric wind is already included in the model
using the equations above. In most real situations the wind is not steady but in fact
quite turbulent due to weather and Atmospheric Boundary Layer (ABL) phenomenon.
Thus it is necessary to ensure that a qualitatively correct treatment of atmospheric tur-
bulence is included in the model. As a start we will look at the case where the vehicle
flight path is straight relative to the earth and the attitude of the vehicle is constant rel-
ative to the earth.

From Figure 2.11 it follows that the angle of attack will decrease for because
the airspeed vector will turn upwards into the resulting downwash:

(2.3.16)

The turning of the airspeed vector caused by will by definition also result in an
apparent flight path curvature.

(2.3.17)

However we can deduce from Figure 2.11 that the net effect of should be:

(2.3.18)

FIGURE 2.11 Effective angle of attack of lifting surface due to atmospheric turbulence.
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The net effect of can also be expressed as the sum of the contributions due to
each of the above effects:

(2.3.19)

We can now solve for the derivative :

(2.3.20)

Using Eq. 2.3.14 and Eq. 2.3.15 gives an explicit expression for the derivative
:

(2.3.21)

Comparing to Eq. 2.3.18 leads to the conclusion that the contributions from varying
and , due to , exactly cancels each other out.

We can now write the complete expression for the effective angle of attack at a lifting
surface located behind the CG of the UAV:

(2.3.22)

Now that we have an expression for the effective angle of attack at a lifting surface, we
need to obtain a relationship between the angle of attack of a lifting surface (wing) and
its lift. According to the assumptions outlined in the beginning of this chapter, the aer-
odynamic model of the lift of a lifting surface should be linear in both angle of attack
and control surface deflection. A model for the lift coefficient of the canard and wing
satisfying these assumptions is given by:

Canard:

(2.3.23)

Wing:

(2.3.24)

Where is the wing (or canard) lift curve slope based on the wing (or canard) plan-
form area, is the effective angle of attack (as given by Eq. 2.3.22), is the constant
wing incidence angle, is the wing zero lift angle of attack and is the
derivative of with respect to the elevator control surface deflection .

For the moment being we will not discuss how is actually related to the wing or
canard geometry. We will only mention that for an ideal wing with infinite aspect ratio
(wingspan to wing chord ratio), the value of approaches the two dimensional ideal
flow value of . For real wings, the value of will be somewhat smaller then this.
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Before we proceed we also need a model for the drag coefficient of the lifting surfaces.
In general it can be assumed within a moderate Reynoulds number range, the drag
coefficient of a 3 dimensional lifting surface is composed of a fixed part due to surface
friction and flow separation and a variable part due to lift. One convenient model for
lifting surfaces of large aspect ratio and moderate profile camber is discussed in (Ref.
8, p. 321):

(2.3.25)

Where is the zero lift drag coefficient of the wing and is the drag due to
lift. The coefficient is mainly determined by the planform of the wing.

This model will be used for both the canard and main wing, even though it neglects the
direct effect of elevator deflection on the canard drag.

It is now possible to determine most of the aerodynamic coefficients defined by Eq.
2.3.11 to Eq. 2.3.13. First we need to look at the general geometry of a vehicle with
canard platform:

Figure 2.12 shows the UAV aerodynamic forces on the canard and wings. In addition
the net aerodynamic pitching moment around the CG is shown. Note that is
not a separate moment, but rather the net moment from all other aerodynamic forces
and moments. It is assumed that the angle of attack is so small that the lift acts perpen-
dicular to the vehicle centerline and the drag acts parallel to the centerline. The differ-
ence in “vertical” spacing between the wing, canard and CG is also neglected in the
following analysis.

From the definition of the lift coefficient, we are able to write the following expres-
sions for the lift on the canard and wings:

(2.3.26)

The total lift can be expressed as:

(2.3.27)

FIGURE 2.12 Longitudinal UAV aerodynamic forces and resulting pitching moment.
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Notice that we have defined the UAV vehicle reference area as the planform area of the
main wing, which is wing #2 for a canard configuration.

Combining Eq. 2.3.26 and Eq. 2.3.27 gives an expression for the UAV lift coefficient:

(2.3.28)

Using the wing and canard lift models given by Eq. 2.3.23 and Eq. 2.3.24 gives an
explicit expression for the UAV lift coefficient as a function of the effective angles of
attack:

(2.3.29)

Since in the “static” case, we are now able to determine an explicit
expression for in Eq. 2.3.11:

(2.3.30)

Similarly the derivative can be determined as:

(2.3.31)

According to Eq. 2.3.11, we can write , thus giving:

(2.3.32)

The derivative is determined as:

(2.3.33)

According to Eq. 2.3.11, we can write , thus giving:

(2.3.34)

Notice that for this simple aerodynamic model we have .

The derivative is determined as:

(2.3.35)

According to Eq. 2.3.11, we can write , thus giving:

(2.3.36)

Here again we have that for this aerodynamic model.
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The drag coefficient as expressed by Eq. 2.3.12 is readily determined as:

(2.3.37)

Expressed as functions of the wing and canard lift coefficients.

Using Figure 2.12 we can determine the net aerodynamic pitching moment around the
CG as (pitch up positive):

(2.3.38)

Like above we have neglected the influence of the drag forces and assumed that the lift
forces are close to ortogonal with the vehicle longitudinal axis. Notice that in most
cases the two terms in Eq. 2.3.38 are of opposite sign.

In analogy with the treatment of the total vehicle lift, we can nondimensionalize Eq.
2.3.38 as:

(2.3.39)

By using the wing and canard lift models given by Eq. 2.3.23 and Eq. 2.3.24, an
explicit expression for the UAV pitching moment coefficient as a function of the effec-
tive angles of attack can be determined:

(2.3.40)

Using the static case , gives an expression for the term in Eq.
2.3.13:

(2.3.41)

The derivative can be determined using Eq. 2.3.22:

(2.3.42)

From Eq. 2.3.13 we have that , thus giving:

(2.3.43)

As we shall see later this derivative is very important for pitch damping.

The derivative is determined in a similar fashion:

(2.3.44)
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According to Eq. 2.3.13, we can write , thus giving:

(2.3.45)

Which is the same as for this aerodynamic model.

The derivative is determined in a similar fashion:

(2.3.46)

According to Eq. 2.3.13, we can write , thus giving:

(2.3.47)

Again we get the same result as .

The derivative is determined by taking into account the differences in dynamic
pressure due to differences in the axial wind component along the flight path:

(2.3.48)

In order to determine the derivatives for the canard and wing, we can first look
at the definition of the dynamic pressure :

(2.3.49)

The next step is to determine the relationship between the local airspeed at the lifting
surface and the airspeed derivative at the vehicle CG. For constant airspeed derivative
we obtain:

(2.3.50)

The chain rule is then used to obtain the desired derivative:

(2.3.51)

We can now proceed with Eq. 2.3.48:

(2.3.52)
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According to Eq. 2.3.13, we can write , thus giving:

(2.3.53)

Notice that is a function of the lift coefficients and , this means that even
though the aerodynamic model of the lift is linear, this derivative is not constant.

In summary we have the following linear aerodynamic model of the vehicle:

Static lift:

(2.3.54)

Dynamic lift:

(2.3.55)

Drag:

(2.3.56)

Static pitching moment:

(2.3.57)

Dynamic pitching moment:

(2.3.58)

Dynamic pitching moment (axial wind derivative):

(2.3.59)

In addition to the aerodynamic forces on the airframe, a propulsive force is also
required to maintain normal flight. For the moment we will assume that the propulsive
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force is supplied by a propeller driven by a suitable DC electric motor through appro-
priate gears. We can define the propulsive efficiency of a propeller as:

(2.3.60)

Where is the propeller thrust and is the mechanical power applied to the propel-
ler shaft (by the motor).

2.3.7 Approximate dynamic analysis

An approximate dynamic analysis of the vehicle motion can be used to get an idea of
the vehicle dynamics caused by the aerodynamic forces on the lifting surfaces. For this
analysis we will use a longitudinal kinematic system described by three degrees of
freedom, the vehicle body pitch angle (elevation angle), the flight path angle and
the airspeed . The definitions of the angles are shown below for the special case of
zero windspeed:

To simplify this analysis we will postulate that under certain conditions the open loop
longitudinal motion is dominated by two distinct modes. The short period mode and
the phugoid mode.

2.3.7.1 Short period mode

The short period mode is determined by assuming that the vehicle velocity vector is
constant (speed and direction) while the vehicle pitch attitude is perturbed from equi-
librium. In order to describe this motion we need only one degree of freedom; the vehi-
cle body pitch angle (elevation angle) .

Since is fixed to the body, the rigid body dynamic equations of motion for the vehi-
cle is given symbolically by (Ref. 21, page 7-10):

(2.3.61)

FIGURE 2.13 Longitudinal UAV kinematics.
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Where is the aerodynamic pitching moment (positive pitch up) referenced to the
CG of the vehicle.

Using the aerodynamic model above, the aerodynamic pitching moment for a straight
flight path is given by:

(2.3.62)

From Figure 2.13 we have the following expression for the angle of attack:

(2.3.63)

Using the above relationships it is possible to obtain a second order differential equa-
tion describing the short period mode:

(2.3.64)

Since we have assumed that is constant for the short period mode, the homogenous
part of the short period differential equation is given by:

(2.3.65)

From this it is immediately apparent that the pitch stiffness is given by:

(2.3.66)

The solution thus depends critically on the sign of . If the pitch stiffness is negative,
the short period mode is unstable. This is in general unsatisfactory for most flying vehi-
cles because it usually demands a very fast active control system to maintain closed
loop stability.

For the moment we will assume that the pitch stiffness is positive, this is usually called
positive “static (pitch) stability” in aeronautical terms. Since is always posi-
tive it follows that static stability is the same as !.

The characteristic equation of the ODE given by Eq. 2.3.65 can be determined as:

(2.3.67)
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The undamped natural frequency and damping ratio can immediately be determined as
(Ref. 9, chapter 4-4):

(2.3.68)

(2.3.69)

Before proceeding with the analysis, it is useful to introduce the nondimensional radius
of inertia. The radius of gyration is defined as:

(2.3.70)

Nondimensionalizing with respect to half the fuselage length gives the nondimen-
sional radius of gyration :

(2.3.71)

This gives the following expression for the undamped natural pitch frequency and the
damping ratio:

(2.3.72)

(2.3.73)

Since the vehicle mass scales with the cube of the vehicle size and wing area scales
with the square of the vehicle size, it follows that the undamped natural pitch frequency
is:

• Proportional to the airspeed.

• Independent of altitude (air density) at constant dynamic pressure.

• Proportional to the inverse of the vehicle size.

• Proportional to the square root of .

• Proportional to the square root of inverse of the wing loading .

Similarly the damping ratio is:

• Independent of airspeed.

• Independent of vehicle size.

• Proportional to the square root of the air density (i.e. decreases with altitude).
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• Proportional to .

• Proportional to the square root of inverse of the wing loading .

Before proceeding, we can gain a better understanding of the relationship between the
vehicle geometry and the dynamics by introducing two new related quantities; the Aer-
odynamic Center (AC) and the Stability Margin (SM). The AC is defined as the geo-
metric position on the vehicle where the aerodynamic pitching moment is independent
of angle of attack.

Figure 2.14 shows the lift and pitching moment angle of attack derivatives
and . The Stability Margin (SM) is defined as the nondimensional distance
between the AC and the CG:

(2.3.74)

The stability margin can then be determined from its definition using Figure 2.14:

(2.3.75)

This can be converted into nondimensional form:

(2.3.76)

This means that we can use the SM as a nondimensional measure of stability.

From the definition of the aerodynamic center (AC), it follows that the pitching
moment derivative with respect to the angle of attack around the AC position must be
zero:

(2.3.77)

FIGURE 2.14 Longitudinal UAV aerodynamic center (AC).
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This can be rearranged to yield an explicit expression for the AC position:

(2.3.78)

Where “n” is the lifting surface designator.

Apart from short period stability, another very important practical characteristic is the
ability to trim the vehicle. In aeronautical terms, trim is used to describe the process of
obtaining static equilibrium in (usually straight) flight. Neglecting pitching moment
contributions from the propeller or other propulsion systems, it is apparent from the
definition of the aerodynamic pitching moment that the condition for trim in straight
flight is simply:

(2.3.79)

Given a certain CG position, the equilibrium lift coefficient ratio between the canard
and main wing can be determined using Eq. 2.3.39:

(2.3.80)

Notice that is normally negative.

Using Eq. 2.3.76 (stability margin) and Eq. 2.3.57 ( ) gives an explicit expression
for the CG position as a function of the stability margin:

(2.3.81)

Substitution of Eq. 2.3.81 into Eq. 2.3.80 gives the desired expression (after some alge-
bra!):

(2.3.82)

Notice the intuitive special case for SM equal to zero.

Since for a canard configuration, it follows that an increase in the SM also
increases the ratio . Since the lift coefficient of the canard is limited by non-
linear aerodynamic phenomena (stall) it is apparent that the lift coefficient of the entire
vehicle will be limited if an excessive SM is used. On the other hand it is very desirable
for prevention of main wing stall that the canard stalls before the main wing. This
means that the desired (“optimal”) stability margin is a small positive value. However
as we shall see later, it may be necessary to increase the nominal stability margin to
ensure static stability in case of modelling errors.

We have now determined the short period mode eigensolution, introduced the stability
margin and looked at the link between the stability margin and the maximum attainable
vehicle lift coefficient. In order to complete the analysis of the short period mode, we
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should also determine the response to aerodynamic control inputs. The most obvious
aerodynamic control input is the elevator angle . The complete ODE of the short
period mode is obtained by keeping the flight path angle constant in Eq.
2.3.63:

(2.3.83)

Since Eq. 2.3.83 is already linear, we can investigate the response to elevator inputs by
setting and equal to zero:

(2.3.84)

Using the just introduced stability margin (Eq. 2.3.76) and the nondimensional radius
of gyration (Eq. 2.3.71) gives:

(2.3.85)

Since there are no derivatives of in the ODE it follows that the transfer function
from to has no zeros. The laplace transform of Eq. 2.3.85 is given by:

(2.3.86)

The transfer function can then immediately be determined as:

(2.3.87)

Where:

(2.3.88)

It is apparent that the stability margin has a large influence on both the dynamic and
static short period mode response.

In fact the pitch response ( or ) by itself is not of primary interest for vehicle
guidance. However since the lift coefficient is proportional to the angle of attack and
the angle of attack rate is equal to the pitch rate for the short period mode, it
follows that the lift and lift coefficient dynamics are the same as the pitch dynamics for
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the short period. The static lift coefficient elevator gain can then be determined by
combining Eq. 2.3.88 and Eq. 2.3.54:

(2.3.89)

Again we can see the importance of the numerical value of the stability margin.

The other main longitudinal control input is the propeller power (or thrust). However
the short period approximation does not predict any power or thrust effect since the
thrust in the simple model does not change the trim. However since the thrust changes
the airspeed and thus the dynamic pressure, an increase in thrust will increase the lift
and thus the normal acceleration. The effect of a thrust change is thus to change the
flight path angle derivative. A complete dynamic analysis where the straight flight path
approximation is dropped would thus give a small pitch and lift transient response as
the result of a thrust change.

2.3.7.2 Phugoid mode

The phugoid mode is determined by assuming that the vehicle is trimmed to equilib-
rium in straight flight at constant airspeed. It is furthermore assumed that the angular
pitch acceleration can be ignored. These two conditions imply a constant (trim) angle
of attack, which in turn means that the lift coefficient (Eq. 2.3.54) and thus also the
drag coefficient (Eq. 2.3.56) must be constant for the phugoid mode.

Assuming a small flight path angle , the normal acceleration of the vehicle can be
expressed as:

(2.3.90)

Where is the magnitude of the acceleration of gravity.

Since the flight path angle derivative is the change in flight path angle per unit time, we
can write:

(2.3.91)

Where we have assumed constant atmospheric wind.

The axial acceleration (in the flight path direction) for constant atmospheric wind and
small flight path angles can be expressed as:

(2.3.92)
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For the moment we will assume that the combined motor and propeller efficiency is
constant and that the dynamics of the propeller rotational speed is negligible:

(2.3.93)

Where is the propeller efficiency, is the DC motor efficiency and is the elec-
tric power applied to the motor terminals (assumed constant for this analysis).

An explicit expression for the axial acceleration as a function of the flight speed and
the flight path angle, can then be determined using the definition of the drag coefficient
(Eq. 2.3.5):

(2.3.94)

Before proceeding with a stability analysis we obviously have to linearize Eq. 2.3.91
and Eq. 2.3.94 around a suitable trim operating point. We will define the operating
point in terms of the trim speed and the trim flight path angle . Since is obvi-
ously zero for the trim condition, we can obtain the trim lift coefficient from Eq.
2.3.91:

(2.3.95)

For a particular vehicle we could now use Eq. 2.3.56 to calculate the trim drag coeffi-
cient . However in this analysis we will keep as a parameter.

We are now able to use Eq. 2.3.94 to determine the trim electric power :

(2.3.96)

We are now able to linearize by introducing deviation variables for flight path angle
and airspeed:

(2.3.97)

Since by definition and , we can linearize Eq. 2.3.91 and Eq. 2.3.94 as:

Flight path angle:

(2.3.98)

Axial acceleration:
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A linearized state space ODE for the phugoid mode can then be expressed as:

(2.3.100)

The characteristic equation of Eq. 2.3.100 can then be determined directly as (Ref. 10,
p. 34):

(2.3.101)

The undamped natural frequency and damping ratio are then given by:

(2.3.102)

Since , this can further be simplified as:

(2.3.103)

Since is equal to the lift to drag ratio, which is normally greater then 10 for a
well designed subsonic vehicle, the damping ratio of the phugoid mode is generally
below 0.1 in level flight ( ). At the same time it can be seen that the phugoid
damping increases during a steady climb ( ) and decreases during a steady descent
( ). This means that for a reasonably clean aerodynamic vehicle it is possible that
the damping of the phugoid becomes negative in a dive.

We can conclude that the undamped frequency of the phugoid mode is:

• Independent of the airframe geometry and size.

• Proportional to the inverse of the airspeed.

The damping ratio of the phugoid mode is:

• Small but generally positive.

• Smaller for an aerodynamically effective vehicle (i.e. high lift to drag ratio).

• Smaller for a dive and higher for a climb.

• Independent of the airspeed (for constant lift to drag ratio).

Since the phugoid is only lightly damped, it is of particular interest to increase the
damping using closed loop control. In order evaluate the possibilities of this, it is nec-
essary to determine the phugoid mode response to elevator angle and propeller power
inputs.
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Since we know from the short period mode approximation that the lift coefficient can
be directly controlled by the elevator deflection angle (Eq. 2.3.89), we can investigate
the response of the phugoid mode to changes in lift coefficient, in order to determine
the effects of elevator input.

The derivative of the flight path angle rate with respect to the lift coefficient, can be
determined from Eq. 2.3.91:

(2.3.104)

It is apparent from Eq. 2.3.94 that the derivative of the axial acceleration with respect
to the lift coefficient is zero:

(2.3.105)

The derivative of the axial acceleration with respect to the propeller power, can be
determined from Eq. 2.3.94:

(2.3.106)

The derivative of the flight path angle rate with respect to the propeller power is zero
according to Eq. 2.3.91:

(2.3.107)

We can now extend the linearized phugoid mode ODE (Eq. 2.3.100) to include lift
coefficient and propeller power inputs:

(2.3.108)

Where and are deviation variables.

The (matrix) transfer function from the input vector to the output vector
, can be determined as (Ref. 10, Table 2.1-1):

(2.3.109)
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Which reduces to:

(2.3.110)

Notice that the static gain of is zero! This apparently counter intuitive
result is due to the fact that a power setting change will eventually lead to a new steady
flight path angle, but since the lift must be equal to the weight for moderate flight path
angles, the airspeed must be constant (neglecting air density change) since the trim lift
coefficient is independent of the power setting for this aerodynamic model.

This results in the conclusion that in order to change the airspeed it is necessary to
change both the propeller power setting and the elevator deflection angle (i.e the trim
lift coefficient).

2.3.8 Linear aerodynamic coefficients for real configurations

In the simple longitudinal aerodynamic model presented in Section 2.3.6, only the lift
and drag forces from the canard and main wing was considered. This model was used
in Section 2.3.7 to determine the approximate longitudinal dynamics of the vehicle.
This analysis showed that the Stability Margin (SM) has a significant influence on the
short period mode. Since the stability margin is defined as the nondimensional differ-
ence between the position of the Center of Gravity (CG) and the Aerodynamic Center
(AC), any errors in the CG or AC position will have a large influence on the SM. This
is especially compounded by the fact that the “optimal” SM for aerodynamic effi-
ciency, is a small positive value. This means that any uncertainty in the CG or AC posi-
tion has the potential to seriously effect the longitudinal vehicle dynamics, even to the
extent of producing longitudinal aerodynamic instability. For this reason it is prudent
to obtain an answer to two questions; how is the position of the AC affected by aerody-
namic forces on other vehicle components and what is the estimated uncertainty of the
AC position.

2.3.8.1 Wing lift coefficient curve slope and aerodynamic center

Before proceeding we will return to the problem of determining the lift curve slopes
and of the canard and wing respectively. As noted in Section 2.3.6, the theo-
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δγ s( )
δCL s( )
---------------- δγ s( )

δWe s( )
----------------

δU s( )
δCL s( )
---------------- δU s( )

δWe s( )
----------------

s
1
m
---- 3

2
---ρCDSwU0

mgγ0

U0
-------------+ 

 + 
  ρSwU0

2m
----------------- 2g

U0
2

---------
ηpηm

mU0
-------------

g
ρSwU0

2m
-----------------– s

ηpηm

mU0
-------------

s
2 1

m
---- 3

2
---ρCDSwU0

mgγ0

U0
-------------+ 

  s
2g

2

U0
2

---------+ +

--------------------------------------------------------------------------------------------------------------------------=

δU s( ) δWe s( )⁄

CLα1 CLα 2

2π rad⁄



Chapter 2

Aerodynamic Model 41

an ideal 3 dimensional wing of large aspect ratio. The general trapezoidal wing plat-
form is defined in Figure 2.15 below:

We can see that the wing geometry can be defined by 4 parameters; the wing span ,
the root chord , the tip chord and the quarter chord sweep angle . The longitu-
dinal distance between the root position and the aerodynamic center of the wing is
defined as .

In the following we will also need some derived geometric properties of the wing:

Taper ratio:

(2.3.111)

Mean aerodynamic chord (Ref. 8, Eq. 7.8):

(2.3.112)

Notice that is not the algebraic mean of the tip and root chords. This is because is
the chord measured at the spanwise wing panel center of area position .

Spanwise wing panel center of area position (Ref. 8, Eq. 7.9) (measured outboard from
the wing root):

(2.3.113)

Wing area:

(2.3.114)

FIGURE 2.15 Trapezoidal wing geometry.
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Aspect ratio:

(2.3.115)

Half chord sweep:

(2.3.116)

Trailing edge (TE) sweep:

(2.3.117)

The lift curve slope of the entire wing can then be determined using the following
empirical equation (Ref. 4, 4.1.3.2-49):

(2.3.118)

Where is the ratio of the wing profile section lift curve slope to .

The aerodynamic center position of each lifting surface is important for determining
the overall vehicle AC. For the wing alone, it can safely be assumed that the aerody-
namic center of a high aspect ratio wing is close to the quarter chord line. This means
that the AC position for a straight (nonswept) wing is located at the quarter chord point
on the wing root. For a swept wing it is necessary to determine the spanwise lift distri-
bution in order to find the longitudinal AC of the wing. For moderate sweep and high
aspect ratio, it is sufficient to assume an elliptic lift distribution (Ref. 1, Eq. III.3.18):

(2.3.119)

Notice that the definition of the wing AC implies that the pitching moment coefficient
around the AC is independent of the relative angle of attack (and thus independent of
the lift coefficient). However it does not imply that the pitching moment is zero. In
fact, if the wing section is cambered and/or the wing is twisted and swept, the pitching
moment coefficient referenced to the AC will be nonzero. Neglecting the combined
effect of wing twist and sweep, the wing alone pitching moment can be expressed as
(Ref. 8, Eq. 16.18):

(2.3.120)

Where is the wing profile pitching moment referenced to the profile AC (c/4
point).

Trailing edge flap:

The lift coefficient of a 2 dimensional airfoil can be altered by a nonextending trailing
edge flap as described by Eq. 2.3.23. For a 2 dimensional airfoil the influence of a non-
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extending trailing edge flap is to alter the zero lift angle of attack of the complete air-
foil. Since the flap is nonextending, the lift curve slope (with fixed flap) is not altered
by flap deflection. For a 3 dimensional wing, the effects of the flap, on the lift coeffi-
cient of the complete wing can be approximated as proportional to the “flapped” wing
area (Ref. 8, p. 339-340).

(2.3.121)

Where is the change in zero lift angle of attack of the complete wing,
while is the change in zero lift angle of attack of the airfoil of the 2 dimen-
sional flapped airfoil.

The flapped wing area is defined in Figure 2.16 below:

Deflection of a trailing edge flap causes a change in the wing (or canard) lift, which can
be expressed as:

(2.3.122)

However the center of pressure (CP) for the lift increment due to change of flap angle
is not the same as the aerodynamic center. For a two dimensional airfoil, the CP due to
flap deflection can be approximated as (Ref. 8, Fig. 16.9):

(2.3.123)

Where is the total airfoil chord, is the flap chord and is the airfoil CP dis-
tance behind the airfoil leading edge, due to flap deflection.

For a 3 dimensional wing with a partial span flap (see Figure 2.16) the mean aerody-
namic chord of the flapped part of the wing is given by (see Eq. 2.3.112):

(2.3.124)

FIGURE 2.16 Flapped wing area.
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Where the root chord of the flapped part of the wing is given by:

(2.3.125)

The tip chord of the flapped part of the wing is given by:

(2.3.126)

The taper ratio of the flapped part of the wing is given by:

(2.3.127)

The spanwise position of the mean aerodynamic chord of the flapped part of the
wing is given by (see Eq. 2.3.113):

(2.3.128)

For a three dimensional wing, the CP due to flap deflection will be computed using Eq.
2.3.123 with the flap and wing chords taken at the mean aerodynamic flap position:

(2.3.129)

Where is the mean aerodynamic flap chord and is the airfoil CP distance
behind the airfoil leading edge, due to flap deflection.

This gives the longitudinal position of the CP due to flap deflection for the 3-
dimensional wing as:

(2.3.130)

Where is the distance behind the root quarter chord position.
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2.3.8.2 Wing-body lift

On (almost) any real vehicle, the lifting surfaces (i.e. canard or wing) are mounted on
some sort of fuselage or body. The general geometry of such a wing-body combination
is defined in Figure 2.17 below:

The body effects the lift in two ways. The presence of the body at an angle of attack
forces the air to flow at faster speeds around the sides of the body, thus increasing the
angle of attack of any lifting surface mounted on the body sides. This wing in presence
of body effect can be expressed as the coefficient that increases the lift curve
slope of the wing-body combination. In addition, the presence of the wings on the body
produces an “image” of the wing lift on the body which can be expressed as the coeffi-
cient . The combined wing-body combination thus has a lift curve slope that can
be expressed as:

(2.3.131)

It is possible to derive explicit relationships for and for cylindrical bodies

with side mounted wings (Ref. 2):

(2.3.132)

And:

(2.3.133)

FIGURE 2.17 Wing-body geometry.
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Where is the body radius and is the wing-body semispan. Graphs
of and as a function of can be found in (Ref. 2, chart #1).

Since we don’t have any data for noncylindrical bodies, we will use Eq. 2.3.132 and
Eq. 2.3.133, but with the knowledge that these expressions are only approximations for
vehicles with noncylindrical bodies.

The AC of a wing-body combination can be determined as the mean of the AC of the
wing in the presence of the body and the body in the presence of the wing. The simplest
approach is to assume that the wing AC in the presence of the body is the same as the
wing alone AC. This approach is recommended in (Ref. 2, p. 17). For highly swept
back wings it should however be remembered that the upwash from the body is largest
at the wing root. Thus the AC for swept back wings in presence of the body can be
expected to be more forward then for the wing alone. This can be summarized as:

(2.3.134)

(2.3.135)

Where is the nominal wing AC position in the presence of the body and
is the minimum (i.e. most forward) wing AC position.

The body AC position in the presence of the wing can for moderate sweep angles be
assumed to coincide with the wing root chord quarter chord point. This gives a slightly
to far forward position according to (Ref. 2, chart #16), however the impact of this
error on the vehicle AC is small due to the small percentage of lift carried on the body
for most UAV configurations. Anyway the error will be on the “safe” side in that it
under predicts the vehicle stability margin:

(2.3.136)

The net wing-body AC of a lifting surface (i.e. canard or main wing) can thus be
expressed as:

(2.3.137)

(2.3.138)

The wing-body pitching moment referenced to the wing body AC will be approxi-
mated by the wing alone value:

(2.3.139)

Since is independent of angle of attack by definition (in the linear lift range), it
does not have an immediate effect upon the stability, but only on the trim. For this rea-
son it is not essential to model the uncertainty of .

When the lift of the wing varies independently of the angle of attack of the body (i.e.
wing incidence and flap deflection) we should use and instead of and
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For large aspect ratios, the lift on the wing in the presence of the body at zero angle of
attack, is nearly the same as for the wing alone (Ref. 2):

(2.3.140)

Furthermore it can be shown (Ref. 2) that the lift on the body in the presence of the
wing, is approximately given by:

(2.3.141)

This concludes the treatment of isolated wing-body combinations.

2.3.8.3 Fuselage lift and pitching moment

In the preceding analysis, wing-body interference was accounted for. However even
without a wing, a body produces aerodynamic forces. For a positive angle of attack a
positive lift force is in general developed on the nose of a slender body. If the body is
sufficiently streamlined and ends in a point (so that the flow remains attached to the
end) it can furthermore be shown that an equal but negative lift is developed on the
afterbody. The net lift curve slope is thus zero on a perfectly streamlined body, while
the pitching moment is destabilizing ( ). In reality even a streamlined body has a
certain amount of separation near the tail, thus the net left curve slope of any slender
body is positive. Since the body lift is only a small percentage of the total lift for the
anticipated low speed UAV’s considered herein, we will neglect the body lift and only
consider the body pitching moment curve slope and its influence on the vehicle AC.
For the case of a slender rotational symmetrical body, the pitching moment around the
nose apex is given by (Ref. 12, Eq. 27):

(2.3.142)

Where is the mean body crossection area and is the body base area (i.e. the
crossection area of the “cut” tail). The moment is based on the product of the base
area and the body length.

When the base area is reduced to near zero it is inconvenient to use the base area as the
reference area as in Eq. 2.3.142. Instead we can use the maximum body crossection
area :

(2.3.143)

Which is thus based on the maximum body crossection area and the body length.

In (Ref. 12) it is shown that the same result (as Eq. 2.3.142) is obtained for a slender
wing with a planform equal to the silhouette of the rotational symmetrical body. This
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leads to the approximation, that for a crossection shape other then that of a circle, we
may use the square of the fuselage width instead of the crossection area in Eq. 2.3.143:

(2.3.144)

Where we have used the following virtual “crossection” areas:

(2.3.145)

Which is based on the maximum fuselage width squared .

It can be shown that the pitching moment obtained from Eq. 2.3.145 is equal to that
obtained from Eq. 2.3.143 when the fuselage is a rotational symmetric body.

The pitching moment curve slope of the fuselage is thus given by:

(2.3.146)

Which is based on the area and the fuselage length .

Given the tentative nature of the above analysis, we might as well make the reasonable
assumption that the maximum fuselage pitching moment curve slope is given by:

(2.3.147)

With the nominal and minimum values given by:

(2.3.148)

2.3.8.4 Canard-wing interference

Since the main wing is placed behind the canard, the flowfield at the main wing is
altered by the canard. What qualitatively happens is that the lift on the canard produces
a downward force on the air. This downward force produces a downwash behind the
wing.

It can be shown that a short distance (compared to the wing span) behind a high aspect
ratio wing with elliptic lift distribution, the downwash angle is (Ref. 13, p. 7.1 & 7.2):

(2.3.149)

The downwash can be modelled as the velocity induced by an infinite number of vor-
texes (a “vortex sheet”) streaming back from the wing trailing edge in the local
freestream direction.

Some distance further downstream the vortex sheet will have “rolled up” into two dis-
crete vortexes in the freestream direction with a lateral spacing of approximately .
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In this case the downwash can be calculated as originating from the two discrete vor-
texes, see (Ref. 13) and (Ref. 2) for details.

For configurations where the canard span is approximately the same as the canard-
wing spacing, it is unlikely that much “roll up” of the canard vortex sheet has occurred.
In this common practical case we can use Eq. 2.3.149 to estimate the influence of
canard- wing interference on the location of the vehicle AC.

Letting the canard-body lift curve slope be denoted by , the downwash angle
derivative behind the canard can then be determined from Eq. 2.3.149 as:

(2.3.150)

Where is the canard span (without the body).

