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Abstract

This thesis describes the elements that form part of a comprehensive neuromus-
cular simulation system centered around control of the human arm. The re-
sulting computational system necessarily covers many fields of study, and spans
several orders of magnitude: From the molecular level where muscle proteins
generate forces, to the macroscopic levels where overt arm movements are vol-
untarily controlled within an unpredictable environment by legions of neurons
firing in orderly fashion. An extensive computer simulation system has been
developed for this thesis, which at present contains a neural network scripting
language for specifying arbitrary neural architectures, definition files for detailed
spinal networks, various biologically realistic models of neurons, and dynamic
synapses. Also included are structurally accurate models of intrafusal and extra-
fusal muscle fibers and a general body-centered mechanical physics simulation
system in which a realistically scaled human arm with accurate muscle origin-
insertion points was modelled.

At the molecular level, a novel hypothesis regarding the origin of muscle force
is proposed. It is concluded that within the framework laid out by the sliding
filament theory, the conformational entropy of the individual myosin molecules
has a central role to play in the total force production of the sarcomere. All
in all, much emphasis has been given in this thesis to develop a highly detailed
model of human muscle. The final muscle fiber model accounts for a variety of
phenomena, ranging from the force-velocity and force-length relationships, to
tetanic fusion, ”catch-like” effects and the distinctions between fast and slow
muscle fiber types. Furthermore the model incorporates sufficient neuromus-
cular information as to permit orderly recruitment of motor units, exponential
motor-unit size distributions and gradual force increases.

Also included in the computational model was a mathematical model of an
important class of sensory receptors known as muscle spindles which report to
the central nervous system on the length and contraction velocity of the inner-
vated muscles. From the simulations it was concluded that the dynamic range
of the modelled spindles, as they responded to fusimotor input, was such that it
was possible to maintain constant activity levels in the primary and secondary
afferents. Further theoretical analysis of this spindle model revealed that an
explicit function may be derived which expresses the force that the spindle
contractile elements must produce to exactly counter spindle unloading during
muscle shortening. This information was used to calculate the corresponding
”optimal” γ-motoneuronal activity level. For some simple arm movement tasks,
this permits the derivation of a signature activation pattern which in principle
may be used to identify such cells in vivo by monitoring spinal activity during
tasks that are similar.
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Finally, at the level of neural systems, a novel role is proposed for the cor-
ticomotoneuronal (CM) cells, which form an important class of motor cortical
cells, and which have been shown to have strong correlations with movement.
Based on extensive computer simulations it is suggested that these cells might
be partially responsible for activating the fusimotor systems according to pre-
programmed voluntary movements. The upshot of this is, that CM cells might
be responsible for cancelling the reafference that inevitably accompanies any
voluntary movements, thus improving the signal-to-noise ratio of spindle affer-
ence. To do this, CM cells would have to partake in a complex attractor cortical
network where horizontal connectivity allows the system to produce stable and
spatiotemporally extended patterns of activity that correspond to the sequen-
tial activation of muscles during well-learnt voluntary movements, and to the
associated reafference cancelling signal.



Dansk Resumé

Titel: Fra Neuroner til Newtons – Neurocomputationelle elementer af voluntær
bevægelse.

Denne afhandling beskriver de elementer som indg̊ar i et omfattende neu-
romuskulær simulerings-system hvis primære fokus er kontrol af den humane
arm. Det resulterende computationelle system spænder nødvendigvis over flere
studieomr̊ader og størrelsesordener: Fra det molekylære niveau, hvori muskel
proteiner genererer krafter og til de makroskopiske niveauer hvor hele arm-
bevægelser er underlagt viljen, b̊aret af tusindvis af neuroner som aktiveres i
bestemte mønstre. Et omfattende computerbaseret simulerings-system er blevet
udviklet, og indeholder p.t. et fuldt skalérbart ”script” baseret neuralt netværk
til hvilken definitions filer er blevet udarbejdet med henblik p̊a simulering af
rygmarvens neurale netværk. Derudover indg̊ar ogs̊a i systemet mulighed for at
implementere flere forskellige slags neuron modeller, samt dynamiske synapse
modeller. Ydermere indg̊ar strukturelle modeller af intrafusale og ekstrafusale
muskel fibre samt en generel mekanisk-fysisk simulerings-system, med hvilken
en model over den humane arm blev implementeret.

P̊a det molekylære plan, fremsættes en ny hypotese vedrørende kraft pro-
duktion i musklerne. Det konkluderes at den komformationelle entropi spiller
en afgørende rolle i dette henseende, indenfor de rammer som sættes af ”sliding-
filament” teorien. Der bliver i denne afhandling lagt stor vægt p̊a at ud-
vikle en s̊a detaljeret model af den humane stribede muskulatur som muligt.
Den resulterende model redegør for en lang række fænomener, rækkende fra
kraft-hastigheds og kraft-længde relationerne, til tetanisk fusion, ”catch-like”
effekten og forskellene mellem hurtige og langsomme muskelfibre. Desuden in-
dlemmes i modellen ogs̊a tilstrækkelig neuromuskulær information til at kunne
tillade rekruttering af muskelfibre efter størrelse, en eksponential fordeling af
muskelfiber størrelser samt gradvise forøgelse af kraften.

Tillige inkluderes en matematisk model over muskelten-cellerne, en vigtig
gruppe af sensoriske celler som rapporterer til centralnervesystemet om æn-
dringer i muskel længde eller hastighed. Af simulationerne konkluderes det,
at disse cellers dynamiske rækkevidde, under respons fra fusimotorisk input,
kunne opretholde en situation hvori de primære og sekundære afferente fibres
aktivitet bibeholdt deres aktiveringsniveau. Efterfølgende analyse af modellen
viser, at det er muligt at finde et simpelt udtryk for den kraft med hvilken
de intrafusale muskelfibre skal p̊avirke den centrale region af muskeltenen for
at modst̊a deaktivering for̊arsaget af aflastning ved muskel sammentrækning.
Denne information blev brugt til at udregne den ”optimale” γ-motoneuronale
aktiverings niveau. For visse simple armbevægelser, tillader dette en udledning
af kendetegnende aktiverings mønstre, som i princippet skulle kunne bruges

xv
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til at identificere s̊adanne celler in vivo, ved at iagtage aktiviteten i rygmarvs-
neuronerne under adfærds-opgaver som ligner det modellerede.

Til slut fremlægges en hypotese omhandlende de corticomotoneuronale (CM)
celler, som udgør en vigtig gruppe af neuroner i den motoriske del af hjernebarken,
og som har vist sig at have stærke korrelationer til bevægelse. P̊a baggrund af
omfattende computersimuleringer foresl̊as det at disse celler kan være delvist
ansvarlige for at aktivere det fusimotoriske system i henhold til præprogram-
merede voluntære bevægelser. Udfaldet af dette er, at CM cellerne i teorien
kunne være ansvarlige for at medvirke til en annulering af den reafferens som
nødvendigvis opst̊ar under bevægelse. Herved medvirkende til at forbedre støj-
signal forholdet i den primære og sekundære afferens. For at dette kan ske, må
CM cellerne være en del af en kompleks cortical attraktor netværk hvori hor-
izontal konnektivitet formodentlig spiller en rolle i produktionen af stabile og
spatiotemporalt udstrakte aktivitetsmønstre, svarende til den sekventielle ak-
tivering af muskler under udførelsen af voluntære bevægelser og til det derved
associerede reaferens annulerende signal.
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Chapter 1

General Introduction

Chapter Summary

This chapter is intended as a general overview of this thesis, empha-
sizing the primary research problems and goals that will be pursued,
the suggested hypotheses and the methodology used. As a help to
the reader, a chapter overview of the whole thesis is also provided.

Every moving organism owns some sophisticated machinery which can trans-
form energy into precisely directed forces. In nature, many different strategies
have arisen to this effect, and sometimes it seems as if the ability to move like
no other being has been one of the major driving forces in the arms race of evo-
lution. Almost all the forces that can be derived from classical physics are well
represented in the strategies evolved for producing motive force. Identifying and
describing these forces is very challenging indeed, and has resulted in the birth
of biomechanics, a branch of science existing at the threshold between biology
and mechanical engineering (see Alexander5 for a comprehensive introduction
to the topic of biomechanics).

In some cases the energy transformation is very direct and the resultant
force vector is easy to predict given the current activity of the machinery. For
example, when a squid contracts the muscles surrounding its water filled mantle
cavity, energy originating from the breakdown of ATP (adenosine triphosphate)
is transformed into hydrodynamic forces as muscle contraction reduces the vol-
ume of the mantle cavity, and the resulting increase in pressure causes the
expulsion of water through a funnel tube (see e.g. Alexander 5). The direction
of the resultant thrust vector can easily be deduced from the position of the
funnel and the geometry of the squid’s body. Thus so far the causality between
muscle activity and direction of motility seems straightforward, but that is only
in appearance because the squid’s actual direction of movement will depend on
other forces too, such as those caused by the position and movement of its own
tentacles and the drift caused by external water currents, etc.

1
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As with the squid, the movement of organisms depends on the accurate
positioning of structures pertaining to the organism proper through the control
of the relevant internal forces. The purpose of such movement is to achieve
some goal by means of correct application of forces to the external world. Thus,
biological movement in reality depends on the appropriate handling and control
of forces pertaining to at least three distinct domains: 1) The intrinsic forces
related to the structures being moved (pseudopodia, flagella, tentacles, arms,
trunk, etc.), 2) The reaction forces from the environment which are correlated
with intrinsic force production, and 3) Extrinsic forces which are not correlated
with the organism’s motion. Distinguishing between these three sources of force
is one of the essential functions that the central nervous system (CNS) must do
before appropriate forces can be produced to place the limbs at goal specified
positions. Essentially this means that all goal-oriented intrinsic forces must be
computed from the sensory stimuli which arise as a consequence of the movement
itself.

How does the system distinguish between the different force sources during
movement? As will be argued in a later section, it seems that some degree of
reafference cancellation is necessary for the system to do this distinction, and in
this thesis such a role has been attributed to the γ-motoneuron in its modulation
of the muscle spindle’s sensitivity (see chapter 10).

Given the extreme complexity of the problems inherent in movement, it
should come as no surprise that a large fraction of the brain is concerned with
generating motion. However, the present work is aimed at identifying and un-
derstanding only some of the causal relations existing between neural activity in
different regions of the CNS and biomechanical action from the (surely biased)
perspective of computational systems-neuroscience. Particular emphasis will be
given to the most basic motor control systems, especially the spinal cord and
that part of its cortical input which originates in corticomotoneuronal cells.

1.1 Towards a Hypothesis

This is a thesis about computational methods applied to an integrative physiol-
ogy of movement in such a way as to (hopefully) increase our understanding of
a very complex multidisciplinary subject: vertebrate movement. As might be
expected, the subject of movement has been studied with great success for many
years and from many different directions (see chapter 2). But more often than
not, these approaches span only one or perhaps two strata of the organizational
levels of the system, and it is then assumed that the remaining strata above and
below probably are organized so as to conform to the studied strata. In a highly
competitive research environment, a strategy of extreme specialization of course
leads to immediate results, but it also means that a whole field of study is left
without strong integrative theories and laws like those discovered in physics. In
the preface to his book ”I of the vortex”, Llinas has stated this preoccupation
very eloquently158:

Most neuroscientists feel that two orders of magnitude above and
below one’s central focus is ”horizon enough” and that anyone at-
tempting four orders above and below is reckless. However, there are
some who attempt such a dangerous dynamic range. They probably
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know that the risk of failure is the price of synthesis, without which
there are only fields of dismembered parts.

My aim with this work will of course be much less than to propose grand unifying
theories of movement physiology; but I certainly do intend to take some steps
in the direction which I believe will bring us closer, namely along the ”reckless”
path of multi-level functional integration. Therefore, rather than limiting this
work to only one field of study, I have tried to integrate the computationally
most accessible elements of various fields of study residing at very different
levels, but all of which are deeply related to vertebrate movement, and all of
which lie neatly on a path connecting the activity of the brain and spinal cord
to the overt movement of complex organisms. Such an approach of course limits
the breadth to which each level of the physiological hierarchy may be treated,
but that is a small price to pay if the end result yields a continuous, unbroken
and biologically realistic line from the activity of neurons to the production of
newtons.

With this work I wish to argue in favour of a hypothesis, in which some
special aspects of voluntary behaviour are directly controlled by the corticomo-
toneuronal (CM) cells in primary motor cortex. Through dynamic adaptation
and self-organization via horizontal connections within the cortical mantle it-
self, CM cells create activation patterns which are necessary for the generation
of physically well-balanced slow voluntary movements. Although simply stated,
further elaborations on this idea require the development of a large number of
results which may corroborate it. Such results I will attempt to obtain by cre-
ating an extensive computer simulation of the causal chain, starting from CM
cells connecting monosynaptically to spinal motoneurons (MN) which connect
to muscles which return positional and velocity feedback to the MNs, finally
producing forces that pull a skeleton to new positions.

1.2 Methodology

There are still many technical difficulties involved in simultaneously measur-
ing cortical, spinal and muscular activity in individual neurons and cells during
various tasks; even identifying particular species of neurons is quite challenging,
and sometimes impossible in vivo due to neuron size, density or interneuronal
similarity. In addition to these technical difficulties, there are many ethical
issues which must be satisfactorily solved prior to doing experiments on liv-
ing creatures. In particular, it is not ethically acceptable to have long-term
multi-electrode insertions in the brains of living humans solely for experimental
purposes (at least not with current electrode technology which requires the skull
to be opened). Brain and spinal electrode insertions during surgical procedures
are performed routinely as part of the localization of dysfunctions, which opens a
narrow window for direct experimentation on the human brain (one famous case
being the identification of the sensorimotor homunculus by Penfield and Ras-
mussen211). However, the results of such experiments might be unpredictably
affected by the dysfunctions that motivated the operation. Furthermore, the pa-
tient is in a highly vulnerable situation so the time window for experimentation
is necessarily very narrow. These ethical and technical problems do somewhat
limit the range of possibilities for studying the central nervous system in hu-
mans, and forces us to use only non-invasive techniques such as PET, fMRI,
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SPECT and TMS, or to base our assumptions on results gained from a different
species.

For this thesis computer simulation has been chosen as the primary method
for studying the system, a method which, pitfalls and dangers notwithstanding,
does indeed permit a full description at all levels of the system. If done with
care, computer simulation may be used to test hypotheses and to identify the
critical parameters of the system. And by following a ”biology first” principle
in the design of the simulation, where biological structures and functions are
replicated as faithfully as possible, a meta-analysis of the functioning system
becomes possible. This allows for the discovery of new properties which for
technical reasons might not yet be directly measurable in vivo, and the postu-
lation of novel hypothesis, both of which may subsequently be tested with real
experimentsa.

For example, it has been suggested by Georgopoulus and co-workers 79,81

that the motor cortex controls movement with a population coding strategy.
But how does such a code translate into movement in the spinal cord?, is the
code perhaps really an epiphenomenon233 related to the organization of the ner-
vous system, rather than a control strategy per se?, and is the observed rotation
of the population vector in certain experiments involving mental rotation 80 a
consequence of processing within primary motor cortex (M1) itself, or is it a
faithful reflection of the input to M1?. These are very hard questions to answer
in a direct experimental setup as it would require simultaneously recording ac-
tivity in the motor cortex, brainstem, spinal cord and muscles during specific
tasks. It is not within the scope of this thesis to answer these particular ques-
tions arising from Georgeopoulus work. What is within the scope of this thesis
is to determine how a limited group of neurons in the motor cortex (particularly
the corticomotoneuronal cells) which have been shown to have specific task de-
pendent activation patterns67, may communicate with pools of neurons in the
spinal cord to produce muscle synergies that yield stable, balanced and yet suf-
ficient forces for a given movement of the human arm. To this end, an extensive
computer simulation system has been developed for this thesis, which at present
contains a neural network scripting language for specifying the neural architec-
ture, various realistic models of neurons (based on the works of Hodgkin-Huxley
108, Morris and Lecar195, and Wilson274), dynamic synapses263,262, definition
files for detailed spinal networks31, structurally accurate models of muscle forces
(force-velocity107 and force-length176 relationships in individual muscles, and
origin–insertion points in skeleton at systems level 7,206), and of the activation
of spinal motor units105,189,32, and finally it also consists of a completely general
body-centered mechanical physics simulation system.

1.3 Main Contributions of this Thesis

Once in possession of a realistically scaled and structurally accurate neuro-
musculoskeletal simulation system, there are virtually hundreds of ideas and

aTo avoid overextending the predictions of the models, the correct way to proceed when
dealing with computer simulations is this: If experimental data has brought knowledge about
a given system to some level, x, then a computer simulation of such system including all
information up to x may take us to x + ∆x, where ∆x is a short range prediction of what
should be expected in the next experiment. No further predictions should be made prior to
actually performing the next experiment aimed at evaluating the accuracy of ∆x.
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hypothesis that can be tested and explored. However, due to the high level of
exigency that should be imposed on any such simulation system with respect
to accounting for experimental data, only small steps should be attempted, as
was discussed in the previous section. The four most important contributions
in this work are the following:

• It is proposed that muscle force at the sarcomeric level has its origin
in the conformational entropy of the myosin molecule, and therefore the
forces at the individual actin-myosin bonds should be described using the
Worm-Like Chain168 model of entropic elasticity in combination with the
properties of parallel spring arrays. A novel mathematical model of muscle
force is derived based on this idea, which turns out to be a derivation from
first principles of Hill’s famous force-velocity relationship 107. Although
not directly related to the study of motor control per se, there is general
agreement in the field that structurally accurate while computationally
efficient models of striate muscle are very much needed, particularly for
large-scale neuromuscular simulations. With this work I hope to have
contributed with such a model.

• A hypothesis regarding the function of γ-motoneuronal modulation of the
muscle spindles is strongly endorsed, based on the simulation results from
a computational model of a simplified neuromuscular system. Analysis of
the simulation data lend support to the idea that γ-motoneuron activity
might be essential for cancelling expected stimuli rather than only for
programming servo-controlled equilibrium positions of the limbs. From
the simulations it is concluded that the best performance of a movement
is obtained when spindle reafference is cancelled by γ activity, thereby
allowing for a relatively pure and ”noise-free” detection of unexpected
loads, which then may be compensated for correctly.

• As an extension to the previous item, a novel hypothesis is proposed link-
ing motor-cortical activity directly to muscle action. The absolutely sim-
plest and most direct connection linking cortex and muscle starts at the
corticomotoneuronal (CM) cells in primary motor cortex. These cells have
been shown65,40 to innervate cell populations in the spinal cord monosy-
naptically, and have been positively correlated with post-spike facilitation
(PSF) of electromyographic (EMG) activity as measured by electrode in-
sertions in muscle. A strong case can therefore be made in favour of the
idea that these cells are essential for some aspects of voluntary cortical
motor control40. But given the many different types of activity patterns
observed in such cells39,67, what exactly is their role? In the last chap-
ters of this thesis it will be argued that some of the activity patterns
observed in CM cells in vivo during simple ”ramp-hold” tasks, share some
features with those optimal activity patterns of static and dynamic γ-
motoneurons that would be required for reafference cancellation in the
spindle as inferred from the neuromusculoskeletal computer simulation.

And last but not least:

• This thesis presents the theoretical counterpart of what has become a
very detailed computer program for simulation of the human arm and its
immediate spinal control systems. The resulting program is relatively easy
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to use, to customize and to include in other programming environments,
which makes it a highly useful research tool because it may serve as a
test-bed for a variety of human arm movement hypotheses (see chapter
2), many of which have so far only been evaluated with severely simplified
arm simulation systems.

1.4 Overview of Thesis

This thesis is divided into twelve chapters, each of which may be considered as
an independent unit with methods and results intrinsic to that chapter only,
but which should nevertheless be seen in association with the remaining chap-
ters. Chapter 2 is a short review of some important results in the field of motor
control. In it various topics will be discussed, such as the equilibrium point
hypothesis (α and λ versions), forward internal models, optimization theories
and the origin of the bell-shaped velocity profile of straight hand movements. In
chapter 3 the basic elements are presented for creating a computational model
of biomechanical systems, and the resulting general physics simulation system
is introduced. In chapter 4, a novel model of sarcomeric force production is
derived, which is empirically and structurally accurate, and which directly links
muscle contraction phenomena with entropic forces in the myosin-actin interac-
tions. Chapter 5 presents a brief review of neuronal dynamics with emphasis on
finding models that support different types of spiking behaviour. A simple mod-
ification to previous neuron-models is seen to account for the Henneman effect
observed in spinal motoneurons. Computational models of synaptic dynamics
and spike-time dependent learning will be reviewed in chapter 6. Neurons are
perhaps most interesting when part of networks, so chapter 7 is dedicated to
give a small glimpse into the dynamics of abstract networks of recurrent artificial
neurons. In chapter 8 a simplified account of neural networks in the spinal cord
is presented, and a brief introduction to a few aspects of motor cortical neurons
is provided. In chapter 9, the muscle models developed in chapter 4 will come
together with parts of the spinal networks developed in chapter 8 in order to
provide an accurate account of force production in whole muscles. This chapter
comes almost as a preamble to chapter 10 which emphasizes the role of spindles,
and in particular the role of γ-motoneuron activity for reafference cancellation.
In chapter 11 a simulation of the human arm during some simple tasks is given.
This simulation is based on the models and experimental data presented in all
the previous chapters. Finally, chapter 12 will recapitulate all the results in an
attempt to give a consistent picture of the long road from neurons to newtons.

That is a lot of ground to cover for a single monograph, especially considering
that the subject matter contained in each chapter easily could be expanded into
many books. The scope of study at each level has therefore necessarily been
limited to the absolute minimum motor control system which still includes all
levels from cortex to muscle. I should add, that the primary purpose of this
report of course is to present the main results of my research, but almost as
important is the fact that this report should serve as documentation to the
extensive simulation environment that has been developed to get those results in
the first place. Rather than giving a step by step tour through more than 12000
lines of programming code comprising roughly 50 different tailor-made object
classes, it seems much more useful to present all the theoretical background
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and insights in a programming independent way. The main advantage of this
approach is the complete transparency that one obtains: everyone can see what
has gone into the works and may therefore easily verify the results. The major
disadvantage being the increase in size and the necessity for a perhaps tedious
repetition of basic material.
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Chapter 2

Trends and perspectives in
motor control theory

Chapter Summary

Some of the most influential ideas in the field of motor control had
their origins in the early work of Sherrington, and are briefly re-
viewed in this chapter together with some more recent accounts.
The aim of this chapter is thus to set up the theoretical framework
upon which the rest of this thesis will be based. The aim is also
to make a clear statement as to why it is necessary to have highly
detailed models of the systems (arms, legs, etc.) that are supposedly
controlled using one or several of the reviewed methods.

Progress in the field of motor control theory has been difficult due to the fact
that extraordinarily simple experimental observations often require exquisitely
complex mathematical-physical-physiological models and interpretations. And
it is also very common to find several competing theories that perfectly ex-
plain different aspects of the same data, but which are structurally unrelated
and sometimes even essentially incompatible with each other. An example in
point being the observation that during ordinary voluntary reach-to-grab tasks,
the hand follows a straight trajectory with a single peaked velocity profile 190.
Among the proposed theoretical explanations for this simple observation one
finds high level planning of virtual equilibrium point trajectories 24, the formu-
lation of highly sophisticated biomechanical optimization schemes 89, the specu-
lation that perhaps percolation or diffusion dynamics in 2-dimensional networks
may be required86, or even the more mundane observation that perhaps it is the
geometrical and physical properties of the arm itself that cause this behaviour
rather than any particular neuromuscular plan97 (see chapter 11). Some of
these issues will be reviewed in the following sections, however, before doing so
it is useful to review some of the basic principles.

9
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2.1 Foundational issues

Descartes was of the opinion that reflexes were the result of hydraulic forces
originating in the brain’s ventricles as a response to stimuli, and producing
muscle force by inflating the muscles50. Although this idea later turned out to
be completely wrong, Descartes should at least be credited with being among
the first to attempt a truly mechanistic description of the muscle reflex. Follow-
ing in the mechanistic tradition, Sir Charles Scott Sherrington is considered by
many to be one of the founding fathers of modern neurophysiology, mainly due
to his extensive experimental work on reflexes which he saw as an integrated
activity of the nervous system (for his work he received the Nobel prize for phys-
iology or medicine in 1932). The notion that stimulating one set of muscles is
accompanied by simultaneous inhibition of the antagonist muscles is sometimes
referred to as ”Sherrington’s law”, and essentially forms the functional basis of
the myotactic unit159 (see chapter 8).

2.1.1 Springy Muscles – The Tonic Stretch Reflex

In the early 20th century, Sherrington discovered that the rigidly extended
hindlimbs of decerebrate cats would oppose flexion, first with a phasic increase in
extension force, shortly followed by a tonic plateau. Thus, a muscle with proper
spinal connections will respond to any lengthening with an attempt to contract.
These stretch reflexes are a consequence of the increased positive feedback to
the α motoneuron resulting from the increased activity of spindle afferents in
the extensor muscle (see also chapter 10). Steady-state muscle spindle activity
will only have significant modulatory influence on α-motoneurons which are al-
ready active93, not being strong enough to bring α-motoneurons to threshold.
However, in decerebrate cats the α-motoneurons innervating extending muscles
are tonically active, which is why Sherrington was able to elicit stretch reflexes
in these animals.

One immediate consequence of this stretch reflex is that there will be a very
clear monotonically increasing force-length relationship in intact muscles: The
more the muscle is stretched, the greater will be the contractile force reflex-
ively opposing this stretching, just like a spring. Varying the level of tonic
α-motoneuron activity shifts the position of the force-length curves but without
changing the slope at near maximal stretching 64, and so force-length curves
associated with different α-motoneuron activities do not cross each other. See
figure 2.1 As it turns out, this property of the force-length curves is one the
reasons that the tonic stretch reflex forms the foundation for several very influ-
ential general theories of motor control, namely those which rely on the spring-
like properties of innervated motor-units to move the limbs to some equilibrium
position, i.e. where the flexing and extending muscles are in balance 61.

2.1.2 Equilibrium point hypothesis

In physics, equilibrium is used to denote a state in which all the forces and
moments affecting a system balance out. When in equilibrium, a system will
remain indefinitely in that state unless perturbed. If the equilibrium is sta-
ble, small perturbations will not affect the system significantly, as the system
will just return to the equilibrium position. But if unstable, any perturbation,
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Figure 2.1: Force-Length invariant properties of muscle. The figure shows force-
length curves for different thresholds of the tonic stretch reflex, λ.

however small will cause the system to move away from equilibrium. In motor
control theory, an equilibrium point (EP) corresponds to a coordinate in the
system’s state-space where all the forces are in balance 61. It is in this sense
that many researchers25,199,146 have adopted this concept to propose a sim-
plifying motor control strategy. Basically, the idea is that the CNS generates
a (temporarily constant) control signal which by activation of the spring-like
muscles will bring the controlled system to a stable EP that corresponds to the
control activity. This is like using a control signal to set the stiffness of a simple
damped mass-spring system: after a transient oscillation the system will reach
its new stable EP. If the controlled plant is a multi-jointed rigid body system
connected by spring-like actuators (see chapter 3), then the control signal will
be an activation vector which imposes a stiffness on each of the actuators. To
avoid persistent oscillatory modes (a limit cycle), the actuators of the system
must of course be damped appropriately.

To simplify matters a bit when working with multi-jointed systems like the
human arm, it is useful to consider only the position of the endpoint (e.g. the
hand, or a fingertip). If the system is in stable equilibrium when the endpoint
is at a certain position r = rEP , then any perturbation away from EP, r =
rEP +∆r, will set in motion reaction forces which will try to bring the endpoint
back to the EP, rEP (although not necessarily via the same route as the initial
displacement). A natural consequence of this is that, for every displacement of
the endpoint within the limb’s workspace, a force vector exists which if applied
at the endpoint exactly counters the re-equilibration force, thus maintaining the
endpoint at the displaced position. This is equivalent to stating that within the
limb’s workspace there exists a force field which affects the endpoint pushing it
towards equilibrium.

In a nice set of experiments done by Bizzi and co-workers 24,85 it was shown
that force-fields like the one just described, actually do exist in frogs, and can
easily be measured. To do this, a frog was immobilized at the pelvis, its spinal
cord was laid bare and electrically stimulated with a microelectrode (or chem-
ically with N-methyl D-aspartate) so as to activate the frog’s leg muscles (see
experimental details in Bizzi et al.24, Giszter et al.85, also reviewed in Bizzi
et al.22, Shadmehr243). Using a force sensor attached to the ankle, a force field
like the one just described was created by recording the force during stimulus
induced movement as a function of the leg’s starting position. Four important
results came out of these experiments:
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• The resulting force field has a point at which the force vectors vanish,
corresponding to the equilibrium point.

• Different stimulation sites in the spinal cord generate different force fields,
i.e. force fields with different positions for the equilibrium point.

• Stimulating two sites simultaneously generates a force field that resem-
bles the vectorial sum of the force fields corresponding to independent
stimulation of each of the two sites.

• The force fields are time dependent.

Further experimental observations85,23 have led these groups to propose a ”vir-
tual trajectory” used for more complicated limb positioning tasks, in which the
limb follows a temporal sequence of equilibrium points.

These are technically quite impressive experiments with far-reaching conse-
quences, and the underlying notion of equilibrium points seems to account for
much of the data. Nevertheless, the results of these groups are perhaps not
entirely surprising: constant input to a system composed of damped springs
will inevitably move towards an equilibrium (as discussed by van der Helm and
van Soest266). The EP hypothesis leaves open the issue about how the con-
troller for such a system should be configured in order to create the necessary
muscle synergies. The old engineering concept of load compensation by servo-
control has been the central tenet for some very influential motor control models
154,180, which by far pre-date the EP hypothesis, but are nevertheless somewhat
dependent on it.

2.1.3 Movement Invariants: Straight path movement with
Bell-shaped velocity profiles

Even a simple task like reaching for an object involves the production of muscle
forces with complex spatiotemporal dynamics. In particular one very simple
experiment performed by Morasso190 illustrates this. In this experiment sub-
jects were asked to reach out with their hands from an initial starting position
to different target positions. The conclusion was simply that the nervous sys-
tem selects motor activations for this task which bring the hand from start
to goal along a straight path, and with a bell-shaped (single-peaked) velocity
profile. An almost explosive development of hypotheses has resulted from this
observation, ranging from low level physical explanations to high level control
theories and computational strategies. These experiments have been extended
to multi-joint movements in space, however the results remain similar 191.

Based on this result it could be argued that the brain plans movements in
world coordinates rather than body coordinates, perhaps attempting to simplify
the transport path. Such a simplification comes at a cost, namely that in order
to perform a straight path hand movement, the joint angles must change in a
very specific non-linear manner. A schematic rendering of this is shown in figure
2.2. Notice that in most directions of movement there is a non-linear relation
between the angles, θ1 and θ2, and sometimes there is even a reversal in the
direction with which an angle changes. (The angles are calculated from the
inverse kinematic relation derived in section 3.1.2). Thus, in order to generate
straight hand transport paths, the central nervous system is forced to generate
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activation patterns in the muscles which cause the joint angles to change in a
rather complicated non-linear way. Explaining this observation has been yet
another central issue in motor control theory.

2.1.4 Control engineering terminology

Motor control theories are often framed in control engineering terms (for a neu-
robiologically relevant review see Narendra201, Miall183, Miall and Wolpert184,
Carpenter36), where a distinction is made between the following parts of the
system:

• Controller: Sends motor commands to the controlled object. Different
sources of state information, such as input from internal, external and
reference state sensors may be used in order to specify appropriate motor
commands.

• Plant: Controlled object which acts on the environment, thereby changing
the values of the controlled variables.

• Controlled variables: Subset of state variables which are affected directly
by the plant’s action.

• Reference variables: Subset of state variables which specify the goal state
for the system, usually by comparing their values with those of the corre-
sponding input variables.

• Input variables: Subset of state variables which the controller and plant
use to compute and generate appropriate output.

The two most important classes of control, termed feedback and feedforward
control are distinguished, respectively, by the presence or absence of input vari-
ables that are affected by the plant’s action. A suitable combination of feedback
and feedforward components within a controller is necessary to attain flexibility,
precision and load compensation during a positioning task. An important class
of such controllers is based on correcting positioning errors by comparing the
reference variables with some of the input variables and generating appropriate
responses, such systems are also known as servo controllers.

Insofar as the discussion only concerns general strategies for control, these
divisions are quite useful and permit easy communication of some central con-
cepts. In a biological context, however, some of these terms should preferably be
used only when the underlying structures have already been completely specified
thus permitting an unambiguous labelling of the structures, otherwise one runs
the risk of overestimating the capabilities of biological structures. For example,
even though it definitely is possible to train a neural network using the back-
propagation algorithm230 in such a way as to take on the role of the controller
for positioning a multi-limbed manipulator129, this does not entail that biology
works like that. It might be good robotics to solve a problem in such a fashion,
but it is certainly not good biology to claim (without hard and uncontrovertible
proof) that the neural networks in the brain do e.g. backpropagation of error.
Our control systems ’need to bear some systematic relation to the realities of
biology and psychology if they are to tell us anything about natural, intelligent
organisms’ (from Scutt and Damper240, p. 221).
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Figure 2.2: Required joint angle variations for straight hand transport paths.
The upper graph shows a schematic representation of the task (horizontal pla-
nar movement, as seen from above) which consists of moving the hand from
the central position and out along one of the straight lines. Lower left graph
shows the hand position (in the xy-plane), and the lower right graph shows the
corresponding joint angles (θ1 and θ2). Different directions are colour coded for
direct comparison between hand positions and corresponding joint angles.
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In biology, and particularly in neurophysiology, feedforward and feedback
connections sometimes have special names due to their particular function or
the type of information they carry. In this thesis the following terms will be
useful:

• Afference: Neural signals resulting from activity in sensory neurons and
impinging on the CNS.

• Efference: Neural signals originating in the CNS and impinging on effector
systems (essentially muscles).

• Efference copy: An exact copy of the efference signals, but impinging
somewhere within the CNS itself.

• Exafference: Signals from the environment that act on the sensory organs
(light, pressure, temperature, etc.).

• Exefference: Signals originating in the effector systems of the organism,
and acting on the environment (vibrating vocal cords, mechanical forces
of moving limbs, etc.).

• Reafference: That part of afference that results as a direct consequence
of efference. Reafference will have a combination of sources, so it is nec-
essary to distinguish between exteroceptive reafference (associated with
the activation of sensory receptors that are attuned to events in the en-
vironment, e.g. hearing your own voice), and proprioceptive reafference
(associated with sensory receptors that are attuned to events within the
organism itself, e.g. activity changes in joint receptors and in type Ia, Ib,
II spindle afference).

Of these, reafference poses a special and very hard problem as it directly in-
terferes with the stimulus-response causality that otherwise applies for most of
these signal pathways. Sensory receptors are highly independent from the rest
of the nervous system and seem designed to convey a highly reliable estimate of
the variables to which they are attuned (temperature, pressure, velocity, etc.).
But they are also ”source-blind”, that is, they are unable to distinguish between
different sources of the measured variables, be they internal or external. They
just respond to their appropriate stimuli regardless of what caused the stimuli.
So, for example, how does a system distinguish own vocalizations from external
voices given the fact that in both cases the sensory exafference comes through
the same channel, namely the ears?. How do the voltage sensitive organs of the
electric eel distinguish between the potentials across the electric eel itself, the
response potentials in the environment and the potentials of other eels?, and
more to the topical point of this thesis: How does the spindle organ in mus-
cles distinguish between externally imposed changes in muscle length, length
changes that are a consequence of other muscles moving, and length changes
that arise from the muscle itself contracting?. This last question is the major
driving force for producing this thesis, and the simple answer might come as a
surprise: It doesn’t have to make the distinction because reafference is centrally
cancelled via the γ-motoneuronal system, so all a muscle spindle ever registers
are externally imposed changes in muscle length that may be used for load
correction or for reprogramming the task execution parameters. This ties in
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perfectly with the idea that the fusimotor system is concerned with feedforward
servo-assistance of the muscle system.

2.2 Control theories

Some of the most influential theories of motor control are deeply rooted in the
concept of equilibrium points and at least one of them, the γ-model, actually
precedes the modern EP formulation by several decades. Other theories, or
rather principles, hold that the problem of motor control is one of optimization,
where the system should find the best solutions according to some optimality
criterion. Gradient ascent methods have also been proposed, particularly within
the context of finding optimal state-space trajectories that a motor control sys-
tem might follow to position a limb. It will be fruitful to review the main
arguments pertaining to each type of approach.

2.2.1 The γ control model

Far ahead of their time Sherrington and Liddell154 were proposing a servo-like,
load compensating function for the tonic stretch reflex, but it was Merton and
co-workers180,56 who properly developed this idea to a theory of motor control.
According to Merton, the activity in γ-motoneurons was essential because it
directly affects the sensitivity of the muscle spindle, and thereby is involved in
setting the resting length of the spring-like muscle. Thus, if we have a high
level of activity in a given γ-motoneuron, then the contractile elements of the
corresponding spindle will stretch the central region of the spindle, increasing
type Ia and type II spindle afference (see chapter 10). The increased affer-
ence will augment the activity of the α-motoneuron pool until the additional
contraction thus produced brings the muscle to a length which corresponds to
the γ-motoneurons activity level. Once there, any perturbations to the muscle
length will be countered by an increase (the tonic stretch reflex) or decrease of
contractile force (according to the force-length curves mentioned earlier).

In short, the γ-motoneuron sets the target position for the servo controller.
Merton’s idea is very compelling, general and seemingly simplifies the problem
of motor control significantly, but alas, it is also wrong. There is at present
no experimental evidence with which to fully validate this version of Merton’s
servo controller (discussed in Latash146 and Carpenter36). Three problems with
the model are of particular importance: The fact that experimentally measured
gains of the tonic muscle reflex are not as high as required for length regulation
172,146; there is no evidence indicating that γ efference by itself can recruit α
motoneurons via Ia afference; and the fact that γ-motoneuronal activity does
not usually precede α-motoneuron and EMG activity 265.

2.2.2 The α control model

As reviewed in a previous section, experiments on frogs showed that microstim-
ulation at certain locations in the spinal cord will cause the frog’s leg to move
to a certain position and stay there25. This effect is stable even for deafferented
animals, i.e. animals where no sensory input enters the spinal cord, which led
Bizzi and co-workers22 to the conclusion that pure α-motoneuron activity is
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sufficient for limb control. They proposed that the muscle synergy associated
with a given equilibrium position could be invoked by precisely setting the ac-
tivities of an α-motoneuron pool in the spinal cord. Needless to say, this is a
very artificial model in that it completely ignores the important contribution of
the tonic stretch reflexes to movement, without which the gain of the system
would not be sufficient to load compensate. See Feldman 62 and Latash146 for
an thorough analysis and criticism of the α-model.

2.2.3 The λ control model

Still within the explanatory paradigm of servo-control systems, equilibrium
points and force-fields, resides the λ-model62,146. The debacle of the γ and α
control models as originally formulated was, respectively, the failure to include
quantitative aspects of activation, and the failure to include relevant physio-
logical structure. The λ-model does not suffer from such problems because
it completely leaves open the question of how things are physiologically im-
plemented, and instead focuses on what parameters are controlled 146. In the
λ-model, emphasis is again given to the tonic stretch reflex, and the existence of
some invariant characteristics of muscle, in particular the family of force-length
curves produced by imposing different activation levels of α-motoneurons. As
noted earlier, these curves are non-intersecting smooth and monotonically in-
creasing functions, indicating that very simple control signals in principle would
be sufficient to attain all possible positions. Based on these facts, Feldman 61

proposed to use the length threshold of the tonic stretch reflex, indicated by λ, as
the centrally controlled variable. Thus λ indicates the length at which the tonic
stretch reflex becomes active, thereby shifting the force-length curves exactly
like the force-length invariants. Recent additions to this model 63 have tried to
link the λ control signal to a subthreshold depolarization of the α-motoneurons
(thus increasing their sensitivity).

2.2.4 Internal Model Controllers

In the ideal case without transmission delays, the servo-control strategy would
be optimal in that it would perfectly correct positioning and load errors. In re-
ality, however, the transmission delay around the spinal-musculo-spinal loop in
humans is in the range from 10 to 30 ms, which means that the corrective servo
command always will be delayed with respect to the disturbance causing it. It is
well known from physics that a system having strong feedback loops with long
transmission delays will be intrinsically unstable, which for a servo-controller
means that the position error will almost always be under- or overcorrected.
This can lead to strong oscillations (tremor) where the hand oscillates around
a position, or it may lead to position errors caused by undershooting or over-
shooting the target.

Preoccupation with these issues has led researchers to propose different
strategies by which the feedback delays might be reduced or removed altogether.
Such ideas are often based on determining the forward and inverse dynamics of a
system and are deeply rooted in the field of robotics, but hold a strong position
in biological motor control theory due to the fact that the proposed controller
architectures often superficially resemble structures in the brain, or are some-
times even inspired by them. In the field of robotics an extensive mathematical
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formalism has been developed to handle the positioning of kinematic chains (see
section 3). Within this formalism the problems inherent in motor control are
very easy to define explicitly, and solutions can often be found readily. Thus,
in some simple situations it is possible to specify all the relevant forward and
inverse equations needed to control a manipulator precisely to a given position.
The forward dynamics equations are only ever useful if the controller needs to
make predictions about where the manipulator will move if a particular set of
joint torques is applied, or if the system is a simulation without a physical coun-
terpart. To correctly position a manipulator it is more useful to know the inverse
equations because then it is simply a question of specifying the end-effector’s
goal position, and the inverse dynamical equations will provide target values for
the torques that should be produced by the joint actuators in order to move the
endpoint to the right position.

Although this is perfectly realizable in artificial systems, there are several
hindrances to applying this strategy in biological systems. First of all is the
question of whether the the central nervous system may be assumed to contain
a fully detailed internal forward or inverse model of the body’s dynamics. And if
such an internal model exists, it should be noted that the dynamical properties
of an organism’s moving appendages will change as a result of growth, damage or
due to changing environmental requirements so this model should be adaptive.
Furthermore, there is the question of representation: How can such a model be
implemented within the restrictions imposed by neural tissue? And the question
of complexity: How much detail is required in the model?

2.2.5 Optimization hypothesis

Although not evident at first, there is quite a big strategic difference between
studying movement in single-jointed limbs vs. multi-jointed structures. The
difference resides in the fact that multi-jointed kinematic chains suffer from
Bernstein’s problem18, which means that it is not yet clear how to uniquely
specify the muscle forces that will accurately position the limb. Through the
years several attempts have been made to find solutions to Bernstein’s problem,
some of these will be reviewed in what follows. Rather than trying to identify
the control parameters per se, many researchers have instead focused on discov-
ering the motor control strategies that the brain might use when specifying the
parameters70,264,136,184,110. Based on ideas about evolution and survival ability,
it has been proposed that the motor system might try to maximize some fitness
function. It is assumed that this fitness function would be related to one or
several of the controlled variables such as limb velocities, accelerations, torques
264, jerk (the third time derivative of position)70, limb position error68, etc.
Framed in this way motor control problems will have an optimal solution which
can be directly expressed with objective functions. It is not yet clear whether
the brain actually does seek out such optimal objective functions (e.g. by train-
ing the cerebellum), or whether it takes a more pragmatic approach and uses
some simple heuristics in combination with the limb’s inertia and ”springiness”
(laws of nature) that it gets for free (for a thorough and lucid discussion of this
issue, see Greene97). In any case, to be valid the analytic expressions result-
ing from solving the objective functions should describe some experimentally
identified features of the movement, usually the hand trajectory and velocity
profiles. There are many optimization strategies which might be applied to
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the problem of motor control, but in the following I shall only consider two
of the most promising, namely the maximum smoothness theory proposed by
Flash and Hogan70 and the minimum torque change model proposed by Uno
and co-workers264. In a way these two models are closely related in that they
both consider jerkiness, but in different coordinate frames: Where the maxi-
mum smoothness theory proposes using the time derivative of the end-effectors
acceleration (it could thus well be called a minimum force change model), the
minimum torque change model in essence considers using the time derivative
of the joint angular acceleration. These similarities notwithstanding, there are
fundamental differences between the two.

