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Summary

The main topic of this thesis is design and analysis of computer and simulation
experiments and is dealt with in six papers and a summary report.

Simulation and computer models have in recent years received increasingly more
attention due to their increasing complexity and usability. Software packages
make the development of rather complicated computer models using predefined
building blocks possible. This implies that the range of phenomenas that are
analyzed by means of a computer model has expanded significantly. As the
complexity grows so does the need for efficient experimental designs and analysis
methods, since the complex computer models often are expensive to use in terms
of computer time.

The choice of performance parameter is an important part of the analysis of
computer and simulation models and Paper A introduces a new statistic for
waiting times in health care units. The statistic is a measure of the extent
of long waiting times, which are known both to be the most bothersome and
to have the greatest impact on patient satisfaction. A simulation model for
an orthopedic surgical unit at a hospital illustrates the benefits of using the
measure.

Another important consideration in connection to simulation models is the de-
sign of experiments, which is the decision of which of the possible configurations
of the simulation model that should be tested. Since the possible configurations
are numerous and the time to test a single configuration may take minutes or
hours of computer time, the number of configurations that can be tested is lim-
ited. Papers B and C introduce a novel experimental plan for simulation models
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having two types of input factors. The plan differentiates between factors that
can be controlled in both the simulation model and the physical system and fac-
tors that are only controllable in the simulation model but simply observed in
the physical system. Factors that only are controllable in the simulation model
are called uncontrollable factors and they correspond to the environmental fac-
tors influencing the physical system. Applying the experimental framework on
the simulation model in Paper A shows that the effects of changes in the un-
controllable factors are better understood with the proposed design compared
to the alternative and commonly used methods.

In papers D and E a modeling framework for analyzing simulation models with
multiple noise sources is presented. It is shown that the sources of variation
of the simulation model can be divided in two components corresponding to
changes in the environmental factors (the uncontrollable factor settings) and
to random variation. Moreover, the structure of the environmental effects can
be estimated, which can be used to put the system in a more robust operating
mode.

The interpolation technique called Kriging is the topic of Paper F, which is
a widely applied technique for building so called models-for-the-model (meta-
models). We propose a method that handles both qualitative and quantitative
factors, which is not covered by the standard model. Fitting the final Kriging
model is done in two stages each based on fitting regular Kriging models. It is
shown that this method works well on a realistic example such as a simulation
model for a surgical unit.



Resumé

Hovedomr̊aderne i denne afhandling er design and analyse af computer- og simu-
lationseksperimenter. De er afdækket i seks artikler samt en sammenfattende
introduktion.

Simulations- og computereksperimenter har i de senere år f̊aet stadig større
bev̊agenhed p̊a grund af kompleksiteten og anvendeligheden af disse modeller.
Der findes adskillelige software pakker, der muliggør udvikling af meget kom-
plekse modeller ved hjælp af prædefinerede byggeblokke. Dette betyder, at
stadig flere systemer kan analyseres ved hjælp af computermodeller. Med den
øgede kompleksitet er behovet for effektive eksperimentelle planer og analyse
metoder steget, idet de komplekse modeller typisk er tidskrævende at bruge.

Valg af performance parameter er en vigtig del af analysen af computer- og
simulationsmodeller, og i artikel A introduceres en ny statistik for ventetider i
hospitalsenheder. Statistikken er et m̊al for størrelsen og udbredelsen af lange
ventetider, som er de mest generende og har den største indflydelse p̊a patient-
tilfredsheden. En simulationsmodel for en ortopædkirurgisk operationsgang p̊a
et hospital blev brugt til at illustrere fordelene ved statistikken.

En vigtig overvejelse i forbindelse med simulationsmodeller er den eksperimentelle
plan, hvilket er valget af hvilke af de mulige konfigurationer af simulations-
modellen, der skal afprøves. De mulige konfigurationer for en simulationsmodel
er ofte mange, og tiden for at teste en enkelt konfiguration kan tage flere min-
utter eller timer i computertid. Dette betyder, at antallet af konfigurationer,
der kan testes, er begrænset. Artiklerne B og C introducerer en ny eksperi-
mentel plan for simulationsmodeller, der har to typer af input faktorer. Planen
skelner mellem faktorer, der kan kontrolleres i modellen og i det fysiske sys-
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tem, og faktorer, der kun kan kontrolleres i modellen. Sidstnævnte kaldes ogs̊a
ukontrollerbare faktorer og svarer til de miljøfaktorer, der influerer det fysiske
system. For simulationsmodellen for den kirurgiske operationsgang blev det vist,
at sammenlignet med eksisterende eksperimentelle planer giver det nye design
en bedre forst̊aelse af de ukontrollerbare faktorers betydning.

I artikel D og E blev et framework til analyse af simulationsmodeller med flere
støjkilder præsenteret. Det blev vist, at variationskilderne kan opdeles i to
komponenter svarende til ændringer i de ukontrollerbare faktorer og tilfældig
variation. Ydermere blev det vist, at effekten af variationer i de ukontrollerbare
faktorer kan estimeres, hvilket kan udnyttes til at sætte systemet i en mere
robust konfiguration.

Artikel F omhandler interpolationsteknikken Kriging, som er en ofte anvendt
teknik til at estimere s̊akaldte modeller for modellen (meta-modeller). En ny
metode, der muliggør Kriging for simulationmodeller med b̊ade kvalitative og
kvantitative faktorer, introduceres. Krigingmodellen estimeres i to skridt, som
begge best̊ar af estimation af sædvanlige Krigingmodeller. Metoden testes p̊a
simulationsmodellen for den kirurgiske operationsgang, hvor det vises, at meto-
den virker bedre end eksisterende metoder.
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Chapter 1

Introduction

The title of this thesis is ”design of computer experiments” and it deals with
the planning and analysis of experiments with a computer model as a replace-
ment for physical experimentation. Computer models are used in many areas in
which physical experimentation is either not possible or expensive. One exam-
ple of a physical system in which experimentation is impossible (or at least very
limited) is an orthopedic surgical unit at a hospital. For such a system, patient
safety concerns restrict the experimentation and moreover the cost of certain
experiments may make them infeasible to do, e.g., putting in an extra operating
room to test how it would improve the performance is a very expensive exper-
iment. Another example is crash testing of cars, which can be simulated with
a computer model in order to save the costs of actually crashing a car. Using a
computer model allows the designers and engineers to test many configurations
at a low cost. A third example is the design of hip replacements (Chang et al.,
1999), which may reduce the costs for clinical trials significantly.

