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Process analytical technology

Process analytical technology (PAT), the regulato-
ry initiative for building in quality to pharmaceuti-
cal manufacturing, has a great potential for im-
proving biopharmaceutical production. The recom-
mended analytical tools for building in quality,
multivariate data analysis, mechanistic modeling,
novel models for interpretation of systems biology
data and new sensor technologies for cellular
states, are instrumental in exploiting this potential.
Industrial biopharmaceutical production has grad-
ually become dependent on large-scale processes
using sensitive mammalian cell cultures. This fur-
ther emphasizes the need for improved PAT solu-
tions. We summarize recent progress in this area
based on an expert workshop held at the 8™ Euro-
pean Symposium on Biochemical Engineering Sci-
ences (Bologna, 2010), and highlight new opportu-
nities for exploiting PAT when applied in biophar-
maceutical production. We conclude with recom-
mendations for advancing PAT applications in the
biopharmaceutical industry.
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1 Introduction

The term (and acronym) Process Analytical Tech-
nology (PAT) was introduced by the US FDA as an
intiative to bring an improved understanding of
pharmaceutical manufacturing processes to in-
crease the quality of their products [1]. The FDA
uses the expression “to build in quality into the
pharmaceutical manufacturing process”, thereby
implying that high product quality should ideally
be created already at the design stage of the man-
ufacturing process [1-3], contrary to traditional
processes that are often the result of empirical or
rule-of-thumb design. In addition, they also em-
phasize the need for improved on-line monitoring
and control methods to maintain high product
quality during manufacturing operations. In the
biopharmaceutical industry PAT principles are
adopted with great care due to the fact that bio-
pharmaceuticals and their production systems are
very complex. Compared to the small molecule
pharma industry the complexity of biopharmaceu-
tical proteins multiplies the analytical quality
issue.

Figure 1 illustrates a central concept of the PAT
philosophy: to identify and control the critical qual-
ity attributes (CQA) of the process based on moni-
toring and adjusting the critical process parame-
ters (CPP).

PAT forms a part of the Quality by Design (QbD)
concept, also a regulatory-inspired methodology
where PAT provides tools to enable the quality
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Figure 1. The relationship of critical process parameters

Combination of forward and backward control of CPP’'s
provides even greater control of critical quality attributes

(CPPs) and critical quality attributes (CQAs) in a bio-
pharmaceutical manufacturing process according to the

goals [4, 5]. In QbD the acceptable ranges of the
CQAs and the CPPs are defined for the manufac-
turing process (Fig. 2).

Alarge number of analytical methodologies and
tools, here referred to PAT tools, are useful for re-
alizing QbD. These PAT tools cover methodologies
ranging from analytical chemistry, through control
theory and mathematical and statistical modeling
methods. In Figure 3 the most important of these
methods and tools are compiled and related to their
role in building quality into the pharmaceutical
manufacturing process.

Design space
(the area which has been demonstrated
to give adequate quality)

Control space
(where the production
will operate)
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Figure 2. The design space and control space as defined in QbD.
The axes represent the critical quality parameters.
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PAT concept.

The first tier in the figure shows three cate-
gories of methods for acquiring quality-related
data from the pharmaceutical manufacturing pro-
cess: methods for (1) on-line sensing, (2) ‘omics’-
based analysis, and (3) analysis of CQAs. These
methods can show considerable overlaps based on
deeper process understanding.

In the second tier, the measurement data ob-
tained in the first tier are processed using models,
and thereby converted to useful process-related
information. Here multivariate data analysis mod-
els, mechanistic models or any other modeling ap-
proach (e.g., neural network models as a typical
black-box model example) are highligthed.

The third tier in the figure shows alternative
control methods that can be applied with any of the
previous methods for data acquisition and analysis
in the first and second tiers, or by combining these
in appropriate ways.

In the most straightforward case it is an issue of
feeding back the information to the process to cor-
rect it. In QbD, we define the control space from
pre-knowledge created in separate experiments.
This pre-knowledge is in the best case optimized,
also using first tier methods.

