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1. Abstract  
We present results for topology optimization of a non-Newtonian rectifier described with a differential constitutive 
model. The results are novel in the sense that a differential constitutive model has not been combined with 
topology optimization previously. We find that it is necessary to apply a filter on the design variables based on a 
Helmholtz-type differential equation and we try to vary the filter length throughout the optimization in order to 
ensure compatibility with a convex interpolation between the inverse permeability and the design variables, which 
is popular within topology optimization of fluids. We test the method on a microfluidic rectifier and find solutions 
topologically different from experimentally realized designs. 
2. Keywords: non-Newtonian; rectifier; Helmholtz density filter; log conformation 
 
3. Introduction 
Topology optimization for fluids started out with power minimization in Stokes flow [1], but was later extended to 
the Navier-Stokes equation and it was in this context, that a generalized high-level implementation for non-linear 
problems was presented [2]. 
Mesh dependent solutions are common within the field of structural optimization and a variety of filtering 
techniques exist to address this, but similar issues are usually not observed in fluidic optimization, because the 
smallest length scale in the optimal structure is finite. Rather than filtering the design variables or the sensitivities 
between iterations, one can use an implicit approach in the form of a Helmholtz-type differential equation [3]. 
Integration of a passive fluid rectifier in a micropump has been demonstrated [4], but most passive rectifiers rely 
on inertial effects for their working mechanism, so scaling these devices down, will result in vanishing inertial 
effects and thus also degraded performance. Non-Newtonian rectifiers, which promise size independent 
performance, have been demonstrated [5] and it is has also been shown that the performance of these devices can 
be improved by changing the geometry [6].  
The performance of non-Newtonian rectifiers is intrinsically related to the fluid memory of past events and 
therefore it is necessary to apply a differential constitutive model in order to describe a non-Newtonian rectifier. 
The combination of differential constitutive models with the finite element method has received considerable 
attention in the scientific community over the past decades. In particular attention has focused around the issue of 
numerical break down, when the magnitudes of Newtonian and non-Newtonian effects become comparable. 
 
4. Governing Equations 
For a Newtonian fluid the stress not due to pressure is simply proportional to the local instantaneous deformation 
rate. In contrast to this are non-Newtonian fluids where the fluid stress depends on the upstream deformation of the 
fluid. 
4.1 Introduction to Differential Constitutive Models 
The first differential constitutive model for a non-Newtonian fluid was proposed by Maxwell, when he suggested 
that the stress, ߬, in a fluid with both viscosity and elasticity was governed by an equation of the form 

߬ ൅ ߣ
ௗ

ௗ௧
߬ ൌ ሶߛߟ , 

where ߣ is a relaxation time for the fluid, ߟ is the viscosity and ߛሶ  is the rate of deformation. For changes in stress 
occurring over a time scale much larger than the relaxation time, the stress reduces to that of a Newtonian fluid. On 
the other hand changes with a time scale much smaller than the relaxation time will induce a stress, which is 
proportional and opposite the rate of change. 
The model is valid for arbitrary deformations in one dimension, but in its tensor form the model is only valid for 
small deformations. For large deformations it turns that one has to add geometrical non-linearity to the time 
derivative in order for the model properties to be invariant with respect to rotation of the coordinate system. The 
upper convected time derivative is by far the most popular in this context and substituting this for the time 
derivative in the Maxwell model yields the upper Convected Maxwell Model (UCM): 

 τ ൅ τߣ
׏

 ൌ ௣ߟ ൤ߛሶ ൅ ሶߛ ்൨,           τ
׏

ൌ
஽த

஽௧
െ ൬τ ڄ ሶߛ  ൅ ሶߛ ் ڄ τ൰, (1) 
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where ߛሶ ൌ ߬ ,v is the deformation tensor׏
׏
 is the upper convected derivative and 

஽த

஽௧
ൌ

డத

డ௧
൅ ൫ݒ ڄ  ൯τ  is the material׏

derivative . In the case of a polymer solution, it is popular to split the stress into a Newtonian and non-Newtonian 
contribution such that the total fluid stress is equal to 

τ ൌ ௦ߟ ൤ߛሶ ൅ ሶߛ ்൨ ൅ τ௣ 

The Oldroyd-B model makes use of such a stress splitting and uses the UCM given in equation (1) as constitutive 
equation for the polymer stress, ߬௣. Most often the flow can be considered incompressible with vanishing inertial 
effects such the velocity field is divergence free and the Stokes equation with a polymer stress contribution applies.  