1.1 Simulation models

A computer model generates a set of outputs (although usually only one outcome
is considered at a time) that depends on a set of input factors. For a surgical
unit the input factors are, e.g., the number of doctors and operating rooms,
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whereas the output, e.g., is the patient waiting time. Computer models are
usually classified as being either deterministic or stochastic; that is, the output
either stays the same (deterministic) or varies (stochastic) for replicated runs
with the same settings of the input factors.

(a) Computer model with one factor
type

(b) Computer model with one factor
type and stochastic output

(c) Computer model with two factor
types

(d) Computer model with two factor
types and stochastic output

Figure 1.1: Basic structures for computer models

Four basic structures of computer models are shown in Figure 1.1. The most
simple model (Figure 1.1(a)) is a model which takes an input vector, x, cor-
responding to several variables and generates the output, y. The output may
also be influenced by a stochastic component as indicated by ε in Figure 1.1(b),
e.g., the arrival times of acute patients at the surgical unit. Another distur-
bance is environmental/uncontrollable factors such as the arrival rate of acute
patients at a surgical unit, which is indicated by the input u in Figures 1.1(c)
and 1.1(d). The uncontrollable factors may significantly influence the output,
which implies that the signal, f(x, u), becomes a function of both the control-
lable input factors, x, and the uncontrollable input factors, u. Likewise the
stochastic component may influence the output from one run to the next for the
stochastic computer model.

A subtype of computer models is simulation models and in this thesis a discrete
event simulation model is considered. In such a model a series of events is
simulated using a computer. The case study in this thesis is a model for an
orthopedic surgical unit at a hospital, which simulates the patients’ route from
the ward (or the emergency room) to the discharge. Animation is included in
the model as a tool for verifying the patient and staff flow in the model, which
is a valuable tool for presenting the model as illustrated in Figure 1.2.

Several performance measures are possible outputs for the surgical unit, e.g.,
waiting time and patient throughput. In this thesis the performance of the unit
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Figure 1.2: Extend model of surgical unit

is primarily measured by the extent of long waiting times since they from a
patient perspective are the most bothersome. In Paper A a new measure for
waiting time is introduced and compared to other existing measures. The mea-
sure is called the Conditional Value at Risk waiting time (CVaR) and measures
the extent of long waiting times. In Papers C-E CVaR is reconsidered together
with the number of patients treated and the fraction of planned surgery being
done outside regular hours. The latter indicates the level of overtime needed.
The surgical unit is used as case-study throughout the thesis and the model is
described in more detail in section 2.2.

1.2 Experimental design

Computer models are often very complicated and hence may take long time
to run. This implies that simply trying all possible combinations of the input
factors becomes computationally infeasible, e.g., the simulation model in sec-
tion 2.2 has 16 inputs and if two settings are considered for each input this
gives a total simulation time of 45 days (a single run takes seven minutes to
complete). Much of the literature on computer experiments is therefore related
to choosing the experiments to be performed, i.e., the settings of the inputs to
be tested. Such a selection of experiments is called an experimental design.

An experimental design consists of a set of experiments called design sites or
runs. One such run corresponds to one specific setting of the s input factors
to the model. The objective of an experimental plan is typically to choose the
runs in such a way that the information in the output (and thus the model)
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is maximized. In computer experiments both the costs of a single run and the
number of input factor are typically high, which implies that only relatively few
runs in a high dimensional space can be chosen.

The experimental plan also depends on which of the four model types in sec-
tion 1.1 the computer model belongs to. For stochastic computer models repli-
cations, i.e., repeated runs of the model with the same input setting x, yields
additional information of the stochastic components, whereas repetitions for
deterministic computer models are redundant. The presence of uncontrollable
factors as in Figures 1.1(c) and 1.1(d) also implies different experimental de-
signs compared to the first two model types in Figures 1.1(a) and 1.1(b), since
the controllable and uncontrollable factors have different interpretation in the
physical system and are therefore treated differently in the design and analysis
of the computer model. The design of computer experiments is discussed in
more detail in Chapter 3 and a new experimental plan is proposed in Papers B
and C.

1.3 Output analysis

The second major topic of computer experiments is the analysis of the output
generated from the experimental design. One objective of output analysis may
be to find the optimal setting of the system, e.g., how to setup a surgical unit
such that the maximum number of patients is treated. Another objective could
be to build a (simpler) model for the computer model. Such a model-for-the-
model is called a meta-model and is (and should be) considerable faster to run
compared to the actual computer model. The computer model corresponds to
an equivalent but unknown (and perhaps very complex) mathematical model
and the meta-model is an approximation of this unknown model. Such a meta-
model may be used for optimization in order to avoid the computational costs
of using a time consuming computer model.

A natural question is: Why would anyone construct a complicated computer
model if it can be reduced to a simpler model? Considering a surgical unit at
a hospital, it may not be very clear how the relationship between the number
of different staff types and the patient waiting time is. However, modeling the
processes and resources needed for each sub-process is more intuitive and inter-
pretable. The complex model may then be a result of combining several simpler
models of sub-processes. Thus, modeling the quantity of interest indirectly may
sometimes be the only feasible approach.

The methods used in the output analysis depend on the type of the computer
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model, i.e., whether the output is deterministic or stochastic. In the determin-
istic case a natural criterion is that the model for the output interpolates the
data; that is, the meta-model equals the model output at the design sites. Fig-
ure 1.3(a) shows a meta-model for a deterministic computer model. It can be
seen that the meta-model (an interpolator called Kriging) is an adequate de-
scription of the underlying signal, whereas the linear regression line ignores the
periodic part of the underlying model. From Figure 1.3(b) it can be seen that
interpolating the output from a stochastic computer model gives a highly wiggly
and inappropriate predictor, whereas the regression line is seen to be a better
description of the underlying model. In the stochastic setting a vast literature
from the analysis of physical experimentation exists, which also (potentially
with some modifications) can be applied for computer models.
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(b) Stochastic output with underlying
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Figure 1.3: Examples of deterministic (a) and stochastic output (b), where ”o”
is the observations, the solid black lines are Kriging interpolators
(see section 4.1), the red dashed lines are the true signals and the
black dotted lines are linear regression lines (see section 4.2)

1.4 Outline of the thesis

This thesis consists of three major topics, simulation, design of experiments and
output analysis as outlined in this chapter. In Chapter 2 a general introduc-
tion to simulation is given followed by an introduction to experimental design
in Chapter 3. Moreover, a case-study is introduced in section 2.2 and used
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throughout as motivating example. In Chapter 4 an introduction to the differ-
ent analysis methods is given, which includes both regression and interpolation
techniques. The included papers in Appendix A-F are summarized in Chapter 5
and the main conclusions given in Chapter 6.



