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Abstract Three well-known duration of load models
(Gerhard, Barrett/Foschi, DVM) are considered in this
note with respect to their ability to predict lifetime of
wood subjected to harmonically varying loads. The result
obtained is that they practically predict the same life-
time—which for low frequency loading can be considered
approximately true. For higher frequencies, however, this
result can be far too overestimated. The reason is that the
models considered do not take into account the effect of
the crack closure phenomenon (which are the main
mechanisms of energy dissipation causing fatigue failure
in metals).

It is suggested that any of the simple models can be
used in practice when low frequency load variations are
considered. The DVM model, however, should be pre-
ferred because of its ability to predict residual strength,
and because of its ‘build in’ flexibility with respect to
wood quality and ambient climatic conditions.

For high frequency load histories more refined models
are required. The extended DVM model, recently devel-
oped by the author, is suggested as such a model—
especially because it has the potentials of being further
developed to consider arbitrary load variations (such as
earthquakes).
Finally, the widely spread concept of estimating long-
term strength by multiplying short time strength with a
codified factor (so-called kMOD factor) is discussed. It is
concluded that the kMOD-method can be justified in
practice with low frequency load variations. When high
frequency load histories or unexpected peak loads are
considered, the kMOD-method may cause considerably
overestimated lifetimes.

Der Einfluss des Riss-Schließ-Ph�nomens
bei Festigkeitssch�tzungen von Holz

Zusammenfassung Drei bekannte Belastungsdauermo-
delle werden in dieser Arbeit im Bezug auf ihre F�higkeit,
die Standzeiten von Holz, welches harmonisch wechseln-
den Lasten ausgesetzt wird, vorauszusagen. Das Ergebnis
ist, dass sie beinahe identische Lebenserwartungen vor-
aussagen, was f�r Belastungen mit niedrigen Wechsel-
frequenzen als g�ltig angesehen werden kann. Bei h�he-
ren Frequenzen k�nnen die Ergebnisse allerdings zu hoch
gesch�tzt sein. Der Grund hierf�r liegt darin, dass die
herangezogenen Modelle das Riss-Schließ-Ph�nomen un-
ber�cksichtigt lassen (welches auch der Hauptmechanis-
mus f�r Energiezerstreuung ist und in Metallen zu
Materialerm�dung f�hrt). Es wird vorgeschlagen, dass
jedes dieser einfachen Modelle in der Praxis verwendet
werden kann, wenn Variationen von Belastungen mit
niedrigen Wechselfrequenzen betrachtet werden. Dem
DVM Modell ist allerdings der Vorzug zu geben, da es
Restfestigkeit voraussehen kann und flexibel im Bezug
auf Holzqualit�t und klimatische Umgebung ist. F�r
Belastungen mit hoher Wechselfrequenz werden kom-
plexere Modelle ben�tigt. Das erweiterte DVM Modell,
k�rzlich vom Author entwickelt, wird als solches Modell
vorgeschlagen, besonders, da es weiterentwickelt werden
kann, um willk�rliche Belastungschwankungen (wie etwa
Erdbeben) mit einzubeziehen. Abschließend wird die
g�ngige Praxis, Langzeitfestigkeit dadurch zu berechnen,
indem man die Kurzzeitfestigkeit mit einem festgelegten
Faktor (dem sog. kMOD Faktor) multipliziert, besprochen.
Diese Praxis ist laut den Ergebnissen bei Variationen von
Belastungen mit niedriger Wechselfrequenz anwendbar.
Bei h�heren Frequenzen kann diese Methode allerdings
zu erheblich �bersch�tzten Lebensdauern f�hren.

Notations

Load and strength Theoretical strength (no damage):
sl · Real strength at t=0: sCR · Strength level (wood
quality): FL=sCR/sl · Load: s · Load level: SL=s/sCR ·
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Max load: sMAX · Min load: sMIN · Load ratio:
p=sMIN/sMAX · Cyclic time: T · Frequency: f=1/T ·
Fractional time under max load: b · Real strength at t:
sCR(t) · Residual strength: SR=sCR(t)/sCR

Damage Initial crack length: lo · Immediate crack
length: l · Damage ratio (or just damage): k=l/lo · Fatigue
parameters in extended DVM model: C, M · Damage
degree in the models of Gerhard’s and Barrett/Foschi’s: a ·
Fit parameters in Gerhard’s model: A,B · Fit parameters
in Barrett/Foschi: C,D,E,F

Time and creep Time in general: t · Creep function:
c=[1+(t/t)b]/E · Young’s modulus: E · Relaxation time
in creep: t · Creep power: b · Time shift parameter:
q=(0.5(1+b)(2+b))1/b

1 Introduction

Three lifetime models for wood are currently discussed1

with respect to their ability to act as a duration of load
basis in ‘Reliability-based design of timber structures’:
The theory of Gerhard’s (Gerhard 1979), the theory of
Barrett/Foschi (1978a, b), and the theory of Fuglsang’s
(Nielsen 1982, 1991; Madsen 1992), the so-called DVM
theory (Damaged Viscoelastic Material).

