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Abstract: In our common understanding, for strong absorption or 
amplification in a slab structure, the desire of reducing the slab thickness 
seems contradictory to the condition of small loss or gain. In this paper, this 
common understanding is challenged. It is shown that an arbitrarily thin 
metamaterial layer can perfectly absorb or giantly amplify an incident plane 
wave at a critical angle when the real parts of the permittivity and 
permeability of the metamaterial are zero while the absolute imaginary parts 
can be arbitrarily small. The metamaterial layer needs a totally reflective 
substrate for perfect absorption, while this is not required for giant 
magnification. Detailed analysis for the existence of the critical angle and 
physical explanation for these abnormal phenomena are given. 

© 2011 Optical Society of America 
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1. Introduction 

When a wave propagates in a lossy material, it is absorbed gradually. To reduce the interface 
reflection, absorbers usually possess tapered micro-structures [1]. Recently, some thin flat 
metamaterial absorbers have been demonstrated [2–5], which can easily fulfill impedance 
match and large loss. In these cases, strong absorption in a short distance requires large loss, 
but perfect absorption (100%) cannot be archived. As another type of absorbers based on 
resonance, the well-known Salisbury screen can perfectly absorb a normally incident plane 
wave theoretically [1], but the spacer between the resistive sheet and the perfect electric 
conductor (PEC) substrate cannot be very thin (typically of the order of the wavelength in the 
spacer). Here we want to raise an interesting fundamental question, namely, can perfect 
absorption be realized with an arbitrarily thin structure whose material loss can be very small? 
If the answer is positive, an absorber can physically be made arbitrarily thin, and one can 
greatly improve the performance of e.g. detectors since their dependence on material loss can 
be greatly relaxed. Similarly, another interesting question can be raised, that is, whether giant 
amplification can be achieved with an arbitrarily thin structure of low gain. Usually, large 
gain is expected for strong amplification, but the gain cannot be very large in practice. A 
special material of zero permittivity ε or permeability μ provides us some special properties 
[6–10]. Several interesting applications have been reported, such as directive radiation and 
spatial filtering [6–8], squeezing electromagnetic energy [9] and nonlinear optics [10]. Here 
we will show that special materials with zero real(ε) and real(μ) (hereinafter referred to as 
ZRMs) can find amazing applications in absorption and magnification. With the assumption 

of a time harmonic factor exp(iωt), positive imag(ε) and imag(μ) represent loss, and negative 
ones represent gain. A lossy or active ZRM layer can perfectly absorb or strongly amplify an 
incident plane wave, while amazingly the thickness of the ZRM layer, as well as |imag(ε)| and 
|imag(μ)|, can be arbitrarily small. Metamaterials hold the potential to realize ZRMs. By 
careful tuning the electric and magnetic resonant units that form a metamaterial [11], both 
real(ε) and real(μ) may vanish at some frequency. At some Dirac point with a zero Bloch 
wave vector, a specially designed photonic crystal may be homogenized as a metamaterial 
with both effective ε and μ approaching zero [12]. As a special metamaterial composed of 
small atoms, a gas of electromagnetic induced transparency (EIT) may possess negative ε and 
μ [13]. By choosing appropriately some EIT parameters, it is also possible to make real(ε) and 
real(μ) vanish. 

2. Perfect absorption and giant magnification 

Figure 1(a) illustrates the investigated structure. A slab is sandwiched between two semi-
infinite layers, and the top layer, the slab, and the bottom layer are denoted as layers 0, 1 and 
2, respectively. The permittivity and permeability of layer n are denoted by εn and μn, 
respectively. The magnetic field is along the z axis (TM polarization). When a plane wave 
impinges in the downward direction on the slab (the incident angle is θ and the corresponding 
transverse wave vector is ky), the magnetic and electric fields in layer n can be expressed as 

 

, ,

, ,

, ,

,

,

, ,

( ) ( )

( ) ( / )( ) ,

( ) ( / )( )

yn x n x

yn x n x

yn x n x

ik yik x ik x

n z n n

ik yik x ik x

n x y n n n

ik yik x ik x

n y n x n n n

H H e H e e

E k H e H e e

E k H e H e e





 

 

 

  



  


 

r

r

r

 (1) 

where kn,x = (kn
2
ky

2
)