0 ൌ ׏ ڄ ൬െ I݌ ൅ ௦ߟ ൤ߛሶ ൅ ሶߛ ்൨ ൅ τ௣൰ െ  ݒߙ

0 ൌ ׏ ڄ  ݒ
As usual within the field of topology optimization in fluids we have added a Darcy damping term, െݒߙ, which 
serves to impose negligible velocity (and velocity gradients) in solid regions. Due to the fact that the polymeric 
stress in differential constitutive models is generated by upstream fluid deformation, we believe that this density 
description of solid and fluid regions is applicable for these models as well. 
The Oldroyd-B model is a reference within differential constitutive equations and it can be derived from the 
starting point of an elastic dumbbell model as sketched in figure 1. The end-to-end vector, ܽ, describes the polymer 
orientation and elongation, but rather than using this directly it is the statistical average of the outer product 
between the end-to-end vector and itself that is used in differential constitutive models. Furthermore this tensor is 
normalized by the equilibrium length of the end-to-end vector, ܽ௘௤. 

ܣ ൌ
ۄ۪ܽܽۃ

ܽ௘௤
ଶ  

Many models can be written in a compact form using a differential constitutive equation for the conformation 
tensor, ܣ, in which case the polymer stress is related to the conformation tensor by an algebraic equation. The 

average squared extension of the dumbbell can be recovered as the trace of the conformation tensor. 

 
 
 
Figure 1: In the Elastic Dumbbell model two 

point masses are connected by a spring. 
Figure 2: The spring force in the elastic dumbbell model can be 
Hookean or approach infinite for a certain extension in the case 

of Finite Extensible (FENE) bead-spring models. 
 
The Oldroyd-B model can be derived as an approximation to an elastic dumbbell assuming a Hookean spring 
force, but this assumption leads to unlimited extension and other unphysical properties. The dumbbell extension 
can be restricted by letting the spring force diverge, when the extension reaches a certain value called the extension 
ability parameter, ܮ, as illustrated in figure 2. 

ୱ୮୰୧୬୥ܨ ൌ
௞బ

ଵିT୰ሺ஺ሻ/௅మ Trሺܣሻ  

Models that are based on such a spring force are called Finite Extensible bead-spring models (FENE). 
 
4.2 Model 
Models can be characterized by their properties in simple flows similar to what can be realized experimentally. 
One example of this is a shear flow, where the rate of deformation tensor is zero except for a single off diagonal 
term. The ratio between the shear stress and shear rate, in such a flow, is called the shear viscosity. 
The experimentally realized rectifiers [5, 6] have been tested with fluids that show a constant shear viscosity and 
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we therefore choose the finitely extensible bead-spring chain model by Chilcott and Rallison (FENE-CR) [9] as it 
has this property. Furthermore it has been shown that the transition to time dependent flow can be delayed by 
decreasing the extension ability parameter in the case of a modified version of the FENE-CR model [10], and the 
first results with the log-conformation method were in fact produced with the FENE-CR model [11]. In terms of 
the conformation tensor, ܣ, the FENE-CR equation can be written as 

Aߣ 
׏

ൌ െ݂ሺAሻሺA െ Iሻ  (2) 

 ݂ ቀAቁ ൌ
ଵ

ଵିT୰ሺAሻ/Lమ  (3) 

 ߬௣ ൌ
ఎ೛௙ቀAቁ

ఒ
ሺA െ  ሻ  (4)ܫ

We introduce dimensionless variables using a characteristic pressure rather than a characteristic velocity. 

ݔ  ൌ ߙ     ,෤ݔܮ ൌ ݒ     , ୡ୦ୟ୰α෥ߙ ൌ
௣೎೓ೌೝ௅

ఎೞାఎ೛
߬      ,෤ݒ ൌ   ୡ୦ୟ୰߬̃݌

The resulting equations are listed in section 5.1 equations (8-10). The characteristic dimensionless numbers of the 
system are 

 Da ൌ
ఎೞାఎ೛

ఈౙ౞౗౨௅మ ߚ     , ൌ
ఎೞ

ఎೞାఎ೛
,     We ൌ ߣ

୼௣೎೓ೌೝ

ఎೞାఎ೛
  

The Darcy number, Da, describes the ratio between the Darcy damping term and the sum of viscous and polymer 
stress terms. ߚ describes the relative magnitude between solvent and polymer viscosity, while the Weissenberg 
number, We, describes the ratio between the convective timescale and the polymer relaxation time and thus the 
magnitude of non-Newtonian effects.   
Within topology optimization of fluid systems it is common to use the following convex interpolation between the 
design variables, ߠ, and the local damping 

 Daିଵߙ෤ሺߠሻ ൌ Da୫୧୬
ିଵ ൅ ሺDa୫ୟ୶

ିଵ െ Da୫୧୬
ିଵ ሻߠ

ሺଵା௤ሻ

ఏା௤
 (5) 

The optimization is started with a small value of ݍ, but once converged ݍ is increased and the process is repeated 
until the interpolation becomes practically linear at ݍ ൌ 1. 
 
