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Implicit Floquet analysis of wind turbines using tangent

matrices of a nonlinear aeroelastic code

P. F. Skjoldan
Loads, Aerodynamic and Control
Siemens Wind Power A/S
Dybendalsvaenget 3, DK-2630 Taastrup, Denmark

Abstract

The aeroelastic code BHawC for calculation of
the dynamic response of a wind turbine uses a
nonlinear finite element formulation. Most wind
turbine stability tools for calculation of the aeroe-
lastic modes are, however, based on separate
linearised models. This paper presents an ap-
proach to modal analysis where the linear struc-
tural model is extracted directly from BHawC us-
ing the tangent system matrices when the turbine
is in a steady state. A purely structural modal
analysis of the periodic system for an isotropic
rotor operating at a stationary steady state is
performed by eigenvalue analysis after describ-
ing the rotor degrees of freedom in the inertial
frame with the Coleman transformation. For gen-
eral anisotropic systems implicit Floquet analysis,
which is less computationally intensive than clas-
sical Floquet analysis, is used to extract the least
damped modes.

Both methods are applied to a model of a
three-bladed 2.3 MW Siemens wind turbine. Fre-
quencies match individually and with a modal
identification on time simulations with the non-
linear model. The implicit Floquet analysis per-
formed for operation in a periodic steady state
shows that the response of a single mode con-
tains multiple harmonic components differing in
frequency by the rotor speed.

Keywords: modal analysis, Floquet analysis, ro-
tor dynamics

1 Introduction
Today, advanced nonlinear finite element codes

[1, 2, 3] are routinely used for load calculations on
wind turbines. Most wind turbine stability tools

M. H. Hansen
Wind Energy Division,
National Laboratory for Sustainable Energy, Risg DTU,
Frederiksborgvej 399, DK-4000 Roskilde, Denmark

for calculation of the aeroelastic modes are, how-
ever, based on separate linearised models. Stabil-
ity analysis can be divided into three steps: First
a calculation of the steady state, then a linearisa-
tion of the equations of motion about the steady
state, and last a modal analysis to extract modal
frequencies, damping, and mode shapes. This
paper presents an approach to linearised struc-
tural modal analysis based directly on the non-
linear wind turbine aeroelastic code BHawC [3]
applicable to any periodic steady state.

The equations of motion for a wind turbine
operating at a constant mean rotor speed con-
tain periodic coefficients, preventing direct eigen-
value analysis of the system. Most recent wind
turbine stability tools [4, 5, 6, 7] incorporate the
Coleman transformation, also known as the multi-
blade coordinate transformation, which describes
the rotor degrees of freedom in the inertial frame.
This transformation eliminates the periodic coef-
ficients if the rotor is isotropic, i.e., consists of
identical symmetrically mounted blades, and the
environment conditions are symmetric. Floquet
analysis is, however, applicable to anisotropic ro-
tors and any periodic steady state. It requires
integration of the equations of motion over a pe-
riod of rotor rotation, as many times as there are
state variables in the system. Due to the com-
putational burden of this approach it has only
been applied to reduced or simplified wind tur-
bine models with a limited number of degrees of
freedom [8, 9, 10]. One way to reduce the com-
putation time is Fast Floquet Theory [11] where
only one third of the integrations are necessary for
a three-bladed isotropic rotor. Another way is to
use implicit Floquet analysis [12] where the least
damped modes can be extracted after a limited
number of integrations.



Stol et al. [13] compare the Coleman trans-
formation approach applied to a periodic steady
state, where the remaining periodic coefficients
are averaged away, with Floquet analysis and finds
small differences in modal frequencies and damp-
ing, concluding that it is not necessary to use
Floquet analysis.

Another approach to modal analysis is system
identification [14, 15, 16] which operates on the
response from numerical simulations or measure-
ments, and no knowledge of the system equations
is needed to extract the modal properties. The
accuracy of the methods is, however, limited and
depends on the chosen excitation.

