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Abstract The time-dependent Ginzburg-Landau equation is solved numerically for type-II
superconductors of complex geometry using the finite element method. The geometry has
a marked influence on the magnetic vortex distribution and the vortex dynamics. We have
observed generation of giant vortices at boundary defects, suppressing the superconducting
state far into the superconductor.

Keywords Type II superconductivity · Ginzburg-Landau equation · Vortex lattices · Giant
vortices

1 Introduction

In 1950 V.L. Ginzburg and L.D. Landau proposed a phenomenological theory for super-
conducting phase transitions [1]. The theory is based on a Schrödinger equation with a φ-4
potential and a kinetic term involving the momentum operator. For type-II superconductors
the Ginzburg-Landau equation models the magnetic field penetration through quantized cur-
rent vortices as the externally applied magnetic field exceeds a threshold value. A number
of variants of the Ginzburg-Landau equation has been used to investigate pattern formation
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in various nonlinear media, not only in superconductivity. Several review articles in the En-
cyclopedia of Nonlinear Science by A.C. Scott [2] provides a number of these variants and
their application in nonlinear science.

In this article our focus is on solving the time dependent Ginzburg-Landau equation [3, 4]
coupled to a magnetic field for type II superconductors of complex geometry. The model
consists of four time-dependent and coupled nonlinear partial differential equations. Vari-
ous numerical methods have been developed for the Ginzburg-Landau equation. A review is
presented by Du [5] of the finite difference, the finite element and the finite volume methods.
Emphasis is on large scale computations of vortex dynamics in tree dimensions. Spatial dis-
cretization using the Galerkin finite element method is used by Mu [6] in combination with
a Crank-Nicolson implicit time integration scheme for the time dependent Ginzburg-Landau
equation. A finite difference scheme with explicit, semi implicit, linear and nonlinear semi
implicit time integrations have been investigated and compared by Gunter et al. [7]. Even
though the finite element method has been used by Du [5] and Mu [6], these authors never
utilized the finite element method to solve problems with more complicated geometries than
squares, cubes, circles and spheres. Our goal is to take up the finite element method to in-
vestigate vortex penetration and dynamics into superconductors of more complex geometry.
The finite element method is particularly well suited for handling complex shapes of the
superconductors.

The geometry of the superconductor has a marked influence on the vortex distribution and
dynamics. Previous investigations show that the spatial extent of a mesoscopic supercon-
ductor influences the formation of the superconducting state [8–10]. Internal bulk properties
can likewise lead to more complicated states as in two-band superconductors described by a
two-component Ginzburg-Landau model [11]. In a number of articles the influence of sur-
face defects has been investigated [12–14]. For a regular superconducting disk, the energy
barrier has been calculated by Berdiyorov et al. [10] for a single vortex to enter or exit the
disk. The calculation has been performed using the static Ginzburg-Landau model and com-
pared to the London theory. In the references [12, 13] Peeters, Baelus and Schweigert have
found that surface defects on a superconducting disk lead to lowering of the energy barrier
experienced by vortices entering the superconducting disk. This means that the vortices start
entering a superconductor with a surface defect for lower values of the externally applied
magnetic field. For type II superconductors the first critical magnetic field decreases in the
presence of a defect. The magnetization curve for a superconductor with a defect is quantita-
tively changed [14]. Vodolazov et al. [14] investigate the time dependent Ginzburg-Landau
model for a rectangular shaped superconductor with a geometric defect and a material de-
fect at the surface. They are able to provide a criterion for vortex penetration at the defects
based on a critical value of the supervelocity ∇φ − A, where φ is the phase of the Ginzburg-
Landau parameter and A is the magnetic vector potential. For a certain critical value of the
magnetic field, vortices start entering the superconductor at the defects. They also observe
formation of giant vortices at the defects, enclosing several flux quanta.