4.3 Filtering Scheme 
We find that is necessary to apply a filtering scheme in order to get meaningful designs with a characteristic length 
scale larger than the mesh.  We choose to impose a minimum length scale, ୢܮ୧୤, on the design field, ߠ,  using a 
Helmholtz type differential equation. 
୧୤ୢܮ 

ଶ ෨ߠଶ׏ ൌ ෨ߠ െ   ߠ
The filtered design variable, ߠ෨, is then substituted for the design variable in the physical problem and in this way 
the filtering schemes is an integrated part of the sensitivity analysis. 
The combination of the interpolation in equation (5) and filtering scheme however gives rise to complications, 
when the ݍ value is increased. We can study this using a 1D example with a Heaviside step function for the design 
field, ߠ, such that the filtered design becomes 

,ݔ෨ሺߠ  ୧୤ሻୢܮ ൌ ቊ
భ
మ
݁௫/௅ౚ౟౜          , ݔ ൏ 0

1 െ భ
మ
݁ି௫/௅ౚ౟౜, ݔ ൒ 0

  

Plugging this expression into equation (5) enables us to draw curves for the inverse permeability for different 
values of ݍ as show in figure 3. If we define the effective position of the wall by a critical value of the Darcy 
number, this effective position changes with ݍ, but we can make the curves intersect by solving  
୧୤ୢܮ෨ሺߠ൫ߙ 

כ , ୧୤ୢܮ
כ , ൯כݍ ൌ ୧୤ୢܮ෨ሺߠ൫ߙ

כ , ,୧୤ሻୢܮ       ൯ݍ
for ୢܮ୧୤, which corresponds to fixing the curve with ୢܮ୧୤

כ  and כݍ while changing ୢܮ୧୤ for the other curves according 
to 

 
௅ౚ౟౜

௅ౚ౟౜
כ ൌ ቀ1 ൅ log ቂ

௤ሺଶሺ௘ା௤כሻିଵሻା௤כ

ଶ௤כሺ௤ାଵሻ௘
 ቃቁ

ିଵ
, (5)   

Such that they intersect at ݔ ൌ ୧୤ୢܮ
כ  as shown in figure 4, where the curve with the smallest ݍ has been fixed. The 

downside to this approach is that the filter length quickly becomes smaller than the mesh size effectively disabling 
the filter.  
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Figure 3:  The inverse permeability is plotted for 

different values of ݍ in the case of a Heaviside step 
function design variable.  The same filter length is used 

for all ݍ values. 

 

 
Figure 4: The inverse permeability is plotted for 

different values of ݍ in the case of a Heaviside step 
function design variable.  The filter length is varied to 

make the curves intersect. 
  
4.4 Numerical Implementation 
The weak formulation of differential constitutive models is a little peculiar in the sense that the rate of deformation 
tensor is discontinuous, when a second order polynomial basis is used for the velocity vector. Therefore it has 
shown to be numerically advantageous to introduce a new variable, ܩ, as a continuous approximation to the rate of 

deformation tensor, but this is not only substituted for the rate of deformation tensor in the constitutive equation, 
but also incorporated into the Stokes equation via the substitution of ሺߛ ሶ – ௦ߟ/ሻܩ ൅  for the deformation tensor as ܩ

shown in equation (8). This formulation of the Stokes equation is called the Discreete Elastic Viscous Stress 
Splitting (DEVSS) and corresponds to adding ߟ௣ሺߛ ሶ –  .ሻ as a zero[14]ܩ

In the past decades the scientific community has put significant effort into solving what has been known as the 
High Weissenberg Number Problem (HWNP). The problem relates to the breakdown of numerical finite element 
codes, when the magnitudes of Newtonian and non-Newtonian effects become comparable. A significant 
contribution to the solution of this issue was made, when it was shown that the origin of the problem is due to 
incompatibility between exponential stress growth and the polynomial basis typical of the finite element method 
[7]. The solution is to write an equation for the evolution of the logarithm of the conformation tensor and solve for 
this new variable – similar to taking the logarithm of the turbulence variables [8]. The equation for the logarithm of 
conformation tensor is however still hyperbolic, so it requires stabilization and for this purpose we choose 
streamline upwind Petrov Gallerkin (SUPG) stabilization. The scheme boils down to replacing the test function 
௧௘௦௧ܣ ௧௘௦௧ withܣ ൅ ݒ݄ ڄ  is the velocity vector and ݄ is a local characteristic length for the mesh. An ݒ ௧௘௦௧, whereܣ׏
overview of the equations in the log conformation form is given in the appendix together with the weak 
formulation. We apply COMSOL, a high level finite element package, for solving both the physical problem as 
well as the adjoint problem associated with the sensitivity analysis [2]. Finally we use the Method of Moving 
Asymptotes (MMA) to update the design variables [12]. The fact that we are able to plug the expressions given in 
the appendix into this toolbox and get the results of section 5.3 is a testament to the flexibility of topology 
optimization as a numerical method. 
We use linear continuous polynomials for the pressure, the polymer stress and the continuous approximation to the 
rate of deformation tensor, ܩ . For the velocity vector and the filtered design variable, ߠ෨ , we use quadratic 