Maximum smoothness

Presumably the best way to simplify the sensory task of tracking and correct-
ing errors of a moving end effector like the hand is to make the movement as
smoothly as possible110. This would have the additional advantage of minimiz-
ing the requirements for a hand trajectory planning and prediction system 71.
By expressing the objective function for the hand positioning problem in carte-
sian coordinates it is possible to maximize smoothness by minimizing jerkiness,
that is by minimizing the following expression 70:

CJ =

∫ tf

0

((
d3x

dt3

)2

+

(
d3y

dt3

)2
)

dt (2.1)

where tf is the duration of movement in the xy plane. The analytical expressions
derived using this criterion70 reproduce some of the principal movement invari-
ants of the end effector, in particular the single-peaked velocity profile and the
straight hand trajectories. Curved trajectory movements, or movements where
obstacle-avoidance is required may also be described in the maximum smooth-
ness paradigm by specifying a number of ”via”-points through which the hand
must pass.

Minimum torque change model

Instead of considering the time derivative of the end-effector’s linear accelera-
tion, Uno and co-workers264 consider the time derivative of the joint angular
accelerations (angular acceleration being related to torque according to equation
3.14 in chapter 3). It was reported in Uno et al.264 that this model can account
for the same movement invariants as the maximum smoothness theory, but with
the added advantage that the minimum torque change model is better suited
to find solutions to motor control tasks which are ill-posed due to actuator or
kinematic redundancy (see chapter 3). In a planar manipulator with m torque
inducing actuators the following expression should be minimized 264:

Cτ =
1

2
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0
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dτi
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)2

dt (2.2)

where tf is the duration of the movement, and τi is the torque induced by the
ith actuator.

It should be noted that this model includes the dynamic aspects of the multi-
jointed movement, and not only the kinematics of the endpoint. In addition,
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the joint-based reference frame adopted in this model permits a straightforward
reformulation of the objective function, Cτ , to be dependent on some of the
underlying torque inducing processes such as muscle tensions or motoneuron
activities. Thus an objective function can be formulated for a minimization of
the muscle tension change264 which takes into consideration that joint torques
are generated not by one but by several muscles, and in addition accounts
for the experimentally observed triphasic muscle activities characteristic of fast
movements. Still compatible with the minimum torque change model, a mini-
mum motor command change model has been proposed 135 which penalizes rapid
changes in the motoneuronal firing rates. The experimentally observed simplic-
ity of corticomotoneuronal activations during ramp-hold tasks 39 gives this last
model some indirect support. And finally, from an evolutionary point of view,
it would make sense to assume that the strategies that have evolved for motor
control are of such a nature that they minimize the overall energy requirements
of the system. This energy-minimization issue is also compatible with torque
minimization because the work done by a torque, τ , on a rotating system turn-
ing through a small angle, dθ, is dW = τdθ (see e.g. Tipler 261), so minimizing
torque will also reduce energy requirements.

2.2.6 Hyperspatial labyrinths

In a sense, the task that must be solved by the CNS during voluntary posi-
tioning of the limbs is reminiscent of the problem to be solved when getting
from start to goal in a labyrinth. Let me explain. The task when trying to
solve a typical ”brain-teaser” labyrinth in two dimensions consists of draw-
ing a continuous line that effectively connects the ”start” and ”goal” positions
while avoiding contact with the constraining ”walls” of the labyrinth. Other
constraints may apply, such as the requirement for finding the shortest route
through the labyrinth, or the route with fewest turns, etc. In any case, the
solution is a simple 2-dimensional trajectory cris-crossing the labyrinth’s plane.
As will become apparent in chapter 3, the complexity of correctly positioning
a limb is related to the degrees of freedom (DOFs) of the limb, the number of
available constraints and the dimensionality of the task (hand positioning re-
quires 6 DOFs, but the human arm has 7 DOFs available). If one lets each of
a limb’s DOFs be represented by a single variable in a coordinate system, then
the human arm exists in a 7-dimensional limb-space, and the act of moving the
hand from a position, A, to a different position, B, can essentially be represented
as a continuous trajectory within this 7-dimensional system. In this context,
the presence of external constraints such as obstacles in the environment, and
internal constraints such as joint excursion limits, may be represented as regions
or ”blobs” within limb-space (much as the holes in a cheese) through which the
limb’s trajectory may not move. These constraints are conceptually similar to
the walls of a labyrinth, and thus the task of moving a limb is the task of solving
a high dimensional labyrinth. Some of these constraint blobs may of course be
removed by reorienting the arm, but that will require whole body movements
(or a broken arm). In a sense, performing a well learned motor task is perhaps
akin to traversing a labyrinth where guiding arrows have been provided at the
junctions. Sometimes disturbances and constraints will invalidate some of the
usual pathways, forcing the system to come up with alternate solutions. A way
out of such a cul de sac is to permit movement in yet another dimension, out
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of the labyrinth’s plane so to speak, e.g. by invoking other body movements.

By using this labyrinthine formalism one opens this type of problems to
an array of well-established path-finding and energy minimization techniques.
Although this could be highly useful from a robotics point of view, it might
not be biologically relevant because of the involved algorithms. Furthermore,
it should be noted, that there is a marked computational difference between
having a bird’s eye overview of a labyrinth’s layout and actually being inside
a labyrinth. In the former case the route may be planned beforehand and the
solution is quite transparent, at least if compared to the latter case where it
becomes an exploratory task rather than a planning task. It may be argued
that the eye performs similar exploratory movements while scanning the bird’s
eye view of the labyrinth, however, it still has the advantage of being able to
localize several landmarks at once and observe how they are positioned with
respect to each other (not to mention that it even knows in which general
direction to search for the exit!).

From a biological point of view, the most important objection to this type
of methods (many of which are in fact used in robotics), may be levelled at the
underlying assumption that limbs are controlled directly through their DOFs.
These DOFs are thus assumed to be identical to the set of state variables that
some subsystem in the CNS uses as input to generates the appropriate torques
at the limb’s joints. Although there is nothing wrong with this tenet per se, to
be of any biological relevance, a strong case should be made to argue that these
state variables are actually the ones that the CNS uses.

Activity percolation in topographically ordered neural networks

As a case in point related to the previous discussion, consider the implicit as-
sumptions of Glasius et al.86, 87, Yang and Meng283 and Yang and Meng284,
who model ’real-time collision-free path planning of robot manipulators’ 284 by
topologically ordering a neural network along different dimensions of a defined
state space. That is, a number of neurons, N , are organized in a 2 dimen-
sional grid that corresponds to the environment or state space that has to be
explored. Despite some important differences in the detailed implementation
used by these authors (in particular the use of Hopfield networks 86 vs. the use
of shunting equations for defining the neuronsYang and Meng 283), the networks
are essentially identical. In Yang and Meng283, each neuron represents a par-
ticular 2d coordinate within the grid and thus a position in the environment
(or state space), and each neuron provides excitatory input only to its closest
neighbours (the complexity of the network thus scaling linearly with N , a very
efficient feature). Obstacles in the environment are represented by imposing
strong inhibition onto the neurons that are positioned at the appropriate grid-
points, whereas the target position has a strong excitatory input. By imposing
a gradient ascent algorithm, the robot or manipulator may follow a trajectory
through this 2-dimensional space directly from the starting position to the goal
position, with guaranteed success and following the (metrically) shortest route.
Depending on the particular parameters represented by the neurons (cartesian
coordinates corresponding to a labyrinth or joint angles of a 2-link manipula-
tor), it is thus possible to solve a complicated path-planning problem with what
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essentially comes down to a gradient ascent method a. This is a quite remark-
able feat of neural computation, but it is not entirely clear yet whether such a
mechanism has any biological relevance in the present context. There will be a
bit more to say about these topics in a later chapter (section 8.4.1), after some
of the structures and functions involved in voluntary motor control have been
properly identified and investigated.

2.3 On the need for neuromusculoskeletal mod-
elling systems

A point of criticism often levelled at attempts to understand nature by creat-
ing simple models and/or computer simulations of various phenomena can be
condensed in the following sentence (heard at a conference): ’a computer simu-
lation of a hurricane is very different from a real hurricane’. The reply to this
remark should be: ’True, but it nevertheless helps us understand the real thing
at a much deeper level than otherwise possible because it forces the investigator
to first gather all the known experimental parameters, then to organize them
systematically and evaluate their relative importance, and finally to link them
together according to the various theories that may have been proposed on the
subject’.

In view of the large variety of motor control theories that have been pro-
posed along the years, a few of which have been reviewed in this chapter, it is
highly relevant to develop structurally accurate models of those systems that
are supposed to be controlled as specified in the theories. An accurate test-bed
for the many theories is much needed, and it alone merits the investment of
much effort into its development. In the following chapters emphasis will be
on developing just such a test-bed system, with as many biologically relevant
details as possible given the current level of experimental understanding.

aMove in the direction where the intensity of some variable is highest. Or in more mundane
terms: to find the kitchen, follow your nose...



Chapter 3

Biomechanics – Defining
the Problem

Chapter Summary

A brief overview of vertebrate biomechanics is given in this chapter,
with particular emphasis on some of the central problems encoun-
tered when trying to position multi-jointed limbs. This overview is
given in order to appreciate the requirements and constraints that
must be imposed on any neural controller pretending to emulate
biological reality. Some recent developments will be reviewed and
evaluated in the light of neurobiological findings.

The structural stability of all living organisms depends on their ability to cor-
rectly produce internal forces that may balance out the external forces imposed
by the environment (such as gravity, collisions, osmotic pressure, etc.). Indeed,
were it not for the continuous action of muscles and tendons pulling on the
skeleton, the human body would immediately collapse under the force of grav-
ity. The central nervous system is prodigious at determining appropriate levels
of motoneuron activity that lead to the correct production of muscle forces that
are required to position our limbs. So proficient in fact, that the ”user” is usu-
ally completely ”blind” as to the biomechanical complexities that are involved:
To all appearances, the limbs position themselves effortlessly and automatically
upon command, and even complex sequences of muscle activations leading to
behaviours such as grooming or locomotion are effected on auto-pilot.

There is a long tradition in mechanical engineering to study systems com-
posed of multiple rigid bodies linked together at joints of varying geometries
and affecting each other and the environment with torques and forces. In the
context of robotics, such systems are often referred to as multi-jointed manipu-
lators, and a vast theoretical framework has been developed to their study. By
adopting this theoretical framework for the study of vertebrate movement, it

23
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Figure 3.1: Geometrical nomenclature of a 2-link planar manipulator.

becomes possible to make a very clear analysis of the problems that the cen-
tral nervous system must solve in order for us to move. In what follows I will
therefore provide a brief introduction to the topics of kinematics and dynamics
as they are related to the problem of human arm movements.

3.1 Skeletal kinematics

According to some accounts94 there are, on average, 206 bones in the normal
human skeleton (approx. 270 separate bones at birth, many of which subse-
quently fuse together during adolescence). A majority of these have skeletal
muscle tissue attached to them, and are thus participant in the production of
internal forces within the body and on the goal defined application of forces
to the environment. The scope of the present work is limited to the study of
human arm movements, so we need only consider 2-linked, or at most 3-linked
manipulators in 3d space, but the mathematical formalism used to describe such
systems generalizes very well to more complex n-linked manipulators.

The simplest non-trivial example of a multi-jointed rigid body system is the
2-link planar manipulator, as represented in figure 3.1. This system corresponds
to a human arm if one only includes the shoulder (r0) and elbow (r1) joints,
and if it is assumed that the arm only can perform planar movements. It is
worthwhile to consider this simplified system with some detail, not only because
it is fully solvable (in contrast to systems with more than two links), but because
of the large number of physiological experiments that have been done involving
simple planar arm movements, which gives a good basis for comparisons and
understanding.
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3.1.1 Forward kinematics of a 2-link planar manipulator

It is relatively straightforward to work out the equations that specify the position
of the manipulator’s endpoint (corresponding to the wrist) if the angles of the
limbs with respect to world coordinates are specified in advance. Following the
nomenclature used in figure 3.1, let r0, r1 and r2 be the position vectors of
the shoulder, elbow and wrist joints respectively. Also let the upper arm be
represented by the vector v1 = r1 − r0, while the forearm is given by v2 =
r2 − r1. If the upper arm is at an angle θ1 with respect to horizontal, and
the forearm is at an angle θ2 with respect to the upper arm, then the forward
kinematics limb positioning equation is:

r2 = r0 + v1 + v2

r2 = r0 +

[
|v1| · cos(θ1)

|v1| · sin(θ1)

]

+

[
|v2| · cos(θ1 + θ2)

|v2| · sin(θ1 + θ2)

]

r2 = r0 +

[
cos(θ1) cos(θ1 + θ2)
sin(θ1) sin(θ1 + θ2)

]

·

[
|v1|

|v2|

]

(3.1)

3.1.2 Inverse kinematics of a 2-link planar manipulator

In practice, the joint angles are seldom known in advance, and it is instead the
endpoint position that is given. This could be the case during a transportation
task such as: Move the hand from position rA to position rB . Such a situation
demands the solution of the inverse kinematic problem, that is: find the joint
angles such that the endpoint moves to the correct position. Given the sim-
plicity of the forward problem, it would be natural to assume that the inverse
problem would be equally simple. Unfortunately the inverse problem is not as
straightforward, and in some cases it is even intractable, the problem being that
the same endpoint might be reached for many different sets of joint angles.

In the 2-link planar case, the joint angles may be found by using a helping
vector, v3 which joins the shoulder to the wrist. It is assumed that the endpoint
position, r2, is given, and also that the shoulder position, r0, is known. For
all points inside the workspace, W, of the manipulator (i.e. r2 ∈ W, see figure
3.2), one may find the angle, θ1, of the upper arm with respect to the horizontal
axis, as well as the angle, θ2, between the upper arm and the forearm using the
following equations:

θ1 = θ3 ± α2 (3.2)

= arctan

(
(r2 − r0) · ey
(r2 − r0) · ex

)

± arccos

(
|v1|

2 + |v3|
2 − |v2|

2

2 · |v1| · |v3|

)

θ2 = π − α3 (3.3)

= π − arccos

(
|v1|

2 + |v2|
2 − |v3|

2

2 · |v1| · |v2|

)

where ex and ey are unit vectors aligned to the x- and y-axis, respectively. It
may be seen from these equations (notice the ± sign of equation 3.2) and the
diagram in figure 3.1, that even when solving for the joint angles in the simple
2-link PM there exists the problem of deciding on which side of the shoulder-
wrist line the elbow should be (i.e. upper-left or lower-right on figure 3.1), as
both solutions are correct but yield very different limb positions. In 3d space the
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Figure 3.2: The workspace of a 2-link planar manipulator is here represented as
the gray area. See text for details.

situation becomes more difficult even for the 2-link case: the shoulder-wrist line
becomes a rotationally symmetric axis around of which the elbow joint position
may rotate.

Equation 3.1 can easily be generalized to describe any n-link planar manip-
ulator:

rn = r0 + v1 + v2 + . . .+ vn (3.4)

rn = r0 +

[
cos(θ1) cos(θ1,2) . . . cos(θ1,n)
sin(θ1) sin(θ1,2) . . . sin(θ1,n)

]

·








|v1|
|v2|
...
|vn|








where θi,j is used as a short-hand notation to represent the sum of angles from
the ith to the jth link. In this case the inverse kinematical problem is non-
solvable from an analytical point of view because we only have two equations,
but n unknown variables. This of course does not mean that no solutions exist,
quite the contrary: for n > 2 there potentially exists an infinite number of chain
configurations which have the endpoint at rn, see also section 3.1.4.

3.1.3 Generalized forward kinematics

Amuch more general expression for the kinematics of a multi-jointed structure in
3d space may be obtained if one uses coordinate frame transformation matrices.
These matrices are used to transform a given position defined in one coordinate
system to the equivalent position in a different (rotated) coordinate system, and
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have the form:

R =





cos θxx′ cos θxy′ cos θxz′
cos θyx′ cos θyy′ cos θyz′

cos θzx′ cos θzy′ cos θzz′



 (3.5)

where θij′ indicates the angle between the ith axis of the base system and the
jth axis of the rotated system. For example, if we know a position r in the base
reference frame, its position, r′, in the rotated frame will be:

r′ = R · r (3.6)

One can go in the opposite direction by inverting the matrix (i.e. simply trans-
posing it if orthogonal) and multiplying it by the coordinate in the rotated frame.
There are several ways to explicitly represent a kinematic chain regardless of
how many links or dimensions it contains. For simplicity it may be assumed
that the proximal joint of the kth limb is positioned at the origin of a local
coordinate system and that the position of the link’s distal end within this kth

coordinate system is given as r′k . Then the endpoint position of a kinematic
chain with n links may be found as:

rn = v1 + v2 + ...+ vn

rn = RT
1 · r

′
1 +RT

2 · r
′
2 + ...+RT

n · r
′
n (3.7)

where RT
k is the transposed rotation matrix corresponding to the kth limb. Ex-

cept for the trivial case where k = 1, there is no explicit way to find unique
solutions to the inverse kinematical problem (given endpoint find link configura-
tions) because the number of parameters when k > 1 is larger than the number
of available equations, as was the case for the n-link planar manipulator.

3.1.4 Intractability of kinematic chains: Bernstein’s prob-
lem

A very simple way to determine whether a kinematic chain has none, one or
several possible solutions to a given positioning problem involves finding the
mobility of the chain, i.e., the total number of degrees of freedom (DOF’s) of
the chain. Considering each link separately, notice that at least six variable coor-
dinates are necessary to unambiguously position an unconstrained free-floating
rigid body in 3d space: three position coordinates and three orientation coordi-
nates. Such an object is said to have 6 DOF’s. The task of a kinematic chain
might be to bring such an object into the correct position and orientation, in
which case the chain must have at least 6 DOF’s. If the chain has less DOF’s
than required for the task, then it will be impossible for it to attain a configura-
tion in which the object is positioned correctly. On the other hand, if the chain
has more DOF’s than required for the task (redundant DOF’s), then there is an
infinite number of chain configurations which solve the task, and the problem
becomes choosing one of the configurations according to some optimality crite-
rion. The problem of configuring kinematic chains with redundant DOF’s has
become known as Bernstein’s problem, after the Russian physiologist Nicholai
A. Bernstein (1896-1966) who first identified it 18,287.
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To find the mobility of a kinematic chain it is useful to notice that strong
interlink couplings or constraints will limit the ways in which the chain is al-
lowed to move, as will also externally imposed constraints. The chain might for
example be firmly attached at one or several points (resulting in open or closed
chains respectively). Also the joints might constrain motion to one (revolute
joints), two (as the temporomandibular joint), or three DOF’s (spherical joints).
With this in mind, the total mobility,M, of a kinematic chain can be found by
using Gruebler’s formula (modified from Zatsiorsky 287):

Mchain = 6(N − k) +

k∑

i=1

Di (3.8)

where N is the number of links, k is the number of joints and Di is the number
of DOF of the ith joint. In an open chain one end is firmly attached (e.g.
like an arm attached to an immobilized shoulder), so the number of links is
equal to the number of joints and therefore only the summation remains in
equation 3.8. Under such conditions the human arm has 7 DOF’s: three at the
shoulder (spherical joint between scapula and the head of humerus), 1 at the
elbow hinge joint between humerus and ulna, 2 at the wrist (between the carpal
articular surface of the radius and the carpal bones of the wrist) and finally
one DOF related to rotation of the forearm (which for simplicity is sometimes
attributed to either the elbow joint or the wrist joint, but in fact is related
to the presence of an additional pair of hinge joints positioned proximally and
distally between the radius and the ulna, enabling the forearm to twist about
its longitudinal axis). Thus the arm has one DOF more than is required to
position the hand (6 DOF’s required), so even in this simple situation Bernstein’s
problem makes itself evident as can be verified if you place your hand flat on the
table while maintaining the shoulder at a fixed position: What is in this case the
optimal position for the elbow joint? Several optimality criteria come to mind:
Energy minimization, tension minimization, maximization of manoeuvrability
(i.e. avoiding locked or awkward positions), etc.

Using Gruebler’s formula, it has been estimated 287 that the mobility of the
human body is approximately 244, and if positioning the hand requires 6 DOF’s,
that leaves us with 238 redundant DOF’s for the task (in theory). With so much
redundancy the brain has ample opportunity to search for optimal solutions to
the positioning task287. It should be pointed out here, that for each degree
of freedom available to the skeleton, at least two antagonistic muscles will be
required to control the relevant movement, so in fact the number of DOF’s at
the muscular level might even be double that at the skeletal level.

3.2 Skeletal Dynamics

It is now time to add forces and masses to the skeletal kinematical model pre-
sented in the preceding sections. The long history of classical mechanics has
yielded numerous approaches to solving problems related to dynamics. De-
pending on the complexity and requirements for the physical model that is
being developed, one might use the Newton-Euler method which only considers
fundamental forces and moments, or the Euler-Lagrange model which also in-
cludes energy considerations. The Euler-Lagrange method permits analysis of
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the movement of a constrained system without the difficulties inherent in defin-
ing constraint forces (such as joint forces or contact forces at a surface). This
is because the Euler-Lagrange approach uses generalized rather than cartesian
coordinates, and with a proper analysis of the problem it is possible to specify
constraint equations which limit or even remove some of these coordinates. In
contrast to this, the Newton-Euler method requires the detailed specification
of all constraining forces. There are several advantages and disadvantages one
should keep in mind before settling on one or the other method. In particular:

• Extendability of model: How difficult is it to include new elements in the
system (an extra limb, an external obstacle, etc.)?

• Explicitness of constraint and contact forces: Is there a reason for which
we might want to know exactly the constraint and contact forces, or at
least their magnitudes? (characterizing the wear and tear of joint surfaces
causing arthritis might be one reason)

• Computational efficiency.

In the present case, I will be using the Newton-Euler approach because it has
better extendability within the context of generalized physics simulation sys-
tems, and because we do have some interest in fully specifying the joint forces
and constraints in that their continuous evaluation during model performance
permits us, amongst other things, to control that the simulation is producing
realistic joint forces.

3.2.1 Basic Dynamical Model

The equations of motion for a rigid-body spatial manipulator may be expressed
in their most general and compact form as:

T = I(θ) ·α+C(θ,ω) · ω +G(θ) (3.9)

where θ = [θ1, ..., θn]
T is the vector of joint angles, ω is the vector of angular

velocities, and α is the vector of angular accelerations. In this equation T corre-
sponds to the torques on each limb, I(θ) corresponds to the inertial components
of the movement, C(θ,ω) represents centrifugal and coriolis terms and finally
G(θ) represents gravitational terms. Due to its simplicity and amenability to
mathematical analysis, this is the preferred formulation in a wide range of re-
cent investigations38,75,145,89,238. Although very innocent looking, this equation
does indeed expand to many pages of equations if its components are spelled
out explicitly, even in the case of a 2-link planar manipulator (see for example
the derivations provided in Cesari et al.38 or in Frolov et al.75).

All its virtues notwithstanding, in this work I will not use equation 3.9
for modelling the arm, but will instead now focus my efforts on developing a
completely general rigid-body physics simulator into which different skeleton-
tendon-muscle configurations (not even necessarily chain-like) may be inserted
(as if into a virtual theater of physics). And even if the main thrust in this thesis
is on models of the arm, a multi-purpose physics simulator is more useful when
it comes to applications, or if focus shifts to more complex skeletal structures,
such as the shoulder or ankle, or even whole body simulations. These reasons
more than warrant the extra effort invested into making a general physics solver.



30 CHAPTER 3. BIOMECHANICS – DEFINING THE PROBLEM

Movement of a single rigid body in space is fully specified by the following
set of equations:

dx

dt
=

1

m
· p

dp

dt
= F

dL

dt
= τ

dR

dt
= ω∗ ·R (3.10)

where m is the mass of the object, x is the position of the center of mass (COM)
in an inertial ”world” frame, p is the linear momentum, L is the angular momen-
tum and R is the orientation tensor for the object with respect to the inertial
frame. Forces and torques affecting the object at its COM are represented by F

and τ respectively. The only remaining variable is the angular velocity matrix,
ω∗, which is defined by the following expression 279,16:

ω∗ =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 (3.11)

construed, as a convenient way to find the time derivative of the orientation
tensor, by rearranging the elements of the angular velocity vector, ω, which is
defined by:

ω = I−1 ·L (3.12)

where the inertia matrix, I may conveniently found using the relation:

I = R · IBody ·R
T (3.13)

in which IBody simply is the inertia body tensor.
Two additional expressions are useful to know during interactions with other

objects, but are not essential for describing movement in the free floating rigid
body, these are the linear acceleration a and the angular acceleration, α:

a =
1

m
· F

α = I−1 · τ (3.14)

Although these equations almost go without introduction as they are so well
known in physics, some comments are nevertheless necessary. These equations
fully describe movement of a rigid body in a simple and straightforward manner
and are easily implemented in a computer simulation. The real challenge is
to find a representation of the forces and torques which correspond nicely with
what is found in the vertebrate skeleton. In particular, it is important to specify
the way in which muscles produce force, and to specify the attachment points
at which they are going to affect the system. Also it is necessary to identify and
compute the joint forces (ligament forces) that hold the limbs together. Finally
it is necessary to specify each limb’s mass, dimensions and inertia tensor.
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Figure 3.3: Example of muscle lines of action (see text for details).

3.2.2 Muscle forces and torques

In a later section an empirically accurate and structurally based model of striate
muscle force will be derived, but for the time being let us assume that we
already have such a model, Fk, which represents the total magnitude of the
force produced by the kth muscle, and which is a function of muscle length,
Lk, muscle contraction velocity, Vk, and the level of neuromuscular activation,
Ak. (see equation 9.4 in section 9.4 for the full model). The muscle will be
pulling with equal force on the attachment points but along different lines of
action determined by the geometrical configuration of the muscle and limbs (see
diagram on figure 3.3). The force applied to the attachment point pik on the
ith limb by the kth muscle may be expressed as:

f ik = Fk · nik (3.15)

where nik is the normal vector corresponding to the line of action.
Any force that is applied to a rigid body will also produce a torque except

if the force is applied directly at the COM. The moment arm associated with
the kth muscle, hik, is a vector pointing from the center of mass of the ith limb
to attachment point on that limb pertaining to the kth muscle, pik. With this,
the torque, τ ik, produced by the kth muscle around the ith limb’s COM may
be calculated directly:

τ ik = hik × f ik (3.16)

while the total force transmitted to the ith limb’s COM is simply f ik. If we have
a set of muscles, {k} attached to the ith limb, then the total resulting torque
on this limb is simply the sum of the torques produced by each individual
muscle, and the total resulting force at the COM will likewise be the sum of all
contributions from individual muscles:

τ i =
∑

{k}

hik × f ik

f i =
∑

{k}

f ik (3.17)
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3.2.3 Joint forces and ligaments

Even in the absence of active muscle forces, the skeleton is held together and
protected against damage by complicated mechanical structures. Joints and
ligaments are passive with respect to force production in that they only pro-
duce force as a reaction to externally imposed limb configurations. Ligaments
are made of collagen and elastin, and act as elastic bands holding together the
limbs against pulling forces, while the cartilage and synovial fluids at the joint
junctions acts as a Voigt elements against inter limb contact forces (reducing
damage caused by friction or sudden loads). For some applications it is relevant
to identify each and every individual force component at the joint, mapping out
all ligaments, their elasticity and damping coefficients and the volumetric damp-
ing/elastic effects at synovial joints. This would be the case if we were studying
the effect of varying loads on the wear and tear on the joints (ergonomics, pros-
thetics), or perhaps to specify optimal training exercises for arthritic patients,
or other similar subjects. In the present case, we are only concerned with joint
forces insofar as they maintain structural stability in the arm. In the lack of
precise quantitative data specifying the geometry and elastic coefficients of lig-
aments and joints, there are two good ways to proceed: 1) Absorb all joint
force contributions into a simple damped elastic element with a non-zero rest-
ing length, 2) Calculate directly the forces necessary to hold the arm together
during movement. After trying both I have opted for the second option mainly
because of increased stability and numerical reliability.

To find the joint forces it is useful to break the joint accelerations up into a
radial component that is parallel to the line from the center of mass of the link
to the attachment point, and a tangential component that is perpendicular to
this.

ai = ai−1 − vi−1 ×αi−1 + rC,i−1 ×αi
︸ ︷︷ ︸

Tangential

−ωi−1 × (vi−1 × ωi−1) + ωi × (rC,i−1 × ωi)
︸ ︷︷ ︸

Radial

(3.18)

where vi is the limb vector as defined in section 3.1, and rC,i−1 is a position
vector from the center of mass of the ith limb to its proximal joint. The total
force, J i required to maintain the ith limb attached to the (i−1)th joint is thus:

J i = ai ·mi (3.19)

resulting in the following torque on the limb:

τ i = rC,i−1 × J i (3.20)

These should simply be added to the current total torque and force on the limb,
and thus concludes the mechanical treatment of multi-jointed limbs.

3.3 Anthropometry

To produce a mechanically realistic model of the human arm, it is necessary
to quantify some of the model parameters such as the limb’s inertial properties
(the Ibody matrix), mass, length, muscle attachment points, pinnation angles
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and physiological cross-sectional area (PCA). Fortunately much of the needed
data is readily available from various sources (e.g. Winter 279), and with some
approximations the remaining parameters may be determined directly from the
data. Of course the data will usually be an average over a larger population, so
what we essentially will be modelling is a ”standard” human arm. Some of the
most important parameters required by the model are summarized in table 3.1.

The most difficult mechanical parameter to determine for a limb is perhaps
its inertia body tensor, but there are several good algorithms for doing so, one
of which only requires geometrical information about the surface of the limb.
Suppose that the surface geometry of an object with homogeneous density has
been converted into an equivalent polygonal mesh. Then it is possible to identify
whether any given point is within or outside the volume by using the ”Odd-man-
in” algorithm, which essentially works on the assumption that any ray projecting
out from a point within the volume of interest will always have to cross an odd
number of surface polygons. The object should now be bounded by a box which
is subsequently subdivided into N volume elements. Each and every volume
element within the box is now tested with respect to whether it resides inside
the volume of the object, or outside. By adding up all the volume elements that
tested positive a good estimate of the total volume of the object is obtained,
and the center of mass may also be determined. Furthermore, if the density
(assumed homogeneous) is known then the total mass may also be found. Let
the ith volume element with mass µi have its center positioned at ri then the
center of mass for the whole object, c, will be:

c =
1

N

∑

i

ri (3.21)

and the total mass of the object becomes:

m =
∑

i

µi (3.22)

To calculate the body inertia tensor, the center of mass should initially be at
the origin of the coordinate system within which the object is defined, so in the
case that c 6= 0, the object should be translated by an amount −c.

The inertia tensor has the form279:

I =





Ixx −Dxy −Dxz

−Dyx Iyy −Dyz

−Dzx −Dzy Izz



 (3.23)

where Ixx, Iyy and Izz are moments of inertia in the x, y and z axes, respec-
tively, and the remaining components are the products of inertia, or deviation
moments. When the center of mass has been properly positioned at the origin,
the inertia tensor of the object equals:

Ibody =
∑

i





µi · (r
2
iy + r2iz) −µi rix riy −µi rix riz

−µi riy rix µi · (r
2
ix + r2iz) −µi riy riz

−µi riz rix −µi riz riy µi · (r
2
ix + r2iy)



 (3.24)

where rij is the distance from the jth axis to the ith volume element. The
methods presented here are universally applicable in the sense that any object



34 CHAPTER 3. BIOMECHANICS – DEFINING THE PROBLEM

Upper Arm Forearm Hand
Mass fraction 0.028 0.016 0.006
Length fraction 0.186 0.146 0.108
COM fraction 0.436 0.430 0.506
Density [kg/l] 1.07 1.13 1.16

Table 3.1: Summary table of normalized anthropometric data used for simula-
tions. The mass fraction times total body mass yields the mass of corresponding
limb. In a similar vein, the length fraction times the total body height yields
the length of the corresponding limb. The distance from the proximal joint to
the center of mass of the limb may be found by multiplying the COM fraction
times the total length of the limb. All data from Winter 279.

Upper Arm Forearm Hand
Proximal radius [m] 0.054 0.038 0.15
Distal radius [m] 0.042 0.028 0.15
Flatness 1.1 1.3 3
Volume [l] 2.8 1.25 0.43
Mass [kg] 2.98 1.41 0.5

Table 3.2: Parameters used for dynamic simulation of human arm calculated
for a person measuring 1.9 m in height and weighing 90 kg.

can be processed to yield its inertial tensor, as long as the surface of the object is
known, as well as the density of the object. In the case of the human arm, precise
surface information can be gained from MRI scans. Delimiting bone surfaces
and skin surfaces independently would yield the best results, but would require
each link in a limb to be composed of two physically distinct model objects: A
bone model and a tissue model. In the present case, however, such a level of
detail is not necessary as we are looking for general rules of motor control and
not specific physical details of the limbs. Anyway, for the sake of generality
of the results, the model has to be based on an average human, and not on
the specifics of any particular individual. A more fruitful approach is therefore
to generate simplified models of the arm based on some of the average human
values presented in table 3.1, because then once the motor control model is up
and running, we may freely vary several critical parameters (such as the total
height and weight of the person whose arm is simulated, see table 3.1) to test
for generality. Note, that at any time we may return to include as precise a
model of the arm as we care to simulate, all the equations and calculations will
be the same.

From a dynamics point of view, a good approximation to the human arm for
a person measuring 1.90 m in height and weighing 90 kg will have parameters
similar to those listed in table 3.2. Unless otherwise noted, these parameters
are assumed throughout the rest of this thesis.

Before ending this chapter and moving on to the determination of muscle
force models per se, there are two additional topics which need attention: The
characterization of the moment arms of upper extremity muscles which depend
on the muscle attachment geometry, and the specification of physiological cross-
sectional area and pinnation angles for muscle.



3.3. ANTHROPOMETRY 35

Muscle Origin Insertion Actions

Deltoid Clavicle, acromion pro-
cess, spine of scapula

Deltoid tuberosity Extension, flexion and
abduction of humerus

Biceps, long head Supraglenoid tuberos-
ity

Radial tuberosity and
ulna

Elbow flexion and hand
supination

Biceps, short head Coracoid process Radial tuberosity and
ulna

Elbow flexion and hand
supination

Brachial muscle Inferior 2/3 of anterior
surface of humerus

Ulnar tuberosity Elbow flexion

Brachioradial muscle Lateral humerus Styloid process of ra-
dius

Elbow flexion

Triceps, long head Infraglenoid tubercle Olecranon Extension of forearm
and shoulder adduc-
tion

Triceps, lateral head Lateral and proximal
to radial sulcus on pos-
terior humerus

Olecranon Extension of forearm

Triceps, medial head Medial and distal to ra-
dial sulcus on posterior
humerus

Olecranon Extension of forearm

Table 3.3: Main flexion and extension muscles in human arm.

3.3.1 Muscle attachment geometry

There are approximately 30 muscles involved in arm control, and these may
be subdivided into several functional groups depending on whether they flex,
extend, supinate, pronate, rotate, abduct, or adduct the limb onto which they
insert. Also, muscles may span over one or more joints, and may have widely
distributed origin and insertion areas. As a first approximation only flexor
and extensor muscles of the arm will be considered, and will assume point-like
origins and insertions. The principal flexor and extensor muscles of the human
arm are listed in table 3.3. For the computer model it is necessary to be more
specific than just listing the relevant muscles: the coordinates for the muscle
attachment points are required. At present we do not need to be very precise
about the exact coordinates, as long as they are within a reasonable range,
but it is important that the computational model allows for easily including
better data when available. A very simple but general coordinate system is
used to pinpoint the locations of muscle attachment points. In the previous
section the COM and inertia tensor of a rigid body object were found. It was
suggested that the object should be positioned so that the COM coincided with
the origin of a coordinate system. If that is done, then it is possible to orient
the object so that its inertia tensor only contains diagonal elements. Although
that is useful from a mechanical point of view, it is not strictly necessary, and
actually for the present purposes it is much more useful to orient the body so
that its anatomical directions coincide with the chosen coordinate system. The
following should apply:

• COM at origin

• positive x-axis points to anterior regions

• positive y-axis points to medial regions

• positive z-axis points to proximal regions
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Figure 3.4 shows approximate normalized distances along the z-axis from the
COM to the different attachment regions in the humerus, radius and ulna.
Similar schemes may be created for the hand and scapula, and also for the
remaining axes. Other coordinate systems are of course equally valid (see e.g.
Nijhof and Kouwenhoven206 for a coordinate scheme centered in the humeral
head) and it is easy to make transformations between them, but for the present
general physics solver system, a body-centered coordinate system like the one
adopted here is best.

3.3.2 PCSA and pinnation angle

Assuming sufficient structural rigidity in narrower regions of a muscle, it seems
obvious that the cross-sectional area of a muscle at its widest point determines
the maximal force that a muscle can produce. Nevertheless this is not necessarily
the case, unless ”widest point” always is defined according to the direction of
muscle fibers and not to the overall muscle geometry. It turns out that in many
muscles, the direction of muscle fibers (the fibre line of action) is at an angle
to the force axis of the muscle (the muscle line of action). This angle is the
pinnation angle of the muscle, θ, and can be used to find the physiological
cross-sectional area (PCSA) of the muscle given the muscle’s total length, l,
mass, m, and density, δ, with the formula279:

PCSA =
m · cos θ

δ · l
(3.25)

In non-pinnate (θ = 0) muscle the PCSA can be used to estimate directly the
number of muscle fibers which are in parallel with the muscle’s line of action.
In pinnate muscle the PCSA has a slightly different meaning: it gives the cross-
sectional area that a non-pinnate muscle should have to be equivalent to the
pinnate muscle. In either case, the PCSA gives a measure of the maximum force
that may be produced by a muscle, and the total number of sarcomeres in a
cross-section may easily be found using myological data (see, e.g. table 4.1).
Typical PCSA values are listed in table 3.4 together with the average muscle
fiber lengths.
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Muscle Abbrev. Fiber Length
[cm]

PCSA [cm2]

Deltoideus, acromial origin DELA (7.4) 13.5
Deltoideus, scapular origin DELS (9.6) 3.9
Deltoideus, clavicular origin DELC (8.1) 4.5
Pectoralis Major, clavicular
origin

PMJC (11.2) 5.2

Teres major TMAJ (6.8) 5.8
Triceps longum TRIO 12.7 6.7
Triceps mediale TRIM 9 6.1
Triceps laterale TRIA 9.3 6.0
Biceps longum BILH 11 2.5
Biceps breve BISH 12.5 2.1
Brachioradialis BRAD 19 1.5
Brachialis BRAC 9.9 7
Pronator Teres PROT 7 3.4
Extensor Carpi ulnaris ECUL (4.5) 3.4
Extensor Carpi radialis ECRD (4.5) 5.3
Flexor Carpi ulnaris FCUL (4.5) 3.2
Flexor Carpi radialis FCRD (4.5) 2.0

Table 3.4: Typical fiber lengths,and PCSA’s for selected arm muscles. Data in
parenthesis are estimates based on total muscle length. All data was compiled
from An et al.7, Fridén and Lieber74, Nijhof and Kouwenhoven206, Murray
et al.198.



Chapter 4

On the entropic origin of
muscle force

Chapter Summary

The aim of this chapter is to present a minimal mechanical model of
force production in the sarcomere which is compatible with known
experimental facts while maintaining a clear connection with the
underlying molecular structure. The model draws heavily on the
ideas and insights gained from state-of-the-art sliding filament and
lever-arm models118,119,286 and should in part be seen as an at-
tempt to simplify the dynamics of such models for their inclusion in
large-scale whole-limb biomechanical and neurocomputational sim-
ulations. However there are also some very important distinctions
between the models which lead to very different interpretations of the
available experimental data. In particular it is concluded that mus-
cle force has its origin in the conformational entropy of the myosin†

molecule, and therefore the forces at the individual actin-myosin
bonds should be described using the Worm-Like Chain model of
entropic elasticity168.

Note: The material in this chapter has been submitted for publica-
tion.

As seen in the previous chapter, it is relatively straightforward to include the
geometrical aspects of muscle force in a physical model of the arm, simply based
on anatomical observations. Historically it has proved much more challenging
to actually describe what takes place inside muscles which permits them to
produce force, and subsequently to quantify this force. One of the earliest doc-
umented and most persistent ideas about muscle force production is attributed
to Erasistratus in the 3rd century B.C., who hypothesized that pneuma filled

39
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up the muscle in such a way that its diameter increased while simultaneously
causing a shortening of the muscle (thus contracting and causing movement) 176.
This idea was finally debunked in the 17th. century by Jan Swammerdamm,
who showed that there are no volumetric changes associated with muscle con-
traction. Several contraction hypotheses ensued, but it took the arrival of the
electron microscope to finally settle the issue by the following observation 122,120:
There are filaments in muscle which slide between each other.

4.1 Sliding filament theory

According to the sliding filament and lever-arm model 120,122, muscular force is
produced as a result of the deformation or tilting 123 of a myosin head while it
is forming a cross-bridge between the myosin† and the actin† filaments. Any
movement parallel to the filaments of a myosin head while forming a cross-bridge
to actin, will force the filaments to slide among each other and produce tension.
The force interaction between thick filaments and thin filaments is thus quite
analogous to an array of springs connected in parallel in that a certain number
of myosin cross-bridges belonging to a thick filament will be in force-producing
contact with an equal number of actin binding sites. All these cross-bridges will
be pulling in the same direction, and thus each one of them will contribute with
a small fraction of the total tension of the muscle, not unlike the situation that
one observes in a tug-of-war (a contest where two opposing teams are pulling
on a rope with the purpose of dragging the opponent team over a line).

It is in the characterization of these spring forces and in the specification of
the spring-length distributions that the main differences will be found between
different muscle force production models. In Huxley-type models of muscle
force, linear springs are used in conjunction with complicated spring-length dis-
tributions based on Michaelis-Menten type kinetic schemes of actin-myosin bond
formation. For such models to account for the different experimentally observed
characteristics and dependencies of muscle force, such as Hill’s force-velocity
curve107, many free parameters must be estimated, some of which subsequently
have been specified experimentally, whilst others still remain as best-fit param-
eters.

In the present work emphasis will be given to deriving a model in which most
parameters (if not all) can be directly verified experimentally, a situation which
is attainable if slightly more complex spring forces are used in conjunction with
very simple spring-length distributions. As will be shown in a later section, a
simple expression can be derived which fully accounts for force production dur-
ing different lengthening and shortening velocities. But to get there, it will first
be necessary to reexamine some of the assumptions underlying sliding filament
and lever-arm models, particularly with respect to the mechanical properties
(section 4.2) and geometrical relations (section 4.3) that one might expect in
muscle.

4.2 The mechanics of parallel spring arrays

The total tension, Ttot, produced by a mechanical system comprised ofN springs
connected in parallel is simply the sum of the partial forces, si, produced by
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each of the springs in the array (let i be an index to the springs, so i ∈ [1, N ]).
Spring forces depend on the length of the spring in question, so if we let the
length of the i’th spring be represented by xi, then the force produced by the
i’th spring will be si = s(xi). In short:

Ttot =

N∑

i=1

s(xi) (4.1)

where s essentially may be any real-valued function. For linear springs like those
typically assumed in Huxley-type muscle models we have that s(x) = k ·x, with
k as the spring constant. In section 4.5 some other (non-linear) spring force
functions will be explored.