The downwash calculated by Eq. 2.3.150 only affects the main wing inboard of the
canard wingtips, as indicated in Figure 2.18 below:

Since the effective angle of attack of the main wing is reduced by , it follows that
the effective lift curve slope of the inboard part of the main wing ( ) can be
expressed as:

(2.3.151)

The area of the inboard part of the main wing can be determined using Figure 2.15 and
Figure 2.18 as:

(2.3.152)

FIGURE 2.18 Area of main wing affected by uniform canard downwash.
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On the outboard part of the wing ( ) we will assume that the lift is unaffected
by the canard. This gives the following expression for the main wing-body-canard lift
coefficient slope :

(2.3.153)

In reality it can be shown that immediately outside of the downwash area, there is a
strong upwash. For canard configurations (i.e. larger main wing then canard span), this
upwash will partly counteract the effects of the downwash on the inboard part of the
main wing. For this reason we should regard Eq. 2.3.153 as the worst case lift coeffi-
cient curve slope of the main wing-body in the presence of canard downwash:

(2.3.154)

The nominal value of is guessed as the value corresponding to the effect of
only half the calculated downwash, since we have knowingly neglected the upwash on
the outboard main wing parts in the above analysis. In calculating the maximum value
of , the canard downwash has been neglected altogether.

Since the lift curve slope of the inboard part of the main wing is decreased by canard
downwash, the resulting aerodynamic center of the main wing is displaced slightly
backwards if the wing sweep is positive. However since this effect is small and stabi-
lizing for moderate main wing sweep angles, it will be neglected in this analysis:

(2.3.155)

The absolute positions of the canard and main wing AC’s can then be determined as:

(2.3.156)

Where and are the longitudinal positions of the quarter chord root point of the
canard and main wing respectively.

In order to calculate the pitching moment due to canard flap deflection (i.e. elevator
control), the distance from the CG to the CP due to flap deflection is needed:

(2.3.157)

Notice that wing-body interference is neglected.
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2.3.8.5 Complete vehicle coefficients:

The lift curve slope uncertainty range for the complete vehicle can now be determined
simply as:

(2.3.158)

As discussed above, the fuselage alone lift is ignored.

It is important to realize that and are worst case approximations to the
uncertainty boundaries, since Eq. 2.3.158 assumes that the lift extremes of the canard
and main wing occur at the same time. In other words it is assumed that are

correlated.

The AC of the vehicle with just one canard and main wing is given by Eq. 2.3.78. Since
the numerator of Eq. 2.3.78 is really just the sum of the weighted downwards (i.e. neg-
ative) pitching moments around the nose apex ( ), it follows that the theoretical
AC of the complete vehicle (including the fuselage) can be expressed as:

(2.3.159)

The vehicle AC uncertainty range can then be determined as:

(2.3.160)

Notice that we have assumed that the vehicle AC is situated between the AC of the
canard and that of the main wing.

In this case the AC uncertainty range is determined assuming the worst case situation
where the correlation between and is negative. Notice that this is not
compatible with the assumption used in Eq. 2.3.158. This means that results based on
uncorrelated combinations of Eq. 2.3.158 and Eq. 2.3.160 will include unphysical
instances. This may lead to a too conservative estimate of the effects of uncertain aero-
dynamics. This is a good reason to use a model which includes only the major sources
of uncertainty.

A simple expression for the dynamic pitching moment derivative was determined
in Eq. 2.3.43. This was based on the assumption that the dynamic pitching moment is
generated entirely by linear quasi steady lift forces at the AC’s of two aerodynamically
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independent lifting surfaces. For canard configurations with high aspect ratio wings, it
is probably a reasonable assumption to ignore wing alone pitching moment damping
since the chord is small compared to the longitudinal separation between the canard
and main wing. However the assumption of no aerodynamic interaction between the
canard and main wing has been shown in Section 2.3.8.4 to be not completely true.
Unfortunately the downwash from the canard on the main wing is not instantaneous.
This is principally due to the fact that the downwash inducing vortexes from the canard
propagate at approximately the freestream velocity from the canard to the main wing.
This has the effect that for slow pitching motions, the downwash at the main wing will
be in phase with the canard lift. However for faster pitching motions we may in effect
have a downwash that is out of phase with the canard lift.

For the case of no canard-wing interaction (corresponding to phase shift between
canard lift and downwash at main wing), we have directly from Eq. 2.3.43:

(2.3.161)

For the limit of very slow pitching motions, the downwash at the main wing will be in
complete phase with the canard lift. As an example we can look at the situation for pos-
itive . In this case the canard lift due to pitching motion will be negative, while the
main wing lift will be positive. However since the downwash will be negative in this
case, the result is a larger main wing lift. The net result is thus a larger pitch damping
coefficient, then for the case without canard-wing interaction:

(2.3.162)

The other extreme case is given by a downwash out of phase with the canard lift.
In this case the pitch damping coefficient will be reduced by downwash:

(2.3.163)

Since the downwash propagates at approximately the freestream velocity, we could in
principle determine the phase shift of the downwash for a certain flight speed and
eigenfrequency. However in practice this would complicate the model further. Thus for
the time being we will treat the downwash influence as model uncertainty, reflected in
an uncertain value.
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The uncertainty range can then be determined as:

(2.3.164)

As discussed in Section 2.3.7, the dynamic derivatives , and do not affect
the phugoid or short period modes. As a result we will use the approximation given by
Eq. 2.3.58 for the dynamic pitching moment derivatives, pending an investigation of
the complete longitudinal dynamics:

(2.3.165)

Notice that Eq. 2.3.165 implies that the dynamic pitching moment derivatives are com-
pletely correlated and thus has identical numerical values for a certain instance.

At the same time we will ignore the dynamic lift derivatives:

(2.3.166)

For simplicity, the dynamic pitching moment derivative due to axial wind gradient
will be expressed using the nominal value (from Eq. 2.3.59):

(2.3.167)

The aerodynamic pitching moment around the vehicle AC can be determined by sum-
ming the individual contributions from the canard, main wing and fuselage. The AC of
the complete vehicle is defined as the position of zero pitching moment variation with
angle of attack. The angle of attack independent pitching moment of the complete
vehicle can then be determined by summing the angle of attack independent contribu-
tions. Eq. 2.3.41 already contains the contributions from the lift of the canard and main
wing. The fuselage contribution will be assumed negligible compared to the lifting sur-
face contributions (this is exact if the fuselage is top-bottom symmetric). What remains
to be included is the pitching moment contributions due to airfoil camber, elevator
deflection and wing incidence. For practical reasons we will separate the angle of
attack independent pitching moment into two parts:

The elevator (canard flap) pitching moment derivative :

(2.3.168)

Notice is referenced to the CG position.
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The pitching moment coefficient due to camber and lifting surface incidence:

(2.3.169)

Notice that is referenced to the AC position.

The lift coefficient due to camber and lifting surface incidence:

(2.3.170)

The elevator (canard flap) lift coefficient derivative :

(2.3.171)

For simplicity we have ignored canard-wing interference in deriving , , and
, since it probably only has a relative small effect on these coefficients. As an

example the derivative will be increased slightly by canard-wing interference
since a positive canard flap deflection will give a small down load on the main wing.
However unlike the stability margin issue, the interference will not change the stability
or open loop dynamics significantly.

The total static aerodynamic pitching moment coefficient referenced to the CG can
then be determined as:

(2.3.172)

Similarly the total lift can be expressed as the sum of the lift due to angle of attack and
the lift due to profile camber and wing incidence. Starting with Eq. 2.3.30, the angle of
attack independent lift coefficient can be expressed as the sum of two contributions:

The total static lift coefficient can then be determined as:

(2.3.173)

Comparing with shows that:

(2.3.174)

The advantage of the formulations in Eq. 2.3.172 and Eq. 2.3.173 is that and
are constants in the equations of motion, this means that they have no first order influ-
ence on the dynamics and stability of the vehicle. Due to their minor influence on the
stability, they can be treated as fixed values without any uncertainty.

Since both and have a large influence on the open loop aerodynamic gains,
uncertainties in these derivatives may affect the closed loop dynamics and stability. It
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is thus appropriate to introduce an uncertainty range on both coefficients. The uncer-
tainty range on can be determined as:

(2.3.175)

Notice that the uncertainties of and are correlated.

We can then determine the uncertainty range of as:

(2.3.176)

Since the relative uncertainty of is generally small, the uncertainty of is
highly correlated with the uncertainty of .

2.3.8.6 Zero lift drag

In the simple aerodynamic model presented in Section 2.3.6, only the drag of the lifting
surfaces where included. Unfortunately from a performance point of view, a major part
of the drag of most vehicles is caused by nonlifting airframe parts such as the fuselage,
landing gear (if not retracted) and other protrusions into the airstream. The drag of
vehicle airframe components can be treated as two contributions; zero lift drag and
drag due to lift. For this analysis we will assume that only the canard and main wing
creates drag due to lift, while all other airframe components only create lift independ-
ent drag.

For streamlined airframe components, the best simple zero lift drag estimation method
is based on flat plate drag data (Ref. 8, chapter 12.5). The drag of a smooth flat plate
parallel to the airstream is expressed by the skin friction coefficient which is the
drag coefficient of the plate based on the wetted surface area. Unfortunately from a
computational point of view, the skin friction coefficient depends on whether the flow
is laminar or turbulent. This can only be judged from such flow features as the surface
roughness, freestream turbulence and pressure distribution. However since the skin
friction coefficient of turbulent flow is always higher then that of laminar flow, we can
conservatively estimate the skin friction coefficient of streamlined airframe compo-
nents by using the turbulent skin friction coefficient (Ref. 8, Eq. 12.27):

(2.3.177)

Where is the Reynolds number based on the length in the flow direction of
the airframe component.
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Since the flow around any 3 dimensional body also exerts a pressure drag which is not
found in ideal flat plate flow, the drag coefficient of an airframe component can be cor-
rected by the empirical Form Factor ( ) that depends on the slenderness of the com-
ponent (Ref. 8, p. 344&345). Lastly the drag may also be increased by the presence of
other airframe components that increase the local flow speed and thus the drag. This is
expressed by the interference factor (Ref. 8, p. 346). A more complete discussion of
these concepts is provided in (Ref. 8, chapter 12.5). Below we will use some of the
results from this reference, with the implicit assumption that the mach number is small.

The drag coefficient of the fuselage referenced to the main wing area is given by:

(2.3.178)

Where the fuselage skin friction coefficient is computed using the Reynolds number
corresponding to the fuselage length . The fuselage interference factor is 1.0. The
fuselage form factor is a function of the slenderness :

(2.3.179)

Where is the maximum fuselage crossection area.

The wetted fuselage area is denoted by . The drag due to a cut off, aft facing sur-
face with the projected area on the fuselage is given by , which can be
approximated by:

(2.3.180)

The zero lift drag on the canard, wing and vertical fin can also be estimated using the
skin friction coefficient. For a streamlined lifting surface, the form factor can be deter-
mined as:

(2.3.181)

Where is the longitudinal position of the maximum wing profile thickness,
is the mean wing profile maximum thickness ratio and is the sweep of the

maximum wing profile thickness line. For simplicity we can use and
for subsonic airfoils.

The interference factor can be taken as equal to one for a high or mid wing, while it
may be greater then one for a low wing.

The zero lift drag coefficient of the wing is then given by:

(2.3.182)

Where the skin friction coefficient is based on the Reynolds number of the mean aero-
dynamic wing chord .
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We will assume that the wetted area of a wing with a typical wing profile is equal to
twice the exposed wing area:

(2.3.183)

The last major drag contribution is “miscellaneous” drag. This is drag due to airframe
components that have a shape that is too irregular to be analysed using the skin friction
coefficient. The most important miscellaneous item drag for many aircraft is a fixed
landing gear. The miscellaneous drag is expressed in terms of the “drag area” of a com-
ponent, for a normal landing gear wheel the drag area is (Ref. 8, Table 12.5):

(2.3.184)

Where is the drag pr. unit dynamic pressure and is the projected frontal
area of the wheel.

If the wheels are mounted on a strut with circular crossection, the drag area of this can
be approximated as:

(2.3.185)

Where is the projected frontal area of the strut.

Miscellaneous drag contributions from other airframe components can be found in
(Ref. 8, p. 346-351).

The zero lift drag of the complete vehicle can then be determined by adding the contri-
butions from the individual airframe components:

(2.3.186)

Where is the sum of all miscellaneous drag areas and is the zero lift drag
of the vertical fin.

2.3.8.7 Induced drag

As mentioned in Section 2.3.6, the induced drag coefficient (i.e. the drag due to lift) of
a lifting surface is approximately proportional to the square of the lift coefficient. For a
wing of reasonable aspect ratio with elliptic lift distribution, the induced drag can be
determined as (Ref. 8, p. 360):

(2.3.187)

This is the minimum induced drag coefficient of a wing with prescribed lift coefficient
and aspect ratio. Any deviation from the elliptic lift distribution will make the induced
drag coefficient higher.
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This can be quantified by the Oswald span efficiency “ “(Ref. 8, p. 360). Using the
Oswald span efficiency, the constant can be expressed as:

(2.3.188)

For wings with little or no sweep, the Oswald span efficiency can be determined using
the following empirically derived expression (Ref. 8, Eq. 12.49):

(2.3.189)

Since we have two lifting surfaces, the canard and the main wing, we can determine the
total induced drag of the vehicle as:

(2.3.190)

Which is based on the main wing area .

2.3.9 UAV case study:

The theory derived above will be used to determine the aerodynamic characteristics of
a small unmanned aerial vehicle with canard configuration. The vehicle planform
geometry is shown in Figure 2.19 below:

The main aerodynamic dimensions and parameters of the vehicle are listed in Table 2.1
below:

FIGURE 2.19 Electric UAV concept study (dimensions in mm).
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The aerodynamic properties of the airfoils used for the canard and main wing have
been computed using the xfoil program (Ref. 17). Due to the relative low speed of the
UAV, compared to larger aircraft, the Reynolds number, airfoil surface roughness and

Main wing aspect ratio

Total canard span

Canard area

Canard chord

Canard aspect ratio

Fuselage width

Fuselage length

Fuselage wetted area

Fuselage base area

Vertical fin areaa

Vertical fin chord

Vertical fin aspect ratio

Total wetted area

Misc. drag wheels

Misc. drag wheel struts

Total misc. drag area

Maximum mass

Total wing loading

a. Vertical fin size is quessed at this point, the final fin size is
determined later.

Canard airfoil name Mod. Clark-Y 16%

Percent thickness 16% of chord

Percent flap chord 25% of chord

Tabel 2.2 Canard airfoil geometry.

Main wing airfoil name Clark-Y

Percent thickness 11.72% of chord

Percent aileron chord 20% of chord

Tabel 2.3 Main wing airfoil geometry.

Tabel 2.1 UAV case study.
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freestream turbulence has a significant influence on not only the drag but also on the
lift coefficient curve slope of the airfoils. This is shown in Figure 2.20 below:

The main aerodynamic properties of the canard and main wing airfoils in the expected
Reynolds number range is summarized in the following tables:

FIGURE 2.20 Computed canard wing profile lift coefficient polars (zero flap deflection).

Name Value

Min Nominal Max
a

a. Based on the canard chord.

-

[rad-1] 4.71 5.65 6.28

0.9 1.0 1.4

-0.36 -0.30 -0.24

[rad-1] 0.0 0.5 1.15

Tabel 2.4 Canard airfoil properties.

-5 0 5 10 15 20
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

[-
]

[deg]

Modified Clark-Y 16% at Re of 50K, 100K and 200K
Smooth and rough surface

α

C
l

α(
)

Re = 50K

Re = 200K Re = 100K

Re 50
3×10 200

3×10

Clα

α0L 3.0°– 2.5°– 2.0°–

Cl max,

α0L∂( ) δe∂( )⁄

Cl max,( ) δe∂( )⁄



Chapter 2

Aerodynamic Model 61

Using the aerodynamic airfoil properties listed in Table 2.4 and Table 2.5 and the equa-
tions for the linear aerodynamic coefficients given in Section 2.3.8, gives the following
numerical values:

At first it seems like the relative uncertainty for the AC and the lift curve slope are
more or less the same, however this is deceiving. According to Section 2.3.7.1, the
important aerodynamic parameter is the stability margin (SM). Since the stability mar-
gin must be small but positive to achieve both static stability and a reasonable maxi-
mum lift coefficient, it follows that the impact of the AC uncertainty on the dynamics
of the vehicle will generally be much larger then that of the lift curve slope uncertainty.

The AC uncertainty range is shown on a side view of the UAV below:

Before we can proceed with the dynamic analysis, we need to determine the CG posi-
tion. The CG position will be chosen by defining a minimum value for the stability

Name Value

Min Nominal Max
a

a. Based on the wing chord.

-

[rad-1] 5.25 5.90 6.28

1.20 1.25 1.35

Tabel 2.5 Main wing airfoil properties.

Name Value

Min Nominal Max

[m] 0.7466 0.7848 0.8261

5.2740 6.1602 7.2687

Tabel 2.6 UAV AC position and lift curve slope range (angles in radians).

FIGURE 2.21 UAV AC uncertainty range.
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margin. Based on (Ref. 8, Fig. 16.4), the following minimum stability margin will be
used for the rest of this case study:

(2.3.191)

Using the AC position uncertainty range from Table 2.6, places the desired CG at the
following position:

(2.3.192)

We will not use any uncertainty for the CG since the CG position is fixed during a
flight and is easily determined with an accuracy better then 1 mm using a simple bal-
ancing procedure.

We are now able to determine the uncertainty range for all the important static and
dynamic linear aerodynamic coefficients:

Notice that since the wing and canard sweeps are zero, the uncertainty on the canard
AC position and thus on is zero according to the model.

It is readily apparent that the relative stability margin uncertainty is much larger then
the relative uncertainty of any other aerodynamic coefficient or parameter. Since the
stability margin is a very important parameter for the open loop stability and response
of the short period mode, it follows that the longitudinal control system should at least
be checked for robustness against the stability margin variations from Table 2.7.

2.3.10 Lift to drag ratio

The lift to drag ratio is a very important indicator of the performance of the complete
UAV. The drag “polar” of the vehicle is constructed assuming steady flight at constant
altitude. This means that the drag is determined using the following conditions:

• The total lift is equal to the weight of the UAV.

• The aerodynamic pitching moment referenced to the CG is zero.

Name Value

Min Nominal Max Percent

uncertainty

[m] 0.7466 0.7848 0.8261 +5.3%/-4.9%

0.050 0.203 0.368 +81.3%/-75.4%

5.274 6.160 7.269 +18.0%/-14.4%

-22.46 -19.49 -15.81 +18.9%/-15.2%

-0.342 -0.285 -0.228 +20%/-20.0%

[m] -0.486 -0.486 -0.486 0%

Tabel 2.7 UAV linear longitudinal aerodynamic properties (angles in radians).
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The lift equilibrium equation is given by:

(2.3.193)

The equation for pitching moment equilibrium is:

(2.3.194)

The problem is thus to determine the elevator angle in such a way that both Eq.
2.3.193 and Eq. 2.3.194 are satisfied at a given dynamic pressure . The derivative

is given by Eq. 2.3.175.

The total lift coefficient can be determined directly using vertical equilibrium:

(2.3.195)

It is apparent from Eq. 2.3.193 and Eq. 2.3.194, that this results in a linear equation
with two unknowns:

(2.3.196)

According to the discussion in Section 2.3.9, the stability margin ( ) uncertainty is
the single most important longitudinal aerodynamic uncertainty. For this reason, we
will compute and using nominal values of all coefficients, except the stability
margin. This gives and for 3 instances; low, nominal and high stability margin.

Having determined equilibrium values of and the lift coefficient of the canard can
be determined as:

(2.3.197)

The main wing lift coefficient can then be determined as:

(2.3.198)

Where the lift coefficient of the complete vehicle is determined using Eq. 2.3.195.
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Using this procedure for the concept vehicle in Section 2.3.9 gives trim lift coefficients
of the canard and main wing as function of indicated airspeed for 3 values of the stabil-
ity margin; low, nominal and high:

Since the lift of canard is limited due to flow separation (stall), the minimum level
flight speed is limited by the maximum stability margin and the minimum value of the
canard stall lift coefficient. This means that while the lowest limit of the stability mar-
gin is critical for static stability, the highest limit of the stability margin is critical for
available lift. Since the minimum value of the maximum canard lift coefficient is
approximately 0.9 according to Table 2.4, Figure 2.22 shows that the guaranteed mini-
mum flight speed is approximately equal to 16 m/s.

Knowing the distribution of lift between the canard and the main wing , we
can determine the induced drag using Eq. 2.3.190:

(2.3.199)

Notice that the wing-body lift coefficient is used instead of the wing alone lift, this
should give a conservative estimate of the induced drag.

FIGURE 2.22 Lift coefficients of canard and main wing of UAV case study as function of
indicated airspeed and stability margin.
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The zero lift drag is computed using flat plate drag data for the wings and fuselage and
drag area data for the undercarriage. The total drag is then computed as the sum
of the induced and zero lift drag contributions.

Where is the induced drag of the canard referenced to the main wing area and
is the induced drag of the main wing. Figure 2.23 shows that the induced drag

is only important at low flight speeds. Notice that Figure 2.23 is based on the nominal
SM margin.

FIGURE 2.23 Drag of UAV case study as function of airspeed at standard sealevel conditions.
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It is standard practice to express the aerodynamic efficiency in terms of the lift to drag
ratio in level flight. This gives the following results for the concept study UAV:

It is apparent from Figure 2.24 that the effect of the stability margin uncertainty on the
predicted performance is small compared to the inherent uncertainty in the model used
to predict the total drag. We can thus conclude that for the vehicle used in this analysis,
the drag can be adequately predicted without including the aerodynamic center uncer-
tainty. This conclusion will be used in the following analysis of the propulsion system.

2.3.11 Electric propulsion system model

The electric propulsion system consists of two DC-motors connected in series. Each
motor drives a relatively large propeller at a relatively slow speed through a fixed
mechanical gearing. The details of the propulsion system mathematical models are
described in Appendix A. In this section we will describe the main characteristics of
the system.

FIGURE 2.24 Lift to drag ratio of UAV case study as function of airspeed at standard sealevel
conditions.
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A schematic drawing of the propulsion system is shown below:

As shown in Figure 2.25 one propulsion unit consisting of a motor with fixed gearing
and a fixed pitched propeller, is mounted on each side of the fuselage on the main
wing.

A simple model of the available torque from a permanent magnet DC-motor with
motor current is given by (Ref. 18):

(2.3.200)

Where is the voltage at the motor terminals, is the angular velocity of the motor
shaft, is the combined resistance of the motor windings and commutators, is the
motor “torque” constant, is the motor “induced voltage” constant and is the con-
stant motor coulomb friction torque. It can be shown that if a consistent set of units are
used, the numerical value (but not the dimension) of and will be the same.The net
result is that the static (constant speed) and dynamic (variable speed) characteristics of
the DC motor can be described by three parameters: , and .

FIGURE 2.25 UAV propulsion system.
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The characteristics of a typical DC-motor designed for electric propulsion of model
aircraft are shown below:

Figure 2.26 shows that for this particular motor, the maximum efficiency at nominal
voltage is just over 70%. It is also worth noting two other typical DC-motor character-
istics at constant voltage; the maximum efficiency occurs close to the idle speed at low
loading and the available torque at low speeds is very large. This means that if the
power system is optimized for efficient cruise, there will still be a large reserve power
available to turn a fixed pitch propeller at low speed conditions during takeoff. Thus in
this respect an electric motor has an advantage over internal combustion engines for
driving fixed pitch propellers.

The fixed gearing between the motor and propeller makes it possible to use a larger and
more aerodynamically efficient propeller.

FIGURE 2.26 Typical DC-motor characteristics.
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The gear ratio is defined as the ratio between the output angular velocity and
the input angular velocity :

(2.3.201)

The gear efficiency is assumed constant:

(2.3.202)

Where is the output torque and is the input torque.

The propeller thrust and shaft power are determined as:

(2.3.203)

And:

(2.3.204)

Where is the nondimensional propeller thrust coefficient and is the nondimen-
sional propeller power coefficient. The atmospheric air density is , is the number of
revolutions pr. second of the propeller and is the propeller diameter.

It can be shown the nondimensional propeller characteristics and are functions of
the advance ratio defined by (Ref. 19, p. 467):

(2.3.205)

Where is the number of revolutions pr. second of the propeller and is the corre-
sponding propeller angular velocity. The free airspeed (i.e. the UAV airspeed) is given
by .

It is important to note the extreme dependence on the propeller diameter for geometri-
cally similar propellers under similar operating conditions.

The propeller efficiency can be determined from and as (Ref. 19, p. 467):

(2.3.206)

From which the intuitive conclusion can be drawn that the efficiency is maximized by
increasing the ratio between the thrust and torque, at a given operating point.

The shapes of and can be calculated from the propeller geometry using blade
element theory (see Appendix A.2). However this is quit tedious because of the effort
involved in determining the propeller geometry. The main problem being that the
detailed geometry of commercially available model airplane propellers is not readily
available.
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What is generally available is the diameter and the pitch (conceptually equivalent to
the pitch of a screw) of model airplane propellers. From these two parameters we may
define the nondimensional pitch as:

(2.3.207)

Using correlation rules proposed in Appendix A.3, we will correlate and of
our propeller to that of a low pitch two bladed propeller with known thrust and power
coefficients (from measured data in (Ref. 20, Fig. 5)).

The correlated characteristics of a typical low pitch propeller are shown below

For UAV performance analysis, the steady state performance of the propulsion system
is of particular interest. Lets assume that we want to compute the propulsion system
performance at a specified airspeed .

For steady level flight, the total propulsion system thrust must be equal to the
total drag of the trimmed vehicle:

(2.3.208)

Where the total drag coefficient for level flight is computed in Section 2.3.10.

FIGURE 2.27 Typical characteristics of a low pitch propeller ( ).
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Combining this with Eq. 2.3.203 gives:

(2.3.209)

This nonlinear equation can then be solved for the propeller speed , since the thrust
coefficient is obtained from the advance ratio. The total number of identical propeller-
motor systems is given by .

Having determined the propeller speed, the next step is to determine the propeller
power using Eq. 2.3.204. Since the propeller is connected to the motor using a fixed
transmission with a gear ratio of and an efficiency of , the motor shaft power
and speed can be determined as:

(2.3.210)

Where if the motor is to operate at a higher speed then the propeller and is
the available motor shaft power.

Since the available motor power can be determined as , Eq. 2.3.200 can be
used to determine the necessary motor voltage as:

(2.3.211)

The corresponding motor current can be determined as:

(2.3.212)

We can now determine the motor efficiency from the definition given by Eq. A.6:

(2.3.213)

The overall propulsion system efficiency is similarly given by:

(2.3.214)
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The results of these calculations can then be shown in graphical form as function of air-
speed:

Since the available electric energy from rechargeable batteries is limited, it is important
for maximum range of the UAV to maximize the amount of propulsive work done for a
unit amount of electric energy. In theory this should be done using a complete typical
mission profile consisting of takeoff, climb, cruise, descent and landing. In practice it
is easier and more transparent to maximize the efficiency at cruise, while checking that
the system has sufficient thrust for takeoff, climb and aborted landings.

Because the propulsion system designer in practice has to use standard components,
the objective is to choose a suitable propeller based on the diameter and pitch and a
suitable motor-gear combination. Since the gearing and motor is typically integrated
into one unit, the design problem has three variables. Figure 2.28 shows the propulsion
system performance for steady level flight at sealevel conditions for the concept UAV
powered by two identical electric motors. The total electric power supplied to the pro-
pulsion motors is denoted by . Notice that since the induced drag is negligible at
high speeds, the necessary propulsive power is roughly proportional to the cube of the
airspeed. In practice the optimum cruise speed of the vehicle as designed would proba-
bly be close to the minimum flight speed, since the lift to drag ratio is best at low
speeds (see Figure 2.24). For a cruise speed of 20 m/s, Figure 2.28 shows that the total
electric power required is equal to approximately 250 W.

For good takeoff and climb performance, there needs to be an adequate thrust reserve.
We will assumme that the maximum motor power is limited by the available terminal

FIGURE 2.28 Concept study UAV propulsion system characteristics for level flight at sea level
conditions.
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voltage (it could also be limited by power dissipation in the motor windings).
However given and the airspeed , we can determine the equilibrium propeller
speed by solving the following equations:

The propeller power:

(2.3.215)

The motor power and speed:

(2.3.216)

The motor voltage:

(2.3.217)

The method consists of adjusting and thus the advance ratio iteratively until the
motor voltage calculated by Eq. 2.3.217 is equal to the maximum motor voltage .

The total thrust is then determined from Eq. 2.3.203:

(2.3.218)
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The results of these calculations are shown below:

Figure 2.29 shows that at a cruise speed of 20 m/s, the maximum steady state climb
angle with motor terminal voltage of 16.8V is approximately 15o. This is a descent per-
formance for a vehicle designed for cruise efficiency. Figure 2.29 also shows that dur-
ing the takeoff run the thrust is over 30N, corresponding to a thrust to weight ratio in
excess of 40%. This should be adequate for takeoff from a grass surface runway.

In order to obtain a dynamic model of the propulsion system, it is necessary to know
the effective moment of inertia of the propeller and motor, referenced to the

FIGURE 2.29 Concept study UAV propulsion system thrust capability at sea level conditions.
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motor shaft. If the propeller moment of inertia is denoted by (not to be confused
with the advance ratio ) and the motor rotor moment of inertia is denoted by , the
effective moment of inertia can be expressed as (Ref. 18, p. 4-3):

(2.3.219)

Where the moment of inertia of the gear has been ignored and the gear efficiency for
simplicity is assumed close to unity.

As “usual” it is not possible to obtain published values of propeller and model airplane
electric motor moment of inertias. Instead we will try to obtain realistic maximum val-
ues of the moment of inertias.

Lets assume that we know the outside diameter of the motor and the total motor
mass . We will then assume that the rotor has an maximum outside diameter of 75%
of the total motor diameter and that the maximum rotor mass is 50% of the total motor
mass. In addition we will assume that the rotor mass distribution is in the form of a
solid round cylinder, this gives (Ref. 21, Table 7.1):

(2.3.220)

The propeller mass distribution will be modelled as uniform with respect to the radius,
since the propeller blades generally have a thick crossection close to the hub because of
the large centrifugal forces, this will give an upper bound for the propeller moment of
inertia:

(2.3.221)

Where is the total propeller mass.

An upper bound of the effective moment of inertia can then be determined as:

(2.3.222)

We can now determine the overall dynamic model of the UAV propulsion system. The
angular acceleration of the motor is given by:

(2.3.223)

According to Eq. 2.3.204, the applied propeller power can be expressed as:

(2.3.224)
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Where the power coefficient is given by:

(2.3.225)

Where is the airspeed.

The dynamic model of the motor speed is then given by:

(2.3.226)

The propeller dynamics is thus a first order nonlinear ODE.

Since the thrust and power coefficients are computed on the basis of the propeller
speed rather then the motor speed, it may be convenient to convert Eq. 2.3.226 into an
ODE of the propeller speed (frequency) :

(2.3.227)

Notice that it is implicitly assumed in the above equations that the net power transfer is
from the motor to the propeller. In other words if the propeller is driving the motor
through the gear (windmilling), the definition of the gear efficiency should be changed.
However since the gear efficiency is close to unity, this error will probably be of
minor importance. The instantaneous thrust per propeller is then given by Eq. 2.3.203.

The preceding equations can be used as a nonlinear simulation model of the propulsion
system. However for control system design we need a linearized model which essen-
tially describes the “gain” of the propulsion system.

Assuming that the propulsion system dynamics are primarily affected by changes in
airspeed and propeller speed, with the motor voltage as an independent controlled
input, the linearized propulsion system dynamics can be described using the following
mathematical model:

(2.3.228)

The derivatives of Eq. 2.3.228 can be determined from Eq. 2.3.227:
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Propeller speed derivatives:

(2.3.229)

(2.3.230)

(2.3.231)

Thrust derivatives:

(2.3.232)

(2.3.233)

2.4 Atmospheric wind and gusts

When the UAV moves through the atmosphere, it may encounter fluctuating wind
velocities. These fluctuations are generally due to atmospheric turbulence. The turbu-
lence may be generated by a number of factors:

• “Ground turbulence” due the flow of wind over the landscape, with various degrees
of roughness. Due to the similarity with flow over rough plates, this effect can be
quantitatively predicted by semi empirical theory for such flows. For this reason,
this flow regime is called the Atmospheric Boundary Layer (ABL).

• “Thermal turbulence” is generated by air rising due to thermal differences. This is
the same phenomenon responsible for generating the familiar “cumulous” clouds.
This kind of turbulence is especially severe inside clouds.

• “Clear air turbulence” is the general term for turbulence not directly associated with
clouds or the ABL, especially severe cases are found at edges of “jet streams” and
on the leeward side of mountains.

Since atmospheric turbulence is random in nature, it must be described statistically. In
general such a description must include both the statistical distribution and frequency
content of the turbulence.

It is readily appreciated that atmospheric turbulence is a complex spatial and temporal
function. However in order to analyse the effects of turbulence on a moving aeroplane,
it is a generally accepted practice (Ref. 1, section III.13) to use the following approxi-
mations:

• “Frozen gust”: The atmospheric gust at a fixed position is assumed constant during
the time span that the vehicle transverses the gust. This approximation is reasonable
if the velocity of the vehicle is significantly larger then the gust wind speed.

• The time function of the gusts in moving vehicle coordinates are continues.
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• The gusts are stationary stochastic processes.

There are two types of gust models that are in general use (Ref. 1, section III.13):

• Stochastic gust models, where the gusts are described as stochastic processes using
power spectrum models.

• Discrete gusts, where the gust velocity profiles are deterministic functions of time.