The purpose of our study is to illustrate the dynamics of vortices entering a defect in
a circular shaped type-II superconductor with a geometric defect in the form of a triangu-
lar indent. The static investigations in [12, 13] tell that vortices must enter at defects which
lower the barrier energy. However, the dynamics of entering vortices lacks investigation. The
dynamic features have not been presented in details by Vodolazov et al. in Ref. [14]. There-
fore the purpose here is to illustrated these dynamic features by simulations of the time
dependent Ginzburg-Landau equations. Similarly to [14] we have observed generation of
giant vortices at boundary defects, suppressing the superconducting state far into the super-
conductor. These giant vortex areas with suppressed superconductivity sheds off magnetic
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vortices until an equilibrium is obtained between the distributed single vortices and the giant
vortex area. Giant vortex regions can also appear around pinning sites modelled by spatial
inhomogeneous potentials [15] and they have been predicted in the center of a hollow cylin-
der [16] and in disks [17]. In square shaped superconductors it has been demonstrated that
the time evolution of vortices can lead to nucleation into multi vortex states or giant vortex
formation [18]. The single vortices in type II superconductors are stable nonlinear coher-
ent structures, which share properties with the soliton vortices observed in long Josephson
junctions and thoroughly investigated in the seminal paper by Scott and McLaughlin [19].

2 The Time Dependent Ginzburg-Landau Equation

The time dependent Ginzburg-Landau equation is a phenomenological model for the dy-
namics of the superconducting state. The order parameter is denoted by Ψ = Ψ (x, y, z, t)

and it can be interpreted as the density of superconducting charge carriers (Cooper pairs)
at position (x, y, z) and at time t . Strictly Ψ also depends on the absolute temperature T ,
however, this dependence is omitted from the list of arguments. Below the critical tem-
perature Tc we are in the superconducting state with |Ψ | > 0, and above the critical tem-
perature the order parameter vanishes. The Gibbs energy of the superconducting state is
Gs = Gn − α|Ψ |2 + (β/2)|Ψ |4, where Gn is the Gibbs energy for the normal conduct-
ing state. β is assumed constant but α is taken to be related to the temperature through
α(T ) = α(0)(1−T/Tc). The sign shift of α guarantees the phase transition from the normal
state to the superconducting state as the temperature is decreased from a value above Tc to
a value below Tc . For a type II superconductor the time-dependent Ginzburg-Landau equa-
tions coupled to a penetrating magnetic field Bi = ∇ × A, with A being the magnetic vector
potential, reads in SI units [4]

�
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2mD
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∂

∂t
+ i

q

�
Φ

)
Ψ = − 1

2m

(
�

i
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|Ψ |2A − 1

μ0
∇ × ∇ × A. (2)

As usual the parameter � is Planck’s constant divided by 2π and i is the imaginary num-
ber

√−1. The charge of a Cooper pair is denoted q = 2e and the Cooper pair mass is m.
The parameter D is a phenomenological diffusion coefficient [3]. The second equation (2)
describes the dynamics of the magnetic field coupled to the Ginzburg-Landau equation (1).
Here Φ = Φ(x,y, z, t) is the electric potential and σ is the conductivity of the normal (non
superconducting) current. The parameter μ0 is the permeability of the free space. To obtain
(2) it is assumed that the external applied magnetic field Ba is a uniform static field, which
formally means that the curl of Ba vanishes. If this is not the case the term ∇ × Ba/μ0 needs
to be added to the right hand side of (2).

In order to solve the time dependent Ginzburg-Landau equation we need to specify ap-
propriate boundary conditions of the superconducting sample. Those are [5]

(
�

i
∇Ψ − qAΨ

)
· n = 0, on ∂Ω,
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Bi = Ba, on ∂Ω, (3)(
∂A
∂t

+ ∇Φ

)
· n = 0, on ∂Ω.

on the boundary ∂Ω of the superconducting domain Ω . The outward normal vector to the
boundary is denoted by n. An important property of the time-dependent model is that the
current density J is

J = σE + Js , (4)

where Js is the supercurrent and E is the electric field given by

E = −∂A
∂t

− ∇Φ. (5)

The last equation in (3) is easily justified as the normal current is parallel to the electric
field, and hence E · n = 0 on the boundary as the current do not pass across the boundary of
the superconductor. The time-dependent Ginzburg-Landau model is valid for temperatures
close to Tc and the theory also requires the superconductor to be gap less [3, 20].