1/2
, kn is the wave number in layer n, and Hn 

±
  is the magnetic field 

amplitude of a down- or up-going plane wave component in layer n as shown in Fig. 1. 
According to the electromagnetic boundary conditions, one can obtain Hn 

±
  and the 

corresponding field distribution in layer n. Due to the symmetry of the structure, it is 

sufficient to study the electromagnetic response for ky0. 
First we assume that layer 0 is of free space, layer 1 (ZRM) is lossy with ε1 = iε1,r”ε0 and μ1 

= iμ1,r”μ0 (ε1,r”0 and μ1,r”0), and layer 2 is a PEC. The reflection coefficient of the slab is 
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 0 0 1 1, 0, 1 1, 0,/ [1/tanh( ) / " ] / [1/tanh( ) / " ],loss r x r xR H H d k d k           (2) 

where γ = (ε1,r”μ1,r”k0
2
 + ky

2
)

1/2
. Since all the variables on the right-hand side of Eq. (2) are real 

numbers when ky<k0, the reflected wave is either in phase or out of phase with respect to the 
incident wave. The numerator on the right-hand side of Eq. (2) is denoted by floss, and may 
become zero for some ky<k0 (corresponding to some incident angle) in some situations. The 
first term in floss decreases as ky increases from 0 to k0, and is always larger than or equal to 1. 
The second term in floss increases from a minimal value of (μ1,r”/ε1,r”)

1/2
 to infinity as ky 

increases from 0 to k0. Thus, when μ1,r”/ε1,r”1, there always exists some value of ky (<k0) 
making floss zero, no matter how small d1 becomes. Then Rloss also becomes zero. This means 
that there exists an incident angle at which the incident plane wave is completely (100%) 

absorbed by the lossy slab since the absorptivity is equal to 1|Rloss|
2
. This incident angle is 

referred to as the critical angle (denoted by θc) hereafter. When μ1,r”/ε1,r”>1, the existence of 
θc depends on the value of d1. If d1 is too large compared with the wavelength in free space 
(λ0), θc does not exist, because the first term in floss is smaller than 1/tanh[(ε1,r”μ1,r”)

1/2
(k0d1)], 

which approaches 1 when d1 is very large, whereas the second term is always larger than 1. 
When ε1,r” and μ1,r” are given with μ1,r”/ε1,r”>1, the threshold of d1 allowing the existence of θc 
is determined by the following equation 

 1, 1, 0 1 1, 1,tanh( " " ) " / " 0.r r r rk d      (3) 

As a demonstration, Figs. 2(a) and 2(b) show the reflectivity (|Rloss|
2
) of the slab for 

various ky. When μ1,r”/ε1,r”1, there are always deep dips representing perfect absorption on 

the reflectivity curves [see curves 14 in Fig. 2(a) and curves 1 and 2 in Fig. 2(b)]. When 
μ1,r”/ε1,r”>1 and d1 is large enough, such dips disappear [see curve 5 in Fig. 2(a) and curve 3 in 
Fig. 2(b); note that perfect absorption is still possible for some appropriate thickness d1 when 
μ1,r”/ε1,r”>1]. Comparing Figs. 2(a) and 2(b), one sees that when μ1,r” = ε1,r” (i.e., matched 
impedance), if ε1,r” and μ1,r” are large, θc is near to zero (i.e., perfect absorption at nearly 
normal incidence) and strong absorption over a wide range of incidence angle can be 
achieved. If ε1,r” and μ1,r” are small (i.e., small loss), perfect absorption near normal incidence 
can still be achieved when ε1,r” is much smaller than μ1,r” (see curve 4 of Fig. 2(a)). Note that 
contrary to all the absorbers reported previously, the values of d1, ε1,r” and μ1,r” can be very 
small (arbitrarily small) in the situation of perfect absorption. 

 

Fig. 1. (a) Configuration for a slab of ZRM sandwiched between two semi-infinite layers. (b) 
Wave decomposition of the reflected or transmitted field. 