The stochastic gust models are generally good for describing the most frequently
encountered gusts, while the discrete gust models are useful for describing the rare
occurrence of large gusts. This stems from the fact that the gaussian probability distri-
butions used in the stochastic gust models do not adequately model the probability of
extreme gusts (Ref. 1, section III.13.6).

2.4.1 Mean wind and the atmospheric boundary layer:

The mean atmospheric wind is basically driven by areas of high and low pressure in the
atmosphere (the “weather”). Due to the coriolis force, the wind direction is not directly
from areas of low pressure towards areas of high pressure. Instead the wind direction
generally follows the isobars in a clockwise direction around regions of low pressure in
the northern hemisphere and a counter clockwise direction in the southern hemisphere.
Due to the presence of the ground, the mean wind speed is slowed down as the height
about the earth’s surface is reduced. At the same time the wind direction in general
seems to be more in the direction of the low pressure region as the surface is
approached.

Due to the extreme complexity of the real flow around natural and man made obstacles
on the ground, a simple stochastic model of the atmospheric boundary layer (ABL)
seems to be more suited for studying the effects of the ABL on aeroplanes, rather then
attempt to use a complex model which may after all not give a more accurate result.

A simple model of the mean atmospheric wind is given in (Ref. 15):

(2.4.1)

Where and depends on the roughness of the terrain. is the mean wind
speed (10 minute mean) measured at the height . If , then
must be replaced with in Eq. 2.4.1. It should be noted that since is assumed
to be parallel to the mean surface of the ground, it is most conveniently expressed in
earth coordinates.

The mean wind velocity in earth coordinates can then be expressed as:

(2.4.2)

Where is the wind direction expressed according to usual meteological convention,

i.e. the direction that the wind appears to be coming from, as viewed by a fixed
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observer. The local north unit vector is given by and the local east unit vector by

.

In the next subsection, the turbulence levels associated with the ABL will be discussed.

2.4.2 Power spectrum model

The power spectrum models describe the gust time functions as a linear dynamic sys-
tem driven by white gaussian noise. If the gust process is assumed statistically station-
ary, the power spectral density (PSD) of the gust autocorrelation function can be
defined and computed. In this thesis we will not go into the details of determining the
PSD’s of atmospheric gusts, instead the interested reader is referred to (Ref. 1, section
III.13). From this reference, an approximation due to Dryden of the vertical gust PSD
is:

(2.4.3)

Where is the temporal gust PSD for vertical gusts with respect to the angular fre-
quency , is the vertical turbulence length scale, is the vertical gaussian turbu-
lence intensity and is the flight speed through the quasisteady atmosphere. The
flight speed is defined as the speed relative to the atmosphere without wind gusts,
but including steady wind. .

A time domain gust signal with the specified PSD can be generated by passing a con-
tinues white noise signal through a stable linear filter with transfer function given
by (Ref. 11, p. 118):

(2.4.4)

Where is formally the power density of a continues white noise signal applied to the
input of the filter.

As shown in Appendix B, the filter can be determined as:

(2.4.5)

With the coefficients given by:
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A continues state space implementation of the filter in canonic reachable form is deter-
mined as:

(2.4.7)

This implements the filter , where is the Laplace transform of the
filter gust output and is the Laplace transform of the filter input .

For horizontal gusts in the axial flight path direction, the following model due to
Dryden can be used:

(2.4.8)

Where is the temporal gust PSD for longitudinal gusts, is the longitudinal tur-
bulence length scale and is the longitudinal gaussian turbulence intensity.

This can be factorized as:

(2.4.9)

It is then apparent that we should be able to realize as a first order filter. A gen-
eral continues first order filter can be expressed as:

(2.4.10)

Where can be interpreted as the inverse of the filter time constant.

The coefficients in Eq. 2.4.10 are then determined as (see Appendix B):

(2.4.11)

The reachable canonical state space form of can then be determined as:

(2.4.12)

Where is the axial gust noise signal.

Notice that both the “vertical” and “longitudinal” gusts are defined relative to flight
axes without wind gusts but including the quasisteady wind. In theory, the PSD’s are
only valid for flight parallel to the ground, however according to REF they can be used
with good accuracy when the flight path angle is in the range of . For the pur-
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angles during cruise, approach and landing. Thus we will use the PSD’s for horizontal
flight throughout the flight envelope.

There are several ways to determine the applicable turbulence intensities for a given
mission or flight profile. Either the turbulence intensities can be classified/defined
using a grading system or it can be correlated to an easily measured quantity such as
the wind speed.

One grading system is given by (Ref. 14, Table2)

When using the mean wind speed at altitude h to define the turbulence levels in the
Atmospheric Boundary Layer (ABL), the turbulence levels are correlated with the Sur-
face Roughness Length . One expression for this correlation is defined in (Ref. 15):

(2.4.13)

Where depends on the type of terrain surface. It is generally assumed that the ver-
tical and longitudinal gusts are uncorrelated (Ref. 14, p. 6).

The turbulence length scales and are generally functions of the height above
ground level. According to (Ref. 14, p.7), the following expressions for the turbulence
length scales can be used:

(2.4.14)

Where is the turbulence length scale for lateral gusts.

It is notable the vertical gust turbulence length scale is significantly reduced at lower
heights, this means that the frequency of the vertical turbulence increases as the ground
is approached during approach and landing.
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intensity

Light 0.9 m/s

Moderate 1.8 m/s
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Extreme 7.3 m/s
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2.4.3 Discrete gust models

The stochastic process gust models given above, are well suited for evaluating the con-
tinues response to “ordinary” gusts. However the discrete gust model is better suited
for evaluating the response to the rare “extreme” gusts encountered during flight (Ref.
14, p.6). The discrete gust model is composed of a shaped ramp gust, which can be fol-
lowed a similar gust of opposite direction. The single ramp gust can be modelled by the
expression (Ref. 14, p. 9):

(2.4.15)

Where is the gust strength as a function of the longitudinal position of the vehi-
cle, is the position of the start of the gust, is the length of the gust and is the
gust amplitude. can be applied to any of the spatial gust components.

When flying into a gust, the gust gradient may also contribute to the response
of the vehicle. The gust gradient for a discrete gusts given by Eq. 2.4.15, can be deter-
mined as:

(2.4.16)

It is apparent that the gust gradient is strongest for short gusts .

The amplitudes of discrete gusts in the longitudinal, vertical and lateral directions, can
be determined as functions of the reference turbulence intensity and length scales,
using the following relationships (Ref. 14, p. 10):

(2.4.17)

Where , and are respectively the longitudinal, lateral and vertical gust
amplitudes.
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The gusts defined by varying the gradient distance in Eq. 2.4.17, have equal proba-
bilities of occurring (Ref. 14, p. 8). The worst case response at given and length scale

can then be determined by varying the gradient distance .

In addition to the single ramp gust given above, the response to a pair of ramp gusts
should also be considered. In this case two single ramp gusts of opposite sign occur at a
given interval . The gradient distances of the two gusts are denoted by and
and the gust sizes by and . The worst case response is determined by varying

, and until the worst response is found. Since the probability of occurrence
of a pair of ramp gusts is smaller then the probability of a single ramp gust, the gust
amplitudes obtained from Eq. 2.4.17 may be multiplied by a factor of 0.85 (Ref. 14, p.
10).

2.5 Complete linear longitudinal aerodynamic model

Having derived a linear longitudinal aerodynamic model, it is possible to determine a
linear longitudinal ordinary differential state space equation describing the complete
longitudinal dynamics of the UAV.

We will define the longitudinal state vector as consisting of the following states:

• The body pitch angle .

• The body pitch rate .

• The UAV speed in earth fixed coordinates.

• The flight path angle (direction of ) in earth coordinates.

• The propeller rotational frequency .

• The horizontal UAV position .

• The UAV altitude (relative to the mean sealevel).

The independent longitudinal control inputs are:

• The canard flap angle (i.e. the elevator angle).

• The electric propulsion system motor terminal voltage .

The independent longitudinal disturbance inputs are:

• The horizontal quasisteady wind velocity in earth coordinates.

• The axial gust velocity in flight coordinates.

• The “vertical” gust velocity in flight coordinates.

According to the results of Section 2.3.7 the dynamic lift derivatives can probably be
ignored. The total lift coefficient is thus equal to the static lift coefficient given by Eq.
2.3.173:

(2.5.1)
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The total drag coefficient can be determined as the sum of the zero lift and induced
drag coefficients:

(2.5.2)

The equation for the total pitching moment coefficient is obtained by combining the
static pitching moment coefficient with the nonsteady contributions:

(2.5.3)

In the context of longitudinal kinematics, the aerodynamic variables can be determined
from Figure 2.13, remembering that we have chosen the body pitch and longitudinal
flight path angle as independent states:

For the no wind condition ( ), Figure 2.13 gives the following relation:

(2.5.4)

Since the derivative of is equal to the body pitch rate , the derivative of Eq. 2.5.4
can be expressed as:

(2.5.5)

This can be used to simplify the dynamic terms of Eq. 2.5.3:

(2.5.6)

Where we have used the fact that can be approximated by and that is equal
to for purely longitudinal motion without wind.

The derivatives and are mainly of importance to the dynamic gust response.
They account for the fact that when the vehicle travels into a sudden gust, the canard
incidence and dynamic pressure changes before that of the main wing. However for
this effect to be of any importance, the gust edge must be very sharp and the travel time
of the gust from the canard to the main wing must be of the same order of magnitude as
the dynamic response time of the vehicle. As we shall see below, real gusts are not infi-
nitely sharp like i.e. a step input. In addition given the estimated velocity of the vehicle
and the small canard to main wing distance, the time delay from when the canard enters
the gust, to when the main wing enters the gust, is very small. This means that we can
simplify the model by neglecting purely dynamic gust response due to penetration time
into vertical and axial wind gusts. This gives the following simplified pitching moment
coefficient:

(2.5.7)

Where we have used the true airspeed (relative to the atmosphere) to indicate that
the airspeed used in determining the aerodynamic forces and moments are relative to
the moving atmosphere and not the earth.
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Since the vehicle velocity relative to the earth is denoted by , the quasisteady wind
velocity by and the gust velocity by , we can determine the true airspeed vector

as:

(2.5.8)

The airspeed vector without gusts can be defined as:

(2.5.9)

From which we can determine the airspeed without gusts as:

(2.5.10)

The airspeed is used in Eq. 2.4.3 and Eq. 2.4.8 to determine the gust PSD’s.

According to Section 2.4.2, the gust velocity is determined in flight path coordinates,
while the vehicle velocity and quasisteady wind is determined in earth coordinates.

The instantaneous angle of attack can then be expressed as the angle between the
vector (longitudinal body axis) and the true airspeed vector . One way to deter-
mine this angle is to transform the vector into body coordinates:

(2.5.11)

Where is the transformation matrix from earth to body coordinates and is the
transformation matrix from flight to body coordinates. In this and the following equa-
tions, we will define the flight path coordinate system as a cartesian coordinate system
with the x-axis in the direction of the relative velocity vector without wind gusts, but
including quasisteady wind.

The angle of attack in the longitudinal motion case is then simply determined as:

(2.5.12)

Where is the “z” component of and is the “x” component.

The transformation from earth to body coordinates can be determined
as a function of the body pitch angle :

(2.5.13)

The transformation from flight to body coordinates can be determined
as a function of the flight path angle and the quasisteady (horizontal) wind :
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Where is the flight path angle relative to the atmosphere with quasisteady wind:

(2.5.15)

With defined by Eq. 2.5.9. Notice that if is zero, then is equal to .

Since the aerodynamic lift is defined as normal to the true airspeed vector and the
drag is defined as parallel to , in theory we thus need to transform the aerody-
namic forces into a coordinate system which is aligned with the vehicle velocity vector

relative to the earth in order to determine the derivatives of the vehicle speed and
the flight path angle . However as discussed previosly we probaly do not need to
account exactly for the effects of gusts. Thus we can for simplicy assumme that the lift
and drag vectors are aligned with flight axis system and not the instantanous “wind”
axis system.

Since the flight path angle is defined by and the flight path angle relative to the
atmosphere is defined by , it follows that the flight path angle difference due to
wind is given by:

(2.5.16)

The exact direction of the propeller thrust vector is probaly close to the longitudinal
body axis direction . For simplicy we will assumme that the thrust vector is in the
general flight path direction relative to the atmosphere. This is probaly a good approxi-
mation since the angle of attack is always close to zero in normal flight.

The acceleration in the flight path direction can then be determined as:

(2.5.17)

The derivative of the flight path angle can be determined as:

(2.5.18)

The body pitch rate acceleration can be determined from the aerodynamic pitching
moment as:

(2.5.19)

As pointed out previosly we have:

(2.5.20)

The propeller dynamics are described in Section 2.3.11. It is shown that the dynamics
of the propulsion system can be described as a first order nonlinear ODE with the pro-
peller speed as the only state.
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The derivative of the horizontal position (i.e. the horizontal speed relative to the
ground can be determined geometrically from the speed relative to the ground and the
flight path angle relative to the ground:

(2.5.21)

This also applies to the derivative of the UAV altitude (relative to mean sealevel):

(2.5.22)

This completes the longitudinal model with nonlinear kinematics and linear aerody-
namics.

In order to analyse the linear response of the UAV to control and disturbance inputs
and subsequently design a linear control system, it is usefull to have a linearized
dynamic model.

We can linearize the nonlinear kinematics by assumming a near horizontal flight path
and zero steady state wind ( ).

This gives the following simplifications:

(2.5.23)

We also need to assumme an equilibrium flight speed and air density , from
which we can determine the corresponding dynamic pressure as:

(2.5.24)

Linearized versions of the above equations can then be derived:

Body pitch rate acceleration with :

(2.5.25)

This can further be simplified as:

(2.5.26)

Where the direct body pitch rate due changes in airspeed is ignored.

The partial derivatives of can then be determined as:

(2.5.27)
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The acceleration in the flight path direction:

(2.5.28)

Where the induced drag can be determined according to Eq. 2.3.199:

(2.5.29)

In order to determine the partial derivatives of with respect to the states and inputs,
it is important to realize that even though the canard and main wing lift coefficients and
thus the induced drag changes with trim speed, the partial derivative of the lift coeffi-
cients with respect to the airspeed is negligibel. This is due to the fact that the lift coef-
ficients are determined directly by the angle of attack and the elevator angle:

(2.5.30)

According to Figure 2.23, the zero lift drag coefficient only varies slightly with air-
speed:

(2.5.31)

This gives the following partial derivatives of :

(2.5.32)

And:

(2.5.33)

The linearized propulsion system model is given by Eq. 2.3.228, repeated below for
convenience:

(2.5.34)

The partial derivatives are determined in Section 2.3.11.
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The derivative of the flight path angle :

(2.5.35)

The partial derivatives of :

(2.5.36)

And:

(2.5.37)

We can now express the longitudinal linear kinematic and dynamic model as:

(2.5.38)

Where the longitudinal state vector , the control input vector and the distru-
bance vector are defined as:

(2.5.39)

The deviation vectors , and are defined as the difference between
the instantanous vectors , and and the equilibrium values of these vec-
tors.
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The longitudinal system matrix can then be determined as:

(2.5.40)

The longitudinal input matrix is given by:

(2.5.41)
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The longitudinal disturbance input matrix is given by:

(2.5.42)

2.6 Lateral aerodynamic coefficients

In the linear flow range, the lateral aerodynamic coefficients can be expressed as:

Side force:

(2.6.1)

Where , and , emphasize that these coefficients depend on the angle
of attack . “ ” is used as a short hand notation for roll rate . The side force coeffi-
cient is based on the main wing area .

Rolling moment:

(2.6.2)

The rolling moment coefficient is based on the product of the main wing area and
the total wing-body span .

Yawing moment:

(2.6.3)

The yawing moment coefficient is based on the product of the main wing area and
the total wing-body span .

Under normal circumstances, the above linear coefficients are adequate for predicting
the lateral behaviour of the UAV. However under certain circumstances involving high
angles of attack and/or high sideslip angles, these equations may need modification to
represent the quantitative behaviour of the vehicle.

The following situations may need to be carefully considered:
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1. At high sideslip angles , the coefficients and may change sign
leading to rapid divergence in yaw.

2. At high angles of attack, the coefficient may change sign as a function of the

aileron control deflection , leading to aileron control reversal.

3. At high angles of attack, the roll damping coefficient may become negative,
putting the UAV into a spin. This situation is however already modelled above.

4. At high angles of attack the coefficient may change sign, which may also put

the UAV into a spin.

Whether or not these modelling errors affect the behaviour of the vehicle, depends to a
large extent on the following factors:

• Will the vehicle ever encounter these flight regimes.

• How adaptive is the automatic flight control.

As an example of the last issue, consider the situation where the aileron changes
sign at high angles of attack. If a linear feedback controller is used to control the vehi-
cle roll, this will lead to divergence because the feedback path suddenly becomes posi-
tive. This problem can become even worse if the roll damping coefficient is also
negative.

From a closed loop control point, a change of sign in the feedback path is an especially
serious problem because inherent modelling errors prevent the exact position of the
sign change to be predicted. Thus a non adaptive controller can not provide any control
in a region around the sign change. The only effective way to recover from this flight
regime is thus to reduce the angle of attack.
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Chapter 3

UAV actuators

3.1 Overview:

This part of the thesis describes the basic properties of the electromechanical actuators
used to control the aerodynamic surfaces and propulsion unit of the UAV. First the
basic design and operating principles of the actuators are discussed. Then a detailed
semiemperical dynamic model of the canard actuator is described. Finally the charac-
teristics of the remaining actuators are briefly summarized.

3.2 Basic actuator design and properties:

All the electromechanical actuators used in UAV are commercial “model airplane”
type servos. For reasons of performance and versatility, the actuators are of the “micro-
processor” type. This means that each servo is a complete self contained digital servo
system with some programmeable features. These features include various “fail safe”
modes that the servo can be programmed to enter if the reference signal to the servo is
lost. These features will not be described further in the following, as they are of no
importance to regular operation.

The basic function of the servo is to generate a mechanical rotation of the output lever,
in response to the reference input to the servo. The main distinction between the vari-
ous servos, is in the maximum available torque on the output. Each servo is controlled
by a Pulse Width Modulated (PWM) square wave signal. For the particular brand of
servos used for the UAV, the properties of the PWM signal is given below (Ref. 22):

Since each servo is a completely self contained unit, there is no external feedback of
the actual position of the output lever. This means that the flight control system has no
way of determining the actual output error. This property should be remembered when
selecting the appropriate servo for a particular task and when designing the flight con-
trol system.

3.3 Semiemperical model of canard actuator:

The canard actuator is the largest servo in the multiplex product range. This choice is
due to the large aerodynamic torque that may be generated by an “all moving” canard
surface, as used in the original UAV design concept. In this way, the maximum torque
that is available from the servo is considerably larger then the maximum aerodynamic
torque produced under any normal circumstance. This eliminates some of the uncer-

Nominal pulse frequency 40 Hz

Neutral position pulse width 1.6 ms

Pulse width range 1.0 ms to 2.2 ms

Tabel 3.1 Multiplex PWM signal characteristics.
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tainty caused by the lack of a direct output feedback to the flight control system. The
somewhat scarce specifications which are obtainable from the datasheet (Ref. 22), are
listed below:

As can be seen the control specifications are only sketchy at best. For this reason we
are forced to conduct some experiments to determine the actual control specifications
of the servo.

3.3.1 Experimental test setup:

In order to determine the control specifications of the servo, an experimental test setup
has been constructed as shown schematically below:

The part named “servo tester” is a commercially available product that generates a
PWM signal which is compatible with multiplex servos. The PWM output of the servo

Name Jumbo mc/V2

Maximum rotationala torque

a. The maximum torque that can be generated by the motor on the out-
put.

210 Ncm

Maximum blocking torque -

“Speed”b under zero load

b. The time required to rotate the output lever 90o.

0.20 sec

Angular output range

Rated voltage range 4.8-6 V

Maximum current -

Mass 162 g

Tabel 3.2 Canard servo datasheet.

FIGURE 3.1 Servo test setup.
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tester is controlled by a build in potentiometer with a control knob. However for use in
the test setup above, the servo tester has been modified so that an external voltage can
be used to control the reference pulse length, and thus the position. This external volt-
age is a square wave signal with a frequency of approximately 0.2Hz. Using the two
channel sampling oscilloscope it is thus possible to obtain and record the response of
the servo to steps of various sizes. The particular oscilloscope also permits the obtained
measurements to be transferred to a Personal Computer (PC), for subsequent analysis.
In addition to the potentiometer position obtained using ch. #1 of the oscilloscope, the
voltage of the servo drive battery is monitored using ch. #2.

The linkage shown in the setup is a rigid rod with “model airplane” type ball joints at
each end. The linkage is adjusted in such a way that it is parallel to the line between the
servo axle and the potentiometer axle. In this way the angular displacement of the
potentiometer should ideally equal the angular displacement of servo output axle.
Mechanical slack in the servo linkage is taken up be a pretensioned low stiffness
spring.

3.3.2 Preliminary measurements:

In order to accurately determine the control specifications of the servo, it is necessary
to calibrate the test setup.

The PWM pulse rate of the “servo tester” was measured using the oscilloscope:

(3.3.1)

This is somewhat smaller then the nominal frequency of 40Hz, but this deviation
should have no significant influence on the response.

The sensitivity of the potentiometer has been determined as:

(3.3.2)

The potentiometer drive voltage is 5.12V.

3.3.3 Measured response:

Using the experimental setup just described, a number of step responses where
recorded. 4 different step sizes where used to cover the likely operating area of the
servo. Each stepsize was applied in both a positive and a negative direction. The step-

fPWM 35.5Hz≅

GPOT
360

o
5.12V⁄ 70.3=

o
V⁄

2π 5.12V⁄ 1.23rad/V=
≅
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sizes where approximately 10o, 20o, 40o and 80o, thus covering almost one magnitude
in amplitude. The results for the “positive” steps are given below:

Inspection of the measured step responses, reveals two important phenomena; the first
part of the response (the acceleration phase) is practically independent of the step size
and the angular rates appear to approach a limiting value. The most simple explanation
of these observations, is that the servo motor drive voltage is saturated for all the meas-
ured responses. The supply voltage plots (Vs(t)) confirm this conclusion since they
show identical voltage drops for the acceleration phase of all the responses.

3.3.4 Semiemperical servo model:

Since it seems likely that the servo motor drive current is saturated for all practical
responses, the most appropriate model of the servo includes a bang-bang type nonline-
arity in the motor drive voltage. One simple controller scheme is Proportional Deriva-
tive (PD) controller with a bang-bang nonlinearity at the motor drive input. The bang-
bang nonlinearity could be physically implemented by an on-off controlled H-bridge
driver circuit.

FIGURE 3.2 Measured positive steps.a

a. For clarity, the different supply voltage plots have been shifted down by multiples of 0.5 V.
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The proposed semiemperical model is given in block diagram form below:

The main features of the model is a linear PD feedback loop, a nonlinear bang-bang
servo driver with a small amount of deadband and a linear DC motor model. The dead-
band is necessary to avoid a low amplitude limit cycle and associated excessive power
consumption. The magnitude of the rate (tacho) feedback has been arbitrarily set to
unity, since the absolute amplitude of the control signal u(t) is insignificant for ideal
bang-bang control. It must be stressed we do not actually know whether the rate feed-
back signal is obtained by direct measurement such as a tacho generator or by differ-
entiation of the position .

3.3.5 Parameter estimation:

In the proposed semiemperical servo model, there are 4 a priori unknown parameters:
The proportional gain Kp, the servo motor time constant , the servo output speed
constant and lastly the bang-bang controller deadband . These parameters
have been determined using a nonlinear least mean squares parameter estimation
method. The basic idea is to simulate the response of the servo to a reference step of a
given magnitude using guessed parameters, the least mean square error between the
measured and the guessed response can then be used as a scalar error function. An iter-
ative method is then used to find a minima of the error function, corresponding to the
“optimal” parameter estimate.

The relation between the angular deadband and controller deadband , can rel-
atively easily be determined as:

(3.3.3)

Since a small deadband only has a negligible influence on the transient response of the
servo, we can not expect to able to estimate it from the measured step response. For
this reason it is better to assume that the deadband is small but finite. We have thus
fixed the angular deadband as:

(3.3.4)

FIGURE 3.3 Semi empirical servo model.
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Using Eq. 3.3.3, the number of unknown parameters to be determined is reduced to 3,
the proportional gain Kp, the servo motor time constant and the servo output speed
constant . The parameter estimation problem can then be reduced to finding the
minimum of:

(3.3.5)

Where is the parameter vector, is the measured response,
is the estimated response, is the Root Mean Square (RMS) error

and [t0,t1] is the response time interval.

It is obvious that the “optimal” solution of Eq. 3.3.5 depends on the choice of time
interval [t0,t1]. As shown in Figure 3.2, the step times coincide with t = 0. Thus the ini-
tial time should be taken as t0 = 0. The “final” time t1 should be chosen such that the
response is “finished”, but on the other hand not too long, to avoid the estimate to be
dominated by noise after “steady” state is reached. In addition due regard has to be
taken to the fact that the response to a positive and negative going step of the same
magnitude may not be perfect mirror images. This can be caused by variations in the
saturation current of different parts of the internal H-bridge driver circuit.

In due regard to the above practical considerations, the actual parameter estimation has
been done using two measured responses, with step sizes of approximately . The
actual error function is then the mean of the two root mean square errors. This of
course requires two simulation runs for each minimization step, because the positive
and negative steps are not necessarily of the exact same magnitude.

The actual parameter estimation was performed in MATLAB using a fourth order vari-
able step size Runge-Kutta integrator (ODE45) to simulate the estimates step response
and a simplex type (non derivative) multivariable minimization algorithm (FMINS) to
iterate the parameter estimate. Since the bang-bang control function is highly nonlinear
for small feedback errors u(t), it was found that an order of magnitude saving in com-
putation time could be achieved by decreasing the absolute integration tolerance from
the default values of 10-6 to 0.1o and 0.010/sec on the angle and angular rate, respec-
tively. This decrease in tolerances did not decrease the solution accuracy in any notice-
able way. It is also worth noting that the integration almost grinds to a halt if the
deadband is set to zero, this is apparently because of the very small time scale needed
to resolve the limit cycle that results from zero deadband.

The resulting “optimal” parameter estimate was determined as:

(3.3.6)

The speed constant was determined using the assumption of a constant saturation
voltage of . The linear control signal u(t) is assumed dimensionless.
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The “optimal” solution to the two steps are plotted below, along with the measured step
responses and the residual errors for the two cases:

It is apparent that the model agrees quit well with the measured response, it can be seen
that the “negative” response is a bit faster then the “positive” response.

Residuals between measured and estimated step responses:

The residuals show that the maximum deviation between the measured and estimated
response is below 4% of the step size, which must be classified as quit a good agree-
ment.

FIGURE 3.4 Measured and estimated step responses.

FIGURE 3.5 Residuals between measured and estimated step responses.
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3.3.6 Validation of bang-bang controller model:

In order to determine the validity of the bang-bang controller model with the parame-
ters determined above, the model is compared to the measured response to steps of
smaller magnitude. The smallest steps that have been measured is around . Using
the obtained parameters from above, the comparison between measured response and
estimated response is shown below:

Residuals between measured and estimated step responses:

The residuals show that the maximum deviation between the measured and estimated
response is below about 5% of the step size, thus the model fits the response very well

FIGURE 3.6 Measured and estimated step responses.

FIGURE 3.7 Residuals between measured and estimated step responses.
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even for a step size of almost one magnitude less then that used for parameter estima-
tion. Indeed the measurement and quantization noise is almost of the same order of
magnitude as the model error, for these small step sizes.

Experimental data for stepsizes of approximately and have also been
obtained. For reasons of brevity, the residuals for these stepsizes are not shown in this
thesis. However a listing of the RMS values of the residuals for the different step sizes
are given below:

Positive going steps:

Negative going steps:

It is apparent that the relative RMS error for all step sizes in both directions, is very
small. Given the above data it seems that the bang-bang controller servo model is a
good model of the actual servo dynamics.

3.3.7 Describing function approximation:

The nonlinear bang-bang controller model given above has been shown to be a good
model of the servo dynamics. However since it is very nonlinear even for small
responses, it is not feasible to perform a normal “operating point” linearization. This
poses a problem as most methods for controller and estimator design and analysis
require a linear model.

One way around this problem is to use describing function analysis (Ref. 23, chapter
8). The basic idea behind describing function analysis is to obtain the input - output
relationship between a sinusiod input to a nonlinearity and the fundamental frequency
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of the output response. Since the fundamental frequency of the output of a stable non-
linear element is equal to the input frequency, the describing function contains infor-
mation about the amplitude ratio and phase difference between the input and output.
Generally the describing function for a given nonlinearity will be both a function of the
input amplitude and frequency. However if the nonlinearity does not contain any
dynamics, the describing function will only be a function of the input amplitude. Since
the bang-bang nonlinearity (also called an on-off nonlinearity) is skew symmetric, the
output phase will be identical to the input phase. The describing function N for a on-off
nonlinearity with deadband is given by (Ref. 23, p. 653):

(3.3.7)

Where M is the output saturation amplitude, is the dead band and X is the input
amplitude.

For our bang-bang servo controller, the output saturation amplitude will be taken equal
to the battery supply voltage Vs:

(3.3.8)

Where Nservo is the servo bang-bang nonlinearity describing function, is the con-
troller deadband and U is the amplitude of the input signal u(t) to the bang-bang non-
linearity. Notice that the describing function in this case can be regarded as an
amplitude dependent gain.

The whole idea of introducing the describing function approximation, is that the result-
ant linear system approximation can be used to determine the stability and approximate
response of a dynamic system which contains the original nonlinear element. For this
to be the case, it is important that the higher harmonics of the output from the nonlinear
element is sufficiently filtered by the dynamics of the linear parts of the system (Ref.
23, p. 652). For our system, this is probably adequately satisfied by the motor dynam-
ics and the position integration from motor speed to output angle.
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The resulting quasi linear model of the servo can then be obtained by substituting the
describing function , for the bang-bang nonlinearity in the model (Figure 3.3):

Where is used to indicate that the gain is a function of the amplitude
U of the control signal u(t).

One problem with the describing function model is that the describing function
depends on the control signal u(t) and not the reference signal . This is rather unfor-
tunate since we do not know the amplitude of u(t) in advance. What we really want is
to use the describing function model to determine a quasi linear system model that
depends on the amplitude of the reference , rather then that of the control signal u(t).

For a constant value of , the transfer function from to can be deter-
mined as:

(3.3.9)

The frequency characteristics with a constant value of , from to
can then be determined as:

(3.3.10)

The transfer function from to can similarly be expressed as:

(3.3.11)

The amplitude ratio between and can then be determined as:

(3.3.12)

In order to determine the value of the describing function for fixed values of
reference amplitude and frequency , we can use the following method:

FIGURE 3.8 Semi empirical large signal servo model with describing function.
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This procedure has been implemented in Matlab using the “fzero” function to deter-
mine , for a fixed input amplitude and a range of frequencies . The
result is a describing function estimate of the amplitude dependent frequency charac-
teristics of the servo.

The resulting frequency responses for three different reference amplitude values; ,
and , are shown below:

1. Guess the magnitude of the linear control signal .

2. Calculate the corresponding value of the describing function , using Eq. 3.3.8.

3. Calculate the estimated magnitude of the corresponding reference signal , using Eq.

3.3.12.

4. Calculate the error function .

5. Adjust the guessed control signal magnitude , based on the value of .

6. Repeat from step #1, until .

7. Calculate the describing function estimate of the frequency characteristic using Eq. 3.3.10.

Describing function approximation algorithm.

FIGURE 3.9 Frequency response of describing function approximations for different
reference amplitudes (the angle annotations indicate the reference angle amplitudes).
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It is apparent that the response becomes very nonlinear, particularly with respect to the
phase, when the motor voltage amplitude ( ) saturates. The resulting large phase lag
without a corresponding decrease in gain can easily lead to instability if the servo is
part of a closed loop control system.

It is also apparent that even for a fixed reference amplitude, there is no simple quasi
linear system approximation to the frequency characteristics. It is thus doubtful that a
linear controller design can be based directly on the describing function approxima-
tions.

It seems that there are three obvious ways of dealing with this nonlinearity with respect
to linear control design:

1. Assume that the rest of the subsystems in the final closed loop system, have a much
lower bandwidth then the servo. This enables the servo to be modelled as a unity
gain transfer function.

2. Add a prefilter with a lower bandwidth then the smallest possible bandwidth of the
servo, at the input to the servo. This reduces the amplitude of the high frequency ref-
erence signals to the servo, thus preventing high frequency saturation of the servo.

3. Add a parallel reference system to the servo and use the reference system to com-
pensate for the servo nonlinearities using a local feedback loop.

The first method above, is conceptually the simplest, however there are two related dis-
advantages; when synthesizing the controller we do not necessarily know the resulting
loop bandwidth before the design is complete. Secondly we may obtain a slow system,
because of the requirement that the loop bandwidth is much lower then the servo band-
width. The second method places no strict requirements on the final design, however it
will lead to an excessive phase lag at high frequencies, because we effectively place
two second order systems in series.