In this paper, tangent matrices for mass, damp-
ing, and stiffness are extracted from the aeroe-
lastic code BHawC. If the rotor is isotropic
and the steady state is stationary, the Coleman
transformation is applied before extracting the
modal parameters by eigenvalue analysis. For
an anisotropic system, implicit Floquet analysis
is used for the modal analysis. When the sys-
tem is isotropic the response of a single mode
contains a single harmonic component for tower
degrees of freedom and up to three components
for the blades. The response of a single mode in
the anisotropic system on both blades and tower
contains multiple harmonic components differing
in frequency by the rotor speed.

Section 2 of this paper describes the BHawC
model and Section 3 explains the methods for
modal analysis, the Coleman transformation ap-
proach, implicit Floquet analysis and also par-
tial Floquet analysis, a system identification tech-
nique. In Section 4 the methods are applied to
model of a wind turbine. Section 5 discusses the
approaches and Section 6 concludes the paper.

2 Structural model

The BHawC wind turbine aeroelastic code [3]
is based on a structural finite element model
sketched in Figure 1, where the main structural
parts, tower, nacelle, shaft, hub, and blades,
are modelled as two-node 12-degrees of freedom
Timoshenko beam elements. The code uses a co-
rotational formulation, where each element has
its own coordinate system that rotates with the
element. The elastic deformation is described in
the element frame, while the movement of the el-
ement coordinate system accounts for rigid body

motion. In this way, a geometrically nonlinear
model is obtained using linear finite elements.

The configuration of the system, defined by
nodal positions p and orientations q, nodal ve-
locities u (of both positions and orientations) and
nodal accelerations i must satisfy the equilibrium
equation

*fincr (pa q, ﬁ, 11) 7fdamp(q7 u) +fint (p, q) = lext

(1)
where finer, faamp, fint, and fox¢ are the inertial,
damping, interngl, and external force vectors, re-
spectively, and () = d/dt denotes a time deriva-
tive. To find this equilibrium configuration, in-
crements of the positions and orientations du,
velocities du and accelerations du are found by
Newton-Raphson iteration with the tangent rela-
tion obtained from the variation of Equation (1)
as

M(q)di+C(q, u)du+K(p, q,,i)du =r (2)

where M, C, and K are the tangent mass, damp-
ing/gyroscopic, and stiffness matrices, respec-
tively, and r = foxt + finer + fdamp — fint is the
residual. The stiffness matrix is composed of con-
stitutive, geometric, and inertial stiffness. The
orientation of the nodes q is described by quater-
nions [17], a general four-parameter representa-
tion equivalent to a triad, which for node number
1 is updated as

q; = q; @ quat(du; yot) (3)

where du; ot contains three rotations that are
assumed infinitesimal and thus commute, and
where this rotation vector is transformed by the
function termed quat into a quaternion, which is
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Figure 1: Sketch of BHawC model substructures.



used to update the nodal quaternion q; employ-
ing the special quaternion product indicated by
® which maintains the unity of the quaternion.
The nodal positions p and nodal velocities u and
accelerations 1 are updated by regular addition of
the positional part of du, du and d1i, respectively.
All components in p, q, and du are absolute and
described in a global frame.

The present work considers small perturba-
tions in position and orientation y, velocity y,
and acceleration y to a steady state opera-
tion at constant mean rotor speed (2 defined by
(Pss, Gss, Uss, Uss ), the steady state positions, ori-
entations, velocities, and accelerations, respec-
tively, all periodic with the rotor period T =
2w /Q. The linearised equations of motion are
obtained from Equation (2) at r ~ 0 as

M(ass)¥ + C(dss, Uss)y
+ K(pSS7 Qss> u557 1.':lss)y =0 (4)

where the matrices M, C, and K are the T-
periodic tangent system matrices which are em-
ployed in the modal analysis described in the next
section.

3 Methods

In this section four methods for modal analysis of
structures with rotors are presented.