The fourth tier represents a conceptually high-
er level of using the generated information. This
may be a human decision maker, an operator on the
plant, or a Quality Control (QC) officer deciding on
the release of a batch based on a well-defined set
of quality criteria. It may also be a more sophisti-
cated decision making mechanism - implemented
in an internet-based support system, e.g., using
historical data and statistical procedures.

Figure 3 illustrates the rich collection of suitable
alternatives for accomplishing the objectives of the
PAT initative for biopharmaceuticals.

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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In this article we highlight a few areas of recent
progress and opinions on application of PAT
methodologies of relevance for biopharmaceutical
production, based on a workshop held at the 8 Eu-
ropean Symposium on Biochemical Engineering
Sciences (Bologna, 5 September 2010). As typical
biopharmaceutical products we include therapeu-
tic antibodies, regulatory proteins such as insulin
or growth hormone, enzymes with a pharmacolog-
ical effect such as thrombin or tissue plasminogen
activator, or vaccine components. But there can also
be other biopolymers with therapeutic effect, for
example, a gene therapy vector or a carbohydrate
polymer.

The quality issues for all these biopharmaceuti-
cals are similar, although not identical. The main
concerns are the purity of the protein and the de-
tection of impurities from the host organism, the
culture media or formation of adverse product
forms. The host organism and the biomolecular
structure of the product have significant effects on
the prerequisites of applying PAT. Progress in PAT
and an improved understanding of its applications
contribute to advanced manufacture of these com-
plex biopharmaceutical products.

The article focuses on a few aspects of PAT: the
furthering of multivariate data analysis (MVDA)
for enhancing and building in quality into the bio-
pharmaceutical process, the exploitaion of mecha-
nistic models as an additional support tool, the use
of systems biology data, the challenges of using
mammalian cells in the processes, and examples of

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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new opportunities with on-line sensing. We also re-
late these to industrial requirements and practice,
and conclude with an identification of future needs
to improve the impact of the PAT tools of benefit for
biopharmaceutical production but also to biochem-
ical engineering production in a more general per-
spective.

2 Potential of MVDA in implementing PAT
on biopharmaceutical production

MVDA has the potential to play a central role in
PAT and can interact with several other methods
and techniques that analyze the biopharmaceutical
manufacturing process, leading to better under-
standing of it and exerting control of its quality.
The use of a range of established analytical
techniques alongside more advanced methods,
such as near-infrared (NIR) spectroscopy, multi-
wavelength fluorescence and electronic nose,
within the PAT framework typically leads to the
generation of large multivariate data sets. To ex-
tract useful information leading to deeper process
understanding, it is essential to employ appropri-
ate data analysis techniques capable of dealing
with these multidimensional data. These data sets
are highly heterogeneous, with varying frequency
of various measurements, typically with significant
delays in the off-line measurements. They are also
often highly correlated, non-linear in nature and
with high levels of redundancy and noise. Tech-
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niques such as principal component analysis
(PCA), partial least squares (PLS), parallel factor
analysis (PARAFAC), unsupervised clustering
methods and others, have long been used success-
fully by chemometricians for interpretation of
multidimensional data sets in various subject
areas, and their usefulness has also been proven in
the area of biopharmaceuticals. A detailed descrip-
tion of these techniques is beyond the scope of this
contribution and can be found in a variety of text-
books and manuscripts (e.g. [6-8]). Their ability to
reduce dimensionality by removing the redundan-
cy and noise leads to the identificaton of salient
features in the data. These features can subse-
quently be used in bioprocess monitoring, fault
detection and process optimization, as has been
described extensively in the literature over the
years. Successful applications cover a range of
production systems from various microbial to cell
culture systems and a wide range of industrially
relevant products. Identification of deviations
from nominal batch behaviour either in the seed or
production cultivations (e.g. [9]), early detection of
contamination or detection of faulty sensors are all
critical process decisions that have been improved
using MVDA techniques [2]. However, most impor-
tantly, the PAT methodology, as defined by the FDA
[1], requires effective control of CPPs affecting the
CQAs. This task is aided by the MVDA techniques
enabling on-line estimation of such critical pa-
rameters as biomass, glucose and various other
metabolites [10-12].