continuous polynomials, while discontinuous constants describe the design variables, ߠ. Excluding the design 
variable there is 12.5 degrees of freedom per interior element. 
A good approximate steady solution is determined by time integration, and this approximate solution is used as a 
starting guess for the iterative solution of the static problem. 
We consider the optimization converged at iteration ݅, when the running averages over the last ܰ iterations of both 
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the objective function step and infinite norm of the design variable step are below 10ିହ and 0.1 respectively: 
 భ

ಿ
∑ ௝߶߂

௝ୀ௜
௝ୀ௜ାଵିே ൌ భ

ಿ
∑ ห߶௝ െ ߶௝ିଵห௜

௜ାଵିே ൏ 10ିହ    and    భ
ಿ

∑ ௝ߠ߂
௝ୀ௜
௝ୀ௜ାଵିே ൌ భ

ಿ
∑ ୨ߠ|| െ θ୨ିଵ||ஶ

௜
௜ାଵିே ൏ 0.1 

We do not only change the value of ୢܮ୧୤, when changing ݍ, but also update the design variables according to  

,୭୪ୢߠሺߙ  ୭୪ୢሻݍ ൌ ,୬ୣ୵ߠሺߙ ୬ୣ୵ሻݍ ֜ ௡௘௪ߠ ൌ
௤౤౛౭ఏ౥ౢౚሺଵା௤౥ౢౚሻ

௤౥ౢౚା௤౤౛౭ఏ౥ౢౚା௤౥ౢౚ௤౤౛౭ିఏ౥ౢౚ௤౥ౢౚ
 (6)   

to preserve ߙ for intermediate values of ߠ. 
   
5. Results 
Experimentally realized non-Newtonian rectifiers produce asymmetric solutions for symmetric designs due to 
instabilities that arise, when there is a stress along curved streamlines. This behavior is typical at high Weissenberg 
numbers where the rectification is most efficient, but these solutions are unsteady, so we have to restrict ourselves 
to optimization at moderate Weissenberg numbers.  
 
5.1 Problem Description 
We test the method on the problem of a non-Newtonian rectifier. The problem setup is sketched in figure 5. 

 
Figure 5: The problem definition for the rectifier is sketched: The flows are pressure driven with a normal stress 
equal to the pressure on the inlet/outlet boundaries. The conformation tensor and velocity vector are periodic over 
the inlet/outlet boundaries. At the walls the no slip boundary condition is imposed and to fix the position of the 

active part of the rectifier, the design domain is restricted to the middle part of the geometry. 
 
We use the flow rate ratio as objective function, and we choose to evaluate the flow rate using the integral of the x 
component of the velocity vector, ݒ௫, over the domain. We also tried to use the dissipation function, but this 
improved neither convergence nor the objective function. 
Finally we perform the computation of forward flow and related sensitivity analysis in parallel with the 
computation for the reverse flow. To summarize the optimization problem can be stated as 

 minఏ ߶௩ ൌ
׬ ௩ೣ,౨౛౬౛౨౩౛ௗΩౚ౥ౣ౗౟౤

׬ ௩ೣ,౜౥౨౭౗౨ౚௗΩౚ౥ౣ౗౟౤

 

 s.t.        0 ൌ ෩׏ ڄ ൬െ I݌෤ ൅ ൤ߛ෤ሶ ൅ ෤ሶߛ ்– –෨ܩ ෨்൨ܩ ൅ ߚܹ ቂܩ෨ ൅ ෨்ቃܩ ൅ τ෤௣൰ െ Da୫୧୬
ିଵ α෥ݒ෤ (7) 

෩׏  ڄ v෤ ൌ ෨ܩ     ,0 ൌ  ෩v෤, (8)׏

 ߬̃௣ ൌ
ሺଵିఉሻ௙ሺAሻ

Wୣ
ሺA െ ,ሻܫ WeA

׏
ൌ െ݂ሺAሻሺA െ Iሻ, ݂ሺAሻ ൌ

ଵ

ଵିT୰ሺAሻ/௅మ (9) 

 and    ୢܮ୧୤
ଶ ෨ߠ෩ଶ׏ ൌ ෨ߠ െ  (10) .ߠ

෨൯ߠ෤൫ߙ  ൌ 1 െ ෨ߠ
ሺଵା௤ሻ

ఏ෩ା௤
 

 0 ൑ ߠ ൑ 1 
The weak formulation of the log conformation method is described in the appendix. 
 