In the general case the spring lengths need not necessarily be distributed
evenly within an interval, but may instead be clustered into groups whose group
members share a particular length. If we let m represent the total number of
such clusters, each of which shall be identified using the index j, then the total
tension produced by the system can formally be expressed as:

Ttot = n1 · s(x1) + n2 · s(x2) + . . .+ nj · s(xj) + . . .+

+nm−1 · s(xm−1) + nm · s(xm)

Ttot =
m∑

j=1

nj · s(xj) (4.2)

where nj indicates the number of springs with length xj , that is the number of
springs belonging to the j’th cluster. The number nj should really be considered
a function of xj , so that nj = n(xj). In principle, n(xj) can have values ranging
from n(xj) = 0, when no springs have the corresponding length, and up to
n(xj) = N when all the springs have the same length (only one cluster). Because
the total number of springs still is N , the following relationship must hold:

m∑

j=1

n(xj) = N (4.3)

It is helpful to assume that the spring-length clusters are spread out evenly
within the permitted interval x ∈ [a, b] so that each corresponds to a subinterval
of size ∆x = (b− a)/m. An expression for the spring-length corresponding to a
given cluster, j, would then become:

xj = j ·∆x = j ·
b− a

m
(4.4)

From this it follows that within a finite interval xj ∈ [a, b], we may write:

0 ≤ a = x1 < x2 < ... < xj < ... < xm−1 < xm = b <∞ (4.5)

If all the springs in the array are allowed to shorten a distance ∆x = (b−a)/m,
the system will have generated the following amount of work:

W∆x = Ttot ·∆x =

m∑

j=1

n(xj) · s(xj)∆x (4.6)
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Table 4.1: Summary table of geometric regularities in sarcomeres of striate
muscle.
Property Symbol in text Value
Actin Binding Site Separation lact ∼ 5.3nm
Myosin Head Separation lmyo ∼ 43nm
Relative M-A displacement δMA ∼ 0.6nm
Length of A-band† lA ∼ 1.67µm
Length of H-band lH ∼ 0.25µm
Length of overlap zone in sarcomere llap = lA − lH ∼ 1.42µm
Rotational symmetry Crot ∼ 6
Thick filament radius rthick ∼ 20nm
Thick filament cross-sectional area athick = πr2thick ∼ 1256 nm2

Sarcomere radius rsarc ∼ 500nm
Sarcomere cross-sectional area asarc = πr2sarc ∼ 7.8 · 105nm2

No. thick filaments pr. sarcomere nts = asarc/athick ∼ 625
No. sarcomeres pr. 1cm2 muscle nsm = 1014nm2/asarc ∼ 1.3 · 108

No. filaments pr. 1cm2 muscle nfilaments = nsmnts ∼ 8 · 1010

Myosin heads pr. 1/2-sarcomere Ntot ∼ 0.5 · nts · Crot · llap/lmyo ∼ 6 · 105

At the limit where mÀ 1, we observe that ∆x→ 0, and given that the springs
have lengths which are bounded to an interval in the way shown in equation
4.5, it becomes evident that equation 4.6 is a Riemann sum, and therefore the
total work done by the system when contracting a small step, ∆x, may be found
according to the following integral:

W∆x =

∫ b

a

n(x) · s(x) · dx (4.7)

Using this result, a simple integral expression may be found for the total tension
in the system, namely:

Ttot =
1

∆x
·W∆x

=
1

∆x
·

∫ b

a

n(x) · s(x) · dx

=
m

b− a
·

∫ b

a

n(x) · s(x) · dx (4.8)

After proper specification of n(x) and s(x) and selection of upper and lower
integration bounds, equation 4.8 becomes similar in essence to Huxley’s model
of force production in muscle118.

4.3 Geometry of the sliding filaments

A large number of microscopy studies of muscle have established that there are
some very consistent regularities in the molecular structure of muscle even to
the extent that some regions seem quasi-crystalline in nature. Some of these
regularities are summarized in table 4.1, and are represented schematically in
figure 4.1.
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Figure 4.1: Sarcomeric structure and the origin of the relative actin-myosin
binding site displacement (δMA, see text)¯ . a) Schematic representation of
sarcomeric structure (approximately drawn to scale) corresponding to the plane
of section shown in the diagram to the left. b) Relative displacement of myosin
and actin binding sites along a filament during contraction. See also figure 4.2I.
for further details. c) Relative displacement of myosin and actin binding sites
along a filament during stretching. See also figure 4.2II. for further details. In
this highly schematic figure it should be noted that a gradual increase (decrease)
of cross-bridge tilting angle is observed in b) and c) as one moves from left to
right along a filament. A more realistic picture would allow ”holes” in this
sequence where no bonds have formed, and in a situation close to isometric
conditions (e.g. slow contraction turning into slow stretching) perhaps even
cross-bridges tilting in directions opposite to the general flow would be observed
(perhaps smoothing the force-velocity discontinuity found at v = 0).
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There are 6 myosin head series around a thick filament, where each consecu-
tive series is displaced by approximately 14.3nm and rotated by 60 degrees with
respect to the previous series. Along any one series, myosin heads are located at
equal intervals of roughly lmyo ∼ 43nm. If we only look at one of the 6 myosin
head series (corresponding to the plane of section shown in the upper part of
figure 4.1) then it may be observed that for every 43 nm that one advances
along a thick filament (corresponding to the myosin head separation) we shall
find that 8 A-sites have been passed plus a small extra displacement δMA. If
we assume that the A-sites are positioned at intervals of lact ∼ 5.3nm this extra
displacement may be found as follows:

δMA = lact ·

(
lmyo

lact
− trunc

(
lmyo

lact

))

(4.9)

= lact ·

(
lmyo

lact
− 8

)

∼ 0.6nm

where the trunc(x) function simply removes the decimal part of the argument.
Supposing that the first myosin neck region (MN-region) is perfectly aligned
with an A-site, then the second MN-region along the filament will be offset
by the distance δMA ∼ 0.6nm with respect to the nearest A-site to the left,
the third MN-region will be offset by 2 · δMA, the fourth by 3 · δMA, and so
on. This is shown schematically in the lower part of figure 4.1. If we continue
along the filaments, then after passing 9 MN-regions, the nearest A-site will
be within a distance of 0.1 nm, and allowing for experimental error in the
measurement of A- and MN-region distances one could easily accept that a
full period has been completed after ∼9 MN-regions. In any case there can at
most be approximately 16 MN-regions within the 710 nm run corresponding
to the myosin head covered zone in one half sarcomere (i.e. within Llap/2
nm, corresponding to the overlap zone in figure 4.1) so any periodicity longer
than this would not fit within the allotted space. In conclusion, the minimum
length difference between two bonded myosin ”springs” belonging to the same
periodic series on a thick filament will necessarily be δMA ∼ 0.6nm. If a whole
thick filament with its 6-fold symmetry is considered we should obtain that
the minimum value for δMA becomes less than 0.6nm because of the 14.3nm
shifts between myosin series and the variations in alignment between the 6
corresponding actin filaments.

These geometrical considerations seem to indicate that in a fully activated
muscle (i.e. one in which all possible cross-bridges have formed) strict geomet-
rical constraints will be imposed on the myosin spring length distribution at the
level of the individual thick filament, and in particular at the level of a single
myosin series along a filament. At this level of magnification the spring-length
distribution appears to be flat, which means that within a single period of a
myosin series along a thick filament there exists exactly one cross-bridge for
each possible (discrete) length.

It should be noted however that the individual myosin springs still can have
any length whatsoever within the allowable interval but only if the filaments are
aligned differently, e.g., following a sliding motion of the thick and thin filaments.
Also, it should be noted that different thin filaments across the sarcomere cannot
be expected to be perfectly aligned to each other with respect to their actin
binding sites, and neither can perfect alignment be expected from the thick
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I. Cross-bridge cycle during muscle contraction
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II. Cross-bridge cycle during muscle stretching

Figure 4.2: Cross-bridge cycle during muscle contraction (I) and stretching (II).
For a detailed explanation see text in sections 4.4.1 and 4.4.3 respectively. The
definitions of xdown, xup and xtaut may be found in section 4.4.4

filaments. Given the small critical distances involved (∼ 5.3nm between actin
binding sites), it would not be surprising to find that, within such a short
range, both thin and thick filaments are more or less randomly distributed
longitudinally. So even though the single myosin series in a thick filament is
severely constrained geometrically, a sufficiently large sample of fully activated
thin and thick filaments would probably contain an almost continuous range of
myosin spring lengths even without the sliding.

The consequences of these geometric constraints on force production depend
mainly on the underlying assumptions regarding the dynamics of cross-bridge
formation and the assumed effects of sliding filament velocity. In a later section
(section 4.5) the possibility of a continuous range of myosin spring lengths will
be used to invoke a special case related to the parallel spring force derivations
of section 4.2, a case in which the number of spring length subintervals (the
number m of clusters) is equal to the total number of springs, m = N , i.e. all
springs are different and n = 1 (according to equation 4.3).

4.4 The cross-bridge cycle revisited

Several authoritative reviews already exist on the topic of cross-bridge cycling
78,112,216,193,212,114, so it might seem superfluous to review this topic yet again,
but it is necessary in order to extract some of the features which are important
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for the minimal structural model that is being advocated in this work. Also, in
most previous reviews (except Proske and Morgan 216) priority has been given to
muscle contraction, while stretching muscle only has been mentioned cursorily,
but because muscle force dynamics during stretching should also be encompassed
by any model of muscle, three different situations will be emphasized separately
in the following presentation: Contraction (v > 0), isometric activation (v = 0),
stretching (v < 0).

4.4.1 Contraction (v > 0)

1. Immediately after a force producing stroke, the unbound myosin head
quickly moves back to its equilibrium position which is at x = 5.3nm. In
this stage the myosin head will be oriented perpendicularly to the thick
and thin filaments (Lymn and Taylor’s 90◦ conformation164, Holmes’ ”up”
conformation111), and will be in almost perfect alignment with an actin
binding site (which was dragged there during the previous stroke), see
diagram in figure 4.2Ia. The ATP binding site will be occupied by an
ADP.Pi complex, thus favouring the ”up” conformation of the myosin
head111 and allowing weakly binding myosin-actin interactions to take
place.

2. Given the closeness of the myosin’s active site to the actin binding site
when in the ”up” state, weak interactions (perhaps stereospecific 111) may
take place forming a weakly bonded cross-bridge, as hinted in figure 4.2Ia.,
but only if the tropomyosin block on the actin binding sites has been re-
moved by an appropriate concentration of Ca2+. Weak binding is reckoned
to bring stronger bond forming hot-spots into better alignment (e.g. by
gradually increasing contact area220). The probability that such a weak
bond will become sufficiently stable to turn into a strong bond might de-
pend on the sliding velocities of the filaments: The faster the sliding the
lower is that probability.

3. Once a stronger bond is formed the power stroke begins when Pi is re-
leased from the ADP.Pi complex220. This power stroke probably occurs
because some regions of the myosin undergo certain transformations which
bring the protein into different energetically stable configurations which
are favoured when only ADP is bound to the ATP binding site, thus pro-
ducing the characteristic ”tilting”, ”rocking” or ”rowing” motion of the
myosin head. This tilting motion increases the tension within the acto-
myosin complex in a direction parallel to the actin and myosin filaments.
This situation is represented schematically in figure 4.2Ib.

4. If a sufficient number of cross-bridges within the muscle is recruited in
this force producing step, then the tension will be sufficient to overcome
the load imposed on the muscle, and the filaments will slide between each
other shortening the muscle, and bringing the myosin head into Lymn
and Taylor’s 45◦ state164 or Holmes’ ”down” state111. This will drag the
bound actin site towards x = xdown, as defined by the coordinate system
shown in figure 4.2, at which point the actomyosin tension goes to zero
(the tension being a spring-like force which depends on the length of the
spring, see section 4.2).
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5. At some point during this contraction, but probably towards the end, the
ADP will be released from the ATP binding site. The strong actomyosin
bond is very stable and will remain bonded until a new ATPmolecule binds
to the corresponding site thus weakening the actomyosin bond. Hydrolysis
of the newly bound ATP into an ADP.Pi complex favours a myosin config-
uration in the ”up” position, and the myosin head therefore returns to the
equilibrium position as soon as the weakened actomyosin link is broken.
This weak bond breaking might be accomplished through a combination
of the continuing contraction of the muscle (which will keep separating
the myosin neck site from the actin site, see figure 4.2Ic.) and the tensile
stress produced by the reconfiguration of the myosin to its stable ADP.Pi

bound ”up” state. Since the total distance that the filaments were dis-
placed during this process corresponds exactly to the distance between
actin binding sites, the system is now back at step 1.

4.4.2 Isometric activation (v = 0)

Essentially like the muscle shortening cycle, except that in step 4 it will be
impossible for the filaments to slide so the actin binding site will remain at
whatever distance x it had when the isometric load was imposed. Even though
no mechanical work is done during isometric contractions, energy is certainly
being used, so ATP hydrolysis must be taking place. This is why it must be
assumed that ADP may become unbound in step 5 even before a full working
stroke has been accomplished. A new ATP molecule is then bound causing
changes in the myosin and weakening the actomyosin bond (the myosin now
having a different energetically favourable configuration). The question now
remains as to whether this weakened interaction is still sufficiently strong to
maintain the myosin head in its ”down” or ”tilted” position when no additional
sliding movement (sliding tension) is taking place, but given that the newly
bound ATP might have become hydrolyzed forming an ADP.Pi complex for
which a non-tilted configuration is most energetically favourable. If the weak-
ened actomyosin interaction is stable under these circumstances and if Pi is
released promptly then the ”weak tilted” bond may again grow into a ”strong
tilted” bond (without myosin head movement) continuing the force production
until the ADP is again released, at which point the cycle repeats, a continu-
ous supply of ATP being necessary to maintain tension. On the other hand,
if the weak bond is too feeble to maintain the tilted position, then the myosin
head, when bound to an ADP.Pi complex, will spring back to its equilibrium
position where it must remain unbound to actin because the nearest potential
actin binding site is actually the one just released (according to the geometry
of the system, se e.g. figure 4.2), and energy would be required for it to move
back into the tilted state. So unless Pi release at the ”up” position permits
the myosin head to attain the ”down” or ”tilted” configuration irrespective of
whether myosin is bound to actin or not, this second option would produce no
force because the actomyosin link cannot be reestablished, and the muscle would
have to yield.
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Figure 4.3: Simplified model of cross-bridge attachment and detachment prob-
abilities as a function of myosin spring length.

4.4.3 Stretching (v < 0)

To begin with, this situation is like the muscle shortening cycle (see figure
4.2IIa.), but steps 3, 4 and 5 change fundamentally because the load imposed
on the muscle will be larger than the tension currently produced by the muscle.
This means that the myosin heads will not be allowed to move towards the
”down” conformation but will instead be stretched into a ”taut” state (for which
x > xup), provided the strong actomyosin bond withstands the additional strain
(see figure 4.2IIb.). It is unclear what happens in this situation with the ADP.Pi

complex which to begin with would be bound to the ATP site (starting in step
3), but it might actually remain bound in which case the following scheme
would apply: At some point the tensile stress produced by stretching the muscle
becomes so large that it forcibly breaks the actomyosin bond (as hinted in
figure 4.2IIc.), and when this happens the myosin-head will return to its most
energetically favourable configuration which, given that ADP.Pi is still bound,
means the non-tilted ”up” conformation. The system is then essentially back
at step 1, which means that a link to actin might be formed, and the cycle may
repeat without adding ATP. However, it might also be possible that the myosin
heads sometimes ”overshoot” the equilibrium position, where they release their
ADP, and subsequently rebind ATP which is then hydrolyzed to the ”up”-
seeking ADP.Pi-bound myosin complex.

4.4.4 The bare essentials

The following is an attempt to give a simplified mechanically oriented descrip-
tion of the just reviewed cross-bridge cycle at different velocities which ties in
well with the analysis made in sections 4.2 and 4.3. Because it is a mechanical
treatment, emphasis will be on the position of the myosin heads and their po-
tential for force production in different situations. The model assumes that the
force producing interaction between thick and thin filaments can be modelled
as a parallel spring array or a tug-of-war, and the conformational changes oc-
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curring in the actomyosin complex are directly associated with changes in the
length of the springs in this array.

First of all it should be noted that there are three critical myosin head
positions involved in the reduced cross-bridge cycle, and these are defined as
follows:

xdown Myosin bond release point. This corresponds to the most energetically
favourable position of the myosin head when the ATP-site on actomyosin
is empty or only bound to ADP (the ”down” position). The actin-myosin
bond transforms from a strong to a weak bond if an ATP molecule binds
to actomyosin, at which point the myosin heads might release their hold
on actin. In the present model xdown = 0 and is by definition the origin
of the coordinate system which measures the myosin spring length, which
means that the total spring force here becomes s(xdown) = 0.

xup Myosin bond creation point. This corresponds to the most energetically
favourable position of the myosin head when an ADP.Pi complex is bound
to it (the ”up” position). In this state the myosin hot-spot and the passing
actin binding sites can come into perfect apposition thus giving optimal
conditions for bond formation. Shortly after actomyosin bonding, Pi is
released and the power stroke begins with an initial spring force defined
as: s(x0) = s(xup − xdown) = s(xup). Typically xup = 5.3nm because
this corresponds to the step size at which myosin moves along an actin
filament139.

xtaut Myosin bond breaking point. The maximum attainable length by the
myosin cross-bridge beyond which the actomyosin bond will be forcibly
broken due to the tension imposed on the bond. After bond-breaking the
myosin head will swing back to xup. Current experimental estimates set
xtaut in the range 10 to 15nm29.

There are also several critical time constants involved in cross-bridge cycling,
two of which are essential for the TOW-model and are defined as follows:

τweak Weak-bonding time constant, related to the actin-myosin confrontation
time that is required for a weak bond to form and stabilize.

τstrong Strong-bonding time constant, related to the time delay that exists be-
tween the formation of a stable weak bond and the release of Pi from the
ADP.Pi complex associated with the initiation of the power stroke.

And finally there is the dependency of the attachment/detachment dynamics
to the myosin head position. One of the basic assumptions of Huxley’s original
model118 is that the rate of cross-bridge formation and breaking depends on
the position of the myosin binding site with respect to the actin binding site.
In the two-stage model119 high rates of cross-bridge formation are assumed to
occur only when the position, x, of the M site with respect to the A site, is
within a limited interval of width d. Outside of this interval there is a high rate
of detachment. Other recent models100,286 are based on similar assumptions,
and also work with a varying distribution of myosin spring lengths. The spring
forces in these models are assumed to depend linearly on length.

In a similar vein, the present model also assumes that cross-bridges have a
high attachment probability within an interval and a low attachment probability
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outside, but in the present case this interval is very narrow (of width ∼ δMA in
figure 4.3) and centered around xup. This means that all myosin springs start
out with the length xup ±

1
2δMA, and the only way in which their length can

change is by filament sliding. Once formed, the cross-bridge remains stable as
long as the myosin spring length stays in the working interval x ∈ [xdown, xtaut]
within which the detachment probability is close to zero. Outside the working
interval the detachment probability is close to one (almost certain detachment).
A direct consequence of this approach is that the shortest possible power stroke
is of length xup ∼ 5.3nm, which indeed seems to be the case at least in some
experimental preparations139. These probability relations are schematized on
figure 4.3. The view presented here differs somewhat from views stating that
cross-bridges are continuously attaching and detaching at high rates, but is well
in accordance with recent optical-tweezer experiments which show relatively
long-lasting (1-100ms) attached states for the S1 myosin-actin bond, as can be
inferred from the long lasting reductions in the variance of brownian motion
during the attached state268.

4.4.5 Cross-bridge formation vs. sliding velocity

As stated previously, it seems reasonable to assume that a certain latency is
associated with the attachment and detachment processes related to cross-bridge
formation. The actin-myosin confrontation time that is required for formation
of weak-bonds, τweak, sets an upper limit to the speed with which the thick
and thin filaments can slide over each other while still permitting cross-bridge
formation. If the sliding speed is too high, cross-bridges will simply not have
time to form (this reasoning applies to muscle contraction and stretching alike).
The total available time for weak-bond formation (call it tavail) can be found
from the sliding velocity if it is assumed that weak-bond formation requires that
the distance between actin and myosin active sites is less than a critical ”weak-
interaction” distance, δweak. From this the total time that the actin-myosin
binding sites are within interacting range of each other (i.e. the time it takes
for the actin binding site to traverse the interaction range of the myosin head)
can be found as follows:

tavail =
2 · δweak

|v|
(4.10)

The coefficient, 2, stemming from the fact that the interaction window will have
a width equal to 2 · δweak. Note that the absolute velocity is used, because the
possibility of actin-myosin interaction is assumed symmetric in both directions
(contraction and stretching). The usual convention (see e.g. McMahon 176) is to
let the sliding velocity, v, be positive (v > 0) during contraction, and negative
(v < 0) during stretching in a reference frame given by the muscle fiber.

At the maximal contraction velocity the minimum available time for weak-
bond formation under contraction can be found:

tmin =
2 · δweak

vmax
(4.11)

For simplicity, it may be assumed that the minimum available interaction time is
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related to the actin-myosin confrontation time through a single constant, thus:

τweak = κ · tmin = κ ·
2 · δweak

vmax
(4.12)

where κ currently is an arbitrary constant, but which at some point could be
determined experimentally (κ is important in determining the yielding velocity
during stretching, but is otherwise relatively innocuous).

The probability that a weak bond will not form because of insufficient time
is proportional to the ratio between the required time and the time available,
τweak/tavail, the less time that is available the higher will be the probability
that the bond is ”missed”. Alternatively, this means that the probability that
the bond actually forms, pbond, can be defined as:

pbond = 1−
τweak

tavail
(4.13)

which when substituting with equations 4.10 and 4.12 becomes:

pbond = 1−
κ · 2·δweak

vmax

2·δweak

|v|

= 1− κ ·
|v|

vmax
(4.14)

If we let Ntot be the total number of myosin heads in a given segment of the
sarcomere, then the number of fully formed cross-bridges, Ncb, will depend on
the bond formation probability:

Ncb = pbond ·Ntot (4.15)

As stated in previous sections and shown in figure 4.3 the present model assumes
that once formed the cross-bridge will remain bonded until sliding brings the
cross-bridge to one of its unbinding positions xdown or xtaut, this means that the
actual number of force producing cross-bridges at any time is identical to Ncb.
We may then conclude that the total number of cross-bridges that are available
for force production at any given time depends only on the instantaneous sliding
speed of the muscle filaments (and is independent on sliding direction) . This, of
course, is under the assumption that the muscle is fully activated (i.e., sufficient
amounts of Ca2+ is present intracellularly to displace the tropomyosin from the
actin binding sites on the actin filament).

4.4.6 Velocity dependent spring length distribution inter-
val

According to the cross-bridge cycling scheme presented earlier, there will be
a time delay, τstrong, which lasts from the formation of a stable weak bond
until the release of the Pi from the ADP.Pi complex usually associated with the
initiation of the power stroke. When actin and myosin filaments slide among
each other during continuous elongation or shortening of the muscle, existing
cross-bridges will be affected by a tensile stress which might cause changes in
their configuration length. Seen in combination with the time delay, τstrong, this
means that from the moment that a weak bond has formed until force is actually
produced by the cross-bridge a lapse of time will pass during which the length of
the corresponding ”myosin-spring” will be changing but without doing any work.
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After the delay, the myosin-spring will start producing force corresponding to
whatever length it was pulled to during the delay. The displacement induced
by sliding will have the net effect of changing the distribution of myosin-spring
lengths depending on the sliding velocity’s magnitude and direction.

The total filament displacement, dx, that is possible within the delay time
τstrong when filaments are sliding at a fixed velocity v is:

dx = −τstrong · v (4.16)

where the negative sign indicates that contraction (v > 0) is associated with
a shortening of the myosin-springs whereas stretching (v < 0) is associated
with lengthening myosin-springs (see section 4.3). For the maximal contraction
velocity, vmax, we get:

|dxmax| = τstrong · vmax ⇔ (4.17)

τstrong =
|dxmax|

vmax
(4.18)

If we substitute this expression into equation 4.16 the following simple relation-
ship between velocity and filament displacement is obtained:

dx = −|dxmax| ·
v

vmax
(4.19)

where dxmax as a first simplification may be set equal to the maximal possible
displacement during contraction (i.e. from xup to xdown). Finally, given that all
myosin-springs start out with a length of xup, the effective initial length, xeff ,
of the springs when force production starts will be determined by the following
relationship:

xeff = xup + dx = xup −
v

vmax
· (xup − xdown) = xup · (1−

v

vmax
) (4.20)

The permitted spring-length interval (x ∈ [a, b]) which is so essential for muscle
force production according to the present model (see section 4.2) can now be
specified precisely:

x ∈ [a, b] =

{
[xdown, xeff ] during contraction
[xeff , xtaut] during stretching

(4.21)

4.5 TOW-model of muscle

The underlying assumption permeating this work is that muscle force is pro-
duced by a number of ”myosin” springs connected in parallel and with lengths
distributed evenly within some interval, all springs pulling in the same direc-
tion. As the spring lengths vary, so will the force produced by each individual
spring, but the resultant parallel spring array may be considered as a single unit
producing force according to equation 4.8. All in all, force production in the
model presented here slightly resembles force production during a Tug-Of-War
(TOW) contest (hence the name), where each individual athlete is pulling on a
rope with varying strength, and where the total force produced by one team is
the sum of the forces produced by the team members (all cooperatively pulling
in the same direction).
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Recalling the geometrical constraints found at the level of individual actin
and myosin filaments (section 4.3) it seems plausible that along a single thick
filament, the lengths of the myosin-springs will be distributed evenly within an
interval x ∈ [a, b]. As shown in section 4.4.6, this interval is dependent on fila-
ment sliding velocity, and is specified exactly by equation 4.21. Also, after the
analysis presented in section 4.4.5 it seems plausible that sliding velocity will
affect the number of cross-bridges that may be recruited to produce force accord-
ing to equation 4.15. And finally, given that small variations in the alignment of
actin filaments within a sarcomere may well be expected, it might be supposed
that all the myosin-springs within a sarcomere have different lengths, and hence
an almost continuous distribution of spring-lengths within the working interval
(x ∈ [a, b]) is possible. This final assumption permits us to consider the special
case where the number of clusters and the number of springs is equal, m = N ,
and according to equation 4.3 this allows us to set n = 1. All considered, the
following force production function for one sarcomere emerges:

Tsarc =
Ncb

b− a
·

∫ b

a

s(x) · dx (4.22)

where Ncb can be found from equation 4.15 (if we let Ntot be the total number of
myosin heads in the given sarcomere half), and where the interval [a, b] is deter-
mined from equation 4.21. As before, s(x) is the length dependent spring force
and ideally its profile should be determined by experiment, e.g. by setting up an
optical tweezer experiment designed to pull on a single cross-bridge. Although
the force-length dependency in the spring force function often is assumed to
be linear, recent ”protein pulling” optical tweezer experiments do seem to lend
support to non-linear models. In the following sections different force-length
dependencies will be investigated: linear (section 4.5.1), power function (sec-
tion 4.5.3) and Worm-Like Chain (WLC) model based (section 4.5.2). These
different models are compared during contraction on figure 4.7.

4.5.1 Linear spring forces

A very common assumption in muscle-force models is that the force-length re-
lationship at the cross-bridge’s myosin spring is linear 121. Although there is no
a-priori reason to assume such linearity other than to keep the mathematics
simple, there does seem to be at least some experimental evidence in favour of
the linearity assumption (see e.g. figure 3c. in Molloy et al. 188), a fact which
should taken into consideration in any proposed force-length models.

In a linear force-length model, force is simply defined as the length of the
spring, x, times a spring constant, kcb:

s(x) = kcb · x (4.23)

Integrating this function over the interval x ∈ [a, b] according to equation 4.22
yields the following sarcomeric tension:

Tsarc =
Ncb

b− a
·

∫ b

a

kcb · x · dx

=
1

2
· kcb ·Ncb · (b+ a) (4.24)
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Figure 4.4: Linear force-length model. The force-velocity relationship in the
TOW-model when using equation 4.24. The figure shows both the direct lin-
ear derivation and the modified linear model (in which a different cross-bridge
formation probability is used that depends on the square root of velocity).

This function is plotted in figure 4.4 in conjunction with the following version
of Hill’s force-velocity relation (adapted from McMahon 176):

THill =
(1− v)

(1 + 4 · v)
; (4.25)

It should be noticed in figure 4.4, that even though the individual spring’s force-
length relationships are linear, the parallel spring array produces a slightly non-
linear force-velocity relationship which is comparable to the Hill relation. If one
insists on using linear spring forces, a better fit can be obtained if one accepts
the use of a slightly more complicated (non-linear) velocity dependence of the
myosin cross-bridge formation probability, i.e. instead of using equation 4.14
one could use:

pbond = 1− κ ·

(
|v|

vmax

)α

(4.26)

where α is an arbitrary constant (a good fit is obtained if α = 0.5 and κ = 1
during contraction and κ = 0.5 during stretching, see figure 4.4). At present it is
unclear whether such a dependence of the cross-bridge formation probability on
the square root of the sliding velocity is warranted from a biological perspective.

Even without these additional modifications on the cross-bridge formation
probability, the simple linear model is capable of reproducing several of the most
important experimentally observed features of the force-velocity relationship:

• During contraction force decreases non-linearly as a function of velocity
and the force becomes zero for v = vmax

107.
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Figure 4.5: WLC (entropic elasticity) force-length model. The force-velocity
relationship in the TOW-model when using equation 4.28, with κ = 0.5, T =
310K, A = 20Å, L = 5.95nm during contraction and L = 13.27nm during
stretching.

• A discontinuity is present at v = 0142

• The maximal force is approximately 3T0, where T0 is the isometric tension
when v = 0 (should be 1.8T0 according to Katz134). Theoretically the
maximal force will be: Tmax = T0 · (xtaut + xup)/(xup + xdown).

• Yielding during fast stretching (described in McMahon 176).

The isometric force in one sarcomere using the linear force model with kcb =
5.6 · 10−4N/m amounts to T0 = 9 · 10−8N if the parameters from table 4.1
are used, which for a whole muscle means an isometric force of approximately
11.7N/cm2.

4.5.2 WLC model and entropic elasticity

As reviewed in section 4.4, most current thinking about the structural origin
of force in the myosin-actin cross-bridge associates this process with conforma-
tional changes of the involved proteins (see e.g. Rayment et al. 220 and Rayment
et al.219). Such changes in proteins are usually associated with changes in the
conformational energy of their structure, and they are often accompanied by
the formation and breaking of bonds (particularly hydrogen bonds) and the
repositioning of hydrophobic pockets. Any work done on a protein will thus be
used to overcome the energy barriers imposed by such bonds. Conversely, any
work done by the protein will originate from transitions between energy states
within the structure. The complexity of determining these energy transitions in
a protein is closely related to the problem of determining the secondary and ter-
tiary structure of a protein directly from the amino-acid sequence and certainly
remains one of the major areas of research of the ”post-genomic” era. Even
so, some major advances have been made on quantifying the forces involved
in protein folding and unfolding, and it is to this research we now must turn
in order to identify what the author believes to be a more realistic expression
for the force-length relationship in the myosin-actin cross-bridge, namely the
worm-like chain (WLC) force model.

Recent technical advances have allowed experimenters to perform well-controlled
stretching experiments on a wide range of macromolecules, particularly DNA
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248,35 and several different proteins (e.g. titin137,171,247, and tenascin207). This
is usually done by firmly attaching one end of the macromolecule to a fixed
surface, while the other end is attached to a small moveable bead (manipu-
lated magnetically or by optical tweezers) or to the cantilever of an atomic
force microscope. (Attachment is accomplished by using substances which bind
specifically to the investigated protein.) By pulling on one end of the molecule
and then registering the force required to do so, very precise force-extension
curves can be obtained. These curves are usually composed of a series of in-
creasingly high force ”peaks” appearing as the elongation proceeds (see figures
in Oberhauser et al.207, Smith and Radford247): initially the tension increases
during elongation because of the energy barriers holding the molecule together,
until a critical tension is reached at which point the least mechanically stable
region of the molecule ”unfolds” (as the energy barrier has been overcome for
that region) and the tension plummets to zero 247. Continued elongation will
stretch the next ”weakest region” towards its critical tension, and so on until
the molecule has been completely extended.

The force-extension profile observed at the sub-critical force range pertain-
ing to each folded region can be derived by observing that the work done when
stretching a polymer essentially goes into reducing the conformational entropy
of the structure. A statistical-mechanical analysis of the force-extension re-
lationship in macromolecular chains is thus possible and has been given in a
seminal paper by Marko and Siggia168. They base their analysis on the Worm-
Like Chain (WLC) model (in which the linear elasticity of a thin rod is used to
model the energy required for conformational fluctuations in a macromolecular
chain), and they provide the following force-extension interpolation formula to
summarize some of their results:

s(x) =
kB · T

A
·

(
x

L
−

1

4
︸ ︷︷ ︸

linear

+
1

4(1− x
L )
2

︸ ︷︷ ︸

non-linear

)

(4.27)

where kB is Boltzmann’s constant, T is the temperature, A is the ”persistence
length” and L is the length of the ”unfolded” polymer chain (the reader is re-
ferred to Marko and Siggia’s paper168 and references therein for an in-depth
treatment of these variables). In what follows it will be claimed that this equa-
tion is also well suited as a model of the myosin-actin cross-bridge’s force-length
relationship.

Strictly speaking equation 4.27 was derived as a force-extension model for
relatively rigid and straight macromolecules like DNA (where L À A), so one
may question its validity in more complicated situations. Given its successful
application in the sub-critical force ranges of more complicated polymers where
α-helices and β-sheets are affected by the tensile forces 137,207,171,247, it does
not seem so far-fetched to assume that a similar force-extension relationship
might apply in the case of myosin-actin cross-bridges: The myosin filament’s
neck and head regions are assumed to undergo some energetically favourable
(entropy increasing) conformational changes during the power stroke, so any
load (stretch) counteracting this change will effectively go into reducing the
conformational entropy of the myosin’s neck and head regions thus giving rise
to the entropic elasticity described by equation 4.27.

An altogether different difficulty with the WLC force model in the context
of myosin-springs is that at first sight it might seem impossible to reconcile
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the force-length relationship expressed by equation 4.27 with the commonly
assumed linearity in myosin-springs. Closer inspection of equation 4.27 reveals
that it actually encompasses both linear terms and non-linear terms which are
dominant in different regions of the stretching variable x, so the requirement
for linearity in the force-length relationship of individual myosin-springs can
actually be met under some circumstances (e.g. small x or large L).

Integrating the WLC force-extension function over the interval x ∈ [a, b]
according to equation 4.22 yields the following sarcomeric tension:

Tsarc =
Ncb

b− a
·

∫ b

a

kB · T

A
·

(
x

L
−

1

4
+

1

4(1− x
L )
2

)

· dx

= D ·

∫ b

a

(
x

L
−

1

4
+

1

4(1− x
L )
2

)

· dx

= D ·

(

b2 − a2

2 · L
−

1

4
· (b− a) +

L

4
·

(
1

1− b
L

−
1

1− a
L

︸ ︷︷ ︸

Hill-like terms

))

(4.28)

where D is defined as:

D =
Ncb

b− a
·
kB · T

A
(4.29)

The sarcomeric force-velocity function expressed by equation 4.28 has been plot-
ted in figure 4.5, from which it seems that the WLC-based force model in com-
bination with the parallel spring array that has been proposed in the present
TOW model seems to be capable of reproducing the different features of the
force-velocity relationship during stretching and contraction to a remarkable
degree of precision. The presence of ”Hill-like” terms in equation 4.28 means
that an exact fit can be made to Hill’s force velocity relationship (equation 4.25)
during contraction. During stretching the model reproduces the yielding that
is observed for high stretching velocities176, the discontinuity at zero velocity
142 and the maximal tension of approximately 1.8T0 that has been observed
experimentally134,239. (The reader is strongly encouraged to compare figure 4.5
with figure 6 in Scott et al.239).

The isometric force in one sarcomere using the WLC model amounts to
T0 = 3.5 · 10−7N if the parameters from figure 4.5 and table 4.1 are used, which
for a whole muscle means an isometric force of approximately 45N/cm2 (cross-
sectional area). It should be noted, that the magnitude of the force depends
strongly on the persistence length, A, while the form of the force-velocity curve
depends on the other parameters. A persistence length of A = 20Å is used
here, corresponding to the persistence length for titin according to Kellermayer
et al.138.

4.5.3 Power function force models

For the sake of completeness, one final section will be dedicated to exploring
the properties of the TOW-model, when power functions are used to describe
myosin-spring forces, thus:

s(x) = kcb · x
n (4.30)
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Figure 4.6: Power function force-length model. The force-velocity relationship
in the TOW-model when using equation 4.31.

Integrating this function over the interval x ∈ [a, b] according to equation 4.22
yields the following sarcomeric tension:

Tsarc =
Ncb

b− a
·

∫ b

a

kcb · x
n · dx

=
kcb
n+ 1

·
Ncb

b− a
· (bn+1 − an+1) (4.31)

which for n = 1 reduces to equation 4.24. For n = 2 equation 4.31 becomes:

Tsarc =
kcb
3
·
Ncb

b− a
· (b3 − a3) (4.32)

This function is plotted in figure 4.6, and like the linear and WLC models,
it shows all the required characteristics for a muscle contraction model: Hill-
dynamics during contraction, discontinuity at v = 0, yielding at high stretching
velocities, and the existence of a maximal tension (which in the present case
gives a severe overestimate, Tmax = T0 · (x

3
taut + x3up)/(x

3
up + x3down) ∼ 9 · T0).

The isometric force in this case cannot be found directly as the spring constant,
kcb, is not explicitly known.

4.6 Are sarcomeric forces entropic in origin?

The muscle force model presented in this chapter is based on the observation that
cross-bridges along a filament generate force independently of each other and
therefore the total force produced by a set of cross-bridges which pull in the same
direction can be modelled as a parallel array of springs with varying lengths,
or as a Tug-of-War contest with team members of varying strength. Although
the model draws heavily on the ideas and insights gained from state-of-the-art
sliding filament models it was seen to differ from these in several important
aspects. Inspection of the molecular geometry of thick and thin filaments in the
sarcomere, reveals that there are certain regularities which makes it possible to
identify the spring-length distribution that must be used in the spring array.
In a fully activated muscle the geometrical constraints existing between actin
and myosin filaments will impose a situation where a single line of cross-bridges
will have lengths that are evenly spaced out (in steps of size δMA) within an
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Figure 4.7: This figure shows a direct comparison of all the models and variations
of models that have been presented in this work (only contractile forces shown).
It should be noted that the best fit to the phenomenological Hill equation is
attainable when using WLC myosin-spring forces in association with the TOW
model.

interval defined by the minimum and maximum lengths of the myosin-springs
at different sliding velocities. The force produced by such a simple system of
parallel springs with evenly distributed lengths can be described by a simple
integral, namely equation 4.8 which becomes equation 4.22 when calculating
sarcomeric tension under the assumptions given in section 4.5.

There are 3 things which must be explicitly defined in order to use this
equation: the lower integration bound a, the upper integration bound b and
the force-extension function of the investigated myosin-springs. With respect to
the integration bounds these turn out to be dependent on the filament sliding
velocity in a very simple way, and can be inferred from the cross-bridge cycle.
With respect to the force-extension profile of the cross-bridge springs, several
functions were investigated: a) cross-bridges as linear springs (the usual assump-
tion), b) cross-bridges as springs with entropic elasticity using WLC models and
c) cross-bridges as springs depending on the n’th power of the spring’s exten-
sion. To validate the different models, these were compared to the force-velocity
curve generated by Hill’s equation107. From this comparison it seems that the
best (exact) fit was possible with the WLC force based model, also because this
model reproduces other experimentally identified aspects of the force-velocity
curve, in particular yielding at high stretching velocity and the existence of a
maximum stretching force which has a magnitude twice that of the isometric
force.

The fact that the TOW-model yields the best fit to the Hill equation when
a WLC force is used, seems to indicate that force production in the myosin-
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springs might not, in general, be linearly dependent on extension after all. Force
production at the cross-bridge might actually be dependent on the entropic
elasticity of the cross-bridge, entropic elasticity being a force that has its origins
in the conformational energy of the myosin molecule.

4.7 Completing the sarcomeric force model

The total number of myosin heads that are participating in cross-bridge forma-
tion, Ncb, will directly affect the force that a sarcomere may produce according
to equation 4.28. To derive this equation it was assumed (in section 4.4.5), that
Ncb only depended on sliding velocity. In fact, the number of cross-bridges that
may form during a given contraction depends on two other factors 176,57: (1)
On the intracellular Ca2+ concentration (required to unblock the actin binding
sites) and (2) on the degree of actin-myosin filament overlap. Regarding the
Ca2+ concentration, this is related to the activation history of the muscle fiber
associated with the firing of the α-motoneuron that innervates the fiber. This is
a subject which will have to await a more careful treatment of the relationship
between neurons in the spinal cord, the neuromuscular junction and the motor
unit, and is therefore deferred to chapter 8 section 9.3. Suffice it to say for now,
that all the activation dynamics related to the muscle fibers in a particular mo-
tor unit, indexed by i, may be captured in a single variable, Ai which is defined
in equation 9.1.

With respect to the actin-myosin overlap, this is a direct consequence of
the filament sliding90,91. If a sarcomere is stretched beyond a certain length,
the myosin-actin overlap will be gradually reduced until there is no longer any
overlap between the actin and the myosin filaments, and consequently no cross-
bridges may form (see figure 4.8)176. On the other hand, if the sarcomere is
shortening, a point will be reached when one end of the actin filaments will
touch the M-line, and if the shortening continues beyond this point (at a re-
duced force), the myosin filaments will collide with the Z-line further reducing
contraction force until no further contraction may take place when the actin
fiber of one compartment collides with the Z-line of a neighboring compartment
176. These changes in the maximal isometric force produced by a muscle fiber
as the length varies is known as the force-length relationship of muscle 90,91,
and it is relatively simple to model this property of muscle. Let ξ be the frac-
tion of myosin heads that are available for cross-bridge formation at different
sarcomeric lengths, thus:

ξ =







yA for Lsarc > xA
yB + αAB · (Lsarc − xB) for xB < Lsarc ≤ xA
yC + αBC · (Lsarc − xC) for xC < Lsarc ≤ xB
yD + αCD · (Lsarc − xD) for xD < Lsarc ≤ xC
yE + αDE · (Lsarc − xE) for xE < Lsarc ≤ xD
yE for Lsarc ≤ xE

(4.33)

where Lsarc is the total length of the sarcomere (distance between neighboring
Z-lines). The constants xA to xE indicate the total sarcomeric lengths corre-
sponding to the situations indicated (A. to E.) in figure 4.8, while the constants
yA to yE similarly correspond to the normalized forces in the different situa-
tions. The slopes of the interconnecting lines are indicated by αA to αE . All
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these constants may be extracted by inspection of experimentally obtained force-
length relationships90,91,176. The force-length model is represented in figure 4.8
(modified from McMahon176), and the features to which the different constants
correspond have been marked.