Basically, all three models are developed for constant
loads. The DVM model, however, is prepared also to
consider some continuous load variations. In spite of any
restrictions on the three models—but because of their
simplicity, there is a demand from the wood community
for using one of them as a basis for ‘rules’ in design of
wood structures subjected to variable loads.

On this background the three models are compared in
this note with respect to their ability to predict lifetime of
wood subjected to harmonically varying block loads as
defined in Fig. 2. The predictions obtained are evaluated
against ‘experimental data’ represented by an extended
version of the DVM theory (Nielsen 1993, 2000) which
has proven its ability to describe very well measured
lifetime (‘real experimental data’) of wood subjected to
load histories similar to the kind just defined.

1.1 Model presentation

The basic expressions of the three theories mentioned
above are the following:

da
dt
¼ 1

A
� exp B � SLð Þ

A;Bð Þ ¼ 1:58 � 1014 hours; 36:2
� � Gerhard

ð1Þ

da
dt
¼ C � SL� Fð ÞD þ E � a

Barrett=Foschi

C;D;E;Fð Þ ¼ ð10=hour; 25; 10�8:5
�

hour; 0Þ ð2Þ

dk
dt
¼ pFLð Þ2

8qt
kSL2

1= kSL2ð Þ � 1ð Þ1=b
;

q ¼ 0:5 1þ bð Þ 2þ bð Þð Þ1=b Simple DVM

FL; b; tð Þ ¼ 0:3; 0:2; 10 daysð Þ ð3Þ
Basically the theories of Gerhard’s and Barrett/

Foschi’s are empirical where the parameters A–F have
to be determined by calibration to experimental data. The
so-called degree of damage a develops from 0 at loading
time (t=0) to 1 at time (tCAT) where catastrophic failure
occurs. SL is load level as defined in the list of notations.

The DVM theory is based on a crack mechanical
analysis of wood. The damage ratio k, defined in the list
of notations, develops from 1 at start of loading to 1/SL2

at failure, where the rate of the damage ratio becomes
infinitely high. FL is wood quality as defined in the list of
notations. The relaxation time, t, and the creep power, b,
define the creep experienced by the wood in damage areas
(see Fig. 1 and list of notations). Equation 3 is subse-
quently referred to as the simple DVM theory. The other
version of the DVM theory previously mentioned (Niel-
sen 1993, 2000) will be referred to by the adjectives
‘extended’ or ‘generalized’.

Remark. Contrary to Eqs. 1, 2 and 3, the extended DVM
theory operates with two dissipative mechanisms being
responsible for the duration of load effects in wood: One
is the creep mechanism (already taken care of in Eq. 3).
The other one is the so-called crack closure mechanism
well known from fatigue studies of metals. The general-
ized theory applies for any damaged viscoelastic material
(with Power law creep). As special cases metals are
included with no creep, t=1.

Fig. 1 Creep function for materials with so-called Power-law creep
Abb. 1 Kriechfunktion f�r Materialien, deren Kriechen nach dem
sog. Potenzgesetz verl�uft

1 For example in the European Commission COST-E24 project
where preliminary studies are made with respect to code prepara-
tion for reliability based design of timber structures.
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2 Preparation of analysis

In the following the Gerhard’s, the Barrett/Foschi’s, and
the simple DVM model will be analyzed with respect to
their ability to describe duration of load effects for
variable loading as defined in Fig. 2 with fractional time
under max load, b=0.5.

As previously mentioned the ‘experimental’ data used
in the evaluation process will be simulated by the
extended DVM theory. To get a common basis in the
analysis we calibrate all three theories to the BM-trend
line established by Borg Madsen in (Madsen 1992,
Fig. 6.1) for the lifetime (tCAT) of clear wood specimens
subjected to long term loading,

tCAT ¼ 1:58 � 1014 � 10�15:7�SL hours BM� trend ð4Þ
The fit parameters (A–F) in Eqs. 1 and 2 and the

material parameters (FL, b, t) in Eq. 3 have the order of
magnitudes indicated. The Gerhard fit is exact. The
calibration quality of the Barrett/Foschi expression can be
studied in Fig. 3, (in the present context the Barrett/Foschi
is fitted sufficiently well introducing F=0). The DVM
theory is calibrated to the BM-trendline data using a
computer program reported in (Nielsen 2003). The results
are (FL, b, t)=(0.3, 0.2, 10 days) which are within the
range of reliable OM-estimates (order of magnitudes)
declared in (Nielsen 2000). The calibration quality can be
studied in Fig. 4.