The third method can be described by the following state space block diagram:

Where is the nonlinear servo state space vector, is the linear
reference system state space vector and is the reference tracking error.
The state space feedback gain is defined as . Notice that the reference sys-
tem has been defined as a second order linear system, this is motivated by the fact that

FIGURE 3.10 Reference system linearisation.
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the nonlinear servo model is a second order system. It is apparent by inspection of Fig-
ure 3.10, that the effect of the feedback gain is to force the nonlinear servo to follow
the reference system. Since the reference error feedback is only effective if the motor
voltage amplitude is not saturated, it is important to choose the reference system
in such way that this condition is satisfied.

Since the goal of using reference system linearisation is to force the nonlinear servo
response to follow the response of the servo system, we should choose a desirable ref-
erence system response. Normally a good compromise between speed, step overshoot,
stability and robustness is given by a critically damped second order system:

(3.3.13)

This makes it apparent that there is only one design parameter, the undamped natural
frequency , left to determine. This can be determined by computing the frequency
domain response for the maximum reference amplitude using the describing
function approximation for the nonlinear servo, in the configuration shown in Figure
3.10. With the proper choose of , the motor amplitude will not saturate for
any frequency.

Before we can compute the frequency response, we have to determine the feedback
gain matrix . Since the nonlinear servo system is inside the feedback loop, while the
reference system is outside the loop, the stability of the feedback linearized system
depends to a large extent on the dynamics of the nonlinear servo. Fortunately the non-
linear servo system has a total phase lag of less then (see Figure 3.9), thus the
nonlinear system will be stable for any proportional/derivative feedback gain.

The feedback linearized system can be approximately expressed in the frequency
domain by using the describing function approximation. This gives the following fre-
quency domain block diagram:

From the definition of the servo states and the feedback gain , it is apparent
that the feedback controller is a PD controller given by:

(3.3.14)

FIGURE 3.11 Reference system linearisation in frequency domain.
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It is now apparent that the reference linearized servo system will be stable for any pos-
itive combinations of feedback gains . Due to the small number of total
parameters, it is feasible to obtain suitable values for the parameters using “hand opti-
mization” on the system shown in Figure 3.11.

In order to compute the frequency domain transfer function between the input
and the output , we have to determine the value of the control signal amplitude

. This can be done in a similar manner as that used to determine the describing
function approximation of the frequency response of the original nonlinear servo, to
constant reference amplitude signals.

Lets define the loop gain of the reference system linearized system, as the open
loop gain around the feedback loop:

(3.3.15)

The frequency domain transfer function from to is then obtained as:

(3.3.16)

The transfer function from to the servo output is given by:

(3.3.17)

From which we can see that as the feedback gain increases, the closed loop
response approaches the reference system:

(3.3.18)

The transfer function from the control (internal) signal to the servo output
is given by:

(3.3.19)

We can now determine the transfer function from the (internal) control signal to
the servo reference input , using the transfer functions obtained above:

(3.3.20)

Where is given by Eq. 3.3.7, is given by Eq. 3.3.12 and
is given by Eq. 3.3.13.

K K1 K2=

θre f jω( )

θ jω( )

u jω( )

L jω( )

L jω( ) K jω( )Gs jω u,( )≡

θref jω( ) θe jω( )

θe jω( )

θref jω( )
-------------------

Gs jω u,( ) Grs jω( )–

1 L jω( )+
---------------------------------------------------=

θref jω( ) θ jω( )

Glin jω u,( )
θ jω( )

θref jω( )
-------------------

1 K jω( )Grs jω( )+( )Gs jω u,( )

1 L jω( )+
--------------------------------------------------------------------------= =

K jω( )

θ jω( )
θref jω( )
-------------------

1 K jω( )Grs jω( )+( )Gs jω u,( )

1 K jω( )Gs jω u,( )+
--------------------------------------------------------------------------= Grs jω( ) as K jω( ) ∞→→

u jω( ) θ jω( )

θ jω( )
u jω( )
-------------

KvmNservo u jω( )( )

jω 1 jτmω+( )
----------------------------------------------=

u jω( )
θref jω( )

θref jω( )

u jω( )
------------------- u jω( )

θref jω( )
------------------- 

  1– θ jω( )
u jω( )
------------- θ jω( )

θref jω( )
------------------- 

  1–
⇔= =

θref jω( )

u jω( )
-------------------

KvmNservo u jω( )( )

jω 1 jτmω+( )
---------------------------------------------- 1 L jω( )+

1 K jω( )Grs jω( )+( )Gs jω u,( )
--------------------------------------------------------------------------=

Nservo u jω( )( ) Gs jω u,( )
Grs jω( )



Chapter 3

110

We can now use the following algorithm to compute the approximate describing func-
tion frequency response of the feedback linearized system, with different input refer-
ence amplitudes :

This procedure has been implemented in Matlab using the “fzero” function to deter-
mine , for a fixed input amplitude and a range of frequencies .
The resulting frequency responses for three different reference amplitude values; ,

and , are shown below:

1. Guess the magnitude of the linear control signal at a given frequency .

2. Calculate the corresponding value of the describing function using Eq. 3.3.8.

3. Calculate the estimated magnitude of the corresponding reference signal using Eq.

3.3.20.

4. Calculate the error function .

5. Adjust the guessed control signal magnitude , based on the value of .

6. Repeat from step #1, until .

7. Calculate the describing function estimate of the feedback linearized frequency characteristic

using Eq. 3.3.17.

Feedback linearization approximation algorithm.

FIGURE 3.12 Approximate describing function frequency response of feedback linearized
system for different reference amplitudes (the dotted line is the reference system response).
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As shown in Figure 3.12, the frequency response of the feedback linearized system can
be made quite close to the reference system, as long as the motor voltage amplitude

is not saturated.

The reference system used in Figure 3.12 is defined by:

(3.3.21)

The feedback gain used in Figure 3.12 was defined by:

(3.3.22)

3.4 Actuator model conclusion:

It is shown that the model airplane servos used for the UAV employ an internal bang-
bang controller with proportional-derivative action. It is possible to linearize the servo
response by using an outer loop which forces the servo to follow the response of a sec-
ond order critically damped reference system.
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3.5 References:

22.Multiplex servo datasheet.

23.Katsuhiko Ogata:”Modern Control Engineering”, second edition, Prentice Hall, Inc
1990.
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Chapter 4

Lateral Guidance

4.1 Simple lateral model of UAV

The lateral guidance problem consists in controlling an UAV such that a prepro-
grammed path (in 2 dimensions) is followed. Due to the physical characteristics and
limitations of a flying vehicle, certain restrictions are imposed on the actual trajectory
of the UAV. To obtain a satisfactory and safe system, both the flight path and control
strategy must reflect these restrictions.

In order to investigate the guidance problem without undue complications, a simple lat-
eral model of a UAV will be used. In order to derive such a model we may consider the
following:

An UAV flying in a straight and level flight path at a certain speed U greater then the
stall speed (in level flight) Us has the ability to “instantaneously” generate a maximum
lift FL,max of:

(4.1.1)

Where m is the mass of the UAV and g is the acceleration of gravity. In addition it is
assumed that the lift is normal to the instantaneous plane of the wings.

Assuming that the lift to drag ratio is “high”, the generation of additional lift within the
limit given by FL,max will result in an acceleration of the UAV which is essentially nor-
mal to the instantaneous velocity vector U. The maximum apparent gravity geff,max in a
reference system moving with the UAV center of gravity (CG) can then be determined
as:

(4.1.2)

In a lateral model we must further assume that the vertical component of the lift is
always equal to the weight of the UAV. Using Pythagoras, the relation between the lat-
eral normal acceleration aN and the effective acceleration geff can be expressed as:

(4.1.3)

Combining the above two equations, gives the maximum lateral normal acceleration
aN,max as a function of the flight speed U and the stall speed Us:

(4.1.4)

FL max, mg
U
Us

------ 
  2

=

geff max, g
U
Us

------ 
  2

=

geff
2

g
2

aN
2

+=

aN max, g
U
Us

------ 
  4

1–=



Chapter 4

114

Since it is assumed that all the lift is generated normal to the plane of the wings, the
UAV must make “coordinated” turns to generate lateral normal acceleration. Thus the
UAV must roll around its longitudinal axis in order to orientate the wings properly for
the desired lateral normal acceleration. Obviously this motion can take quite a long
time especially when transitioning from a turn in one direction, to the opposite direc-
tion. In the context of a simple model for the dynamic effects of the bank to turn con-
trol strategy, we may model the lateral dynamics as a first order system with a fixed
time constant:

(4.1.5)

Where is the roll/bank time constant and u(t) is the control input for normal lateral
acceleration. For simplicity u(t) is equal to the “steady state” value of aN.

The lateral kinematic state of the UAV can be described by the lateral position P(t) =
(x(t),y(t)) and the compass direction of the velocity vector, as shown in the figure
below:

For simplicity we will assume that ey points towards the geographical north and ex
points towards the geographical west. Thus the coordinate system defined by (ex,ey) is
not a true planar system but rather the surface of a sphere (the earth). Locally however,
the coordinate system is an ortogonal coordinate system. The compass direction of the
flight path is defined as clockwise from the direction of north. The positive direction of
the normal acceleration scalar aN(t), is defined as .

It is apparent that there are more states defined above then necessary to describe the
kinematics and dynamics of the UAV. To eliminate the redundancy, the following
states will be used to describe the kinematics of the UAV; x, y and ψ. In addition the
first order approximation in Eq. 4.1.5, requires an additional state. In this model we
will use the scalar normal acceleration aN as the final state. Notice that the scalar speed
U(t) is not considered a state since it is by definition not changed by a normal accelera-
tion. Instead U(t) must be considered as a parameter in the following.

FIGURE 4.1 Lateral kinematics.
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The state vector X is then defined as:

(4.1.6)

Given the above kinematic and dynamic equations, the state space equation for lateral
motion becomes:

(4.1.7)

For simplicity, we will refer the constraint on aN to the control input u:

(4.1.8)

Indeed assuming for and , guarantees
for all , since aN(t) is modelled as a first order system with unity gain.

From Eq. 4.1.7, it is apparent that the state space equation is nonlinear in ψ, in addition
to the limits on u given by Eq. 4.1.8.

4.2 Guidance strategies

Before we can control the UAV, we must define in what way we want the UAV to fly
through 3 dimensional airspace. There are several ways to do this. But the four most
obvious strategies are (in the following we describe the 2 dimensional problem):

1. Trajectory following: The UAV should follow a space/time reference trajectory
(x(t),y(t))ref.

2. Fixed waypoint guidance: The UAV should fly towards a fixed waypoint, turning at
each waypoint to proceed towards the next waypoint. This method could also be
described as fixed point navigation.

3. Path following: The UAV should follow a reference path (x(s),y(s))ref, but in con-
trast to trajectory following, the “distance” s along the path is not a predetermined
function of time, but just a parameter used to describe the path.

4. Moving point guidance: The UAV should fly towards a moving point, which is
“sliding” along the path at a (fixed) distance in “front” of the UAV.
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4.3 A general approach to linearization

Most modern control system design techniques (LQR, pole placement, Hinf, etc.)
require that the dynamics of the control object (the “plant”) be linear. The nonlinear
lateral UAV dynamics given in Eq. 4.1.7 thus need to be linearized before any of these
design techniques can be used. This however presents a general problem, because of
the trigonometric terms relating the direction of flight ψ to the position derivative .
If we a priori knew that the UAV would always fly close to a certain direction ψ0, this
could be used to linearize Eq. 4.1.7 around this direction. In practise this would how-
ever be very restrictive, since the we would need a new linearization and in turn a new
control system for every direction. In addition, there could be problems associated with
switching between the different controllers (bump(less) transfer etc.)

A more general approach is to first define or choose a control strategy as discussed
above. Having defined a control strategy, it is relatively easy to derive a control error
measure e(t), which has the property that when the control objective of the control
strategy is met, the error measure (or function) is zero. In addition e(t) must be mono-
tone in the region of zero error and preferably also in a global sense.

We can now rewrite the equations of motion in terms of the deviation between the ideal
flight path/trajectory corresponding to e(t) = 0, and the actual one corresponding to the
state X(t).

4.4 Fixed waypoint guidance

In fixed waypoint guidance, it is desired that the UAV flight path points towards the
next waypoint:

FIGURE 4.2 Fixed waypoint guidance.
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Where Pw(n) is the position of the next waypoint (number “n”), r(t) is the range (dis-
tance) to the next waypoint, ψw(t) is the instantaneous course to the next waypoint and
ψe(t) is the direction error, defined as:

(4.4.1)

Taking the derivative gives:

(4.4.2)

Where the derivative of ψ(t) is given by Eq. 4.1.7. The derivative of ψw(t) can be deter-
mined from geometrical considerations using Figure 4.2:

(4.4.3)

Giving the dynamics of the error direction ψe(t) as:

(4.4.4)

The way point range rate is similarly given as:

(4.4.5)

We are now able to write down the nonlinear equations of motion corresponding to
fixed waypoint navigation:

(4.4.6)

This can then be linearized around a particular operating point (r,U,ψe) = (r0,U0,0):

(4.4.7)

Where the range r(t) has been eliminated because it has a purely nonlinear influence on
the direction error ψe. Unfortunately the nonlinear influence of r(t) is such that as the
waypoint is approached , the system matrix becomes singular due to the term
U0/r0.
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4.5 Path following

In path following, it is desired that the UAV follows a prescribed reference path Pr(s) =
(xr(s),yr(s)), where s is a parameter (the “distance” along the path):

Where ψr(s) is the reference path direction at “path distance” s and e(t) is the instanta-
neous “cross track” error. In order to define the sign of the cross track error, we have
assumed that the “flight path” coordinate system (exf,eyf) is obtained by translating the
earth coordinate system (ex,ey) to the position Pr(s) and rotating it the angle ψr(s)
clock wise. Furthermore we assume that the vector P(t)-Pr(s) is equal to e(t)exf. Thus
the instantaneous “path distance” s(t) must be chosen so that the magnitude of e(t) has
a local minimum for a fixed UAV position P(t).

As an aid in solving this problem, let us define the “error” direction ψe(t), as:

(4.5.1)

From this and Figure 4.3, it is easy to see that the derivative of the error e(t) can be
expressed as:

(4.5.2)

The nonlinear equations of motion for the path following error system, can then be
expressed as:

(4.5.3)

FIGURE 4.3 Path following guidance.
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Where we have assumed that ψr is determined as the path direction at the path distance
s corresponding to the point where the has a (local) minima with
respect to s.

Linearizing around the operating point (e,U,ψ−ψr) = (0,U0,0) gives:

(4.5.4)

Where we have treated ψr as an input.

Since the derivative of e(t) is independent of e(t) and the derivative of ψ(t) is likewise
independent of ψ(t), this system describes a double integrator driven by a first order
system with a time constant of τ. Notice that in contrast to the “fixed waypoint guid-
ance” scheme, this system is only nonlinear in the speed U.

After some arithmetic, the laplace transform of Eq. 4.5.4 is obtained as (taking the path
error “e” as the output):

(4.5.5)

Where “s” describes the Laplace operator, not to be confused with the path distance
also denoted by “s”.

One interesting thing about the transfer function from the input “u” to the path error
“e” is, that it is independent of the speed U. Considering that “u” is a reference acceler-
ation and “e” is a distance, this is not surprising.

4.6 Moving point guidance

In moving point guidance, it is desired that the UAV flies towards a moving point some
distance in front of the UAV:

Where Pr(s) is the reference path, ψr(s) is the reference path direction, ψR(t) is the
direction from the UAV to the instantaneous “target” point on the reference path, Ur(t)
is the velocity vector of the instantaneous “target” point, ψe(t) is instantaneous direc-
tion “error” and “r” is the distance between the UAV and the “target” point.

The equations of motion for the direction error, can be determined by adding the con-
tributions due to UAV motion with the contributions due to motion of the “target”
point:

(4.6.1)

P t( ) Pr s( )–

e·

ψ·

a·N

0 U0 0

0 0
1

U0
------

0 0
1
τ
---–

e

ψ
aN

0 U0–

0 0

1
τ
--- 0

u

ψr

+=

e s( ) 1

s
2

sτ 1+( )
------------------------u s( )

U0

s
2

------ψr s( )–=

ψ· e
∂ψe

∂ψ
---------ψ·

∂ψe

∂P
---------P·

∂ψe

∂Pr

---------P· r+ +=



Chapter 4

120

Where the first two terms are due to UAV rotation and translation, while the last term
is due to motion of the moving “target” point.

The first term is straight forward:

(4.6.2)

The translation term is due to the tangential motion of the UAV with respect to the
“target” point:

(4.6.3)

The last term is due to tangential motion of the “target” point with respect to the UAV:

(4.6.4)

This gives the following equation for the derivative of the direction error:

(4.6.5)

It is apparent from Figure 4.4 that ψR is not an independent state, but can be expressed
as:

(4.6.6)

FIGURE 4.4 Moving point guidance.
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This gives the following derivative for direction error:

(4.6.7)

The equations of motion for moving point guidance can then be expressed using Eq.
4.1.7:

(4.6.8)

The “course error” ψre can be defined as the difference between the UAV course ψ and
the path course ψr:

(4.6.9)

Substituting into Eq. 4.6.8 gives:

(4.6.10)

Where the “target” point speed Ur(t) is related to the UAV speed U(t) and the distance
“r”. If the distance “r” is assumed continues in time, we may from geometrical consid-
erations express Ur(t) as:

(4.6.11)

In the special case that “r” is constant, we may express Ur(t) as:

(4.6.12)

The error dynamics Eq. 4.6.8, can be linearized around zero error by making the fol-
lowing assumptions:

(4.6.13)
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This gives the linearized error dynamics:

(4.6.14)

Where B1 is associated with the controlled input “u” and B2 with the path angle input
ψr(t).

If full state knowledge is available, a good choice of closed loop controller, is a Linear
Quadratic Regulator (LQR). Such a controller can be synthesized in both the continues
and discrete time domains. Since the actual physical controller will be implemented in
a micro processor setting, the best performance can be expected to be achieved if the
controller is synthesized in the discrete domain. This requires that the equations of
motion are discretized using a suitable sampling time Ts.

With state vector Xn the discrete representation of Eq. 4.6.14 can be expressed as:

(4.6.15)

Where the subscript “d” denotes “discrete”.
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4.6.1 Simulation of moving point guidance scheme:

Using the discretized linearized equations of motion for moving point guidance, a dis-
crete LQR controller has been designed in Matlab. The results for a simulation are
shown below in Figure 4.5:

Figure 4.5 shows that the moving point guidance scheme works quite good even for
very abrupt changes in reference path direction (the waypoints in Figure 4.5 are shown
as solid dots). The scheme used in Figure 4.5 includes two nonlinear features that
improves the performance for large changes in reference direction. First the moving
“target” point is itself controlled to maintain a “fixed” distance in front of the vehicle
using proportional control of the moving point speed based on the distance from the
vehicle to the moving point. Secondly the maximum turning rate of the vehicle is lim-
ited by Eq. 4.1.4.

4.7 Lateral guidance conclusion:

A number of lateral guidance schemes have been discussed. As a result of this discus-
sion, the moving point guidance scheme is selected as the most promising. A simula-
tion of this scheme shows promising results for a realistic UAV mission.

FIGURE 4.5 Moving point guidance simulation.
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Chapter 5

DGPS Instrument: Theory and
Performance

5.1 Overview of GPS system

GPS is an acronym for Global Positioning System. The system is used to determine the
position of a GPS receiver by measuring the distance to a number of satellites in earth
orbit, using radio signals. Using a special receiver it is possible to measure the relative
distance from each satellite to the receiver, by determining the time of flight of the sig-
nal from the satellite to the receiver. Multiplying the time of flight by the speed of light
then gives the distance from a particular satellite to the receiver. The position of the
GPS receiver can then be determined by a number of simultaneous time of flight meas-
urements to different satellites. The space and associated control segments of the sys-
tem are operated by the US Department Of Defence (DOD), while the individual
civilian users of the system are responsible for receiving and processing the signals
from the satellites using commercially available GPS receivers. Since all signals used
in the GPS are transmitted from the satellites to the users GPS receiver, the users posi-
tion can not be determined by the space segment. This also means that there is no prac-
tical limit to the number of users of the system. An in depth description of GPS, with
particular emphasis on surveying applications, can be found in (Ref. 24). The follow-
ing treatment is extensively based on this reference, but with special emphasis on real
time position control using the GPS position as a feedback signal. In this context, the
dynamic and reliability properties of the GPS position measurements are particularly
important.

5.2 GPS signals

Each GPS satellite (abbreviated SV, which denotes Space Vehicle) contains a very
accurate oscillator operating at a frequency of . This oscillator is used
to control the carrier frequency of two radio transmitters, which operate at the frequen-
cies and , these are denoted the L1 and L2 car-
riers respectively. These carrier frequencies are the same for all SV’s. In addition to
controlling the carrier frequencies, the oscillator is also used to generate three digital
modulation codes, the C/A code (Course/Acquisition), the P code (Precision) and the
W code. All of these codes are so called Pseudo Random Noise (PRN) codes, which
are unique for each SV. These codes consist of a sequence of ones and zeros which
appear random, but are in fact periodic signals which can be used to uniquely identify
and track each SV. While the C/A, P and W codes are periodic functions of time which
contain no data, the so called “navigation message” contains the data necessary to com-

f0 10.23MHz=

f1 1575.42MHz= f2 1227.60MHz=
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pute the position and internal time of the each SV. The frequencies of the various codes
are given below (Ref. 24, p. 76):

(5.2.1)

Where “Data” denotes the navigation message, which is the only code that contains
data.

The L1 carrier is modulated with the C/A code and the product of the P and W codes,
while the L2 carrier is only modulated with the product of the P and W codes. In addi-
tion, all the codes are modulated with the Data. The W code is a very long secret code,
which is only available to military users which are authorized by the DOD. Since the
W code is not available to the civilian users, it is difficult to receive and process the P
code. For this reason, most commercial GPS receivers only use the C/A code on the L1
carrier. These receivers are called “single frequency receivers”.

Since the receiver used in this project is of the single frequency type, we will confine
the analysis to the C/A-code on the L1 carrier. According to (Ref. 24, p. 76), the modu-
lated L1 carrier can then be expressed as:

(5.2.2)

Where is the carrier amplitude, is the C/A code and is the navigation
message data stream.

Each bit in the C/A code is called a “chip” since it carries no data. The C/A code is
composed of 1023 chips, giving a repetition period of 1 ms. Since the speed of light is
approximately , the chip length is approximately 300m, while the C/A code
length is approximately 300km. Using a correlator the receiver is able to determine the
relative code phase between different SV’s, with an ambiguity of 300km. This makes it
possible to determine the 3 dimensional position without any ambiguity (Ref. 26).

5.3 SuperStar GPS receiver

Two SuperStar GPS receivers are used in this project. The SuperStar GPS receiver is
produced by CMC in Canada. As standard they are able to calculate the stand alone
position and velocity at a rate of 1Hz. The worst case deviation of the SuperStar stand
alone position estimate has been determined as approximately 12 m in the horizontal
plane and slightly more in the vertical direction. This is clearly inadequate for precision
landing of an Unmanned Aerial Vehicle. For this reason, the measurements from two
SuperStar receivers are used to establish a Differential GPS (DGPS) system.

The particular SuperStar receivers used for the project are supplied with “option 2”.
This means that the receivers can be enabled to output both Pseudo Range (PR) and
Carrier Range (CR) data at a 1Hz rate. The PR is the range measured from a particular
satellite to the receiver, using a correlation with the C/A-code of the L1 carrier. The PR
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is not the true (geometric) range, because the local clock in the receiver is used to
measure the time of arrival of the signal. Since the local clock is not perfectly synchro-
nized to the SV clocks (so called GPS time) there will be a common bias on the PR to
all SV’s. This must be eliminated when performing the position solution. For this rea-
son it is necessary to use a minimum of 4 SV’s to obtain a 3D position solution.

The CR is the measured using the L1 carrier, so that it is in principle the number of L1
carrier wavelengths from each SV to the receiver, multiplied by the L1 wavelength.
This enables a precision that is several orders of magnitude better then using PR’s.
Since the RF front end of the SuperStar receiver uses a Local Oscillator (LO) to meas-
ure the CR, any errors in the LO frequency will result in a common frequency error for
all CR’s. Since a frequency error is interpreted as a doppler shift in the CR, this results
in a CR rate error (i.e. a velocity error). Thus just as with the PR’s, it is necessary to use
at least 4 SV’s to determine a 3D position solution.

The SuperStar receiver uses two different internal clocks for determining the PR and
CR, thus there is no direct correlation between the PR clock error and the CR fre-
quency error.

There is one important problem with the CR’s, this is the fact it is impossible to
directly determine the integer number of wavelengths between the SV and the receiver.
This property is called integer ambiguity. If a SV is tracked continuously for several
seconds, it is however easy to determine the change of CR with time. For this reason, it
is far simpler to use the Carrier Range Rate (CRR) in the position calculation, then the
CR itself. The Carrier Range Rate (CRR) is actually the change in CR between epoch
times and not the true derivative of the CR, but because the SuperStar receiver uses a
sampling rate of 1Hz, the CRR can be interpreted as a velocity. The SuperStar receiver
automatically determines if a so called cycle slip has occurred since the last sample.
This makes it possible to eliminate that particular CRR from the position calculation,
so as to avoid erroneous CRR measurements. A cycle slip is the term used to describe a
(temporary) loss of carrier lock for a particular SV, which introduces an integer ambi-
guity in the CRR.

5.4 Principles of point positioning

The most basic application of GPS measurements, is to determine a 3D position for
each sample time, for a single receiver in stand alone mode. This is called “point posi-
tioning” (Ref. 24). Since only the PR’s provide an unambiguous range measurement, a
point position estimate must at least incorporate 4 PR’s.

Lets assume that PR’s to at least 4 SV’s are available at a given “epoch” (the term used
to define a GPS sample time, which is usually synchronized to GPS time within

). If we knew the position of the receiver and the position of SV
number “i”, at the epoch time, the pseudo range for that SV should obey the geo-
metric relationship:

(5.4.1)

Where is the receiver clock error, expressed as a distance (in meters). This equation
defines the sign of the receiver clock error.

1µsec PRX PSV,i
PRi

PSV,i PRX– PRi c∆+=

c∆
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In reality of course we do not know the exact receiver position (otherwise we would
not need the GPS). However we may have a position guess (or estimate) . We
would then need to determine a position correction or update , that gives the cor-
rect position:

(5.4.2)

Using this expression in Eq. 5.4.1, gives:

(5.4.3)

Linearizing the left hand side around gives the following symbolic
expression:

(5.4.4)

Where is defined as the distance from SV number “i” to the guessed receiver posi-
tion, and is the true distance from the SV to the receiver:

(5.4.5)

(5.4.6)

It is normal practice (Ref. 24) to use a cartesian Earth Centered Earth Fixed (ECEF)
coordinate system to express the positions used in GPS calculations. Since the coordi-
nate system is earth fixed, it rotates with the earth and is thus not a truly inertial coordi-
nate system. The standard cartesian GPS ECEF coordinate system is denoted as
“WGS-84”. It is defined in such a way that the Z coordinate starts at the earth center
and points towards the north pole, the X direction points towards the mean Greenwich
meridian (zero longitude) and lastly the Y direction points towards the mean
meridian ( longitude).

Using the WGS-84 cartesian coordinate system, the range derivative in Eq. 5.4.4 can
be expressed as:

(5.4.7)

Where are the unit vectors defining the directions in the
WGS_84 system.

Using Pythagoras relationship, the geometric range from SV number “i” to the
receiver can be expressed as:

(5.4.8)

P̂RX
PRX∆

PRX P̂RX PRX∆+=

PSV,i P̂RX PRX∆+( )– PRi c∆+=

PRX∆ 0=

PSV,i P̂RX PRX∆+( )– R̂i

Ri∂
PRX∆∂

----------------

PRX∆ 0=

PRX∆•+≅

R̂i
Ri

R̂i PSV,i P̂RX–≡

Ri PSV,i PRX–≡ PSV,i P̂RX PRX∆+( )–=

90
o

90
o

Ri∂
PRX∆∂

----------------

PRX∆ 0=

Ri∂
xRX∆∂

----------------ex

Ri∂
yRX∆∂

----------------ey

Ri∂
zRX∆∂

---------------ez+ +=

ex ey ez, ,( ) X Y Z, ,( )

Ri

Ri xSV,i x̂RX xRX∆+( )–( )2
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The derivative with respect to is then given by:

(5.4.9)

Similarly with respect to and :

(5.4.10)

(5.4.11)

These derivatives can then be inserted into Eq. 5.4.4 to give a linearized expression for
the SV to receiver range:

(5.4.12)

Using Eq. 5.4.3, gives a linearized relationship between the PR’s and the correction
to the guessed position:

(5.4.13)

This can be rearranged so that all the unknowns for a given epoch are placed on the left
hand side of the equation:

(5.4.14)

Since we get one equation of the form Eq. 5.4.14 for each SV used in the current
epoch, we can assemble the equations into a linear matrix equation:

(5.4.15)
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We can now define the “system” matrix and the position correction (or update) vec-
tor as:

(5.4.16)

In symbolic form, the PR point position equation (Eq. 5.4.15) can be expressed as:

(5.4.17)

The first three columns of can be interpreted as the direction cosines between the
coordinate directions and the direction from the SV’s to the receiver.

It is apparent that if ( ), Eq. 5.4.17 can not in general be solved for
the position correction . In this overdetermined case, the equation can instead be
solved in a least squares sense by using the following manipulations:

(5.4.18)

Where is a symmetrical matrix and is a matrix.

The least squares solution to Eq. 5.4.17, is then given by:

(5.4.19)

If there is a “big” difference between the guessed solution and the updated solu-
tion , it may be advantageous to do a second position update
using a new matrix.

It should be mentioned that since radio waves propagate in a straight line at the speed
of light in an inertial system, the above equations are only exact if given in an Earth
Centered Inertial (ECI) system. Also the positions of the SV’s should correspond to the
time of transmission, while the position of the receiver should correspond to the time of
reception. Since it is usually most convenient to work in the WGS-84 ECEF coordinate
system, a correction term can be applied to the guessed position to account for the
earth rotation from the time of transmission to reception of the SV radio signals. More
details can be found in (Ref. 25, sec. 2.5.4.2). The order of magnitude of this error can
be estimated by the following considerations; the maximum peripheral speed of the
surface of the earth (relative to an ECI system) is on the order 500m/s (at the equator)
and the mean orbital radius of the SV’s is approximately 26000km (Ref. 24), this gives
a delay of approximately 100ms between the time of transmission and the time of
reception, in this interval the receiver could have moved approximately 50m due to
earth rotation.
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The earth rotation effects are however reasonably constant in a DGPS application with
short baselines between receivers (~10km), since the transmission delay is almost the
same for both receivers. For this reason, this error will be neglected in the following.

The above equations are the basis for more advanced position estimation methods
using both DGPS and carrier range rate measurements.

5.5 Point position velocity estimation

As explained in Section 5.3, the SuperStar GPS receiver is able to measure the Carrier
Range (CR) and the Carrier Range Rate (CRR) with much greater accuracy then the
Pseudo Range (PR). Unfortunately the CR can not directly replace the PR, due to inte-
ger ambiguities. However the CRR can easily be measured, just by tracking the carrier
of the SV for two consecutive epochs.

In this section we will derive the equations for estimating the velocity of a single
receiver in the WGS-84 ECEF system using just the CRR. First we will derive the
equations in a ECI system, with Z-axis coincident with the Z-axis of the ECEF system.

From the previous section we now that the unweighted least squares point position
solution update with PR’s can be expressed as:

(5.5.1)

If the integer ambiguity problem is ignored, the PR can be replaced by the CR:

(5.5.2)

The position change in WGS-84 ECEF coordinates from epoch to epoch is
equal to the mean velocity in the same interval:

(5.5.3)

Where is the a priori RX position at epoch .

Using Eq. 5.5.2 the difference can be expressed as:

(5.5.4)

Since and thus are functions of the direction cosines between the SV’s and the
RX, they only change slowly from epoch to epoch, this means that we can approximate
the difference as:

(5.5.5)

Where the a priori range rate is defined by .
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Combining Eq. 5.5.5 with Eq. 5.5.3 gives the desired expression for the point velocity
position estimate from carrier phase measurements:

(5.5.6)

It is important for the correct use of this result that the a priori range rate corre-
sponds to the a priori RX position rate .

The simplest way to determine the a priori position is to use the previous calculated
position as the a priori position for the next epoch. This gives the following expres-
sions:

(5.5.7)

This gives the following explicit expression for the point velocity estimate:

(5.5.8)

5.6 GPS error sources

There are several sources of error that effect the GPS receiver measurements of PR and
CR (Ref. 24). These error sources can be grouped according to there physical loca-
tions:

• Errors that occur in the satellites (SV’s).

• Errors due to propagation of the radio signals through space and the atmosphere.

• Errors due to the environment surrounding the GPS receiver antenna.

• Errors due to the antenna characteristics.

• Errors in the GPS receiver.

The following is a brief discussion of the physical sources of errors in the different
groups above.

5.6.1 SV related errors

As seen in the preceding section, a position error in the SV directly effects the receiver
position estimate. The same is true for the SV reference frequency . Any error in
will effect both the L1 carrier frequency and phase and the C/A code phase. This is the
reason for the extreme accuracy requirements for the SV reference frequency.

Before May 1, 2000, the DOD used so called “Selective Availability” (SA) to deny
civilian users the full GPS accuracy. This was achieved by introducing two error
sources, a slowly varying bias of the frequency and an intentional error in the
“Ephemerides”, that the user uses to compute the SV position. The combined effects of
these two errors was a receiver position error of around 100m.