3.1 Coleman approach

The Coleman transformation requires identical
degrees of freedom on each blade, and there-
fore the equations of motion (4) in global co-
ordinates are first transformed into substructure
coordinates y. The transformation is

y=Tyr (5)

T = diag(Iy,, Ti, Th1, Th2, Ths)
where T is a block diagonal time-variant matrix
composed of the identity matrix I, sized by the
number of degrees of freedom of the tower, na-
celle, and drivetrain, T, transforming the degrees
of freedom on the shaft and hub into a hub cen-
tre frame, and Ty; transforming the degrees of
freedom on blade number j = 1,2, 3 into a local
frame for blade j. The triads are obtained in the
periodic steady state, and thus T is T-periodic.

The time-variant transformation into inertial
frame coordinates z is

yr =Bz

6
B = diag(In,, B;,By) (6)

where B, is a simple rotational transformation of
the shaft and hub, and By, is the Coleman trans-
formation introducing multi-blade coordinates for
a three-bladed rotor [11, 18] as

In, In,costyy Iy, siny,
Bb = INb INb COS ¢2 I]\/'b sin ¢2 (7)
In, In,costps In,sings

where ¢); = Qt+27(j—1)/3 is the mean azimuth
angle to blade number j, and Ny, is the number
of degrees of freedom on each blade. The inertial
frame coordinate vector

z={y; 2z a5 aj b}’ (8)
contains the untransformed coordinates for tower,
nacelle, and drivetrain ys, the coordinates for
shaft and hub z, measured in a non-rotating
frame aligned with the hub, and the multi-blade
symmetric coordinates ag, cosine coordinates a;
and sine coordinates b;. Details on how multi-
blade coordinates describe the motion of a wind
turbine rotor in the inertial frame are discussed in
[19, 20].

The Coleman transformed equations are ob-
tained by first inserting Equation (5) into (4),
then converting to first order form and last intro-
ducing the inertial frame transformation in Equa-
tion (6) as z; = diag(B,B)zy where zy =
{zT ZT}7T is the state vector with z = z + Wz
and the constant matrix @ = B~1B. The result
is

Zy = Apzs

@ I 9)

A_ =
BT -Mp'Kg -M;!Cp -

where Ap is the Coleman transformed system
matrix and

Mg =B 'T"™™MTB
Cg =B 'TT(CT+2MT)B (10)
Kg =B 'TT(KT+CT+MT)B
are the Coleman transformed mass, damp-
ing/gyroscopic, and stiffness matrices, respec-

tively. If the system is isotropic, then Ag is time-
invariant and a transient solution of Equation (9)



79 = eABlz,(0) = Veriq(0) (11)

where A is a diagonal matrix containing the
eigenvalues of A, V contains the corresponding
eigenvectors as columns and q(0) = V~1z,(0)
are the initial conditions in modal coordinates. It
is assumed that all eigenvectors are linearly inde-
pendent.

The blade motion given in the inertial frame in
Equation (11) can be transformed back into the
rotating frame using Equation (6) as [20]

YT,ik = eg’“t( Agir cos(wit + ©o,ik)
+ Agw,ir cos ((wi + Q)t + ©; + Pow,ik)
+ g 008 (w = D)t = 95 + Prun) ) (12)

where ¢; = 271(j—1)/3, o) and wy, are the modal
damping and frequency of mode number k, re-
spectively, given by the eigenvalue \;, = o +iwg
with i = v/—1. The amplitudes for degree of free-
dom number i are determined from the compo-
nents of the eigenvector vy given in multi-blade
coordinates of Equation (8) as Ag ;x. = |ag x| and

Asw it = %((Re (a1,i) +Im (bl,ik))z

2\1/2

(13)
+ (Re (b1ir) — Im (a1,ix))?)

Arwik = 3 ((Re (a1,i) — Im (by 1))
+ (Re (b1,ix) + Im (al,ik))2)1/2

where the subscripts 0, BW, and FW denote sym-
metric, backward whirling, and forward whirling
motion, respectively.

