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Sparse Non-negative Tensor Fator Double Deonvolution(SNTF2D) for multi hannel time-frequeny analysisMorten Mørup and Mikkel N. ShmidtInformatis and Mathematial ModellingTehnial University of DenmarkRihard Petersens Plads, Building 3212800 Kgs Lyngbyemail: {mm,mns}�imm.dtu.dkEditor: AbstratWe reently introdued two algorithms for sparse non-negative matrix fator 2-D deonvolu-tion (SNMF2D) (Mørup and Shmidt, 2006) that are useful for single hannel soure separation(Shmidt and Mørup, 2006a) and musi transription (Shmidt and Mørup, 2006b). We here ex-tend this approah to the analysis of the log-frequeny spetrograms of a multihannel reording.The model proposed forms a non-negative tensor fator 2-D deonvolution (NTF2D) based onthe parallel fator (PARAFAC) model. Two algorithms are given for NTF2D; one based on leastsquares the other on Kullbak-Leibler divergene minimization. Both algorithms are extended togive sparse deompositions. The algorithms are demonstrated to suessfully identify the ompo-nents of both arti�ially generated as well as real stereo musi.Keywords: Non-negative Matrix Fatorization (NMF), PARAFAC, Sparse Coding, SNMF2D,SNTF2D.1. IntrodutionWe reently proposed the non-negative matrix fator 2-D deonvolution (NMF2D) model extendingthe regular non-negative matrix fatorization (NMF) model to a 2-dimensional onvolution of thenon negative matriesW� 2 RF�D and H� 2 RT�D , that isVf;t � �f;t =X�;� W�f��;dH�t��;d; where � 2 f0; 1; : : : ;�g and � 2 f0; 1; : : : ;�g: (1)The model an be onsidered an extension of the non-negative matrix fator deonvolution (NMFD)independently proposed by Smaragdis (2004), Eggert et al. (2004) and FitzGerald et al. (2005b)orresponding to either � = f0g or � = f0g.The NMF2D model has proven useful in the analysis of the log-frequeny spetrogram V of asignal of mixed musial instruments. Here the �-th notes played by the instruments are aptured byH� while the frequeny struture, i.e. the harmonis of the instruments at time lag � are apturedby W� . As a result, the hange in pith of an instrument orresponds to a vertial shift in thelog-frequeny spetrogram aptured by the � shifts while eah instruments is assumed to have a�xed temporal frequeny struture aptured by the � shifts, see also Shmidt and Mørup (2006b)for details.Often musi is not solely represented by the spetrogram of one single hannel but by severalhannels, i.e. by several mirophones or the two stereo signals in stereo reordings. The NMF2Dmodel an only handle suh data by either analyzing eah hannels separately or unfolding theextra hannel modality onto one of the existing modalities to form an analyzable matrix. However,unfolding an, to some extent, hamper interpretation but, more importantly, potentially dismiss
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modality spei� information by mixing information in a given modality with the more or lessarbitrarily hosen modalities that it has been unfolded to. Rather than unfolding, we will extendthe NMF2D model to handle spetral data of more than one hannel. The model proposed turnsout to be a 2-D onvolutive PARAFAC model, i.e. a non-negative tensor fator 2-D deonvolution(NTF2D).The paper is strutured as follows: First, the NTF2D model is introdued and two algo-rithms ensured to onverge are given. These algorithms are extended to form sparse deompo-sitions in order to handle ambiguity between the fators in W and H and to improve inter-pretability of the omponents. This is