3 Normalization and Gauge Invariance

We can scale the space coordinates according to the London penetration depth λ of the
magnetic field or according to the Ginzburg-Landau coherence length ξ = �/

√
2mα. The

ratio between the two length scales is the Ginzburg-Landau parameter κ = λ/ξ . Here we
choose to scale with respect to λ and with the dimensionless variables marked by primes,
(1) and (2) can be transformed through

(x, y, z, t) =
(

λx ′, λy ′, λz′,
ξ 2

D
t ′
)

, A = �

qξ
A′,

Ψ =
√

α

β
Ψ ′, Φ = αDκ2

√
2μ0

b
Φ ′, σ = 1

μ0Dκ2
σ ′.

(6)

Going through the algebra and omitting the prime on the dimensionless variables, the scaling
results in the normalized Ginzburg-Landau equations

(
∂

∂t
+ iκΦ

)
Ψ = −

(
i

κ
∇ + A

)2

Ψ + Ψ − |Ψ |2Ψ, (7)

σ
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)
= 1

2iκ
(Ψ ∗∇Ψ − Ψ ∇Ψ ∗) − |Ψ |2A − ∇ × ∇ × A. (8)

By this procedure we are left with only two parameters, the Ginzburg-Landau parameter κ

and the normalized conductivity σ . The boundary conditions (3) are transformed into
(

�

i
∇Ψ + AΨ

)
· n = 0, on ∂Ω,

∇ × A = Ba, on ∂Ω,(
∂A
∂t

+ ∇Φ

)
· n = 0, on ∂Ω.

(9)
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We shall keep in mind that the none primed variables now are the scaled dimensionless
variables.

The time dependent Ginzburg-Landau equations have the property of gauge invariance.
Given a function χ(x, y, z, t), the gauge transformation is defined as

Ψ̃ = Ψ eiκχ , Ã = A + ∇χ, Φ̃ = Φ − ∂χ

∂t
. (10)

In order to obtain well posed equations we need to fix the gauge [20, 21]. The most conve-
nient choice turns out to be the zero electric potential gauge where Φ̃ is chosen to be zero.
From the transformation given in (10) we then have

∂χ

∂t
= Φ. (11)

With vanishing Φ̃ the last equation in the boundary conditions (9) results in

∂A
∂t

· n = 0. (12)

This equation can be integrated leading to A · n = 0. Omitting the tildes and with the above
gauge transformation our final version of the Ginzburg-Landau equations becomes

∂Ψ

∂t
= −

(
i

κ
∇ + A

)2

Ψ + Ψ − |Ψ |2Ψ, (13)

σ
∂A
∂t

= 1

2iκ
(Ψ ∗∇Ψ − Ψ ∇Ψ ∗) − |Ψ |2A − ∇ × ∇ × A. (14)

with the boundary conditions

∇Ψ · n = 0, on ∂Ω,

∇ × A = Ba, on ∂Ω,

A · n = 0, on ∂Ω.

(15)

The partial differential equations (13) and (14) are solved numerically for various geome-
tries Ω ⊂ R2 in the two dimensional space. As we wish to investigate relatively complex
shapes of the superconductor, we have chosen to use a finite element method with the sim-
plified boundary conditions in (15) for various external applied magnetic field strength
Ba = (0,0,Baz) in the z-direction. The initial conditions are |Ψ | = 1 corresponding to
the Meissner state and zero magnetic field inside the superconductor. The time-dependent
Ginzburg-Landau model has been implemented in the finite element programme COMSOL
[22] using quadratic Lagrange elements, which turned out to give sufficiently accurate nu-
merical solutions.