(14)

3.2 Classical Floquet analysis

Floguet analysis enables the solution of the peri-
odic equations of motion directly without an ex-
plicit transformation. Equation (4) is written in
first order form

y2 = Ay»
0 I (15)

A=l MK _M'C

where yo = {yT yT}7T is the state vector and A
is the T-periodic system matrix.

Floquet theory [21] states that the solution to
Equation (15) is of the form

y2 = Ue™ U™ (0)y2(0) (16)

where U is a T-periodic matrix and A is a diago-
nal matrix. One way to construct this solution is
to form a fundamental solution to Equation (15)
as

e=[p1 w2 .o N (17)

over one period, t € [0; T], where N is the num-
ber of state variables, such that ¢ = A¢p. The
monodromy matrix defined as

C = ¢ (0)(T) (18)

contains all modal properties, which can be ex-
tracted from the eigenvalue decomposition

c=vJjv (19)

where V contains the column eigenvectors vy
of C, which are all assumed to be linearly in-
dependent, and J is a diagonal matrix contain-
ing the eigenvalues pj of C, called the charac-
teristic multipliers. The characteristic exponents
Ar = 0k + iwg contain the frequency wy and
damping oy and are related to the characteristic
multipliers as pr, = exp(ArT"). Because the com-
plex logarithm is not unique, the frequency is not
determined uniquely, and the principal frequency
wp,k and the damping o) are defined from the
characteristic multipliers as

1
o1 = o ()

I (20)
Wp,k = T arg(px)

where arg(py) € | — m; 7| is implied, resulting in
wpk €] —Q/2;8/2]. Any integer multiple of
the rotor speed can be added to the principal fre-
quency to obtain a more physically meaningful
frequency [22, 23]

Wi = wp k + Jr (21)

a choice which also affects the periodic modal
matrix U in Equation (16). This matrix U con-
tains the periodic mode shapes u and is given
as [23]

uy, = pvie Mt (22)

where )\; is selected using Equation (21) such
that uy is as constant as possible for degrees of
freedom measured in the inertial frame.

Introducing the Fourier transform of the peri-
odic mode shape

up = Y Uje’™ (23)

j=—00



the transient solution in Equation (16) can be
written as a sum of harmonic components

oo

N
yQ:Z Z ujke(ﬂk+i(wk+jﬂ))tqk(O) (24)
k=1j=—o

where gq(0) = U~1(0)y2(0). Note that Equa-
tion (12) is a special case of this expression for
j=-1,0,1.

3.3 Implicit Floquet analysis

The Implicit Floquet method is here described
based on the detailed description in [12], which
focuses on computation of the characteristic mul-
tipliers from the state transition matrix ®(T',0).
It can be defined in classical Floquet theory as

@(T) = @(T,0) ¢(0) (25)

Using Equation (18), the relationship between the
state transition and monodromy matrices is de-
rived as

B(1.0) = p(0)Ce~'(0)  (26)

showing that ®(7,0) and C have identical
eigenvalues (characteristic multipliers), and their
eigenvectors are related as vy = ¢ 1(0)wy,
where wy, are the eigenvectors of ®(T,0).

The key feature of the state transition matrix is
that it defines the solution yo(T') = ®(T,0)y2(0)
for a time integration of the system equations
(15) over one period T with initial conditions
y2(0). Hence, without knowing the state tran-
sition matrix, it is possible to obtain the product
of it with an arbitrary vector (the initial state vec-
tor) by integration of (15) over one period. The
Arnoldi algorithm [24] is a method to approximate
the eigenvalues and eigenvectors of a matrix, say
®(T,0), using only the matrix multiplication with
®(T,0) to construct an m-sized subspace

P=[p1 P2 ... Pm (27)
that satisfies the orthonormality condition
PTP =1, (28)

and where the eigenvalues py, of the subspace pro-
jected state transition matrix

H=P'®(T,0)P (29)

converge towards the eigenvalues pj of ®(T,0)
with the largest modulus as the size m of the
subspace increases. The subspace eigenvectors
wy, of H projected back to the full state space
converge towards the eigenvectors wy, of ®(7,0),
i.e., Wi X P‘;Vk