followed by a demonstration of the ability of the algo-rithms to identify the omponents of syntheti data. Finally, we demonstrate how the algorithmsalso orretly identify the omponents of real stereo musi. The algorithms an be downloadedfrom www2:imm:dtu:dk=pubdb=views=edo_download:php=4652=zip=imm4652:zip. To illustratethe NTF2D algorithm we presently put it in the framework of musi analysis. However, the al-gorithm is in general useful when a �xed translated 2-D struture is present in the data.2. MethodConsider the signal V 2 RC�F�T being a three way array where V;f;t denotes the spetral oe�-ients at hannel  at frequeny f and time t. In the following we will assume that the frequenyharmonis of eah instrument given inW� and eah note played given in H� is the same regardlessof the hannels analyzed. We will further assume that eah hannel has an instantaneous linear mixof these signatures given by D 2 RC�D , i.e. we will for onveniene assume all frequenies of a giveninstrument to be mixed with same strength. From these assumptions the log-frequeny spetrograman be approximated as V;f;t � �;f;t = Xd;�;�D;dW�f��;dH�t��;d: (2)Consequently, H�t;d represents the degree in whih the �-th note is present at time t in instrumentd. W�f;d is the harmonial struture at lag � at frequeny f of the d-th instrument and D;d isthe degree in whih instrument d is present in hannel . Notie, if � = f0g and � = f0g thismodel beomes the onventional PARAFAC model (Welling and Weber, 2001) as proposed for theanalysis of sound signals by Parry and Essa (2006) and FitzGerald et al. (2005a) whereas thesingle onvolutive model reently proposed by FitzGerald and Coyle (2006) orresponds to � = f0g.Consequently, the NTF2D model forms a PARAFAC model that is onvolutive in two of the threemodalities, i.e. onvolutive in the time and frequeny domain. While the instantaneous mixing intothe hannels in general is a rough assumption it beomes reasonable when onsidering the time-frequeny representation. Here eah time-frequeny point in the spetrogram is an average of thefrequeny ativity over the time window used for the representation. Delays present between thehannels are, in general, far less than the extend of this time frame.De�ne the Khatri-Rao produt A�B = [A1 
B1 ::: AF 
BF ℄ and the matriizing operation,i.e. V(1) = VC�F �T , V(2) = VF�C�T andV(3) = VT�C�F . Let further #qA and "pA denotes the upwardand downward shift operator on the matrix A given by shifting and zero padding the rows of A, i.e.:A = 0� 1 2 34 5 67 8 9 1A ; #2A= 0� 0 0 00 0 01 2 3 1A ; "1A= 0� 4 5 67 8 90 0 0 1A
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2 METHOD 3The NTF2D model an then be formulated as the following three equivalent approximations:V(1) � �(1) = D(X�;� #�H� � #�W� )T ; (3)V(2) � �(2) =X�;� #�W� ( #�H� �D)T ; (4)V(3) � �(3) =X�;� #�H� ( #�W� �D)T : (5)We will give two algorithms to estimate D, W and H �one based on least squares (LS) andthe other on Kullbah-Leibler (KL) divergene minimization, forming the following three equivalentminimizations CLS = 12 jjV(1) ��(1)jj2F = 12 jjV(2) ��(2)jj2F = 12 jjV(3) ��(3)jj2F (6)where jjAI�J �BI�J jj2F = Xi;j (Ai;j �Bi;j)2; (7)CKL = D(V(1)j�(1)) = D(V(2)j�(2)) = D(V(3)j�(3)) (8)where D(AI�J jBI�J) = Xi;j Ai;j log Ai;jBi;j �Ai;j +Bi;j : (9)However, 2-D onvolutive models su�er from ambiguity betweenW andH (Mørup and Shmidt,2006). Consequently, the harmonis of the omponents an be aptured in both H andW. Further-more, when inluding many � and � shifts the number of free parameters