Biopharmaceutical processes are predomi-
nantly operated in a batch mode, which leads to
further increase in the complexity of the resulting
data arrays. The analysis of such data structures
typically requires a modification of the traditional
MVDA techniques or an application of non-linear
alternative methods. Multiway PCA and PLS have
been introduced in mid 1990 by Nomikos and
MacGregor [13] and used sucessfully to account
for the major non-linearity of the batch processes
[9]. Alternative non-linear data analysis tech-
niques, such as non-linear variants of PCA, PLS or
various forms of artificial neural networks, have
also been shown to be effective in bioprocess mon-
itoring and control (e.g. [14, 15]). Whereas issues of
regulatory approval of such ‘black-box’ data analy-
sis techniques still represent a significant chal-
lenge in their application in a manufacturing envi-
ronment, techniques such as autoassociative neu-
ral networks (AANN), self-organising maps (SOM)
or support vector machines (SVM) can provide a
more accurate representation of the fundamental
features contained in the available measurements
[16, 17].

372

Biotechnol. J. 2011, 6, 369-377

3 Using mechanistic models as PAT tools
for predicting CQA in the
biopharmaceutical process

An alternative modeling approach to MVDA is to
apply a mechanistic model description of the bio-
pharmaceutical manufacturing system.

PAT, and especially its application to QbD, can
only be realized in practice if sufficient process
knowledge is available to explain the effect of CPPs
on CQAs. In this respect, mechanistic modeling has
gained renewed attention because a mechanistic
model can be considered as a structured represen-
tation of the available process knowledge. Indeed,
during the model-building procedure, the process
knowledge is coded in a mechanistic model using
appropriate mathematical expressions [18-21].
Such a model therefore incorporates process-rele-
vant input (critical process variables) — output
(product concentration and product quality attrib-
utes) relationships, which can be used to establish
a proper design space. The mechanistic model
therefore has great value in planning experiments,
or in determining which critical process variables
necessitate tighter control [21, 22].

Recent applications of mechanistic models for
bio-based processes, such as biocatalysis [23] and
fermentation [24] witnessed an interesting devel-
opment. It should be emphasized indeed that the
application of mechanistic modeling is not only rel-
evant for the pharmaceutical industry, but also for
fermentation and biocatalytic processes. In fact,
many of the tools and techniques that are now
adopted by the pharmaceutical industry for the im-
plementation of PAT were developed much earlier
by, or in close collaboration with, the fermentation
industry [25].

One of the most frequently cited disadvantages
of using mechanistic models is excessive time and
resource requirements during the development
phase. A systematic model development methodol-
ogy addresses this drawback [26] and is beneficial
for a number of reasons: (i) model development is
more efficient (i.e., less time and resources re-
quired), and (ii) communication and knowledge
transfer among the various members of the multi-
disciplinary team (i.e., researchers, engineers, op-
erators, managers) typically involved in the devel-
opment and implementation of a PAT system are
facilitated. To this end, the matrix notation is com-
monly used because it allows a compact and visu-
ally appealing description of a complex mathemat-
ical model [20, 27].

The relatively large cost of developing a mech-
anistic model is increasingly justified if model
analysis techniques are applied to the mechanistic

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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model as part of good modeling practice (GMoP)
[28]. Moreover, mechanistic models also have great
potential in Design of Experiment (DoE) applica-
tions. GMoP comprises the application of a set of
mathematical and statistical techniques that allow
improvements in the use and the reliability of the
model. Examples include the calculation of corre-
lation coefficients and confidence intervals for es-
timated parameters to verify sufficient data quality
and quantity to allow reliable parameter estimation
[20]. Additional examples include uncertainty
analysis and sensitivity analysis [28-30]. Model
analysis indeed provides answers to important
questions such as: When is the time optimal for the
collection of experimental data? Which variables
should be measured? Which parameters can be es-
timated given an experimental data set and the
mechanistic model?