Chapter 2

Simulation models

The literature concerning the design and analysis of deterministic simulation
models is usually covered by the name: “Design and Analysis of Computer Ex-
periments” (DACE) and is described by for example Sacks et al. (1989b). In the
book by Kleijnen (2008) design and analysis of simulation experiments (DASE)
are presented for both deterministic and stochastic simulation. A simulation
model is an example of a computer model and can be either deterministic or
stochastic. In this thesis a simulation model is used as case-study and it is
described in more detail in section 2.2.

2.1 Model types

Simulation models are as for computer models divided into two classes: deter-
ministic and stochastic. These two classes of simulation models are different
both in terms of the type of physical phenomena they model, the experimental
designs to apply and the analysis methods to use. In this chapter we briefly in-
troduce simulation and the case-study, whereas design and analysis of simulation
experiments are covered in Chapters 3 and 4, respectively.

In deterministic simulation the simulation model generates the same output for
replicated runs with the same settings of the input factors. Kleijnen (2008) gives
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several examples of deterministic simulation models including the ”IMAGE”
model for the increasing global temperatures (Bettonvil and Kleijnen, 1997).
Deterministic simulation models behave differently from physical phenomena
since repeated runs with the same settings yield exactly the same output. In
physical experiments all factors can usually not be controlled completely and
hence the outcome changes from one replicate to the next. This implies that dif-
ferent experimental designs and analysis techniques are needed for deterministic
simulation models (Sacks et al., 1989a, Fang et al., 2006).

Many simulation models however involve some sort of stochastic disturbance
making the output also stochastic and thus repeated runs with the same input
give different output. The stochastic components are procedures, arrival pro-
cesses, etc., which are generated by streams of random numbers. The stream is
controlled by a seed, which is a number that initialize the state of the generator.
The variation coming from the stochastic components implies that the model
output behaves more like a physical experiment, i.e., the stochastic components
somehow correspond to having the experimental error in physical experimenta-
tion.

Although stochastic simulation is seen to be more similar to physical experi-
mentation in contrast to deterministic simulation, it is important to note that
the variation in the output is artificially generated and controlled in the simula-
tion model. In discrete event simulation the seed controls the stream of random
numbers, which are used to generate stochastic arrival processes etc. This im-
plies that the simulation model can be put in a deterministic operating mode by
using the same seed. Controlling the seed is utilized in the variance reduction
technique known as common random numbers (CRN) (Schruben and Margolin,
1978, Donohue, 1995, Banks et al., 2005, Kleijnen, 2008).

Another difference compared to physical experimentation is that environmental
factors in simulation models can be controlled, i.e., the arrival rate of acute
patients to a surgical unit can be controlled in the simulation model but not
in the physical system. Moreover, the uncontrollable factors are required to
have values assigned in each run, which implies that the settings of these factors
become an important part of the experimental plan. Simulation models are as
such the ideal experiment, since all sources of variation can be controlled.

An often used simulation technique is Discrete Event Simulation (DES), which
is a simulation type where the system changes at discrete time points corre-
sponding to a series of events (Law and Kelton, 2000). An event is, e.g., that
a patient arrives at a hospital unit or a surgeon is called to the operating room
at a surgical unit at a hospital unit such as in the case-study presented in sec-
tion 2.2. The simulation model is controlled by a clock, which jumps to the
time point for the next event on the event stack, performs the event, updates
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the event stack, jumps to the next event and set the clock, etc.

2.2 Case-study: a surgical unit at a hospital

Within health care simulation is a widely used technique due to the limitations
of physical experimentation in these systems (see for example Brailsford (2007)).
Moreover, since health care budgets not only tend to be large but also increasing
in size there is a potential for significant savings. The long list of applications of
simulation in health care covers topics such as disease modeling, e.g., the spread
of HIV (Mellor et al., 2007) and optimization of hospital units, e.g., optimizing
an emergency department (Ferrin and McBroom, 2007). Another example is the
simulation of pandemic influenza preparedness plans as considered by Lant et al.
(2008), who evaluate different plans for evacuating a public university during a
pandemic influenza using simulation. All three examples illustrate cases where
physical experimentation is either impossible (Mellor et al., 2007, Lant et al.,
2008) or too expensive (Ferrin and McBroom, 2007).

We consider a discrete event simulation model for an orthopedic surgical unit,
which is implemented in the simulation software Extend (Krahl, 2002) and con-
trolled from a Visual Basics for Applications (VBA) script in Excel. A single
run corresponds to simulating six months operation (approximately 2000 surgi-
cal procedures) with a warm-up period of one week, which in Dehlendorff et al.
(2010b) was shown to be a good compromise between simulation time and ac-
curacy. The model takes approximately seven minutes to complete a single run,
which is long enough to prohibit brute force analysis, i.e., running all possible
combinations of factor settings.

Figure 2.1: Outline of surgical unit

The outline of the surgical unit is given in Figure 2.1. It consists of three main
modules: arrival, treatment and recovery. Patients arrive from either one of the
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wards or from the emergency room. They are either acute or elective, i.e., an
acute patient arrives from the emergency room (or from other departments in
the hospital) for an operation not a planned in advance, whereas the operations
for the elective patients are scheduled. In the simulation model the staff is
controlled through resource pools, e.g., a pool for surgeons (as well as other
staff) and a pool for operating rooms. The pools contain the idle resources
and release them as soon as they become available when a procedure makes a
request.

The route through the surgical unit consists of several stages as outlined in
Figure 2.2. The patients arrive for either planned or acute operations and are
admitted to a ward (a separate ward is reserved for the acute patients) and
thereafter brought to the surgical unit. At the surgical unit the patients are
sedated and prepared for surgery either in the operating room or in a preparation
room and then brought to the operating room. After surgery the patients are
transported to the recovery room for wake up and thereafter returned back to
the ward for final recovery and discharge.

Figure 2.2: Flowchart for the patient’s route through the orthopedic surgical
unit

For each process in Figure 2.2, teams consisting of potentially multiple staff
groups are required, e.g., for transportation of patients a porter is required, for
sedation an anesthesiologist is required and for the surgical procedure nurses
and surgeons are required. It entails a delay for the patient if one or more of
the required resource pools are empty corresponding to the time it takes before
all required resources become available.