of the model an beomelarger than the number of data points available, i.e. the representation an beome overomplete.As a result, onstraints in the form of sparseness have proven useful (Mørup and Shmidt, 2006).Consequently, we impose the sparseness ost CSparse(H) to restrit H to be sparse in order for theharmoni frequeny struture of the instruments to be solely present inW. CSparse(H) an be anyfuntion with positive derivative (Mørup and Shmidt, 2006), we will in the present analysis use theL1 � norm sine this orresponds to a probability density whih is highly peaked at zero and haveheavy tails hene form a sparse representation (Hoyer, 2002):CSparse(H) = �kHk1 = �Xj;�;dH�t;d (10)Adding this penalty to the existing ost funtions, � beomes the weight of sparseness to the reon-strution error. This sparseness onstraint is, however, easily minimized letting the omponents inHgo to zero while letting the orresponding omponents inW and D go to in�nity. Consequently, weimpose extra onstraints of unit Frobenius-norm to the omponents inW and D, i.e. kWdkF = 1,kDdkF = 1 where Wd =W::;d , Dd = D:;d and : is the MATLAB shorthand notation denoting allelements of the given modality. As proposed for onventional NMF by Eggert and Korner (2004)we reformulate the reonstrution to be invariant of this normalization:~�;f;t = X�;�;dW�f��;dkWdkF D;dkDdkF H�t��;d: (11)Consequently, the p-th of the three equivalent ost funtions in Equation 6 and 8 using this reon-strution also beome invariant of the normalization:CSparseLS = 12 jjV(p) � ~�(p)jj2F + CSparse(H) (12)



CSparseKL = D(V(p)j~�(p)) + CSparse(H): (13)The ost funtions given in Equations (6) and (8) and inluding sparseness in Equation 12 and 13were all di�erentiated with respet to given elements in W, H and D. The parameters were thenupdated using a gradient based searh with a step size giving multipliative updates (see Mørup andShmidt (2006) as well as Lee and Seung (2000) for details of this approah). The algorithms aregiven in Table 1 and 2. Here A �B denotes element-wise multipliation and AB denotes element-wisedivision. Furthermore, diag(a) is a square matrix ontaining the elements in the vetor a along thediagonal while 1 is a matrix of ones.NTF2D/SNTF2D Least squares1. InitializeW, H and D randomly.2. �(1) = D(P�P� #�H� � #�W� )T3. D D � V(1)Z+Ddiag(1((DZTZ)�D))DZTZ+Ddiag(1((V(1)Z)�D)) where Z = (P�P� #�W� � #�H�)4. D�k;d = D�k;dkDdkF , �(2) =P�P� #�W� ( #�H� �D)T5. W�  W� � P� "�V(2)( #�H��D)+W�diag(1P� ( "��(2)( #�H��D))�W� )P� "��(2)( #�H��D)+W�diag(1P� ( "�V(2)( #�H��D))�W� )6. W�i;d = W�i;dkWdkF , �(3) =P�P� #�H� ( #�W� �D)T7. H�  H� � P� "�V(3)( #�W��D)P� "��(3)( #�W��D)+� �CSparse(H)�H�8. Repeat from step 2 until onvergene.Table 1: Algorithm for NTF2D/SNTF2D by Least Squares. The algorithm is given for SNTF2D butby omitting everything in gray the orresponding algorithm without sparseness onstraint,i.e NTF2D is ahieved. The onvergene was in the present analysis set to a maximum of250 iterations or when the relative hange in the ost funtion was less than 10�6Aording to Equation (3) the updates an be transformed into the framework of regular matrixanalysis. Consequently, the onvergene of W� is given by replaing H� with Z = H� �D and Vwith V(2) in the proof of the W� update given by Mørup and Shmidt (2006) while in the proofof the onvergene of H� replaing W� with Z = W� �D and V with V(3). The onvergene ofthe D update follows straight from the proof of the regular NMF updates given by Lee and Seung(2000): Notiing