The Arnoldi algorithm proceeds as follows:

Choose an arbitrary vector p; with |p1]| =1
forn=1,2,...,m
a := ® p, (integration of (15) over ¢t € [0;T])
b:=a
forj=1,2,...,n
Rjn = p;ra

b:=b-— hjﬂpj
end
ifn<m

hn-i—l,n = |b‘

Pn+1 = b/h7z+1,n
end

Pn+1 = Pn+1 — Z;L:1(p}pn+1)Pj
end

The last step in the n-loop is an explicit re-
orthogonalisation to eliminate an otherwise pro-
gressing skewness of the subspace basis and
thereby ensure convergence of the algorithm
[12]. Note that H with components h;,, n =
1,....,m, j = 1,...,n, is an upper Hessen-
berg matrix for which there exist efficient eigen-
value solvers. In practice the Arnoldi algorithm is
continued until a desired number of eigenvalues
i with largest modulus and their corresponding
eigenvectors Pw;, of the state transient matrix
®(T,0) are converged to within a specific toler-
ance.

To construct the approximations to the peri-
odic mode shapes (22), the m x m fundamental
solution matrix @ to the subspace projected sys-
tem equations is written as

e=P' o1 @3 ... w,] (30

where ¢, is the integrated solution over ¢ € [0; 7]
of the full system (15) for each initial condition
p;, whereby @(0) = I due to (28). The eigen-
vectors v, of the subspace projected monodromy
matrix C = @~ '(0)@(T) are therefore identical
to the eigenvectors wy, of the subspace projected
state transition matrix (29). The periodic mode
shapes in the subspace are therefore similar to
Equation (22) given by

), = pwie (31)



which by projection back into the full state space
using u, = Puy, yields the approximated periodic
mode shapes of the full system

up ~ [(pl ©q me] \X/’ke_kkt (32)

where Wy, and ), are the eigenvectors and char-
acteristic exponents of H, respectively.

3.4 Partial Floquet analysis

Partial Floquet analysis [22] is a system identifi-
cation technique that operates on signals with the
free response of the system, thus no knowledge
of the system equations is necessary. The signals
can be obtained by numerical simulation or from
measurements.

Singular value decomposition is used to elimi-
nate noise and extract the frequency and damping
of the most dominant modes from a matrix similar
to the monodromy matrix assembled from a lim-
ited number of signals spanning several periods.
The entries in this matrix can only be sampled
once per period for periodic systems, which limits
the accuracy because the signal damps away, de-
creasing the signal to noise ratio. Time-invariant
systems can, however, be sampled once per time
step. Therefore, partial Floquet analysis is com-
bined with Coleman transformation of the signals
[25], such that the response resembles that of a
time-invariant system. This approach increases
the accuracy and the number of modes that can
be extracted from a given signal. However, a
careful choice of forcing, that excites all modes
of interest to a sufficient level, is necessary to
extract the desired modes accurately.

4 Numerical results

The modal analysis methods described in the pre-
vious sections are applied to a BHawC model of
a 2.3MW wind turbine with three 45 m blades,
hub height 80 m and nominal speed 16 rpm. The
model has 381 structural degrees of freedom.

4.1 Isotropic system

The turbine is mounted with identical blades and
runs in vacuum neglecting gravity forces, so the
system is isotropic. The deflection of the blades
due to centrifugal forces is therefore constant
in the blade frame. The constant steady state

is found at a given azimuth position by solv-
ing Equation (1) statically, including centrifugal
forces from the constant rotor speed. In this way
a steady state with no transients is obtained, and
the system matrices become exactly periodic.

4.1.1 Coleman transformation approach

Because the system is isotropic, a modal anal-
ysis can be performed on the Coleman trans-
formed system matrix. The system matrices M,
C and K from Equation (4) are extracted at a
single azimuth angle and combined into the Cole-
man transformed system matrix of Equation (9)
from which the modal frequencies, damping and
eigenvectors given in the inertial frame are ex-
tracted. The time-invariance of the system ma-
trix is checked by calculation for several azimuth
angles.