5.2 Model Parameters 
We choose ߚ ൌ 0.59, because it is representative for Boger fluids and used widely in benchmarks of numerical 
algorithms. The transition to time dependent solutions can be delayed to around We ൌ 5 for ܮଶ ൌ 100 [10]. The 
Weissenberg number is usually defined by a mean velocity and for this reason we choose Δ݌෤ ൌ 7.17 as it gives a 
unit mean velocity for the empty design. We find that we can set We ൌ 5 and still get few unsteady solutions in the 
optimization. We use an isotropic mesh with a length scale of ݄ ൌ ಽ

ఱ
 and find stable results for ୢܮ୧୤ ൌ ݄. Finally 

Da୫୧୬ ൌ 10ିହ should be a good compromise between solid walls and numerical convergence while an initial ݍ 
value of 4 ڄ 10ି଺ halves the flow rate compared to the empty design when all design variables are set to 0.5. Once 
the optimization is converged, we increase ݍ to 10ିହ, then 3 ڄ 10ିହ and finally 10ିସ. When increasing ݍ we also 
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decrease the filter length according to equation (6) and for ݍ ൌ 10ିସ we get ୢܮ୧୤ ൎ ݄/4, so increasing ݍ any 
further effectively disables the filter. 
 
5.3 Results 
The optimization results are not discrete as shown in figure 6, but we have no reason to believe that the regions 
with intermediate design variables are important for the physical working mechanism of the solution. Note that the 
characteristic length scale of the design is larger than the filter length, so contrary to structural optimization we 
expect mesh converged solutions, when the filter length scales with the mesh. Figure 7 shows how the optimization 
converges towards one topology for the initial ݍ value and another for the next. Furthermore the optimization 
converges towards a symmetric solution, but the first topology and the transition from the first to the second 
topology is asymmetric.  The last frame of figure 7 corresponds to ݍ ൌ 3 ڄ 10ିସ and it serves to illustrate the small 
length scales that appear in the absence of filtering. The value of the objective function throughout the 
optimization is plotted in figure 8, where we see how a very small filter length gives even better objective functions 
until a certain point where the sensitivity becomes inaccurate or the appearance of unsteady solutions destroys the 
algorithm convergence. 

  
 

Figure 6: The filtered design variable and streamlines are shown for a converged solution (ݍ ൌ 10ିସ) 
corresponding to iteration 586 in figure 7. The dashed green lines indicate the position of the design region. 

 

  

  
 

Figure 7: The filtered design variables are shown at representative iterations throughout an optimization. The 
solution is converged at iterations 93, 340, 466, 586 and 701, so it is after these iterations that ݍ is increased. The 
filter length starts out at the mesh size, ୢܮ୧୤ ൌ ݄, but is reduced to ୢܮ୧୤ ൌ 0.55݄ after iteration 93, which causes a 

change in topology to a “contraction obstacle”-design. 
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Figure 8: The objective function is plotted throughout an optimization. Green dots indicate that no steady solution 
could be found. Comparison with figure 7 reveals that the first plateau in the objective function corresponds to a 

different topology than the other plateaus. The dashed vertical line marks the usual point of termination. 
 
The physical working mechanism of the “contraction obstacle” design is best illustrated in terms of the dumbbell 
extension shown in figure 9: A region of elongated dumbbells appears in the obstacle wake and for the reverse flow 
this wake is squeezed by the contraction, which gives rise to an enlarged hydraulic resistance.  
The mean velocity at the inlet is around 0.25, but the contraction width can be estimated at 2ܮ, so the effective 
Weissenberg number of this design is approximately 2.5. 
 

log ቀTrሺܣሻቁ in forward flow log ቀTrሺܣሻቁ in reverse flow 

 
Figure 9: The logarithm of the squared polymer extension is plotted for both flow directions together with the 

෨ߠ ൌ భ
మ
 contour in white. Note that the maximum possible value is restricted to logሺܮଶሻ ൎ 4.6, so the dumbbells in 

the obstacle wake are far outside the Hookean regime (see figure 2). 
 