Without SA, the errors in the SV positions as given in the navigation message
ephemerides are on the order of a 5 to 10m or less (Ref. 24, p. 68).
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The effects of SV position and timing errors are nearly perfectly eliminated by using
DGPS, because the satellite geometry is nearly the same for two closely spaced receiv-
ers.

5.6.2 Propagation errors

When radio waves travel through a medium other then vacuum, the propagation veloc-
ity is slowed down. This can have a significant effect on GPS signals that travel
through the atmosphere. The errors induced by the atmosphere on the GPS signal
delay, is usually split into two parts, a ionospheric delay and a tropospheric delay.

The ionosphere is the upper part of the atmosphere, generally extending from around
50km height to 1000km height (Ref. 24). The ionospheric delay is generally caused by
the presence of free electrons in the ionosphere. According to (Ref. 24, p. 104) the ion-
ospheric delay may be between 0.15m and 50m. Since the signals from satellites with
low elevation must pass through a greater length of the ionosphere, low elevation satel-
lites are generally more influenced by ionospheric delay then high elevation satellites.

The other important part of the atmosphere, from a GPS point of view, is the tropo-
sphere which extends from ground level to approximately 11km height. A substantial
part of the tropospheric delay is caused by atmospheric water vapour and is thus
dependent on the weather conditions. The tropospheric delay also depends on the satel-
lite elevation and is on the order of a few meters (Ref. 24, p.116).

Since the atmospheric delay is the correlated for two nearby receivers, the use of DGPS
reduces these errors substantially, especially for short distances between receivers.

5.6.3 Multipath

The most important antenna environment error is multipath. Multipath is the technical
term for the situation that occurs when the radio signal from a transmitter reaches the
receiver along several paths. Since the GPS receiver works by measuring the path dis-
tance from the SV to the receiver, GPS position calculations are very sensitive to mul-
tipath.

Multipath can be caused by any radio reflective surface near the receiver antenna. This
includes buildings, cars, trucks, the ground, mountains and so on. Due to the signal
geometry, multipath is generally worse for SV’s with low elevations.

Multipath can be reduced by using a ground plane to shield the antenna from signals
with low elevation, that is reflected of surfaces below the antenna. In addition most
receivers have a built in narrow correlator, that attempts to remove multipath by sup-
pressing interference from signals that arrive after the main signal. This is based on the
fact that reflected signals (multipath signals) must travel a longer distance then the
direct signal from the satellite. The narrow correlator usually successfully removes
multipath with delays of more then 40 meters. Multipath is generally much smaller for
carrier ranges then for pseudo ranges, except for severe multipath, which may cause
carrier cycle slips.
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Since multipath is very site dependent, it is not removed by DGPS. In fact the multip-
ath errors of the reference and mobile station, may combine to produce even larger
errors then for stand alone GPS.

If more then 4 SV’s are available for a particular epoch, it is possible to determine
which SV’s are affected by multipath, by analysing the residuals. These SV’s can then
be eliminated from the position solution.

5.6.4 Antenna errors

Ideally, the receiver antenna should sample signals from all SV’s at exactly the same
geometric point. However the so called “phase center” of the antenna is not constant
for signals coming from any direction.

Even though it can not be characterized as an “antenna error”, the effects of multipath
are greatly influenced by the antenna characteristics. Since the GPS radio signals are
circularly polarized, any reflected GPS radio signal will have the opposite polarization
sense. Thus an ideal circular polarised GPS antenna can be used to eliminate unwanted
multipath caused be an odd number of signal reflections.

Another important method of reducing the effects of multipath is to use a ground plane
for the antenna. This will greatly attenuate any signals reflected from objects below the
ground plane. Unfortunately the ground plane must be quite large compared to the
wavelength to be effective. However it should be possible to achieve the same effect by
using an antenna with a high inherent front to back ratio.

5.6.5 Receiver errors

The receiver and antenna cable introduces a propagation delay for the received radio
signals. It is readily appreciated that a common propagation delay results in a solution
time error, but not in a position error. Since all contemporary GPS receivers use a sep-
arate correlator for each tracked satellite, any correlator error that is not common for all
correlators will result in pseudorange and carrier phase errors that directly influence
the computed position.

Using two receivers it is possible to determine the receiver errors by using a “zero”
baseline test setup. This is done by connecting the two receivers to the same antenna
using a signal splitter. Since antenna and multipath errors for both receivers are the
same in this setup, the resulting measured double difference errors [see Section 5.8.1]
are the result of receiver related errors.

5.7 Principles of differential positioning

Differential positioning is based on the simple principle of determining the relative
position of two nearby receivers, by comparing the pseudo range and carrier range
measurements of the same SV’s measured by the two receivers. The promise of DGPS
is that it can practically eliminate all SV related errors and almost all atmospheric delay
errors.
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5.7.1 Differential positioning using the pseudo ranges

Two receivers, denoted RX1 and RX2, are used to measure PR’s to the same SV’s at
the same epoch. This gives two equations similar to Eq. 5.4.1:

(5.7.1)

Where again denotes the position of SV number “i”, and are the posi-
tions of the two receivers (more correctly the antenna phase centers), and are
the pseudo ranges measured by the two receivers while and are the receiver
clock errors.

The objective of differential positioning is to obtain the baseline (vector) between the
two receivers, in other words . It is assumed that the position of
receiver number one is approximately known.

There are several principle methods for determining the differential position. The most
universal method uses the known or assumed position of RX1 to determine the pseudo
range errors. These errors are then transmitted to RX2 using a radio data link. RX2 can
then correct its measured pseudoranges with the received pseudo range errors. This
method is universal, in that it can be used for arbitrary baseline lengths. The pseudo
range error for SV number “i” is defined by:

(5.7.2)

Where is the known or assumed position of the reference receiver antenna and
is the pseudorange measured by the reference receiver. Notice that a positive pseu-

dorange error implies that the measured pseudorange is to “short”, this means that the
“true” pseudorange is obtained by adding the pseudorange error to the measured pseu-
dorange.

The same principle can be used to implement a differential velocity system using
measured carrier phase rates by defining the carrier phase rate error for SV
number “i” as:

(5.7.3)

Where is the calculated range from SV number “i” to the reference receiver at
epoch number “k”.

The only practical limit to this method is the gradual decorrelation of the atmospheric
pseudorange errors, as the baseline distance between the mobile and reference receiver
is increased.

5.8 GPS measurements

In this section the statistical properties of the PR and CRR noise will be analysed. This
analysis will be based on data measured with the two SuperStar GPS receivers. The
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primary aim of this analysis is to be able to predict the statistical accuracy of a DGPS
implementation using these receivers.

The experimental setup used for these measurements, consists of two GPS antennas
mounted approximately 5 m apart on the roof of the department. The antennas are con-
nected to the two receivers in our office, using 10 meters of cable. Since the antennas
are stationary (relative to the earth), their differential position is constant and their dif-
ferential velocity is zero. This makes it possible to determine the differential errors in
the PR and CRR. Even though the antennas are mounted above the building roof and
equipped with groundplanes, there are higher buildings to the north and south of the
department. These buildings have a blocking effect and the potential to produce large
multipaths for especially low elevation satellites.

5.8.1 Double difference analysis

Since we have two receivers with two independent antennas, we can use Eq. 5.7.1 to
obtain the ideal relationship between the measured pseudo ranges and the geometric
range to the satellites:

(5.8.1)

Where again denotes the position of SV number “i”, and are the posi-
tions of the two receivers (more correctly the antenna phase centers), and are
the pseudo ranges measured by the two receivers while and are the receiver
clock errors.

In the test case, we have an independent accurate means of determining the true dis-
tance . Using this knowledge we can try to rearrange Eq.
5.8.1, so as to determine the pseudorange measurement errors.

Subtracting the first part of Eq. 5.8.1 from the second part gives:

(5.8.2)

The left hand side of this equation is the geometric range difference between the SV
and the phase centers of the two antennas. The right hand side is the difference between
the measured pseudo ranges and receiver clock errors.

Since the test baseline is accurately known, the equation can rewritten as:

(5.8.3)

If the test baseline is short, the first distance may be expressed in terms of a linear
expansion around the RX1 position. In analogy with Eq. 5.4.12, this gives:

(5.8.4)
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Where the cartesian components of the test baseline in XYZ coordinates are given as
. The range is equal to the range between SV number

“i” and RX1.

Combining Eq. 5.8.3 and Eq. 5.8.4 gives:

(5.8.5)

Since the ranges to the SV’s are more then , a combined SV and RX1 position
error of around will only give a relative error on the left hand side of of
the baseline. In other words for a baseline of length, the error on the left hand side
has a magnitude of , which is clearly negligible compared to the pseudorange
errors, as will be shown below.

What we really want to do is to determine the pseudo range measurement errors for
both receivers. However since we only have one equation for both receivers for each
SV, we can only determine the pseudo range difference error as defined below:

(5.8.6)

It is apparent that the pseudo range difference error is a function of the a priori
unknown clock error .

There are several ways to overcome this problem. The simplest solution is to choice a
SV with a high elevation and hopefully low measurement error, as a reference SV. The
clock error can then be determined by assuming that the pseudo range difference
error is zero for the reference SV:

(5.8.7)

Where is the index of the reference SV.

One problem with this approach is that the reference SV after some time will cease to
be the best SV. This happens because the reference SV elevation will sooner or later
decrease below the acceptable limit. Another problem is that any noise on the reference
SV pseudo range measurement will affect the other pseudo range errors directly with-
out any attenuation.

One partial solution to these problems is to use more then one SV to determine the dif-
ferential clock error. The simplest way to implement this is to average Eq. 5.8.7 over
several reference SV’s:

(5.8.8)

Where is the set of reference SV indexes.
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The reference SV’s may be simply chosen as the SV’s with an elevation greater then
some threshold. The elevation threshold should be determined so that the risk of multi-
path on the reference SV’s is small. Depending on the antenna environment, this
should probably be around to . The higher value is suitable for environments
with tall buildings and suboptimal antenna ground planes. Since the differential clock
error is now determined using several SV’s, the resulting discontinueties when chang-
ing reference SV’s will be smaller. It can also be expected that the differential clock
error will be more accurately determined since the pseudorange errors are probably
uncorrelated between the different SV’s.

An experimental investigation of the differential pseudo range errors has been
performed using 6 hours of continous measurements with the fixed baseline system
described above. The “true” test baseline has been determined first with an accuracy of
the order of 2 cm (Table E.2) using a simple ambiguity resolution method on the carrier
phase measurements. The true test baseline in UTM coordinates is given in Eq. E.50.

A “skyplot” of the trajectories of the SV’s in relation to the receivers is shown below:

Since the SV’s orbit the earth twice in 24 hours, the SV’s appear to be “overtaking” the
earth from west to east. Each SV will be visible for less then 6 hours at a time from any
fixed position at or near the surface of the earth.

FIGURE 5.1 Skyplot of SV trajectories.
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A “raw” time series plot of the pseudorange errors for all SV’s as a function of time is
shown below:

Even though it is impossible to distinguish the individual PR errors in this plot, it is
apparent that there are several places where the error for one or more SV’s becomes
very large compared to the “background” noise.

If the large errors seen in Figure 5.2 are caused by multipath, there should be a strong
correlation between the pseudo range errors and the elevation of the SV as seen from

FIGURE 5.2 Time series plot of all PR errors.
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the antenna positions. This has been tested by plotting the standard deviation of the PR
errors as a function of elevation for the entire dataset, as shown below:

In order to get a significant number of datapoints for each elevation, the PR errors are
grouped into elevation intervals, centered at the points shown in the plot. There are
no data available for elevations above , which is also apparent from the skyplot in
Figure 5.1.

It is apparent that the proposed strong correlation between the PR errors and the SV
elevation does indeed exist. This is a clear indication that the large PR errors seen in
Figure 5.2 are caused by multipath. It is apparent that the standard deviation of the PR
errors is almost constant above an elevation angle above . Below the errors
seem to follow an inverse relationship with elevation, until it reaches a maximum value
in the to interval. The standard deviation of the PR errors are approximately 5.5
times larger for low elevations compared to high elevations. On all accounts this is a
significant difference. The mean PR errors show a strong bias for low elevations, this
indicates that the PR errors have a very low frequency component consistent with mul-
tipath. The bias at elevations above is probably caused by the relative few datasets
from this elevation range, as seen in Figure 5.1.

Having determined that the PR errors are much larger for SV’s with low elevations
then for SV’s with high elevations, it is interesting to investigate if the shape of the
Probability Density Function (pdf) and Power Spectral Density (psd) also depend on
SV elevation.

FIGURE 5.3 Standard deviation and mean of PR errors as function of SV elevation.
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The pdf’s for both elevations less then and more then have been computed as
shown in Figure 5.4 (notice the different error scales):

In addition to the measured pdf’s, the equivalent gaussian pdf’s with identical means
and standard deviations are also shown in Figure 5.4. It is apparent that the pdf of the
low elevation SV’s has a large deviation from a gaussian distribution, which seems to
be due to “outliers” with large errors. The pdf of the high elevation SV’s follow the
gaussian distribution closely. The mean and standard deviation for the two cases are
listed in Table 5.1 below:

The conclusion is that the PR errors for SV’s with low elevation is both large and sig-
nificantly nongaussian.

The frequency distribution of the PR errors can be characterized by the Power Spectral
Density (PSD). The PSD is defined as the fourier transform of the autocorrelation func-
tion. Since the autocorrelation function is a symmetrical real valued function, the PSD
is also a symmetrical real valued function. The PSD is only defined mathematically for
stationary gaussian stochastic processes. Since it has been showed above that the PR

FIGURE 5.4 Probability density function of PR errors SV’s with low and high elevations.
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errors depend on the SV elevation, this gives somewhat of a problem if the PSD of the
PR error for a specific SV is determined from the moment it rises above the horizon to
the moment it sets. One approximate solution to this problem is to compute the PSD for
elevation intervals that are small enough to justify the assumption of stochastic station-
arity. From Figure 5.3 it is apparent that the standard deviation of the PR errors seem to
have a plateau for elevations below approximately and above approximately .
This information has been used to determine the PSD in the two elevation intervals

and , the PSD has been determined using a 512 point FFT (equiva-
lent to 512 sec.). The resulting PSD’s are then determined as the mean value of all
PSD’s at each frequency for every 512 seconds of data in the appropriate elevation
intervals. Incomplete intervals of less then 512 continues epochs are ignored in the
analysis. The results are shown in Figure 5.5 below:

It is clear from Figure 5.5 that the PSD has a substantial variation with frequency. The
low frequency content of the PR error is much larger then the high frequency content
for both high and low elevations. The general shape of the PSD is similar for both high
and low elevation SV’s, however the relative difference between the PSD’s is much
greater for low then for high frequencies. In addition the low elevation PSD has a sig-
nificant “hump” at a frequency of around . It can be speculated that these differ-
ences are due to multipath, which is probably slowly varying due to the fact that the
antennas and surrounding buildings are stationary. If one of the antennas where located
on a moving vehicle, the shape of the low elevation PSD could conceivably differ sub-
stantially from the one shown above.

FIGURE 5.5 PSD of dPR error for high and low elevation satellites.

10° 45°

0° θe 10°< < θe 45°>

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

PSD of dPR
error

f [Hz]

P
S

D
fo

r
hi

gh
an

d
lo

w
el

ev
at

io
n

S
V

’s
[m

2 /s
] Low elevation

“Hump”High elevation

0.05Hz



Chapter 5

DGPS Instrument: Theory and Performance 143

In the preceding treatment, the focus was on correlating the multipath noise with the
elevation of the satellite as seen from the receiver(s). This gives a statistical correlation
based on the fact that multipath is much more likely for low elevation satellites due to
the signal propagation geometry. It must however be remembered that this correlation
is only statistical, since a low satellite elevation does not necessarily imply that there
will be any multipath. On the other hand a high satellite elevation does not guarantee a
multipath free signal propagation. In other words this means that using only the eleva-
tion of the satellite is not an optimal way to determine the multipath noise on a given
satellite.

The Superstar receiver has the option to output the Signal to Noise Ratio (SNR) of the
measured satellite signal. The exact definition of the SNR used by the receiver is not
documented in the Superstar manual. Nevertheless the statistical relationship between
the SNR and the differential pseudo range errors have been estimated based on the
measured PR data. It appears that a correlation does exist between the SNR and the PR
errors. This correlation is shown in Figure 5.6 below:

The function is the total number of differential PR measurements in each
1dB measurement interval. It is apparent that the proportion of measurements with low
SNR values and high differential measurement errors, is small. This indicates that
using the SNR is a very selective method to discriminate between good and bad PR
measurements. Thus a weighing function based on the SNR, minimizes the proportion
of PR measurements that are wrongly given a bad weight in the baseline solution. This
should improve the total baseline solution, compared to using a weighting function
based on the SV elevation.

FIGURE 5.6 Correlation between SNR and dPR error.
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In the next section, we will use the correlation between the differential PR errors and
the maximum SNR of each PR measurement pair to increase the accuracy of the differ-
ential position solution. In order to simplify this, a simple analytical expression for the
correlation is useful. Using the standard deviation measurements in Figure 5.6, the fol-
lowing piecewise linear analytical approximation has been determined:

(5.8.9)

The function is super imposed on the measurements in Figure 5.6.

In some cases one or more differential PR measurements will be way off. This can be
due to extreme multipath caused by complete blockage of the direct signal or by signal
processing errors in the GPS receiver. When solving the linearized baseline equation
with more then 4 SV’s, this can be detected as extreme differential PR residuals.

It is possible to compute the residuals after each baseline solution, this can be used to
eliminate SV’s from the solution. This is done by detecting if one or more residuals
exceed their expected error by a certain margin. Since the expected error range of a SV
is proportional to the a priori standard deviation corresponding to the particular SNR,
an error limit proportional to the a priori standard deviation of the differential PR
measurement should be used.

5.8.2 Double difference analysis of Carrier Phase measurements

The carrier phase measurements can be used to estimate the velocity of the receiver
(antenna) according to Section 5.5. In practice this will be accomplished in a differen-
tial system consisting of a stationary reference receiver and a moving vehicle mounted
receiver. In such a system, the “measurements” are the double difference carrier
phases. As described previously, the actual carrier phases are can only be measured
exactly in terms of fractional cycles, whereas the integer number of cycle differences
between two receivers can not be directly measured. Thus instead of using the ambigu-
ous carrier phase differences, the unambiguous carrier phase rate differences will be
used to estimate the velocity difference between the receivers.

The carrier phase rate differences can be directly translated into a pseudo Carrier
Range Rate (CRR) difference by multiplying with the L1 wavelength. The (code)
pseudo ranges where called just that because of the local receiver time errors. The same
principle applies to the measured phase rates, in this case because of the Local Oscilla-
tor (LO) frequency errors. For this reason a number of reference SV’s with high eleva-
tions will be used in the following when computing the differential carrier phase rate
errors, completely analogous to the methods used in Section 5.8.1 for the differential
pseudo range measurements.

For the sake of brevity, only the important results of the carrier range rate analysis will
be discussed in the following.

Just as with the differential pseudo range errors, it has been determined that there is a
strong correlation between the measured errors and the measured maximum Signal to
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Noise Ratio (SNR) of the particular differential carrier range rate. This relationship is
shown below in Figure 5.7:

The function is the total number of differential carrier range rate measure-
ments in each 1dB measurement interval. It is apparent that the proportion of measure-
ments with low SNR values and high differential measurement errors, is small. This
indicates that using the SNR is a very selective method to discriminate between good
and bad CRR measurements. This is exactly the same conclusion as for the PR errors.

Comparing the dPR errors in figure Figure 5.6 with the dCRR errors in Figure 5.7, it is
apparent that we can roughly relate the predicted measurement errors of the two quan-
tities by a constant:

(5.8.10)

Where is the predicted dCRR standard deviation and is the corresponding
predicted dPR standard deviation.

The physical explanation of this large difference in the measurement errors, is that
moderate multipath as well as receiver noise generates errors that are fractions of the
signal wavelength. This means that since the signal wavelength of the PR is equal to
the C/A chip length of 300m, while the carrier wavelength is equal to approximately
20cm, the difference in errors will all other things equal be of a similar magnitude.

The Power Spectral Density (PSD) of the differential CRR errors can not be expected
to be similar to that of the dPR errors because the CRR is a velocity while the PR is a
distance. In addition the carrier phase multipath will generally vary much faster

FIGURE 5.7 Correlation between SNR and dCRR error.
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because of the much shorter wavelength of the carrier compared to the C/A signal. For
these reasons, the PSD’s of the CRR errors is much “flatter” and more like white noise
then the differential PR errors. This is confirmed by Figure 5.8 below:

In the following we will crudely assume that the dCRR errors are sampled white noise
signals, with expected standard deviations according to Eq. 5.8.10.

5.9 Equations for differential positioning

5.9.1 Differential PR baseline solution

Given an overdetermined set of differential pseudo range measurements with known a
priori standard deviations, the stochastic optimal baseline solution can be determined
by solving a weighted linearized problem. The unweighted point position solution

can be determined by solving the linear equation system (Eq.
5.4.18):

(5.9.1)

Where is a symmetrical matrix and is a vector. The
receiver time error expressed as a distance, is given by .

FIGURE 5.8 PSD of dCRR error for high and low elevation satellites.
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The matrix is a function of the relative geometry between the SV’s and the guessed
receiver position, as given by Eq. 5.4.15. Each row in corresponds to one SV:

(5.9.2)

Each row in the vector contains the difference between the measured pseudorange
and the range from the SV to the guessed receiver position:

(5.9.3)

If the PR measurements have different measurement noise levels, it can be shown that
the stochastic best (most likely) solution estimate can be found by solving the weighted
problem:

(5.9.4)

Where is a diagonal matrix of weights on each PR measurement.

It can be shown (Ref. 30, p. 35) that the stochastic optimal weights should be propor-
tional to the inverse of the measurement standard deviations:

(5.9.5)

Where is the standard deviation of the differential PR measurement of SV
number . The constant of proportionality in Eq. 5.9.5 does not influence the solution,
thus it can be set equal to unity.

In reality the a priori (predicted) value of the standard deviations must be used in Eq.
5.9.5, since the actual value is practically impossible to measure.

As outlined in Section 5.7, the objective of differential positioning is to obtain the
baseline (vector) between the two receivers, in other words . It is
assumed that the position of receiver number one is approximately known.

In the general case this may be done by using Eq. 5.9.4 separately for both receivers:

(5.9.6)

Where and are based on the guessed position and the PR measurements of
RX1, while and are based on the guessed position and the PR measurements
of RX2.
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ŷRX ySV,1–

R̂1
----------------------------
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For short baselines the differential position calculation may be linearized around the
assumed position of RX1, as shown in Section 5.8.1. In this case the guessed position
RX2 is set equal to the assumed position of RX1. This gives identical values of the “A”
matrix (Eq. 5.9.2):

(5.9.7)

Since the weighting matrix is based on the a priori assumed differential PR errors,
correlated with the maximum SNR of each SV, we must for consistency use the same
weighting matrix for both receivers. This gives the same weighted “Fw” matrices:

(5.9.8)

We can now determine the linearized differential position solution be algebraically
subtracting the position solution equation of RX1 from that of RX2 (Eq. 5.9.6):

(5.9.9)

Since the position update (or correction) is given by and
, the difference can be expressed as:

(5.9.10)

The “Y” matrices (Eq. 5.9.3) only differ in the PR measurements, since the guessed
RX2 position is taken equal to the assumed RX1 position. Thus the difference

can be expressed as:

(5.9.11)

Where are the PR’s measured by RX1 and are the PR’s measured by RX2.
The PR differential measurement matrix is given by:

(5.9.12)

This shows that the right hand side of Eq. 5.9.9 is a linear function of the measured PR
differences.

This shows that Eq. 5.9.9 can be used directly to determine the differential position
(baseline) by solving one linear equation system:

(5.9.13)

In some cases one or more differential PR measurements will be way off. This can be
due to extreme multipath caused by complete blockage of the direct signal or by signal
processing errors in the GPS receiver. When solving the linearized baseline equation
with more then 4 SV’s, this can be detected as extreme differential PR residuals.
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It is possible to compute the residuals after each baseline solution, this can be used to
eliminate SV’s from the solution. This is done by detecting if one or more residuals
exceed their expected error by a certain margin. Since the expected error range of a SV
is proportional to the a priori standard deviation corresponding to the particular SNR,
an error limit proportional to the a priori standard deviation of the differential PR
measurement should be used.

The pseudorange residuals corresponding to a particular baseline and differential
pseudo range measurements can be defined as:

(5.9.14)

From this definition it follows that the residuals have the same dimension as the meas-
ured pseudoranges.

Since the a priori standard deviations are given by , the rejection crite-
rion for PR measurements can be expressed as:

(5.9.15)

Where is a positive constant, it is customary to use .

Since determination of the residuals require a baseline solution , it is apparent
that if any PR’s are rejected by Eq. 5.9.15 a new solution has to be computed using Eq.
5.9.13 without the rejected PR measurement. It is only wise to remove one PR meas-
urement at a time, even if several PR measurements fail Eq. 5.9.15. This is because one
bad PR measurement will pull the baseline solution away from the correct solution and
thus produce large residuals for the remaining PR measurements. The choice of which
PR measurement to remove (first) should thus be based on which PR has the largest
nondimensional residue .
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Using the above equations it is possible to implement a PR differential positioning sys-
tem for short baselines. With the same 6 hour set of measurements as used above, the
following results have been achieved:

The standard deviations of the North-South, East-West and vertical errors are given
below in Table 5.2:

FIGURE 5.9 PR DGPS errors with SNR weigthed PR’s.
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Tabel 5.2 Standard deviation and mean of PR DGPS errors in local coordinates.
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The corresponding probability density functions (pdf’s) of the baseline error compo-
nents are shown below in Figure 5.10:

It is apparent that the pdf’s of the baseline errors are quite close to gaussian distribu-
tions (shown by the smooth curves). In order to better appreciate the probabilities of

FIGURE 5.10 Probability density functions of PR DGPS errors.

-20 -15 -10 -5 0 5 10 15 20
0

0.2

0.4

d
no

rt
h

pd
f

[-
]

pdf of baseline error

-20 -15 -10 -5 0 5 10 15 20
0

0.2

0.4

d
ea

st
pd

f
[-

]

-20 -15 -10 -5 0 5 10 15 20
0

0.1

0.2

d
h

pd
f

[-
]

dP
e

[m]



Chapter 5

152

extreme baseline errors, Figure 5.11 shows the probabilities of exceeding a certain hor-
izontal error and a certain vertical error :

It is possible to predict the DGPS baseline errors by using the a priori known correla-
tion between the SNR and the differential PR errors. From Eq. 5.9.13 we have that the
weighted baseline estimate can be determined as:

(5.9.16)

In general it can be shown (Ref. 31, p. 43) that if one has a linear relationship
between two stochastic vector quantities and , with the covariance of the vector

given by , then the covariance of is obtained as:

(5.9.17)

Using this relationship on Eq. 5.9.16 gives the following expression for the a priori
covariance on the baseline solution :

(5.9.18)

Where is the differential pseudorange covariance. Since we have tacitly assumed
that the differential pseudorange errors are uncorrelated, can be expressed as a
diagonal matrix:

(5.9.19)

FIGURE 5.11 Exceedens propabilities on a logarithmic scale.
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It is important to realize that even though the differential pseudorange errors are inde-
pendent, this is in general not the case for the components of the resulting computed
baseline.

Using Eq. 5.9.18 with the 6 hour set of data, gives the predicted standard deviations of
the differential position in local coordinates. The results are shown below in Figure
5.12:

It is apparent by comparing the measured standard deviations from Table 5.2 with the
predicted ones from Figure 5.12, that the measured and predicted standard deviations
are correlated, although the predicted and measured standard deviations are not identi-
cal. In order to investigate this further, the correlation between the measured standard
deviations and the predicted standard deviations for all components of the baseline

FIGURE 5.12 A priori differential position standard deviations.
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error vector have been computed. The results of this analysis is shown below in Figure
5.13:

It can be seen that there is an approximate linear correlation between the predicted a
priori standard deviations and the measured RMS deviations (which equals the stand-
ard deviation for zero mean). This correlation can be seen in the interval ,
where the number of measurements pr. interval (denoted by ) is significant.
The linear “eyeballed” straight fit line approximation shown in Figure 5.13 is given by
the equation:

(5.9.20)

The importance of Eq. 5.9.20 is that in connection with Eq. 5.9.18 it can be used to
give a reasonably accurate prediction of the current PR DGPS accuracy in any direc-
tion, without the need for separate empirical correlations for each direction.

Just as the frequency distributions of the double difference pseudo range errors where
computed as PSD’s in Section 5.8.1, the frequency distribution of the resulting DGPS

FIGURE 5.13 Correlation between predicted a priori and measured standard deviations.
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position errors can be determined using a separate PSD for each direction. This is
shown below Figure 5.14:

For comparison with the weighted solution method given above, the standard devia-
tions of the North-South, East-West and vertical errors without SNR based weighting
are shown below in Table 5.3:

5.9.2 Differential CRR velocity solution

Given an overdetermined set of differential carrier range rate measurements with
known a priori standard deviations, the stochastic optimal baseline velocity solution
can be determined by solving a weighted linearized problem. The unweighted point
velocity solution can be determined by solving the linear equation system
given by Eq. 5.5.8:

(5.9.21)

FIGURE 5.14 PSD’s of SNR weighted pseudo range DGPS position errors.
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If different weights are desired on the different carrier range rate measurements, the
weighted point velocity solution can be determined in analogy with Eq. 5.9.16:

(5.9.22)

Where the epoch subscripts on and have been omitted for simplicity.

The weigthed least square solution system matrix is given by Eq. 5.9.8:

(5.9.23)

The differential CRR velocity solution is defined by:

(5.9.24)

The short baseline differential CRR velocity solution can then be determined as:

(5.9.25)

Where are the carrier range rates measured by receiver #1, are
the carrier range rates measured by receiver #2, are the range rates of
the SV’s as viewed from receiver #1 while are the range rates of the
SV’s as viewed from receiver #2.
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5.10 Code and phase DGPS

In the preceding section, a SNR weighted DGPS solution has been designed and ana-
lysed, based on only the measured pseudoranges. As shown in Appendix E, the carrier
phase (or range) measurement noise is much smaller then the PR measurement noise.
Since both the carrier phase and PR are measured at the same time by the receiver, an
improvement in the DGPS accuracy should be achievable by combining the accurate
but ambiguous carrier phases with the noisy but unambiguous pseudo ranges.

There are of course several ways to do this:

• The carrier phase can be used to smooth each pseudorange using a fixed weighting
schedule.

• The carrier phase and pseudorange can be used in a Kalman filter for each SV.

• The carrier phases can be used to compute a DGPS velocity, which is combined in a
DGPS position Kalman filter with the pseudo range DGPS position solution.

The first method above is exemplified by the pseudorange smoothing algorithm given
by Lachapelle (Ref. 24, p. 97):

(5.10.1)

Where “k” is the epoch counter and is the measured PR weight. is the
smoothed pseudorange and is the measured pseudorange.

The idea is that the weight is started at for the first measurement with each SV.
For subsequent measurements, the weight is reduced by a fixed amount, typically 0.01
from epoch to epoch. Thus after 100 measurements, the weight reaches a minimum
value of . At this time, only the phase rate affects the smoothed pseu-
dorange update.

The primary advantage of the simple smoothing algorithm is simplicity and ease of
implementation. Unfortunately this also means that no information about the actual
noise statistics of the pseudorange and carrier phase measurements are incorporated
into the smoothing algorithm.

Assuming that a kalman filter on the DGPS position is used, the following procedure
can be followed to design the filter.

First we assume for sake of simplicity and execution speed that the errors of each
direction component are uncorrelated with the other directions. This is justified when
looking at a large set of data, however it must be remembered that the errors generated
by measurements of any one satellite at any one time are generally correlated between
the different direction components.

By assuming that the errors are uncorrelated with the other directions, we obtain essen-
tially 3 small kalman filters in parallel instead of one large. The following discussion
can thus be confined to a single kalman filter for a one dimensional position estimate.

If an accurate dynamic model of the vehicle is available, the kalman filter could be
based on this. If however the DGPS measurements are likely to be much more accurate

PRsm,k wPRk 1 w–( ) PRsm,k-1 λ CPk CPk-1–( )+( )+=
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PRk

w 1=
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then the dynamic model, it is better and more simple to use a kinematic model. This is
based on the idea of using measurements as inputs instead of forces and moments. In
our case we know that the velocity estimates based on the measured carrier phases
(CP) are very accurate compared to both the dynamic model and the other available
measurements. For this reason we will use the computed velocity estimates as inputs to
the kinematic model:

(5.10.2)

Where is the local “x” differential position, is the “measured” differen-
tial velocity and is “measurement” noise on . Furthermore we assume
that is white gaussian noise.

The measurement in the kalman filter is the PR DGPS position calculation, giving the
measurement equation:

(5.10.3)

Where is the “measured” PR DGPS position and is the “measurement”
noise. As we have determined above, the PR DGPS errors closely approximate a gaus-
sian distribution. However the errors are not white noise.

One way to include nonwhite noise in the kalman filter is to use a noise shaping filter
(Ref. 32, p. 125). The idea behind this is to augment the system dynamics with the
dynamics of a linear filter that produces the desired noise spectrum (PSD) at the output
when excited by a white noise signal.