The value of θc depends on d1, ε1,r” and μ1,r” as illustrated well in Fig. 2(a). The second 
term in floss is approximately inversely proportional to ε1,r”. As ε1,r” decreases gradually (with 
fixed μ1,r” and d1), θc should approach zero so that the first term in floss can cancel the second 
term. If ε1,r” decreases further and becomes smaller than some value which satisfies Eq. (3) 
with the other parameters given, θc will not exist. Similarly, as μ1,r” increases, the second term 
in floss also increases, and θc should approach zero in order to make floss zero. And if μ1,r” 
increases further, θc will not exist. When d1 is gradually reduced with fixed ε1,r” and μ1,r”, θc 
becomes larger. Note that the first term in floss is very large when d1 is very small. To make the 
second term in floss also large, |ky| needs to approach k0 (i.e., θc approaches 90 degrees). On the 
other hand, θc approaches zero as d1 increases. θc will not exist any more when d1 increases 
further and becomes larger than some value satisfying Eq. (3). 

The above perfect absorption can be understood by coherent cancelling. As shown in Fig. 
1(b), the reflected wave in Fig. 1(a) can be considered as a composition of infinite plane wave 
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components. One component is from the direct reflection (denoted by p0) when the incident 
plane wave impinges on surface S0,1. When the incident plane wave enters the slab and is 
multi-reflected between surfaces S0,1 and S1,2, a part of it is refracted out of surface S0,1 and 
forms the other components which are denoted by pn (n = 1,2,…). Based on this interpretation, 
Rloss can be rewritten as 

 1 1 12 2(2 ) 3(2 )2

0,1 0,1 1,0 1,0 1,0[ ...],
d d d

lossR r t t e r e r e
    

      (4) 

where r0,1 = (1-γ/ε1,r”k0,x)/(1 + γ/ε1,r”k0,x), r1,0 = -r0,1, t0,1 = 2ε1,r”k0,x/(ε1,r”k0,x + γ), t1,0 = 
2γ/(ε1,r”k0,x + γ). The first term on the right-hand side of Eq. (4) represents component p0 in 
Fig. 1(b), and the second term represents the composition of the other components, pn (n = 
1,2,…). From Eq. (2), one sees that γ/ε1,r”k0,x must be larger than 1 to make floss zero since 
tanh(γd1)<1. Thus, r0,1 is negative and r1,0 is positive. Then, all components p1, p2, … are in 
phase, and they are out of phase with component p0. At critical angle θc, the two groups cancel 
each other. This leads to the disappearing of the reflected wave in layer 0, and the incident 
plane wave is perfectly absorbed by the lossy slab. From Eq. (1), one sees that inside the slab, 
E1,x(r) is out of phase with H1,z(r), and time-averaged energy stream density P1(r) has a zero 
component along the y axis. This indicates that when the incident plane wave enters the slab, 
it will just be normally multi-reflected by surface S0,1 and S1,2 and repeatedly absorbed. During 
this process, there is no phase introduced, leading to a result that the exponents in the square 
on the right-hand side of Eq. (4) just possess negative real variables (instead of complex 
variables). There is no transverse shift along the y axis among components p0, p1, … in Fig. 
1(b). As a numerical example, Figs. 2(c)-2(e) show the electric and magnetic fields and time-
averaged energy stream density (represented by arrows) around the slab when d1 = 0.4λ0, ε1,r” 

= 0.3, μ1,r” = 0.1, and θc19.8 degrees. To show clearly the distributions of the field and time-
averaged energy stream density inside the slab, a relatively large value of d1 is chosen for 
Figs. 2(c)-2(e). The distributions inside a thinner slab are similar. These distributions clearly 
show that there is no wave reflected by the slab. When the position approaches surface S1,2, 
E1,y(r) has to tend to zero as required by the boundary condition at PEC surface S1,2, and so is 
P1(r), whereas E1,x(r) and H1,z(r) have no such tendency. For perfect absorption, a PEC as the 
substrate of the slab is necessary. If it is removed, the plane wave components refracted into 
the substrate (after being multi-reflected by surfaces S0,1 and S1,2) cannot cancel each other, 
and the incident plane wave can partially transmit through the slab as a total effect. 

 

Fig. 2. Reflectivity and field distributions of a slab with a PEC substrate. In (a), d1 = 0.1λ0 for 

curves 14 and d1 = λ0 for curve 5, and (ε1/ε0, μ1/μ0) has small values of i(0.3, 0.3), i(0.5, 0.3), 

i(0.3, 0.1), i(0.01, 0.3), and i(0.1, 0.3) for curves 15, respectively. In (b), d1 = 0.1λ0, and (ε1/ε0, 

μ1/μ0) has large values of i(20, 20), i(20, 10), and i(10, 20) for curves 13, respectively. In 

(c)(e), d1 = 0.4λ0, (ε1/ε0, μ1/μ0) = i(0.3, 0.1). 