The performance of the surgical unit may also be influenced by its surround-
ings, e.g., the arrival rate of acute patients can usually not be controlled in the
physical system. Since the system may behave very differently depending on
the settings of these uncontrollable factors, they are also included in the model.
The controllable and uncontrollable factors are summarized in Table 2.1, where
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a controllable factor is controllable in both the model and the physical system
and an uncontrollable factor only in the model.

Type Factors

Controllable

Porters Anesthesiologists
ORs Recovery beds

Cleaning teams Elective patients
Operating days Acute intake

Uncontrollable

Porters occupied Anesthesiologist occupied
OR cleaning time Recovery bed occupied

Cleaning teams occupied Surgeon occupied
Length of procedures Acute arrival rate

Table 2.1: Factors used in simulation model for surgical unit

The performance of the surgical unit is measured by the waiting time experi-
enced by the patients. Bielen and Demoulin (2007) show that patient satisfac-
tion decreases as the waiting time increases; that is, from a patient satisfaction
point of view long waiting times are troublesome. In Paper A a statistic, CVaR,
for measuring the extent of long waiting time is introduced, which is used as
primary outcome in the remainder of the thesis. Figure 2.3 shows two waiting
time distributions: the gamma distributions Γ(2, 1) and Γ(10, 5). The expected
waiting time is for both distributions two time units, but the lengths of the tails
are very different. The focus in this thesis is the extent of long waiting time and
CVaR, which is marked with vertical lines in Figure 2.3, clearly indicates that
Γ(10, 5) has fewer long waiting times compared to Γ(2, 1).

Although patient satisfaction is an important aspect, a surgical unit is also
required to treat a reasonable amount of patients (total throughput). Moreover,
planned surgery should preferably be conducted within regular hours to avoid
the costs of overtime. These two outcomes are considered in Papers A, D and E
together with the extent of the long waiting times.

A surgical unit is highly stochastic, since the list of environmental factors in-
fluencing the system is long. This implies that also the resulting simulation
model is stochastic. The model can however be put into a deterministic sim-
ulation model by keeping the seed that controls the random number generator
constant. This implies that the case-study can be used for illustrating both
stochastic and deterministic simulation. In the deterministic setting the model
output corresponds to a single scenario and hence may not be representative
for the performance in general, but the model nonetheless represents a complex
deterministic simulation model.
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Figure 2.3: Waiting time distributions with the 5 % longest waiting times high-
lighted and the average waiting times of these marked by the vertical
dashed lines

2.3 Queuing systems

In paper E an M/M/m-queuing system is considered, which is a system that has
several appealing properties. The literature on these queuing systems is vast
and their theoretical behaviour is therefore well-known and described; that is,
new modeling techniques can be validated since the true input-output relation
is known (as for example utilized in Kleijnen (2008) and Dehlendorff et al.
(2010a)). An M/M/m-queuing system consists of a poisson arrival process and
m parallel servers having exponential service times. The rate of utilization for
the servers is ρ = λ/(µm), where λ is the arrival rate of items (items arriving
per time unit) and µ the service rate of the servers(items processed per time
unit). At time points with no idle servers arriving items are queued in a queue
with unlimited capacity. A typical outcome is the expected waiting time in
queue, which also is the main outcome in the case-study in section 2.2 (where
the queue corresponds to the delays when the resources are missing).

Figure 2.4 illustrates the outline of a M/M/4 queuing system for a hospital unit.
The model in Figure 2.4 can be seen as a simplified version of the surgical unit
described in section 2.2. It has four operating rooms as the model in section 2.2,
but in the simplified version of the surgical unit all processes between arrival and
discharge are collapsed into a queue and four parallel processes. Moreover, the
M/M/4-queuing system consists of a single arrival process, whereas the surgical
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unit in section 2.2, e.g., has two separate arrival processes corresponding to
acute and planned patients.

Figure 2.4: M/M/4 queue

For an M/M/m-queuing system with up to four servers the expected waiting
time in the queue is given as (see e.g., Gross and Harris, 1998)

E[Wq] =





λ
µ

1
µ−λ = ρ2

λ(1−ρ) m = 1
λ2

µ(2µ+λ)
1

2µ−λ = 2ρ3

λ(1−ρ2) m = 2
λ3

µ(6µ2+4λµ+λ2)
1

3µ−λ = 9ρ4

λ(1−ρ)(2+4ρ+3ρ2) m = 3
λ4

µ(24µ3+18λµ2+6λ2µ+λ3)
1

4µ−λ = 32ρ5

λ(1−ρ)(3+9ρ+12ρ2+8ρ3) m = 4

(2.1)

that is; the expected waiting time in the queue can be expressed as relatively
simple functions of, e.g., (λ, µ) or (λ, ρ). The relationship between ρ and Wq is
visualized in Figure 2.5, which shows that with the same server utilization and
arrival rate the waiting time decreases with the number of servers. This implies,
e.g., that two servers with service rates µ2 are better in terms of reducing the
time spend in the queue than one twice as fast server with service rate µ1 = 2µ2

due to the synergy effects of two servers. For the total time spend in the system
having a fast single server is better, but we only consider the waiting time in
the queue.

The M/M/m-queuing system is an example of a system which can be analyzed
analytically. It is however clear that if the system becomes much more compli-
cated than this, simulation becomes the preferred method and hence conclusions



14 Simulation models

Figure 2.5: Expected waiting time in queue as function of ρ (λ = 0.5) with
m = 1, . . . , 4 servers

must be based on the analysis of the simulation output. This applies in many ar-
eas where the system consists of several connected components, which makes the
system difficult to analyze analytically. In Paper E we use M/M/1 and M/M/2-
queuing systems to illustrate three different modeling techniques for simulation
models being both stochastic and influenced by uncontrollable factors.



Chapter 3

Experimental design

The relationship between input and output of a simulation or computer model
is typically analyzed with a set of observations (experiments) on the model. An
experimental plan (design) is a scheme for which experiments to do and in which
order to run them. Such an experimental design may be organized in an n× s-
matrix with the ijth element containing the value of the jth of s factors in the
ith of n runs. Constructing an experimental plan is a way of choosing a set of
n points in the s-dimensional hypercube and many experimental design criteria
are therefore based on distances between the design points in the s-dimensional
design space (section 3.2 deals with optimal designs).