Based on the general shapes of the SNR weighted pseudo range DGPS error PSD’s in
Figure 5.14, we will assume that a second order discrete shaping filter is sufficient to
generate the desired PSD shapes. Such a filter has an infinite number of state space
implementations. One problem with the PSD based shaping filter is that the PSD is
derived using the assumption of stationary statistics. This means that the covariance of
the filter states are assumed time invariant. However to be useful in a time varying
Kalman filter we must be able to specify appropriate initial conditions for the shaping
filter states and covariance. This is much easier if the filter states have a clear physical
meaning.

In the continous case a general stable second order filter can be represented as a
damped oscillator, with the dynamics described in terms of the undamped natural fre-
quency, the nondimensional damping ratio and maybe a zero. An obvious state space
representation of this filter would include one state representing the “position” and
another representing the “velocity”.

Inspired by this continues filter, we will propose the following discrete second order
state space shaping filter:

(5.10.4)
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Where can be interpreted as an approximation to the undamped natural frequency,
since the sampling rate of the filter is 1Hz to coincide with the PR DGPS position
update frequency. The estimated differential position measurement error is given by

and its approximate rate (velocity) is given by :

(5.10.5)

The discrete transfer function of the filter given by Eq. 5.10.4, can be determined
as (Ref. 33, eq. 2.2.9):

(5.10.6)

After some algebra this can be reduced to:

(5.10.7)

Notice that contains no constant term in the numerator, when is expressed in
terms of exponents of .

The next task is to determine the unknown coefficients , , and in such a way
that has a spectral distribution and magnitude that approximates the measured
differential position error PSD’s.

There is a relationship between the integral of the PSD of a sampled signal and the
standard deviation (or variance) of the signal (Ref. 28, p. 84):

(5.10.8)

Where is the variance of the differential position error and is the
mean of . is the PSD of sampled at .

Since according to Table 5.2, we can simplify Eq. 5.10.8 to:

(5.10.9)

It then follows (Ref. 28, p. 92) that can be expressed as the square of a discrete
transfer function :

(5.10.10)

Where is the variance of a discrete time white noise signal which is applied to the
stable filter to obtain a noise signal with the PSD .
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In addition we will assume that is “normalized” so that:

(5.10.11)

According to Eq. 5.10.10, this implies that:

(5.10.12)

The coefficients of the discrete filter can then be obtained by a least squares curve
fit to the measured PSD’s.

In order to minimize the relative error residual with equal weight on all parts of the fre-
quency range, the square of the logarithmic residual will be minimized on a logarith-
mic frequency scale:

(5.10.13)

Thus , , and are determined in such a way that is minimized
under the constraint given by Eq. 5.10.11. is determined from the experimental
PSD using Eq. 5.10.9. is the number of points in the FFT used to determine
the PSD. Since is only known at discrete frequencies, Eq. 5.10.13 is actually
implemented as a sum rather then an integral.

The actual minimization is performed in Matlab using the “fmins” function. The con-
straint is implemented by using the ratio as an independent parameter instead of

and .

The resulting coefficients in the discrete noise shaping filter is shown below in Table
5.4:

In order to simplify things a little, the same PSD fit is used for all error directions (i.e.
only the applied white noise excitation has a different magnitude). It is evident from
Figure 5.15 below that this is a reasonable approximation, since the PSD fit is good for
all three error directions.

[rad/s]

All directions 0.0501 0.8938 0.0943 0.0124

Tabel 5.4 Coefficients of discrete DGPS error noise shaping filter.
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The actual “measured” PSD’s and the fitted approximations are shown below in Figure
5.15:

The resulting augmented kinematic system thus consists of Eq. 5.10.2 and Eq. 5.10.3
combined with Eq. 5.10.4:

(5.10.14)

Notice that this model contains no white “measurement” noise, since the measurement
noise is entirely modelled by the noise shaping filter which is part of the state vector.

With the vector signals defined by:

(5.10.15)

FIGURE 5.15 PSD’s of SNR weighted pseudo range DGPS position errors.
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The constant matrices are defined by:

(5.10.16)

Their are many implementations of the Kalman filter (Ref. 32, chapter 2.3). In the “A
Priori Recursive Formulation” (Ref. 32, Table 2.3-3) the time and measurement
updates are combined. This gives a compact filter equation with only one filter state
update at each sample time. It is however more flexible to use separate measurement
and time updates. This is due to the fact that if some measurements are missing due to
measurement problems (in this case missing PR DGPS position updates), the filter can
continue to provide state estimates for some time using just the time updates. For this
reason we will implement the kalman filter using separate time and measurement
updates.

Time update (Ref. 32, Table 2.3-1):

(5.10.17)

Where is the a priori state estimate and is the calculated a priori state estimate
covariance.

Kalman gain (Ref. 32, Table 2.3-2):

(5.10.18)

Measurement update (Ref. 32, Table 2.3-2):

(5.10.19)

Where is the a posteriori state estimate and is the calculated a posteriori state
estimate covariance.

Since the Kalman filter is time varying it is important for the correct function of the fil-
ter to initialize the estimated state vector and covariance with realistic values. Before
the first measurement is taken, we have no knowledge of the differential position. Thus
in principle the variance of the estimated position is infinite. This is unfortunate for
implementation of the filter, since the Kalman gain will become infinite as well (see
Eq. 5.10.18).

This problem can be effectively resolved by using the first DGPS position measure-
ment as the initial state estimate of the position and the corresponding SNR predicted
variance as the variance of the position estimate. Since the DGPS measurement error is
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unknown when the filter is started, the expected error filter state vector is zero.
This gives the following expression for the initial state estimate:

(5.10.20)

However according to Eq. 5.10.4, the first state of is equal to the pre-
dicted DGPS measurement error, thus the variance of is equal to the a priori SNR
weigthed DGPS measurement variance. The state is approximately equal to the
DGPS measurement error rate. From the preceding analysis we already know that the
majority of the DGPS measurement error has a very low frequency distribution.

The initial covariance of the error filter states can be determined by assuming that the
initial covariance is equal to the steady state covariance of the error filter without
measurement updates. This steady state error filter covariance can be determined using
the matrix equivalent of Eq. 5.10.9. However since we have already implemented a
numerical simulation of the Kalman filter, we can use a simplified version of this to
attain the steady state value of the error filter covariance without measurement updates
for a unit value DGPS measurement noise . The resulting initial value of the
error filter covariance can then be determined as:

(5.10.21)

Notice that the variance of is not exactly equal to because of rounding
errors in the filter coefficients from Table 5.4.

This gives the following result for the covariance of complete initial state vector
estimate :

(5.10.22)

This completes the kinematic DGPS position filter design.

5.11 Performance of the complete DGPS system

We can now determine and analyse the performance of the kinematic Kalman filter
DGPS system designed above. For the purpose of guiding an UAV to an autonomous
precision landing on a small runway, the most important DGPS specifications are:

• What is the risk of exceeding a specified horizontal and vertical error?

• Can we predict the risk of exceeding a specified error at any one time?

• What is the availability of the complete (kalman filtered) DGPS system?

Using the measured DGPS raw data (pseudoranges and carrier phases) and the just
designed Kalman filter, we will try to answer these questions below.
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In order to get a qualitative understanding of the filter performance, we will start by
looking at a randomly picked short time series of the kalman filter states and covari-
ance. The filter is initialized at the beginning of the run as described in the previous
section. Notice that this is not a “simulation”, since the filter is run on actual DGPS
measurements collected in the short baseline test setup described previously.

From the kalman filter state trajectory it is apparent that at the very beginning of the
time series, the (differential) position estimate follows the “measured” position

quite closely. However as more measurements arrive, the position estimate quite
nicely approaches the true position , while the estimated measurement error

captures the noise present in . It is also apparent that the estimated (a priori)
covariance of follows a realistic trajectory, since it has a long “time con-
stant” which is compatible with the low frequency noise content of the DGPS measure-
ment error shown in Figure 5.15. Similarly, the Kalman gain (feedback to )
decreases with time after a short transient, while the Kalman gain (feedback to )
increases with time. The general conclusion from Figure 5.16 is thus that the Kalman
seems to be working as desired.

FIGURE 5.16 North-south Kalman filter run using actual measurements.
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The state estimate and DGPS measurement errors for all directions (north-south, east-
west and up-down) for this dataset are shown below:

Basically Figure 5.17 shows that the qualitatively correct behaviour of the Kalman fil-
ter is also valid for the other directions.

FIGURE 5.17 Kalman filter DGPS measurement input and position estimate errors.
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We will now look at a longer time span of one hour (3600 sec.) in order to see the
asymptotic behaviour of the Kalman filter:

Figure 5.18 confirms that for long time spans the Kalman filter has excellent DGPS
measurement error rejection. Notice the discontinueties at around 400 sec. and again at
around 500 sec. This is due to lack of a sufficient number of valid phase measurements
to perform a velocity calculation. In this simple implementation of the filter this results
in a reset of the Kalman filter on the next sample. However when used in conjunction
with an inertial navigation system (INS), the velocity estimate of the INS can be used
temporarily instead of the carrier phase measurements to update the DGPS Kalman fil-
ter during brief outages of DGPS measurements. This can prevent the temporary loss
of precision caused by a Kalman filter reset.

In a practical UAV navigation and guidance application of the DGPS Kalman filter one
can not in general afford to wait for several thousand seconds before using the position
estimates. In practice we want to know the available precision within a few minutes
time from a Kalman filter reset. Figure 5.19 below is thus a run of the same data as in

FIGURE 5.18 Kalman filter DGPS measurement input and position estimate errors.
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Figure 5.18, but now we have forced a Kalman filter reset for each 500 sec. time inter-
val (not that the measured DGPS position is omitted for clarity):

It is apparent from Figure 5.19 that the Kalman filter does indeed converge towards a
small error after every reset.

In order to quantify the performance of the Kalman filter it is however necessary to
perform a more stringent analysis of the results. Since the Kalman filter predicts the

FIGURE 5.19 Kalman filter performance with reset and reinitialization for every 500 sec.
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instantaneous position estimate variance, it is logical to try to correlate the actual meas-
ured estimate error variance with the predicted (a priori) value.

Figure 5.20 is based on the same 6 hour measurement interval as in Figure 5.13 and can
thus be used to show the difference between the SNR weigthed DGPS error statistics
and the Kalman filtered error statistics. Notice that the Kalman filter is forced to reset
every 500 sec., just as in Figure 5.19. The first observation is that the linear correlation
(given by Eq. 5.9.20) between the predicted and measured standard deviations is still
valid:

(5.11.1)

However when compared to the unfiltered case, it is apparent that the relative number
of “measurements” with a priori standard deviations larger then about 1.5 m is much
smaller for the Kalman filter. This is very important because it indicates that the
Kalman filter is effective in reducing the occurrence of extreme errors, which could be
catastrophic during autonomous landing of an UAV.

Since the error statistics of the Kalman filter is obviously very nonstationary (i.e. a
decreasing error variance as function of time) there is really not any stringent statistical
meaning in a time invariant error probability analysis. In spite of this fact, the user of
the system still needs to know the expected error statistics of the Kalman filter esti-
mats.

FIGURE 5.20 Correlation between predicted a priori and measured standard deviations.
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To satisfy this desire we will analyse the estimation errors as functions of time after a
reset/reinitialization of the Kalman filter.

Figure 5.21 confirms that the general differential position error trend is for decreasing
error with increasing time from filter reset. It is apparent that both the standard devia-
tion and maximum errors become more smooth as the reset time increases. This is due
to the smoothing properties of the Kalman filter. If one where to choice an appropriate
“warm up” time for the Kalman filter, it seems that 240 seconds (4 minutes) could be a
good “round” compromise between system availability and error minimization.

What we really want is to be able to determine the probability of exceeding a certain
error given the predicted differential position estimate standard deviation from the
Kalman filter. Figure 5.20 provides a partial answer to this problem, however if the
user wants to estimate the probability of exceeding a certain error we really need to
know the shape of the probability distribution function (pdf). This however requires a
much longer dataset for statistical significance due to the observed temporal correla-
tion of the DGPS errors. Until such an analysis is performed we can use Figure 5.21 as
a guideline.

5.12 DGPS conclusion:

By statistical analysis of double difference pseudorange measurement errors it has
been shown that the worst errors are probably caused by multipath. It is also demon-
strated that the errors are correlated to the indicated signal to noise ratio. This informa-
tion is used along with knowledge of the temporal correlation of the pseudorange

FIGURE 5.21 Correlation between differential position error and reset time.
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errors to design a kinematic Kalman filter which significantly improves the accuracy of
the DGPS system.
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Chapter 6

Inertial Navigation System

6.1 Overview of system hardware

The Inertial Navigation System (INS) hardware consists of a self contained instrument
comprising 3 independent rate gyro sensors and 2 independent 2 axis acceleration sen-
sors. The rate gyro sensors are arranged in a nominally 3 dimensional ortogonal config-
uration, while the acceleration sensors are arranged in two nominally ortogonal planes.
Thus there is an acceleration measurement redundancy in one direction. In addition to
the primary inertial sensors, there are 3 auxiliary temperature sensors, one fixed to each
rate gyro sensor, in close thermal contact with the gyro sensor.

The instrument has dedicated Analog to Digital (A/D) converters and analog signal
conditioning circuits for all sensors. The analog signal conditioning characteristics for
each type of sensor is given below:

The A/D conversion process is performed with A/D converters with the following
nominal characteristics:

The results of the A/D conversion is loaded serially into the onboard 16-bit Fujitsu
microcontroller. This microcontroller performs all the digital signal processing to
implement an inertial navigation system. This includes prefiltering, temperature com-
pensation, orthogonalization and state estimation. In addition the microcontroller han-
dles communication to the rest of the system using the build in Controller Area
Network (CAN) interface. The rest of this document describes in general terms the
mathematical models of each sensor and the digital signal processing algorithms

Sensor Principle Analog
interface

Electrical

bandwidtha

a. May exceed sensor bandwidth.

Nominal Sensi-

tivityb

b. At output of analog signal conditioning circuit.

- - - fBW -

Rate gyro Vibrating beam Differential 72Hz ~0.7mV/(deg/s)

Temperature PT100 Bridge 770Hz ~30mV/Κ

Acceleration Mass/spring with
capacitive pick-up

Single ended 1540Hz ~20mV/(m/s2)

Tabel 6.1Analog sensor signal conditioning.

Sensor A/D range Ideal precision Resolution Physical resolution

Rate gyro 4V 16 bits 0.06mV ~0.1deg/s

Temperature 4V 12 bits 1mV ~0.04Κ

Acceleration 4V 12 bits 1mV ~0.05m/s2

Tabel 6.2A/D sensor signal processing.
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involved in obtaining an estimate of the inertial state of the vehicle which uses this
INS.

6.2 Sensor models

Below the principles and mathematical models of each type of sensor in the INS is
described.

6.2.1 Rate gyro with temperature sensor

Each rate gyro sensor element is a model ENC-03JA vibrating rate gyro transducer
from Murata. The principle of operation is that a beam with free-free boundary condi-
tions is forced to vibrate at is fundamental natural transverse eigenfrequency using
integral piezo elements. The plane of forced vibration is fixed to the sensor housing.
Any applied rotation of the sensor housing will give rise to coriolis forces that will in
turn produce an out of plane vibratory deflection. This out of plane vibration is picked
up by piezo elements as a differential AC voltage that is subsequently demodulated and
output as a differential DC voltage which is ideally proportional to the rate of rotation
around the axis of sensitivity.

In reality there are some major error sources in the transducer. Most importantly, tem-
perature drift in the demodulating electronics contribute to drift in sensitivity and par-
ticularly in the offset (zero rate output). Secondly the axis of sensitivity may not
exactly match the ideal direction, which results in cross coupling sensitivity to off axis
rotation. This is further compounded by geometrical errors with respect to the nominal
sensor orientation in relation to the INS coordinate system.

The mathematical model of each rate gyro sensor element, that will be used in this the-
sis is given below:

(6.2.1)

Where ωi is the rate of rotation around the (a priori unknown) axis of sensitivity, ci(Ti)
is the temperature dependent sensitivity, Vi(Ti) is the temperature dependent offset,
vi(t) is the measurement noise process and Ti is the sensor temperature. The subscript
“i” is used to indicate that these quantities are specific to sensor number “i”.

As can be seen, this simple sensor model does not account for nonlinearities in sensi-
tivity or for the sensor frequency response.

As a model for the sensors temperature response to the environment, the following par-
allel first order thermal model will be used:

(6.2.2)

∆Vout i, ωici Ti( ) Vi Ti( ) vi t( )+ +=

T
·
i

T
·
mi

1
τT

-----–
1

τ T∆
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1
τ T∆
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τTm

--------–
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Tmi

1
τT
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1
τTm
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Where Tmi is the measured sensor temperature and Ta is the ambient temperature. The
thermal time constants τT and τTm represents the time constants for the rate gyro sen-
sor and the temperature sensor respectively. These are with respect to ambient temper-
ature changes. The thermal time constant represents the mutual time constant
between the rate gyro sensor and the temperature sensor. Despite the fact that these
time constants may vary from sensor to sensor, this will be neglected in this thesis, for
ease of analysis.

The design and mounting of each rate gyro / temperature sensor transducer has been
optimized to give a high mutual thermal coupling and low coupling to the ambient
environment. This gives the following approximate relationships between the thermal
time constants:

(6.2.3)

So that the thermal time constants with respect to ambient temperature changes are
roughly the same for both rate gyro sensor and temperature sensor, while the mutual
time constant is more then an order of magnitude smaller.

The net result is that the measured temperature will track the actual rate gyro tempera-
ture closely even with large and rapid changes in ambient temperature.

When power is applied to the INS, the thermal equilibrium of both the rate gyro sensor
and the temperature sensor element will change due to heat dissipation in both sensors.
Since the net power dissipation and thermal mass are not exactly the same for both ele-
ments, a transient temperature error between the elements will be generated. After a
certain time of the order of the mutual thermal time constant , the two sensor ele-
ments will attain a constant temperature difference. To obtain accurate temperature
compensation of the rotation rate using Eq. 6.2.1, it is advisable to wait for a certain
warm-up time, after INS turn on, before using the gyro measurements. After this
warm-up time we may use Eq. 6.2.1 to compensate the gyro sensor for temperature
drift, by using the measured sensor temperature Tmi instead of the actual sensor tem-
perature Ti. This works because we can assume from the above that the temperature
difference Ti-Tmi is almost constant for the entire ambient temperature range of the
INS.

The rate gyro sensor process noise (vi(t)) statistics is not known exactly a priori due to
the difficulty of measuring small analog noise signals independently of the measuring
equipment. Thus this will be identified from in situ measurements using the INS A/D
converter. The same system identification process is used to determine the unknown
sensitivity and offset functions of Eq. 6.2.1.

6.2.2 Acceleration sensors

Each acceleration sensor element is a model ADXL210 two axis micro
machined mass/spring sensor with capacitive sensing, from Analog Devices. The prin-
ciple of operation is that a small mass suspended in springs is deflected by accelera-
tions, this deflection is then measured using a variable comb shaped capacitor between
the fixed and moving parts of the sensor. The maximum bandwidth of the sensor is
according to the data sheet approximately 10kHz (Ref. 35). The actual implemented

τ T∆

τT τTm≅ τ T τ T∆»

τ T∆

10G±
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bandwidth can be adjusted to the application by using suitable filtering capacitors. In
the INS, filtering capacitors with a nominal value of 100nF are used, giving a nominal
-3dB bandwidth of 50Hz. The measurement noise of the acceleration sensor is accord-
ing to the datasheet composed of a white noise component and a thermal drift compo-
nent. The white noise component is filtered by the low pass filter, thus giving a
bandwidth limited white noise component. The thermal drift “noise” naturally depends
on the ambient environment of the INS. Since the sensors are physically shielded from
the environment by the mounting method, the thermal drift can be assumed to be a very
low frequency noise component.

6.3 Instrument model

The complete instrument is composed of 3 rate gyro sensors and 2 two axis accelerom-
eters, ideally giving three independent measurements of angular rate and acceleration.
In reality the sensors are not oriented exactly along the ideal ortogonal axes of the
instrument, this gives rise to cross coupling between the sensor outputs. If we assume
that the instrument axes (ex,ey,ez)INS constitute a right hand oriented cartesian coordi-
nate system and that each sensor has a specific direction of maximum sensitivity, we
may relate the real scalar output of each sensor to the ideal vector output of the combi-
nation, by using an appropriate transformation.

For the rate gyro sensors:

(6.3.1)

Where ωINS is the angular rate vector for the INS and (ω1,ω2,ω3) is the scalar outputs
from the individual physical sensors, corrected for temperature drift and other nonlina-
rieties. The 3x3 matrix Mgyro defines the linear transformation between sensor axes
and INS axes.

We have implicitly assumed that a linear relationship exists between the (linearized
and temperature corrected) sensor outputs and the INS angular rate vector. It is also
implied that the sensor axes of sensitivity is fixed in the INS coordinate system.

Similarly we may express the transformation between measured accelerations and the
INS acceleration vector as:

(6.3.2)

Where aINS is the acceleration vector in the moving INS coordinate system and
(a1,a2,a3,a4) is the scalar outputs from the individual physical sensors, corrected for
temperature drift and other nonlinearities. Here the 3x4 matrix Macc defines the trans-

ωINS

ωx

ωy

ωz INS

Mgyro

ω1

ω2

ω3 sensor

= =

aINS

ax

ay

az INS
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formation between the acceleration sensor outputs and the INS coordinate system.
Notice that aINS includes the apparent effect of the acceleration of gravity “g”, since it
is most practical to correct for the orientation of the INS with respect to earth after per-
forming the orthogonalization.

6.4 Kinematic model of INS

Both the INS angular rate vector ωINS and acceleration aINS are referenced to the mov-
ing frame of the INS coordinate system. In order to use these measurements for naviga-
tion and guidance, they must be related to an appropriate global coordinate system. In
the following, the curvilinear earth coordinate system (ex,ey,ez)e, will be assumed to be
such a system. This coordinate system, for short the earth coordinate system, is a coor-
dinate system that is everywhere (on the or near the surface of the earth) oriented in
such a way that the x-direction points towards the geographical north, the y-direction
towards the geographical east and the z-direction points straight down. In the light of
the required accuracy, the following simplifying assumptions / approximations will be
made with regards to the earth coordinate system:

1. The earth coordinate system is an inertial coordinate system.

2. The earth coordinate system is a locally cartesian coordinate system with negligible
curvature.

3. No distinction between the local gravity vector direction and the direction to the
center of the earth.

4. The earth coordinate system is right hand oriented.

Using some of these assumptions, we can express the transformation between the earth
fixed coordinate system and the INS system as a translation and a rotation:

(6.4.1)

Where (x,y,z)earth is any vector expressed in earth coordinates and (x,y,z)INS is the
same vector expressed in INS coordinates. MI2V is a 3x3 transformation matrix that
accounts for the relative orientation of the two coordinate systems, while PINS is the
position of the INS coordinate system origo in earth coordinates.

Since the transformation matrix MI2V defines a transformation between two cartesian
right hand oriented coordinate systems, the reverse transformation MV2I is equal to the
transpose of MI2V (Ref. 34, p. 11):

(6.4.2)

6.4.1 Orientation of INS

In general a 3x3 matrix has 9 independent scalar parameters, however the orientation
of the INS with respect to the earth coordinate system can be described by using only 3
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Degrees Of Freedom (DOF). There are many ways to choice these degrees of freedom,
but 2 properties are important for the proper choice:

• It can be shown that any 3 parameter description of the orientation, has singularities
at certain orientations. It is thus an advantage if possible to place the singularities at
orientations that are rarely encountered.

• It is an advantage to use parameters that are intuitively understood.

For these reasons, we will use the following 3 degrees of freedom for describing the
INS orientation relative to the earth coordinate system:

• The azimuth angle θa, between the INS x-axis and the earth x-axis (true north),
using a positive rotation around the z-axis. This corresponds to the generally used
definition of the “heading”.

• The elevation angle θe, between the INS x-axis and the horizon, using a positive
rotation around the y-axis. This is sometimes called the “pitch” angle.

• The roll angle θr, positive around the x-axis.

The rotations are done in the order; azimuth, elevation and lastly roll. The above men-
tioned singularities are located at orientations corresponding to , where it is
impossible to distinguish between azimuth and roll. However for the present UAV
application of this INS, these orientations are really not important.

It will be assumed that the angles have the following ranges:

• , and .

And similarly when expressed in radians.

For a rotation around the z-axis of a cartesian right hand oriented coordinate system,
the rotation matrix for a rotation angle θ, is given by (Ref. 34):

(6.4.3)

For a rotation of θ, around the y-axis:

(6.4.4)

While for a rotation of θ, around the x-axis, the transformation is:

(6.4.5)

θe 90
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θa 0 360
o
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θ( )cos θ( )sin 0
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0 0 1
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0 1 0
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The complete transformation between vehicle coordinates and INS coordinates can
then be expressed as:

(6.4.6)

Notice that the order of the rotation matrices are reversed compared to the order that
the rotations are performed.

The inverse transformation can then be determined as:

(6.4.7)

For computational convenience, we may want to have explicit expressions for these
transformations. These are given in Appendix G

Since θa, θe and θr will be used as states to describe the orientation of the INS, we need
expressions relating the derivatives of these angles to the INS angular rate ω =
(ωx,ωy,ωz), in order to construct a state space model of the INS. What we actually need
is a relation of the type:

(6.4.8)

Where “f” is an algebraic function.

In Appendix H, Eq. H.10 the relation between derivatives of the Euler angles and the
INS angular rate is determined as:

(6.4.9)

Where MEuler is the orientation dependent “transformation” between INS angular rates
ω and euler rates . The euler angle vector θ is here defined as .

6.4.2 Velocity and position

In general the position and velocity of the INS in earth coordinates can be determined
as the temporal integral of the true acceleration in earth coordinates:

(6.4.10)

Where the subscript “e” on the velocity and acceleration vectors refers to earth coordi-
nates.
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The acceleration in earth coordinates can be determined from the apparent acceleration
in INS coordinates, by using the INS to vehicle transformation matrix MI2V:

(6.4.11)

The last term containing the acceleration of gravity “g”, corrects for the measured
apparent acceleration due to gravity. Where Mg is defined as .

6.4.3 Complete kinematic model of INS

The complete kinematic model of the INS can be found by combining Eq. 6.4.9, Eq.
6.4.10 and Eq. 6.4.11:

(6.4.12)

Which is a state space model with states P, V and θ and inputs aINS, g and ω. This
gives 9 scalar states and 7 scalar inputs.

It is apparent that in this kinematic model of the INS, the system matrix Akin is con-
stant, while the input matrix Bkin is a function of the orientation as given by the Euler
angles θ. What has essentially been obtained is a kinematic state space model driven by
the inertial measurements.

6.4.4 Kinematic model with noise

In an ideal case, Eq. 6.4.12 makes it possible to compute the position, velocity and ori-
entation of the INS at any time , given the an initial position, velocity and orienta-
tion at . However in practice the measurement errors and noise inherent in the
acceleration and angular rate measurements, introduces a slow drift in the kinematic
states, since the kinematic model consists entirely of integrators. In fact, since the posi-
tion is obtained by double integration of the acceleration, the position is an unstable
state. Since the inertial measurements are inputs to the kinematic model, the physical
measurement noise must be mathematically represented as process noise:

(6.4.13)

Where va,INS is the stochastic acceleration measurement noise in INS coordinates and
vω is the stochastic angular rate measurement noise in INS coordinates. We have for
simplicity assumed that the error in “g” is much smaller then in the acceleration meas-
urements.
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There are several different ways to describe the physical measurement noise processes,
however for practical purposes we will have to make the following assumptions
regarding the stochastic nature of the physical measurement noise (Ref. 36):

• The probability density functions (PDF’s) of the measurement noise is gaussian.

• The measurement noise is ergodic.

• The noise process is stationary.

The first two assumptions makes it possible to use available methods for estimation in
stochastic systems. The third assumption means that a properties of the stochastic sig-
nal do not change with time, which simplifies the analysis and makes it possible in
practice to determine the frequency characteristics of the measurement noise from
experiments.

6.4.5 Dynamic model

One basic property of the kinematic model, given above, is that the model is independ-
ent of the actual dynamics of the vehicle using the INS. This is of course an advantage
from a standpoint of simplicy. However neglecting any knowledge of the vehicle
dynamics will inherently give a less “optimal” state estimate. This is especially appa-
rant when considering the angular rate measurements. Since the angular rate ω in the
linear case is the integral of the angular accelerations, it follows that the angular rates
must be continues functions of time. If this was not the case, the vehicle would be dis-
turbed by torque impulses, which is not realistic for an airborne vehicle.

In order to improve upon the kinematic model, an “accurate” dynamic model of the
vehicle containing the INS could be used. In our case this could be an accurate linear-
ized aerodynamic model of the UAV. Assuming that the model was not only a detailed
but also an accurate model of the dynamics of the actual UAV, this would then make it
possible to synthesis an “optimal” (Extended) Kalman Filter (EKF). In reality it would
however be difficult and time consuming to obtain such an accurate model, even worst
we may in fact jeopardize the stability and convergence of the state estimator by plac-
ing to much trust in an erroneous model (Ref. 36, Chapter 4). It is demonstrated that
one way to prevent divergence is to ensure that all unstable states are affected by (ficti-
tious) process noise (Ref. 36, Chapter 4).

Without going into mathematical detail, we can thus summarize that we want a
dynamic model that captures the essential features of the true dynamics of the vehicle,
but that still contains some process noise to account for modelling errors. It is obvious
that there are many different ways to arrive at a model with these general features. In
this thesis we will not pursue the mathematical intricacies of obtaining an “optimal”
solution to this problem. Instead a simple workable solution will be proposed.

Since the desired model must be a “dynamic” model, it is obvious to start by looking at
the frequency content of the UAV behaviour. Since the primary forces on the UAV are
aerodynamic, we can assume that the vehicle is not subject to any impulses. This can
be described mathematically by stating that for “high” frequencies the velocity and
angular rates must approach zero. Since an impulse is also associated with discontinues
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higher order derivatives, we can equally well state that the acceleration and angular
acceleration must approach zero for high frequencies:

(6.4.14)

and

(6.4.15)

For “low” frequencies, we do not have such a readily available deterministic model.
The obvious choice is therefore to model the low frequency dynamics by a stochastic
noise process.

V· 0→ for f ∞→

ω· 0→ for f ∞→



Chapter 6

Inertial Navigation System 183

6.5 System calibration

In the above sections, the sensor and instrument models have been described. For both
the individual sensors and their combinations, a number of unknown parameters have
been defined. These include deterministic parameters like the gain, offset, temperature
dependency and frequency characteristics. Stochastic parameters like measurement
noise levels and frequency content are also used. In order to use these models to
improve the accuracy of the INS, these parameters have to be estimated and tabulated.
The only feasible method of doing this with sufficient accuracy is by using actual
measurements on the INS. Since the INS is a self contained analog and digital signal
conditioning unit, such measurements will conveniently also include effects due to low
level signal conditioning. The total process of using measurements to obtain the differ-
ent parameters can be described as “calibration”. Calibration can in principle be per-
formed in two ways, off-line and on-line calibration. Off-line calibration is the
“traditional” form of calibration. It is basically done in a “laboratory” environment,
where the instrument is subjected to different external stimuli. The response to the
external stimuli are then recorded and compared to a suitable reference measurement.
Using the accurate reference and the raw measurement data, the unknown parameters
of the sensor and instrument models can then be determined. On-line calibration is
instead performed during the actual operation of the instrument. This can thus be per-
formed during the entire service life of the instrument. Normally off-line calibration
involves some kind of interactive process, while on-line calibration is a more auto-
mated process. Below we will describe both the on-line and off-line calibration per-
formed on the INS.

6.5.1 Off-line calibration

Off-line calibration has the following advantages:

• Accurate due to good control of the laboratory environment and external stimuli.

• Different phenomena can relatively easily be distinguished and separated.

• System models can be obtained which are essential for operational use with state
estimation filters.

However there also some major disadvantages:

• Accurate reference instruments and actuators are needed.

• Time consuming measurements and analysis.

• High degree of operator work load.

• The laboratory environment does not accurately reflect the operational environment,
which means that some residual errors will still exist during operation.

In view of these considerations, the following off-line calibrations of the INS will be
performed:

1. Noise models and frequency contents.

2. Temperature dependent offset.

3. Sensor gain and frequency characteristics.
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4. Sensor nonlinearities.

5. Orthogonalization of sensor measurements.

We will assume that the individual sensor noise models are independent of the state of
the sensor. This means that the first two calibrations can be performed with the INS
stationary ( and ). In effect the sensor noise can be measured
by sampling each sensor with the operational sampling rate. A frequency analysis of
the data then yields the sensor noise models. The temperature dependent offset can be
measured by subjecting the complete INS to one or more slow temperature cycles,
encompassing the operational range. Comparing the primary sensor output to the build
in temperature sensors, then gives the temperature dependent offset.

The last three types of measurements require a suitable externally measurable motion
stimulation. For the rate gyro sensors, this is provided by a suitable “spintable”. The
spintable is a one degree of freedom rotational platform. Using a suitable test fixture, it
is possible to rotate the entire INS around one of the principle axes at a time. Using a
suitable control of the spintable, a sinusiodal angular rate excitation is used:

(6.5.1)

Where ωp denotes one of the principal axes angular rates: ωx, ωy or ωz. The desired
frequency of torsional oscillation is given by fosc, while the desired amplitude of oscil-
latory angular rate is given by Aω.