If it is assumed that the muscle activation factor, A also is normalized (see
equation 9.1), then a very simple expression may be given as an estimate of the
number of cross-bridges:

Ncb = pbond · ξ · A ·Ntot (4.34)

where pbond is defined in equation 4.14, and Ntot is the total number of myosin-
heads that exist within one-half sarcomere. In a complete model of muscle force
including changing muscle lengths and activation levels, this equation should
be used instead of equation 4.15 when evaluating the sarcomeric force with
equation 4.28.
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tion B. in the figure). See also Murray et al.198, Lieber and Fridén156. (Redrawn
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Chapter 5

Neurodynamics

Chapter Summary

Various mathematical models of neuronal dynamics are reviewed in
this chapter. Emphasis will be on finding models which combine four
important properties within the context of large scale neural network
models: Biological validity, generality, computational efficiency and
ease of customization. Under these criteria, the best model tested
turns out to be a neocortical neuron model developed by Wilson 274,
which was therefore adopted in this thesis.

The need to increase the size of neural network simulations in order to account
for increasingly complex stages of information processing in the brain, such as
sensory processing or motor control, has made simplification of the underlying
neural dynamics an issue of major importance. But this simplification should
not be at all costs, since much can be gained by maintaining a certain level of
biological realism, especially with respect to the explanatory power of our mod-
els. As the work reviewed in this section shows, it is relatively simple to create
a neuron model that accounts for much physiological data quite nicely, without
requiring too much complexity in the model. Needless to say, such models are
ideal for the study of large scale neural networks, but more importantly these
simplifications force us to ask the neurophysicist’s primary question: What are
the bare essentials of neural activity?.

5.1 Mathematical models of neural spike gener-
ation

Ever since the neuron doctrine took hold during the 19th century thanks to the
likes of Santiago Ramón y Cajal and Camillo Golgi (who in fact strongly ad-
hered to the reticular theory)218, theorists have tried to develop mathematical
models that could account for the properties of neural tissue. The year 1943 saw
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Ion Z [KA]i
[mM ]

[KA]o
[mM ]

EKA

[mV ]

K+ +1 400 20 EK = −75mV
Na+ +1 50 440 ENa = +55mV
Cl− -1 52 560 ECl = −60mV
A− -1 385 – –

Table 5.1: Typical concentrations and steady state potentials for the squid axon.
Data from Koester141

a breakthrough in the neuromodelling area with the classical ”McCulloch–Pitts”
neuron174, which even if very simplified and abstract did show some important
properties of neuronal networks in relation to their information processing abil-
ities. An even more important breakthrough occurred in 1952, when Hodgkin
and Huxley published a paper in which they provided a full mathematical model
of the neuron’s action potential108. This model is still the standard by which
other candidate models are evaluated. But the basis of it all is a property first
identified by Du-Bois Raymond in the late 19th century, namely the existence
of a voltage difference across the neuronal membrane.

5.1.1 The Resting Membrane Potential

The steady state or resting potential across the neural membrane depends on
various factors, but primarily it arises from the balance of forces between a
voltage gradient and a chemical (osmotic) gradient affecting the traversing ions.
The voltage gradient is maintained mainly by:

• Activity of the Na-K pump, which performs the electrogenic ATP depen-
dent task of moving 3 sodium ions out of the cell while moving 2 potassium
ions into the cell.

• Large intracellular anions which are unable to pass the membrane bilayer,
and thus passively maintain an electric gradient.

The normal steady state potential for most neurons is experimentally found
to be approximately −70mV (negative intracellularly by definition), but can
vary with as much as ±20mV depending on the particular type of neuron. The
steady state potential existing across a cellular membrane where only one ionic
species is involved can be found using Nernst’s equation if the steady state
concentration is known intra- and extracellularly.

EKA =
RT

FZKA
ln

(
[KA]o
[KA]i

)

(5.1)

Typical concentrations and steady state potentials for the squid axon are given
in table 5.1 (data from Koester141).

Finding the actual resting membrane potential of a neuron requires the use of
the so called constant field, or Goldman, Hodgkin and Katz equation, which also
takes into consideration the permeability of the different ionic species through
the neural membrane:

Vm =
RT

F
ln

(
PK [K+]o + PNa[Na+]o + PCl[Cl

−]i
PK [K+]i + PNa[Na+]i + PCl[Cl−]o

)

(5.2)
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At rest, the following permeability ratios have been found experimentally 109:

PK : PNa : PCl = 1 : 0.04 : 0.45 (5.3)

Using these permeability values in the GHK equation gives the previously men-
tioned resting membrane potential of −70mV .

5.1.2 The Action Potential

Some ion-channels have opening dynamics that depend directly on the voltage
gradients across the membrane. Their opening probability is a function of the
membrane potential. This happens due to voltage dependent conformational
changes of their proteinic structure. At the resting membrane potential, both
channels are usually closed, but a slight depolarization of the membrane (e.g.,
induced by applying positive current intracellularly), the opening probability of
these channels change:

• The Sodium channel is very sensitive to the membrane potential. Its open-
ing probability increases drastically almost immediately after reaching a
sufficient level of depolarization (approx. 20mV above rest). Shortly after
opening, the Na+ channels close again, and remain closed for as long as
depolarization lasts.

• The Potassium channel opens shortly after the Na+ channel, and stays
open for as long as the membrane is depolarized.

The opening and closing of voltage gated ion-channels leads to drastic changes
in the permeability ratios for the involved ionic species, e.g., at the peak of the
action potential it is found that:

PK : PNa : PCl = 1 : 20 : 0.45 (5.4)

Note that, compared with the permeability situation at rest, the Na+ perme-
ability has increased ∼ 500 fold. Given the concentration gradients of sodium
and potassium at rest (see table above), opening of the sodium channel leads
to a massive influx of Na+ ions, thus further depolarizing the cell (a positive
feedback loop), whereas opening of the potassium channel will lead to an efflux
of K+ ions, thereby leading to a repolarization of the membrane (a negative
feedback loop).

5.1.3 Electrically Equivalent Circuit of a Neuron Mem-
brane

To summarize all these insights and results it has proven very useful to rephrase
them in the form of an electrical circuit analog model of the neural membrane.
Here the electrical analog of an ion-channel is a serial coupling between a con-
ductance (ion-permeability) and a battery (Nernst potential), and the analog
of the bilayer membrane is a capacitor. The whole circuit would consist of a
parallel coupling of one capacitor (Cm), and several conductances (ion-channel
specific: gNa, gK , gCl).
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The current flowing through the membrane, Im, can at any time be found
using the membrane equation:

Im = Icapacitance + Iion (5.5)

Im = Cm
dVm
dt

+

+gNa(V, t)(V − ENa) +

+gK(V, t)(V − EK) +

+gLeak(V − ELeak) (5.6)

5.1.4 Hodgkin and Huxley’s equations

A heroic effort by Alan Hodgkin and Andrew Huxley in 1952, led to a full
phenomenological description of the voltage dependency of the ion-channel con-
ductances108. They proposed a model where the ion-channel conductances were
controlled by the gating functions n,m and h:

gK = n4gK (5.7)

gNa = m3hgNa (5.8)

Where gK and gNa represent the maximal conductances of the K+ and Na+

channels respectively, and the n,m and h functions are defined by:

dn

dt
= αn(1− n)− nβn (5.9)

dm

dt
= αm(1−m)−mβm (5.10)

dh

dt
= αh(1− h)− hβh (5.11)

Here αn, βn, αm, βm, αh, and βh are empirically determined functions of the
membrane potential (for a full account see Johnston and Wu 128):

αn(V ) = 0.01(−V + 10)/
(

e
(−V +10)

10 − 1
)

(5.12)

βn(V ) = 0.125e
−V
80 (5.13)

αm(V ) = 0.1(−V + 25)/
(

e
(−V +25)

10 − 1
)

(5.14)

βm(V ) = 4e
−V
18 (5.15)

αh(V ) = 0.07e
−V
20 (5.16)

βh(V ) = 1/
(

e
(−V +30)

10 − 1
)

(5.17)

Basically this means that n and m are activation functions for K+ and Na+

ion-conductances respectively, while h is a deactivation function for the Na+

ion-conductance.

Hodgkin and Huxley went on to prove that solving these equations actually
leads to dynamics similar to the experimentally observable action potentials 108.
This they did using a mechanical calculator!
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5.1.5 FitzHugh-Nagumo equations

Probably the simplest equations attempting to describe neural dynamics were
proposed by FitzHugh69 and Nagumo200:

dVm
dt

= 10

(

V −
V 3

3
−R+ Iinput

)

(5.18)

dR

dt
= 0.8(−R+ 1.25V + 1.5) (5.19)

The version presented here was adapted from Wilson 275.

5.1.6 Rinzel’s simplifications of the HH equations

Hodgkin and Huxley’s set of equations can be much simplified, and Rinzel 224

noted that the m function reaches its equilibrium value for most values of V so
rapidly that it can be set to its equilibrium value at infinity, which is:

m∞(V ) =
αm(V )

αm(V ) + βm(V )
(5.20)

Thus m(V ) = m∞(V ) can be substituted directly into the membrane equation.
Furthermore, Rinzel noted that the time course and equilibrium values for the
functions h and n permit the following approximation to be made:

h = 1− n (5.21)

So that equation 5.11, describing h, can be eliminated. Using these approxima-
tions, the neuron model can now be simplified as follows 224,274:

Cm
dVm
dt

= I − gNam∞(V )3(1−R)(V − ENa)−

−gKR
4(V − EK)− gLeak(V − ELeak) (5.22)

dR

dt
=

1

τR(V )
(−R+G(V )) (5.23)

τR(V ) = 1 + 5e

(

−(V +60)2

552

)

(5.24)

Where G(V ) = R∞(V ), which is a function that describes the equilibrium value
of the recovery function R(V ). This model is actually quite similar to the neuron
model proposed by Morris and Lecar194:

Cm
dVm
dt

= I − gCam∞(V )(V − ECa)−

−gKw(V − EK)− gLeak(V − ELeak) (5.25)

dw

dt
= φ

1

τw(V )
(w∞(V )− w) (5.26)

m∞(V ) = 0.5[1 + tanh ((V − Va)/(Vb))] (5.27)

w∞(V ) = 0.5[1 + tanh ((V − Vc)/(Vd))] (5.28)

τw(V ) = 1/ cosh ((V − Vc)/(2Vd)) (5.29)

where Va, Vb, Vc, and Vd are arbitrary parameters (Rinzel and Ermentrout225

use: Va = −1.2, Vb = 18, Vc = 2, Vd = 30).
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One final simplification (before proceeding to more complex dynamics) can
be accomplished with the appropriate selection of the Na+ equilibrium acti-
vation function m∞(V ), and of the equilibrium value of the recovery function
R∞(V ). Wilson proposes to use a simple polynomial fit 275:

Cm
dVm
dt

= I −m∞(V )(V − ENa)−R(V − EK) (5.30)

dR

dt
=

1

τR(V )
(−R+R∞(V )) (5.31)

m∞(V ) = a+ bV + cV 2 (5.32)

R∞(V ) = d+ eV + fV 2 (5.33)

where a, b, c, d, e and f are arbitrary constants selected to fit a set of data.

5.2 Model Predictions

All of the above models were specifically created to reproduce in the simplest
possible way the dynamics of spike generation, and as such have only necessi-
tated the inclusion of two voltage-gated ion-channels. But even in their simplest
form, the spike generation models presented so far permit us to make some pre-
dictions which have been experimentally confirmed, such as the appearance of
repetitive firing, neural hysteresis, post inhibitory rebound excitation, depolar-
ization block, and bistability.

5.2.1 Repetitive Firing

Using linear stability analysis on the above systems of equations it is possible to
find some parameter domains for which the models undergo a transition from
having an asymptotically stable point attractor to having stable limit cycles.
It can be shown that there are several ways in which transitions to repetitive
firing can occur, as summarized by Ermentrout58:

1. Hopf Bifurcation (Class II neurons): Oscillations with a finite initial fre-
quency proportional to Im{λ} appear at some threshold value. This is
not very common in cortical neurons, but the squid axon belongs to this
class.

2. Saddle-node limit cycle bifurcation (Class I neurons): Oscillations can
appear at zero frequency, which is more common for mammalian neurons.

3. Homoclinic bifurcation: Similar to Class I neurons.

5.2.2 Neural Hysteresis

One of the more striking predictions arising from the presented neural models
is the appearance of hysteresis in the spiking response of neurons 44,223,19. This
prediction was soon followed by experimental verification in the giant axon of
the squid. This prediction of hysteresis was based on a stability analysis of the
equations, which shows that for certain parameters, the system will go through a
subcritical Hopf bifurcation. A consequence of this is that it becomes possible to
terminate a spike train if the neuron is depolarized in exactly the right moment.



5.3. NEURAL RESPONSE DYNAMICS IN NEOCORTEX 69

This was predicted by Rinzel223 and later experimentally confirmed by Guttman
et al.101.

5.2.3 Post Inhibitory Rebound (Anodal Break Excitation)

In their seminal paper from 1952, Hodgkin and Huxley described and numeri-
cally confirmed a phenomenon they observed in the squid axon which they called
anodal break excitation. Under some circumstances, they observed, it is possible
to make a neuron fire using a brief hyperpolarizing pulse! This, of course, is very
counterintuitive since usually hyperpolarization is associated with deactivation
of the neuron’s membrane. PIR spike generation occurs because sudden release
of hyperpolarization immediately moves the equilibrium point of the system
while the systems trajectory is left in a region of phase-space where spikes are
normally generated.

5.3 Neural response dynamics in neocortex

Some properties of neurons cannot directly be accounted for using the simplified
models introduced before, they require more advanced models, often involving
the addition of several specialized ion-channels to do the job. Physiologically
it has been found that neurons sometimes contain more than a dozen different
types of ion-channels, all specialized for modifying the ionic environment of the
neuron in special ways, and the task for the neuron modeler is now to find the
minimum set of ion-channels that can account for as many different types of
neuron responses as possible. Several successful attempts in this direction have
been made225,274. There are at least 4 types of neural response dynamics in
cortex that should be accounted for, and they are (as classified in Connors and
Gutnick43, Gray and McCormick96):

• Regular Spiking Neurons: Begin firing at a high rate, but within 100ms
rate is lowered due to spike frequency adaptation.

• Fast Spiking Neurons: Have firing rates in the 400-800 Hz range, and show
no frequency adaptation.

• Continuously Bursting Neurons: Produce periodic short bursts of activity
for as long as stimulation is present.

• Intrinsic Bursting Neurons: Start with a burst containing 2-6 spikes, but
after a pause become tonic.

To account for these dynamics, it has been found useful to add at least two more
ion-channels to the standard models225: an extra depolarizing Ca2+ channel and
a Ca2+ sensitive hyperpolarizing K+ channel.

5.3.1 Simplified model of human neocortical neurons

In a recent article, Wilson274 proposes a minimal model of the neocortical neu-
ron which does account for the four previously mentioned types of neural re-
sponse dynamics (RS, FS, IB, and CB). His model includes an extra depolar-
izing IT current based on a Ca2+ channel with activity T (V ), and an after-
hyperpolarization current IAHP , based on a Ca2+ sensitive hyperpolarizing K+
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channel with activity H(V ).

Cm
dVm
dt

= I −m∞(V )(V − ENa)−R(V − EK)

−gTT (V − ECa)− gHH(V − EK) (5.34)

dR

dt
=

1

τR
(−R+R∞(V )) (5.35)

dT

dt
=

1

τCa
(−T + T∞(V )) (5.36)

dH

dt
=

1

τCaK
(−H + 3T ) (5.37)

m∞(V ) = a+ bV + cV 2 (5.38)

R∞(V ) = d+ eV + fV 2 (5.39)

(5.40)

where a = 17.8, b = 47.6, c = 33.8, d = 1.24, e = 3.7, and f = 3.2

Accounting for Neocortical Dynamics

Regular and fast spiking neurons: Simulation with this model leads to the con-
clusion that the ”magnitude of spike frequency adaptation can be controlled by
the parameter gH” in equation 5.34 ”from none up to a point where firing ceases
entirely”. The time constant τR appears to be essential for the control of the
spike width, and it permits shifting from the RS state to the FS state simply
by reducing it, e.g. from 4.2 to 1.5 ms.

Continuously Bursting Neurons: With appropriately selected parameters,
the model permits CB dynamics. Why this is so can be seen if the Na+ con-
tribution, represented by m∞, is removed. It appears that under the right
conditions a Hopf bifurcation can occur solely based on the IT and IAHP cur-
rents. This means that it is now the spikes generated by the Ca2+ ion-channel
that drive the bursting.

Intrinsic Bursting Neurons: With appropriately selected parameters, IB dy-
namics can also be demonstrated by the Wilson’s model. Following a similar
analysis as for the CB neurons, it can be shown that in the parameter range
where IB dynamics appear, the system’s steady state is an asymptotically sta-
ble spiral point, suggesting that the IT and IAHP mediate a heavily damped
oscillation.

5.4 High level effects of low level dynamics

5.4.1 Short Term Memory

The last topic in this review will be a brief look at a possible neurodynamical
mechanism that accounts for the existence of so called memory cells, believed to
be the neural correlate of working memory76. An often used experimental task
for studying short-term, or working memory is the delayed matching to sample
task. The task is as follows:

1 A brief sample stimulus is shown (e.g., a red light).
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Figure 5.1: Spiking patterns for different parameter regimes of Wilson’s model
of neocortical neurons. The 4 different spiking patterns, RS, FS, CB and IB are
readily identified.
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2 After a variable delay, a signal is given prompting the experimental subject
to select amongst two or more target samples, one of which is identical to
the initial sample stimulus (e.g., a red and a green light).

In the delayed matching to sample, the correct response is to select the identical
sample after the delay. In a very similar setup called delayed non-matching
to sample the correct response is to select the new sample. Some neurons in
the inferotemporal cortex of awake and behaving monkeys doing the matching
task respond specifically to the presentation of a particular stimulus (e.g., a
red sample), even during the intervening delay, indicating that activity of such
neurons corresponds to a memory trace of recent events (e.g., the identity of
the initial sample).

In principle, there are several plausible activation scenarios which would
account for such memory neurons. The trivial solution of course being that it
receives activation from elsewhere. Given the fact that during the delay the
target stimulus is not present, this is probably not the case. A more intriguing
solution involves the existence of bistable neurons, that is neurons that are either
firing repetitively or remain completely quiet. Such neurons can be moved from
one state to the other simply by giving a small stimulation at an appropriate
time. An even more advanced solution involves setting up a two neuron network
with reciprocal positive feedback. Consider the network 275:

dV1
dt

=
1

τ

(

−V1 +
a(bV2)

2

c2 + (dV2)2

)

(5.41)

dV2
dt

=
1

τ

(

−V2 +
a(bV1)

2

c2 + (dV1)2

)

(5.42)

where a, b, c and d are arbitrary parameters.

With appropriately selected parameters, such networks can be shown 275 to
have 3 steady states (by finding intersections between the isoclines). Closer
analysis reveals cases where two such states can be asymptotically stable nodes,
while the third is a saddle node. If one of the asymptotically stable nodes is at
E1 = 0 and E2 = 0 and the other is at E1 > 0 E2 > 0, the network will be
either quiet or active with a finite frequency, as required for explaining memory
neurons.

5.4.2 Henneman’s size principle

Most contemporary models of neural spiking are neuron size invariant because
the equations have been normalized with respect to surface area by appropriate
selection of the dimensions pertaining to constants and variables. Thus capaci-
tances and ionic conductances are thus usually specified pr. cm2, reflecting the
assumption that ionic channels exist at certain densities in the neural mem-
brane. In most cases this approach is quite appropriate because no distinction
is necessary concerning the size of the neuron. But at least in one case this
size invariance becomes problematic, namely during the orderly recruitment of
motoneurons in the spinal cord with increasing input strength. Henneman and
co-workers have observed that neurons with low conduction velocities (CV) start
spiking earlier than neurons with high CV’s during ramp increases of input to
these neurons105. This effect has been attributed to the physical size of the
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neurons simply because CV is proportional to the axonal diameter, which again
is proportional to the neuron’s size.

One very simple way to overcome this limitation of size invariant neuron
models is to specify input currents (synaptic or electrode) as currents pr. neu-
ron area (cm2), just like all the other ionic currents of the neuron. This neces-
sitates the addition of a scaling factor to the input current. The rationale for
this is the following: assuming that the total number of neurotransmitter gated
ionic channels within a synaptic junction is constant regardless of postsynap-
tic neuron size, then the absolute number of positively charged ions entering
postsynaptically during synaptic activity will also be constant. But if the post-
synaptic neuron’s surface area increases, the charge density of the ionic species
will decrease accordingly, thus limiting the postsynaptic effect of the synaptic
current. This can easily be captured in a scaling factor, %:

% =
A

r2pn
(5.43)

where rpn is the radius of the postsynaptic neuron (squared instead of cubed
because most ionic mobility occurs at the neuron’s surface and not in the bulk
volume), and where A is an arbitrary constant. The synaptic input current may
now be specified as follows:

Isyn = % · ḡsyn · (Vm − Esyn) (5.44)

where Esyn is the reversal potential for the synapse, and ḡsyn is the specific
conductance of the synapse.

A different approach is to assume that small synapses impinge on large
neurons and that large synapses impinge on small neurons. This could have
exactly the same scaling effect as before, but to my knowledge this has not been
verified experimentally.

5.5 Dynamic range of Wilson’s neocortical neu-
ron model

In order to optimize the functional customization of the neuron models that
are used for simulating different regions of the nervous system, it is necessary
to specify the working range of the used neuron model. As shown in section
5.3.1, Wilson’s model of neocortical neurons274 is very versatile with respect to
showing different firing patterns. As a mathematical model of neuron firing, this
model is quite flexible. Therefore, although the model was originally intended
for simulating neocortical neurons, there is no a priori reason to discard its use
for other types of neurons as long as the firing patterns and frequency ranges
correspond to the neuron to be simulated. This is a pragmatic approach to
the complex issue of deciding which neuron models to use for different neuron
populations: Simply choose one model of sufficient versatility and adapt its
parameters to the case at hand. From a biological point of view, such a step
might seem rather drastic and perhaps even criticizable, because the features
that specifically identify a neuron species might be lost, such as the particular
form of the spike, or some other such feature. However important it is to
characterize and model the specific features of a particular neuron’s activity
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Figure 5.2: This figure shows the orderly recruitment of neurons with varying
sizes, also known as Henneman’s size principle.

Figure 5.3: Spiking frequency of a FS neuron as a function of the size scaling
variable, %, in response to a constant synaptic input conductance
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by analyzing all of its biophysical parameters (variety of ionic channels, time
constants, etc.), such a level of detail is unnecessary for the present purposes.
(In the simulation program the possibility that more detailed models will be
tested at some point has been taken into account by imposing a very high level
of modularity in its design.) Figures 5.5 and 5.4 show the frequency-response of
the four modelled neuron species as a function of synaptic input conductance.
This information may be used for scaling the network to match the frequency
range of a given neuron species with known afference.



76 CHAPTER 5. NEURODYNAMICS

Figure 5.4: The two graphs to the left show the firing rate of regular (upper) and
fast (lower) spiking neurons as a function of total synaptic conductance. To the
right are shown the corresponding raster plots of 100 neurons (indexed along y-
axis) receiving different input currents (Iinput = −gi · (Vm)), where higher index
numbers, i, relate to larger input conductances (gi = 40 · i/100). Each point
corresponds to a spike event (membrane potential Vm > 0). The size scaling
factor was % = 0.51. Notice that for input conductances below a certain lower
threshold, the neurons are inactive, and for currents above a high threshold, the
neurons are not continuously active, but only fire a couple of times after which
they remain inactive. See figure 5.5
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Figure 5.5: The two graphs to the left show the firing rate of continuously
(upper) and intrinsic (lower) bursting neurons as a function of total synaptic
conductance. To the right are shown the corresponding raster plots of 100
neurons (indexed along y-axis) receiving different input currents (Iinput = −gi ·
(Vm)), where higher index numbers, i, relate to larger input conductances (gi =
40 · i/100). Each point corresponds to a spike event. The size scaling factor was
% = 0.51 Notice that for input conductances below a certain lower threshold,
the neurons are inactive, and for currents above a high threshold, the neurons
are not continuously bursting. See also figure 5.4
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Chapter 6

Synaptic dynamics

Chapter Summary

This chapter is intended as a brief summary of recent experimental
and theoretical results related to synaptic activity. The material
presented herein should be seen in extension to chapter 5, and is
provided with the usual emphasis on biological realism and compu-
tational efficiency. Some of the synaptic algorithms (particularly the
dynamic synapse formalism) that are reviewed herein will be used
directly for the network simulations in chapters 8 to 11.

Communication between neurons is mediated by the synapses, which are spe-
cialized structures making up the axon’s terminals. It has been estimated that
each and every neuron in the vertebrate nervous system produces on the or-
der of 104 synapses with which it connects to other neurons. It turns out that
there are several ways in which to classify synapses, e.g. according to the neu-
rotransmitters they use, to the effects they produce at the post-synaptic site,
to whether they are chemical or electrical, etc. In this review focus will primar-
ily be on chemical synapses of the directly gated variety, as these have turned
out to be the most ubiquitous in the vertebrate nervous system. In these, the
arrival of an action potential to the synaptic terminal causes Ca2+ channels
in the presynaptic plasma membrane to open, resulting in an influx of Ca2+

ions. There is ample evidence indicating that this Ca2+ influx is the key event
which precipitates a long series of biochemical cascades inside the synapse fi-
nally leading the release by exocytosis of neurotransmitter into the synaptic
gap. The details of this fascinating process of neuronal communication have
been long under way, starting with the pioneering works of Sherrington 246, Fatt
and Katz59 and Eccles53 (for an introduction see Kandel et al.133, Kandel and
Siegelbaum132, Kandel and Schwartz130). In recent years there has been much
concern about the neurocomputational role of short-term synaptic plasticity 288,
which is a rapid presynaptic change of the synaptic efficacy occurring within mil-
liseconds of the arrival of a spike, and which lasts a few seconds and changes the

79
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postsynaptic potentials with up to several hundred percent of the initial value.

6.1 Mathematical models of the synapse

Several mathematical models have been developed to account for the detailed
flows of chemicals within the synapse , giving good insight into the internal
workings of the synapse, but such models are much too detailed for our present
purposes. If we allow ourselves to ignore most of the biochemical details of
synaptic transmission, and focus only on the overt phenomenological (physio-
logical) electrical effects of such transmission, it is possible to simplify the math-
ematical description tremendously without loosing track of our main objective,
which is to identify computationally efficient models of synaptic transmission.

The three synaptic workhorses in the central nervous system are the AMPA
(α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate), the NMDA (N-methyl-
D-Aspartate), and the GABA (γ-aminobutyric acid) receptor type synapses.
Through these the vast majority of communication in the central nervous sys-
tem is mediated.133,130. In the periphery one primarily finds ACh receptor
type synapses of the nicotinic variety as these are used at all neuromuscular
junctions59,60,132. Common to all these synaptic types is that the postsynaptic
receptors are directly linked to an ion channel which opens upon binding of
neurotransmitters. Such synapses may therefore be described using the same
type of approach as was used for studying neuron activity in chapter 5.

6.1.1 The Reversal Potential

One very important difference between the opening of ion channels in the axon
during an an action potential, and the opening of post-synaptic ionic channels
in a directly gated chemical synapse is in the value of the reversal potential for
the involved channels and the time dependent variations of the conductance.
By definition the reversal potential is reached when the ionic currents through a
channel balance out. For channels selective to a single ionic species, the reversal
potential is identical to the Nernst potential for the particular ion. The current,
Iion, flowing through an ion selective channel is given by:

Iion = gion · (Vm − Eion) (6.1)

where gion is the channels conductance with respect to the ion in question, Vm

is the membrane potential and Eion is the Nernst potential for the particular
ion. This relationship was used in chapter 5 in connection with the membrane
equation, eq. 5.5, and is simply Ohm’s law. Opening an ion channel will always
result in an ion current which will bring the membrane potential towards the
ion’s Nernst potential, i.e. until the current balance through the channel is zero.

In the case of synaptic ion channels, these are often permeable to multiple
ions simultaneously, and the reversal potential, ERP , is then the membrane
potential at which the sum of currents of all the permeating ionic species, IRP ,
becomes 0:

IRP =
∑

i

gi · (ERP − Ei) = 0 (6.2)
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Synapse Type Ion Channel Reversal Potential Peak Conductance

AMPA K+, Na+ EAMPA = 0 mV GAMPA < 2 nS

NMDA K+, Na+, Ca2+ ENMDA = 0 mV GNMDA < 2 nS

ACh K+, Na+ EACh = 0 mV GACh = 5 mS

GABA Cl− EGABA = −60 mV GGABA < 2 nS

This expression can be rewritten as:

ERP =

∑

i gi × Ei
∑

i gi
(6.3)

Initially the ionic conductances for a synapse under study will not be known, so
in practice the reversal potential for a given synapse is best found experimen-
tally by clamping the post-synaptic membrane at various membrane potentials
and measuring the current flowing through the open synaptic channel. Surpris-
ingly, such a procedure yields a very simple dichotomy of most directly gated
synapses: Those with strongly negative reversal potentials and those with rever-
sal potentials at 0mV (see table 6.1.1). It thus seems as if synaptic variability is
more related to time dependent conductance dynamics than to any particular
ionic species. Table 6.1.1 lists the reversal potentials for a few different synaptic
types as they have been measured experimentally, and the relevant ionic species
(data from Kandel and Siegelbaum132, Kandel and Schwartz130). In connection
with the previously mentioned dichotomy, synapses are usually classified as ex-
citatory if their activity tends to depolarize the post-synaptic cell towards firing
threshold (ERP >∼ −50mV ), while inhibitory synapses are those which have
the opposite effect (ERP <∼ −50mV ). Note that all excitatory synapses have
a reversal potential at 0mV whereas inhibitory synapses channels have negative
reversal potentials.

To be valid, this classification is based on the assumption that the post-
synaptic neuron is at its resting membrane potential when the synaptic activa-
tion occurs, which will of course most often be the case given that an action
potential has a much shorter duration than the intervening refractory period. In
reality, the post-synaptic currents resulting from any given synaptic activation
depend on the membrane potential at the post-synaptic site, and on the ion
species to which the channel is selective.

6.2 The Dynamics of Postsynaptic Potentials

Up till now, only the electrochemical properties of a maximally activated post-
synaptic site have been considered, without taking into consideration the large
variations in the number of active receptors that may occur as a function of the
changing neurotransmitter concentrations in the synaptic gap. As the total cur-
rent flowing into the postsynaptic cell depends directly on the number of open
receptor channels, it is very important to characterize these variations. There
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are several pre- and postsynaptic mechanisms which conspire to cause variations
of the EPSP or IPSP, the most obvious of which are (for an introduction see
Johnston and Wu128, Purves et al.217, Destexhe et al.52):

• Variations in the opening and closing time constants intrinsic to the re-
ceptor molecules.

• Neurotransmitter deactivation in the synaptic gap by enzymes.

• Neurotransmitter deactivation by the postsynaptic receptor.

• Neurotransmitter reuptake through specialized transporters, where the
presynaptic site or nearby glial cells reabsorb some of the released neuro-
transmitter or decay products.

• Variations in the amount of released neurotransmitter at the presynaptic
site.

• Variations in the number of receptor molecules.

• Variations in the conductance of receptor channels.

It should come as no surprise that very different time constants would be in-
volved in the dynamics related to each mechanism, but the range covered by
these constants is truly astounding: 10 orders of magnitude. From the enzy-
matic deactivation of neurotransmitters (milliseconds), over short-term changes
of presynaptic release (seconds or minutes), to truly long-term variations some-
times requiring permanent structural changes to the synapse (days or years).
In what follows focus will stay primarily on the short and medium ranges as it
is now widely believed that it is in the fast dynamics that the most important
computational properties of neural tissue are expressed. Nevertheless, a brief
note will be made also on the long-term range as this is related to the permanent
storage of information needed for memory and learning.

6.2.1 Fast Synaptic Dynamics – τ ∼ 10−3 s

Measurements of EPSP’s and IPSP’s at different synapses following a single ac-
tion potential have been done routinely for many years, and have been modelled
with equivalent electrical circuits similar to the ones used for modelling neurons
(for an introduction see Kandel and Siegelbaum 132, Kandel and Schwartz130).
In some investigations these measurements have instead been fitted with very
simple exponential functions describing the postsynaptic potential, with time
constants ranging from a few milliseconds (AMPA, GABA) to about a hundred
milliseconds (NMDA). In voltage-independent receptor channels like the AMPA
receptor a very simple model may be used which correctly captures the changes
in conductance as a function of time255,177:

GAMPA = ḡAMPA
t− tAP

τAMPA
exp

{

1−
t− tAP

τAMPA

}

(6.4)

where ḡAMPA is the peak conductance through AMPA-receptor channels in
the synapse (ḡAMPA ∼ 2 nS), τAMPA is the AMPA receptors time constant
(τAMPA ∼ 1 ms) and tAP is the time of arrival of the presynaptic Action
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Figure 6.1: The conductance through an AMPA-receptor type synapse as a
function of time since spike arrival. This plot is based on equation 6.4

Potential. A similar model applies for GABA’ergic synapses. Equation 6.4 is
plotted in figure 6.1.

To account for voltage-dependent receptor channel dynamics as seen in the
important glutamatergic NMDA receptor channel 13, a slightly more complex
mathematical model is required125,126,285,177:

GNMDA = ḡNMDA
e−(t−tAP )/τ1 − e−(t−tAP )/τ2

1 + η[Mg2+]e−γVm
(6.5)

where ḡNMDA ∼ 1 nS is the peak conductance through NMDA receptor channels
in the synapse, τ1 ∼ 40 ms and τ2 ∼ 0.33 ms are the time constants, η ∼
0.33/ mM is a scaling constant related to the Mg2+ concentration given by
[Mg2+] (∼ 1 − 2 mM is a typical value)13, and γ = 0.06/ mV is a scaling
factor related to the postsynaptic membrane potential, Vm. Figure 6.2a shows
equation 6.5 plotted as a function of time and postsynaptic membrane potential.

When only single sparsely distributed spikes are considered, these phenomeno-
logical models account very well for the conductance changes in the postsynaptic
membrane. It turns out, however, that these models are unable to account for
the variations associated with the arrival of multiple spikes in close temporal
proximity, in which case a wholly different type of model must be invoked due
to effects such as neurotransmitter depletion.

6.2.2 Short-Term Synaptic Dynamics – τ ∼ 1 s

Resources within a volume as small as that of a synapse will necessarily be
limited, affecting the amount of available neurotransmitter, the concentration
gradients of calcium, the availability of ATP, etc. This inevitably means that
prolonged activation of a synapse will result in a gradual reduction of synaptic
output if ever the amount of resources used during activation exceeds the speed
of recovery. Ab initio one might expect that normal activity in the nervous sys-
tem would be tuned in such a way as to avoid over-activation of the synapses,
preventing a situation where synapses might fall silent due to overexertion and
fatigue. Surprisingly, this turns out to be a false tenet, and there is by now much
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Figure 6.2: Upper Row: NMDA-receptor based conductance as a function of
time and postsynaptic membrane potential. As the membrane potential be-
comes more positive, more current is allowed to flow through the NMDA-
receptor channels. Lower Row: NMDA-receptor based current as a function
of time and membrane potential. Note that the current reverses when the
membrane potential reaches Vm = 0 mV, and that maximal postsynaptic depo-
larization is obtained for Vm ∼ −27 mV. These plots are based on equations 6.5
and 6.4
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experimental evidence supporting the view that synaptic output is extremely
variable even on a very short time scale of 10-100 milliseconds 288,263,2,1. Ini-
tially, most evidence was based on invertebrate data, such as habituation in
Aplysia, and on a few specialized vertebrate systems like the neuromuscular
junction (an early review is given in Zucker288). To begin with these results
had little influence on neural information processing theory, probably because
of the apparently limited number of neuronal types in which it occurred, so at
the time Long-Term Potentiation (LTD) and Long-Term Depression (LTD) were
seen as the most promising types of synaptic plasticity in the vertebrate brain
(see section 6.2.3), and rate coding was ubiquitously accepted as the neural code
par excellence. Now it is known that even pyramidal neurons in vertebrate cor-
tex have synapses which depress or facilitate within milliseconds, depending on
the recent presynaptic activity and on the type of postsynaptic neuron. Thus
it has been reported170 that excitatory synapses between pyramidal neurons
are subject to synaptic depression, which is a brief facilitation followed by an
extended reduction in efficacy. The story is further complicated by the fact
that some synapses seem to be rapidly facilitated on a short-term basis without
the subsequent depression, particularly those connecting pyramidal cells with
inhibitory interneurons170. Based on these experimental results theorists have
begun to invoke the notion that perhaps synaptic short-term plasticity has some
important computational role in the nervous system 2,166,1. Recently it has been
proposed that synaptic short-term depression may remove signal redundancy 88,
may permit the neural implementation of universal non-linear filters 166 or might
be involved in dynamic gain control in cortical neurons 2.

There is some evidence that short-term synaptic plasticity is mainly caused
by presynaptic events288,263. This being so, it must affect all the synapses
belonging to a particular neuron simultaneously. For pyramidal neurons one
consequence of this might be, that after an initial barrage of excitation to its
postsynaptic contacts, the pyramidal cell is rendered functionally inhibitory
as it is only its synapses on inhibitory neurons which are facilitated, while its
synapses to other excitatory cells are depressed. Without additional experimen-
tal evidence, it is difficult to say what computational effects this might have, but
one possibility could be that it confers unidirectionality to the flow of activation
across a field of neurons.

All in all, current experimental evidence casts some doubts on the biological
relevance and explanatory power of any neural information processing system
solely relying on slowly changing synaptic ”weights” (as those usually invoked
for optimal learning in most artificial neural network systems). Short-term
synaptic plasticity also poses some difficulties for ideas depending on direct rate
coding schemes because the inactivation by depression of synapses will turn
any incoming rate into a very compact postsynaptic event, which seems to hint
that only the first few spikes in a train are of any relevance to the neural code.
This last difficulty may be avoided to some extent by considering small groups,
clusters or assemblies of neurons (e.g. cortical microcolumns), which under
some circumstances may work as a single functional unit 72 yielding as output
an average assembly rate code. It has been proposed that long-range horizontal
cortical connections might carry just such signals 73.
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Resource distribution models of short-term synaptic dynamics

Several mathematical models have been proposed to account for the observed
presynaptic frequency dependent short-term variations 267,153,263,262. These are
all phenomenological models that have to be fitted to the existing experimental
data, but one in particular262 stands out from the rest in that it includes fre-
quency dependent facilitation and depression, both of which will be needed for
modelling cortical structures.

In their model, Markram and Tsodyks263,262 assume that the total amount
of neurotransmitter encountered pre- and postsynaptically (including precursors
and decay products) is finite due to limited resources, and that it probably
remains relatively constant throughout an experiment. This neurotransmitter
is subdivided into three different pools depending on the functional state in
which the transmitter is encountered:

E : The effective, or active neurotransmitter pool corresponds to that frac-
tion of the neurotransmitter that is currently bound to postsynaptic re-
ceptors, causing PSP’s.

I : The inactive neurotransmitter pool contains all the neurotransmitter
which has become deactivated. It might have been metabolized by en-
zymes in the synaptic gap, as when acetylcholinesterase breaks ACh into
acetate and choline, or perhaps it has been reabsorbed into the presynap-
tic terminal or into glial cells (as in the glutamate-glutamine cycle). After
reabsorption into the presynaptic terminal via specialized transporters the
neurotransmitter may be reactivated.

R : The recovered neurotransmitter pool contains all the neurotransmitter
which has been reactivated or has been newly synthesized and is now
packed into vesicles and ready to be launched back into the synaptic gap
upon the arrival of the next action potential.

When an action potential arrives they further assume that it is only a fraction
of the total available (recovered, R) neurotransmitter that is released. This
fraction is represented by USE , i.e., the utilization of synaptic efficacy. To
describe the whole process, the following kinetic equations were proposed in
Tsodyks and Markram263, Tsodyks et al.262:

dR

dt
=

I

τrec
− USE ·R · δ(t− tAP )

dE

dt
= −

E

τinact
+ USE ·R · δ(t− tAP ) (6.6)

I = 1−R−E

where tAP is the arrival time of an action potential, δ(t) is the delta function,
τrec is the time constant associated with recovery processes in the synapse,
and τinact is the time constant associated with inactivation of the activated
(receptor bound) transmitter. At all times the postsynaptic current associated
with presynaptic activity is given as the product between the absolute synaptic
efficacy, ASE , and the fraction of effective neurotransmitter, E:

Ips = E ·ASE (6.7)
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EPSP's of Depressive and Facilitatory Synapses at 35Hz

Figure 6.3: EPSP’s of depressive (green) and facilitatory (red) synapses during
presynaptic stimulation at 35Hz.

It is practical to let ASE be a current in pA, as it can then be included directly
into neuron models like the ones presented in chapter 5.

So far this model only accounts for synaptic depression. To include facili-
tation, Tsodyks, Pawelzik and Markram262 have proposed to let the utilization
of synaptic efficacy, USE , be time dependent as well. An increase in USE , they
argue, could correspond to calcium accumulation in the presynaptic terminal
caused by the arrival of multiple action potentials. To describe this increase in
the utilization of synaptic efficacy, the following kinetic scheme was proposed
(adapted from Tsodyks et al.262):

dUSE

dt
= −

dUSE

τfacil
+ U · (1− USE) · δ(t− tAP ) (6.8)

where U determines the amount by which USE is allowed to increase for ev-
ery presynaptic spike (the Ca2+ accumulation), and τfacil is the time constant
associated with this facilitation process.

Collectively, the main output from these equations is the postsynaptic cur-
rent, Ips. At the postsynaptic soma, this current will first have passed through
the dendrites before resulting in a somatic EPSP. This effect may be calculated
using a passive membrane model (a simple capacitive membrane with one input
current and one leak current)262, corresponding to a very simple dendrite. The
resulting somatic EPSP’s of depressive and facilitatory synapses may be seen in
figure 6.3 for a presynaptic neuron firing at 35Hz.

Figures 6.4 and 6.5 show some different scenarios involving a simple simula-
tion comprising two neurons interconnected by a single synapse. The neurons
can be of any of the four usual types (RS, FS, CB, or IB), modelled using
Wilson’s model of neocortical neurons (see chapter 5, section 5.3.1). The inter-
connecting synapse is either of the depressing (figure 6.4) or facilitating type
(figure 6.5). Different presynaptic activation frequencies were tested to give an
idea of the dynamic range for the synaptic model. Note, e.g., that for high
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Figure 6.4: The effect of presynaptic neuron type on depressive synapses. Sim-
ple simulation involving two neurons that are interconnected with a depressive
synapse. The presynaptic neurons can be of any of the four usual types (RS, FS,
CB, or IB), modelled using Wilson’s model of neocortical neurons (see chapter
5, section 5.3.1)

presynaptic frequencies, the dynamic synapse only responds to the first few
spikes in the train, after which the chord conductance falls to a constant value
slightly above zero. (Chord conductance is defined 128 as Gi = Ii/(Vm − Ei)).
Contrast this to the response of a facilitating synapse, which also has an initial
increase and subsequently settles at a much closer value to the maximal con-
ductance. In all cases the absolute synaptic current was set to 1nA, so note also
that the maximal chord conductance of the depressing synapse is three times
larger than for the facilitatory synapse. This should be taken into account when
using this model to simulate synapses of known conductance, e.g. by setting
ASE appropriately.