Figure 10 shows an optimization with constant filter length,  ୢܮ୧୤ ൌ ݄/2. The design is not symmetric, but the 
working mechanism is the same. The objective function improves as ݍ is increased and it is slightly better at 
iteration 159 than the optimization with variable filter length at iteration 340 (in figure 7), but otherwise higher 
such that the design with the smaller filter length has the best objective function for any given ݍ. We expect 
smaller structures for a constant filter length, because the effective wall position changes (c.f. figure 3), but this is 
not clearly observed. 

  

  
 

Figure 10: The filtered design variables are shown at representative iterations throughout an optimization with a 
constant filter length, ୢܮ୧୤ ൌ ݄/2. The value of ݍ is increased after the last five frames. 
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Performing an optimization with a symmetric problem description can result in two obstacles, and this might be 
due to the fact that the symmetric optimization cannot make an asymmetric transition as the one illustrated in 
figure 7 rather it follows the route illustrated in figure 11. 

  

  
Figure 11: The filtered design variables are shown at representative iterations throughout a symmetric 

optimization. Note the change of topology from iteration 265 to 389. ݍ is increased at the last five frames. 
 
6. Conclusion 
We have presented result for topology optimization of a non-Newtonian rectifier modeled with a FENE-CR fluid 
using the log conformation method and a Helmholtz type differential equation filter on the design variables. We 
find topologies different from experimentally realized designs. 
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8. Appendix 
The log conformation formulation of equations (2-4) becomes [13] 

ݏܦ

ݐܦ
െ ܴ ڄ ቀΛሶ ڄ Λିଵ ൅ Ω෩ ڄ logሺΛሻ ൅ logሺΛሻ ڄ Ω෩்ቁ ڄ ்ܴ ൌ 0 

߬ ൌ
௣݂ሺ݁௦ሻߟ

ߣ
ቀ݁௦ െ  ቁܫ

݂ሺ݁௦ሻ ൌ
1

1 െ Trሺ݁௦ሻ/ܮଶ
 

Here the logarithm of conformation tensor, ݏ, has been introduced together with the rotation tensor, ܴ, holding the 

normalized eigenvectors of the conformation tensor1 in the columns. The computation of the eigenvalues and 
eigenvectors of ݏ is at the heart of the method.  

We introduce a (small) numerical parameter ߳ such that when |ݏଵଶ| ൏ ߳ 
ܴ ൌ |ଵଶݏ|        ,ܫ ൏ ߳ 

is used (otherwise equation (12)). The conformation tensor can be recovered as 
ܣ ൌ ݁௦ ൌ ܴ ڄ eஊ ڄ ்ܴ 

Where, eஊ, is a diagonal matrix with the exponentials of the eigenvalues of ݏ. The trace of the conformation tensor 

is equal to the sum of its eigenvalues, so for two dimensions we have 

݂ሺ݁௦ሻ ൌ
1

1 െ ሺλଵ ൅  ଶܮ/ଶሻߣ

The matrix Λሶ ڄ Λିଵ is diagonal and (switching to index notation) it is equal to 

ቀΛሶ ڄ Λିଵቁ
௜௜

ൌ ෨௜௜ܩ2 െ ݂ሺ݁௦ሻ
௜ߣ  െ 1

ߣ
, 

where ߣ௜ are the eigenvalues2 of ݏ and ߣ is the relaxation time. ܩ෨ is given by 

෨ܩ ൌ ்ܴ ڄ G ڄ ܴ 

Finally Ω෩ ڄ logሺΛሻ ൅ logሺΛሻ ڄ Ω෩் is symmetric and with zero diagonal entries and off diagonal entries equal to 

ቀΩ෩ ڄ logሺΛሻ ൅ logሺΛሻ ڄ Ω෩்ቁ
௜௝

=
୪୭୥ሺఒ೔ሻି୪୭୥൫ఒೕ൯

ఒ೔ିఒೕ
ሺߣ௜ܩ෨෨௝௜ ൅  ෨௜௝ሻܩ௝ߣ

In the limit of equal eigenvalues corresponding to หߣ௜ െ ௝หߣ ൏ ߳, we use 

ቀΩ෩ ڄ logሺΛሻ ൅ logሺΛሻ ڄ Ω෩்ቁ
௜௝

෨෨௝௜ܩ= ൅ ௜ߣ෨௜௝,         หܩ െ ௝หߣ ൏ ߳ 

The complete weak form of the equations will written in the following with x and y subscripts indicating 
differentiation. Furthermore the velocity vector components are denoted ݑ and  ݒ. 
Stokes equation 

݌ൣ ൅ 2൫ሺ1 െ ଵଵܩ௦ሻߟ െ ௫൯ݑ െ ߬ଵଵ൧ݑ௫
௧௘௦௧ ൅ ൣሺ1 െ ଵଶܩ௦ሻሺߟ ൅ ଶଵሻܩ െ ൫ݑ௬ ൅ ௫൯ݒ െ ߬ଵଶ൧ݑ௬