V(1) � �(1) = D(P�;� #�H� � #�W� )T ; and de�ning Z = (P�;� #�H� � #�W� )T , thisbeomes the onventional NMF, i.e. �(1) = DZ. While the onvergene of the updates inludingsparsity for onventional NMF (Eggert and Korner, 2004) and the SNMF2D (Mørup and Shmidt,2006) has not been proved, they were all onjetured onvergent. Although extensively analyzed,we never experiened divergene in any of the updates of H� and W� nor D in the two SNTF2Dalgorithms. Consequently, we onjeture that also the algorithms inluding sparsity are onvergent.4



2 METHOD 5

NTF2D/SNTF2D KL-divergene1. InitializeW, H and D randomly.2. �(1) = D(P�P� #�H� � #�W� )T3. D D � V(1)DZT+Ddiag(1�((1Z)�D))1Z+Ddiag(1�( V(1)DZT Z�D)) where Z = (P�P� #�W� � #�H�)4. D�k;d = D�k;dkDdkF , �(2) =P�P� #�W� ( #�H� �D)T5. W�  W� � P� "��V(2)�(2) �( #�H��D)+W�diag(1�P� (1( #�H��D))�W� )P� 1 #�H�+W�diag(1P� ( "��V(2)�(2) �( #�H��D(i))�W� )6. W�i;d = W�i;dkWdkF , �(3) =P�P� #�H� ( #�W� �D)T7. H�  H� � P� "��V(3)�(3) �( #�W��D)P� 1( #�W��D)+� �CSparse(H)�H�8. Repeat from step 2 until onvergene.Table 2: Algorithm for NTF2D/SNTF2D by KL-divergene minimization. The algorithm is givenfor SNTF2D but by omitting everything in gray the orresponding algorithm withoutsparseness onstraint, i.e. NTF2D, is ahieved.
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Figure 1: The �rst eight bars of �The Fog is Lifting� by Carl Nielsen3. ResultsThe algorithms were tested on an arti�ial generated data set simulating a harp and �ute playing"The Fog is Lifting" by Carl Nielsen, see Figure 2 (here for illustrative purposes disregarding orretfundamental frequeny of the two instruments to redue number of � shifts required to over allnotes). The sore of the musi an be seen on Figure 1. The data set was generated having 175frequeny bins overing from 50 Hz to 8kHz orresponding to 24 bins per otave. The distanebetween eah time point was one third of a 16th note. Consequently, W had seven lags, i.e. � =f0; 1; 2; : : : ; 6g orresponding to a time signature overing the duration of slightly more than an 8thnote. The sores were represented in H where � = f0; 1; 2; : : : ; 72g thereby overing 3 otaves. Theinstruments were mixed in eah hannel suh that the harp was dominant in hannel 1 whereasthe �ute was dominant in hannel 2. Notie, the position of the sores in H an be ompensatedby a ounter hange in the pith of the frequeny signature in W while the onset of the frequenystruture in W an be ompensated by a hange in onset of the sore in H (Shmidt and Mørup,2006b; Mørup and Shmidt, 2006). Consequently, in the following the geometri mean of the notesin H was set to be at the enter of all the � shifts present in H while the geometri mean of thefrequeny struture was set to be at the enter of all the � shifts.The algorithms were also tested on a real reording of "The Fog is Lifting" by Carl Nielsen(Jensen and Johansen). We sampled the musi at 44.1 kHz and analyzed it by the short timeFourier transform with a 8192 point Hanning windowed FFT with 50% overlap. This gave us 283FFT slies. We grouped the spetrogram bins into 210 logarithmially spaed frequeny bins inthe range of 50 Hz to 22 kHz with 24 bins per otave, whih orresponds to twie the resolution ofthe equal tempered musial sale. To over the duration of an eight note played we hose � to be� = f0; 1; 2; :::; 9g while � = f0; 1; 2; :::; 82g overing 3.5 otaves, i.e. slightly more than the rangeof all the notes played. The results obtained analyzing the absolute values of these spetrograms isshown in Figure 3.