4 Numerical Simulations

In this section we present numerical simulations of the dynamics of the magnetic vortices
in type II superconductors for a circular disk with a triangular defect or indent, see Fig. 1.
The (13) and (14) are solved in the two dimensional space (x, y) ∈ Ω , with Φ = Φ(x,y, t)
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Fig. 1 The absolute value |ψ(x, y, t)| of the order parameter for κ = 4 and Baz = 0.80 at times: t = 0, 20,
100, 15000

and the vector potential given in component form A(x, y, t) = (Ax(x, y, t),Ay(x, y, t)).
The normalized magnetic field Bi = ∇ × A is along the z-axis direction. In the computer
implementation the order parameter has been split into its real and imaginary parts and
writing the vector field A in component form, (13) and (14) become four coupled partial
differential equations. The numerical results for a circular disk with a boundary defect are
presented in Figs. 1 and 2. In Fig. 1 we use an applied magnetic field of strength Baz = 0.8
and the Ginzburg-Landau parameter κ = 4. In this case the energy barrier at the boundary
is lowest at the triangular defect and therefore all vortices enter the superconductor through
this defect. Our main goal is to illustrate the dynamics of the magnetic flux entering at the
defect. Initially three magnetic vortices enter the superconductor in a straight line at the
tip of the indent. At the same time a normal conducting state is formed at the defect tip
enclosing several elementary flux quanta. This multiple vortex state growths in size and
more single vortices shed off the giant vortex in an upward and downward succession. This
later dynamics is like the von Karmann vortices in the wake of a fluid flow after a circular
rod. Eventually, the dynamics settles into a pattern with a large in going normal state or giant
vortex.1

1The associated animations are found at: http://www2.mat.dtu.dk/people/M.P.Soerensen/animations/
Ginzburg-Landau.

http://www2.mat.dtu.dk/people/M.P.Soerensen/animations/Ginzburg-Landau
http://www2.mat.dtu.dk/people/M.P.Soerensen/animations/Ginzburg-Landau
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Fig. 2 The absolute value |ψ(x, y, t)| of the order parameter for κ = 4 and Baz = 0.90 at times: t = 20, 25,
and 5000. The lower right subfigure shows the absolute value of |ψ(x, y, t)| for κ = 4 and Baz = 2.02 at
stationary state

Further increase of the magnetic field strength to Baz = 0.9 leads to the dynamics shown
in Fig. 2. Vortices enter again at the triangular indent but now the magnetic field is strong
enough to enter through the disk boundary, even though the barrier energy is higher here than
at the defect. As a result this leads to depletion of the size of the normal conducting region at
the triangular indent, illustrated in the lower left subplot of Fig. 2. Increasing the magnetic
field in small increments and simulating to stationary state leads to more complex pattern
formation with a fingering structure of the giant vortex. This phenomenon is displayed in
the lower right subfigure in Fig. 2, where Baz = 2.02. For values of Baz exceeding 3.8
we observed no traces of penetrating vortices, meaning that the critical magnetic field is
Bcritical = 3.8.

5 Energy Patterns in the Superconductor

The total energy density Htot = Htot(x, y, t) of the superconductor can be split into a sum of
three parts, the superconducting energy density Hsup = Hsup(x, y, t), the magnetic energy
density Hmag = Hmag(x, y, t) and finally the interaction energy density Hint = Hint(x, y, t).
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Fig. 3 The total energies as function of time t for the circular disk with a defect. Parameter values are κ = 4,
B = 0.8 and σ = 1. The total energy Htot (solid line), the total superconducting energy Hsup (dashed line),
the total magnetic energy Hmag (dotted line), the total interaction energy Hint (dash-dotted line)

These energies are given by

Hsup = 1

κ2
|∇ψ |2 − |ψ |2 + 1

2
|ψ |4, (16)

Hmag = (Ba − ∇ × A)2, (17)

Hint = i

κ
A((∇ψ)ψ∗ − ψ(∇ψ∗)) + |A|2|ψ |2. (18)

The total energy density is Htot = Hsup + Hmag + Hint. By integrating the above three en-
ergies over the entire space Ω , i.e. Htot = ∫