ωINS 0≡ aINS constant≡

ωp Aω 2πfosct( )sin≅
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Chapter 7

General Instrument Program Structure

7.1 UAV instruments

This document is intended as an overview of the general program structure for UAV
instruments which are based on the MB90F598 16-bit microcontroller (MC) from
Fujitsu. This document makes frequent references to the “F2MC-16LX Family, 16-bit
Microcontroller, MB90595 Series, Hardware Manual” (Ref. 38), for short HM. The
program structure arrived at in this document is of course heavily dependent on the fea-
tures and structure of this particular MC, this means that the applied program structure
may not be applicable to other systems with similar tasks.

The Unmanned Aerial Vehicle (UAV) has a number of separate instruments for navi-
gation, guidance and control of the system. For reasons of modularity and ease of inter-
face and development, the individual instruments are self contained units that
communicate through a Controller Area Network (CAN) bus (Ref. 39), as shown
below:

The CAN bus is a serial two wire differential bus with a highly sophisticated low level
protocol. The main features are; low level error detection and automatic retransmis-
sion, message identifiers instead of addresses, medium speed (500kHz-1MHz band-
width), non destructive arbitration of bus conflicts and all messages are received and
accepted simultaneously at all nodes in the system. The bus is physically a two wire
line topology (multidrop) with 120Ω termination at each end. For the user, some fea-
tures that are particularly interesting are:

FIGURE 7.1 UAV instrument structure.
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• Since data are identified using a message identifier (ID), an instrument does not
need to know the “address” of any node that uses its data. Instead it is up to each
instrument to determine if a message on the bus is relevant to its function.

• It is very important that no two messages have the same ID, as this will lead to
undetectable data corruption.

• The message ID is also the priority, the lower the ID the higher the priority.

• Messages are received simultaneously (less then 1usec uncertainty) at all nodes in
the system.

These features will be used extensively when designing the software for each instru-
ment.

7.2 Overview of tasks

The “tasks” are defined as the general actions and processes that the MC must perform
to complete its functions as part of UAV instrument.

7.2.1 Synchronisation

In order to use the measurements from the individual instruments to determine the state
of the complete vehicle, it is very important that the precise sampling time of the indi-
vidual measurements are known. This both applies to the timing within each instru-
ment and the timing between instruments. Synchronisation is here defined as the
process of synchronising the local clocks within each instrument to a common time
source, internal or external to the UAV. It is apparent that synchronisation involves a
“master” clock source and several “slaves” that are synchronized to the master. There
are thus two kinds of tasks, one kind for the master and another kind for the slaves.
Since synchronisation defines the timing for everything else, this task must have the
highest priority of all the repetitive tasks. In the current system, synchronisation is per-
formed using over the CAN-bus, using a special message and algorithm according to
the method described in (Ref. 40).

7.2.2 Sampling

Sampling is the process of measuring the outputs of the particular sensors/transducers
of the instrument. Normally sampling is initiated by the MC, but on some instruments
the transducers periodically send data to the MC using a serial synchronous or asyn-
chronous interface. In addition to the appropriate hardware, sampling usually involves
a special piece of software called a “device driver”, that handles low level interface to
onboard MC peripherals and input/output (IO) ports. It is usually desired that the sam-
pling period is fixed and synchronised with the rest of the system. In some cases it may
be acceptable that samples are taken at “random” times, but accurately time stamped.
In some instruments different kinds of sensors may use different sampling times. Sam-
pling is a high priority time critical task.
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7.2.3 Data processing and local state estimation

Data processing is the process of converting the raw binary measurements into usable
information for transmission to the rest of the system. According to the application and
particular instrument, data processing can be everything from doing nothing with the
raw data, to complex linearization, temperature compensation, filtering and state esti-
mation. Data processing may involve using data from other instruments, received from
the CAN-bus. Data processing is usually the most computationally intensive task that
the MC must perform. For filtering or state estimation, some amount of memory is
needed to store states between sampling times. Since data processing is a prerequisite
to any control actions, it is a high priority task, but not as time critical as sampling.

7.2.4 Control signal generation

Control signal generation is the process of using data processed information from
within the instrument or from other instruments, to compute control signals. Control
signal generation is subjected to many of the same considerations as data processing. It
usually succeeds data processing, but must be performed within a set time frame. Prior-
ity and time criticallity is much the same as for data processing. In same cases control
generation can be performed before all data processing is finished. This strategy may
be used to save time from sampling to control actuation. It is apparent the control sig-
nal generation is not used in most “instruments”, but is included here for completeness.
In general “control signal generation” and “actuation” can also include transmission of
data by the Radio Transceiver to a ground control station.

7.2.5 Actuation

Actuation is the task of outputting the computed control signals to the actual physical
actuators, though appropriate ports on the MC. Actuation is a high priority time critical
task because it must usually be performed at a definite moment for best results. Usually
actuation is either synchronized with the next sample time or occurs a fixed time inter-
val after the sample time. As the case for sampling, actuation involves the use of device
drivers to interface to the MC ports and peripherals.

7.2.6 CAN-bus transmission

The transmission of CAN-bus messages is not extremely time critical, but since other
instruments might use the message for data processing or control it must be completed
in a fixed time frame (which may vary from message to message). Thus CAN-bus
transmission has a relatively high priority. Since the priority of the CAN-bus messages
are determined by their ID’s, it is important to assign appropriate ID’s to different
types of messages in the system design phase.

7.2.7 CAN-bus message decoding

The decoding of CAN-bus messages is sometimes time critical, depending of course on
the message type and the particular instrument. The relative priority of decoding of
CAN-bus messages will is therefore instrument dependent.
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7.2.8 Serial asynchronous communication (RS-232)

The universal serial asynchronous interface (UART) is used to communicate with
PC’s, mostly for user interface applications. Since the UART is relatively slow, it is not
really suited for high speed real time control applications. Also due to the asynchro-
nous nature of communication using the UART, synchronization can not be performed
accurately using this interface. In order to prevent the process of sending a string of
bytes through the UART, from locking up the system for long periods of time, a device
driver using input and output buffers should be used. For the above reasons, RS-232
communication has a low priority in most applications.

7.2.9 System state estimation

Since some instruments may have simple tasks compared to their computational
resources, the excess computational resources may be used to estimate global system
states. Global system states are here defined as states that are important for the naviga-
tion and control of the complete system, as opposed to local states that are used in low
level filtering and similar tasks. The idea behind doing global state estimation in differ-
ent instruments, is to utilize all available computational resources, thus freeing up hard
pressed instruments and controllers from excessive computational burdens. Also such a
scheme can relatively easily introduce redundancy into the system, without additional
hardware. System state estimation should be performed after the primary instrument
tasks.

7.2.10 System state synchronization

If the global system states are estimated in different instruments, it must also be possi-
ble to perform global system synchronisation of the system states. This can be per-
formed if each instrument periodically transmits its global state estimates using the
CAN-bus, instruments can then compare there global state estimates with that of other
instruments and act accordingly. Notice that global state estimates (of the same states)
from different instruments, must have different CAN-bus ID’s in order to avoid data
corruption.

7.2.11 Initialization

After power up or reset of each instrument, variables, states and tasks much be initial-
ized. This may also include receiving initial values of global states from the CAN-bus.

7.2.12 Error handling

There several types of possible errors that can occur. Some errors may be detectable
and perhaps recoverable without resetting the MC. Others may require resetting of the
MC, followed by initialization.

Program detectable errors:

• Failure of sensors: detectable by out of range measurements or excessive measure-
ment residuals in state estimators.
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• CAN-bus overload: detectable by inability to transmit message in allowable time
frame.

• RS-232 errors: detectable by error bits in UART.

• Excessive global state residuals: detectable by comparing with estimates of states
from other instruments.

Non program detectable errors:

• Program lock up (“infinite loop”): Detectable by activation of “Watch-Dog Timer” /
(WDT) reset after a predefined interval.

• Exceptions:

After a reset, the initialization routine can read the “Watch-Dog Timer Control Regis-
ter“(WDTC) to determine if the reset was caused by the WDT reset or power on reset.
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7.2.13 Signal flow

Before describing the program structure in detail, it is an advantage to determine the
desired signal flow for each sample interval:

The “global” estimation process is only performed in instruments with “spare” compu-
tational resources, for the purpose of increasing the system fault tolerance. The main
idea is that sampling and control actuation is performed at the start of the each sample
interval. This is possible because the control signals for the next sample time is deter-
mined from the predicted state estimate at the next sample time. This method simplifies
controller design because actuation and measurement is performed virtually simultane-
ously, at the beginning of each sample time interval.

FIGURE 7.2 Instrument signal flow graph.

ts(n) ts(n+1)

Sampling
&

actuation

Low level
filtering

Filtered
meas.

Raw
meas.

Meas.
update

A posteriori
state

estimate for
t = ts(n)

Temporal
update & con-

trol signal
generation

A priori
state

estimate for
t = ts(n+1)

Global
estimation

Global
state

estimate for
t = ts(n+1)

Time
critical

Synchronization

CAN-bus data

UART RX



Chapter 7

General Instrument Program Structure 193

7.3 General program structure

The general program structure consists of several high priority interrupt driven loops
and a low priority main loop.

The priorities of the different interrupts are given below:

FIGURE 7.3 General instrument program structure.

Interrupt Task Priority

CAN TX Time stamp transmission of synchronization 6

CAN RX Time stamp reception of synchronization

Decode messages to internal variables.
6a

I/O timer Main sample and control loop. 5

UART1 RX Save received char from UART1 in RX-buffer. 4

Tabel 7.1 Interrupt priorities.
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7.3.1 Main loop

The main loop handles asynchronous events and low priority tasks. This includes
detection and time stamping of asynchronous general purpose digital inputs and trans-
mission of data using the UARTS (RS-232).

a. Defaults to same priority as CAN TX interrupt.

FIGURE 7.4 Main loop.
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7.3.2 Sample loop

The sample loop includes all the tasks that are related to the sampling process: Sam-
pling, data processing, control signal generation and actuation. The algorithme
assummes that a predictor-corrector type state estimator is for data processing of
measurements.

The main idea behind the order of computations, is that the prediction step is per-
formed immediately after low level signal conditioning. While the temporal update
(integration) for the next sample epoch is performed after the new state estimate and
any control signals have been computed and output to the CAN-bus, UART or to the

FIGURE 7.5 Sample loop.
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actuation loop. The incorporation of external measurements from the CAN in the state
estimate may be performed before control signal generation as shown above. However
there are certain disadvantages with this approach: It is necessary to wait for the CAN-
message to arrive, thus delaying any control actions. Also it must be resolved how to
handle the absence of external data, without causing a lock up of the program. There-
fore it may be simpler and more robust to simply generate the control signal based on
the estimated state after including just the internally measured estimate updates. The
extreme consequence of this is that the control signals are generated based on just the
predicted state at the present sampling time. This allows the control signal to be gener-
ated before the present sampling time, thus enabling control actuation just after sam-
pling (if any).

The external state estimates can then be included as soon as they are received from the
CAN-bus, as described below.
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7.3.3 Synchronization protocol

Synchronization involves two kinds of processes, one kind for the “master” and one
kind for the “slaves”. The synchronization algorithm described below is based on the
synchronization protocol from (Ref. 40). The main idea behind the protocol is to use
the fact that CAN-bus messages are received (accepted) at all nodes in the CAN-bus
network simultaneously (less then 1 usec uncertainty). The protocol uses this property
to determine the errors between the local clocks in each slave instrument and the refer-
ence clock in the master instrument. This error can then be adjusted to zero in a contin-
ues or discontinues manner using a feedback loop in each slave instrument. The
protocol only needs one type of CAN-bus message to accomplish this, as shown below:

In the figure above, TX is an abbreviation for Transmit and RX an abbreviation for
Receive. The dashed lines indicate flow paths that are triggered by internal or external
interrupts. Due to the fact that the TX complete interrupt and RX interrupts are flagged
at the same time, the main limitation on the accuracy of the above algorithm is due to
uncertainty in interrupt processing times. Large errors can result if the CAN TX and
RX interrupts are postponed due to higher priority interrupts or temporary “masking”

FIGURE 7.6 Basic CAN-bus synchronization protocol.
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of the interrupt flags. It is for this reason that the CAN RX and TX interrupts are
assigned the highest priority of all regular interrupts.

There are several possible improvements to the above synchronization protocol:

• Estimation of uncertainty of slave and master time stamps due to interrupt delays.

• Indication of uncertainty of master time stamp tm in CAN message data block.

• Weighting of indicated time errors dts = ts - tm in clock adjustment procedure,
according to measurement uncertainty in dts and uncertainty in ts.

• Rapid resynchronization after a node reset, followed by smooth adjustments for
jump less tracking of the master clock.

• Possibility for smooth transition to redundant reserve master clocks.

7.3.4 CAN-bus reception

In Figure 7.6, above, the signal flow and program structure for synchronization of slave
nodes are shown. Since the synchronization of the slave nodes is performed using the
CAN-bus, all CAN messages must initially be treated as shown above in order to
obtain a time stamp for the synchronization messages. Thus the CAN RX interrupt rou-
tine is obtained as an extension of Figure 7.6:

FIGURE 7.7 CAN-bus RX interrupt routine.
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7.3.5 UART RX interrupt

The UART receive (RX) interrupt is activated by the reception of a valid byte (char) by
the UART1 (default) or UART0 (optional) onboard UART’s. The purpose of the inter-
rupt is to save the received byte in the instrument UART RX buffer. This must be done
before the UART has finished receiving the next byte, to prevent loss of data. The
required interrupt delay constraints are given below:

The last column indicates the allowable number of machine cycles from the time of the
UART RX interrupt request until the received byte is read from the UART, without
danger of UART over run. The table assumes an internal machine clock frequency of
16MHz. The UART RX interrupt routine is shown below:

The UART RX buffer is organised as a ring buffer. This means that a certain fixed
amount of RAM (Random Access Memory) in the MC is allocated for the buffer. Each
time a byte is received it is stored in the next available position in the buffer, as indi-
cated by a “data in” pointer. When the data in the buffer is read by another program
application, a “data out” pointer is advanced to indicate the position to which data has
been processed. When the “data in” or “data out” pointer arrives at the “end” of the
buffer area it wraps around to the beginning of the buffer area, thus creating an “infi-
nite” ring buffer. If the “data in” pointer over takes the “data out” pointer, old data in

UART baud rate Maximum delay for processing Machine cycles at 16MHz

9615bits/s 936 us 14976

19230bits/s 468 us 7488

38460bits/s 234 us 3744

62500bits/s 144 us 2304

Tabel 7.2UART RX allowable interrupt latencies.

FIGURE 7.8 UART RX interrupt routine.
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the buffer will be overridden. For this reason it is important that the “end user” pro-
gram application regularly processes the data from the buffer.

A similar ring buffer is used for transmitting through the UART, as outlined in Section
7.3.1.
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Appendix A: Electric propeller propulsion system

A.1: DC-motor and gearing

A DC motor runs on direct current, using mechanical commutation to control the cur-
rent in the field windings. The stator of the motor consists of a permanent magnet.
Since the motor is intended to run at a relatively high speed, the nonlinearities associ-
ated with nonideal commutation and a finite number of field windings can be ignored.
The only important nonlinearity for our application, is coulomb friction (i.e. “sliding”
friction), which primarily affects the maximum efficiency of the motor. A model of the
available motor torque and the motor current is given by (Ref. 18):

(A.1)

Where is the voltage at the motor terminals, is the angular velocity of the motor
shaft, is the combined resistance of the motor windings and commutators, is the
motor “torque” constant, is the motor “induced voltage” constant and is the con-
stant motor coulomb friction torque. It can be shown that if a consistent set of units are
used, the numerical value (but not the dimension) of and will be the same.The net
result is that the static (constant speed) and dynamic (variable speed) characteristics of
the DC motor can be described by three parameters: , and . In reality the values
of and may be highly variable near zero speed due to commutation and sticktion.
For this reason, the motor parameters are best estimated when the motor is not at stand-
still.

It is apparent that for a constant motor voltage , both the motor torque and the motor
current are linear functions of the motor angular velocity (or “speed”) . This lin-
ear relationship can be described by two extremes, the motor “stall” or zero speed con-
dition and the motor zero torque (or no load) condition. The stall torque and the
stall current can be determined from Eq. A.1 as:

(A.2)

The motor no load speed (also called the “idle” speed) and current can be deter-
mined from Eq. A.1 as:

(A.3)

It is apparent that the no load current is strongly dependent on the coulomb friction,
since a friction of zero would imply zero no load current.

The power delivered to the motor shaft is given by the product of the torque and the
angular velocity:

(A.4)
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The electric power delivered to the motor terminals is given by the product of the
terminal voltage and the field current:

(A.5)

The efficiency of the motor is by definition the ratio of the mechanical power deliv-
ered to the motor shaft and the electrical power delivered to the motor terminals:

(A.6)

From Eq. A.3, it is apparent that zero coulomb friction would imply that the no load
speed is equal to , thus given that is equal to , the efficiency of the motor is
only limited by the coulomb friction . It is readily apparent from Eq. A.6, that the
efficiency of the motor goes to zero as the speed approaches zero.

A practical problem encountered when trying to extract as much power as possible
from a given motor, by increasing the motor terminal voltage, is that the difference
between the applied electric power and the obtained mechanical power is
absorbed as heat power (sometimes called thermal power) in the motor field wind-
ings:

(A.7)

For most practical purposes the power absorbed by coulomb friction does not influence
the thermal behaviour of the motor, since the coulomb friction is small and not directly
related to the temperature of the field windings. The heat power can thus be approxi-
mated by the electric power dissipated in the commutator and field windings:

(A.8)

Thus the thermal power is directly related to the field current. Since the motor torque is
proportional to the current when the coulomb friction is neglected (Eq. A.1), we can
express the thermal power as a function of the motor torque:

(A.9)

This means that the maximum continues torque is limited by the allowable thermal
power in a given installation. The allowable continues thermal power is usually limited
by the allowable field winding temperature and the total thermal resistance from the
field windings to the ambient atmosphere. The allowable transient thermal power is in
addition affected by the heat capacity of the field windings.

In some instances we may have to choose and model a DC-motor based on very scarce
data. Typically the following data is available from the manufacturer:

• The “nominal” motor voltage and the following characteristics at that voltage:
The idle speed and current , the maximum efficiency and the current
at maximum efficiency and finally the stalled current .

• The “maximum” voltage .
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Using the equations given above, it is possible to derive the “real” motor parameters
, and from just this information.

Eq. A.2 gives the rotor resistance as:

(A.10)

Eq. A.3 combined with gives the torque constant as:

(A.11)

Finally using Eq. A.3 again, gives the coulomb friction as:

(A.12)

Unfortunately the maximum allowable power dissipation is not normally specified.
However we can probably assume on the safe side that the motor can run continuously
at the maximum voltage at the point of maximum efficiency.

Using the above relationships, the torque, current, efficiency and thermal power of a
typical small electric motor has been computed at a fixed voltage, as shown in Figure
A.1 below:

A mechanical gear is usually used to match the usually high output speed of the motor
to the desired low output speed of the propeller, so that a large relatively slowly turning
propeller with a high aerodynamic efficiency can be used.

An ideal gear is characterized by zero mechanical energy loss. This means that even
though the angular velocity of the output shaft is lower then that of the input shaft, the
output power is equal to the input power:

(A.13)

The gear ratio is usually defined as the ratio between the output angular velocity
and the input angular velocity:

(A.14)

In most practical gears, the gear ratio is constant and is independent of the angular
velocity or the torque.

In practical gears, some mechanical energy is dissipated as friction torque inside the
gear. This means that the output torque is lower then the ideal value, since the gear
ratio is not effected by the efficiency of the gear:

(A.15)
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This equation defines the gear efficiency .

It is important to realize that the gear efficiency is not a constant. In most small gears,
the torque is transmitted between gear wheels using partly rolling and partly sliding
motion. For power transmission applications, the gear wheels are typically not
preloaded (see (Ref. 18, p. TBD) for details). This means that most of the friction
torque is coulomb friction (sliding friction) between the gear wheels proportional to the
input torque in accordance with the definition of the gear efficiency in Eq. A.15.
However it most be remembered that some minimum torque is needed just to over-
come the sliding friction in the internal bearings in the gear. This means that the effi-
ciency decreases for low torque levels. In electric propulsion applications with
reasonable sized gears, it is probably safe to assume a constant gear efficiency.

A.2:Propeller

The propeller is used to transform the mechanical energy from the output shaft of the
gear/motor into translational motion of the vehicle through the atmosphere. A propeller

FIGURE A.1 Plot of Graupner Speed 700 BB/9.6V characteristics at nominal voltage

0 5000 10000 15000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Motor performance as function of RPM at Vm = Vm,nom = 9.6V

Motor speed [RPM]

τm [Nm]

Im [100A] ηm [-]

ηg

ηg



Appendix A: Electric propeller propulsion system

207

usually consists of two or more identical propeller blades that rotate at a quasi constant
rate of rotation around a common shaft which is nominally aligned with the relative
flow direction of the atmosphere with respect to the vehicle.

The thrust is the propulsive aerodynamic force generated by the relative motion of the
propeller with respect to the atmosphere. The aim of propeller design is usually to
achieve as much propulsive power as possible for a given amount of mechanical power
applied to the propeller shaft.

In general the propulsive efficiency of a propeller at given operational conditions can
be defined by:

(A.16)

Where is the thrust of the propeller and is the airspeed of the vehicle relative to
the atmosphere. The above equation follows directly from the definition of mechanical
power as speed times force. It is important to realize that the efficiency of a propeller of
a given geometry is not constant but depends on both the airspeed and the angular
velocity of the propeller.

The so called actuator disc theory (Ref. 19, chap. 9) is a simple approximation of a
propeller. The actuator disc can be visualised as an imaginary flat disc lying in the rota-
tional plane of the propeller as shown below in Figure A.2:

The actuator disc raises the pressure from to , when the air passes through its
plane. Due to continuity and the assumption of incompressible flow, the velocity is
unchanged by the actuator disc. Thus the velocity at the actuator disc is denoted by .
The atmospheric pressure far ahead of the actuator disc is given by and the atmos-
pheric density by . Far behind the disc the air pressure in the slipstream from the actu-
ator disc reaches equilibrium with the atmospheric pressure again. At this point the
slipstream velocity reaches its maximum value of .

A description of actuator disc theory is given in (Ref. 19, p. 460-466). Here we will
describe some of the important results of practical significance. It can be shown that

FIGURE A.2 Crossection through circular actuator disc.
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the velocity at the disc is the mean of the initial velocity and the slipstream veloc-
ity :

(A.17)

The thrust of the actuator disc can be expressed both in terms of the pressure difference
across the disc and the momentum increase in the slipstream:

(A.18)

Where is the “surface” area of the actuator disc.

Since the thrust acts at the actuator disc with local velocity , the power delivered to
the air at the actuator disc is given by:

(A.19)

Combining Eq. A.17 and Eq. A.18 gives a relationship between the slipstream velocity
and the thrust:

(A.20)

This can be rearranged to give the slipstream velocity as a function of the thrust:

(A.21)

Since the power delivered to the actuator disc is given by , the efficiency
of the actuator disc can be determined as:

(A.22)

Combining Eq. A.21 and Eq. A.22 gives the efficiency as a function of the thrust, area
of the actuator disc, air density and airspeed:

(A.23)

The required power to obtain this thrust can then be determined from Eq. A.22:

(A.24)

Not surprisingly the necessary shaft power increases with increasing velocity and
increasing disc loading .

It can be shown (Ref. 19, p. 463) that any real propeller of the same diameter as the
actuator disc, will have an efficiency which is less then that of the equivalent actuator
disc at the same operating conditions. This is mainly due to two phenomenon; the flow
around the real propeller blades results in aerodynamic loses due two friction and sepa-

V0 V

Vs

V0

V Vs+

2
---------------=

Fth Ad p2 p1–( ) ρAdV0 Vs V–( )= =

Ad

V0

Wd FthV0 Ad p2 p1–( )V0 ρAdV0
2

Vs V–( )= = =

Fth ρAdV0 Vs V–( ) 1
2
---ρAd V Vs+( ) Vs V–( ) 1

2
---ρAd Vs

2
V

2
–( )= = =

Vs
2 2Fth

ρAd

----------- V
2

+=

Pd FthV0= ηd

ηd

FthV

Wd
-----------

FthV

FthV0
-------------- V

V0
------ 2V

V Vs+
---------------= = = =

ηd
2V

V Vs+
--------------- 2V

V
2Fth

ρAd
----------- V

2
++

--------------------------------------= =

Wd

FthV

ηd
-----------

Fth

2
------- V

2Fth

ρAd
----------- V

2
++

 
 
 

= =

Fth Ad⁄



Appendix A: Electric propeller propulsion system

209

ration and secondly the slipstream velocity is not uniform due to 3 dimensional flow
around the propeller. Thus actuator disc theory can be used to compute the highest
attainable efficiency and lowest attainable shaft power of a propeller of a given size
and thrust.

A more detailed analysis which explicitly accounts for the geometry of the propeller
blades and the speed of rotation can be obtained using “blade element theory” (Ref. 19,
section 9.4). In this theory, the propeller is subdivided into independent blade elements
in the radial direction. The thrust and torque increments for each blade element is then
determined using 2 dimensional airfoil theory. The thrust and torque of the entire pro-
peller can then be obtained by integration over all radial blade elements multiplied by
the number of blades.

The objective of any detailed aerodynamic analysis of a propeller is to obtain a set of
nondimensionalized coefficients describing the propeller characteristics, such as thrust,
torque and efficiency. It can be shown that neglecting Reynolds number and mach
number effects (Ref. 19, p. 466-467), the nondimensional propeller characteristics are
a function of the advance ratio defined by (Ref. 19, p. 467):

(A.25)

Where is the number of revolutions pr. second of the propeller and is the corre-
sponding propeller angular velocity. As above, the free airspeed is given by and the
propeller diameter by .

The primary propeller coefficients are the thrust coefficient and the torque coeffi-
cient , defined by (Ref. 19, p. 467):

(A.26)

Where is the torque which must be applied to the propeller hub to achieve constant
propeller speed of revolution. It is important to note the extreme dependence on the
propeller diameter for geometrically similar propellers under similar operating condi-
tions.

Instead of the torque, we can determine the power as:

(A.27)

Where is the power coefficient.

The propeller efficiency can be determined from and or as (Ref. 19, p.
467):

(A.28)

From which the intuitive conclusion can be drawn that the efficiency is maximized by
increasing the ratio between the thrust and torque, at a given operating point.
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The objective of the present analysis is thus to obtain adequate approximations of
and or for a given propeller geometry.

The relative air velocity and aerodynamic forces on a propeller blade element is shown
schematically below in Figure A.3:

Figure A.3 corresponds closely to Fig. 9.9 of (Ref. 19), except that the inflow velocity
is used instead of the inflow factor. This is because the inflow factor is not defined

for zero far field velocity . The following equations thus corresponds to those given
in (Ref. 19, p. 476-479).

The relative air velocity is given by pythagoras from Figure A.3:

(A.29)

The local blade aerodynamic angle of attack can be determined from Figure A.3 as:

(A.30)

The lift increment pr. unit blade radius is given by:

(A.31)

The drag increment pr. unit blade radius is similarly given by:

(A.32)

The local blade chord at radius is denoted by , the local blade lift coefficient at
radius and aerodynamic angle of attack is denoted by , while the local blade
drag coefficient is denoted by .

From a propulsive viewpoint, the important “forces” are the thrust and the (propeller
shaft) torque increment pr. unit blade radius, denoted by and respectively.

FIGURE A.3 Relative air velocity and aerodynamic forces on blade element.
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From Figure A.3 the following trigonometric relationships between the lift and drag
and the thrust and “torque force” on a blade element can be obtained:

(A.33)

(A.34)

Where is the local blade element radius (distance to propeller shaft axis).

The shaft power required to drive the blade element at constant speed can then be
determined as:

(A.35)

The blade element efficiency can then be determined as the ratio of effective power
to shaft power of the blade element:

(A.36)

Notice that the far field air velocity and not the local velocity is used in this defi-
nition, just as in Eq. A.22.

If the complete propeller geometry and aerodynamic properties of every blade element
is specified, blade element theory as given above can in principle used to determine the
complete characteristics of a particular propeller at a particular advance ratio. This is
conceptually done in an iterative fashion by assuming that the inflow velocity is
equal to the far field velocity . Then the forces on a particular blade element can be
determined using the above equations. Eq. A.21 from actuator disc theory can then be
used to determine the slipstream velocity for that particular blade element, by taking
the local thrust as the thrust of one blade element multiplied by the number of propeller
blades and the actuator disc area as the swept area of the blade element. Eq. A.17 can
then be used to find a new value for the inflow velocity . Using this new value,
new forces on the blade element can be found using blade element theory. After some
iterations, convergence of the forces and inflow velocity will (hopefully) be achieved.
By repeating this procedure for a number of radial blade elements, it is finally possible
to integrate the thrust and torque contributions from the blade elements to get the char-
acteristics of the complete propeller.

The above procedure will in theory give a reasonably accurate prediction of the charac-
teristics of a particular propeller. However it is not really well suited for the purpose of
choosing a suitable propeller and predicting the performance of a particular propeller
for aircraft design purposes. This is mainly because of the shear effort involved in
determining the complete geometry of the propeller (i.e. and ) and the aerody-
namic properties of each blade element (i.e. and ). This basically means
that blade element theory is best suited for propeller design and not for aircraft design.

A.3: Correlation to measured propeller characteristics

We can however use a simplified version of blade element theory to obtain a semiem-
perical propeller model which is useful for choosing a suitable propeller from a list of
ready made propellers and for making engineering estimates of the performance of
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ready made propellers which lack adequate published performance data. This last point
is particularly important when using model aircraft propellers, which are notorious for
their almost complete lack of performance specifications.

Instead of analysing a large number of radial positions of the propeller using blade ele-
ment theory with arbitrary and polars, we will correlate our propeller
with a propeller of known characteristics by comparing the blade incidences at a
radius of , where is the propeller radius. This choice of “characteris-
tic” radius is inspired by (Ref. 20).

We will develop a correlation based on (Ref. 20, Fig. 5):

In practice most propellers (including model airplane propellers) are characterised by
the diameter and the pitch . The pitch is ideally the theoretical distance that the
propeller advances in one revolution. However unlike the threads of a screw, the pro-

FIGURE A.4 Measured characteristics of a family of 2 bladed propellers (Ref. 20, Fig. 5).
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peller moves through a fluid and not a solid. In practice the pitch of a propeller is
defined using one of the following definitions:

• The distance that the propeller advances in one revolution at zero thrust.

• The distance that the propeller advances in one revolution at zero thrust from the
blade section at .

• The distance the propeller advances in one revolution as if the blade section at
was cutting through a solid at an angle given by the local incidence .

Only the first two definitions are unambiguous. The last definition has the problem that
the difference between the zero lift angle and incidence depends on both the camber of
the blade section and on the definition of the airfoil chord line. Unfortunately the pitch
definition is rarely specified. However in most cases it appears that the last definition is
used, even though it is the least precise.

Using the last pitch definition, we can obtain the following relationship between the
incidence and the pitch with the aid of Figure A.3:

(A.37)

This shows that the pitch is proportional to for small values of .

This can be rewritten in terms of the nondimensional pitch :

(A.38)

Referring to Figure A.4 we can make the following observations:

• The thrust and power coefficient curves are shifted to the right propor-
tional to the nondimensional geometric pitch.

• In addition the power coefficient is scaled approximately proportionally to the
nondimensional geometric pitch.

• The maximum efficiency is almost independent of the nondimensional geo-
metric pitch.

Lets denote the nondimensional pitch of the reference propeller as and the nondi-
mensional pitch of the actual propeller as .

On the basis of these observations, we will propose the following scaling rules:

Scaling rule for the thrust coefficient:

(A.39)

Where is the thrust coefficient of the reference propeller.

The power coefficient is obtained as:

(A.40)
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Where is the power coefficient of the reference propeller.

All we have to do now is choose the right reference curve to use for the correlation
with our propeller. It turns out that non of the readily available model aircraft propel-
lers for electric propulsion has a nondimensional pitch greater then one. The stated
nondimensional pitch (Ref. 20, Fig. 3) of the propellers in Figure A.4 is shown below:

This leads to the conclusion that the curve should be used to obtain the
characteristics of our propellers, with the help of Eq. A.39 and Eq. A.40.

As shown in Figure A.4, (Ref. 20) does not contain measurements for or for
advance ratios giving negative thrust ( ). The lack of measurements for
and has been circumvented by extrapolation from known values, using some
reasoning about the physics of the problem.

Having propeller characteristics for large advance ratios (where ), has the
advantage that we can model the behaviour of a propeller that is “windmilling” (i.e.
driven by the wind). This feature can be used as an airbrake to enable steep landing
approaches and reduce the landing roll after touchdown.

A.4: Battery and motor “speed” regulator

The electric power for the propulsion system is stored in rechargable batteries. Control
of the applied motor voltage is achieved using a “speed” regulator. The regulator will
be approximated as a controlled voltage source. Since the regulator is implemented as a
pulse width modulated (PWM) voltage source, the efficiency is close to unity. This
means that the actual battery voltage is not important as long as it exceeds the desired
motor voltage. Thus for preliminary analysis we can specify the battery entirely in
terms of the available energy.