Next we investigate an opposite case, namely, ε1 and μ1 are only of negative imaginary 
parts (i.e., ε1 = -iε1,r”ε0 and μ1 = -iμ1,r”μ0). Recently, there have been some efforts in active 
metamaterials [14,15]. Then, an incident wave is magnified by the active metamaterial slab. 
The reflection coefficient of the slab is Rgain = [1/tanh(γd1) + γ/ε1,r”k0,x]/[1/tanh(γd1)-γ/ε1,r”k0,x], 
which is reciprocal to Eq. (2) for Rloss. When Rloss is zero, Rgain is infinite. Then, there exists a 
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critical angle θc at which the plane wave impinging on the slab is infinitely magnified. The 
relation between θc and the values of d1, ε1,r” and μ1,r” is similar to that for the previous lossy 

slab. Especially, when μ1,r”/ε1,r”1, θc always exists even if the thickness and gain of the slab 
are arbitrarily small. Curve 1 in Fig. 3(a) shows a numerical example. The infinite 

magnification can be understood as follows. The condition of Rgain =  determines the 
dispersion equation of the slab waveguide. Now, special waveguide modes can exist for ky<k0. 
The energy stream inside the slab is normally reflected back and forth by surfaces S1 and S2 
(instead of propagating along the slab). Some electromagnetic energy runs away from the 
slab, but it can be compensated by the energy generated by the gain. When an incident wave 
excites a waveguide mode, the total reflected wave will be infinite. The infinite magnification 
is from the time-harmonic solution. In practice, it may take an infinitely long time to obtain 
this effect. However, one can still obtain giant magnification after long enough time. 

 

Fig. 3. Reflectivity and transmissivity of a slab. In (a), d1 = 0.1λ0, (ε1/ε0, μ1/μ0) = (0.3i, 0.3i), 
and layer 2 is a PEC for curve 1 and of free space for curves 2 and 3. In (b), d1 = 0.1λ0 for curve 

1 and d1 = 0.5λ0 for curves 24, (ε1/ε0, μ1/μ0) = (0.1i, 0.3i), and layer 2 is a PEC for curves 1 
and 2 and of free space for curves 3 and 4. 

Now, the hybrid cases are analyzed, that is, real(ε1) and real(μ1) possess different signs. 

Only the case of ε1 = iε1,r”ε0 and μ1 = iμ1,r”μ0 is investigated here, and the contrary case can 
be analyzed similarly. The reflection coefficient of the slab then becomes 

 
2 2

1, 1 1, 0, 1, 1, 1 1, 0, 1, 1, 1, 0[ctan( ) / "]/[ctan( ) / "]  (when " " ),hybrid x x x r x x x r y r rR k d k k k d k k k k        (5) 

 
2 2

1 0, 1, 1 0, 1, 1, 1, 0[1/tanh( ) / "]/[1/tanh( ) / "]  (when " " ),hybrid x r x r y r rR d k d k k k            (6) 

where β = (ky
2
ε1,r”μ1,r”k0

2
)

1/2
. In Eq. (5), ctan(k1,xd1) is a periodic function with its value 

varying from +  to . Thus, both the numerator and denominator on the right-hand side of 
Eq. (5) have a possibility to be zero when ky<k0. When d1 is large enough, many critical angles 
may exist at which the numerator or denominator on the right-hand side of Eq. (5) is zero. At 
the right-hand side of Eq. (6), the numerator is always larger than zero, and the denominator 
can be zero at some value of ky since β/k0,xε1,r” increases from zero to infinite in the range of 
(ε1,r”μ1,r”)

1/2
k0<ky<k0. This indicates that regardless of the values of d1, ε1,r”, and μ1,r”, there 

always exists a critical angle θc at which the incident plane wave can be infinitely magnified 
when ε1,r”μ1,r”<1. This is a quite interesting result that although μ1,r” may be very large 
(representing large loss), small ε1,r” (representing low gain) still can lead to infinite 
magnification, which may bring convenience in practical magnification. Curves 1 and 2 in 

Fig. 3(b) show the reflectivity for different thickness of the slab when ε1,r” = 0.1 and μ1,r” = 
0.3. When d1 = 0.1λ0, there is only one peak on curve 1. When the slab becomes thick, e.g., d1 
= 0.5λ0, both one dip and one peak appear on curve 2, which indicates that one can obtain both 
strong absorption and magnification at different special values of the incident angle. 