The first major contributions to the design and analysis of computer exper-
iments (DACE) literature are McKay et al. (1979) and Sacks et al. (1989b),
who introduce the basic foundations for DACE. In the book by Santner et al.
(2003) some of the key sampling strategies and interpolation techniques are
summarized. Fang et al. (2006) also discuss design and analysis of computer
experiments and provide techniques for generating optimal designs. Sacks et al.
(1989b) and Santner et al. (2003) consider deterministic computer experiments,
i.e., computer models that generate the same output for replicated runs with
the same settings of the input factors.

Experimental planning known from physical experimentation is often not well
suited for deterministic computer models since, e.g., replication is deemed to



16 Experimental design

be redundant. Optimal factorial designs are popular in physical experimenta-
tion, but they are usually not applied for deterministic computer models, since
projecting onto subspaces gives replicated runs; that is, if a factor turns out
to be insignificant deleting this factor from the design may produce replicated
runs. Consider a 23 full factorial design with factor B being insignificant and
its projection onto factors A and C




−1 −1 −1
+1 −1 −1
−1 +1 −1
+1 +1 −1
−1 −1 +1
+1 −1 +1
−1 +1 +1
+1 +1 +1




⇒




−1 −1
+1 −1
−1 −1
+1 −1
−1 +1
+1 +1
−1 +1
+1 +1




(3.1)

It can be seen that the reduced design without factor B (the second column in
the first design) only has four unique factor settings, which are replicated twice.
Instead of using the experimental framework from physical experimentation, a
separate design framework is used for computer and simulation experiments,
which deals directly with the properties of these experiments.

In physical experimentation important aspects are randomization and replica-
tion (Montgomery, 2009). In computer experiments the randomization aspect
is somewhat different as the random error is either not present (deterministic
computer model) or controlled through a seed controlling the random number
generator (stochastic computer model). Replications are for deterministic com-
puter models redundant, since they produce the same output. Another aspect is
that computer models often have many factors, complex response surfaces and
long run times, which implies that typically only a very limited number of runs
is affordable in a high dimensional space.

A desired property of an experimental plan for computer experiments is that
the set of points chosen are space-filling (Fang et al., 2006), which implies that
the design points are chosen such that they are representative for the entire
design space. The space-filling requirement is motivated by the overall mean
model (Fang et al., 2006), i.e., obtaining the best estimator for the overall mean
of the computer model. Fang et al. (2006) state that: ”... space-filling designs
have a good performance not only for estimation of the overall mean, but also for
finding a good approximate model”. In Chapter 4 the estimation of approximate
models (meta-models) is considered.

The space-filling requirement implies that the design space is required to be
represented by design points in all regions and not only at, e.g., the corner points
as for 2k-factorial designs. Obviously this becomes increasingly more challenging
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as the number of factors increases, i.e., the coverage of the design space tends
to become sparse due to the curse of dimensionality. Another important aspect
is that projecting the design onto a subset of factors should preferably result
in a design without replicated runs to avoid redundant information in case of
insignificant factors.

3.1 Latin hypercube sampling

A popular choice for obtaining a set of space-filling design points is latin hy-
percube sampling (LHS) and the associated design with n observations and s
variables/factors is called a latin hypercube design (LHD(n,s)) (see for exam-
ple McKay et al. (1979)). In LHS each factor’s range is first divided into n
intervals, which are denoted 1, . . . , n. For each factor a random permutation
of the numbers 1, . . . , n is chosen and the combination of these s permutations
forms the design. For s = 2 and n = 4 one plan could be {3, 2, 1, 4}×{3, 2, 4, 1},
which corresponds to the design shown in Figure 3.1(a). A different design is
shown in Figure 3.1(b) and it corresponds to {1, 2, 3, 4} × {4, 3, 2, 1}.
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Figure 3.1: LHD(3,2) experimental plans

The general constructing method for a LHD(n, s) is to combine s permutations
of the numbers 1, . . . , n and scale the resulting design D to the unit hyper-
cube. The scaling can be done in multiple ways and Fang et al. (2006) consider
two principal ways. The first scaling method is the midpoint latin hypercube
sampling method, which for the ith run for the jth factor is given as

Dm
ij =

Dij − 0.5
n

(3.2)
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The midpoint scaling method is used in Figure 3.1 and places the design points
in the center of the squares (hypercubes in general) formed by the slicing of
each factor in n intervals. The second method uses random numbers to place
the design points and is given as

Dr
ij =

Dij − Uij
n

(3.3)

where Uij ∼ U(0, 1), i.e., comes from an uniform distribution. This method
places the points in each hypercube randomly instead of at its center as in
midpoint scaling.

In Figure 3.1 the midpoint scaling method is used and it can be seen that pro-
jecting the design onto a single factor distributes the design points evenly with
no replicates. Using the random scaling method preserves that projections do
not produce replicated runs, but the distribution of design points for projec-
tions onto a single factor does not give evenly spaced points. The LHD is seen
to be easy to generate, it can handle many factors and projection on to any
subspace (e.g., removing a column) results in another LHD. The LHD possesses
many appealing properties, however as seen from Figure 3.1 not all LHDs are
equally good, e.g., the design in Figure 3.1(b) has perfectly correlated columns
and hence the two factors are confounded.

3.2 Optimal designs

The problem with, e.g., correlated columns led to the development of so called
optimal LHDs. Optimal LHD designs are chosen from the set of LHDs, but
according to some criterion evaluating certain properties of the design. In the
literature (see for example Fang et al. (2006) for a comprehensive summary)
several optimality criteria are summarized, e.g., integrated mean square error
(IMSE) by Sacks et al. (1989a), maximin distance by Johnson et al. (1990)
and uniformity by Fang and Ma (2001). In the following it is assumed that all
factors have been scaled down to [0, 1] and hence that the design space is the
s-dimensional unit cube [0, 1]s.

The maximin design proposed by Johnson et al. (1990) is a design where the
shortest distance between design sites is maximized

max
D

min
x1,x2∈D

d(x1,x2) (3.4)

where d() is a distance measure in [0, 1]s. The design idea is to push the design
points apart such that clustering of design points is avoided, which implies that
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the points are ordered such that they fill the design space. Johnson et al. (1990)
also consider the minmax design

min
D

max
x∈[0,1]s

d(x, D) (3.5)

where d(x, D) is the shortest distance between x and the design points. The
idea behind the minmax design is that any point in [0, 1]s should not be too
far away from a design point. The minmax design is intuitively easy to identify
as being space-filling, since the criterion says that the design points should be
chosen such that no region is too far away from a design point. It is however
computationally much harder to find compared to the maximin design, since the
maximum distance from any design point to any potential point in the design
space is required.