௧௘௦௧ ൅ ሾݑߙሿݑ௧௘௦௧ ൌ 0 

ൣሺ1 െ ଵଶܩ௦ሻሺߟ ൅ ଶଵሻܩ െ ൫ݑ௬ ൅ ௫൯ݒ െ ߬ଵଶ൧ݒ௫
௧௘௦௧ ൅ ቂ݌ ൅ 2 ቀሺ1 െ ଶଶܩ௦ሻߟ െ ௬ቁݒ െ ߬ଶଶቃ ௬ݒ

௧௘௦௧ ൅ ሾݒߙሿݒ௧௘௦௧ ൌ 0 

௫ݑൣ ൅ ௧௘௦௧݌௬൧ݒ ൌ 0,     
The continuous approximation of the deformation tensor 

ሾݑ௫ െ ଵଵܩଵଵሿܩ
௧௘௦௧ ൌ ௬ݑൣ   ,0 െ ଵଶܩଵଶ൧ܩ

௧௘௦௧ ൌ 0,    ሾݒ௫ െ ଶଵܩଶଵሿܩ
௧௘௦௧ ൌ ௬ݒൣ   ,0 െ ଶଶܩଶଶ൧ܩ

௧௘௦௧ ൌ 0 
The polymer stress tensor  

ቂ ଵܶଵ െ
௙ఎ೛

ఒ
ሺܣଵଵ െ 1ሻቃ ߬ଵଵ

௧௘௦௧ ൌ 0,   ቂ ଵܶଶ െ
௙ఎ೛

ఒ
ଵଶቃܣ ߬ଵଶ

௧௘௦௧ ൌ 0,   ቂ ଶܶଶ െ
௙ఎ೛

ఒ
ሺܣଶଶ െ 1ሻቃ ߬ଶଶ

௧௘௦௧ ൌ 0’ 

The logarithm of the conformation tensor 

൤
ଵଵݏ߲

ݐ߲
൅ ݑ ڄ ଵଵ௫ݏ ൅ ݒ ڄ ଵଵ௬ݏ െ Πଵଵ൨ ଵଵݏൣ

௧௘௦௧ ൅ ݄ሺݑ ڄ ଵଵ௫ݏ
௧௘௦௧ ൅ ݒ ڄ ଵଵ௬ݏ

௧௘௦௧ሻ൧ ൌ 0 

൤
ଵଶݏ߲

ݐ߲
൅ ݑ ڄ ଵଶ௫ݏ ൅ ݒ ڄ ଵଶ௬ݏ െ Πଵଶ൨ ଵଶݏൣ

௧௘௦௧ ൅ ݄ሺݑ ڄ ଵଶ௫ݏ
௧௘௦௧ ൅ ݒ ڄ ଵଶ௬ݏ

௧௘௦௧ሻ൧ ൌ 0 

൤
ଶଶݏ߲

ݐ߲
൅ ݑ ڄ ଶଶ௫ݏ ൅ ݒ ڄ ଶଶ௬ݏ െ Πଶଶ൨ ଶଶݏൣ

௧௘௦௧ ൅ ݄ሺݑ ڄ ଶଶ௫ݏ
௧௘௦௧ ൅ ݒ ڄ ଶଶ௬ݏ

௧௘௦௧ሻ൧ ൌ 0 

where the eigenvalues, ߣଵ and ߣଶ of the conformation tensor, ܣ, are calculated as  

                                                           
1 The eigenvectors of the logarithm of the conformation tensor are identical to those of the conformation tensor.  
2 The eigenvalues of the conformation tensor, ܣ, are the exponential of the eigenvalues of ݏ. 
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ଵߣ
ᇱ ൌ ଵ