6.2.3 Long-Term Synaptic Dynamics – τ ∼ 103 s

The idea that the interconnecting corpuscles between neurons or groups of neu-
rons must undergo some kind of activity dependent, correlational and perma-
nent change in order to establish a memory trace predates the invention by



6.2. THE DYNAMICS OF POSTSYNAPTIC POTENTIALS 89

Figure 6.5: The effect of presynaptic neuron type on facilitatory synapses. Sim-
ple simulation involving two neurons that are interconnected with a facilitatory
synapse. The presynaptic neurons can be of any of the four usual types (RS, FS,
CB, or IB), modelled using Wilson’s model of neocortical neurons (see chapter
5, section 5.3.1)
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Sherrington and Verrell246,245 of the term synapse (nowadays used to refer to
said corpuscles). Although often attributed to Hebb 104, this idea was actually
already proposed in 1873 by Alexander Bain in his book Mind and Body 15,272:

We know what are the conditions of making an acquirement, or of
fixing two or more things together in memory. The separate im-
pressions must be made together, or flow in close succession; and
they must be held together for a certain length of time, either on
one occasion or on repeated occasions. Now to each impression,
each sensation or thought, there corresponds physically a group or
series of nerve-currents; when two impressions concur, or closely
succeed one another, the nerve currents find some bridge or place
of continuity, better or worse, according to the abundance of nerve
matter available for the transition. In the cells or corpuscles where
the currents meet and join, there is, in consequence of the meeting, a
strengthened conexion or diminished obstruction–a preference track
for that line over lines where no continuity has been established. Ex-
cerpt from Bain15, page 117, as cited in Wilkes and Wade272 (italics
added).

This came at a time when there was still much dispute about the structure of
the nervous system, in particular the neuron doctrine vs. the reticular theory,
which may well be the reason that Bain was overheard and it was Hebb who
with a firm basis on a widely accepted neuron doctrine, could propose a more
neurophysiologically based postulate104.

There is much variation in the molecular and physiological mechanisms in-
volved in permanently strengthening or weakening postsynaptic potentials, de-
pending on species, neuronal systems and neuronal types (see Raymond et al. 221,
Bliss and Collingridge26, Bailey et al.14, Andersen and Soleng9, Lynch165 for
a general overview of this rather extensive topic). It is therefore not possible
to give a single account of such mechanisms, but on a general note it should
be observed that all samples studied so far share a few features. First of all,
long-term plasticity seems to be activation pattern specific: The patterns of
pre- and postsynaptic activities that are required to induce long-term plasticity
are idiosyncratic to the types of cell in the investigated sample (see reviews in
Bliss and Collingridge26). Then there is the observation that protein synthe-
sis always seems to be required: Blocking protein synthesis at any level in the
chain of events disturbs or completely inhibits long-term plasticity effects 226.
With regard to the primary site within the synapse which is responsible for
the plasticity, arguments seem to have finally settled on the parsimonious view
that pre- and postsynaptic sites are equally responsible but in different ways
(for review see Bliss and Collingridge26): Presynaptic increase of neurotrans-
mitter release, and postsynaptic increase of neurotransmitter sensitivity and/or
channel conductance.

In the vertebrate nervous system, two types of plasticity have received much
attention, namely what has become known as Long-Term Potentiation (LTP)
and Long-Term Depression (LTD). LTP was initially observed by Bliss and
Lomø27 in the perforant pathway of the hippocampus. When the perforant
fibers were stimulated at high frequency (15Hz for 10 seconds) several times,
the amplitude of the EPSP’s at the granule cell layer in the dentate gyrus would
increase by several hundred percent. This increase in the EPSP’s remains stable
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for days and even weeks253, and has under similar circumstances been observed
ubiquitously in the vertebrate brain, strongly endorsing the common view that
LTP is an important part of memory consolidation. The NMDA receptor (a
model of which was presented in section 6.2.1) seems to be a mayor player in the
induction of LTP, and the molecular mechanisms involved have been mapped
out in great detail26,14,42. Three very special attributes of LTP make it the
primary candidate for being the neurobiological basis of ”Hebbian” (Bainian?)
learning (see also review in Bliss and Collingridge 26) as they all have been shown
to require coincident pre- and postsynaptic activity:

• Cooperativity: A minimum number of presynaptic axons must be active
simultaneously to elicit LTP27.

• Associativity: If two or more fiber systems impinge on the same neuron,
complex interactions occur at the dendritic level permitting that the ac-
tivity of one system may induce LTP in one of the other systems if the
later is active at what would otherwise have been a sub-LTP-threshold
activation17.

• Specificity: Strong stimulation in one of the aforementioned fiber systems
will induce LTP in that system but not in the others (unless, of course,
the other systems are activated at only slightly subthreshold levels) 17.

Even in systems normally known to undergo LTP, certain pre- and postsy-
naptic patterns of activity induce a long-lasting reduction in the EPSP’s, an
effect known as Long-Term Depression (LTD). This effect was first discovered
by Masao Ito124,49, and was observed when activity in the parallel fiber system
of the cerebellum was followed by activity in the climbing fiber system: Such
coincidences resulted in a reduction of the EPSP’s associated with parallel fiber
activity. It is now known that LTD not only occurs in the cerebellum, but is
as common in the vertebrate brain as LTP, although requiring slightly different
activation patterns. It has been shown that NMDA receptor activation is a
prerequisite for induction of LTD in most of the systems studied 260 (with the
important exception of the cerebellum), its involvement in postsynaptic Ca2+

dynamics being its main contribution12,41 to this event. In fact, it seems that
the most important activation related factor which determines whether LTD or
LTP will be induced at a junction is the postsynaptic Ca2+ concentration during
the activity: LTP requires a larger postsynaptic depolarization and a greater in-
crease in Ca2+ concentration12 to be induced than does LTD. This observation
has led to the ABS learning rule, proposed by Artola, Bröcher and Singer 12, in
which potentiating and depressing effects compete (see figure 6.6) based on the
postsynaptic potential (or Ca2+-influx). Two thresholds are defined, one for
induction of LTD at low postsynaptic potentials, and one for induction of LTP
at high postsynaptic potentials. This rule is essentially identical to the BCM
rule proposed by Bienenstock, Cooper and Munroe 20, except that the LTD in-
duction threshold in the BCM rule is at zero postsynaptic depolarization (see
figure 6.6).

Spike-timing Dependent Plasticity

A rather recent development in the field of study concerned with long-term
plasticity is the discovery that the relative timing between pre- and postsynaptic
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Figure 6.6: Artola, Bröcher and Singer rule for long-term plasticity 12. At low
EPSP there is neither potentiation nor depression of the synapse, until a thresh-
old is reached at ΘLTD, where long-term depression of the EPSP ensues. At
increased EPSP values a second threshold is crossed, ΘLTP , where the plasticity
now shifts towards potentiation. The BCM rule 20 corresponds to the ABS rule
if ΘLTD = 0.

spikes actually determines whether potentiation or depression will take place at
the involved pyramidal synapse152,169,157. This is really a consequence of the
dependence on postsynaptic Ca2+ concentration (or EPSP), which led to the
ABS plasticity rule (see figure 6.6). To see why consider the following two
scenarios:

1. Presynaptic neurotransmitter release precedes postsynaptic depolarization.
Upon the arrival of a presynaptic action potential, glutamate is released
which binds postsynaptically to AMPA and NMDA type receptor chan-
nels (reviewed in Kandel and Schwartz130). Unless the postsynaptic cell
is already strongly depolarized, most current will only flow through the
AMPA-type receptor because initially the NMDA receptor will be partially
blocked13 by Mg2+. If the postsynaptic neuron is depolarized sufficiently
by this single event, or by other similar events nearby along the dendrite,
then the NMDA receptor’s ion channel will become unblocked gradually
and a large Ca2+-influx will begin, further contributing to the EPSP and
leading to LTP induction and a postsynaptic spike.

2. Postsynaptic depolarization (spike) precedes presynaptic neurotransmitter
release. The NMDA-type receptor will not contribute to the EPSP unless
it has been activated by glutamate and has been depolarized to a certain
level. In the present case the first condition has not been met, so there
will be no NMDA-current prior to the arrival of a presynaptic spike. And
due to its late arrival, once the presynaptic spike arrives the postsynaptic
neuron will already be in the midst of a spike or in the repolarization and
refractory phase. An NMDA-receptor based Ca2+ current will still enter
the postsynaptic cell (the Mg2+block is only fully effective at -80mV13),
but it will be smaller than in the previous scenario, as can be seen in figure
6.7.

Assume for now that small differences in the postsynaptic Ca2+concentration
(resulting from different activation patterns) is the most important factor de-
termining whether LTP or LTD is induced. Then in order for STDP to oc-
cur, such differences in Ca2+should be attainable simply by varying the arrival
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times of the presynaptic spikes with respect to the postsynaptic spike (or more
specifically, with respect to the phase of the postsynaptic membrane potential).
In some preparations of pyramidal cells257,256 action potentials have been ob-
served ”backpropagating” from the soma and up into the dendrites. As a first
approximation it may therefore be assumed that the postsynaptic potential at
a dendrite during or shortly after a postsynaptic spike, is very similar to the
actual action potential (at least with respect to its temporal variations). Using
this information, a simple simulation comprising two neurons (A and B) con-
nected by a single NMDA-synapse (from A to B) may be used to determine the
postsynaptic NMDA-currents when the spike times of A are varied with respect
to the spike time of B (the neurons are induced to spike at determined times by
simulated current injections). This has been done to yield the results presented
in figure 6.7. The NMDA-current is calculated using GNMDA from equation
6.5:

INMDA(t) = GNMDA · (Vm(t)− ENMDA) (6.9)

where Vm(t) is the time varying postsynaptic neuron’s membrane potential at
the location where the NMDA synapse is situated. By integrating the individual
NMDA-current profiles with respect to time (essentially calculating the area
under the curves in figure 6.7C), one gets the total charge that has entered the
postsynaptic cell as a function of the particular pre- and postsynaptic spike times
(tpre for the presynaptic spike, and tpost for the backpropagated postsynaptic
spike). This relationship is shown in figure 6.7D. It should be noticed that if the
presynaptic spike arrives before the backpropagated postsynaptic spike, ∆t =
tpre − tpost < 0, then the total charge entering postsynaptically will be larger
than if the presynaptic spike arrives after the postsynaptic backpropagated spike
(∆t > 0). It is well known that the NMDA-receptor channel is most permeable
to Ca2+ions13, so a large fraction of the charge will be based on Ca2+ion flux. It
thus seems that spike-timing dependent plasticity (STDP) may depend on the
ordinary Ca2+concentration related rules that apply to LTP and LTD induction.

It is also important to notice that the graph in figure 6.7D will be shifted
to the right by as much as 3-6 ms if one uses the postsynaptic spike times per
se rather than the backpropagated spike times (i.e. equivalent to resting 3-6ms
from the tpost used here). This is interesting if compared to some of the reported
experiments showing STDP169, in which it is the postsynaptic spike times per
se that are used, and which yield a large discontinuity at zero pre- and post
synaptic spike delay1. This means that the spike backpropagation delay of 5 ms
is taken into account by the dynamics of the NMDA-receptor system, so that
the temporal correlation learning rules of STDP apply to actual axonal spiking
times.

Spike-timing dependent plasticity (STDP) opens up a range of new possibili-
ties with respect to how neurons may interact and what patterns they may learn
1. The temporal directionality that is implicated by STDP does indeed open
up the possibility that networks of neurons may learn spatiotemporal patterns
181,204. And within the context of this thesis, this is an important property as
it allows for the learning and execution of motor programs of higher complexity.
As a preamble to some of the final chapters, the topic of spatiotemporal encod-
ing in networks of abstract neurons will be investigated in the following chapter.
The exploration will aim at identifying some of the problems that one might
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expect from using mechanisms like STDP in densely connected artificial neural
networks that are expected to perform many different programmed sequences as
response to different simple tonic inputs (e.g. from a ”command-like” signal).

6.3 Implementation Related Issues

In order that the here reviewed models of synaptic dynamics may be used to
interconnect networks of neurons, there are some issues which must be resolved
related to the problem of scaling. As mentioned at the beginning of this chapter,
each neuron has in the order of 104 synapses, which amounts to 1015 synapses
in the human brain. Although there is nothing in principle to hinder us from
implementing a realistically scaled simulation of the brain by using the equations
in this and the previous chapter, at present there is no computer in the world
which would be able to run a simulation with so many equations and parameters
at a speed which could be considered even marginally practical a.

To be practical, smaller scale simulations must be designed so as to behave
as larger scale systems. In a nutshell, the problem is this: If a neocortical neuron
receives 104 synapses from other neurons254, then that is also the minimum num-
ber of neurons that must be simulated, the total number of individual synapses
thus soaring to at least 108. In a realistic simulation the number would be even
larger because real cortical tissue is not composed of completely segregated
clusters of neurons, but rather of overlapping regions with some long-distance
connections interspersed. It has been estimated that a typical pyramidal cell
only contributes with 1/100000th of all the synapses present within the region
to which it projects28. So if one considers the columnar organization of the
cortex196, where each column contains approximately 104 neurons, then even
if a given pyramidal neuron projected directly back at the column where it re-
sides, only 1000 of its synapses would be on neurons within the column. The
remaining 9000 synapses would necessarily be projecting elsewhere (neighbour-
ing or even distant columns via horizontal projections). One should of course
take this type of calculations with a ”grain of salt”, they are only estimates
yielding some orders of magnitude we might work with. But if we continue the
exercise along this route, it is possible, without loss of generality, to rescale the
networks by determining some convergence-divergence ratios and by changing
the peak synaptic conductances thus permitting a dramatic reduction in the
number of neurons and synapses in the simulation. The only item missing is
to figure out the fraction of synapses that normally need to be active to fire a
neuron. Fortunately this fraction is known from experiments which have shown
that approximately 10-30 active (glutamatergic) synapses are necessary to elicit
a postsynaptic spike210,254, corresponding to 0.1 to 0.3 percent of the synapses.

aEven on what IBM claims to be the worlds fastest supercomputer (as of 2001), the 512-
node RS/6000SP ASCI White system running at 12.3 teraflops, you would need approximately
80 seconds to update the synapses by a single time step (assuming each synapse takes only
one operation, e.g. a simple multiplication). A single millisecond of brain simulation would
thus take perhaps 1 hour realtime. Not that bad actually!, but still impractical considering
that a cognitive event takes up to 200ms.
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Figure 6.7: Spike-timing dependent currents in NMDA-based receptor channels.
A. Presynaptic potentials; B. Postsynaptic potential; C. Postsynaptic NMDA-
currents resulting from presynaptic activity arriving at various times before
or after postsynaptic activity; D. Total charge entering postsynaptic neuron
through NMDA-receptor as a function of the temporal displacement between
pre- and postsynaptic activity. See text for further details.
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Chapter 7

Abstract neural network
dynamics

Chapter Summary

This chapter presents one way in which spike-timing dependent plas-
ticity may be used to affect network dynamics. Although this chap-
ter presents a brief digression from the main line of argument fol-
lowed in this thesis, it is nevertheless highly relevant to the subject
of motor control. The results presented herein might serve as a
starting point for developing more advanced neural network models
that can learn and recall complex sequences of activation patterns.
Such a ”dynamics”-learning system would be required to implement
the high-level reafference cancellation functions, herein attributed to
corticomotoneuronal cells when activating α and γ-motoneurons in
predefined spatiotemporal patterns.

Note: The material in this chapter has been submitted for publica-
tion.

Neurons receive the main bulk of their input through the dendrites. Until
recently it was believed that dendrites only served to increase the receptive
surface area of the neurons, and that the only information processing which took
place there was summation of the synaptic currents thought to flow passively
along the dendrite towards the soma. Such an oversimplified view of the dendrite
has been challenged by many authors, who have shown that dendrites have
a much wider range of responses to activation. Some dendrites even contain
voltage-gated channels which permit dendritic Ca2+-based spikes, generated
either locally237 or as a result of a back-propagating action potential 257,256.
There have been several reviews of these and other findings related to dendritic
dynamics55,241,178,3.

97
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The main view advocated herein is, that differentially activated areas of a
dendrite permit the existence of zones with distinct rates of synaptic modifica-
tion, and that such areas can be individually accessed using a reference signal
which localizes synaptic plasticity and memory trace retrieval to certain subre-
gions of the dendrite. It is proposed that the neural machinery required in such
a learning/retrieval mechanism could involve the NMDA receptor, in conjunc-
tion with the ability of dendrites to maintain differentially activated regions.
In particular, it is suggested that such a parcellation of the dendrite allows the
neuron to participate in multiple sequences, which can be learned without suf-
fering from the ”wash-out” of synaptic efficacy associated with superimposition
of training patterns. This is here proposed to be a biologically plausible solution
to the stability-plasticity dilemma of learning in neural networks.

Very recent experimental evidence237 has strengthened the idea that pre-
binding of glutamate to the NMDA receptor can be invoked as a mechanism
to create ”hot-spots” on the dendrites. In their paper, Schiller et al. (2000)
present evidence showing that basal dendrites in cortical pyramidal cells are
able to sustain NMDA-receptor based Ca2+ spikes, independently of the activity
in neighbouring dendritic branches. This kind of mechanism has been invoked
203 to argue for the existence of independently accessible learning sites, which
allow for immediate access to the stored memory traces, as well as posing a novel
solution to the stability-plasticity dilemma initially identified by Grossberg 98,99.
This idea is further developed and formalized here, in the context of learning
spatiotemporal sequences of patterns, which are particularly sensitive to the
stability-plasticity tradeoff. This work is not intended to be a complete formal
treatment of a neural network architecture; rather it is a presentation, by way
of example, of what is thought to be a neurobiologically plausible method for
multiple sequence learning in networks suffering from the stability-plasticity
dilemma.

7.1 Creating Synaptic Subsets

A fully recurrent artificial neural network can be trained with a set or sequence of
ordered patterns, in such a way that the network associates a given pattern with
the next in the sequence. After stabilization of the synaptic weights through
training, the learned sequence can be recalled by forcing one of the patterns upon
the network, whereupon the network recalls by association the next pattern in
the sequence181,251,6,106. In this scheme, all the synapses of the network are
involved in the storage of the sequence. Thus, for a given pattern sequence,
A, a synaptic efficacy matrix, WA, can be found which enables the network to
express the sequence; the dynamical behaviour of the network depends directly
on this synaptic matrix.

Supposing now that the network is further trained with a new sequence, B,
then the synaptic weights in the network must be modified to accommodate
this second succession. The synaptic matrix will reflect these changes and it
will gradually differ more and more from the original WA, converging to a
completely different matrix, WB . In this new state, the network will recall
sequence B perfectly, but sequence A will no longer be accessible.

Thus, a tradeoff exists between stability of existing memory traces and the
plasticity required to store new information. Nevertheless, it is possible to
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store multiple sequences in a network of this kind, if the patterns within the
sequences are relatively sparse and non-overlapping 251, that is, the patterns
must be sufficiently different as to cause no interference between the sequences
(e.g. the sequences A-B-C -D-E and M-N-C -O-P would interfere at C ). Even if
the non-interference and the sparseness requirements can be relaxed a bit and
still lead to good results, it would be useful if the specialized synaptic matrices
WA and WB could be kept completely segregated, in order to allow optimum
performance even with sequences consisting of dense and overlapping patterns.

A very direct way of accomplishing this would be to allow independent access
to different subsets of the network’s synapses. Each synaptic subset can then
comprise one particular synaptic matrix whose contents can be accessed and
modified whenever that particular subset is reactivated. For example, consider
the following simple recurrent neural network. Let the activity level hi of the
i’th neuron in a network with N neurons be defined by:

hi =

N∑

j=1

wij · f (hj) (7.1)

where wij is the synaptic weight between neuron j and neuron i, and f(x) is a
rate-limiting function (e.g. sigmoidal). As can be seen, all the synapses in the
network can influence the activity level hi of neuron i. It is possible to modify
the synaptic influence selectively by including a reference factor, Rij , inside the
sum of the above activation function:

hi =

N∑

j=1

Rij · wij · f (hj) (7.2)

For simplicity, let the components, Rij , of the reference activity matrix R have
values 1 or 0, depending on whether the corresponding synapse, wij , should be
enabled or disabled, respectively. It should be noted here that the activity level
of a synapse per se is independent of the reference activity, that is, a synapse may
well be fully activated even if the reference component Rij = 0. The only thing
that happens when setting Rij is that the actual influence of the corresponding
synapse on the neuron’s activity will be modulated by the reference value. Also,
it should be noted that the reference activity matrix should not necessarily be
interpreted as affecting synapses on an individual basis: The deeper (neural)
meaning of setting Rij = 0 is that a particular synapse (wij) happens not to
belong to the synaptic subset currently being accessed (in neural terms, the
synapse happens to be in an area of the dendrite that is not currently being
amplified by NMDA-receptor activity; see section 7.2 for further details).

Given this scheme, it is now possible to individually access a number of dif-
ferent synaptic subsets, w1, w2, ..., wq from the network’s complete synaptic
matrix W, simply by defining an equivalent number of different reference ac-
tivity matrices, R1, R2, ..., Rq. Given that the dynamics of a neural network
usually depends directly on the particular synaptic set, modulating the influence
of synaptic activity on the neurons with a reference activity will also directly
influence the dynamics. In particular, it can be inferred that down-modulating
the influence of some fraction of the synaptic population will effectively restrict
the network’s dynamics, to whatever is contained in the remaining synapses.
And if these same ”emphasized” synapses also were up-modulated by the same
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reference activity during learning, then the network’s dynamics will express
whatever was learned during training as long as that particular reference acti-
vation is used. If the reference is changed the synaptic subset will be modified,
and thus also the network’s behaviour.

7.2 Neural Mechanisms

A neural mechanism which corresponds to the neural network model proposed
above could be the following: afferent fibers prime a specific dendritic region by
pre-binding glutamate to NMDA-receptors in the region, thus creating potential
”hot-spots” of activity. If we start by assuming that this priming reference
activity is not in itself sufficient to fully activate the hot-spots, but is only
capable of bringing the membrane potential sufficiently close to the NMDA-
receptor channel’s unblocking potential of −40mV , then any additional synaptic
activity within a given ”hot-spot” can be amplified tremendously if it contributes
with sufficient current to overcome the NMDA-receptor’s Mg2+-barrier (for
further details about the NMDA-receptor see13,42). Assuming instead that the
priming reference is capable by itself of fully activating a ”hot-spot” (e.g. by
co-activating AMPA-receptors together with the NMDA-receptors) implies that
the reference activity also can function as a trigger to the memory traces stored
in that synaptic subset, and not only as an address.

Regardless of how a particular ”hot-spot” is activated, synapses within the
hot-spot region would have an increased tendency to undergo activity induced
modifications (during learning) compared with synapses outside. Furthermore,
during normal functioning (e.g., during expression of stored memory traces),
such synapses will have a much larger influence on the neuron’s response than
synapses outside the hot-spot. In the formalism presented above, this would
correspond to assigning a reference matrix value of Rij = 1 to synapses inside
the hot-spot, and a value Rij ¿ 1 to synapses outside this NMDA-receptor
amplified region.

It is proposed that this hot-spot activation mechanism is active both dur-
ing normal performance of the nervous system and during learning of particular
items, so if ”hot-spots” are NMDA-receptor dependent, then a prediction of this
model would be that NMDA-receptor activity is necessary during learning but
also to some extent during expression of the stored memory. There is much ex-
perimental evidence indicating that the NMDA-receptor is required at least for
some kinds of learning195,187,167. Whether the NMDA-receptor is also required
during memory recall is still a subject of much debate because experimental
evidence has been found in support of NMDA-receptor involvement in recall
167,149, but also in direct conflict with this idea187. It seems that the difference
in findings might be based on methodological issues related to the experiments
149. In any case the prediction requirements can be relaxed a bit if ”hot-spots”
can be maintained independently of the NMDA-receptor, for example by using
high-frequency activity in afferent fibres to access the correct storage locations
on the dendrites.

Further support of the model presented here is the experimental evidence
showing induction of long-term potentiation (LTP) following localized depolar-
ization of a dendritic branch. This suggests that increased activity of neigh-
bouring synapses might induce LTP17.
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7.3 Simulation Results

Some simulations are presented here in support of the points raised in this
work. First a model of a neuron with compartmentalized dendrites was simu-
lated using Hodgkin-Huxley type dynamics 108,242, to show that local dendritic
potentials are capable of reaching a depolarization of > −40mV , and thereby
indicating that NMDA-receptor channels in principle can be locally unblocked.
A compartmental-model neuron with 258 compartments was generated using a
recursive function that calculated the length, radius and tilting angle of the indi-
vidual compartments in such a way that when connected the outcome resembles
the apical dendrite of a pyramidal cell visually as well as electrotonically (by
staying within the neurophysiological range of neuron scales and parameter val-
ues). The activity of the generated model neuron was simulated by numerically
solving the membrane equation for each of the 258 compartments. Neighbour-
ing compartments were linked to each other through series resistances. Voltage
gated ion-channels were not relevant for the simulation presented in figure 7.1
where only the pre-spike situation of a passive dendrite was considered. The
voltage, Vj , across the passive membrane of the j’th compartment changed
according to the following equations (for details about the derivation of the
membrane equations see108,242,282):

dVj
dt

=
1

Cm
·
(
Imj
− Iionj

− Istimj

)

Imj
= Ij−1,j − Ij,j+1

Iion,j = GL(Vj − EL) (7.3)

where Cm is the membrane capacitance (Cm = 1µF/cm2), Ij−1,j is the current
between compartments j− 1 and j, Ij,j+1 is the current between compartments
j and j + 1, GL is the conductance of the passive (leak) channels and EL

is the reversal potential of the passive channels. Synaptic input at selected
compartments (asterisks in figure 7.1) was simulated by setting Istimj

to a non-
zero value. (For an introduction to compartmental modelling methods see Segev
et al. 1998).

A depolarization gradient map of the simulated neuron is shown in figure
7.1. The left branch closest to the soma is the recipient of widely distributed
current injections (marked with asterisks), and it can be seen that it reaches a
depolarization of up to −14mV , independently of the rest of the neuron. Fo-
cusing the current injections to a smaller region of the branch would reduce the
extent of the hot-spot. A very similar situation has been observed experimen-
tally, as was recently reported by Schiller et al. (2000), where it was shown that
basal pyramidal dendrites independently can support NMDA-receptor channel
mediated Ca2+-spikes.

To test the model proposed in section 7.1, a fully recurrent neural network
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Figure 7.1: Compartmental modelling of the apical dendrite of a pyramidal
neuron. Currents injected at sites marked with asterisks (∗) lead to a localized
dendritic membrane depolarization of up to −14mV , which exceeds the NMDA-
receptor’s unblocking threshold of −40mV , thus in principle permitting synaptic
plasticity at such localized regions.
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with N = 400 neurons was simulated using the following set of equations:

hi = Ei − Ii +
N∑

j=1

wij · Sj ·Rij (7.4)

ρi =
1

1 + e−β(hi−θ)

Si =

{
1 with probability ρi
0 with probability 1− ρi

wij(t) = wij(t− 1) +Rij ·∆wij(t)

∆wij(t) =







γ · (1− |wij(t)|) if Sj(t− 1) = 1 and Si(t) = 1
−γ · (1− |wij(t)|) if Sj(t− 1) = 1 and Si(t) = 0

0 otherwise

where hi is the total input to neuron i, Ei is a forced excitatory input, Ii is a
stabilizing inhibitory input, N is the number of neurons in the network, wij(t)
is the synaptic efficacy of the connection from neuron j to neuron i at time
t, β is a positive constant affecting the slope of the sigmoidal function, θ is a
constant affecting the activation threshold, Sj(t) is the activity level of neuron
j at time t, γ (where 0 < γ < 1) is a constant affecting learning rate, and Rij is
a reference activity with value 0 or 1. Note that changes of synaptic efficacy can
only take place when the presynaptic neuron has been active in the previous
time step, and note also that the direction of change depends on whether the
postsynaptic neuron is currently active (positive change) or inactive (negative
change). This also means that synapses that do not change during training also
do not have any influence on the dynamics since the presynaptic neuron always
was inactive.

Except for the reference activity matrix, these equations are largely equiv-
alent in form and function to those proposed by Metzger and Lehmann (1990)
for learning temporal sequences (see Metzger and Lehmann, 1990, for further
details about the dynamics of such a system).

During training, a sequence of neural activation patterns was forced upon
the network several times. Even though the synaptic weights are initially set to
random values between 0 and 1, many of the synaptic weights will converge dur-
ing the forcing procedure to values which effectively associate the patterns with
each other in the specific order in which they were presented. To see the influ-
ence of the reference matrix R on the network’s ability to learn sequences, three
experiments were performed: 1) The network was trained with one sequence
and one reference matrix (with all components set to unity), 2) The network
was trained with two sequences but still only one reference matrix, and 3) The
network was trained with two sequences and two different reference matrices.

7.3.1 Experiment no. 1: One sequence and one reference

During training of the network in this first experiment, a neural activation pat-
tern P1 (i.e., a vector containing N elements with values 1 or 0) was forced upon
the network for a certain number of updates, after which it was exchanged with
a different pattern, P2 6= P1. This was done for all the patterns in the ordered
sequence σA = {P1, ...,P5} (in these experiments, sequences usually contained
5 different patterns), until most of the involved synapses started converging
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Figure 7.2: Simulation results for experiments no. 1, 2 and 3. The figure
shows traces of the overlap value (see equation 7.5) between the network’s actual
state at some epoch, and the set of templates corresponding to the original
patterns in the sequences used to train the network (patterns I-V correspond
to sequence A, and patterns VI-X correspond to sequence B). Values close to
unity indicate that the network state is currently very similar to one of the
stored patterns, whereas values close to zero indicate that the network state is
currently very different from the corresponding template pattern. a) Training
with one sequence and one reference results in good sequence recall; b) Training
with two sequences but only one reference results in a recency effect, where only
the last trained sequence can be recalled; c) Training with two sequences and
using two references permits storage of both sequences, and each sequence can
be recalled individually by using the appropriate reference activity. Note that
the shift from one sequence to the other occurred immediately upon changing
the reference, indicating that this reference-based network architecture permits
very fast access to stored data. See main text for further details.
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(see Metzger & Lehmann, 1990, for an explanation of this convergence). All
elements in the reference matrix RA were set equal to 1, so that all synapses in
the network were involved in learning the sequence σA.

After training, the network is able to traverse the sequence σA with up to
80% correct performance in pattern recall, and respecting the original order of
patterns in the sequence. A slightly shorter latency of the patterns was found,
but this should have no consequences for the main conclusions in this work.
These results can be seen in figure 7.2a.

Recall performance was measured by computing the overlap, Ωi, between
the recalled network state S and each of the original training patterns σA =
{P1, ...,P5}:

Ωi =
1

NPi

(S ·Pi) (7.5)

where i identifies the training pattern under evaluation, and NPi
is the total

number of active elements (i.e. with activation equal to 1) in the i’th training
pattern.

7.3.2 Experiment no. 2: Two sequences and One refer-
ence

The already-trained network from section 7.3.1 was now further trained with a
new sequence, σB = {P6, ...,P10}, but still using the reference matrix RA. As
can be seen from the results in figure 7.2b, this resulted in a situation where
the network could recall only the last-presented sequence, in this case sequence
σB , even if the network was initially forced to go through a complete cycle of
sequence σA. The network’s learning parameters were set so as to permit fast
synaptic convergence, so it did not help much to train by shifting between the
sequences (i.e., to first train σA, then σB , then again σA, and so on), since this
still meant that it was only the last-trained sequence which was stored.

7.3.3 Experiment no. 3: Two sequences and Two refer-
ences

A third experiment was performed, in which two unequal reference matrices
were used, RA and RB . To keep things simple, RA was created by first setting
all components to 1, and then randomly selecting half of the components and
setting them to 0. The second reference matrix, RB was generated from RA

using RB,ij = 1 − RA,ij (so that these two matrices were complementary to
each other).

Using first RA, the network was now trained to perform sequence σA. After
this, RB was used while training the network to perform sequence σB . Effec-
tively this divided the synaptic population in two equally large partitions, one
designated to store the sequence σA, and the other specialized for sequence σB .
As can be seen from the results on figure 7.2c, the network now successfully
stores both sequences, each of which can be recalled by using the appropriate
reference matrix.
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7.4 Network Limitations

The experiments presented above prove by way of example that the approach
taken is viable, the network indeed becomes able to clearly separate two se-
quences, but many outstanding questions still remain, in particular: how well
does the neural network perform when using this method if the number of se-
quences (references) is increased?, how well does it respond in the presence
of noise or of overlapping reference fields?, how does subdividing the synaptic
population affect capacity?. Some of these questions will be addressed next.

7.4.1 Experiment no. 4: Capacity Tradeoff between Ref-
erences and Patterns

To investigate the capacity limitations of this type of network when the number
of references (synaptic subsets) is increased, a simulation was performed using
a network with 1024 neuron nodes in which the overall network performance
(the accuracy of sequence recall) was evaluated as a function of the number of
references and the number of patterns pr. reference. Performance was measured
by using a simple template matching technique, which is based on the fact that
the correct pattern sequence corresponding to a reference activity is known (the
training set of patterns). One simply needs to compare the network’s activity
over time with the correct template over time. Formally, a template vector
xtemp of length N can be compared with an output vector xout of length M ,
where M > N by sliding a window of width N containing the template vector
over the output vector and finding the scalar product between the template
vector and the subset of the output vector currently within the sliding window.
The maximum value for this sliding dot product corresponds to the best fit
between the vectors, and may be normalized with respect to the number of
active nodes pr. template pattern, nact, which gives a value ranging from 0
(worst performance) to 1 (perfect template fit). This normalized value is used
in the present case as a simple measure of performance. For i ∈ [0,M −N ] we
have:

Performance =
1

nact
·max

{
xtemp|

N
0 · xout|

i+N
i

}
(7.6)

The network’s performance was sampled as a function of the number of ref-
erences (ranging from 1 to 16) and the number of patterns pr. sequence (ranging
from 2 to 20 with steps of 2) which yielded a 16 × 10 performance array. This
array is visualized in figure 7.3 wherein the performance indices were translated
into a colour code, each point corresponding to a coloured square. Already
here it is evident that a trade-off exists between the number of references vs.
the number of patterns pr. reference. In order to quantify this trade-off more
precisely, contour lines were generated using interpolation of the raw data (i.e.,
of the 16 × 10 performance array), and figure 7.3 therefore also shows the iso-
performance contour lines corresponding to performance levels of 0.1, 0.5 and
0.9. Each contour line bounds a region within which performance is relatively
constant. There seems to be a non-linear relationship between the number of
references and the number of patterns pr. reference corresponding to a given
level of performance. For the contour line corresponding to a performance level



7.4. NETWORK LIMITATIONS 107

PI

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

No. References

0

2

4

6

8

10

12

14

16

18

20

N
o.

 P
at

te
rn

s 
pr

. R
ef

er
en

ce

 0.1

 0.5

 0.9

Iso-Performance (IP) Contour Lines

Best Fit to ’0.7’ IP Contour

Figure 7.3: Performance as a function of the number of references and the
number of patterns pr. reference in a network with 1024 neuron nodes. The
resulting simulation data is here represented as coloured squares which are coded
according to the colour index (PI) shown at right. A continuous valued contour
plot can be derived from the data by interpolation, so that Iso-Performance
contour lines may be drawn. (Only 3 contour lines are shown in the plot,
corresponding to Iso-Performance indices of 0.1, 0.5 and 0.9). The best fit
to the contour line corresponding to a performance index of 0.7 (· · • · ·) was
achieved using the function: y = −14.22 · log10(x)+20.1, where y is the number
of patterns pr. reference and x is the number of references.
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Figure 7.4: Using equation 7.7, which was derived from the data in figure 7.3, a
theoretical curve can be found showing the maximum number of patterns as a
function of the number of references (simply by multiplying the best-fit equation
with the number of references). This gives an inverted-”U” curve indicating that
a single maximum (optimal) capacity exists for the entire network which in the
present case is found for 9 references.
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of 0.7, this non-linearity could best be fitted using an equation of the the fol-
lowing form:

y0.7 = A · log10(x) +B (7.7)

where x corresponds to the number of references and y0.7(x) is the maximum
number of patterns pr. reference that may be allowed if a performance level
better than 0.7 is to be attained. Best fit was obtained for A = −14.22 and
B = 20.1. This ”best-fit” equation has also been plotted on figure 7.3. Using
this equation we may find, for example, that at most 8 patterns pr. reference
can be recalled with a performance level of 0.7 if 7 references are being used,
thus yielding a total pattern capacity for the network of 56. The corresponding
limit for 13 references is close to 4 patterns pr. reference, giving a total pattern
capacity of 52. A plot showing the total pattern capacity of the network as a
function of the number of references may thus be obtained by multiplying equa-
tion 7.7 times the number of references in question (i.e., total pattern capacity,
z, is given by z = x · (A · log10(x) + B)). This is shown in figure 7.4, where
it is clear that a maximum capacity exists for the present network when using
9-10 references with 6 patterns pr. reference (z is maximized at x ≈ 9.53, for
which dz/dx = A · log10(x) + x ·A · (x · ln(10))−1 +B = 0). Admittedly, a total
capacity of ∼ 56 patterns might seem rather low for a network of this size if
compared with results obtained using state of the art learning algorithms such as
back-propagation. In an application oriented framework, it would be perfectly
acceptable to use state of the art learning algorithms to train each synaptic
subset, thus further increasing the capacity of the network beyond what was
attained here. Since this work aims at elucidating biological mechanisms, such
a route was not further pursued at present.

Given the evidence, it seems that creating independently trainable synaptic
subsets does not degrade overall network performance per se, and at least in
one sense it actually improves it: the total pattern capacity is increased even
if the cost is shorter sequences. The inverted-”U” curve on figure 7.4 thus al-
lows for the following conclusion: parcellation of the synaptic population into
smaller synaptic subsets affects network capacity in such a way that total pat-
tern capacity may be maximized beyond what would be possible otherwise in a
densely recurrent network, simply by finding the optimal number of references
corresponding to a given network configuration. Such an interpretation nicely
ties in with earlier findings which show that increasing sparseness may increase
network capacity up to a certain point only to decrease again when patterns be-
come too sparse106. In the present case however, the reduction of interference
between patterns, which is one of the consequences of sparseness, is achieved
by limiting the number of synapses that are available for learning and recall
(which varies in proportion to 1/nref ), and not as is usually the case by using
increasingly sparse patterns.

7.4.2 Experiment no. 5: Overlap of References

In a biological context it does not seem appropriate to assume a complete seg-
regation between active an non-active hot-spots. Such a complete segregation
(the ideal situation) was accomplished in the present work by assuming that
reference afferents could only attain values of 1 (for active hot-spots) or 0 (for
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Figure 7.5: Performance as a function of the number of references (abscissa)
and separation index (inverted ordinate) in a network with 400 neurons and
4 patterns pr. reference. The performance index is indicated by the colour
code at right in the figure (PI). The small squares of varying size indicate the
variance of the data resulting from 4 simulation trials, with the smallest squares
corresponding to zero variance, and the largest squares to the maximum variance
of 0.17. Note especially the robustness of performance when using 4 references,
where performance is almost perfect and with low variance down to a separation
index of 0.5, and the performance level still remains significantly above 0.6 even
for completely randomized values in the reference arrays (compare with figure
7.6).
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Figure 7.6: This figure shows the level of performance as a function of the overlap
between references in a network with 400 neurons trained using 4 references
and 4 patterns pr. reference. These data are identical to the data column
corresponding to 4 references in figure 7.5. It should be noted that the network
actually performs very well even with a reference separation index as low as
0.55, below which the performance degrades only little and stays significantly
above 0.6 all the way down to a separation index of zero (the vertical bars show
the standard deviation of the sample).
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inactive). By permitting intermediate values for the reference afferents it is
possible to evaluate whether any degradation of performance occurs when the
synaptic subsets overlap to varying degrees. Subset overlap can be continuously
varied by permitting the reference afferents to have random values between a
lower and an upper limit which is specified independently for the different popu-
lations of references. For example, active hot-spots may be given random values
within the interval Ractive ∈ [rmin, 1] while the non-active hot-spots have values
within the interval Rinactive ∈ [0, rmax]. For simplicity the following relationship
is given for the interval limits: rmax = 1 − rmin, in which case a single scalar
value may be specified for the overlap between subsets, namely rmin, which has
the value rmin = 1 for complete segregation (Ractive ∈ [1, 1]⇒ Ractive = 1 and
Rinactive ∈ [0, 0]⇒ Ractive = 0) and rmin = 0 for completely random reference
values (Ractive ∈ [0, 1] and Rinactive ∈ [0, 1]).

Performance as a function of the number of references and the reference
separation index was calculated for a network with 400 neurons trained on
a protocol where the number of references varied from 1 to 12 with a step-
size of 1 (and 4 patterns pr. reference), and the reference separation index
varied from 0 to 1 with a step-size of 0.05. The resulting performance array
is shown in figure 7.5, where the performance index has been colour coded.
The empty squares within each coloured square indicate the variance (from 0 to
0.17) of the sampled data resulting from 4 independent trials. As expected, best
performance is obtained for rmin close to 1 (i.e., total separation of synaptic
subsets). Surprisingly, it can be observed that when using 3 or 4 references
performance is also remarkably robust to changes in the separation index, to
the extent that performance is virtually perfect down to a separation index of
0.5, and remains above a PI of 0.7 all the way down to a separation index of zero.
As mentioned before, a separation index equal to zero implies that the values in
a reference array essentially consists of random numbers between 0 and 1, and
are therefore a far cry from the nice ”binary” reference arrays used earlier. This
evidence strongly supports the notion that reference activities do not necessarily
have to be nicely segregated, but that they may have a considerable overlap
amongst each other without seriously affecting network behaviour, a case in
point if the methods presented here are to have any relevance in a biological
context.

7.5 On the usefulness of synaptic subsets

In order to ensure safe storage and fast retrieval of a multiplicity of spatiotem-
poral patterns in a neural network, it is proposed in this work that dendritically
based regional differences in synaptic plasticity are required, and that such re-
gions can be individually accessed through activation of a ”reference” input.
Specifically, it is suggested that the NMDA receptor’s voltage dependence may
be used to keep track of dendritic sites with high activity, so that subsets of
synapses can be kept functionally separated at those highly activated dendritic
branches, especially if those branches are activated independently by means of
a reference activity. Each synaptic subset can then be used as a learning lo-
cus which could contain a memory trace (e.g., one sequence), so that as many
independent memory traces (sequences) as there are reference afferents can be
coded into the network.
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In addition to being a possible solution to the stability-plasticity dilemma in
the context of sequence learning, a further advantage of using a reference-based
memory access architecture is simply the speed with which a complex memory
trace (such as a sequence) can be recalled from the network. As an example of
this, see figure 7.2c, where the shift from one sequence to the other occurred al-
most immediately upon changing the reference signal. Also the method permits
a tremendous economy of neurons in the sense that the same group of neurons
may be involved in many different tasks (sequences) just by changing the refer-
ence, the alternative of course being to have a specialized group of neurons for
each task. This suggests that the reference-based memory access architecture
presented here will be most useful in cases where good recall with fast task
transitions has to be accomplished with maximal economy of neural network
size. Given these constraints, invertebrates and lower vertebrates would pre-
sumably have much to gain from such an architecture, and indeed there is some
evidence that natural selection converged on such a solution at least at the or-
ganizational level. A case in point is the existence (in invertebrates) of so-called
command neurons whose activity influences a motor pattern generator network
in such a way that a particular sequential and stereotypical behavioural re-
sponse is elicited which corresponds uniquely to the activated command neuron
143. Activation of a different command neuron elicits a different action pattern.
The relationship between the command neuron(s) and the motor pattern gen-
erator seems very similar to the relationship between the reference matrix and
the sequence storage network, and is therefore a biologically valid example of a
reference-based memory access architecture as the one advocated in this work.