The fatigue parameters, C and M, appearing in the
extended DVM theory are chosen by their average
quantities presented in (Nielsen 2000), namely C,M=3,9,
(the parameters FL, b, t keep their quantities from Eq. 3).

3 Analysis

Some results of an evaluation of the three theories
considered will now be demonstrated. (Similar results
have previously been presented in (Nielsen 1997, 2001a,
2001b, 2002a, 2002b). The results are arranged such that
the three methods (Eqs. 1, 2 and 3) are mutually
compared in Figs. 5, 7, and 9.

In Figs. 6, 8, and 10 the methods are evaluated against
‘experimental data’ as simulated by the extended DVM
theory.

We notice that lifetime predictions by the DVM
theories include predictions of ‘residual strength’ (defined
as ‘strength left’ or ‘re-cycle strength). The Gerhard and
Barrett/Foschi theories cannot describe this property.

Fig. 3 Calibration of Barrett/Foschi to the BM-trend:
tCAT(days)= 6.58*1012*10�15.7SL

Abb. 3 Anpassung des Barrett/Foschi- an den BM-Trend:
tCAT (Tage)=6,58*1012*10�15,7SLFig. 2 Basic load variation considered: Square wave loading.

sMIN=p*sMAX. In present analysis: b=0.5
Abb. 2 Grundlegende Lastvariation nach einer Rechteck-Funktion:
sMIN=p*sMAX. Im vorliegenden Fall: b=0,5

Fig. 4 Calibration of DVM to the BM-trend:
tCAT(days)=6.58*1012*10�15.7SL

Abb. 4 Anpassung des DVM- an den BM-Trend:
tCAT(Tage)=6,58*1012*10�15,7SL
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4 Intermediate conclusions and remarks

The empirical Gerhard’s and Barrett/Foschi’s models do
not consider the crack closure phenomenon as a driving
mechanism in damage propagation. The simple DVM
model also disregards this mechanism. These three
models are compared in Figs. 5, 7, and 9. It is seen that
they practically predict the same lifetime independently
of load frequencies—a behavior which has clearly been
demonstrated, not to be true by Bach (1979) already in
1975. The observation of Bach’s has later been confirmed
by a number of other authors (e.g. Clorius 2001).

Theoretically the observation of Bach’s is in accor-
dance with the results of the extended version of the DVM
theory (Nielsen 2000) developed for lifetime studies of
damaged viscoelastic materials in general.

The Gerhard’s and Barrett/Foschi’s models (and indi-
rectly also the simple DVM model) are compared with the

Fig. 7 Prediction of lifetime using Eqs. 1, 2, 3 (simple DVM
theory). Crack closure not considered
Abb. 7 Vorhersage der Standzeit mittels Gl. 1, 2, 3 (einfache
DVM-Theorie). Rissschluß ist nicht ber�cksichtigt

Fig. 8 Prediction of lifetime using Eqs. 1, 2 and the extended DVM
theory with crack closure considered
Abb. 8 Vorhersage der Standzeit mittels Gl. 1, 2 und der er-
weiterten DVM-Theorie mit Ber�cksichtigung des Rissschlusses

Fig. 6 Prediction of lifetime using Eqs. 1, 2 and the extended DVM
theory with crack closure considered
Abb. 6 Vorhersage der Standzeit mittels Gl. 1, 2 und der er-
weiterten DVM-Theorie mit Ber�cksichtigung des Rissschlusses

Fig. 9 Prediction of lifetime using Eqs. 1, 2, 3 (simple DVM
theory). Crack closure not considered
Abb. 9 Vorhersage der Standzeit mittels Gl. 1, 2, 3 (einfache
DVM-Theorie). Rissschluss ist nicht ber�cksichtigt

Fig. 5 Prediction of lifetime using Eqs. 1, 2, 3 (simple DVM
theory). Crack closure not considered
Abb. 5 Vorhersage der Standzeit mittels Gl. 1, 2, 3 (einfache
DVM-Theorie). Rissschluss ist nicht ber�cksichtigt
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‘experimental data’ in Figs. 6, 8, and 10. It is observed
that all data sets practically coincide at low load frequen-
cies. Apparently the energy dissipation caused by creep
overrides the dissipation caused by crack closure mech-
anisms.

This conclusion, however, cannot be maintained when
rapid load variations are considered (Fig. 10). Lifetime is
considerably overestimated when using the Gerhard’s, the
Barrett/Foschi’s, and the simple DVM theories on rapidly
varying load situations. Apparently the energy dissipation
caused by crack closure mechanisms overrides the dissi-
pation caused by creep mechanisms.