Ω
Htot(x, y, t)dxdy and similarly for the super-

conducting, magnetic and the interaction energies, we obtain the results shown in Fig. 3,
where the left hand figure shows the energies as function of time t for 0 ≤ t ≤ 200, and the
right hand figure shows the same energies for 0 ≤ t ≤ 15,000. The initial condition corre-
sponds to the Meissner state, which here is an out of equilibrium state, and hence the total
energy decreases to its steady state value as the magnetic flux lines enter the superconductor
through the triangular defect. The magnetic energy decreases also. As more magnetic flux
lines enter, the superconducting energy state increases in clearly visible jumps. Each jump
corresponds to one flux line entering the superconductor. The interaction energy decreases
and also here we observe a clear jump in the energy decrease as fluxons enter the supercon-
ductor. These jumps are also present in the total energy and the magnetic energy, but they
a very small and hardly observable. After all the flux lines have entered the superconduc-
tor, the interaction energy and the superconducting energy settle slowly to their steady state
values by rearranging the flux line positions in the superconductor.

In Fig. 4 we show the total energy density and the energy density of the superconducting
state at time t = 100. As expected the energy of the superconducting state is elevated at
the triangular indent, however, the superconducting energy is also slightly elevated along
the traces of the 4 entering vortices. Along these traces the phase is changing rapidly in the
superconducting state, and this leads to enhanced superconducting energy due to the first
term in (16). In Fig. 5a we depict the magnetization energy Hmag (x, y,100) as function
of space at time t = 100 and Fig. 5b shows the interaction energy Hint (x, y,100). The
interaction energy is lowered considerable in the regions where both the magnetic field and
the order parameter change and hence the formation of penetrating flux is favored. The phase
φ at time t = 100, defined as the argument of ψ , is shown in Fig. 6, where −π < φ < π .
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Fig. 4 (a) The total energy density Htot(x, y,100) as function of space at time t = 100. (b) The total super-
conducting energy density Hsup(x, y,100) as function of space at time t = 100. The parameter values are
κ = 4, B = 0.8 and σ = 1

Fig. 5 (a) The magnetization energy density Hmag(x, y,100) as function of space at time t = 100. (b) The
interaction energy density Hint(x, y,100) as function of space at time t = 100. The parameter values are
κ = 4, B = 0.8 and σ = 1

An interesting feature is that the phase pattern clearly indicates the path along which the
magnetic fluxes penetrates into the superconductor.

6 Summary

The time-dependent Ginzburg-Landau equations have been solved numerically with a finite
element algorithm for superconductors of complex geometries in two space dimensions. For
given applied magnetic fields we have computed the dynamical behavior of the penetrating
magnetic vortices into a type two superconductor and illustrated their final pattern formation.

Our main result is the finding of the formation of a giant vortex at a sharp concave
indent penetrating into circular shaped superconductor. Initially, the giant vortex shed off
single quantum flux lines which distribute equally throughout the superconductor. The giant
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Fig. 6 The phase as function of
space at time t = 100. The
parameter values are κ = 4,
B = 0.8 and σ = 1

vortex develops into an elongated structure and coexist with the single quantum magnetic
fluxes. However, higher magnetic fields leading to flux penetration at boundaries away from
the indent can suppress the formation of the elongated giant vortex and reduce its size con-
siderably.

The calculated energy patterns show that the dynamics of penetrating magnetic flux lines
lead to a substantial decrease of the interaction energy, compensating for the relatively strong
increase in the superconducting energy in those regions where magnetic flux penetrates into
the superconductor.

Acknowledgements We acknowledge financial support from the Danish Natural Science Research Council
through project No. 21-02-0500 (MIDIT).