Figure 2(a) shows the lowest modal frequencies
as function of rotor speed where the frequency is
normalised with the lowest modal frequency at
Orpm. The modes are named according to their
dominant motion determined from the eigenvec-
tor and the whirling amplitudes calculated from
equations (13) and (14). The mode labels in Fig-
ure 2 first contain the index of that particular
mode; then ‘T for tower, ‘F' for blade flapwise,
‘E' for blade edgewise or ‘DRV’ for drivetrain;
then ‘LO’ for longitudinal, ‘LA’ for lateral, ‘BW’
for backward whirling, ‘FW' for forward whirling
or 'S’ for symmetric. For comparison, frequencies
extracted from time simulations with the non-
linear BHawC model using the partial Floquet
method [25] are also shown. The agreement is
within 0.4% except for modes coupling to the
drivetrain, i.e., the drivetrain, edgewise, and lat-
eral tower modes, where the discrepancy is up to
2% at the highest rotor speed, which is caused by
a difficulty with keeping the rotor speed exactly
constant in the nonlinear simulation due to the
energy dissipated in the oscillation.

Figure 2(b) shows the damping as function of
rotor speed where the logarithmic decrement is
normalised with the value for the first tower longi-
tudinal mode at Orpm. The agreement in damp-
ing between the results from the linear model and
the partial Floquet analysis applied to the nonlin-
ear model is within 6%, except for a discrepancy
of up to 20% for modes coupling to the drive-
train. It must be noted that the purely structural
damping of the modes is small, and thus a small
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Figure 2: Frequency (a) and damping (b) as function of rotor speed. Standstill eigenvalue analysis
(squares), Coleman approach (lines), partial Floquet analysis (circles). Legend entries are ordered after

the sequence at 0 rpm.

absolute difference leads to a high relative differ-
ence. The results also show that damping is more
difficult to estimate than frequency using system
identification.

4.1.2 Implicit Floquet analysis

For the implicit Floquet analysis the system ma-
trices in global coordinates in Equation (4) are
extracted from the steady state at 16 azimuth
angles equally spaced over a rotor rotation. For
interpolation to other azimuth angles a least
squares fit of a truncated Fourier series with 8
terms is used. The fundamental solutions in
Equation (30) are integrated with a Newmark-
type solver from initial conditions determined by
the Arnoldi algorithm. The principal frequencies
and damping are found from Equation (20) where
pr are taken as the eigenvalues of the approx-
imated state transition matrix. Figure 3 shows
the real part o of the characteristic exponents
calculated at each Arnoldi step for a steady state
at 12rpm using a time step of At = T/1024 =
0.0049s. The scattering of the highest damp-
ing values shows that the highest damped modes
are spurious and do not represent actual eigen-
modes of the system due to the approximate na-
ture of the implicit Floquet analysis. To exclude
these modes from the results, only modes satisfy-
ing a strict convergence criterion, where the ab-
solute change of both damping o and principal
frequency wy, i is less than 10719 between three
successive steps, are retained. After 50 Arnoldi
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v e
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I
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w N
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3l
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Figure 3: Magnitude of implicit Floquet charac-
teristic multipliers as function of steps in Arnoldi
algorithm. e non-converged eigenvalues, o con-
verged eigenvalues.

steps 19 modes are converged. The modal fre-
quencies are determined using Equation (21) by
adding j;( to the principal frequency, where j; 2
is the single non-vanishing harmonic component
in a Fourier transform of the periodic mode shape
for degrees of freedom on the tower calculated
from Equation (32) using the principal frequency
wp k- The periodic mode shape components for
degrees of freedom on the tower and nacelle cal-
culated with the modal frequency wy are thus
constant. A detailed description of the process
of frequency identification is given in [23].