Remark. The observations just made are clearly demon-
strated in Figs. 11 and 12 obtained by a software

presented in (Nielsen 2003) for easy safe lifetime esti-
mations for wood subjected to the type of load histories
considered in this paper. (The horizontal line in the
figures is dead load lifetime for wood loaded with sMAX.
The steepest line in the figures is fatigue lifetime for
wood with damage propagation totally dominated by
crack closure mechanisms). Both figures refer to the
wood properties considered in this paper. The load
parameters in Fig. 11 are also the same as previously
considered. In Fig. 12, however, the load ratio has been
decreased to p=0 practically (complete unloading).

The transition range of frequencies between ‘low’ and
‘high’ frequency loading is suggested in (Nielsen 2000) to
be 10<f*t<105, which for the wood properties considered
in this note means 10�5<f<0.1.

4.1 Future

Harmonic load variations have been assumed in this note.
An important future research project is to develop a
lifetime theory, which applies for more general variations
(non-harmonic load histories). It has been demonstrated
in (Nielsen 1996a, 1996b) that the extended DVM theory
has the basic potentials to be further generalized for such
loads. Figures 13 and 14 demonstrate some results
obtained by a pilot theory in (Nielsen 1996a) being tested
predicting the residual strength of wood subjected to a
simulated load history caused by earthquakes.

5 Final conclusions

It seems that any of the simple duration of load models
(Eqs. 1, 2 and 3) can be used in practice when low

Fig. 11 Safe lifetime estimates of wood with properties and a load
history as considered in this paper: (FL, b, C, M)=(0.3, 0.2, 3, 9)
and (SLMAX, p)=(0.6, 0.5)
Abb. 11 Sch�tzen der sicheren Standzeit f�r Holz mit Eigen-
schaften und einer Belastungsgeschichte, wie sie hier betrachtet
werden: (FL, b, C, M)=(0,3, 0,2, 3, 9) and (SLMAX, p)=(0,6, 0,5)

Fig. 12 Safe lifetime estimates of wood with properties as consid-
ered in this paper: (FL, b, C, M)=(0.3, 0.2, 3, 9). Loading is
(SLMAX, p)=(0.6, 0.001)
Abb. 12 Sch�tzen der sicheren Standzeit f�r Holz mit Eigen-
schaften und einer Belastungsgeschichte, wie sie hier betrachtet
werden: (FL, b, C, M)=(0,3, 0,2, 3, 9) and (SLMAX, p)=(0,6, 0,001)

Fig. 10 Prediction of lifetime using Eqs. 1, 2 and the extended
DVM theory with crack closure considered
Abb. 10 Vorhersage der Standzeit mittels Gl. 1, 2, 3 und der
erweiterten DVM-Theorie mit Ber�cksichtigung des Rissschlusses
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frequency load variations are considered. The DVM
model, however, should be preferred because of its ability
to predict residual strength, and because of its ‘build in’
flexibility with respect to wood quality and ambient
climatic conditions.

For high frequency load histories, more refined models
are required. The extended DVM model, recently devel-
oped by the author, is suggested as such a model—
especially because it has the potentials of being further
developed to consider arbitrary load variations (such as
earthquakes). As a curiosum is noticed that lifetime

predicted by the extended DVM model at a very high
frequency loading approaches the solution, which can be
predicted by a plain fatigue theory (see Figs. 11 and 12).

Finally, the widely spread concept (e.g. Svensson et al.
1999) of estimating long-term strength by multiplying
short time strength with a so-called kMOD-factor should be
related to the findings in this research note:

In principles kMOD factors are calculated using a
damage model (disregarding its original constant load
assumptions) with forecasted time dependent on load
histories (or load levels, SL). Hitherto, as in (Stang et al.
2002), the determinations of kMOD factors have been based
exclusively on the Gerhard’s or on the Barrett/Foschi’s
models. Recently, however, the simple DVM-model
(Eq. 3) has also been considered by K�hler, Faber, and
Svensson (K�hler 2002, K�hler and Faber 2002, K�hler
and Svensson 2002)2 in their analysis of the influence on
kMOD of the damage model chosen. The conclusion made
by these authors is that all three models, when properly
calibrated, practically imply the same kMOD. This conclu-
sion agrees with the intermediate conclusion previously
made in this paper for lifetime predictions with models
that disregard crack closure (see Figs. 5, 7 and 9).

Based on the results obtained in this paper, the
following conclusion can now be made with respect to
the kMOD method: The kMOD-method can be justified in
practice with low frequency load variations (f*t<10).
When higher frequency load histories or unexpected peak
loads are considered, the kMOD-method may cause con-
siderably overestimated lifetimes.
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