4 Adapting the PAT tools to biopharma-
ceutical production with mammalian cells

The actual application of the MVDA and mecha-
nistic models depends to an extent on the particu-
lar host organism used in the manufacturing
process. Here we compare the two alternatives that
are so far dominant, E. coli and mammalian cells,
from a PAT perspective. Without a doubt, monitor-
ing of living cells used as hosts, in an environment
involving a multitude of parallel reactions and
thousands of components as solid fraction in a mix-
ture of gas and liquid, is a very ambitious and chal-
lenging task regardless of which organism is used.
As a consequence, on-line data acquisition has to
be individually designed for each organism used in
bioprocessing. In contrast to bacterial cells, where
synthesis of recombinant proteins is strictly asso-
ciated with cellular growth, product formation in
mammalian systems is more or less separated from
growth. This fact leads to different process control
strategies and specific monitoring requirements
for each type of cell factory. Optimal exploitation of
bacterial systems can only be obtained by setting
conditions that allow for recombinant gene expres-
sion at high yet tolerable rates and simultaneous
maintenance of cell viability and growth [31].
Growth rate, gene dosage and product titer are the
central quality-related process variables. Real-
time access to each of these variables is enabled by
the application of comprehensive on- and off-line
monitoring tools in combination with MVDA-based
predictions [32, 33]. For example, based on these
results an improved transcription tuning concept,
utilizing the real-time predicted cell dry weight
(CDW) for setting of a constant inducer to CDW

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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ratio, has been established (to be published). Inte-
gration of comprehensive process data also yields
an increased process understanding and new
approaches for cell design [34]. In this work it was
also demonstrated that the reduction of the induc-
tion level shows a significant increase of the solu-
ble recombinant protein fraction. Real-time pre-
diction of soluble and insoluble recombinant pro-
tein provides access to a CQA with transcription
rate control as the CPP This is just one example
demonstrating a PAT solution with focus on prod-
uct quality aspects specific for bacterial-based pro-
duction processes.

Microbial production systems, especially E. coli,
were the host of choice in the early biopharmaceu-
tical processes. However, today mammalian cells
have become the dominant system for the produc-
tion of recombinant proteins mainly due to their
capacity of required protein folding and post-
translational modification. Thus, the resulting
quality and efficiency of glycosylated proteins, e.g.,
monoclonal antibodies, produced by recombinant
expression systems in mammalian cells can be
considered to be superior to other expression sys-
tems such as bacteria, plants and yeasts [35]. Mam-
malian expression systems that are well known
since the licensure of tissue plasminogen activator
in 1987 include Chinese hamster ovary (CHO) or
murine lypmphoid cell lines (e.g., NSO, Sp2/0). They
offer the potential of increased productivities,
which is one of the major driving forces for indus-
trial manufacturing. Wurm [35] reported that
60-70% of all recombinant protein pharmaceuticals
are produced in mammalian cells, usually following
a well-established production scheme. Moreover,
Farid [36] stated that antibodies played an impor-
tant role in several of the important advances in
pharmacotherapy that contributed to the treatment
of infectious diseases, cancer and autoimmune dis-
eases.

This clinical and commercial success of mam-
malian products, e.g., monoclonal antibodies, has
led to the need for large scale production with
mammalian cell cultures. Furthermore, these in-
creased demands for therapeutic antibodies also
resulted in a rapid expansion of global manufac-
turing capacity, e.g., increasing size of reactor ca-
pacity up to 10 m3. At the same time process effi-
ciency was improved to reduce manufacturing
costs [37]. Clearly, besides the biological and qual-
ity-related advantages of the mammalian expres-
sion systems currently in use, economical aspects
also play an important role in the industrial pro-
duction of monoclonal antibodies. Werner [38] il-
lustrated that high therapeutic dosages of mono-
clonal antibodies usually demand high capacity
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needs, which in turn require significant capital in-
vestments, but also stimulate innovation for
process improvements to decrease cost of goods
(COG).

5 Integration of systems biology data from
the host organisms of the bioprocess into
the PAT methodology

This preference for mammalian systems in bio-
pharmaceutical manufacture has placed particular
quality aspects, such as protein glycosylation het-
erogeneity, charge distribution and polymorphism,
at the forefront of research and development.