Uniformity is another optimality criteria related to space-filling designs. It is
described in great detail by Fang et al. (2006) and can be measured by, e.g.,
the wrap-around discrepancy (WD) as proposed by Fang and Ma (2001). The
intuition behind the WD is that the fraction of design points in the hypercube
spanned by any two points should match the fraction of the total volume spanned
by this hypercube, which is the expected distribution of the points if they are
uniformly scattered. The criteria in a computational efficient version is given as

(WD(D))2 = −
(

4
3

)s + 1
n

(
3
2

)s + 2
n2

n−1∑

k=1

n∑

j=k+1

s∏

i=1

qi(j, k) (3.6)

where qi(j, k) = 3
2 − |xik − xij |(1 − |xik − xij |), n is the number of points, s

is the number of factors (the dimension), and xik is the ith coordinate of the
kth point. A low WD value corresponds to a high degree of uniformity. Since
xik ∈ [0, 1], qi(j, k) is maximal when the distance between xik and xij is either 0
or 1 and minimal with a distance of 0.5. The wrap around part of the criteria
arises since the hypercube spanned by two design points may potentially wrap
around the bounds of the unit cube, which is illustrated by the highlighted area
in Figure 3.2. The L2 relates to how the discrepancy between the fraction of
points contained in the hypercube spanned by two design points and its volume
is measured. L2 is simply the squared difference, which is given as

∣∣∣∣
number of points in hypercube

total number of points
−Volume of hypercube

∣∣∣∣
2

(3.7)

Other measures exist, such as the centered discrepancy, which however depends
on the corner points, whereas the wrap-around discrepancy is said to be unan-
chored. Fang et al. (2006) points out that there is a connection between orthog-
onal designs and uniform designs for example that ”any orthogonal design is a
uniform design under a certain discrepancy”.
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Figure 3.2: Illustration of wrap-around discrepancy

In Papers B and C uniform designs are used, since they according to Fang et al.
(2006) are robust against the a priori model assumption for the meta-model,
i.e., they do not rely on a specific model structure. The uniform designs can
be generated by the good lattice point method described in Fang et al. (2006).
The construction of the design is based on a lattice {1, . . . , n} and a generator
h(k) = (1, k, k2, . . . , ks−1)(mod n), with k fulfilling that k, k2, . . . , ks−1(mod n)
are distinct. The generator h(k) is chosen such that the resulting design con-
sisting of the elements uij = ih(k)j(mod n) scaled down to [0, 1]s has the lowest
WD value.

3.3 Crossed designs

In some simulation applications the input factors of the model consist of both
controllable and uncontrollable factors. This implies that a different experi-
mental design strategy is needed, since the two factor types have different roles
and interpretation in the physical system. For example optimization of the
performance of the system only involves choosing the best combinations of the
controllable factors, since in the physical system the uncontrollable factors can
not be fixed at certain values. However, the performance of the system may
depend on the settings of the uncontrollable factors, which implies that several
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settings of the uncontrollable factors must be tested at each setting of the con-
trollable factors in order to ensure that conclusions based on the controllable
factors are robust.

Crossed designs are used for combining two or more designs. In particular in
applications with controllable and uncontrollable factors this method is used
to test the controllable factor settings under different uncontrollable factor set-
tings (Kleijnen, 2008, 2009). One could for example consider a factorial design
for the controllable factors and a LHD for the uncontrollable factors and ob-
tain a combined design by crossing the two designs. This is illustrated by the
following example

[
−1 −1
+1 +1

]
×




1 2 4
2 3 2
3 1 1
4 4 3


⇒




−1 −1 1 2 4
−1 −1 2 3 2
−1 −1 3 1 1
−1 −1 4 4 3
+1 +1 1 2 4
+1 +1 2 3 2
+1 +1 3 1 1
+1 +1 4 4 3




(3.8)

which shows the result of crossing a 22−1 fractional factorial design with a
LHD(4,3) (the low and high levels of the factors in the factorial design are
coded ”−1” and ”+1”, respectively).

It can be argued that crossing two designs may not be the optimal way of
choosing the settings for the uncontrollable factors, since the settings of the
uncontrollable factors are replicated nc times each. Covering the uncontrollable
factor space is important in order to obtain a better understanding of the un-
controllable factors and to ensure that important uncontrollable factor effects
are not overlooked. Moreover, since the specific setting of the uncontrollable
factor is not of interest, then more information from the simulation model is
obtained by using different settings of the uncontrollable factors for each setting
of the controllable factors. One challenge is to construct the sub-designs such
that they are similar, i.e., that the controllable factor settings are exposed to
the same range of uncontrollable factor settings. This is achieved by the design
we propose in section 3.4.

3.4 Top-Down design

The replications of the uncontrollable factor settings in the crossed design in-
spired us to develop a different experimental plan, which is presented in Papers B
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Top-down design Crossed design
Controllable factor Uncontrollable factor Uncontrollable factor

setting setting setting
xc1 xe1 xe2 xe3 xe4 xe1 xe2 xe3 xe4
xc2 xe5 xe6 xe7 xe8 xe1 xe2 xe3 xe4
xc3 xe9 xe10 xe11 xe12 xe1 xe2 xe3 xe4
xc4 xe13 xe14 xe15 xe16 xe1 xe2 xe3 xe4
xc5 xe17 xe18 xe19 xe20 xe1 xe2 xe3 xe4

Table 3.1: Top-down design with nc = 5 and nu = 4 compared to a crossed
design of same size

and C. In this design different uncontrollable factor settings are used for each
controllable factor setting and has a ”top-down” structure and hence denoted a
top-down design (Dehlendorff et al., 2008, 2011).

The construction of the top-down design is illustrated in Figure 3.3 and it con-
sists of five steps:

1. construct a uniform design for the uncontrollable factors with n = nc×nu
runs (Figure 3.3(a)), where nc is the size of the design for the controllable
factors and nu is the number of uncontrollable factor settings to test at
each setting of the controllable factors.

2. split the overall design into nu initial subregions (Figure 3.3(b))

3. add nu center points (Figure 3.3(c))

4. permute the assignment of points such that the subregions are well de-
fined/more compact (Figure 3.3(d))

5. assign each controllable factor setting one point from each subregion such
that all points are assigned to a controllable factor setting (Figure 3.3(e)).