6



3 RESULTS 7

Figure 2: Top �gures: Left panel; the arti�ially generated signature of a harpW along with thesores played given by H and the orresponding time-frequeny signature arising fromonvolvingW and H. The mixing in the two reording hannels is given by the arrows.Right panel; the orresponding signatures for the �ute. Middle �gures: Time-frequenyplot of the two hannels generated from mixing the time-frequeny signatures of bothinstruments. Bottom �gures: The estimated signatures of the harp and �ute found bythe SNTF2D algorithm, here shown using LS-minimization (the KL algorithm gave similarresults). The algorithms reovered more than 99% of the variane in the original data.From the deomposition it an be learly seen that the sores H are perfetly reoveredas well as the mixing in the hannels D and the harmoni struture of eah instrumentW. To resolve ambiguity between W and H, � was set to 0.1 while the data was in therange [0; 0:66℄.



Figure 3: SNTF2D analysis of real stereo musi here shown for LS-minimization (again the KL-minimization gave similar results). Top images: The log-frequeny spetrogram andraw signal of eah of the two stereo hannels. Bottom images: The omponents foundwhen deomposing the spetrogram. The �rst omponent mainly aptures the harp whilethe seond omponent whih the �ute and harp omponents have been mixed in the twostereo hannels. Underneath the omponents are given the raw instrument signals foundby spetral masking. The two omponents aounted for 86.9 % of the variane in the twolog-spetrograms. To resolve ambiguity betweenW and H � = 50 while the data was inthe range [0; 222℄.
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4 DISCUSSION 94. DisussionThe developed algorithms suessfully aptured the omponents of the arti�ially generated log-spetrogram of musi. For ease of interpretability of the omponents the results have only beenshown for the SNTF2D algorithms.From the stereo musi of the true reording of "The Fog is Lifting" (Jensen and Johansen) it wasseen that the method separated well the spetrograms into two omponents orresponding mainly tothe harp and �ute respetively. From the signatures found the sores of eah instrument ould be readfrom H and the signature of the instrument fromW. Consequently, the SNTF2D algorithms workwell for musi transription performing better than the single hannel SNMF2D analysis (Shmidtand Mørup, 2006b) as the information from several hannels are inorporated while inluding onlya few extra model parameters. Furthermore, the algorithms an be used for sound separation asindiated by the reonstruted signals found by using the time-frequeny signatures of eah estimatedinstrument to perform spetral masking in the hannel the instrument was the most present. Ratherthan evaluating the statistial properties of the raw time signals to separate the soures as ouldhave been done by an ICA algorithm (Hyvarinen et al., 2001) or onvolutive ICA algorithm (Parraet al., 1998), the SNTF2D uses prior knowledge namely the presene of harmonial strutures inthe log spetrogram to searh for systemati patterns through the spetrograms. Consequently, theSNTF2D better models the data when the signals indeed an be assumed formed by suh patterns.It is our strong belief that the SNTF2D algorithms will be useful for the analysis of other soundsignals suh as speeh and noise when suh patterns are present.From the mixing of the omponents found by the model the degree in whih eah omponentis present in the hannels an be estimated. Although, it is not in general orret to assume themixing to be onstant over frequenies, the linear mixing presently used is easy to implement andwe believe it to be a reasonable approximation. Furthermore, the mixing D of the soures to thehannels found by the model an be used to estimate the loation of the soures when ombinedwith information of the position at whih eah hannels reorded the sounds. As for the SNMF2Dmodel the assumptions of same harmoni struture aross pith for a given instrument is a roughassumption (Shmidt and Mørup, 2006b), however within a limited range this is likely to hold.Nevertheless, this is probably the main reason why the harp and �ute wasn't perfetly reoveredfrom the real musi by the algorithms.The algorithms developed are an extension of the PARAFAC model to inlude double onvolutivemixtures. Consequently, the