Training a subset of synapses to perform some task, instead of using the
full synaptic population, might at first seem counterproductive since one would
expect a corresponding reduction in task performance. To address this issue
directly, a computer simulation experiment was set up in which performance of
a network was gauged as a function of the number of references and the number
of patterns pr. reference (see section 7.4.1). The results of this experiment
indicate that, although the pattern capacity pr. sequence is reduced when more
sequences are to be learnt, the total capacity of the network (i.e. the number of
sequences times the number of patterns pr. sequence) is actually increased up
to a maximum which is 5 times larger (56 patterns) than the maximum number
of patterns permissible when only one reference was used (10-12 patterns), as
can be inferred from figures 7.3 and 7.4. If for no other reason, this manyfold
increase in capacity should at least warrant using this kind of approach for
densely connected recurrent networks.

It should also be noted, that the reduction in pattern capacity for individual
sequences poses no problem if the references are controlled from outside the
network: longer sequences corresponding to a composition of short sequences
may be generated simply by activating the relevant references in the right order,
for example by giving control of the references to a different recurrent network,
which again might be influenced by another set of references controlled from yet
another network, and so on ad infinitum. A modular system composed of such
networks which sequentially code the references of subsequent networks can
potentially be trained to generate sequences of any length while maintaining
good accessibility to the memory contents (not unlike the easily addressable
tracks of a record compared to the difficulty of finding storage positions on
a tape). In lack of further evidence, I shall resist the temptation of relating
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this reference based modular architecture to the language areas of the human
brain, where one might suspect that references representing whole words activate
sequences of patterns in a different area corresponding to phonemes, each of
which subsequently serves as a reference to some other region responsible for
generating a sound producing muscular sequence.

Binary reference activity arrays as those used for experiments 1 to 4 are
simply not directly acceptable from a biological perspective, in particular be-
cause references must be assumed to be the consequence of synaptic activation
which to all intents and purposes is a probabilistic and noisy process 254 whose
effects depend on the weighted average of several consecutive activations giving
rise to a post synaptic potential. A final experiment was performed (see section
7.4.2), in which the performance of a network was evaluated when varying the
degree to which the reference arrays contained non-binary values. In the limit
(minimum separation between reference arrays), the components of the refer-
ence arrays were random numbers between 0 and 1. Even in the limiting case
with random valued reference arrays the network was able to perform surpris-
ingly well (PI∼ 0.7) when 4 references were used (see figure 7.5). This result
is presented as evidence that the method is quite robust with respect to noise
and overlapping/randomized reference arrays, and gives more credence to its
proposed relevance for biological neural systems.

From a technical point of view, the learning strategy presented in this work
might prove useful in the implementation of neural networks intended for learn-
ing of motor control strategies, in continuously behaving agents such as robots
or software-based artificial autonomous agents: Once a motor sequence has been
identified as not belonging to the already-learned repertoire, either by lack of
recognition or by the influence from a teacher, this new sequence is appropri-
ately assigned to a new subset of synapses within the motor effector area and
learned there. If that same motor sequence is required at a later time, the
control plant needs only to activate the appropriate reference activity to imme-
diately recall the full sequence from the motor effector area. Such a functional
architecture appears to be present in frogs, where modulators affecting the tec-
tum can change the action repertoire of the animal 37. Efforts in this direction
are currently being pursued in combination with some recent ideas 45,46,47 re-
garding involvement of motor output in the generation of conscious perception
and control, efference copy being the source of the reference signal.

It is still a matter of debate whether ”hot-spots” like those found experi-
mentally by Schiller et al. (2000) are of any use to the nervous system. The
present work aims at specifying one of the possible uses that the nervous system
may find for such ”hot-spots”, but it would not be surprising if other applica-
tions existed for differentially activated dendrites (such as those proposed in
Segev241, Mel177, Agmon-Snir et al.4), perhaps even simultaneously. Also, it
should be noted that the method presented here for synaptic parcellation invok-
ing the NMDA receptor and dendritic anisopotentiality does not exhaust the
ways in which parcellation could be realized in nervous systems, such as one-
to-one modulation of synapses (perhaps requiring formation of synapses on the
stalks of dendritic spines, like those observed in the basal-ganglia’s neostriatal
spiny cells273), some kind of inhibitory shunting271 or highly localized Ca2+

transients (like those observed in branches and spines of Purkinje cell dendrites
54,55). Any of these methods could thus in principle also be used to subdivide
the synaptic population into individually trainable subsets.
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This is work in progress and thus some outstanding questions still remain,
but most importantly it remains to be investigated whether the reference activ-
ity as presented in this work has any relevance to real neurobiological systems.
It is clear that some areas of the brain are exquisitely context sensitive even to
the point that it becomes difficult to identify which factors actually make the
difference258. Such context sensitivity may arise from neurons which are highly
attuned to specific cues (be they internal cues as in efference copy, or external
cues as in sensory stimuli), and it is this kind of neurons that to some extent
are envisioned to be responsible for the reference signal in the present work
(especially if assuming that a reference based architecture exists also in higher
vertebrates). Other recent models249,151 have invoked context neurons to allow
for sequence disambiguation in the hippocampus. The present work differs from
these other models in that it gives an alternative solution to the same class of
problems, by invoking different neuronal properties expressed at the dendritic
and synaptic level rather than at the whole-neuron level. Further studies will of
course be necessary to decide whether sequence separation occurs at the synap-
tic level or at the single-neuronal level, but given the existence of command
neurons and similar structures in invertebrates and lower vertebrates, these an-
imals would seem to be particularly well suited candidates in which to search
for the nitty-gritty details of reference-based memory access architectures.

The aim of this work has been to show that subdividing the synaptic popu-
lation at the level of the dendritic branches can have some useful computational
properties, and might even have some biological plausibility. It is hoped that
this approach might give some insight into the workings of real nervous systems,
particularly when selecting and encoding motor programs during continuous be-
haviour.
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Chapter 8

Corticospinal Networks

Chapter Summary

A few of the most important anatomical features of the spinal cord
will be reviewed, the purpose being to specify a realistic (although
numerically reduced) model of spinal connectivity which may be in-
corporated into the computer model that is being developed. In the
context of voluntary muscle control of the human arm, only the ven-
tral spinal networks at the cervical segments need to be considered
(as a first approximation). Some of the properties of the main corti-
cospinal projections originating from corticomotoneuronal cells will
also be reviewed and incorporated into the model.

A defining feature of animals belonging to the phylum chordata is the pres-
ence of a notochord†, the existence of a dorsal tubular nerve cord† and the
presence at some point in their lifetime of pharyngeal gill slits†. In vertebrates
the notochord is replaced by a vertebral column†, a feature which humans share
with more than 43000 different species across 7 classes 250: Agnatha (jawless
fish), Chondrichthyes (sharks and rays), Osteichthyes (bony fish), Amphibia
(frogs, toads and salamanders), Reptilia (lizards, snakes, turtles and alligators),
Aves (birds) and Mammalia (mammals). The large success of all these animals
in adapting to the enormous variety of environments in which they live must,
to a large extent, be attributable to the excellent integrative properties of a
centralized nervous system.

With such a wide range of applicability, it is no wonder that much research
has been directed at studying the spinal cord (see Gordon 92, Burke31, Purves
et al.217 for an overview), and indeed some of the earliest and foundational
discoveries in neuroscience actually are related to this region of the nervous
system48. It is probably also one of the best understood areas of the nervous
system simply because neurons here have direct causal relationships with mus-
cle activations or raw sensory input, both of which are easily measurable and
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quantifiablea.

8.1 Basic anatomy of the spinal cord

The spinal cord is a long tube with thick walls which runs inside the verte-
bral canal. The tube, or central canal, is filled with cerebrospinal fluid and its
walls are an external layer of white matter and an internal core of gray matter
(in a spinal cross-section, the gray matter resembles a butterfly). Function-
ally, the spinal cord is subdivided longitudinally into segments, each segment
corresponding to a vertebrae and providing two dorsal and two ventral nerve-
bundles called roots. Each of these roots corresponds to a particular set of
muscles (motor efference through ventral roots only) and a specific band of
sensory surface (sensory afference through dorsal roots only, including type Ia
and type II spindle afference from a particular set of muscles). There is a very
logical correspondence between the position of the segment along the cord and
the corresponding muscles/sensory band: Segments at the cervical vertebrae
are associated with arm muscles/sensory systems, while segments at the lumbar
vertebrae are associated with the legs.

Another functionally important subdivision of the spinal cord is best appre-
ciated in cross-section. The dorsal horns are the main target of the dorsal roots
and are consequently mainly concerned with processing and relaying sensory re-
lated information. The ventral horns are mainly concerned with processing and
relaying motor output related information, and are thus the source of the ventral
root projecting efferent fibers to muscles and spindles. There are some complex
interconnections between the neurons residing in the dorsal and ventral horns
92, mostly mediated via interneurons. A large proportion of these connections
are directed from the dorsal to the ventral horns, and it is fair to say that via
these connections the motoneurons in the ventral horn are very well informed
with respect to exteroceptive† and proprioceptive† input (see below).

By placing retrograde tracers in a muscle, it is possible to observe the distri-
bution within the spinal cord of all the motor neurons innervating the muscle.
Typically such a motor neuron pool will contain approximately in the order of
102 large motoneurons280, organized as narrow columns or rods running lon-
gitudinally within the ventral horn, and often spanning a few segments 217,34.
These columns are arranged so that the proximal muscles’ motoneurons are ar-
ranged medially while the distal muscles have columns in lateral regions of the
ventral horns. A detailed model of the motor neuron pool will be developed in
chapter 9.

8.2 Connectivity and Neuron populations in the
ventral horn

On first inspection, the neural connectivity within the ventral horn might appear
bewilderingly complex. Fortunately, there are some very simple organizational
principles which make it possible to make some progress nevertheless, as they

aContrast this to the situation in the human association cortices which are far removed
both from sensory input and motor output, and whose activity is far more difficult to interpret
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reveal that the complexity by and large is caused by a repetition of the same
basic circuits.

One very important organizing principle has to do with the activation of
muscular synergies, i.e. groups of muscles that are functionally linked and hence
are, more often than not, activated together. An example could be the synergy
between the biceps, and the brachialis, both of which will cause elbow flexion.
Under this principle, interneurons can often be trusted to have a projection field
centered at neurons corresponding to a particular muscle but spreading also to
neurons corresponding to other muscles in the same synergy or to neurons that
inhibit an antagonistic synergy. This principle is so important, in fact, that it
is not unreasonable to use it to define a canonical spinal circuit

8.2.1 Motoneurons

Motoneurons have the distinctive characteristic that they are the only neurons
in the CNS which directly innervate non-neural cells 82,217, their main function
being to stimulate contraction in muscle tissue. There are three classes of moto-
neurons in the ventral horn: α, β and γ, which are distinguished by the specific
kind of muscle fibers that they innervate. Histochemically these motoneurons
are rather similar, however there are quite significant size differences between
them105 (see also chapter 9). Anatomically they are all located within Rexed’s
lamina XI222,31.

α-motoneurons

The best understood and functionally transparent neuron type in the whole
central nervous system is certainly the α-motoneuron. The function of this
neuron type is simply and solely to activate extrafusal muscle tissue to a level
determined by a weighted evaluation of its input. This apparent simplicity
completely vanishes when one considers the inputs to the cell because afference
to α-motoneurons is complex and multimodal. Just to mention a few sources
of afference (for review see Burke31): Type Ia spindle afference, type II spindle
afference, type Ib GTO afference, Renshaw cells, IaIN, corticomotoneuronal,
rubromotoneuronal, vestibulospinal tract, skin sensory neurons, joint sensory
neurons, intersegmental connections. It is estimated that each α-motoneuron
receives 50000+ synapses from about 10000 such neurons 281,31, however the
exact numerical contribution from each source has yet to be elucidated in most
cases (but see table 8.1).

It should be mentioned that the axons of α-motoneurons belong to the Aα
fiber class51,202, and have conduction velocities in the range from 70 to 120m/s.
Thus a conduction delay of 5ms may be assumed between spinal cord and distal
arm muscles. The axon of a given α-motoneuron has ACh based synaptic termi-
nations (neuromuscular junctions) on a number of extrafusal muscle fibers. This
collection of muscle fibers together with the α-motoneuron responsible for their
innervation is known as the motor unit (see chapter 9). A complex interaction
between the motoneuron and the innervated muscle fibers takes place upon the
arrival of a spike, the main outcome of which is the sudden contraction of the
muscle fibers, a twitch. A model of this process is provided in section 9.3. α
motoneurons come in a variety of sizes, and there are several important features
which seem systematically correlated with the conduction velocity (size) of the
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particular motoneuron105,186,189: Larger motoneurons are part of stronger and
faster motor units than the corresponding units associated with smaller neurons
(see chapter 9).

Via an axon collateral the α-motoneurons also innervate a number of Ren-
shaw cells (see below), thus providing feedback inhibition to the synergic mo-
toneuron pool. According to some accounts31 there are also some size-related
correlations in this connection in that larger motoneurons produce larger PSP’s
in the target Renshaw cells than do the smaller motoneurons. Perhaps surpris-
ingly, the inhibitory effect of Renshaw cells on the larger motoneurons is less
than on smaller motoneurons.

γ-motoneurons

The immediate function of this cell type is also very well defined, it is simply to
activate the contractile element of the muscle spindles. Its precise role in move-
ment, however, has been (and still is) the source of much controversy 95,214, as it
touches upon some central issues related to motor control theory (see chapters
10 and 11). The afference to this type of neuron is little known, although it
seems to be much the same as for the α-motoneurons, albeit with at least one
important exception: There are no type Ia afferents to γ-motoneurons (proba-
bly to avoid instability due to strong positive feedback), however there is some
evidence that they receive type II afferents127. The axon from γ-motoneurons
belongs to the Aβ fiber classification202, with conduction velocities in the range
from 30 to 80m/s. A conduction delay of approximately 5-10 ms should there-
fore be assumed between spinal cord and distal arm muscles.

Considering that intrafusal fibers may be dynamic or static giving rise to
type Ia and type II spindle afference respectively (see chapter 10), a distinction
should at least be made between γ-motoneurons which innervate dynamic bag
fibers (γd) and those which connect to the static bags and chains (γs). The
spinal connectivity patterns of both species are very similar, although there
might be differences in the particular sources projecting to each group.

β-motoneurons

This neuron type innervates extrafusal and intrafusal muscle fibers alike, making
it an intermediate between α and γ-motoneurons. Its role in motor control is
complicated by the fact that this type of neuron does receive type Ia spindle
afference, creating strong positive feedback loops.

8.2.2 Interneurons

Strictly speaking, an interneuron is any neuron which only has neuronal afferents
and only innervates other neurons. Such a broad definition is really not very
useful as it includes the vast majority of neurons in the CNS, so instead it is
often used in a more regional sense, i.e. a neuron mediating communication
within a restricted area of the nervous system. There are various classes of
interneurons in the spinal cord, many of which have been studied extensively
113,276,31. Functionally, the best characterized are the Renshaw cells, the Ia
inhibitory interneurons and the Ib inhibitory interneurons.
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Renshaw cells (R)

These cells are located in Rexed’s lamina VII, and are primarily characterized by
their connectivity pattern: Renshaw cells provide inhibition to the same group
of α-motoneurons from which they receive excitatory inputs. As is common
for inhibitory neurons, Renshaw cells can attain very high firing frequencies
(∼ 1000Hz). It is hypothesized31 that there are two populations of these cells
which have the same connectivity but use different inhibitory neurotransmitters
(GABA and Glycine) for the task (although there is also evidence that GABA
and Glycine may coexist in the nerve terminals on motoneurons 209). As men-
tioned earlier, the inhibitory effects of Renshaw cells on large motoneurons seem
to less than those on small motoneurons, however larger motoneurons produce
larger EPSP’s on Renshaw cells than do small motoneurons 116,115. Finally, it
has been reported that Renshaw cells may inhibit each other 231, and that they
also inhibit IaIN cells acting on the antagonist muscle. An extensive review of
the form and function of Renshaw cell connectivity is given in Windhorst 277.

Ia Inhibitory Interneurons (IaIN)

One of the targets for type Ia spindle afferents is a class of interneurons which
primarily inhibit the motoneurons of antagonist muscle groups. These interneu-
rons are sometimes referred to as IaIN, and certainly form an important class
of neurons in the spinal cord. They receive input from many different neu-
ron systems, most importantly from Ia afferents, Renshaw cells, and antago-
nist IaIN, but also from a wide variety of tracts (vestibulospinal, corticospinal,
rubrospinal) as well as from cutaneous and joint afferents. Reciprocal inhibition
seems to be the most prominent function of these neurons 276,31, but the exact
functional role of IaIN will be influenced by which set of afferents to the IaIN
that are most prominently active. For example during a stretch reflex, the firing
rate of Ia afferents from the stretched muscle will increase, causing a reflex con-
traction of the stretched muscle, while simultaneously inhibiting the antagonist
muscle via the IaIN. In a similar vein, a descending tract which excites or in-
hibits a particular motoneuron also sends collaterals to IaIN thereby inhibiting
or exciting the motoneurons of the antagonistic muscle respectively 92.

Ib Inhibitory Interneurons (IbIN)

As their name indicates, these neurons receive their main inputs from type Ib
sensory afferents, but other systems also contribute, such as EIns mediating cu-
taneous and joint sensory afference, and Ia afference. Ib inhibitory interneurons
provide strong inhibitory input to homonymous motoneurons, and form part
of an important mechanism to avoid muscle damage by reducing force produc-
tion in overtensed muscle. A role in muscle force regulation during mechanical
contact between a limb and the environment has also been suggested 92.

Excitatory Interneurons (EIn)

The existence of polysynaptic excitatory pathways in the spinal cord has been
inferred by observing the delays between the time when a certain fiber system
was activated, and the appearance of EPSP’s in the presumed targets 31. Very
short delays indicate the presence of a monosynaptic connection whereas longer
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delays might be attributable to polysynaptic connections characterized by the
existence of interceding interneurons. Many excitatory interneurons have thus
been identified, primarily in connection with sensory afferent systems which
always seems to have synapses on EIns. There is thus a polysynaptic excitatory
connection mediating cutaneous and joint afference which affects IbIN cells 92.
There is also a polysynaptic excitatory connection linking type Ib afferents to
antagonist motoneurons92. And finally, there is a very important polysynaptic
excitatory connection between type Ia and II afferents and the αmotoneurons 31.
Most descending pathways will likewise activate polysynaptic circuits, but the
details of these are less well known due to the difficulties inherent in identifying
this neuron types93,31.

PAD interneurons

Primary afference is subjected to cortical modulation via presynaptic inhibition
of Ia terminals on motoneurons53,182(for an extensive review of this subject, see
Rudomin and Schmidt229). Presynaptic inhibition is usually accompanied by
primary afferent depolarization (PAD), and is probably mediated via popula-
tions of GABA-ergic interneurons that have axo-axonal synapses on the primary
afferents at their junctions with motoneurons 229,182. Collectively, the interneu-
rons responsible for this type of inhibition are sometimes referred to as PAD
interneurons. Stimulation of the sensorimotor cortex (in cat) decreases this
kind of presynaptic inhibition163,228, an effect that under normal conditions is
centrally programmed and observable roughly 50ms prior to the beginning con-
tractions of the activated motor units205. There seems to be evidence pointing
to a differential cortical effect on presynaptic inhibition depending on the func-
tional role of the activated muscles182: in leg muscles motor cortical activity
decreases presynaptic inhibition, thus facilitating the reflex pathways, whereas
the opposite apparently is the case for the wrist muscles. Hultborn et al. 117 have
reported that presynaptic inhibition is decreased in voluntarily activated mus-
cles, but simultaneously increased in the non-active ones. Overall this activation
pattern increases the gain of the monosynaptic reflex in the active muscles, per-
haps enabling improved load compensation 229. Flexor reflex afferents (FRA)
also modulate the PAD pathways, and it has been surmised that appropriate
cutaneous stimulation will reduce presynaptic inhibition, so that the gain of
primary afference dependent reflexes becomes automatically increased during
limb contact with the environment182.

8.2.3 Sensory Afferents

A distinction is made between exteroceptive and proprioceptive afferents. The
difference is related, respectively, to whether the information they carry is
caused by events in the environment (mediated through touch, pain, pressure
and temperature sensors), or whether the afference is associated with actual
movements of the body (spindles, golgi-tendon organs, joint sensors, etc.). Thus,
sensory information arriving at the ventral horn is highly multimodal, as would
be expected of a system which has to produce fast and contextually appro-
priate responses independently from any central control. Simple reflexes, and
locomotion are good examples of such responses. In the present case only pro-
prioceptive afference will be considered as it is the most directly linked to the
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control of movement, and emphasis will be mainly on those sensory inputs gen-
erated by the muscle stretch receptors which are mediated via type Ia and type
II fibers.

Type Ia fibers

A stretch sensitive annulospiral innervation surrounds the central regions of
dynamic bag and static chain fiber elements of the intrafusal fiber system in
muscle93,36 (see chapter 10). When the intrafusal fiber is subjected to a change
in length, the innervated region will also change its length, but at a different
rate, depending on the mechanical properties of the particular fiber (see section
10.1), which results in a stereotypical firing pattern, that for the type Ia fibers is
highly correlated with the rate of change of length of the whole muscle. Firing
rates in this type of fiber go from approximately 20 Hz at rest to over 150 when
maximally stretched93,31,259. These fibers are among the fastest conducting
fibers in the nervous system as they belong to the Aα fiber class 51,202, with
conduction velocities in the range 70 to 120m/s. The maximal conduction delay
from a spindle in distal arm muscles to spinal cord will seldom exceed 5ms
(assuming a distance of 50cm).

At the afferent side, type Ia fibers synapse directly onto α and beta motoneu-
rons that are associated with the same muscle, and less densely on motoneurons
of synergistic muscles. Type Ia fibers are also the principal input to type Ia
inhibitory interneurons. The synapse is excitatory as it uses glutamate as trans-
mitter in connection with AMPA type receptors postsynaptically 31. On average
there are about 10 synapses from a single Ia afferent onto any of its motoneu-
ronal targets, making a very powerful connection. To a first approximation, it
may be assumed that a muscle with n motor units, will have roughly 0.1n type
Ia fibers, which means that a given motor neuron would be receiving at least n
synapses associated with homonymous Ia afference. This assumption is based
on numerical estimates of the number of Ia synapses on motoneurons (1000
approximately)31, synaptic redundancy (10 synapses from the same Ia fiber) 31

and the typical size of a motor unit (10-2000 according to some accounts ) 82).
However, some reports seem to favour a slightly denser connectivity where each
Ia afferent contacts all motor neurons of the homonymous muscle plus a large
fraction of the motor neurons of synergist muscles 179,92.

Type II fibers

In many respects this type of fiber is similar to the type Ia fiber, as it also conveys
information from the spindles to the motoneurons. However, there are some very
important differences. In particular, type II fibers solely innervate chain fibers in
the spindle, and therefore only are responsive to the actual length of the muscle.
Other important differences are that it has a much lower conduction velocity,
a weaker connection to α motoneurons31,127, and a monosynaptic but weak
connection to γ motoneurons127. Like the Ia fibers, type II fibers also have
excitatory effects on the Ia inhibitory interneurons. These fibers are slightly
slower than Ia afferents, as they belong to the Aβ fiber classification 202 with
conduction velocities in the range from 30 to 80m/s. From a distal hand muscle
to the spinal cord a conduction delay of 5-10ms should be assumed.
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Origin Class Destination Transmitter ERP

α RS Extrafusal ACh 0mV
α RS Renshaw (H) ACh 0mV
β RS Extra- and Intrafusal ACh 0mV
γ RS Intrafusal ACh 0mV
Ia FS α (H) Glu 0mV
Ia FS EIn(H) Glu 0mV
Ia FS IaIN(A) Glu 0mV
Ia FS IbIN(H)93 Glu 0mV
II FS α(H), γ(H), EIn(H) (IaIN(A)) Glu 0mV
Ib FS IbIN(H) Glu 0mV
Ib FS EIn(A) Glu 0mV

IaIN FS α(H), IaIN(A) and γ(H) Gly -70mV
Renshaw FS α(H),γ(H) GABA Gly -70mV
Renshaw FS IaIN(A) GABA Gly -70mV
Renshaw FS Renshaw(A) GABA Gly -70mV

EIn RS IbIN,α Glu 0mV

Table 8.1: Overview of spinal neuron types. Compiled from Jankowska and
Gladden127, Gordon and Ghez93, Gordon92, Burke31, 32

Type Ib fibers

Golgi tendon organs (GTOs) are specialized structures in muscle tendons which
are well suited to measure a muscle’s absolute tension especially during contrac-
tion. They are innervated by type Ib fibers which thus bring tension related
information to both agonist (disynaptic inhibition via type Ib inhibitory in-
terneurons) and antagonist motor neurons (disynaptic excitation via excitatory
interneurons of the antagonist muscle). The GTO is highly sensitive to tension
changes: the twitch of a single motor unit in a muscle is sufficient to increase
the firing frequency of Ib afferents92. These fibers are as fast at the Ia afferents
(70-120m/s is the normal range)202, with similar conduction delays from distal
hand muscles to spinal cord (5ms).

8.3 The Myotactic Unit

Due to the fact that muscles can only produce pulling forces, movement about
any joint necessarily requires at least two counteracting muscles, usually termed
the agonist muscle and the antagonist muscle. From the anatomy reviewed
before, it seems that the whole motor system in the spinal cord is organized
around this fundamental principle: The direct or indirect effect of any spinal
neuron on the agonist muscle will be exactly opposite the effect on the antagonist
muscle. Consider the following example:

1. Renshaw cells receive excitatory connections from α-motoneurons inner-
vating a particular (agonist) muscle and provide inhibitory feedback to
the α-motoneurons, dynamic and static γ-motoneurons, and inhibitory Ia
interneurons.

2. Renshaw cells inhibit Renshaw cells that innervate the same cell groups



8.4. THE CORTICAL CONNECTION 125

corresponding to the antagonist muscle

All in all, these points indicate that whenever a Renshaw cell is activated by
the agonist muscle’s motoneuron pool, it tends to inhibit all neurons that would
directly or indirectly increase force production in the agonist muscle (point 1),
and it would simultaneously be disinhibiting all neurons that increase force
production in the antagonist muscle (point 2). A similar analysis of all the
other neuron types in the spinal motor system reveals a similar pattern: If a
neuron’s net effect on the agonist motor neuron pool is excitatory, then it will
be inhibitory on the antagonist motor neuron pool. And vice versa.

Thus a very simple organizational principle seems to apply, permitting the
clear delimitation of a functional unit that controls movement around a single
joint. This has sometimes been referred to as the Myotactic Unit 92,159, which
corresponds to the minimal spinal circuitry that is involved in regulating joint
stiffness and torque. Figure 8.1 presents a numerically reduced version of just
such a myotactic unit for a two muscle joint, which includes all the major
neuron groups and their interconnections (described in sections 8.2.1 to 8.2.3).
In association with the specifications in table 8.1, figure 8.1 shows the basic
connectivity patterns that will form the basis for the spinal networks used for
the simulations of human arm movement presented in chapter 11.

8.4 The cortical connection

Experimentally based investigations into the functional localization of areas in
the cortex began in 1870 with the work by Fritsch and Hitzig on the motor cortex
of dogs. They showed that stimulation of the dog’s cortex elicited contralateral
limb movements. Later work by Leyton and Sherrington 150 demonstrated that
the motor cortex is topographically organized in a relatively simple way, giving
rise to the idea of a motor-homunculus. The simplicity of the ”homuncular”
motor cortex belies the underlying organizational complexity, where it becomes
evident that at small length scales, the homunculus disappears. For example
it has been demonstrated that individual neurons in the arm area of primary
motor cortex do indeed influence multiple arm muscles, even to the extent that
they innervate combinations between proximal and distal muscles (McKiernan
et al 1998). Indeed, in later years it has become increasingly clear that the motor
cortex has a much more complex, modifiable and distributed organization than
what was previously assumed235,236,232.

In a thorough review of cortical architectonics, Braitenberg and Schüz 28

provide much of the necessary statistics and geometry to build a general model
of a cortical network. For our present purposes it will not be necessary to im-
plement a cortical network in full detail because focus will be directed mainly at
only a small subset population of cortical neurons commonly known as cortico-
motoneuronal cells. These cortical neurons have descending projections which
enter the spinal cord mainly via the corticospinal tract, and are thus primar-
ily associated with the activation of distal muscles 147,148. A technique known
as ”spike-triggered averaging of rectified EMG activity” was developed by Fetz
and Cheney65 for identifying in vivo cortical cells with direct connections to
motoneurons. This technique is based on the idea that the firing probability
of motor units (and hence the EMG) must be influenced directly by monosy-
naptic cortical connections. The influence of a cortical neuron on motor unit
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Figure 8.1: Basic motor circuitry in the spinal cord represented by a bi-muscular
myotactic unit. Any number of motor units may be added to the myotactic unit.
Nomenclature: α=α-motoneuron, R=Renshaw cell, γs=static γ-motoneuron,
γd=dynamic γ-motoneuron, Ia=primary spindle afferent, II=secondary spindle
afferent, EIn=Excitatory Interneuron, IaIN=Ia Inhibitory Neurons, IbIN=Ib
Inhibitory Neuron, Jt.=Joint receptor, Cut.=Cutaneous fiber, Ib=Golgi tendon
organ afference, PAD=PAD interneurons.
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Fetz et al., 1989

Figure 8.2: Response patterns of CM cells during ramp-and-hold wrist move-
ments (figure from Fetz et al.67). See text for details.

activity may be deduced by aligning EMG traces with respect to the firing of
that particular neuron65,67,40. In an elegant series of experiments Cheney and
Fetz39 have identified several functional classes of cortical cells under a variety
of circumstances have strong correlations to EMG’s, and hence to movement.
Such cells are commonly referred to as ”corticomotoneuronal” (CM) cells and
their- activity patterns during various movement tasks have been classified 67

into six basic response patterns which seem to be prevalent among CM cells, as
shown in figure 8.2, which also shows the relative percentage of each activity
class (from Fetz et al.67).

As can be seen in figure 8.2, the two most common response patterns of
CM cells are the phasic-tonic (48%), and the tonic (28%), and consequently
these have received most attention as to their putative roles in motor control.
It has thus been suggested66 that the phasic component might be necessary for
overcoming the inhibition of inactive agonist motor units and for inhibiting an-
tagonist motor units via the corticospinal projections to IaIN cells. However, it
should be emphasized that corticomotoneuronal EPSP’s on spinal motoneurons
are relatively small, and are probably not able to fully recruit the motoneuronal
pools66,31 (other descending systems are required for effective recruitment, such
as the rubrospinal, the vestibulospinal and the reticulospinal). Furthermore,
there are several instances in which the CM cells are active without observ-
able EMG’s in the innervated motor unit, or where they are inactive during
the presence of strong EMG’s. Various such situations are listed in Fetz and
Cheney66:

• During ramp-and-hold movements CM cells increase their firing rates at
various times before and after EMG onset in target muscles (-71 ms for
phasic-tonic, -63 for phasic-ramp, +5ms for tonic and +101 for ramp) 40

• At low muscle force levels, CM cells may be active (tonically) without an
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accompanying activation of their target motor units.

• CM cells are recruited during passive (imposed) movements of the limbs
when the target muscles are stretched, and thus these cells must almost
certainly be responding to primary and secondary afferent activity (and
even cutaneous stimuli).

• A few CM cells are recruited at higher force levels than what recruited
the target motor units.

• CM cells are surprisingly inactive during forceful movements (such as rapid
shaking) or in general when large forces are required (power grip).

All these observations lend support to the notion that CM cells are strongly
correlated with movement, but not necessarily causing it, and in fact may have
more a role of modulating voluntary movements requiring high precision. It is
well known that descending tracts innervate several distinct cell populations in
the spinal cord (see figure 8.1), and in particular it is common to observe that
projections targeting motoneurons in fact target both the α and the γ variety, if
not directly then certainly via local interneurons 83. So what might then be the
exact role of such cells, given their wide variability in pattern responses? An
intriguing possibility will be explored in chapters 10 and 11, namely that CM
cells might be involved in the cancellation or modulation of expected afference
coming through primary and secondary fibers. The basis for this supposition
resides in the observation that there are some similarities between the CM re-
sponse patterns and those γ-motoneuronal activity patterns that would produce
complete afference cancellation. These similarities extend also to the early onset
activation of the phasic-tonic CM cells and to the late onset activation of the
tonic CM cells.

8.4.1 Cortical functional topology

On first inspection, it might seem compelling to think that the introduction
of lateral connectivity in the cortex will produce a sheet that only allows 2-
dimensional mapping functions. Let us say the cortex is aligned to the xy-
plane, then a given position in this plane, r ∈ R2, will uniquely represent some
piece of information. If the cortical plane is further subdivided into specialized
regions then the nature of the information represented by r will be determined
by the regional specialization. Thus, neural activity at a position inside the
ocular dominance region corresponding to the left eye and inside the subregion
corresponding to red coloring might represent the degree to which there are any
red-tainted lines within the receptive field of the retinal ganglionic cell.

The existence of horizontal projections which spread out tangentially to the
cortical surface posits a situation where lateral spreading of activity in the cor-
tical mantle is a possibility. From being a concatenation of separate columns
functioning independently and in parallel, a cortical region now becomes a self-
contained dynamical structure capable of sustaining various attractor states 73.
In chapter 2 the notion was introduced that cortical networks might use lateral
spreading of activity for computational tasks. Some simulations were reviewed
where it was found that local lateral connectivity could be used for complex
computations86. But this was under the assumption that the cortex functioned
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as a 2 dimensional diffusion network, where each dimension corresponded to a
parameter in the motor control problem (in that case it was the joint angles
θ1 and θ2). Constraints can be imposed in such a system by blocking out con-
nections, essentially limiting the routes through which activity diffusion might
occur.

There is the question of cortical dimensionality: Connectivity within the
cortical mantle produces a topological network which has been estimated 234 to
be of at least 8 dimensions (based on the estimation of the kissing number of
dense sphere packing). This should probably be seen as a lower estimate, be-
cause in more densely interconnected areas, the dimensionality would increase
proportionately. This would mean that direct parametrization of the cortical
dimensions leads to a situation where at most 8 degrees of freedom may be con-
trolled with a given area of the motor cortex. How does this relate to the problem
of controlling the body? The mobility of the human body is approximately 244
(see chapter 3), requiring an equivalent number of cortical dimensions. The
first impression is that such a high mobility would be impossible to control with
an 8-dimensional cortex. However, it is well known that the motor cortex is
subdivided into several regions, each specialized in the control of one part of the
body150. Kinematically, the most difficult single limb to position would be the
arm with its 7 DOF’s, and indeed it has its own partition in the motor cortex,
as does each individual finger (4 DOF’s each), each leg (6 DOF’s). It seems,
therefore, that each distinct area of the motor cortex is dedicated to controlling
a system of lower dimensionality than 8, thus in principle leaving plenty DOF’s
unused.

This idea, that horizontal connections in the cortex might be involved in
computations by constrained activity diffusion (or percolation) in a high dimen-
sional network is very compelling, and in fact warrants much more investigation
than what will be dedicated to it in this thesis. Assuming there is some truth
in this hypothesis, the major problem really is to find what are the parameters
that are controlled by the cortical network. It can certainly not be expected
that the cortex specifies joint angles alone (as required in the model by Glasius
et al.86). Identifying some of these parameters will be an important component
in the rest of this work.
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Chapter 9

The Motor Unit

Chapter Summary

In this chapter, a brief review of the different motor unit types will be
given. Also a theoretical model of muscle fiber activation is provided,
and compared with experimental data. The importance of scaling
factors in the context of muscle modelling is emphasized and a model
is derived which provides quantitatively accurate results even for
simulations with only very few motor units, and which accounts
for many of the experimentally observable properties of motor units
during whole muscle activations. Finally, a full model of the biceps
caput breve is tested as an example of all other muscles that are
included in the arm model (chapter 11).

Once again, Sherrington has provided the first clues, and a name, to a very
important concept that has certainly had a major influence in the study of
vertebrate movement, namely the , which is the basic unit of motor control in
vertebrates. It is well established155,217,31 that a given motoneuron (of the α or
β types) innervates a number of extrafusal muscle fibers within the muscle to
which it projects. A one to one innervation ratio (one muscle fiber is innervated
by a single motoneuron) may be found in certain muscles required for extremely
precise movements (fingers, eyeball)8. However, the innervation ratio of a motor
unit typically depends on overall muscle size and on motor unit type (see below),
and ranges from 10 fibers pr. motoneuron in the smallest units (e.g. in human
extraocular muscles) to 2000 fibers pr. motoneuron in very large motor units
(e.g. in gastrocnemius muscle)82,280. These fibers are evenly (and randomly)
spread out among other muscle fibers, so that the force produced by activation
of a given motor unit is well distributed, and in the case of failure it does not
affect muscle function significantly.

131
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9.1 Motor unit types

Histochemically it is possible to identify three different fiber types in muscle each
of which is characterized by the dominance of one of the three different isoforms
of the myosin heavy chain (MHC) molecule. These are known as isoform I,
isoform IIA and isoform IIB32,8, and confer different contractile properties to the
fibers a. The three fiber types vary with respect to their fatigability, contraction
speed and maximum attainable tension8,280. In a given motor unit all fibers will
usually be of the same type217,57,82, so the contractile properties of a motor unit
will be directly dependent on the identity of the constituent muscle fibers. In
this context, the following physiologically based classification scheme of motor
units has proven very useful32,8,280,82:

S : Slow motor unit fibers (”red meat”) contract slowly but can maintain a
constant tension for more than an hour of continuous activation. S-type
motor unit fibers contain the type I isoform of the myosin heavy chain.

FR : Fast fatigue-Resistant motor unit fibers contract rapidly, generate inter-
mediate tension levels and can maintain tension almost as long as the
slow muscle fibers. FR-type motor unit fibers contain the IIA isoform of
myosin.

FF : Fast Fatigable motor unit fibers (”white meat”) contract rapidly but fa-
tigue within minutes of continuous activation. These fibers contain the
IIB isoform of myosin.

It should be noted that hybrid muscle fibers containing varying amounts of the
different myosin isoforms also exist, creating a continuous spectrum of fiber
properties (and thus of motor units). It has been reported 8 that conversions
between fiber types can occur naturally as a consequence of training or aging,
further complicating the picture. Finally, it should also be noted, that the pro-
portion in which these fiber types are present within different muscles depends
on the biomechanical requirements normally imposed on the muscle. Thus pos-
ture holding muscles will typically have a larger proportion of slow fibers 8.

There are at least three other properties of the motor unit which seem to
coincide with the histochemical classification of its fibers: The motoneuron’s
activation threshold (neuron size), the innervation ratio and the cross-sectional
area of individual fibers. Thus it has been observed, that large motoneurons have
high innervation ratios to wide FF-type fibers while small motoneurons have low
innervation ratios to narrow S-type fibers. Medium sized motoneurons have, not
surprisingly, intermediate properties8,217,57,82. Functionally, this turns out to
be a very important property of motor units, and is the basis for the production
of precisely controlled movements as will become clear in the next section.

9.2 Orderly recruitment – The size principle

Finely graded changes in muscle tension may be produced by recruiting mo-
tor units in a very orderly and logical fashion. This was first discovered by

aYet another isoform has been identified recently, known as IIx, and has properties in
common with types IIA and IIB. For review and references concerning this and other myosin
isoforms see Burke32, Andersen et al.8
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Henneman105, who observed that by gradually increasing the afferent activity
to a given motor pool, a gradual increase in force was obtained. It was found
that motor neurons were recruited according to their axonal conduction veloc-
ity (and hence in proportion to their size), with slow (small) neurons being
recruited first. This recruitment order is now known as the size principle of
motoneuron recruitment. The gradual tension increase is a consequence of the
fact that small motor neurons innervate type S fibers, medium sized neurons
innervate FR fibers while the largest neurons innervate FF fibers. So, in other
words, the first fibers that are recruited are the S fibers, which are the most
fatigue resistant and produce the smallest tension, shortly followed by the much
faster and stronger FR fibers, until finally the very strong and fast FF fibers
are recruited.

If, as seems to be the case, the spectrum of motor unit sizes, twitch forces
and excitabilities is continuous186,189,279, a very smooth recruitment of units
should be possible. According to some accounts 186,189, the number of motor
units producing a given twitch force is best described by an exponential dis-
tribution (with an overabundance of small twitch forces). Exactly how this
exponential distribution comes about is not entirely clear as it is a mixture of
various factors: 1) the true distribution of motoneuron radii in the spinal cord
105, 2) the form of the proportionality between absolute motoneuron size and the
end-plate potential (affecting twitch duration and amplitude) 279, 3) the form
of the proportionality between motoneuron size and fiber cross-sectional area
82,8, 4) the exact relationship between motoneuron size and fiber composition
of myosin isoforms32,8. In the following simulations it will be assumed that
motoneuron radii follow an exponential distribution in league with the motor
unit distribution.b

9.3 Neuromuscular junctions and their muscle
fibers

The synapse linking motoneurons to muscle fibers is known as the neuromus-
cular junction, and is in may respects an archetypical directly gated synapse
(see chapter 6). As such it has played an important role in the elucidation of
synaptic mechanisms of transmission, and many models have been forwarded to
yield up important information regarding the causal links involved (reviewed in
Kandel and Siegelbaum132). Superficially, the activation dynamics observed at
the muscle fiber do resemble the dynamics of a facilitatory synapse during short
stimulations, with the addition of depressive dynamics during long stimulations
(see chapter 6). This superficial similarity should not be taken too far without
further study, simply because muscle activation is not only related to synaptic
dynamics. After the arrival of an action potential with its resulting end-plate
potential, it is well known that the final event causing contraction in muscle

bAt least one other possible scenario seems to be discarded on a first inspection, namely that
the radii of motoneurons within a motor neuron pool should conform to a normal distribution
(i.e. mostly containing middle sized neurons with a few very large and a few very small
neurons). Such a distribution would imply that the middle sized neurons would be required
to form most of the slow/weak motor units (to account for the numerical superiority of this
kind of motor unit), contrary to experiments showing a direct proportionality between neuron
size and motor unit force (for review see Ghez 82).
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is the release of Ca2+ ions from the internal Ca2+ stores in the sarcoplasmic
reticulum176,82 and into the intracellular regions at the sarcomere where the
myosin and actin filaments are located. As mentioned in chapter 4, intracel-
lular Ca2+ is necessary to move the tropomyosin-troponin complex away from
the actin binding site, and thus permitting the formation of cross-bridges 176,57.
Released Ca2+ will slowly be sequestered back into the sarcoplasmic reticulum,
and with the lowered Ca2+ concentration, the tropomyosin-troponin complex
will again conceal the actin binding sites. In a sense, the sarcoplasmic reticulum
may be likened to a very slow ”internal” synapse using Ca2+ as its transmitter
in response to the arrival of an end-plate potential.

In the present case, the specific details of neuromuscular synaptic transmis-
sion and subsequent activation of the sarcoplasmic reticulum are not considered,
but are instead subsumed into a simplified model of muscle fiber activation. The
motivation for doing this is that sufficient data is available concerning the spike
to force response properties of the muscle fibers (reviewed in Ghez 82). In par-
ticular, it is well known that the twitch force of a muscle fiber (or motor unit)
will have a sharp increase shortly after the arrival of a motoneuronal spike,
and that after this initial rise, the force will slowly decay back to zero with
a time constant in the order of 100 to 200 milliseconds. At low motoneuron
spike frequencies the individual twitches are readily observable. However, if the
frequency is increased, the individual twitches will begin to overlap each other
(unfused tetanus) until at very high frequencies the twitches coalesce so the
force produced is almost constant (fused tetanus) 82. If high levels of activation
are maintained for longer periods of time (minutes or hours), then some of the
muscle fibers will fatigue, starting with the MHC IIB fibers, and then followed
by the MHC IIA fibers8, and the MHC I fibers will outlast all other fiber typesc.