15o 0.64

25o 1.10

35o 1.65

45o 2.36

Tabel A.1 Nondimensional pitch of propellers in Figure A.4.
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Appendix B: Spectral factorization of continues gust PSD’s

The PSD for “vertical” gusts are given by the Dryden approximation (Ref. 1, section
III.13):

(B.1)

Where is the temporal gust PSD for vertical gusts with respect to the angular fre-
quency , is the vertical turbulence length scale, is the vertical gaussian turbu-
lence intensity and is the flight speed through the quasisteady atmosphere. The
flight speed is defined as the speed relative to the atmosphere without wind gusts,
but including steady wind. .

The PSD can be factorized as:

(B.2)

Where is the transfer function of a linear continues filter which produces a sto-
chastic signal with PSD given by , when excited by a continues white noise signal
with power density .

It is thus apparent that we should be able to realize as a second order filter. A
general continues second order filter can be expressed as:

(B.3)

Where is the undamped natural frequency of the filter.

Thus we have to determine the coefficients of in such way that Eq. B.2 is satis-
fied. Computing the right hand side of Eq. B.2 gives:

(B.4)

We can then determine the value of the coefficients by comparing to Eq. B.2.
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The denominator coefficients can be determined as:

(B.5)

The coefficient can easily be determined by comparing the contributions with quad-
ratic coefficients of :

(B.6)

The coefficient can be determined by comparing the contributions with :

(B.7)

The coefficients in the numerator can be determined by comparing the numerator of
Eq. B.1 with the numerator of Eq. B.4:

(B.8)

Comparing the coefficients of gives:

(B.9)

Comparing the constant terms gives:

(B.10)

In summary we have determined the coefficients of as:

(B.11)
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If we want to be able to produce a time domain gust signal using the filter , we
can determine a state space implementation of directly from Eq. B.4 using the
reachable canonical form (Ref. 10, p. 67):

(B.12)

This implements the filter , where is the Laplace transform of the filter
output and is the Laplace transform of the filter input .

For horizontal gusts in the axial flight path direction, the following PSD approximation
due to Dryden is used:

(B.13)

Where is the temporal gust PSD for longitudinal gusts, is the longitudinal tur-
bulence length scale and is the longitudinal gaussian turbulence intensity.

This can be factorized as:

(B.14)

Where is the transfer function of a linear continues filter which produces a sto-
chastic signal with PSD given by , when excited by a continues white noise signal
with power density .

It is then apparent that we should be able to realize as a first order filter. A gen-
eral continues first order filter can be expressed as:

(B.15)

Where can be interpreted as the inverse of the filter time constant.

The right hand side of Eq. B.14 can then be expressed as:

(B.16)

Comparing the denominator of Eq. B.13 with that of Eq. B.16 gives:

(B.17)
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Comparing the numerator of Eq. B.13 with that of Eq. B.16 gives:

(B.18)

The reachable canonical state space form of can then be determined as:

(B.19)
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Appendix C: Conversion between stability and flight axis

One common way to include the aerodynamic effect of the lateral curvature of the
flight path, in the lateral aerodynamic model, is to include a coefficient that depends on
the yaw rate “r”. The yaw rate is here defined as the derivative of the azimuth angle
(compass course) of the longitudinal axis of the vehicle. This is done in the commonly
used “stability” axis system, this system is defined in such a way that initially the ex
axis points in the same direction as exf, for zero sideslip. However, the “stability” axis
system moves with the body from this “trim” condition. For this reason it is unsuitable
for simulations involving large lateral and longitudinal motions.

Where Ψ1 is yaw angle of the UAV body, while Ψ2 is the yaw angle of the flight path.
It is apparent that the sense of the sideslip angle β is different for the two systems,
while the absolute value is the same. Supposing that the eze, the ezb and the ezf axis all

FIGURE C.1 Stability axis.

FIGURE C.2 Flight axis.
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point in the same direction (vertical down), the lateral curvature κb can be determined
as:

(C.1)

Comparing Figure C.1 and Figure C.2, we can write the down the following geometri-
cal relationship:

(C.2)

The derivative of this is:

(C.3)

Conversion between aerodynamic derivatives in stability axis and flight axis:

In general we can write the lateral aerodynamic coefficients (CY, Cl and Cn) as:

Stability axis:

(C.4)

Flight axis:

(C.5)

Where “x” can be “Y”, “l” or “n”. In the stability axis system, the subscript “r” denotes
the yaw rate .

The derivatives (of the aerodynamic coefficients) on the right hand side can loosely be
defined as:

(C.6)

Where “y” is an aerodynamic variable such as β, , r, p e.t.c.

The aerodynamic derivatives with respect to β, p or ηβj do not change by going from
one system to another. We can also see from Eq. C.3, that when β is constant we have

. Thus the aerodynamic derivative of κb is equal to that of “r”:

(C.7)
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When we however have a constant flight path yaw angle in the flight axis system
( ), it is apparent from Eq. C.3, that we will have a yaw rate of in the
stability axis system. The following relationship can then be established:

(C.8)

The definition of the roll angle rate about the longitudinal flight path axis, can be con-
sidered equal for both axis systems:

(C.9)

Aerodynamic forces and moments:

For small lateral perturbations from zero sideslip, the stability system has the same ori-
entation as the flight system. This means that the forces and moments found from the
aerodynamic coefficients (CL, CD, CY, Myy, Mxx and Mzz), are essentially the same for
both systems.

Using the above relations, we can write the transformations between aerodynamic
derivatives in the stability axis system and the flight axis system:

Flight axis Stability axis
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=

=

=
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Rolling moment: Clβ = -Clβ
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Tabel C.1 Conversion between stability and flight axis.
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Appendix D: Determination of approximate transfer
function of servo

For a constant value of , the transfer function from to can be deter-
mined as:

(D.1)

The transfer function from to can similarly be expressed as:

(D.2)

Substituting for gives:

(D.3)

The amplitude ratio between and can then be determined as:

(D.4)

From Eq. 3.3.8, we know that the amplitude of can be determined as:

(D.5)
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Appendix E: Static baseline between two GPS receivers
using carrier phases

In order to quantify the pseudo range errors including the biases, it is necessary to
determine the position difference between two static receivers to a relatively high accu-
racy. This could be done by directly measuring the distance vector between the receiv-
ers using a tape measure and compass. However this may prove cumbersome and
inaccurate. There is however another way to accomplish this. Since the carrier phase
measurements are several orders of magnitude more accurate then the pseudo ranges,
they may be used to determine the distance vector (baseline) between two receivers.
Unfortunately this is somewhat complicated by the fact that it is only possible to meas-
ure the carrier phases with an integer ambiguity of wavelengths. In order words we can
easily measure the “millimeters” but not the “meters”. The following is a description of
a simple “ambiguity resolution” method, based on the “Least Squares Ambiguity
Search Technique” proposed by Hatch (Ref. 24, p. 232).

Assume that we have two receivers; RX1 and RX2. The two receivers are set up in
such a way that their antennas are static and track a common number of satellites .
For a single epoch, we may similarly to Eq. 5.4.1, express the range from RX1 to
SV number “i” as:

(E.1)

Where is the RX1 LO phase error ( ). is the L1 car-
rier wavelength, is the carrier phase ( ) and lastly is the integer
ambiguity ( ).

A similar expression can be determined for RX2:

(E.2)

It is now possible to form the (single) difference between these two equations:

(E.3)

Where is the unknown range difference between the receivers, in the “direction”
of SV number “i”, is the measured carrier phase difference, is the
unknown integer ambiguity difference and is the LO phase error difference.

From Section 5.4, we can expand the true range around the guessed position
with the associated guessed range :

(E.4)
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Where is the vector from the guessed position to
the true position. A similar expression of course holds for RX2.

Combining Eq. E.3 and Eq. E.4, gives a linearized relationship between the measured
single difference phases and the SV ranges:

(E.5)

Assuming that the phase difference is measured and that is known,
while the relative LO phase error is unknown, the equation can be rearranged
with the unknowns on the left hand side:

(E.6)

Where is the difference between the range from the guessed RX2 posi-
tion to the SV and the range from guessed RX1 position to the SV.

Since we are interested in the differential position , with the
position of the reference station RX1 known, it follows that the position correction

of the RX1 position can be taken equal to zero:

(E.7)

Where is the relative RX1 to RX2 position correction, of the guessed RX1 to
RX2 position difference .

In analogy with the point position solution given in Section 5.4 the equations for all N
satellites, which are common to RX1 and RX2, can be expressed as a linear matrix
equation:

(E.8)

This naturally leads to the introduction of two matrices and :

(E.9)
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In theory, the solution to Eq. E.8 can be expressed as:

(E.10)

This equation can of course only be solved if exists, i.e. the rank of must
be 4.

Since we have just assumed that the integer ambiguities are known, which they
are not in general, and thus the solution in Eq. E.10 corresponds to a cer-
tain choice of integer ambiguities given 4 SV’s.

The key to the “Least Squares Ambiguity Search Technique” proposed by Hatch (Ref.
24, p. 232) is to assume that the carrier phases to more then 4 common SV’s are avail-
able. This implies that the system of equations (Eq. E.8) are overdetermined for a given
choice of integer ambiguities. This extra information can then be used to select the
most likely set of integer ambiguities that satisfies the system of equations in a stochas-
tic (least squares) sense.

E.5: Ambiguity search

The first step in solving the system of equations (Eq. E.8), with the a priori unknown
ambiguities, is to determine the statistical “best” ambiguities.

First the ambiguity search range must be determined. This is the set of integer ambigu-
ities, which is known to contain the true ambiguities. This set of integer ambiguities
can be expressed as:

(E.11)

The ambiguity search range can be determined from the pseudo range differential posi-
tion estimate.

In order to start the search, 4 SV’s with a good DOP and reasonable elevations are
selected (more then about ). Using these 4 primary SV’s and their associated inte-
ger ambiguity ranges as given by Eq. E.11, a number of candidate solutions to Eq. E.10
are determined. This gives a number of candidate position solutions. The candidate
positions can then be expressed as:

(E.12)

Where is the a priori estimated baseline vector, is the Carrier Phase Can-
didate system matrix, is the Carrier Phase Candidate measurement matrix and

is the candidate baseline vector.
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It follows that is a 4x4 matrix and is a 4x1 matrix, defined as subsets of
and respectively:

(E.13)

Inspection of reveals that it is in fact the sum of 3 components; the unambiguous
phase measurements , the integer ambiguities and the a priori
estimated range difference . This means that can be expressed as:

(E.14)

The candidate baseline vectors (the solutions to Eq. E.12) can then be expressed as:

(E.15)

It is possible to rearrange this equation, so that it contains a “constant” part and a part
that is linear with respect to the ambiguities :

(E.16)

Where and are independent of :

(E.17)

(E.18)

Eq. E.16 is of course valid for several consecutive epochs, with constant ambiguities
. However, neither , or are

independent of time. This implies that and are functions of time.

As will become apparent later, has a constant deterministic derivative super-
imposed with a relatively high frequency noise component. On the basis of these obser-
vations, we will assume that for a 300 sec. time span (5 min.), a linear model of the
deterministic time dependency of Eq. E.16 can be used:

(E.19)
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Where the constants , , and are given by:

(E.20)

The actual values of and are determined by a least squares curve fit over
the appropriate epoch range, since is corrupted by phase measurement noise,
which is not a problem with . The origin of the integer time “t” is assumed to be
at the start of the epoch range, the total epoch range is given by . Since several
consecutive epochs are now considered when determining and thus , we
can not in general require that and for every epoch. Instead we
will require that the phases are in these ranges for the first epoch, for subsequent
epochs the phases are allowed to decrease or increase continuously without jumps.

The result is that these “measurement” constants can be seen as “mean” values and
“mean” derivatives of . Eq. E.19 thus has a better signal to noise ratio then the
original single epoch equation given by Eq. E.16, because of the smoothing effect of
the least squares curve fit. This reduces the effects of broadband phase measurement
noise (i.e. white noise). This leads to the important practical conclusion that each can-
didate position can be determined by one matrix multiplication and one vector addi-
tion. This makes computation of all the candidate positions relatively fast.

We can now return to the problem of determining the ambiguity search ranges for the
primary SV’s. Since equation Eq. E.19 is used to determine a candidate position, given
a specific integer ambiguity, this relationship can be rearranged to determine a “float”
integer ambiguity given a position guess:

(E.21)

Using the definition of gives:

(E.22)

This equation can be used to determine the ambiguity search limits, given the geomet-
ric limits on the candidate positions as determined using the pseudorange baseline
uncertainty.

Another method of determining the most likely float ambiguity is based on the time
varying part of Eq. E.19. Since Eq. E.19 must be valid for any epoch in the epoch
range, it follows that must be zero for the most likely float ambiguity. This can
be formulated as:

(E.23)
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The most likely float ambiguity can then be determined as:

(E.24)

The corresponding float baseline solution is given by:

(E.25)

The key to the ambiguity resolution method is then to test the compatibility of each of
these candidate solutions, to the carrier phase measurements for the rest of the SV’s.
This compatibility can be quantified by the residual. The residual is zero when the
measured phase difference exactly corresponds to the baseline estimate. The residual
can then be defined from Eq. E.7 as:

(E.26)

Where the phase residual for SV number “i” is denoted by . The candidate base-
line update and LO phase error
are determined from Eq. E.12 as:

(E.27)

Using Eq. E.26 and Eq. E.27 for a secondary SV, gives a carrier phase residual for each
of the candidate baselines. The true baseline must then belong to the candidate base-
lines which exhibit a numerical small residual to the secondary SV’s.

For computational ease we can define an auxiliary function which is equal to the resid-
ual for :

(E.28)

This can be expressed in matrix form for all secondary SV’s as:

(E.29)

Where and are constants with respect to both epoch count and candidate
position, defined by:

(E.30)

(E.31)

Where is used as a row matrix (i.e. with dimensions ) and is
the i’th row of .
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Using , we can determine the (smallest) residual and corresponding integer
ambiguity for the each secondary SV, with respect to a candidate solution :

(E.32)

And:

(E.33)

Where the operator “ ” is x rounded to the nearest integer.

It then follows that the phase residuals will belong to the range , with a
value of zero if the secondary SV phase measurements are perfectly matched to the
candidate position. As a convenient measure of the “size” of the phase residual vector

, we may use the Root Mean Square (RMS) residue:

(E.34)

Where is the number of secondary SV’s and is the 2 norm of the vector “x”.

Since , the maximum value of is equal to 0.5, independent of the
number of secondary SV’s.

As given above, the residual is determined for a single epoch. Just as with the candi-
date positions, we can reduce the effects of broadband measurement noise by fitting a
straight line to the data. This will not only provide a more accurate residual estimate
but also an idea of the measurement noise for a particular SV:

(E.35)

Where the constants , , and are given by:

(E.36)

The actual values of and are determined by a least squares curve fit over the
appropriate epoch range, since is corrupted by phase measurement noise. The
procedure is otherwise similar to the one used to determine the primary SV measure-
ment constants.

This enables the carrier phase residual vector for any candidate position, to be
computed using only one matrix product, one vector addition and one round operation.

Before proceeding further, there is one slight correction which is worth making to the
above expressions, at least for consistency. When is determined for each epoch,
it will be noticed that the last element, the Local Oscillator (LO) phase difference
varies erratically from epoch to epoch. This implies that the curve fit used to obtain

and in Eq. E.19, will be meaningless for the phase difference terms.
Since the phase difference directly influences the phase difference measurements
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, it will directly influence as defined in Eq. E.30. It would thus be desira-
ble if the influence of the phase difference could be removed before determining the
“measurement constants”. This can be accomplished by noting that at each epoch, the
phase difference for the candidate position with is determined as the last ele-
ment of using Eq. E.17. Furthermore the term contains the contribu-
tion to the phase difference, caused by a candidate baseline different from . The
trick is then to first determine the phase difference using Eq. E.17:

(E.37)

This contribution is added to Eq. E.30, to obtain an expression for corrected for
the phase difference for (the sign of this term is given by Eq. E.28):

(E.38)

Now the term can be removed from :

(E.39)

This will produce the correct result when calculating the residuals using Eq. E.29,
because the 4’th element of is zero when . In other words the term

corrects the residual for phase differences caused by .

The rest of the above equations are used as described, including the curve fits of
, , and .

Figure E.1 shows a 300 sec. sample of :

Figure E.2 shows a 300 sec. sample of :

As noted above these plots clearly shows the linear time variation of the measured
phase quantities, superimposed with broadband measurement noise.

We are able to compute both the candidate positions and residuals for any epoch using
Eq. E.19 and Eq. E.36. In order to use the information contained in both the constant
and time varying parts of these equations, we can compute the residuals for two differ-
ent epochs in the measurement range. Without further analysis, we have chosen to use
the start and end epoch times.

The appropriate equation for the start epoch time ( ) are given by:
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FIGURE E.1 sample (initial value set to zero for clarity).

FIGURE E.2 sample (initial value set to zero for clarity).
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For the end epoch ( ):

(E.43)

(E.44)

(E.45)

Notice that the ambiguity is of course the same for both the start and end epochs.

This gives three error measures:

(E.46)

(E.47)

(E.48)

The question then arises of how to combine these error measures to obtain a single
error measure for each candidate baseline. Since and can be assumed
to have identical statistics due their “symmetrical” definitions, these error measures
can be combined with equal weights. Unfortunately has different units and error
statistics then the RMS residuals. Thus a sensible combination of all 3 error measures
requires knowledge of statistics of both the RMS residuals and .

For the present application, it has not been considered justified to determine these sta-
tistics accurately. For this reason only the RMS residuals are used to construct a “worse
case” total error measure defined by:

(E.49)

Where “ “is the maximum value of the real numbers and .

Since carrier phase data for a number of epochs are analysed, it is possible to obtain an
estimate of the carrier phase measurement noise by assuming that the noise is ergodic.
The carrier phase RMS noise can be determined by removing the linear trend from

, and calculating the RMS value of the remaining signal. The RMS noise value
can be used as part of a “confidence” check on the obtained “true” ambiguity solution.

It then “only” remains to choose suitable sets of primary and secondary SV’s, calculate
the candidate baselines from the primary SV’s, test each candidate position using the
residual for the secondary SV’s and finally choose the best candidate baseline with the
smallest root mean square residual. This will then determine the “true” integer ambigu-
ities for both the primary and secondary set of SV’s.

It is now possible to formulate the following ambiguity search algorithm, which avoids
storage of all the candidate positions, thus minimizing memory usage and at the same
time eliminating indexing of large arrays. The algorithm is divided into the following
sequential steps:

1. Compute a best guess baseline based on the pseudorange measurements.

t tepoch∆=

PRX12C,E CRX12,0 CRX12,1 tepoch∆+( ) MCPC2,0 MCPC2,1 tepoch∆+( )N12+≅

CP˜ res,E Cres,0 Cres,1t+( ) Mres,0 Mres,1t+( ) P̃RX12C,E∆+≅

RMSres,E
CPres,E

Nsec

-------------------------=

N12

RMSres,S

RMSres,E

∆RX12C PRX12C,E PRX12C,S–=

RMSres,S RMSres,E

∆RX12C

∆RX12C

error max RMSres,S RMSres,E,( )≡

max x y,( ) x y

CP̃res,0

P̂RX12
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2. Choose a consecutive set of measurements containing on the order of 300 epochs.
The set should contain at least 7 SV’s, with no cycle slips.

3. Partition the SV’s into a primary and secondary set, based upon the SV elevation
and the primary SV DOP. The DOP of the 4 primary SV’s should be less then 5.

4. Using carrier phase data from the selected epoch range, compute the appropriate
measurement constants for the primary and secondary SV’s, as given by Eq. E.20
and Eq. E.36.

5. Select an ambiguity search range defined by and based on the pseu-

dorange noise and multipath environment, using and .

6. Search through all the candidate baselines using Eq. E.19. Compute the residuals
to the secondary SV’s, at each candidate baseline. Store the candidate point

and associated ambiguities if the square sum of the residuals are in the lowest 100
range of the previously tested candidate points.

7. Test the “best” baseline against the next “best” and against the carrier phase RMS
noise, to determine the confidence level of the baseline estimate.

This procedure has been implemented in Matlab. The primary SV’s have been chosen
from the SV’s with elevation angles above , to reduce the effects of multipath. For
the short baseline established between two antennas on the roof of the department, the
following results have been obtained for 13 measurement sessions of 300 sec. duration:

Float ambiguity solution using Eq. E.24 and Eq. E.25:

GPS time of first
measurement epoch

SEP

[sec] [m] [m] [m] [m]

499576 1.296 -4.549 0.165 11.377

500176 1.478 -4.414 0.442 4.570

500476 1.506 -4.505 0.465 5.653

500776 1.133 -4.415 0.864 5.237

501076 1.394 -4.499 0.368 21.994

501376 1.024 -5.021 0.761 2.085

501676 0.916 -4.863 0.912 2.788

501976 1.282 -4.725 0.634 7.204

502276 1.331 -4.581 0.508 3.707

502576 1.452 -4.256 0.334 6.067

502876 1.412 -4.451 0.443 0.802

503176 1.413 -4.055 0.088 7.761

503476 1.252 -4.858 0.555 17.430

Tabel E.1 Float ambiguity solution.

Ni12,min Ni12,max

P̂RX12,0 MCPC2

CPres,i

15°

Northing∆ ∆Easting ∆H
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GPS time is from the beginning of week epoch. “Northing” and “Easting” are the carte-
sian coordinates defined using the UTM (Universal Transversal Mercator) projection.
H is the local vertical coordinate (positive up). “SEP” is a crude worst case approxima-
tion to the Spherical Error Probable (Ref. 24, p. 280), which is the radius of the sphere
that contains 50% of the stochastic measurements.

Fixed integer ambiguity solution using the above algorithm with residual minimiza-
tion:

It is apparent that the RMS deviation for the fixed ambiguity solutions is at least 15
times smaller then for the float solution. Since no method is available to the author for
determining the test baseline with greater accuracy then the fixed ambiguity solution,
we will use the fixed ambiguity solution as the “ground truth” for all other measure-
ments related to the test baseline, in this thesis.

Mean value 1.299 -4.553 0.503 -

RMS deviation 0.180 0.263 0.246 -

GPS time of first
measurement

epoch

error

( )

error ratio

[sec] [m] [m] [m] [-] [-]

499576 1.402 -4.466 0.317 0.092 0.621

500176 1.403 -4.467 0.324 0.041 0.257

500476 1.407 -4.469 0.319 0.056 0.308

500776 1.412 -4.471 0.320 0.141 0.836

501076 1.413 -4.475 0.318 0.156 0.821

501376 1.407 -4.469 0.341 0.121 0.775

501676 1.414 -4.476 0.350 0.137 0.867

501976 1.412 -4.474 0.346 0.129 0.878

502276 1.409 -4.473 0.348 0.099 0.644

502576 1.399 -4.468 0.343 0.082 0.661

502876 1.395 -4.467 0.346 0.068 0.487

503176 1.393 -4.469 0.355 0.061 0.429

503476 1.391 -4.468 0.352 0.055 0.373

Mean value 1.404 -4.470 0.337 - -

RMS deviation 0.008 0.003 0.015 - -

Tabel E.2 Fixed Ambiguity solution.

GPS time of first
measurement epoch

SEP

[sec] [m] [m] [m] [m]

Tabel E.1 Float ambiguity solution.

Northing∆ ∆Easting ∆H

Northing∆ ∆Easting ∆H

RMSres
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The true baseline is thus given by:

(E.50)PRX12,test 1.404 4.470– 0.337 m≡ In UTM coordinates
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Appendix F: Simplified Kalman Filter Expressions

This Appendix contains the derivations of the presimplified kinematic Kalman filter in
Section 5.10.

The modified Kalman gain from (Ref. 32, p. 123):

(F.1)

With the definitions:

(F.2)

The cross covariance between the measurement and process noise is given by
Eq. 5.10.9:

(F.3)

Let the elements of the a priori covariance (of the state estimate) be defined by:

(F.4)

The last equality follows from the fact that the covariance is symmetrical by definition.

The term can be expressed as:

(F.5)

The term can be expressed as:

(F.6)
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The term can be expressed as:

(F.7)

This leads to the following expression for the modified Kalman gain:

(F.8)

GDGPSSDGPS
T

GDGPSSDGPS
T

1 0

0 0

0 b1

0

b0

σDGPS
2 σDGPS

2
0

0

b1b0

= =

Kk
1

P11 2P12 P22 b0
2σDGPS

2
+ + +

---------------------------------------------------------------------

P11 P12+

P13 P23+

a2 P12 P22+( )– a1 P13 P23+( )– b1b0σDGPS
2

+

=
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Appendix G: Transformation Matrices

Using Eq. 6.4.3 to Eq. 6.4.6, the following explicit expression for the vehicle to INS
coordinate system transformation can be determined:

(G.1)

The INS to vehicle system transformation can then be determined using Eq. 6.4.7:

(G.2)

In some cases the it may be appropriate to obtain simplified expressions for the trans-
formation matrices, corresponding to typical operating areas for the INS.

Operation at small elevation angles and small roll angles :

(G.3)

Vehicle to INS transformation:

(G.4)

INS to vehicle transformation:

(G.5)

MV2I MV2I θa θe θr, ,( ) M= 3 θr( )M2 θe( )M1 θa( )=

MV2I

θe( ) θa( )coscos θe( ) θa( )sincos θe( )sin–

θr( ) θe( ) θa( ) θr( ) θa( )sincos–cossinsin θr( ) θe( ) θa( ) θr( ) θa( )coscos+sinsinsin θr( ) θe( )cossin

θr( ) θe( ) θa( ) θr( ) θa( )sinsin+cossincos θr( ) θe( )sin θa( )sincos θr( ) θa( )cossin– θr( ) θe( )coscos

=

MI2V MV2I
T MI2V θa θe θr, ,( )= =

MI2V

θe( ) θa( )coscos θr( ) θe( ) θa( ) θr( ) θa( )sincos–cossinsin θr( ) θe( ) θa( ) θr( ) θa( )sinsin+cossincos

θe( ) θa( )sincos θr( ) θe( ) θa( ) θr( ) θa( )coscos+sinsinsin θr( ) θe( )sin θa( )sincos θr( ) θa( )cossin–

θe( )sin– θr( ) θe( )cossin θr( ) θe( )coscos

=

θe 0≈ θr 0≈

θe( )sin θe≅ θ e( )cos 1≅ θ r( )sin θr≅ θ r( )cos 1≅ θ r( ) θe( )sinsin 0≅

MV2I

θa( )cos θa( )sin θe–

θa( )sin– θa( )cos θr

θe θa( ) θr θa( )sin+cos θe θa( )sin θr θa( )cos– 1

≅

MI2V

θa( )cos θa( )sin– θe θa( ) θr θa( )sin+cos

θa( )sin θa( )cos θe θa( )sin θr θa( )cos–

θe– θr 1

≅
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Appendix H: Euler rates

We are seeking a function linking the Euler rates , to the angular rates in
INS coordinates :

(H.1)

The INS orientation as given by the Euler angles can be expected to be
parameters for this function.

Since the transformation from INS to vehicle coordinates, can be written as:

(H.2)

Where , and are column unit vectors of the INS coordinate system,
expressed in vehicle coordinates.

Since represents the rates of rotation of the INS axes, we can express
the derivatives of the INS axes in vehicle coordinates as:

(H.3)

(H.4)

(H.5)

Thus the derivative of the transformation matrix Eq. H.2, can be expressed as:

(H.6)

This is one way of determining the derivative of the INS to vehicle transformation
matrix. Another way is to express it in terms of the Euler angle rates:

(H.7)

The derivative can be determined by equating element (3,1) of Eq. H.7, with ele-
ment (3,1) of Eq. H.6:

(H.8)

The derivative can be determined by equating element (2,1) of Eq. H.7, with ele-
ment (2,1) of Eq. H.6:

θ· a θ· e θ· r, ,( )
ωx ωy ωz, ,( )INS

θ· a θ· e θ· r, ,( ) f θa θe θr ωx ωy ωz, , , , ,( )=

θa θe θr, ,( )

MI2V exiv eyiv eziv=

exiv eyiv eziv

ωx ωy ωz, ,( )INS

e·xiv eyivωz ezivωy–=

e·yiv ezivωx exivωz–=

e· ziv exivωy eyivωx–=

M·
I2V e·xiv e·yiv e· ziv MI2V

0 ωz– ωy

ωz 0 ωx–

ωy– ωx 0

= =

M·
I2V f θa θe θr θ· a θ· e θ· r, , , , ,( )=

θ· e

θe( )θ· ecos– θr( ) θe( )ωzcossin θr( ) θe( )ωycoscos–=

θ· e θr( )ωycos θr( )ωzsin–=

θ· a
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(H.9)

The derivative can be determined by equating element (3,2) of Eq. H.7, with ele-
ment (3,2) of Eq. H.6:

(H.10)

In summary we can write the derivatives of the Euler angles as:

(H.11)

A few interesting comments about this “transformation”:

• When , the matrix is equal to the identity matrix.

• The relation does not depend on the azimuth angle θa.

• Some elements are singular at .
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Appendix I: Quaternions

A quaternion is an extension of complex numbers. Instead of containing one imaginary
part, as the usual complex numbers, the quaternions contain three different imaginary
parts:

(I.1)

The quaternion contains the three imaginary elements , , . , , and are real
numbers. Some general properties of quaternions are given in (Ref. 37). It is possible to
multiply two quaternions and obtain the conjugate, the norm and the inverse of a
quaternion see (Ref. 37) for details. It should be mentioned that multiplication of
quaternions are not commutative, in other words the order of multiplication is impor-
tant.

It turns out that a unit quaternion can be used to represent a 3D rotation. A unit
quaternion can be represented as:

(I.2)

Where is regarded as a 3D unity vector (i.e. ). It can then be
shown (Ref. 37, p. 3-4) that Eq. I.2 represents a 3D rotation of the size around the
vector , using the right hand rule.

It can be shown that two or more successive rotations can be obtained by straight for-
ward multiplication of the quaternions corresponding to the individual rotations. Lets
assume as an example that we have one rotation represented by the quaternion and
another by the quaternion . The resulting quaternion from doing first the rotation
defined by and then the rotation defined by , is the rotation defined by the
quaternion :

(I.3)

Using the above expression we are able to derive an expression relating the derivative
of a quaternion to the angular body rates. Lets assume that the orientation of a rigid
body at time is given by the quaternion (expressing the orientation relative to a
reference orientation in an inertial reference system). The rotation of the vehicle in a
small time interval is denoted by the quaternion . According to Eq. I.3, the orien-
tation at time can be determined as:

(I.4)

The rotation can then be expressed in the form of Eq. I.2:

(I.5)

Assuming that is small ( ), the familiar trigonometric relationships are
obtained:

(I.6)

Thus can be expressed as:

(I.7)

q w xi yj zk+ + +=

q i j k w x y z

q θ( )cos û θ( )sin+=

û xi yj zk+ += x
2

y
2

z
2

+ + 1=

2θ
u x y z, ,( )=

q1

q2

q1 q2

q

q q2 q1⋅=

t q t( )

t∆ q∆
t t∆+

q t t∆+( ) q∆ q t( )⋅=

q∆

q∆ θ∆( )cos û θ∆( )sin+=

θ∆ θ∆ 1«

θ∆( )cos 1≅ θ∆( )sin θ∆≅ θ∆ 0→,
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q∆ 1 û θ∆+=
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Since can be interpreted as the axis of rotation and as “size” of the rotation (in a
right hand sense), we can express the last term of Eq. I.7 as a function of the angular
body rate :

(I.8)

Where is expressed as an quaternion.

Combining Eq. I.4, Eq. I.7 and Eq. I.8 gives:

(I.9)

This can be manipulated to the expression:

(I.10)

Letting approach zero then gives the desired Ordinary Differential Equation (ODE)
for quaternions in terms of the body rates:

(I.11)

Notice that since quaternions are noncummunative, the multiplication order on the
right hand side is important.

The above expression is not immediately suitable for numerical solution using a stand-
ard ODE integration package, because quaternions are not usually supported. Instead
we can try to reformulate this expression into one involving a vector expression of a
quaternion.

An explicit expression for the right hand side of Eq. I.11 can be obtained as (Ref. 37,p.
1):

(I.12)

It is now possible to express Eq. I.11 as a real valued first order ODE system by intro-
ducing the vector representation of :

(I.13)
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It is apparent that has a certain symmetry in the upper 3 x 3 part. More important
is the fact that all elements of are finite for any unit quaternion
( ). This prevents numerical problems when solving the
ODE for the vehicle attitude.

In general the vehicle attitude at the start of the simulation or the actual mission is not
equal to the attitude of the local earth coordinate system. Thus it must be possible to
describe the initial vehicle attitude in a user friendly way. One obvious choice for this
is to use the Euler angles as described in Section 6.4.1. The advantage of using the
Euler angles is that the are relatively easy to understand intuitively.

The transformation from the vehicle system (aligned with the local earth system) to the
body system is accomplished by the rotations θa, θe and θr, denoting the azimuth, ele-
vation and roll angles.

The rotation θa is positive around the z-axis. The quaternion representing θa can
thus be expressed as:

(I.14)

Similarly the rotation θe around the y-axis can be represented by the quaternion :

(I.15)

And lastly the rotation θr around the x-axis can be represented by the quaternion :

(I.16)

According to the rotation concatenation rule given by Eq. I.3, the final vehicle orienta-
tion can then be expressed as the product of the quaternions in the reverse order of the
rotations:

(I.17)

Using the explicit expressions for , and gives:

(I.18)
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This can be directly expressed in vector form as:

(I.19)q
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