algorithms devised here gives both a single onvolutive mixture, i.e.either � = f0g or � = f0g as proposed by FitzGerald and Coyle (2006) and a double onvolutivemixture, i.e. � 6= f0g, � 6= f0g. These algorithms are all presently proved to onverge when nosparsity is imposed. Notie, that if both � and � are zero the SNTF2D algorithms beomes asparse PARAFAC model. Furthermore, the developed model an easily be extended to inlude moremodalities and also to inorporate onvolutive mixtures in these extra modalities, i.e. a model thatis 3-D onvolutive, 4-D onvolutive et. Consequently, the framework used here is generalizable toa wide range of higher order data analysis. Furthermore, the 2-D deonvolution represents the dataas �xed translation invariant 2-D strutures. Consequently, the algorithms proposed is useful ingeneral when data an be represented as suh strutures.Let � be the number of � shifts, � be the number of � shifts and D the number of omponents.The free parameters in the double onvolutive model is given by (C+F�+T�)D while the amountof data points is CFT . However, the data ould have been analyzed by onatenating the time-frequeny signatures of eah hannels using SNMF2D. This would have given (F� + CT�)D >>(C + F�+ T�+K)D free parameters. Consequently, the NTF2D is likely to be less overompletewhen operating with many lags of � and �. Furthermore, the PARAFAC model is, ontrary tofator analysis, in general unique (Kruskal, 1977; Sidiropoulos and Bro, 2000). Consequently, havingthe analysis in the framework of the PARAFAC model improves the uniqueness properties of theomponents found. This is ahieved through a more restrited model here assuming the time-



frequeny signatures of the underlying omponents to be instantaneously, linearly mixed in thehannels.The above algorithms were developed under non-negativity onstraints. This was the ase sinethe amplitude of the spetrogram is positive and the omponents assumed additive, i.e. no anella-tion of omponents within the spetrogram. Although algorithms ould be developed to implementother assumptions the algorithms developed here are fast and easy to implement. One drawbak ofthe sparse algorithms is that the hoie of sparseness penalty � is not obvious while still in�ueningthe solutions found.5. ConlusionWe developed two algorithms for NTF2D with non-negative onstraints and showed how they wereuseful in the analysis of multi-hannel sound signals. While the algorithms without sparseness on-straints were proven to onverge we onjetured the sparse algorithms to onverge. The algorithmswere able to both orretly identify the omponents of arti�ially generated data as well as realmusi. MATLAB implementations of the algorithms an be download from(www2:imm:dtu:dk=pubdb=views=edo_download:php=4652=zip=imm4652:zip).ReferenesJ. Eggert and E. Korner. Sparse oding and nmf. In Neural Networks, volume 4, pages 2529�2533,2004.J. Eggert, H. Wersing, and E. Korner. Transformation-invariant representation and nmf. In NeuralNetworks, volume 4, pages 2535� 2539, 2004.D. FitzGerald and E. Coyle. Sound soure separation using shifted non-negative tensor fatorisation.In ICASSP2006, 2006.D. FitzGerald, M. Cranith, and E. Coyle. Non-negative tensor fatorisation for sound soureseparation. In proeedings of Irish Signals and Systems Conferene, pages 8�12, 2005a.Derry FitzGerald, Matt Granith, and Eugene Coyle. Shifted non-negative matrix fatorisation forsound soure separation. In Proeedings of the IEEE onferene on Statistis in Signal Proessing,2005b.P.O. Hoyer. Non-negative sparse oding. Neural Networks for Signal Proessing, 2002. Proeedingsof the 2002 12th IEEE Workshop on, pages 557�565, 2002.A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley and Sons.,2001.Thomas Jensen and Benedikte Johansen. Tåken letter (the fog is lifting) for �ute and harp omposedby arl nielsen. Naxos.J.B Kruskal. Three-way arrays: rank and uniqueness of trilinear deompositions, with appliationto arithmeti omplexity and statistis. Linear Algebra Appl., 18:95�138, 1977.Daniel D Lee and H. Sebastian Seung. Algorithms for non-negative matrix fatorization. In NIPS,pages 556�562, 2000.M. Mørup and M. N. Shmidt. Sparse nonnegative matrix fator 2-D deonvolution. Tehnialreport, Institute for Mathematial Modelling, Tehnial University of Denmark, 2006.10
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