Finally, we give two remarks for the perfect absorption and giant magnification. The first 
remark is that the PEC substrate can be removed in the case of giant magnification (unlike the 

case of perfect absorption). When the substrate is also a free space, and ε1 = iε1,r”ε0 and μ1 = 

iμ1,r”μ0, one has the following reflection and transmission coefficients of the slab 
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0, 1, 0, 1, 1 0, 1, 0, 1,[ / " " / ] / [2 / tanh( ) ( / " " / )],gain x r x r x r x rR k k d k k             (7) 

 1 1

2 0 1 0, 1, 0, 1,/ [4 / ( )] / [2 / tanh( ) ( / " " / )].
d d

gain x r x rT H H e e d k k
             (8) 

The denominator on the right-hand side of Eqs. (7) and (8) is denoted by fgain. The first 
term in fgain decreases as ky increases from 0 to k0, and is always larger or equal to 2. The 
second term in fgain is infinite when ky approaches k0, and reaches a minimal value of 2 when 

γ/k1,xε1,r” = k1,xε1,r”/γ. When μ1,r”/ε1,r”1, this condition can be fulfilled by some ky (<k0), and a 
critical angle θc exists. Like in the case when layer 2 is a PEC, the incident plane wave at θc 
can be infinitely magnified regardless of the values of d1, ε1,r” and μ1,r”. If μ1,r”/ε1,r”>1, this 
property disappears. As shown in Fig. 3(a), the value of θc without a PEC substrate is different 
from that with a PEC substrate. Similarly, giant magnification can still be obtained in a hybrid 
case when layer 2 is of free space, as shown by the peaks of curves 3 and 4 in Fig. 3(b) as a 
numerical example. These two curves also indicate that perfect absorption does not occur in 
this case since transmissivity curve 4 has no dip although there is a dip on reflectivity curve 3. 
The second remark is that the deviation of real(ε1) and real(μ1) from zero may cause the 
disappearance of perfect absorption and giant magnification. However, as illustrated in Figs. 
4(a) and 4(b), if |real(ε1)| and |real(μ1)| are moderately small compared with |imag(ε1)| and 
|imag(μ1)|, respectively, strong absorption and magnification effect can still be obtained. As 
shown in Fig. 4, the influence of the deviation of real(ε1) from zero on the absorption and 
magnification is different from that of real(μ1). In general, when |imag(ε1)| = |imag(μ1)|, the 
influence of the same deviation of real(ε1) and real(μ1) from zero (i.e., with impedance match 
kept) on the absorption and magnification is smaller. 

 

Fig. 4. Reflectivity of a slab with a PEC substrate when real(ε1) and real(μ1) deviate form zero. 
In (a), d1 = 0.1λ0, and (ε1/ε0, μ1/μ0) is (3i, 3i), (0.05 + 3i, 0.05 + 3i), (0.05 + 3i, 3i) and (3i, 0.05 + 

3i) for curves 14, respectively. In (b), d1 = 0.5λ0, and (ε1/ε0, μ1/μ0) is (0.3i, 0.3i), (0.050.3i, 

0.05 + 0.3i), (0.050.3i, 0.3i) and (0.3i, 0.05 + 0.3i) for curves 14, respectively. 

3. Conclusion 

In summary, we have shown that an incident plane wave can be perfectly absorbed or giantly 
amplified by a ZRM layer. The existence of a critical angle θc has been analyzed for various 
situations. The thickness of the ZRM layer, as well as |imag(ε)| and |imag(μ)|, can be 
arbitrarily small. This challenges our common understanding that strong absorption and 
magnification seems impossible in a very thin layer of material with finite or small |imag(ε)| 
and |imag(μ)|. It should be noted that in principle the homogeneous ZRM can be arbitrarily 
thin. In practical realization, the smallest thickness of a ZRM layer is determined by the 
dimension of the resonant metamaterial units, which is usually one or two order smaller than 
the wavelength. However, if the ZRM layer can be realized by an EIT gas, the thickness can 
be reduced even further. Even if the ZRM layer cannot be very thin, it is still rather 
significant, especially for giant magnification. 
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