Such CQAs are linked to molecular details pro-
duced by highly regulated intracellular processes
that are not part of the mainstream carbon and ni-
trogen fluxes. Although the dependency of, for ex-
ample, protein glycosylation patterns on process
operation parameters such as pH, temperature,
medium composition and carbon source feeding
rate has been demonstrated in several studies (e.g.
[39, 40]), systematization of knowledge and demon-
stration of controllability become impossible with-
out the consideration of intracellular processes.
This is where systems biology can play an impor-
tant role in PAT, specifically in: (1) the generation
of knowledge, (2) the elucidation of mechanisms,
and (3) the modeling of the biological functions at
the basis of molecular level CQA.

Substantial efforts are made in academic and
industrial research in collecting ‘omics’ data sets at
various cultivation time to discover the fundamen-
tal regulation mechanisms of certain product
CQAs, but also to find new ways to increase yield
and productivity. In a PAT approach, it would be of
particular use to concentrate attention on the ex-
ometabolomics in the process. The exometabolome,
which consists of the total quantitative collection of
small molecular weight compounds (metabolites)
present in the extracellular medium, provides a
very informative “footprint” of cellular activity, from
which it is possible to infer its intracellular state up
to the proteomic and genomic levels [41]. Today
cheap, fast and high-throughput techniques with
little or even no sample preparation exist that en-
able the measurement of the exometabolome. This
opens an array of opportunities for advanced mon-
itoring techniques that can support real-time con-
trol of critical intracellular processes at the basis of
the CQA. Mass spectrometry, NMR spectroscopy
and vibrational spectroscopy are the main tech-
niques currently used for metabolomics. The need
for high-throughput, short analysis time compati-
ble with at-line or even on-line measurement re-
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stricts the choice to direct injection mass spec-
troscopy (DI-MS), Fourier transform infrared spec-
troscopy (FT-IR) and (1H) NMR [42]. Among these,
DI-MS is considered the technique with the high-
est potential since it provides a fingerprint of the
complete exometabolome, is highly sensitive, re-
quires no sample treatment and is cheap, fast and
high-throughput [41].

Chemometrics plays a very important role in
PAT in MVDA, extraction of knowledge from large
datasets, modeling and statistical process control.
MVDA modeling is also widely applied in the
analysis of ‘omics’ datasets to deduce the mecha-
nisms that support a given (observed) biological
function (the top-down approach) [43]. Systems bi-
ology is concerned with the interpretation of data
to infer mechanisms (top-down) and to infer func-
tion from known mechanisms (bottom-up). In fact
these two approaches can also be found in PAT
modeling. The top-down approach is based on
chemometric modeling, while the bottom-up ap-
proach is based on mathematical (mechanistic)
modeling. In PAT, extensive challenges remain to
be addressed in the integration of macroscopic
(process monitoring and control) models with sys-
tems biology models [44, 45]. One important aspect
is the efficient integration of mechanisms and
MVDA. As new mechanisms are disclosed they rep-
resent constraints to top-down MVDA (top-down
and bottom-up meet halfway). Hybrid semi-para-
metric modeling may provide an adequate answer
to some of these challenges. It represents a com-
promise between rigorous mathematical modeling
and empirical (chemometric) modeling, providing
a flexible framework to merge a priori mechanisms
with heterogeneous datasets of the different layers
of information about the cell and the process [45].

6 Challenges limiting routine industrial
application of PAT

The development of efficient mammalian bio-
processes in the biopharmaceutical industry has
led to increased product yields above 5 g/L mono-
clonal antibody. These achievements can be attrib-
uted to the use of high-producer cell clones with
enhanced cell productivity and to the optimization
of key process characteristics, such as advanced
process control and well-designed nutrient compo-
sitions, that are integrated into a platform technol-
ogy for biopharmaceutical manufacturing process-
es. However, to identify potential process parame-
ters that have an impact on CQAs, the process de-
veloper first need to identify and understand a set
of CPPs.