A model of muscle activation levels should also include the ”catch-like” effect
that has been observed in many muscle preparations 33,82, which consists of a
prolonged increase in twitch force following the insertion of an extra spike into
an otherwise regular spike-train. The catch-like effect is frequency dependent,
and also motor-unit type dependent, and in vertebrates it was initially observed
in the medial gastrocnemius of the cat33. At least one model has been proposed
earlier to account for this effect103, but was dependent on using a particular
muscle force model (a Voigt element) to provide a non-zero internal muscle node
velocity during isometric contractions. Although maybe a matter of personal
opinion, it seems to be more useful to keep the force producing mechanisms
separate from the activation dynamics, at least until compelling evidence points
to a strong link between the two. As pointed out earlier, muscle twitch activation
dynamics could well be based on purely electrochemical processes resembling
those in a central synapse (albeit with slower dynamics). The following is an
empirical ”synaptic-like” model which attempts to capture the twitch dynamics
and the catch-like effect of muscle but purely based on a transmitter and ion
release/reuptake type of mechanism (thus without reference to any particular
muscle model). The main output from the model is the ith muscle’s activation
level, Ai ∈ [0, 1], which via equation 4.34 in section 4.7 directly affects the
number of force producing cross-bridges in the sarcomere. Assuming the arrival
of an action potential to the neuromuscular junction at time tAP , the activation

cNone of the simulations presented in this thesis will exceed a time frame of 5 seconds, so
muscle fatigue will not be an issue in the present work.
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level obeys the following set of equations:

dα

dt
= −

α

τα
+ (β − a) · (1− α) · δ(t− tAP )

dβ

dt
= −

β − b

τβ
+ γ · (1− β) · δ(t− tAP )

dγ

dt
= −

γ

τγ
+ β · (1− γ) · δ(t− tAP )

dAi

dt
=

1

τA
· (−Ai + c · (1−Ai) · α) (9.1)

where δ(t− tAP ) is the delta function, α, β and γ are rate variables which deter-
mine the activation increments, τα, τβ , τγ and τA are the decay time constants
for the different parts of the process, and finally a, b and c are arbitrary con-
stants determining equilibrium positions for the relevant rate variables. This
model has been specifically designed to fit some of the available experimental
data (particularly as reported by Burke et al.33), and as such no special physical
significance should yet be attached to the different constants/parameters in the
modeld.

Figure 9.1 shows the muscle activation level as it varies in time during stim-
ulation at various frequencies. In all cases the larger amplitude traces were
obtained by inserting an an extra action potential 10 ms after the beginning of
the spike train, which was otherwise held constant during the experiment (the
same activation protocol was used in Burke et al. 33). A clearly defined ”catch-
like” effect is observed with maximum efficacy at a stimulation frequency of
approximately 80Hz: The extra inserted spike causes the muscle to be in a
heightened level of activation, which slowly converges back to the unperturbed
situation at a frequency dependent rate. A similar scenario was observed in fast
muscle fibers, except that the ”catch-like” effect was much less pronounced and
only consisted of a short-term increase in the perturbed fiber’s activation level.
A simulation of the fast fiber’s activation levels is shown in figure 9.2.

9.4 Muscle force in the motor unit

The force that is produced by a whole muscle depends on many factors. One
of these factors is of course the sarcomeric tension which in chapter 4 was
expressed by equation 4.28, encompassing the hypothesis that entropic elasticity
at the cross-bridge is the source of this force. In order to get the total force
of a muscle, this sarcomeric tension has to be scaled up accordingly, and it is
therefore necessary to consider some of the anatomical details which determine
the scaling factors. In particular it is necessary to find out how many sarcomeres
act in parallel during a muscular contraction.

As has been mentioned in the previous section, whenever an α-motoneuron
fires, it will cause a twitch in all the muscle fibers which it innervates. The total
isometric force that a motor-unit may generate is thus the product of the inner-
vation ratio times the number of sarcomeres (or myofibrils) arranged in parallel

dThis is work in progress, and a future model should most certainly include more direct links
to measurable parameters. For the present purposes, this model will be perfectly adequate as
long as its input/output ranges are not extended beyond the experimental values to which it
was designed.
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Figure 9.1: Simulation of slow fiber activation dynamics using model in equation
9.1. Inserts at right are modified from Burke et al. 33, figure 5.
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Figure 9.2: Simulation of fast fiber activation dynamics using model in equation
9.1. Insert at right modified from Burke et al.33, figure 7.
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within each muscle fiber times the force produced by an individual sarcomere.
Given that a muscle fiber measures from 5 to 20µm in radius, while a myofibril
is 0.5µm in radius, there must be from 100 to approximately 1600 myofibrils
within a single muscle fiber. The maximal isometric tension in a single sarcom-
ere was found to be T0 = 3.5 · 10−7N in section 4.5.2, which means that the
isometric force of a single fully activated muscle fiber will range from 3.5 ·10−5N
to 5.6 · 10−4N. Innervation ratios range from 1 to 2000. This means that the
smallest motor units, in principle should be able to produce only 3.5 · 10−5N,
while the largest motor units will produce a force of 1.12N (in ”physiological”
terms, the forces range from 3µg to 114g). Published values for motor-unit iso-
metric forces in various different muscles range from 1 to 130 grams 189,186,82,217,
so this theoretical estimate nicely overlaps with the physiological range.

Persuasive as it may seem, there are too many sources of variability in this
approach as to be of any practical use: The innervation ratios for the different
motor units within a muscle are seldom known in much detail, nor are the mus-
cle fiber diameter distributions well studied in most muscles. What is known,
however, is that the motor-unit twitch forces in most muscles follows an ex-
ponential distribution (see section 9.2). As this type of distribution seems to
be a general principle in muscle186,189,279, it is much more useful to define a
motor unit according to the fraction of the muscle’s maximal isometric force,
that the unit may produce. Given that the fundamental unit of muscle force
employed in the present work is based on the sarcomere (see chapter 4), a prac-
tical approach to the twitch distribution problem was to define an ”average”
myofibril (i.e. using equation 4.28). Myofibrils are made up of sarcomeres po-
sitioned end to end along the entire length of a muscle fiber, so their number
therefore depends directly on a muscle’s PCSA and on the cross-sectional area
of a sarcomere (and is thus easily computable). To recreate the twitch force
distribution, a fraction of the total number of myofibrils in the muscle was as-
signed to every motor unit depending on the unit’s size. This of course removes
any differentiation between different fiber types (I, IIA, IIB, IIX), which is ab-
sorbed in the distribution factor. From a physiological point of view this is an
acceptable approximation because the correct muscle twitch force distributions
are attained, and because much of the force-related variability between motor
units is based on fiber cross-sectional area8. Thus rather than having to design
different muscle fiber types and innervation ratios for each and every motor unit
in a muscle, all the motoneuron-size dependent variations can be absorbed into
a single scalar value which helps determine the range of force produced by a
given motor unit (all motor units thus become computationally identical except
for the force modification factor).

Let nmf be the total number of parallel myofibrils in a muscle composed of
nmu motor units. The fraction of myofibrils assigned to the ith motor unit, ϕi,
may be defined as follows:

ϕi =
1

ϕnorm · βmu
· exp

(

−
i

βmu

)

(9.2)

where ϕnorm is a normalization factor selected so that
∑nmu

i=1 ϕi = 1, and where
βmu is a function of the number of units in the muscle, and is defined as:

βmu = αmu · nmu (9.3)
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Here αmu is an arbitrary constant which is important for determining the range
and position of the force-recruitment profiles of the muscle (more about this
in section 9.4.1). The total force produced by the kth muscle may then be
calculated as:

Fk =

nmu∑

i=1

nmf · ϕi · Tsarc,i (9.4)

where Tsarc,i is the sarcomeric force (from equation 4.28 but updated with
equation 4.34) corresponding to the ith motor unit given the current muscle’s
contraction velocity, Vk, and absolute muscle length, Lk. (These should be
scaled down to correspond to sarcomeric velocity and length, using data in
chapter 3 and 4). Equation 9.4 should be used in connection with equation 3.15
from section 3.2.2.

9.4.1 Automatic motor unit re-scaling

For simulation purposes it will sometimes be necessary to scale down the number
of motor units without changing the overall force production characteristics
of the simulated muscle. To this end, βmu was defined as a function of the
number of units so that the minimum and maximum twitch forces in a muscle
change appropriatelye, while at the same time maintaining a good muscle force
dependency on the percent of the pool that has been recruited 270. In particular
the total muscle force should depend on the percentage of motor units that have
been recruited as a simple monotonically increasing function. Assuming that
motor units produce full force right from the moment they are recruited, then
when 50% of the motor units have been recruited, the muscle should produce
approximately 20% of its maximal force270,217, at least in some muscles f. Let
Fn be the muscle force produced when motor units from 1 to n have been fully
activated, and let Fmax be the maximal force of that muscle. Then the force
fraction Fn/Fmax as a function of recruited motor units, n, takes on the form
shown in figure 9.3A. The various curves shown here are equal for any total
number of motor units, nmu, and correspond to using different values of αmu

in equation 9.3. Alternatively, one might plot the muscle force when exactly
50% of the motor units have been recruited, as a function of αmu. This yields
the graph shown in figure 9.3B, which is also invariant to the number of motor
units.

The fact that these force-fraction curves are invariant with respect to the
number of motor units indicates that the chosen scaling function is appropriate
for the task. Since the proportion of slow and fast muscle fibers is directly
affected by αmu, it seems that a useful classification scheme for muscles would
be to determine their αmu values. Muscles with an overabundance of slow fibers
would then be expected to have small αmu values, whereas fast muscles would
have larger αmu values.

To see how this αmu and βmu re-scaling mechanism works it is useful to
plot the force-recruitment profile for the muscle, which here will be defined as

eA 45N muscle with only 10 units requires a mean unit force of 4.5N, whereas if 1000 units
are available, the mean unit force would be 0.045N

fIn reality, however, motor units are not recruited with full force, and a large component
of the gradual force increase in muscle is due to increased motor unit activation rates and not
unit recruitment per se

185. See also figure 9.8.
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Figure 9.3: A. The force fraction Fn/Fmax as a function of recruited motor
units, n. The various curves correspond to using different values of αmu in
equation 9.3; B. The force fraction when exactly 50% of the motor units have
been recruited, plotted as a function of αmu. See text for further details.

the twitch force of recruited units as a function of the total (voluntary) muscle
force (e.g. by only letting equation 9.4 run to the largest recruited unit and
plotting the force of that particular largest unit against the total resulting force
up to that unit). This has been done as a log-log plot in figure 9.4, where
the inserted graph shows a similar plot (same axis) with some experimental
data from Milner-Brown et al.186. The numbers in parenthesis assigned to the
individual curves indicate the number of motor units (left), the mean twitch
force pr. unit in the muscle (middle) and the αmu value (right). Even as the
mean twitch force varied from 2.5g to 81.5g, in all cases did the muscle produce
a maximal force of 4000g (corresponding to the maximal force of the first dorsal
interosseus of hand)186. For some values of nmu (∼ 1200) the calculated graphs
become virtually indistinguishable from the experimental graph. In these ”best”
graphs the calculated mean twitch forces (∼ 3g) are well within range of the
experimental results for at least one of the subjects (2.26± 2.8 grams) reported
in Milner-Brown et al.186. The αmu value for this muscle is approximately 0.15,
indicating that it probably contains an overabundance of slow fibers compared
to other muscles.

9.5 Modelling the motor neuron pool

All the ingredients have now been presented that are required to compose a
relatively sophisticated model of a motor neuron pool innervating a muscle in
the human arm. For the purpose of illustration the following model will be
based on the biceps caput brevi muscle (BISH), but for the present project
similar models have been implemented for the other arm muscles (those listed
in chapter 3). Here is a recapitulation of some of the details that a model of the
BISH muscle should include and/or account for:

• PSCA of 2.1cm2 (chapter 3), corresponding to 2.7 × 108 myofibrils (sar-
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Figure 9.4: Twitch force of largest recruited unit as a function of the total
(voluntary) muscle force. The inserted graph shows a similar plot (aligned to
the same axis for data comparison) with some experimental data from Milner-
Brown et al.186. There is a good fit between the simulation and the experimental
data. The numbers in parenthesis assigned to the individual curves indicate the
number of motor units (left), the mean twitch force pr. unit in the muscle
(middle) and the αmu value (right).
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comeres) arranged in parallel (see table 4.1).

• Maximal isometric force pr. cross-sectional area should be within physi-
ological range (i.e. 20-100N/cm2 in striate muscle)279, and thus close to
the theoretically derived value of 45N/cm2 (from section 4.5.2).

• >100 α-motoneurons pr. motor neuron pool.

• α-motoneurons have RS dynamics with a frequency range from 8 to 30
Hz.

• α-motoneurons are recruited in order according to size (chapter 5).

• Innervation ratio ∼ 102.

• Proper muscle twitch activation responses such as tetanic fusion, and the
”catch-like” effect, implemented in section 9.3.

• Motoneuron-size dependent motor-unit twitch force.

• Exponential distribution of motor-unit twitch force composition.

• Orderly recruitment of motor-units according to twitch force.

• Finely graded increases in force as response to a ramp increase in moto-
neuron afference (saturating at maximal isometric tension).

Within the computational framework that has been developed for this thesis,
it is relatively easy to set up a simulation which exactly matches the specified
requirements.

9.5.1 Simulation results for BISH

For the simulation of BISH, 800 RS neurons were modelled with size scaling
factors, %, ranging from 0.08 to 0.8 (see section 5.4.2) and following a simple
exponential distribution of the neuron radii, ri, as defined by the following
equation:

ri = a · exp(b · i) (9.5)

where a and b are arbitrary constants, and i is the index to the motor units.
These neurons represent the α-motoneurons and were connected to the 2.73 ·108

myofibrils in BISH, distributed according to equation 9.2. The resulting twitch
force distribution in the motor pool may be seen in figure 9.5.

In a series of experiments Monster and Chan189 recorded the firing fre-
quency of individual motor units at the extensor digitorum communis muscle
as a function of total voluntary force during isometric contractions. Individual
motor units would start firing at a low rate (∼8Hz) and at a motor-unit specific
minimum voluntary force. After recruitment, the firing rate for a motor unit
increases gradually with the force produced and saturates at a maximum firing
rate of 20-30Hz. These data are shown in figure 9.6a, as reproduced from Mon-
ster and Chan189. In a simulation of the biceps caput brevi (BISH) based on
the models and parameters mentioned earlier, a similar set of data is obtained.
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Figure 9.5: Motor unit composition in BISH muscle simulation. This exponen-
tial distribution of motor unit sizes corresponds very well with experimental
data reported in Milner-Brown et al.186 and Monster and Chan189, who con-
cluded that an exponential relation exists linking the number of motor units to
the motor unit forces.

In this simulation, the motoneurons were subjected to a ramped increase of af-
ference (similar to the one used in figure 5.2), which as expected, resulted in an
orderly recruitment of the units. The spiking of each motoneuron activated a
NMJ, which determined the activity level of the muscle fibers belonging to each
unit. By plotting the activation frequency of each unit as a function of the total
isometric force produced by the simulated muscle, a result very similar to that
reported by Monster and Chan189 was obtained, and is shown in figure 9.6b.
Although a direct comparison is not entirely possible (due to the differences in
total produced muscle force), the simulation results do show the same type of
recruitment dynamics.

Another important relationship that must hold for the simulation to be
biologically valid is that the twitch force of recruited fibers as a function of the
total produced force in muscle should be approximately linear 186,189. This is
best evidenced by plotting both quantities on a log-log plot, as has been done
in figure 9.7. By comparing the simulation data with the data from Milner-
Brown et al.186, Monster and Chan189, it may be concluded that there is good
correspondence between the experimental values and the BISH model. The best
linear fit to the model output data has a slope of 0.004 while the corresponding
experimental value is approximately 0.005 for the first dorsal interosseus muscle
186. The model has a larger minimum recruitment force (approximately 0.01N
in the model compared to 0.003N in Monster and Chan 189) which is attributable
to differences in muscle type (size) and to the fact that the BISH motor neuron
pool was modelled with only 200 motor units.

A direct consequence of the muscle twitch force distribution presented in
figure 9.5 in combination with the ordered recruitment of motor neurons, is
that the total muscle force will increase only slightly (to 20%) until more than
half of the motor units are recruited270,217. This property may be seen in figure
9.8, which is a plot of the instantaneous muscle force at the moment when a
given motor becomes recruited. It should be noted that even when 100 percent
of the motor units have been recruited, the BISH muscle is still only halfway
towards its maximal isometric force of ∼ 90N. This is because there are two
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Figure 9.6: A. Data from189 showing the firing frequency of individual motor
units at the extensor digitorum communis muscle as a function of total voluntary
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units pertaining to the BISH muscle simulation. As can be seen, the simulation
results are quite similar to experimental data in A.
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Figure 9.7: Twitch force of recruited fibers as a function of the total produced
force in BISH muscle simulation.
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Figure 9.8: Total muscle force as a function of the percent of motor units that
have been recruited.

major contributors to gradual force increase: Motor unit recruitment and motor
unit activation frequency. Milner-Brown et al.185 even conclude that motor unit
recruitment only plays a role at low levels of muscle force, while increased firing
rate is the main mechanism at higher force levels. Thus, even when all motor
units have in fact been recruited, there is still plenty of reserve force left in the
muscle, which can only be accessed by increasing the firing frequency of the
motor neurons185.

The modelled muscle eventually does reach the maximal isometric tension as
shown in figure 9.9, which also shows that the force produced by the simulated
BISH muscle increases gradually following a sigmoidal curve as the input current
to the motor neurons increases.
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Chapter 10

The Muscle Spindles

Chapter Summary

This chapter presents a brief review of muscle spindle physiology and
function, but the main emphasis here is the presentation of a novel
hypothesis regarding the function of γ-motoneuronal modulation of
the muscle spindles. The functional importance of γ-motoneuronal
activation during a simple movement task was explored using a com-
putational model of a simplified neuromuscular system. Various
schemes of γ-motoneuronal activation were tested under different
task conditions. Analysis of the simulation data lend support to the
idea that γ-motoneuron activity might be essential for cancelling
expected stimuli rather than only for programming servo-controlled
equilibrium positions of the limbs. It is concluded that the best
performance of a movement is obtained when expected afference is
cancelled by γ activity, thereby allowing for a relatively pure and
”noise-free” detection of unexpected loads, which then may be com-
pensated for correctly. This requires that the system learns the
cancelling signals that are appropriate for different movements.

Note: Part of the work in this chapter will appear in Neurocomputing

The role of muscle spindles has had a long and controversial history in the
field of motor control theory95,259. The muscle spindle is a specialized sensory
organ which is intimately associated with striate muscle (for a thorough review of
relevant spindle physiology see93,36). It is composed of a fusiform capsular sleeve
measuring a couple of millimeters, whose endpoints are attached at different
points to the muscle within which it is embedded. A distinction is usually made
between extrafusal muscle fibers, which are the force producing muscle fibers
per se, and the intrafusal muscle fibers, which are a series of specialized sensory
fibers residing inside the muscle spindle. Three different types of intrafusal
sensory fibers have been identified: the dynamic bag, b1, the static bag, b2, and
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the static chain, c (see e.g. Taylor et al.259 for a recent account). Each of these
intrafusal muscle fibers is endowed with the following features:

• Cellular nucleus and mitochondria usually found in the central regions of
the spindle.

• Contractile elements resembling ordinary sarcomeric tissue are found in
the polar regions of the spindle. Each contractile element receives inner-
vation from a γ-motoneuron in the spinal cord, and thus may be activated
independently of the activity in the rest of the muscle.

• The stretch sensitive process from a sensory spinal neuron innervates the
central region of the fiber, thus bringing sensory afference to the spinal
cord.

The names of the intrafusal fibers derive from the characteristic response pat-
terns of the sensory afferents originating in the different fibers: Dynamic fibers
have activities which are correlated with velocity of contraction, whereas the
activity in static fibers is directly correlated to the current extrafusal length.
Ultimately, the differences in afferent response are caused by differences in the
mechanical properties of the various intrafusal fibers. Essentially the stretch
sensitive innervations will be stretched at different rates depending on the fiber
in question.

In general, the function of the muscle spindle is to report to the nervous
system about the current state of the muscle in which it is embedded. Within the
context of motor control theory, several suggestions pertaining to the function
of the intrafusal fibers have been forwarded, but the current consensus seems to
indicate that one of the most important functions of these fibers is as a ”servo-
assist” mechanism180,173,259. In this view, α- and γ-motoneuron co-activation
brings the innervated muscle to a certain state of contraction, as if moving
towards an equilibrium point62,146,23.

It should be noted that, contrary to other sensory systems like vision or
hearing, proprioception due to type Ia and type II muscle spindle afference can
be centrally modulated at the source via the γ-motoneuron system by chang-
ing the state of the contractile elements within the sensory organ itself. This
means that the CNS in this case has an unique opportunity to modify the raw
afferent data it receives, which hints at the existence of other possible functions
for this kind of afference. Computationally, modulation of afference might be
useful to set up an ”early-warning” expectation based error correction system
in which the CNS presets the tension levels of the intrafusal spindles via the γ-
motoneurons according to expectations derived from an internal forward model
of body biomechanics, loads, context, goals, etc. If the subsequent movements
cause unexpected changes in the firing levels of the spindle system, then an
error can be assumed to have occurred, and depending on the complexity of the
error, different levels of the CNS are called upon to make up a new strategy.
Such a function is more in lieu with the forward internal model hypotheses of
motor-control proposed by some researchers184,136.
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Figure 10.1: Spindle Model Diagram. This figure shows a simplified diagram of
an intrafusal fiber. Emphasis has been given to the mechanical differences be-
tween different regions of the fibers. Static and dynamic fibers may be modelled
by varying the parameters, in particular the damping coefficient of the primary
region has importance in this respect.

10.1 Muscle Spindle Model

A simplified mechanical model of the muscle spindle can be derived by observing
that the individual spindle consists of regions with different mechanical prop-
erties (for an introduction see e.g. Carpenter36). The central (primary) region
of the spindle can be modelled as a Voigt body (i.e. a spring in parallel with
a dashpot), while the polar regions consist of a contractile element in parallel
with a Voigt body. The components of these three regions are arranged in series
as shown in figure 10.1.

The forces produced individually by each of the three elements are described
by the following equations (subindexes A, B and C indicating the element in
question):

FA = FCE(γ, xA, ẋA) + kA · xA + βA · ẋA

FB = kB · xB + βB · ẋB (10.1)

FC = FCE(γ, xC , ẋC) + kC · xC + βC · ẋC

where x indicates length of the elements, ẋ is the rate of change of length, k
is the spring constant, β is the damping coefficient, FCE is the force produced
by the contractile element of the spindle as a function of the fiber’s length, rate
of change of length and the γ-motoneuron activity, γ. In general FCE may be
any function which has a Hill type force-velocity profile with yielding at high
stretching velocities and with a myosin-actin overlap dependent force-length
relationship. In particular, FCE will here be modelled using the muscle force
relationship derived in chapter 4, namely equation 4.28 in combination with the
neuromuscular activation function expressed in equation 9.1 as γ input.
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The total forces acting on masses m1 and m2 are thus:

F1 = m1 · ẍ1 = FB − FA

F2 = m2 · ẍ2 = FC − FB (10.2)

where ẍ is the acceleration. It should be noted that the spindle’s total length,
xspin, and contraction velocity, ẋspin, are imposed by the extrafusal fibers to
which the spindle is connected (because the intrafusal force is much smaller than
the extrafusal force). This means that the following constraints will apply to
the system:

xA = x1 ⇐⇒ ẋA = ẋ1

xB = x2 − x1 ⇐⇒ ẋB = ẋ2 − ẋ1 (10.3)

xC = xspin − x2 ⇐⇒ ẋC = ẋspin − ẋ2

which if substituted into equation 10.2 yields:

m1ẍ1 = kB · (x2 − x1) + βB · (ẋ2 − ẋ1)− FCE(γ, x1)− kA · x1 − βA · ẋ1

m2ẍ2 = FCE(γ, xspin − x2) + kC · (xspin − x2) + βC · (ẋspin − ẋ2) +

−kB · (x2 − x1)− βB · (ẋ2 − ẋ1) (10.4)

Using this set of equations it is possible to simulate the dynamical behaviour
of the different types of intrafusal fibers during imposed length changes and
varying γ-motoneuron activity. According to this model, it turns out that the
critical parameter which distinguishes static fibers from dynamic fibers is the
damping coefficient in the capsular region (βB), which is much larger for the
static fiber.

The results of a simulation of spindles using equation 10.4 are provided in
figure 10.2, which shows the instantaneous firing frequency of type Ia and type II
spindle afferents during a ramp increase (stretching), holding and ramp decrease
(relaxation) of the total spindle length. Empirical data is provided for compari-
son (inset box). Spindle afference sensory neurons are here activated by scaling
their input currents linearly with respect to the length of the capsular region,
xB . It should be noted that type Ia afferent sensory neurons receive input from
dynamic and static intrafusal fibers, whereas type II fibers only receive input
from the static intrafusal elements. In the present context it is considered more
important to capture the muscle velocity and length sensitivities of primary and
secondary fibers respectively, than to obtain an exact fit to a particular species’
spindle afference frequencies. There is an ongoing discussion as to why spin-
dle afference frequencies in non-human species seem to be significantly higher
than in humans, as it has not been possible to base this difference on purely
histological grounds214. Consensus now seems to be that the main culprit is a
large difference in the performed experimental tasks 214, in which human data
was obtained during slower movements than non-human data (primarily due
to microelectrode fixation requirements). To emphasize the different velocity
and length sensitivities of spindle afferents, figure 10.3 compares the activity
in individual primary and secondary fibers during a stretch-hold task shortly
followed by a sinusoidal variation of muscle length.
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Figure 10.2: Simulation of muscle spindle afference. Instantaneous firing fre-
quency in primary (Ia) and secondary (II) afferent fibers as a function of abso-
lute spindle length with and without γ motoneuron activation.
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Figure 10.3: Simulation of the spiking behaviour of primary and secondary fibers
during a stretch-hold task followed by a sinusoidal stretch-relaxation task. The
upper diagram shows activity in type Ia fibers, the middle diagram shows the
length variations and the lower diagram shows activity in type II fibers.

10.2 Spindle Afference Modulation and Cancel-
lation

Activity in γ-motoneurons modulates spindle afference by varying the force pro-
duced in the intrafusal fiber’s contractile element, and thus affecting the length
of the fiber’s central region (where type Ia and type II sensory fibers inner-
vate the spindle). The main argument of the afference cancellation hypothesis
presented here is that during well-learnt slow movements the γ-motoneuronal
activity will have a form which completely compensates for the intrafusal length
changes associated with such a movement so that the primary region of the spin-
dle remains at constant length throughout. A consequence of this is that type
Ia and II fibers will be firing at constant (low) rates during familiar well-learnt
movements (see discussion).

It is relatively easy to show that complete afference cancellation may be
achieved if the force in the contractile element of the intrafusal fibers has the
following form (by letting ẍ1 = ẍ2):

FCE = kB · xB + βB · ẋB −
1

2
· (kA · xA + βA · ẋA + kC · xC + βC · ẋC)

(10.5)

The γ-motoneuronal activity that is required to produce such a force may be
calculated explicitly if it is assumed that force production in the contractile
element of the spindle resembles force production in striate muscle (i.e. with a
Hill-type force-velocity relationship and a myosin-actin overlap dependent force-
length ratio, see figure 10.5). If it is further assumed that FCE scales linearly
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with the activation of the γ-motoneuron then the required γ efference may be
found directly as:

γ =
FCE

Fimax
(10.6)

where Fimax is the maximal isometric force at a particular length (as calculated
from the used muscle model), and FCE is calculated from equation 10.5.

10.3 Simplified Neuromuscular Model System

To explore these issues quantitatively, a simplified model of neuromuscular con-
trol has been developed. For the sake of simplicity and conciseness this has been
reduced to only consist of an antagonistic pair of muscles positioned vertically
and with a mass m suspended between them (see figure 10.4). The mass can be
moved up or down by varying the activation of the α-motoneurons which have
a linear scaling effect on the force of muscles modelled using functions as those
shown in figure 10.5. Four different scenarios are explored, distinguished by the
presence or absence of modulatory spindle afference to the α-motoneurons, and
by the presence or absence of a suddenly imposed doubling of the load. The
simulation results are presented in figures 10.6 to 10.9, and further simulation
details are given in the corresponding figures.

10.4 Discussion

The preliminary analysis of the simulation data lends support to the notion
that γ-motoneuron activity could be concerned with cancelling expected spin-
dle afference, the constancy of which thus indirectly informs the central nervous
system that execution of a particular motor program is advancing as scheduled.
Any performance errors as measured by tension discrepancies in the spindles
will immediately be accessible to the CNS via the fast type Ia afferent connec-
tions, and positional errors will be available with a slight delay via the type II
afferents. It is important to notice that the ”afference cancelling γ activity” pro-
posed herein is perfectly compatible with the role usually attributed to type Ia
spindle afference, which is to reflexively correct for sudden changes of load. Ac-
tually this reflexive correction mechanism works even better when the γ-activity
removes the influence of expected changes in muscle tension and length (as can
be seen in the highlighted panel of figure 10.9. The γ-activity creates a constant
”baseline” spindle activity during familiar well learnt movements, thereby im-
proving the signal to noise ratio when unexpected events occur. This scenario
of course requires that the appropriate γ-activation sequences must be learnt
(in the example from figure 10.6 the optimal activation was calculated directly,
stored, and then used in the remaining experiments as the ”learnt” γ-activation
corresponding to the task). Such learning would pose no problem for a neural
system because even the error-signal required for optimal learning is provided
in the afference.

Technically it has proven very difficult to identify γ-motoneurons in vivo,
but if the idea presented here is true, that well learnt movements are associated
with well learnt γ-responses, then neuromuscular models of simple tasks may
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Figure 10.4: Simplified Neuromuscular System. A simplified neuromuscular
system with extensor-flexor antagonism, where only two vertically positioned
muscles are considered while pulling on a mass in opposite directions. Resulting
simulations can be seen in figures 10.6 to 10.9.

Figure 10.5: Canonical Muscle Model. For the development of structurally accu-
rate models of striate muscle, the two most important features to be considered
for modelling are the force-length (left panel) and force-velocity (right panel)
relationships of muscle tissue.
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Figure 10.6: Deafferented and Unperturbed Muscle Contraction. This figure
shows the variations in type Ia and II fiber afference during muscle contraction
when different forms of γ-motoneuron activity are applied. In this simulation
no spindle afference is provided to the α-motoneurons, and there are no sudden
changes in the load (5kg). The task is to lift the suspended mass 5cm by
changing the length of the lifting muscle from its resting length of 0.23m to
a contracted length of 0.18m, and then to move the mass back again. This
is done by activating and deactivating the α-motoneurons appropriately. The
system is investigated during three different types of γ-motoneuron activity:
tonic (constant firing frequency), α− γ coactivation (γ frequency closely linked
to α frequency) and optimized γ-activation. Notice that with the optimized
γ-activation there are no variations in the firing rate of Ia and II fibers because
the primary regions of the spindles are kept at constant length. The optimized γ
activation is calculated from equations 10.5 and 10.6, and the values are stored
for later use (these values correspond to the ”learnt” γ-activity which in this
work is proposed to cancel afference during familiar movements).
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Figure 10.7: Deafferented and Perturbed Muscle Contraction. This figure shows
the dynamic and static spindle responses during a perturbed muscle contrac-
tion. The task is as described in figure 10.6, except that the load is suddenly
changed from 5 to 10 kg after 0.9 seconds. The change in load initially stretches
the lifting muscle from 0.23m to a new resting length of 0.25m. As previously,
α-motoneuronal activity starts after 2.4 seconds and the muscle contracts to
0.19m. Notice how the dynamic spindle closely indicates changes in the con-
traction velocity whereas the static spindle elements are more closely related
to the actual length of the muscle. The previously stored (”learnt”) optimal γ
activation (from figure 10.6) is used in this simulation, but now notice that the
change of load means that the optimal γ-activation is no longer able to cancel
the afference completely, and actually the Ia afference seems to mark the points
at which a ”revision” of the previously learnt afference prediction model should
occur. This corresponds to having a direct measure of the error between the
planned execution vs. the resulting performance of a previously learnt move-
ment. Strictly speaking, the lifting task (as defined in figure 10.6) has not been
accomplished correctly because load compensation by afferently modulated α
activity is lacking in this deafferented simulation.
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Figure 10.8: Afferented and Unperturbed Muscle Contraction. This figure is
essentially identical to figure 10.6 except that now afference from the spindles
is allowed to influence α-motoneuronal activity. The presence of a positive
feedback loop can be observed by the appearance of small oscillations in the
dynamical spindle’s response. Best performance is obtained during optimal γ-
activity, where the length of the primary region of the spindles is kept almost
constant (except for some small oscillations), meaning tonic Ia and II afference.
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Figure 10.9: Afferented and Perturbed Muscle Contraction. In this simulation,
load perturbations to the afferented system are compensated for by increased
α-motoneuronal activity, regardless of the type of γ-activity that is imposed.
But it is only during optimal γ-activation (taken from the simulation in figure
10.6) that the system is actually able to correctly perform the lifting task (see
highlighted panel). It is therefore concluded that the best performance is ob-
tained when expected afference is cancelled by γ activity, thereby allowing for a
relatively pure and ”noise-free” detection of unexpected loads, which then may
be compensated for correctly.
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help develop signature traces for these γ-neurons (see the γ traces presented
in figures 10.6 to 10.9). These traces could then in theory be used to identify
the neurons in vivo during similar tasks. Once identified, their activity during
natural movement situations may be detected routinely.
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Chapter 11

Human arm simulation

Chapter Summary

This chapter will build upon the concepts developed in all previ-
ous chapters in order to make a fully functional biologically realistic
computer simulation of the systems (spinal, muscular and biome-
chanical) that are involved in human arm movement. Emphasis will
be on identifying the differential role of α and γ motoneurons, partic-
ularly in connection with the hypothesized role of the muscle spindle
and γ-motoneuronal system that was proposed in chapter 10.

In chapter 10, a ”toy”-model of a neuromusculoskeletal system was used to
argue that γ-motoneuronal activity could be associated with reafference cancel-
lation. In that model, only two antagonistic muscles were considered and the
task was to move a mass, hold it at the new position and then return it to
start. There are many reasons for which that early setup may be considered
too simplistic, but one major concern is that it does not accurately reflect arm
biomechanics, where complex time-varying torques and forces may result when
the arm moves from one position to another, giving rise to much more compli-
cated reafference cancellation signals. Another major concern is, that it does
not include a sufficiently developed model of the spinal circuitry, particularly of
the motor neuron pool, so direct comparisons to experimental results are tenta-
tive at best. In this chapter, an attempt will be made to include all the missing
elements so as to make the simulation as biologically realistic as possible by
including most of the material presented in chapters 3 to 8, incorporating it all
into a single computer program. To proceed, there are various unsettled issues
which need attention first. In particular it is necessary to initialize the skele-
tomuscular model so that the operating range of different muscles correspond
to experimental data. It is also necessary to rescale the spinal networks to a
manageable size. Finally, it is necessary to ascertain that the completed model
produces simulated arm movements which remain within realistic physiological
bounds.
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Myotactic
Unit

Flexors Extensors

µshoulder DELC and PMJC DELA, DELS and TMAJ
µelbow BILH, BISH, BRAD,

BRAC, and PROT
TRIO, TRIA and TRIM

µwrist FCUL and FCRD ECUL and ECRD

Table 11.1: Muscle groups in the myotactic units of arm joints.

11.1 Setting up the human arm model

For modelling the human arm only three myotactic units need to be considered,
one at the shoulder joint, µshoulder, one at the elbow, µelbow, and one at the
wrist, µwrist. Each myotactic unit is associated with several muscle groups
acting around each of the joints, these are apportioned according to table 11.1.
At present only arm movements in the sagittal plane will be considered as these
correspond to the reaching task that will be investigated (see section 11.4).
Physiological data such as PCSA and fiber lengths at rest as well as origin and
insertion points for the different muscles has already been given in chapter 3.
Approximate physical descriptions of the hand, forearm and upper arm are also
given in chapter 3. Up to and including the simulation of the motor neuron pool
it is relatively easy to find definitive experimental data which may be directly
used for calibrating the simulations. The simulation results for the motor units
presented in chapter 9 are thus quite reliable as they have been modelled directly
after motor units in humans. This ideal situation changes somewhat when focus
is directed towards spinal networks and the myotactic units, primarily because
work in this area has mostly been done on non-human species (due to ethical
as well as technical reasons).

11.1.1 Spinal connectivity matrix

A neural scripting language was developed for the simulation program, which
makes it very easy to set up the connectivity matrix for any neural network
architecture whatsoever. The only difficulty in setting up the simulation is now
to find out what the neural architecture should be like. Chapter 8 presented a
brief review of the main neuron populations involved in motor control which are
present in the spinal cord. That chapter concludes with a summary diagram
of putative spinal connections as they have been reported in the literature and
corresponding to a two-muscle myotactic unit. In the present case, the three
different myotactic units contain 4 motor units at the wrist, 5 motor units at the
shoulder and 8 motor units at the elbow (see table 11.1), but the overall neural
organization pertaining to an individual motor unit will remain the same as in
the diagram, albeit with two important exceptions: 1) Agonist-antagonist inter-
actions within a myotactic unit (particularly through IaIN and Renshaw cells)
will be organized so that all flexor motor-units act on all extensor motor-units,
and viceversa; 2) GTO’s, joint receptors and skin afferents are not included in
this model.

As a simplification, the number of α-motoneurons within a motor unit di-
rectly determines the number of other species of neurons in the myotactic unit
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Neuron α-ratio
Ia 0.1
II 0.1
γs 0.1
γd 0.1
IaIN 0.25

Renshaw 0.25
CM 1

Table 11.2: Network Ratios

and elsewhere. The exact ratios of α-motoneurons to other neuron types may
vary, depending on the particular requirements of the simulation with respect
to the task that is to be done, speed of simulation and statistical requirements.
Table 11.2 lists an example of these ratios which was used for most simula-
tions in this chapter. It should be mentioned, that a minimum of approx. 20
α-motoneurons pr. motor unit was found necessary to achieve a smooth force-
recruitment profile for the unit, but most simulations were done with 40 α
neurons pr. motor unit.

11.1.2 Skeletomuscular geometry and muscular operating
range

Given the large variations in tension that must result from length changes in
muscle due to the sarcomeric force-length relationship (see section 4.7), it is
of the utmost importance to make sure that sarcomeric lengths during move-
ments of the simulated arm remain within realistic bounds. Rather than simply
guessing the extent of these bounds, it is highly fortunate that the necessary ex-
perimental data actually is available, and was reported very recently by Murray
et al.198 and by Lieber and Fridén156, who studied the functional capacity of
muscles at the elbow joint and the wrist, respectively. Murray et al. 198 report
findings (from 10 human specimens) related to muscle fascicle length and sar-
comeric length of elbow crossing muscles for different degrees of elbow flexion
(some of these values are reproduced in table 3.4). They 198 found that when the
arm was in full extension, the average sarcomere length in elbow flexor muscles
(∼ 2.91µm) is significantly longer than for extensor muscles (∼ 2.13µm), data
which in this thesis is used to initialize the muscle model (optimal sarcomeric
length was set to 2.8µm, in accordance with Walker and Schrodt 269, see also
section 4.7).

By using these data directly, the skeletomuscular model developed in this
thesis accurately reproduces the experimental data, as may be verified by com-
paring figure 11.1 (modified fig. 5 from Murray et al. 198) with figure 11.2.
Furthermore, by using sarcomeric length specifications corresponding to flexor
muscles of the elbow, the skeletomuscular model accurately predicts the oper-
ating ranges of wrist muscles, even if no attempt was made to specifically fit
these data. This may be verified by comparing figure 11.3A (modified fig.3.11
from Lieber and Fridén156) with figure 11.3B, which shows the model results.
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(Fig. 5 from Murray et al. 2000)

Operating range of elbow-crossing muscles (Murray et al. 2000)

Figure 11.1: Experimentally identified operating ranges of elbow-crossing mus-
cles198. The dashed part of the curves indicates the sarcomeric force-length
relationship. The fine line indicates the maximal possible excursion of the
individual muscles tested, and the bold line indicates the muscle excursion
resulting from bending the arm from 20◦ to 120◦. This figure was adapted
from figure 5 in Murray et al.198, and should be compared directly with figure
11.2. Key to equivalent muscle names: BRD = BRAD, BIC(long) = BILH,
BIC(short) = BISH, ECRL = ECRD, BRA = BRAC, PT = PROT ,
TRI(long) = TRIO, TRI(lat) = TRIA
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Figure 11.2: Operating ranges of elbow-crossing muscles according to the skele-
tomuscular model in this thesis. This figure was calculated directly from the
human arm simulation during maximal isometric muscle activation by varying
the angle between upper arm and forearm over 90◦. The dashed part of the
curves indicates the sarcomeric force-length relationship. The fine line indicates
the maximal excursion of the individual muscles, and the bold line indicates
the muscle excursion resulting from bending the arm from 30◦ to 120◦. This
figure should be compared with figure 11.2, using the following key to equivalent
muscle names: BRD = BRAD, BIC(long) = BILH, BIC(short) = BISH,
ECRL = ECRD, BRA = BRAC, PT = PROT , TRI(long) = TRIO,
TRI(lat) = TRIA
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(Fig. 3.11 from Lieber and Fridén 2000)

A. Operating range of wrist muscles (Lieber and Fridén 2000)
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Figure 11.3: Comparison of operating ranges of wrist muscles between exper-
iment and model. A. Experimental results obtained by Lieber and Fridén 156.
Figure adapted from fig. 3.11 in Lieber and Fridén156. B. Operating ranges of
wrist muscles according to the skeletomuscular model in this thesis. The dashed
part of the curves indicates the sarcomeric force-length relationship. The fine
line indicates the maximal possible excursion of the individual muscles tested,
and the bold line indicates the muscle excursion resulting from flexing or extend-
ing the wrist (over 180◦ from full flexion to full extension). This figure was calcu-
lated directly from the human arm simulation during maximal isometric muscle
activation by varying the angle between forearm and hand. Key to equivalent
muscle names: FCR = FCRD, FCU = FCUL, (ECRL,ECRB) = ECRD,
ECU = ECUL.
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11.1.3 Human benchmark test – Speed-drawing

The arm simulation must conform to certain restrictions with respect to the
forces and hence the maximal hand transport velocities that it produces, so the
question arises as to how fast humans are able to move their hands. In the work
of Morasso190 the hand movements along straight trajectories reached a peak
velocity of ∼1 m/s (figure 3C in Morasso190), with subjects having received no
particular instructions as to how fast the reaching movement should be made.
To have a better set of limiting reference velocities upon which to base the arm
simulations, it would be highly useful to have maximal hand velocity data for a
variety of movements, straight as well as curved. In order to obtain these data
an experimental paradigm was developed for this thesis, in which six human
subjects were asked to draw as fast as possible along the lines representing a
variety of figures with predefined path lengthsa.

Methods for speed-drawing benchmark test

Subjects were sitting at a table in a comfortable writing position, but were not
allowed to rest their elbows on the table (in order to gain valid data for whole
arm movements, rather than only movements involving the forearm pivoting
around the elbow). They were asked to redraw each presented figure as many
times as possible within a time frame of 30 seconds, while trying to follow the
outline of the figure. Twelve different figure outlines (represented on paper)
were used, including 4 circles of different diameter, 4 straight lines of different
orientation, a triangle, 2 squares of different orientation and a 5 pointed star
(see figure 11.4, where the different figures are represented).