Appendix A

The numerical simulations are based on a finite element implementation of the Ginzburg-
Landau equations (13)–(14) using the COMSOL Multiphysics software package [23]. The
implementation of the boundary conditions (15) turns out not to be completely trivial and
hence we discuss the implementation in this appendix. In the implementation we have
split the order parameter ψ(x, y, t) into its real part Re(ψ) = u1(x, y, t) and its imagi-
nary part Im(ψ) = u2(x, y, t). The magnetic potential A is written in component form as
A = (u3(x, y, t), u4(x, y, t)). In order to implement the boundary conditions (15) we have
introduced an auxiliary dependent variable u5(x, y, t) for reasons explained below. In gen-
eral form the COMSOL software package numerically solves the system of partial differen-
tial equations

ea

∂2u
∂t2

+ da

∂u
∂t

+ ∇ · � = F. (19)

In our case the vector function u equals (u1, u2, u3, u4, u5)
T , where “T” is the transpose.

The spatial dimension is n = 2 and the number of coupled partial differential equations is
N = 5. In general ea is a N ×N matrix, however, for the current Ginzburg-Landau equations
ea becomes the zero matrix. The matrix da is also a N × N matrix and it may depend on
x, y, t and u. The � is a column vector function of dimension N and each component is
a n-dimensional column vector function. The right hand side F in (19) is a N -dimensional
column vector function. The vectors � and F may both depend on x, y, t,u,ux and uy ,
where subscripts denote partial derivatives with respect to the subscript variable.
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In the finite element code, (19) is solved in the weak form and with boundary condi-
tions implemented in implicit form, either as Dirichlet boundary conditions or as Neumann
boundary conditions ( [22] and [23]). The two types of conditions can be assigned to differ-
ent and disjoint parts of the boundary ∂Ω of the solution space Ω . The Dirichlet boundary
condition reads

R = 0 on ∂Ω. (20)

In the above expression the function R is a vector function of dimension N and each com-
ponent may depend on x, y, t,u,ux and uy . Introducing the outward normal vector n to ∂Ω ,
the Neumann boundary condition reads

−n · � = G on ∂Ω. (21)

The vector function G of dimension N may depend on x, y, t,u,ux and uy . As � enters
the Neumann conditions we are restricted in choosing � when implementing the Ginzburg-
Landau equations (13)–(14) together with the boundary conditions (15). In our implementa-
tion we have chosen to use the Neumann conditions. However, by introducing the auxiliary
variable u5(x, y, t) satisfying the equation

∇
[

u3

u4

]
= u3,x + u4,y + u5, (22)

we can implement the boundary conditions in (15). Here the number of spatial dimensions
is n = 2 and hence ∇ = (∂x, ∂y). Subscript x denotes partial differentiation with respect to
x. Similarly for subscript y. The implementation of da and � in COMSOL become

da =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 σ 0 0
0 0 0 σ 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , � =

⎡
⎢⎢⎢⎢⎣

[−u1,x/κ
2,−u1,y/κ

2]T
[−u2,x/κ

2,−u2,y/κ
2]T

[0, u4,x − u3,y − Ba]T
[−u4,x + u3,y + Ba,0]T

[u3, u4]T

⎤
⎥⎥⎥⎥⎦ . (23)

The right hand side F contains all other terms and reads

F =

⎡
⎢⎢⎢⎢⎣

F1

F2

(u1u2,x − u2u1,x)/κ − (u2
1 + u2

2)u3

(u1u2,y − u2u1,y)/κ − (u2
1 + u2

2)u4

u3,x + u4,y + u5

⎤
⎥⎥⎥⎥⎦ (24)

where the component F1 = (u3,x + u4,y)u2/κ + 2(u3u2,x + u4u2,y)/κ − (u2
3 + u2

4)u1 + u1 −
(u2

1 + u2
2)u1 and the component F2 = −(u3,x + u4,y)u1/κ − 2(u3u1,x + u4u1,y)/κ − (u2

3 +
u2

4)u2 + u2 − (u2
1 + u2

2)u2. With the auxiliary equation the boundary conditions (15) now
becomes the Neumann condition in (21) with G = 0. Note that the above implementation is
not unique, and it is possible to implement the Ginzburg-Landau equations in COMSOL in
alternative ways.
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