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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When addressing QbD as described in the ICH
guidelines (ICH Q8: pharmaceutical development,
Q9: quality risk management and Q10: pharmaceu-
tical quality system), typical questions in the field
of bioprocess development arise: Can we identify
CPPs and to what extent do these parameters have
an impact on an industrial bioprocess? Can we ad-
just these process parameters? Thus, as a first step
in addressing those questions from an industrial
point of view, a ‘proposed workflow’ is presented
with focus on new sensor techologies and advanced
data analysis for process data based on multivari-
ate projection techniques.

6.1 Industrial workflow to implement the QbD/PAT
concept

The implementation of advanced PAT technologies
into an already existing GMP manufacturing facil-
ity can be complex and faces many challenges. For
example, new innovative process sensors for mam-
malian suspension cultures need to be easy-to-
handle in a daily working routine, e.g., a simple cal-
ibration procedure is required. Moreover, PAT sen-
sors can be applied in a robust and applicable man-
ner for a broad range of process variants. This
allows the amount of valuable process data to be
increased and the corresponding know-how trans-
lated into a monitoring or control scheme to handle

Advanced PAT tools/process data

$

Data points, frequency,
accuracy, on-line, off-line, in-
line, at-line

INPUT

www.biotechnology-journal.com

the sensitive process parameters. In other words,
the collected data are translated into process infor-
mation and subsequently further transformed into
real process knowledge using advanced analysis
techiques, e.g.,, PCA, PLS or orthogonal PLS (OPLS)
(Fig. 4). The generated process knowledge can be
subsequently used to monitor or control the critical
sources of variability to ensure a consistent quality
for an advanced manufacturing process.

The quality issues for all the biopharmaceuti-
cals referred to in this contribution are similar, al-
though not identical. The main concerns are the
purity of the protein and the detection of impurities
from the host organism, the culture media or for-
mation of adverse product forms. The host organ-
ism and the biomolecular structure of the product
have significant effects on the prerequisites of ap-
plying PAT.

Progress in PAT and an improved understand-
ing of its applications contribute to advancing man-
ufacture of these complex biopharmaceutical prod-
ucts.

7 Recommendations
Based on the workshop, the following recommen-

dations for further developing PAT methodology
for biopharmaceuticals are suggested:

Raw data

Metabolite/nutrient
concentrations

Derived volumetricand
specificrates,
coefficients, fluxes

=error measurements and valuable information

Information

=describes process progress/condition at a time

Multivariate Advanced analysis
projection
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CPPs Knowledge
. . Figure 4. Proposed industrial workflow
CQAs =understand relationships, design/control space, control

ourTPUT

Monitor and control/successful scale-up
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sensitive sources of variability

to address the QbD/PAT concept using
multivariate projection techniques to
identify CPPs and their relationship to
CQAs.
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There is still a need to develop a more robust
platform providing a structured framework for
industrial acceptance of the PAT methodology.
The methodology approaches presented in this
article shoulde be integrated in such a frame-
work.

Systematic evaluation of such a platform should
be carried out using real industrial production
systems

The success of such a platform will, to a large
extent, also depend on the level of documenta-
tion and standardization that can be provided.
Industry needs standard operating procedures
and well-documented methods and tools, to be
able to adopt new technology in a GMP envi-
ronment. Good modeling practice (GMoP)
forms a natural part of this.

CQAs should be related to the molecular struc-
tures of the product. This information requires
analytics that detects specific characteristics of
the product media (broth, culture media, or re-
leased cellular components). Methods should
preferably be based on immunogenic reactions
or, possibly, rapid genomic analysis.

Systems biology can provide critical informa-
tion about the mechanisms that control CQAs.
This information can be integrated in mathe-
matical models to support PAT. On-line or at-
line exometabolomics needs to be further de-
veloped as a process analytical technique with
the capability to infer information about the en-
dometablome, proteome and transcriptome.
Merging mechanisms and MVDA into a com-
mon (hybrid) modeling framework still presents
a major challenge to the integration of different
layers of information about cells and macro-
scopic processes.

The number of experiments required to estab-
lish a robust correlation model should be fur-
ther reduced. At the same time it is necessary to
differentiate between causal and non-causal
correlation. Process knowledge should be used
to overcome these issues. However, if little
knowledge is available error prone interpreta-
tion of correlation structures might occur.
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