Figure 4 shows the difference in frequency
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calculated with the Coleman transformation ap-
proach and the implicit Floquet analysis with dif-
ferent integration time steps. The implicit Flo-
quet results converge towards the Coleman trans-
formation results for decreasing time steps, the
error being roughly proportional to At?. Pre-
dominantly the error increases with the modal fre-
quency. A similar trend is seen for the damping.

Figure 5 shows the dominant harmonic compo-
nents U ;i in Equation (24) for the first flapwise
forward whirling mode shape. The blade mode
shape is transformed into substructure coordi-
nates using Equation (5) and contains the rigid
body motion of the hub. The zoom factor in the
lower right corner indicates how much each com-
ponent has been enlarged. The ground fixed com-
ponents in the mode shape are constant, consis-
tent with the solution from the Coleman transfor-
mation approach. The mode shape for the blade
has harmonic components at j = —1,0,1, cor-
responding to the forward whirling, symmetric,
and backward whirling components, respectively,
in the Coleman transformation approach. Thus,
in a pure excitation of this mode at 12rpm, ac-
cording to Equation (24) the tower vibrates with
the normalised modal frequency w’' = 2.8, and
the blades dominantly vibrate with w’ — Q' = 2.2
(FW), and to a lesser extent with w’ + Q' = 3.3
(BW) and w’ = 2.8 (S) (see Figure 2(a)).

Blade
-Q (FW) 0(S) Q (BW)

x1 x21 x8

Tower

x80

Figure 5: Amplitudes of harmonic components
of the first flapwise forward whirling periodic
mode shape for the isotropic rotor. Blades (top)
— flapwise and - - edgewise, and tower (bottom)
— longitudinal and - - lateral.

4.2 Anisotropic system

To investigate the effects of an anisotropic rotor
on the modal properties, a mass of 485 kg due to
ice coverage defined by DIN-1055-5 [26] is added
along the length of blade 1. Figure 6 shows the
resulting steady state when running the turbine at
16 rpm with a 10 m/s uniform wind field perpen-
dicular to the rotor plane. Note that the wind is
used only to drive the rotor and the modal anal-
ysis is still purely structural. The steady state
varies periodically both for the tower and the
blades, and the blade motion for blade 1 is dif-
ferent from that of blades 2 and 3. The steady
state is determined from a time simulation until
transients have damped away and system matri-
ces are then extracted at each time step of the



0.5

Deflection [m]

Deflection [m]

Deflection [m]

3.05

Figure 6: Steady state over one rotor period for
the anisotropic rotor at 16 rpm. Tower top (top)
— longitudinal and - - lateral, blade tips edgewise
(middle) == 1, — 2 and --- 3, and blade tips
flapwise (bottom) --1, — 2 and --- 3.

steady state simulation and interpolated onto in-
tegration time points using a truncated Fourier
series with 8 terms. The implicit Floquet analy-
sis is carried out with an integration time step of
T/1024 = 0.0037s as described for the isotropic
case. The frequencies are up to 4% lower than in
the isotropic case due to the added mass on one
blade. The change in damping is slightly more
pronounced, up to a 17% decrease for the second
flapwise forward whirling mode.

Figure 7 shows the harmonic components U
with frequencies j of the first flapwise forward
whirling mode shape for the tower and blade 1.
The tower mode shape now has several harmonic
components compared to only one in the isotropic
case. The component at j = 0 is similar in shape
to the corresponding one for the isotropic case,
but now the dominant component is at j = —2,
and there is also a significant component at j =
—1.

For the mode shape of blade 1 the harmonic
components at 57 = —1,0,1 are similar to the
corresponding ones in the isotropic case. How-
ever, now the amplitude of the dominant flapwise

component at j = —1 for blade 1 is three times
as high as for blades 2 and 3, and blades 2 and
3 move close to in-phase and in counter-phase
with blade 1, as shown in Figure 8. Thus, in a
pure excitation of this mode the tower now vi-
brates dominantly with the normalised frequency
w' —2Q = 1.6 in addition to the component
at w = 2.8. Blade 1 vibrates dominantly at
w' — Q' = 2.2 as for the isotropic case and no-
tably at o’ — 20" = 1.6, &' — 30’ = 1.0 and
w' 4+ 3Q = 4.5 in addition to W’ + Q' = 3.3 and
w’ = 2.8 as for the isotropic case.