ଶ
ቆௌమమାௌభభିටหௌమమ

మ ାௌభభ
మ ିଶௌమమௌభభାସௌభమ

మ หቇ,   ߣଶ
ᇱ ൌ ଵ

ଶ
ቆௌమమାௌభభାටหௌమమ

మ ାௌభభ
మ ିଶௌమమௌభభାସௌభమ

మ หቇ, ଵߣ ൌ ݁ఒభ
ᇲ
ଶߣ   , ൌ ݁ఒమ

ᇲ
 

and the components, ݒଵ௫ and  ݒଵ௬, of the first normalized eigenvector are 

ଵ௫ݒ
ᇱ ൌ ൤െ ଵܵଶ

ଵܵଵ െ ଵߣ
൨ ڄ ሼ| ଵܵଶ| ൏ ߳ሽ ൅ ሼ| ଵܵଶ| ൒ ߳ሽ, ଵ௬ݒ  ൌ ሼ| ଵܵଶ| ൏ ߳ሽ, ଵ௫ݒ  ൌ

ଵ௫ݒ
ᇱ

ටݒଵ௫
ᇱ ଶ ൅ ଵ௬ݒ

ᇱ ଶ
, ଵ௬ݒ  ൌ

ଵ௬ݒ
ᇱ

ටݒଵ௫
ᇱ ଶ ൅ ଵ௬ݒ

ᇱ ଶ
 

Here we have used a boolean expression to treat the special case ሺ| ଵܵଶ| ൏ ߳ሻ. We can thus write the transformation 
tensor  

 ܴ ൌ ቂ
ଵ௫ݒ  െ ݒଵ௬
ଵ௬ݒ  ଵ௫ݒ 

ቃ (11)  

We then proceed to calculate the conformation tensor 

ଵଵܣ ൌ ଵ௫ݒ
ଶ ݁ఒభ

ᇲ
൅ ଵ௬݁ఒమݒ

ᇲ
, ଵଶܣ ൌ ଵ௬൫݁ఒభݒଵ௫ݒ

ᇲ
െ ݁ఒమ

ᇲ
൯, ଶଶܣ ൌ ଵ௬ݒ

ଶ ݁ఒభ
ᇲ

൅ ଵ௫݁ఒమݒ
ᇲ
 

and ܩ෨ 

෨ଵଵܩ ൌ ଵ௫ݒ
ଶ ଵଵܩ ൅ ଵଶܩଵ௬ሺݒଵ௫ݒ ൅ ଶଵሻܩ ൅ ଵ௬ݒ

ଶ ,ଶଶܩ ෨ଵଶܩ ൌ ଶଶܩଵ௬ሺݒଵ௫ݒ െ ଵଵሻܩ ൅ ଵ௫ݒ
ଶ ଶଵܩ െ ଵ௬ݒ

ଶ  ଵଶܩ
෨ଶଵܩ ൌ ଶଶܩଵ௬ሺݒଵ௫ݒ െ ଵଵሻܩ െ ଵ௬ݒ

ଶ ଶଵܩ ൅ ଵ௫ݒ
ଶ ,ଵଶܩ ෨ଶଶܩ ൌ ଵ௬ݒ

ଶ ଵଵܩ െ ଵଶܩଵ௬ሺݒଵ௫ݒ ൅ ଶଵሻܩ ൅ ଵ௫ݒ
ଶ  ଶଶܩ

Then the diagonal components  Λሶ ڄ Λିଵ are calculated 

Λଵଵ ൌ ෨ଵଵܩ2 ൅ ଵ݂ଵ

ଵߣ
, Λଶଶ ൌ ෨ଶଶܩ2 ൅ ଶ݂ଶ

ଶߣ
, ଵ݂ଵ ൌ െ

1
1 െ ሺߣଵ ൅ ଶܮ/ଶሻߣ

ሾߣଵ െ 1ሿ

ߣ
 ଶ݂ଶ ൌ െ

1
1 െ ሺߣଵ ൅ ଶܮ/ଶሻߣ

ሾߣଶ െ 1ሿ

ߣ
 

Note that the ߣ without the subscript refers to the polymer relaxation time. We can now proceed to calculate the off 
diagonal expression for Ω෩ ڄ logሺΛሻ ൅ logሺΛሻ ڄ Ω෩் 

Λଵଶ ൌ ቈ
logሺߣଵሻ െ logሺߣଶሻ

ଵߣ െ ଶߣ
ቀߣଵܩ෨෨ଵଶ ൅ ෨ଶଵቁ቉ܩଶߣ ሼ| ଵܵଶ| ൏ ߳ሽ ൅ ቂܩ෨෨ଵଶ ൅ ෨ଶଵቃܩ ڄ ሼ| ଵܵଶ| ൒ ߳ሽ 

Finally we can write the expressions for Π 

Πଵଵ ൌ ଵ௫ݒ
ଶ Λଵଵ ൅ ଵ௬ݒ

ଶ Λଶଶ ൅  ଵ௬Λଵଶݒଵ௫ݒ
Πଵଶ ൌ ଵ௬ሺΛଵଵݒଵ௫ݒ െ Λଶଶሻ ൅ ൫ݒଵ௫

ଶ െ ଵ௬ݒ
ଶ ൯Λଵଶ 

Πଶଶ ൌ ଵ௬ݒ
ଶ Λଵଵ ൅ ଵ௫ݒ

ଶ Λଶଶ ൅  ଵ௬Λଵଶݒଵ௫ݒ
 