The benefit of using the top-down design compared to the crossed design is
that nc as many different settings of the uncontrollable factors are tested, which
implies that the uncontrollable factor space has a higher coverage. The higher
coverage is in Paper C shown to reveal important interactions between con-
trollable and uncontrollable factors, which may be used to put the system in a
more robust operating mode. The main challenge in the construction method
is to assign the uncontrollable factor settings such that the variations in the un-
controllable factors (corresponding to the environment) is comparable from one
setting of the controllable factors to the next. The top-down design is described
in greater detail in the summaries of Papers B and C in sections 5.2 and 5.3.
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(a) First construct an uniform design (n =
nc × nu
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(b) Divide the design into nu sub-regions
consisting of nc points
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(c) Add nu center points

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x 2

(d) Reorganize points into nu well defined
sub-regions around the center points
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(e) Assign one point from each subregion
to each controllable factor setting

Figure 3.3: Top-down algorithm
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Chapter 4

Output analysis

An often occurring challenge with computer and simulation models is that they
can be very expensive in terms of the time it takes to complete a single run. This
implies that the models are not well suited for optimization, since this usually
requires many evaluations. For computational expensive computer models an
often used technique is therefore to build a computationally cheaper model called
a meta-model. A meta-model is thus an approximation of the input-output
relationship of the computer model (Santner et al., 2003, Fang et al., 2006,
Kleijnen, 2009).

In this thesis two groups of analysis methods are considered: Kriging and regres-
sion models. Kriging (Matheron, 1963) is the preferred model for deterministic
simulation and computer models, since it interpolates the observations (see sec-
tion 4.1). Regression models as described in section 4.2 are extensively used in
the analysis of physical experiments, but can also be used for stochastic simu-
lation and computer models. In section 4.3 we give a small example of how a
computer model can be optimized using a meta-model.
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4.1 Kriging

A natural requirement for meta-models for deterministic computer models is
that they interpolate the data, i.e., that the meta-model equals the computer
model at the design sites. A popular modeling framework is Kriging, which
originates from geo-statistics. The method was developed by Krige and im-
proved by Matheron (1963) and is often applied in the field of computer ex-
periments (Sacks et al., 1989b, Santner et al., 2003, Martin and Simpson, 2005,
Kleijnen, 2009). The method has several advantages 1) the predictor interpo-
lates the data points, 2) the model is global and 3) it can fit complex response
surfaces. However using the model outside the data range is known to give poor
predictions as noted by van Beers and Kleijnen (2004).

We consider a function or model that, given the input vector x, generates the
scalar and deterministic output y(x). The Kriging model relies on the assump-
tion that the deterministic output y(x) can be described by the random function

Y (x) = f(x)Tβ + Z(x) (4.1)

where f(x)Tβ is a parametric trend with p parameters and Z(x) is a random field
assumed to be second order stationary with covariance function σ2R(xi,xj) (Sant-
ner et al., 2003), where σ2 is the variance and R() is the correlation function,
which usually is assumed to be the gaussian correlation function given as

R(x1,x2) = exp


−

p∑

j=1

θj(x
j
1 − xj2)2


 (4.2)

where xji is the value of the jth factor of observation i and θj ≥ 0 the corre-
sponding correlation parameter. θj = 0 implies that the correlation along the
jth factor is 1.

We consider a set of n design points X = {x1, . . . ,xn} and corresponding obser-
vations y = {y(x1), . . . , y(xn)} where y() is the true function (computer model).
The correlation matrix for the design points is denoted R(θ) where the ijth ele-
ment is the correlation between the ith and jth design points given as R(xi,xj).
Likewise the vector of correlations between the point, x, and the design points
is defined as

r(x) = [R(x1,x), . . . , R(xn,x)]T (4.3)

The regressor f(x) is given by a vector with p regressor functions

f(x) = [f1(x) . . . fp(x)]T (4.4)
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and the regressors for the design sites are given as

F = [f(x1)T · · · f(xn)T ]T (4.5)

Usually ordinary Kriging is used and hence f(x) reduces to f(x) = 1 corre-
sponding to the model

Y (x) = µ+ Z(x) (4.6)

The correlation function is parameterized by a set of parameters θ as described
in (4.2). Given θ, the restricted maximum likelihood estimate of β (Santner
et al., 2003) (assuming a gaussian distribution) is

β̂ = (FT R̂(θ)−1F)−1FT R̂(θ)−1y (4.7)

where R̂(θ) is the correlation matrix for the design sites and parameterized by
the parameter vector θ. The estimate of σ2 is

σ̂2 =
1

n− p (y − Fβ̂)T R̂(θ)−1(y − Fβ̂) (4.8)

where n is the number of observations and p is the rank of F (the number
of parameters in β̂). The correlation parameters are found by minimizing the
negative restricted profile log-likelihood (Lr) for θ

θ̂ = arg min
θ

[
(n− p) log σ̂2 + log(|R(θ)|)

]
(4.9)

where |R(θ)| is the determinant of the correlation matrix corresponding to the
design points. σ̂ and β̂ are functions of R̂−1 (equation (4.7) and (4.8)); that
is, inverting the correlation matrix for the design sites is required in order to
evaluate the likelihood function. This inversion is a computational expensive
task since it takes O(n3) operations. Moreover, the likelihood function may be
flat around the optimum, which implies that the search for the optimum may
become slow (Lophaven et al., 2002a, Li and Sudjianto, 2005). These aspects
are dealt with in the Matlab toolbox DACE by Lophaven et al. (2002b).

Given R̂, β̂ and σ̂2 the predictor at x is

ŷ(x) = f(x)T β̂ + r(x)T R̂−1(y − Fβ̂) (4.10)

At a design point, x ∈ X, the vector r(x)T R̂−1 consists of (n − 1) zeroes and
a single one at the index corresponding to x, which implies that the predictor
becomes y(x) and thus interpolates the data at the design points. The interpo-
lation property is one of the main advantages of using Kriging for deterministic
computer models.
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An example of the Kriging predictor is shown in Figure 4.1. It can be seen that
the interpolator is improving as more design points are added, i.e., the difference
between the interpolator and the true function is not visible for n = 10 design
points (Figure 4.1(d)). The performance of the predictor can be measured by
the accuracy, 1/(1 + RMSE), where RMSE is the root mean square prediction
error over a set of test sites. The accuracy is in Figure 4.1 seen to increase as the
number of design points is increasing. Likewise the correlation between points
is seen to increase (θ̂ is decreasing) as more design points are included. It can
be seen that the interpolator is able to fit a quite wiggly curve using only two
parameters: β̂ and θ̂.
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(a) Kriging interpolator based
on 4 design points (1/(1 +

RMSE) = 0.56, θ̂ = 1.60)
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(b) Kriging interpolator based
on 6 design points (1/(1 +