The identification of the first flapwise forward
whirling modal frequency is not done by making
the tower mode shape as constant as possible,
as in the isotropic case. Rather, the modal fre-
quency is chosen to be close to the one for the
similar mode in the isotropic case. A more suit-
able criterion to give this result is to require that
the mode shape with the rotor degrees of free-
dom in multi-blade coordinates be as constant as
possible [27].

The rotor with one ice-covered blade is an
example of how an isotropic rotor can change
the modal dynamics of the system. Other in-
fluences that could cause a similar behaviour is
rotor stiffness unbalance, gravity loads, yaw error,
and wind shear. A two-bladed rotor is inherently
anisotropic and requires a general approach like
Floquet analysis.

5 Discussion

This paper has presented several different meth-
ods for structural modal analysis of wind turbines.
The Coleman approach is simple and fast, and
its basis in a physical coordinate transformation
means that the results are easily interpreted. lIts
speed makes it useful for doing parameter stud-
ies early in the design process. But it is only
applicable to isotropic systems. Floquet analy-
sis can be applied to examine special cases where
anisotropic effects are suspected to change the
modal parameters. The implicit Floquet analysis
is an efficient implementation of Floquet analysis
for systems with many degrees of freedom. In the
example given, the most important modes are ex-
tracted after 50 integrations of the system over a
rotor period, whereas 762 integrations would be
needed for a classical Floquet analysis. Finally,
the partial Floquet analysis, or another means of
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Figure 7: Amplitudes of harmonic components of the first flapwise forward whirling periodic mode shape
for the anisotropic rotor with one blade covered with ice. Blade 1 (top) — flapwise, - - edgewise, and

tower (bottom) — longitudinal and - - lateral.

system identification, is useful to check the valid-
ity of the linearisation.

The work presented in this paper is part of an
ongoing effort to obtain a full aeroelastic linear
model of the nonlinear code BHawC. The ap-
proach presented in this paper is readily extend-
able to a linear aeroelastic model. The linear
model will aid in the understanding of the loads
obtained from a nonlinear response, of which
many features can be explained from the linear
modes.

6 Conclusion

Tangent matrices for structural modal analysis are
extracted directly from the nonlinear model of a
wind turbine in a steady state. When the system
is isotropic the preferred approach is to use the

10

Coleman transformation for describing the equa-
tions of motion in the inertial frame allowing di-
rect eigenvalue analysis to extract the modal fre-
quency, damping, and mode shapes. When the
system is anisotropic, implicit Floquet analysis,
that reduces the computational burden associated
with classical Floquet analysis, is applied to yield
the lowest damped eigenmodes. The linearised
model is validated from numerical results for a
three-bladed turbine, showing a reasonable agree-
ment for the frequencies and the damping be-
tween the Coleman approach and partial Floquet
analysis on the response of the nonlinear model
for modes not related to the drivetrain. The im-
plicit Floquet results converge to the results from
the Coleman approach with the deviation in fre-
quency and damping roughly proportional to the
square of the integration time step and increas-
ing with the modal frequency. This finding shows
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Figure 8: Amplitudes and phases of the harmonic
component at j = —1 of the first flapwise forward
whirling periodic mode shape for the isotropic ro-
tor (a) and the anisotropic rotor (b). Blades - -1,
— 2 and --- 3.

the importance of precise time integration in im-
plicit Floquet analysis. An analysis applied to an
anisotropic system with one blade covered with
ice shows a decrease in frequency up to 3% and
changes in damping within 17%. It also reveals
multiple harmonic components in the response of
a single mode which will show up in measure-
ments.
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