There is a well known logarithmic speed-accuracy trade-off in human move-
ment, famously quantified by Fitts’ law68, which of course also applies to the
present task. Given that the current experiment was a speed-benchmark test,
speed had obvious precedence over accuracy in this trade-off, and in some cases
deviations from the intended path made it necessary to re-estimate the actually
drawn path length rather than using the tabulated values for the figures (e.g.
circles would be drawn slightly smaller or larger than the prototype, squares
could be slightly skewed, etc.). However, subjects were not allowed to move
so fast as to seriously affect accuracy, and in particular it was not allowed to
”cut-corners”, such as to start drawing a circle rather than a square. In trials
where the figures had corners, each lap (defined as the completion of a figure
after moving from starting hand position along the figure outline and back to
start) was counted only if the hand had completed the circuit without jumping
over any vertices.

Results of speed-drawing benchmark test

The results of this experiment are shown on figure 11.5. The upper graph shows
the number of laps pr. second as an average of the six subjects’ performance (±
standard deviation). The lower graph shows the average hand velocity during a
speed-drawing trial, and averaged across the six subjects. There are some quite
clear performance differences related to the complexity of the traced figures.

aThree male and three female subjects volunteered for the experiment, age range from 19
to 30 years. All subjects were healthy and without any known history of neural or muscular
diseases.
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0.47m 0.31m 0.16m 0.08m

0.30m 0.30m 0.30m0.30m

0.36m 0.40m 0.40m 0.60m

Figure 11.4: Figures used in the speed-drawing benchmark experiment. The
number below each figure indicates the lap-length (in meters) for the trial figure,
defined as the total distance traversed when moving from a starting position,
along the figure, and back to the starting position (the actual length of the
straight lines is thus half of what is indicated).

Note the significant difference in average hand velocity between trials using
lines and trials using triangles, squares or stars (p < 0.0005, T-test). There is
also a quite clear correlation between line orientation and average hand velocity.
Note for example the significantly greater average hand velocity for lines drawn
at 45◦ if compared to the other line orientations (p < 0.005, T-test). Finally,
there are significant differences in average hand velocity related to the size of
the traced circles (T-test for the two smallest circles gives p < 0.025). Thus even
if the average number of laps pr. second increases for decreasing circle radius,
this is not sufficient to compensate for the reduction in path length.

Overall, the maximal average hand velocity obtained is associated with the
45◦ line, and was found to be 1.6m/s (σ = 0.2). For all figures composed of
straight lines it should be noted that the peak velocity must be much higher
than what is reported in figure 11.5 because these are average velocities and thus
include acceleration and deceleration of the hand in connection with changes in
direction. The peak velocity for circular movements is equal to the average hand
velocity, which is maximally 1m/s (σ = 0.2).

Some observations related to the speed-drawing task

It is interesting to note, that even though the last four objects (triangle, box,
rhombus and star) are composed of simple straight lines, the average hand ve-
locity when drawing these objects (0.4±0.02m/s averaged over trials) is signifi-
cantly lower (p < 0.0001, T-test) than when drawing straight lines (1.2±0.3m/s
averaged over trials). This difference (by a factor 3) cannot solely be attributed
to the increased number of acceleration-deceleration events that are imposed by
the increased number of vertices (2 for lines, 3 for triangles, 4 for the square
and rhombus, and 5 for the star). To appreciate this, it is useful to multiply the
number of vertices times the number of laps pr. second for each of the objects.
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This yields the number of vertices pr. second, i.e. the number of acceleration-
deceleration events pr. second during a trial. For the simple straight lines one
finds that the hand reaches from 7 to 9 vertices pr. second, whereas for the
more complicated objects less than 4 vertices pr. second were reached. Thus
there is more acceleration-deceleration taking place during simple straight line
drawings than during complex object drawings.

Furthermore there appears to be very little difference in average hand ve-
locity between trials with the four complex objects (σ = 0.02). Relating this
observation to the previous discussion about vertices, it does seem as if there ex-
ists a fundamental neurophysiological difference between drawing objects with
2 vertices and drawing objects with more than 2 vertices, whereas all objects
with more than 2 vertices are somehow related (the difference is probably not
biomechanical because only straight lines are produced in these cases). Al-
though curved objects are obviously different from the other two classes, there
is a striking similarity between circles (at least the circles with diameters compa-
rable to the line lengths) and simple straight lines when comparing the average
hand velocities and the laps pr. second that were obtained during the trials with
circles and lines. Can these observations be related to what is known about the
neural organization in the spinal cord? At the risk of overinterpreting the data,
the following suggestion is made nevertheless: Circles and lines are fundamen-
tal components of the spinal repertoire of movement patterns, and movements
requiring such simple forms may therefore be relegated to the highly optimized
central pattern generators and reflex systems in the spinal cord (associated with
locomotion, grooming, reaching movements, etc.). The oscillatory activity pat-
terns in the spinal cord are initiated and maintained active by the cerebral cortex
based on an evaluation of figure form, size, type of task and need of corrections.
This division of labour results in very high performance speeds. More com-
plex figures, however, do not have direct spinal implementations and must be
controlled directly by the motor cortex, resulting in a lower performance speed
due to sensory delays and the necessary analysis of feedback. In the present
trials figure complexity was only varied by increasing the number of vertices for
objects otherwise composed of straight lines. But figure complexity can also be
increased in purely curved objects by increasing the number of inflexion points
and should give similar results as the complex straight line objects (drawing,
e.g. bean or banana shaped objects is much slower than drawing circles).

11.2 Tests of the human arm simulation

With all the groundwork now behind us, the time has finally come to see the
human arm simulation system in full function. Limb dynamics, muscles, spin-
dles, spinal neurons and corticospinal connections have all been included in
the model, but something essential is still missing: neural activation patternsb.
In the simulation system developed here, there are at present no subsystems
dedicated to automatically determining which spatiotemporal variations of ac-
tivity profiles that the motor neurons should undergo for a given specified task.
For some tasks it is certainly possible to set up optimization algorithms which
by gradient descent (e.g. backpropagation of error, or reinforcement learning

bBy now the arm simulation system is fully connected and ready to go, just like the warm
and humming engine of a car waiting to be commandeered around the block by its driver.
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methods) or by direct calculation can specify activation patterns for the motor
neurons. In chapter 2 a brief review of such optimization strategies was given.
It turns out, however, that for many simple tasks it is actually possible to make
an estimate of the required activity patterns based on the EMG traces for var-
ious tasks. Alternatively, one may simply try to select by hand some suitable
activation patterns which solve the requested problem.

11.2.1 Scheduling motor cortical activity

The methodology adopted here is essentially equivalent to selectively targeting
corticospinal projections with microelectrodes inserted into the spinal cord. By
activating the electrodes using different patterns and observing the resulting
movements it essentially becomes possible to elucidate the input-output map-
ping functions that exist in the spinal cord. And since the model is completely
transparent (we have access to all parameters), it also is possible to evaluate
the functional relevance of different neuron populations. The activity patterns
that must be imposed on the corticomotoneuronal cells of the network can be
inferred and adapted from published EMG traces related to similar tasks (see
e.g.175). This is of course a very crude method of gaining such information,
but for our present purposes it turns out to be quite adequate as what we are
after is not a specific set of instructions, but rather to identify some general
rules that the system might use. In fact, for testing the system it does not
really matter which task is performed, and it is even permissible to initially
select a randomly but slowly fluctuating pattern. This we may do as long as it
is always this very same pattern that is used consistently for all the remaining
task related tests. The reason for this pattern selection liberty is that almost
any structured cortical-muscular pattern could potentially be a learned pattern
which is executed voluntarily, and is thus within the scope of this study. For the
purpose of facilitating analysis, however, it is useful to settle on a very simple
task, say a straightforward hand transportation task, implemented by using a
relatively simple corticospinal activation pattern. Once a neural activation pat-
tern has been selected and its corresponding task performs correctly, different
perturbations may be imposed on the running system to evaluate the signifi-
cance of the various components. Highly specific ”damage” may be done on the
system (e.g. removing the dorsal roots, or blocking PAD interneuron activity, or
perhaps removing the Renshaw cells), or the arm simulation may be perturbed
by controlled external forces.

11.3 Steady-state free hanging arm

Even when the arm is at rest, the primary and secondary spindle afferents re-
main active at low firing rates (see e.g. figure 10.2). Other neurons in the spinal
cord will also always have low background firing rates, including the inhibitory
interneurons. Before proceeding with pattern identification and model testing
there is therefore one rather obvious criteria that the model must fulfill: Limbs
at rest must remain at rest. The problem is essentially, that once in a while
a group of neurons (say of primary afferents) will fire in close temporal prox-
imity purely by chance. If these neurons have postsynaptic cells in common,
the resulting PSPs will sum temporally, which may well bring the target cells
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to threshold, perhaps even resulting in the twitch of a single motor unit if the
target cell is an α-motoneuron. When this α-motoneuron fires it will increase
the firing probability of the Renshaw cells which it innervates. This has the
immediate effect of quenching further activity in that particular motor unit via
feedback inhibition. But it also has the effect of increasing the firing probability
of the antagonist motor unit through disinhibition because Renshaw cells actu-
ally inhibit those IaIN cells and Renshaw cells that normally would be keeping
the antagonist motor unit below threshold. And because the initial twitch will
have a tendency to stretch the antagonist muscle, the primary and secondary
afference to the disinhibited antagonist muscle will have an increased excita-
tory effect. Eventually, this situation could lead to oscillations where first the
agonist and then the antagonist muscle become activated intermittently. In a
well balanced network, such a single twitch should not have great consequences.
However, even if a single twitch is perhaps not a cause for concern, it still is a
problem that the spinal circuitry seems to be in an unstable equilibrium and
could begin oscillating spontaneously. The problem is of course enhanced if the
limply hanging arm is suddenly perturbed by outside forces. Then the stretch
receptors would become increasingly active and thus produce a higher incidence
of reflex responses, a situation that is not compatible with our ability to render
our limbs completely irresponsive to outside perturbations.

Within the spinal cord there are several mechanisms which might have a role
to play in avoiding spontaneous generation of oscillatory muscle activations. One
such mechanism could be the PAD pathway which exerts presynaptic inhibition
on Ia afferent synapses. If presynaptic inhibition of Ia synapses is tonically ef-
fective while the limb is in a resting state, it would reduce the probability that
random fluctuations in spindle afference could bring motoneurons to threshold.
Effective presynaptic inhibition of Ia afferent synapses would also have the ad-
ditional useful property of reducing or even removing any stretch reflexes even
if the limp limb is moved by external forces. That presynaptic inhibition is the
best strategy becomes obvious if one considers that the system needs to avoid
stretch reflexes while still receiving proprioceptive information. It is thus not
useful just to turn of the sensory neurons providing primary and secondary affer-
ents as this would also shut down limb proprioception. It is also not very helpful
simply to increase the rate of background activity in Renshaw cells and IaIN as
this only postpones the instability, but does not remove it. Another possibility
is to lower activity in the γ-motoneuron system during rest, which would relax
the spindles, thereby reducing the firing frequency of primary and secondary
afferents. This strategy is unacceptable on experimental grounds as it has been
reported that some γ-motoneurons (in cat) have relatively high firing frequen-
cies at rest (∼ 70 impulses/s) and actually decrease their mean firing rates at
different phases during movement197. Finally, although it does help simply to
reduce the absolute synaptic efficacy of Ia synapses, this might severely disrupt
performance in other situations where a strong link between primary afferents
and motoneurons is required such as during rapid reflex enhanced movements.
On these grounds, presynaptic inhibition seems to be the best way to attain
resting-stability under a variety of circumstances.

To emphasize these points, the following three experiments were performed
using the simulation system under different circumstances. In all cases the
simulation starts with the arm model in a vertical position pointing down and
without perturbations while the muscular system is fully connected to the spinal
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and corticospinal networks using the wiring diagram in figure 8.1 except where
otherwise noted. The resting firing rate of dynamic γ-motoneurons was set
to 70 impulses/s and for static γ-motoneurons it was set to 16 impulses/s,
in accordance with experiments reported by Murphy et al. 197. Under these
circumstances primary and secondary afferents will have an activity level of
10-20 impulses/s (see e.g. figure 10.2).

11.3.1 Immobilized arm with inactive PAD

This first simulation was done without presynaptic inhibition of the primary af-
ferents. The arm model was immobilized so that there were no variations in the
lengths of the muscles (they can only produce isometric forces). After a short
stabilizing transient (t < 350ms), the network seems to have stabilized into a
situation where excitation and inhibition are in balance. For some time there are
only subthreshold fluctuations of the motoneuronal membrane potentials. At
time t ∼ 500ms a few of the smallest α-motoneurons become active (highlighted
areas in figure 11.6)¯ , which initiates a cascade of events leading to the oscilla-
tions seen for t > 600ms. It should be noted that in all the simulated muscles,
the activity of joint flexor motoneurons is almost completely out of phase with
respect to the joint extensor motoneurons. This oscillatory behaviour becomes
even clearer if one plots the activity of Renshaw cells belonging to antagonist
muscle pairs, as is done in figure 11.7, which yields an activity pattern that
is very typical of spinal oscillators, especially those concerned with locomotion
(see e.g. Orlovsky et al.208).

In the current simulation the oscillation has a periodicity of approximately
170ms, this means that the motor units are twitching at a frequency of close to
6Hz (a value which incidently is comparable to the 3-8Hz tremor in Parkinson’s
disease252). It is only the smallest motor units that are recruited so the isomet-
ric muscle forces produced by these tremors rarely exceed 5% of the maximal
isometric force of the muscle, as may be seen in figure 11.8. And because the
arm was immobilized, primary and secondary afferents maintain a constant low
level of activity throughout the experiment (see figure 11.9). If the arm were
free to move, the activity of primary and secondary afferents would also change
strongly enhancing the oscillations.

11.3.2 Immobilized arm with active PAD

This simulation was set up to determine whether presynaptic inhibition of the
primary afferent synapses on motoneurons could help reduce the amplitude of
the intrinsic spinal oscillations to a level where muscle tremor was abolished.
During this simulation PAD interneurons fired tonically at approximately 30
impulses/s, which in the model is adequate to strongly dampen the effects of
primary afferents on the α-motoneurons. As before, the primary and secondary
afferents were active at a resting level of 20Hz, so the α-motoneurons did receive
excitatory input from the secondary fibers. As can be seen in figure 11.10¯ none
of the α-motoneurons reached threshold, so tremor was effectively abolished.
There is, however, still a tendency to oscillate in some of the cell populations,
particularly the Renshaw cells which are tonically active and interconnected in
flexor-extensor antagonism, just like a half-center oscillator 92. These oscillations
have exactly the same frequency as in the previous experiment (6Hz), which
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Figure 11.6: Neural membrane potentials of all neurons in the simulated network
during experiment with immobilized arm and inactive PAD¯ . This simulation
was made with a network of 1582 neurons. Note that the activities of wrist
flexor motor units (FCUL & FCRD) are completely out of phase with respect
to wrist extensor motor units (ECUL & ECRD).
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Figure 11.9: Primary and secondary afferent activity during immobilized arm
experiment. Because the arm is immobilized, and the γ-motoneuron input is
held constant, then there should be no time variations in the firing rate of
primary and secondary afferents.
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hints that it is the Renshaw cells that provide the driving frequency of the
previously observed tremor.

11.3.3 External perturbation of free hanging arm with in-
active PAD

A force of 16N was applied at the wrist for a duration of 350ms starting at time
t=450ms (i.e. prior to the initiation of intrinsic oscillations). The force was
applied in the sagittal plane in an anterior direction at 45◦to horizontal. This
results in an elbow flexion, thus stretching the elbow extensors and shortening
the elbow flexors (during this simulation the elbow was flexed up to 40◦). Under
these circumstances the emerging neural activation patterns are fundamentally
different from what was seen in the two previous experiments, as are also the
mechanical properties of the arm (see figure 11.11). Shortly after the external
perturbation force is applied, the primary and secondary afferents of the elbow
extensor muscles increase their firing rates (see figure 11.12, thereby recruiting
a larger fraction of the corresponding motor units. The total muscle forces are
still rather modest, circa 10% of the maximal isometric force (see figure 11.13),
but that is sufficient to cause a strong reflexive response to the perturbation.

11.3.4 External perturbation of free hanging arm with ac-
tive PAD

If presynaptic inhibition is active, the arm simulation should essentially behave
like a simple free swinging 3-link pendulum since no reflexes should be provoked
by the perturbation. A force of 16N was applied at the wrist for a duration of
100ms, starting at t = 450ms. As expected the large increase of primary and
secondary afference (see figure 11.14) had no influence on the activation levels of
α-motoneurons and hence all muscle forces remained at zero (see figure 11.15).

11.4 Reaching from A to B – a typical task

The simplest non-trivial arm movement consists of transporting the hand along
a smooth and straight trajectory with a single peaked velocity profile 190. This
task will form the basis for the rest of the arm simulations performed in this
thesis, the selection being based on the following criteria: (1) It permits a
straightforward evaluation of model performance, (2) EMG traces from similar
tasks are available for comparison175, (3) It has a relatively short duration and
is therefore ideal for simulation, (4) It is a basic movement which nevertheless
includes many important features such as joint angle inversion and triphasic
activation of antagonist muscle pairs.

11.4.1 Deafferented arm simulations

Before setting up the appropriate neural activation patterns in the model, it
is highly important to emphasize that simple movements of this kind may be
performed even after partial or total deafferentiation 227,84. In fact it has been
found that some patients suffering from severe peripheral sensory neuropathy
(leading to the deafferentiation) are nevertheless capable of a wide range of
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Figure 11.10: Neural membrane potentials of the 1582 neurons in the simulated
network when the PAD based presynaptic inhibition is active¯ . Notice that
none of the α neurons reaches threshold.
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Figure 11.11: Neural activity profiles in the network when the freely hanging
arm is perturbed¯ . Arm extensor motor units are recruited by the primary
and secondary afferents as a result of the suddenly imposed stretch.
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Figure 11.12: Primary and secondary afferent instantaneous firing rates during
perturbation of free-hanging arm while synaptic inhibition was deactivated.
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Figure 11.13: Normalized forces in all simulated arm muscles during perturbed
free-hanging arm trial with inactive presynaptic inhibition. Note the sharp
reflexive increase in force of the arm extensor muscles due to the increased
primary afference.
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Figure 11.14: Instantaneous firing rate of primary and secondary afferents of
perturbed (highlighted) free hanging arm with presynaptic inhibition.
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Figure 11.15: Normalized muscle forces of a free-hanging arm with active presy-
naptic inhibition during brief perturbation (highlighted). Presynaptic inhibition
completely cancels the stretch reflex.
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movements. In a very detailed report of just such a patient Rothwell et al. 227

observed that the patient was capable of drawing simple figures, tapping the
fingers in predetermined sequences, moving the limbs at various specified speeds,
and producing accurate matching forces. These movements were performed with
a surprisingly high accuracy even though they involve complex muscle synergies
of hand and forearm muscles. Pre- and post-movement EEG potentials were
normal as were the bi/triphasic activation patterns of antagonist muscle pairs.
All in all, during simple and short movements the patient seemed quite normal.
However, if the patient was asked to maintain a given position or to continue a
sequence, but without visual feedback, the movement deteriorated after a couple
of seconds.

The reason that these observations are important in the present context is
simply that they directly determine the type of activation patterns that should
be imposed on the spinal simulation system. There are basically only two ways
to go about this:

• Adapt the activation patterns to the spinal network. That is, to select the
motor unit activation patterns in such a way as to perform the task with
a fully connected (afferented) model, in which case the activation patterns
will be precisely tailored only to the particular network at hand.

• Select activation patterns which correspond directly to the biomechani-
cal task. That is, select motor-unit activation patterns that are directly
related to the muscle forces that are required for the task.

Taken at face value, the data on deafferented patients presented before (see
also Ghez et al.84) seems to indicate that ”higher” brain areas (cerebellum,
motor cortex, etc.) are perfectly capable of generating a full set of task specific
instructions for the motor units based only on visual cues, and may thus control
movement independently from the afferent circuits in the spinal cord.

When setting up the activation patterns for the arm simulation these facts
should be taken into account, and consequently the network is temporarily deaf-
ferented during pattern specification. Good results were obtained by using the
neural activation patterns shown in figure 11.16. These patterns were generated
by scheduling step current ”injections” at specified times and intensities for the
CM cells (in the simulation each α-motoneuron receives projections from 10 CM
cells). This manner of CM stimulation is of course a bit artificial, but it really
just corresponds to letting the motor cortical networks perform a pre-learned
spatiotemporal pattern sequence (like the ones presented in chapter 7, and per-
haps using the same type of dynamics). The only difference being that the
current spatiotemporal sequence was designed for the task rather than being
truly learnt. During the scheduled activity the relevant muscles produce forces
at predetermined times, thus producing the observed behaviour. The relevant
muscle forces are shown in figure 11.17. As may be seen in figure 11.18, the sim-
ulation yields results which are in good agreement with the experimental results
of Morasso190, and with the experimental results reported in section 11.1.3. It
should be noted that under these circumstances the simulation will functions in
a purely feedforward manner.
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Figure 11.16: Neural activation patterns corresponding to straight hand
movement¯ . Scheduled current ”injections” into CM cells of the motor cortex
(mc) resulted in a stereotypical activation sequence leading to hand movement
in a straight path.
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Figure 11.17: Normalized muscle forces during straight hand transportation
task. Muscle forces reached at most 20% of maximum isometric force.



188 CHAPTER 11. HUMAN ARM SIMULATION

A.

B.

Figure 11.18: A. Velocity profiles of the different limbs during straight hand
transportation task. Single peaked velocity profiles are observed during the
task, with a maximum hand velocity ∼ 1.6m/s and an average hand velocity
∼ 0.8m/s. Both values are in agreement with experiment (see section 11.1.3). B.
Three screenshots¯ corresponding to different phases of the task (time indicated
in seconds)
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Figure 11.19: The effect of γ-motoneuronal activity on performance¯ . (A).
Deafferented arm simulation performing hand transportation task; (B). Affer-
ented arm simulation performing hand transportation task, but with constant
γ-motoneuronal activity. The unloading of spindles reduces the muscle force
slightly, but sufficiently to affect performance; (C). Afferented arm simulation
performing hand transport task with optimal γ-motoneuron activity.

11.4.2 Afferented arm simulations

According to the previous discussion, deafferented patients apparently are per-
fectly capable of producing normal movements as long as these movements are
of a short duration and guided by visual cues. This essentially means that the
spatiotemporal variations of EMG and EEG activities should be similar in affer-
ented as well as deafferented persons. During inactivity, the increased excitatory
input to α-neurons in the afferented case may be assumed (for simplicity) to be
more or less balanced by the associated increase in the inhibitory IaIN input to
these cells. This would result in a situation where the total resting input current
to α-motoneurons is similar in the afferented and the deafferented situation.

If the fusimotor system is held at a constant level of activity during a task,
the spindles will invariably become unloaded as a consequence of muscle short-
ening. This would cause variations in the total spindle afference. Such variations
have not been taken into consideration during the original specification of α-
motoneuronal activation levels as these were made in a deafferented arm. The
predicted consequence of course being that the movement will be less forceful,
and will probably not have sufficient force to reach the specified endpoint. This
effect is seen in figure 11.19B.

Thus, under these conditions something extra is required for the model to
work appropriately, namely to reduce the variations of primary and secondary
afference so that the spindle related input to α-motoneurons again is held at a
more or less constant level. To accomplish this, a strategy will be used which
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is essentially identical to that followed in chapter 10, where spindle afference
fluctuations were cancelled by pre-learned optimized fusimotor activity. The
variations of spindle parameters that occurred during the simulations of a deaf-
ferented arm have been stored in a separate file (for all spindles). These data
are then used to compute the optimal current input to γ-motoneurons by us-
ing equations 10.5 and 10.6. As before, this strategy corresponds to having
stored a spatiotemporal sequence of neural activation patterns, corresponding
to a learned fusimotor plan. During these experiments it was observed that
the onset time of the fusimotor plan with respect to the actual motor plan,
did actually influence the degree to which the γ-motoneurons were able to sta-
bilize primary and secondary afference. By varying the fusimotor onset times
for dynamic and static γ-motoneurons independently (γd and γs respectively),
it was observed (see figure 11.20) that the optimal cancellation effect was ob-
tained when γd initiated its fusimotor plan 100ms before the initiation of the
CM activation patterns. For γs there was almost no difference for different onset
times. The effect of including an appropriate fusimotor plan is seen in figure
11.19C. According to these results the primary and secondary afferent activity
pertaining to the contracting muscles will maintain constant firing rates as long
as the movement task is proceeding as planned. (The primary and secondary
afferents associated with passively stretching muscles may safely be ignored be-
cause their contributions are cancelled more directly via presynaptic inhibition
by the PAD system.) These results are perfectly equivalent to and compatible
with the experimental observations made by Appenteng et al. 10, who stimulated
fusimotor fibers to compensate for spindle unloading, thus avoiding silencing of
the primary afferents.

11.4.3 A case of load correction

What happens when the movement is disturbed? For example if a load is
applied to the forearm at some point while it is moving from A to B. In that
case the flexion of the arm will occur at a reduced rate, which means that
also the muscles will be shortening at a lower velocity. Assuming that the
fusimotor plan is progressing at the normal pace, then at some point the capsular
element of the muscle spindle will become overstretched, increasing primary and
secondary afference, and thus leading to an increased firing probability of the
α-motoneurons. The resultant increase in force should be able to compensate
for the increased load, allowing the movement task to proceed according to plan.
To test whether the model actually behaves in this way, the hand movement
task was perturbed by applying a downward force of 4N at the wrist at time
t = 350ms. The resulting hand trajectories, with and without a fusimotor plan,
are shown in figure 11.21. Notice that it is only when the fusimotor plan is used,
that the task is solved satisfactorily even in the presence of a load.

11.5 On the origin of the fusimotor plan

An important issue is to determine what is the actual source of this well learnt
modulated γ-signal, that is, to determine which brain region is projecting to the
spinal cord and explicitly telling the γ-motoneurons which signal is appropri-
ate for cancelling fluctuations of the afference?. There are various candidates,
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Figure 11.20: The effect of changing the onset time of the fusimotor plan during
the straight hand transportation task. When γd-motoneurons become highly ac-
tive 50-100 ms before motor unit recruitment, they are able to fully compensate
for the unloading of the spindle that will occur as a consequence of the motor
unit activity.
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Figure 11.21: Perturbation of straight hand movement task¯ . (A). Normal task
performance (for comparison); (B). Perturbation of straight hand movement
task when not stabilized by a fusimotor plan. The hand is deflected from its main
trajectory, and ends up far away from the intended target. (C). Perturbation of
straight hand movement task when accompanied by fusimotor plan. Even with
the perturbation, the hand continues on the right track until target is reached.

spanning from intrinsic activity in the spinal cord itself, over sources in the
brainstem and cerebellum, to the motor and premotor cortices.

The γ signatures that were calculated for the simulations in this chapter
could, in principle, be used to identify γ-motoneurons directly in vivo, or per-
haps to identify other neurons innervating the γ-motoneurons. But that would
involve setting up an experimental paradigm which resembles the task used for
the simulation, and with procedures aimed at sampling neural activities simul-
taneously in various parts of the CNS during a variety of specific and well learnt
tasks. Fortunately, this type of approach has been pursued for some years now
in a series of works by Cheney, Fetz and collaborators 67,39 where they inves-
tigated the activity of a population of neurons in the monkey motor cortex
during a ”ramp – hold” task. In particular they studied the activity of corti-
comotoneurons (CM) in primary motor cortex which project monosynaptically
to the spinal cord. As reviewed in chapter 8, Fetz et al. 67 found various CM
response patterns which were all well correlated with the investigated movement
task, but which apparently did not have a direct causal link to the actual force
production.

There are some intriguing points of similarity between the activation prop-
erties of CM cells and the optimal (reafference cancelling) activity profiles for
γ-motoneurons. First of all there is the actual shape of the activation patterns:
optimal γd activity somewhat resembles the activity in phasic-tonic CM cells,
while optimal γs activity resembles tonic CM cell activity (see figure 11.22).
Secondly, there is the observation that, to be optimal, γd activity had to have
an early onset of activity (50 − 100ms prior to extrafusal activation, see fig-
ure 11.20), again corresponding to the phasic-tonic CM cells which on average
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Figure 11.22: Typical optimal γ-motoneuron activity profiles pertaining to ac-
tive muscles. Note that the γd profile is phasic-tonic, whereas the γs has a
simple tonic activity profile.

started firing 71ms before EMG activity. Optimal γs activity could be obtained
for various onset times, so it was left at zero displacement. Incidently, the tonic
CM cells on average had onset times about 5ms after EMG activity. Thirdly,
CM cells are responsive to muscle stretch, as evidenced by their increased firing
rates during passive (imposed) movements, yielding yet another point of similar-
ity to the γ-motoneurons’ activity profiles which have been shown 215,93 to have
high levels of activity during imposed movements and movements requiring high
precision. Finally, due to their muscle stretch sensitivity, CM cells are ideally
suited to update the fusimotor plan because this kind of updating necessarily
requires current information about the state of the muscles. The dynamics of
such updating could very well resemble the spatiotemporal attractor states of
the abstract neural networks analyzed in chapter 7.

These, admittedly superficial, similarities may of course just be mere coin-
cidences, but they do certainly warrant further investigation. Especially if one
considers that if this hypothesis holds, it explains the activity of 76% of the
total population of identified CM neurons (48% are phasic-tonic and 28% are
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tonic)67. The crucial experiment now would be to verify that the phasic-tonic
CM neurons and the tonic CM neurons respond predictably to other tasks. This
could be done by setting up a completely different task, then monitor the same
CM neurons during the new task (neurons initially identified in the ramp-hold
task). A neuromuscular computer simulation of the new task is then set up
(of course using the program developed in this thesis) from which the optimal
γd-signature and γs-activities for the task may be calculated and subsequently
compared to the experimental results.

It should be strongly emphasized that these similarities certainly do not
constitute a solid proof of a functional link between CM cells and fusimotor
activity. Especially not as long as they are only based on estimates derived
from a computer simulation. The similarities do suggest, however, that there
might be a linkage to be sought.



Chapter 12

General Conclusions –
Towards the Motor Cortex
and Beyond

Chapter Summary

This final chapter provides a brief discussion of the main results
obtained in this thesis. Some future directions will also be outlined.

Eleven chapters it took to get to grips with only some of the most basic
elements of neuromuscular control at the spinal level, and it would probably
take another eleven to get a beginning feeling about what it is that the motor
cortex tells the spinal cord to begin with. And even then, only the uppermost
layer of paint will have been scratched away. Nevertheless, researchers all over
the world are making great progress in unravelling the mysteries that the brain
holds. It is my hope that this thesis may contribute positively to this endeavour.

12.1 Thesis Conclusion

There is an urgent need for highly accurate neuromusculoskeletal models which
may be used to test ideas and suggest new venues for theorizing and experi-
mentation. Motivated by this, an attempt has been made, within the scope of
this thesis, to develop a highly detailed computational framework which may
account for a large fraction of the existing experimental data. The resulting
computational system necessarily covers many fields of study, and spans several
orders of magnitude: From the molecular level where muscle proteins generate
forces, to the macroscopic levels where overt arm movements are voluntarily
controlled in an unsafe environment (which is full of sudden and unexpected

195
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”loads”). Some of the most important features implemented into the system
are the following:

• A computationally efficient general numerical solver for ordinary differen-
tial equations (variable time-step with Runge-Kutta’s 4th-order method)
144,213.

• A general mechanical physics simulation system for setting up dynamic
simulations of limbs and joints (main emphasis on arm) 16.

• Realistic origin and insertion points for muscles (based on human data).

• Stable and flexible muscle and spindle models (also based on human data,
see below).

• A neural scripting language which allows the user to produce almost any
neural network architecture with just a few lines of text.

• Computationally efficient and interchangeable neuron models 274.

• Dynamic synapses262.

Especial emphasis was given to creating a very detailed computational model
of whole muscles, an endeavour which brought forth the following issues:

• The muscle model starts at the molecular level by invoking the conforma-
tional entropy of the myosin head group as the crucial factor determining
the force produced by individual myosin filaments during a power stroke.

• Mathematical descriptions of the sliding filaments within the sarcomere
are provided, and are used to develop a structurally accurate muscle
force model which incorporates some important properties of single muscle
fibers (primarily the force-velocity107 and force-length90,91 relationships).

• A simplified model of muscle-twitching is given in order to link neural
activity to muscle activity via the neuromuscular junction. This model
accounts for various phenomena such as the ”catch-like” effect 33, tetanic
fusion and the distinctions between fast and slow muscle fiber types 8.

• The muscle-twitch model is used in combination with the sarcomeric force
model to create a muscle fiber model, which forms the basis of a whole-
muscle model. Individual muscle fibers are joined into motor-units which
are under the control of a single α-motoneuron. Many such motor-units
functioning together make up the whole-muscle model, which accounts
for many of the properties observed in individual motor units and whole
muscles (including orderly recruitment105, exponential motor-unit size dis-
tribution189 and gradual force increase as a function of increasing input
185,270).

As a final detail of the neuromusculoskeletal model developed herein, a math-
ematical model of the spindle was used to evaluate the dynamic range of such
sensory organs. Theoretical analysis of this spindle model revealed that an ex-
plicit function may be derived which expresses the force that the spindle contrac-
tile elements must produce to exactly counter spindle unloading during muscle
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shortening. If the fusimotor system is capable of having such a fine control over
the intrafusal fiber contractions, then it could in principle maintain a close to
constant (low) rate of primary and secondary afference during a wide variety of
muscle tasks. Furthermore, if this fine control is based on the system having
learnt certain task specific activation profiles which optimally down-modulate
the naturally occurring afference during said task, then it is a clear example of
reafference cancellation because it effectively removes the afference that other-
wise results from self-generated voluntary planned movements.

These detailed computational models have been congealed into a single simu-
lation program, which may serve as an ideal tool to explore some of the possible
motor functional scenarios attributed to the motor cortex, cerebellum, basal
ganglia, etc. However, only one such scenario was explored herein (in chapters
10 and 11), namely the proposition that the different firing patterns observed
for corticomotoneuronal cells67 might be involved in different aspects of fine
tuning the control of otherwise strongly reflexive spinal networks by acting on
the fusimotor plan. At present, the evidence in favour of this hypothesis is only
indirect, based as it is on a computer simulation. But the similarities that were
observed between CM cell activity and the activity of γ-motoneurons (listed in
chapter 11) do certainly warrant the need for further investigations in this direc-
tion. It is quite well established that fusimotor activity modulates the activity
in primary and secondary afferents, but so far it has not been entirely clear
whether such modulation should be considered part of a servo-control system,
or whether it is related simply to maintaining the spindle within a responsive
dynamic range allowing for a more effective reflex mechanism, or more precisely
to avoid silencing of the primary and secondary afferents due to unloading 10.
In this thesis a third view is maintained which falls somewhere in between the
two other views, namely that fusimotor activity is concerned with maintaining
the input from spindle afferents at a relatively constant level. According to
some accounts162,160,161 this is exactly what is observed in vivo, namely that
the fusimotor activity varies in a task dependent manner so as to maintain
spindle afference activity within a range from 50 to 200 impulses pr. second
162. The purpose of this could be to obtain a spindle afference which only re-
sponds strongly to unexpected events, and not to self generated movements, thus
greatly improving the signal-to-noise ratio. If for any reason the movement is
not proceeding as planned, the fusimotor plan will to some extent be responsible
for appropriately correcting the position discrepancies by increased recruitment
of motor units in a servo-like manner. The important thing to note in this con-
text is that, by using reafference cancellation, some of the problems associated
with the presence of a long spinal delay loop may be somewhat avoided. This
is because the only significant signals coming from the primary and secondary
afferents are related to immediate positioning errors (delay ∼ 3ms from muscle
to spinal cord).

12.2 Future directions

As already mentioned in chapter 11, the crucial experiment now would be to
verify that the phasic-tonic CM neurons and the tonic CM neurons actually
do respond predictably to other predefined tasks. To assay this, it would be
necessary first to identify the relevant CM neurons by using the old task, af-
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ter which a new task may be performed and the relevant neurons are sampled.
Concurrently, a neuromuscular computer simulation of the new task is set up
from which the optimal γd-signature and γs-activities for the task may be calcu-
lated and subsequently compared to the experimental results. If possible such
signatures should be used to localize the γ-motoneurons within the spinal cord.
If there still is a pattern similarity between CM cell activity and γ-motoneuron
activity, even during longer experiments (at least 10s of seconds), a stronger case
may be made that CM cells have a saying on the matter of fusimotor control.

There is also the question about the validity of the ”entropic elasticity”
model of muscle force that was presented in chapter 4. There are various tests
which could be done to assay this hypothesis, requiring the use of optical tweezer
technology in combination with fluorescent dyes. Also, a thermodynamic eval-
uation should be made of it, just to be sure that it does not violate any laws.

On a different note, it would be highly interesting to test various motor
control theories using the neuromusculoskeletal model developed here. Several
relevant issues were raised in earlier chapters (population coding, diffusion in
topological networks, optimization strategies, etc.) which require just such a
model to identify the relevant parameters, and to test whether the claims made
for those hypothesis actually are realistic.

It would also be highly interesting to adapt this neuromusculoskeletal model
to an actual robotic application. Perhaps it then would be necessary to produce
specialized hardware to implement the model in real-time (rather than having
to wait 20 minutes for every simulated second).

12.3 This is not the end

The optimism and elation that is felt after advancing a small step when it
was the result of a huge effort, is somewhat tempered by the frustration of
realizing that, indeed, it was only a small step. Few have captured this feeling
as succinctly and eloquently as Sir Winston Churchill in a speech he gave at the
Lord Mayor’s Luncheon (Mansion House, London, November 10, 1942):

This is not the end. It is not even the beginning of the end. But
it is, perhaps, the end of the beginning.

Indeed...
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A-band : The A-(Anisotropic) band appears dark in the striation pattern.

Actin : Elongated protein which is the backbone of the thin filaments.

Agonist muscles : Muscles that cause joint movement in the same direction.

Antagonist muscles : Muscles that cause joint movements in opposite direc-
tions.

Dorsal tubular nerve cord : In chordate animals a hollow tube of nerve
tissue spanning the animal’s length along its dorsal aspect 250. In some
species it has a large anterior enlargement forming the brain and ventric-
ular system. Posterior regions form the spinal cord per se. In vertebrates
it is enclosed by the vertebral column.

Endomysium : Connective tissue surrounding a single muscle fiber (including
sarcolemma), and interconnecting all the fibres in a fascicle.

Epimysium : Connective tissue surrounding a cluster of fascicles.

Exteroceptive input : Primarily related to skin sensations caused by events
occurring in the environment (touch, pain, temperature) 31.

Fascia : Connective tissue surrounding complete muscle.

Fascicle : A small cluster of muscle fibers surrounded by a perimysium.

Fusiform muscle : Muscles in which the fibres are arranged parallel to longi-
tudinal axis.

I-band : The I-(Isotropic)band appears light in the striation pattern.

Isometric contraction : A process wherein muscular tension is countered by
a load to hold the stimulated muscle at a fixed length.

Isotonic contraction : Application of a constant load to a stimulated muscle.

Kissing number : Number of spheres touched by (”kissed by”) a given sphere.

Monosynaptic reflex : Muscular contraction resulting from the direct acti-
vation of agonist α-motoneurons by the primary spindles (i.e. a monosy-
naptic connection between Ia afferents and α-motoneurons). In humans,
these reflexes have a latency from 25 to 40 ms.
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Motor unit : Consists of one α-neuron and all the muscle fibres it innervates.
It is considered the smallest control unit of a muscle because all muscle
fibres in a motor unit will act synchronously. Tetanic forces of single motor
units range from 5 to over 100 grams (i.e. from 0.05N to over 1N).

Muscle fiber : Consists of an individual muscle cell surrounded by endomy-
sium. Individual muscle fibers are surrounded by the sarcolemma. They
measure from 1 to 40 mm in length and from 10 to 40 µm in width 102.
The maximal isometric tension in a single muscle fiber is therefore in the
range from 3× 10−5N to 5× 10−4N (or from 0.003g to 0.05g).

Myofibril : These are bundles of parallel myofilaments. They are systemat-
ically arranged in the muscle and give rise to the microscopical striated
appearance of skeletal muscles. They are as long as the muscle fiber, but
only 1µm in width102. The maximal isometric tension of a myofibril is
approximately 3.5× 10−7N (i.e. 3.5× 10−5g).

Myosin : Elongated protein with molecular weight of 500 kDa. It consists
of a globular head (light meromyosin) connected to a long tail (heavy
meromyosin). The globular head contains a binding site for actin and
an enzymatic site causing hydrolysis of ATP. Myosin heads create cross-
bridges between thin and thick filaments.

Notochord : Rod of firmly sheathed tissue which spans most of the chordate
animal’s length along the dorsal aspect250. Its primary function is sup-
porting the body. In vertebrates the notochord is reinforced or substituted
by a vertebral column.

Oligosynaptic reflex : Muscular contraction resulting from the indirect acti-
vation of agonist α-motoneurons by the primary spindles mediated through
an interneuron (i.e. a bi- or trisynaptic connection between Ia afferents
and α-motoneurons via interneurons).

Optimal Sarcomere Length : At this length the sarcomere produces maxi-
mal force. Typical values are: 2.1µm for frog, 2.4µm for cat and 2.7µm
for human skeletal muscle57.

PCSA : The Physiological Cross-Sectional Area is found as the ratio between
muscle volume and muscle fibre length.

Pennate muscle : Muscle tissue in which the fibres are arranged at a dis-
tinct angle to the longitudinal axis. These can be unipennate (1 angle),
bipennate (2 angles) or multipennate (more than 3 distinct angles).

Perimysium : Connective tissue surrounding an individual fascicle.

Pharyngeal gill slits : In chordate animal embryos these are grooves in the
pharyngeal region of the body wall250. In aquatic chordates these grooves
are completely perforated an become fully functional gill slits, but in ter-
restrial animals the grooves are modified to form other structures (such
as the outer ear canal).

Phasic reflex : Occurs in response to a sudden change in the level of stimula-
tion. This type of reflex is probably monosynaptic.
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Proprioceptive input : Primarily related to sensory input caused by ”own”
movements. These are generated at specialized sensory organs in muscle
(spindles and Golgi-tendon organs)31.

Sarcolemma : Delicate membrane surrounding individual muscle fibers.

Sarcomere : The contractile unit of skeletal muscle, which is limited at its
ends by the Z-lines (Zwischenscheiben). The sarcomere is made up of
thick and thin filaments arranged in almost crystalline order.

Thick filament : These are located at the centre of the sarcomere, and consist
of approximately 180 myosin molecules arranged so that the myosin heads
protrude from the filament in opposite pairs, and in such a way that
consecutive pairs along the filament are displaced by 14.3 nm, and rotated
60◦.

Thin filament : These are bisected by the Z-lines and consist of two helically
interwoven actin globule chains, two tropomyosin proteins lying along the
grooves between the two actin chains, and a number of troponin protein
units placed at 38.5nm intervals.

Tonic reflex : Sustained muscle contraction in response to the level of some
stimulus. Tonic reflexes are polysynaptic.

Vertebral column : This is the skeletal axis of vertebrates, which encloses
the nerve cord and gives support to the body250. It is made up of several
segments of cartilagineous or bony tissue called vertebrae, which are linked
together in a flexible and highly resistant construction.

Z-line : These are strands of protein oriented perpendicularly to the myofibrils.
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