RMSE) = 0.79, θ̂ = 1.01)
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(c) Kriging interpolator based
on 8 design points (1/(1 +

RMSE) = 0.96, θ̂ = 0.60)
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(d) Kriging interpolator based
on 10 design points (1/(1 +

RMSE) = 1.00, θ̂ = 0.50)

Figure 4.1: Illustration of Kriging predictor for 4-10 points. Solid black lines
correspond to the true function, dashed red lines are the Kriging
predictors and ”o” corresponds to the design points. The underlying
signal is y = cos(6.8πx/2) + 6x
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4.2 Regression models

If the output of the computer model is stochastic, an interpolator such as the
Kriging model may not be the best predictor (see for example Figure 1.3(b)).
Instead regression methods from physical experimentation can be applied. How-
ever, one difference is that in simulation the random error is usually controlled
through the seed to the random number generator, which implies that the ob-
servations may not be independent. In such cases, e.g., generalized least squares
methods can be used (Kleijnen, 2008). In this thesis we however only consider
experiments with the seed either kept fixed (deterministic simulation) or chosen
randomly for each run (stochastic simulation).

In the following we consider the most general simulation model, which is stochas-
tic and has controllable and uncontrollable factors. Let xci be the ith controllable
factor setting, xuj the jth uncontrollable factor setting and sijk the seed in the
ijkth run. Moreover, we focus on modeling the variation coming from the un-
controllable factors and the seed, i.e., consider the combinations of the settings
of the controllable factors as a single categorical variable to simplify the analysis
and focus on the uncontrollable factors.

A simple model for stochastic simulation is the general linear model, i.e., the
model

y(xci , x
u
j , sijk) = βi + εijk (4.11)

where βi is the parameter for the ith controllable factor setting and εijk ∼
N(0, σ2). In equation (4.11) the variation due to the uncontrollable factors is
ignored and pooled into a single variance component together with the variation
due to the seed. The variation coming from changes in the uncontrollable factors
can be estimated by fitting a linear mixed effects model, which is given as

y(xci , x
u
j , sijk) = βi + Uj + Sijk (4.12)

In the linear mixed effects model the variation due to the uncontrollable factors
is captured in Uj ∼ N(0, σ2

U ), whereas the variation due to the seed is captured
in Sijk ∼ N(0, σ2

S). Uj and Sijk are assumed to be independent, which implies
that the variance of a single test/run can be written as σ2 = σ2

U + σ2
S .

In Paper C a generalized additive model (Hastie and Tibshirani, 1990, Wood,
2006) is applied to the output from a top-down and a crossed experiment on
the simulation model for the surgical unit. The model is also used in Papers D
and E as an extension to the linear and linear mixed effects models. The gen-
eralized additive model (GAM) is given as a function of both controllable and
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(a) Linear model (b) Linear mixed effects
model

(c) GAM model

Figure 4.2: Illustration of models for output from stochastic simulation model
with controllable and uncontrollable factors

uncontrollable factors

y(xci , x
u
j , sk) = βi +

m∑

l=1

fl(x
u(l)
j ) + Sijk (4.13)

with x
u(l)
j being the jth setting for the lth uncontrollable factor and Sijk ∼

N(0, σ2
S) the residual or seed term. fl is a spline based smooth function with

the smoothness determined by a penalty term. By estimating the functional
relationship between the uncontrollable factors and the outcome, the uncontrol-
lable factors that are needed to be tightly controlled may be identified. But
more importantly interactions between controllable and uncontrollable factors
may also be estimated by fitting different smooth functions depending on the
settings of the controllable factors. The interactions between controllable and
uncontrollable factors may be used to put the system in a more robust operating
mode as suggested by Bursztyn and Steinberg (2006) and Myers et al. (2009).
The estimation of the β’s and the smooth functions can for example be done
with the R-library (R Development Core Team, 2007) provided by Wood (2006).

A graphical overview of the three models is given in Figure 4.2, which shows
that the models have increasingly more structure for the uncontrollable factors.
The models may also be expanded by putting more structure in the controllable
factor part, e.g., including low order polynomials to account for the effects of the
controllable factors. In this thesis we, however, primarily focus on describing the
variations in the uncontrollable factors. For all three models generalized versions
exist such that, e.g., binomial and count data can be fitted. The generalized
versions are considered in Paper D for estimating the risk of putting the surgical
unit in a worse operating mode compared to the current setting.



4.3 Example: Optimization using a meta-model 31

4.3 Example: Optimization using a meta-model

If the computer or simulation model is too expensive to use directly for opti-
mization a meta-model can be used as a replacement of the expensive model.
Optimization can, e.g., be done in the following four stages

1. run initial design on expensive computer model

2. fit a meta-model based on the observations from the initial design

3. optimize the system using the meta-model

4. validate the optimal setting by running a small number of control runs on
the computer model (and possibly return to the second step after adding
more observations if optimum is not reached)

Using the meta-model not only speeds up the optimization but may also in-
crease the understanding of the complex computer model if the simpler meta-
model has a more explicit relationship between the input factors and the output
(provided that the meta-model is an adequate description). However, using a
meta-model assumes that the optimum is within the design region (local opti-
mization), whereas the response surface methodology is generally preferred for
global optimization (see for example Myers et al., 2009).

We now illustrate optimization using a meta-model by a small example with a
known function, which is given as y(x1, x2) = (10x1 − 6) exp[−(10x1 − 6)2 −
(10x2−6)2] for (x1, x2) ∈ [0, 1]2. A contour plot of the true function is shown in
Figure 4.3, which shows that the function is mostly flat and has its maximum
and minimum in the same proximity. The objective of the optimization is to
find the minimum of the function y(x∗) = y(x∗1, x

∗
2) by using a meta-model for

the optimization task. In this example a Kriging model is used, since the output
is deterministic.

First an initial maxmin LHD(10,2) is constructed and then the computer model
run for these ten settings. This gives a set of observations y1, . . . , y10 at the
design sites (x1

1, x
1
2), . . . , (x10

1 , x
10
2 ) for which a Kriging model is fitted. Opti-

mization can then be done by evaluating the Kriging predictor over a fine grid
of say 10.000 points or by using standard optimization software, e.g., optim in
R (R Development Core Team, 2007). This gives the estimated minimum x̂∗

with the predicted value ŷ(x̂∗).

The estimated minimum, x̂∗, based on the initial ten points is marked by ”1” in
Figure 4.3(a). It can be seen that x̂∗ is in the neighborhood of the true minimum,
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(b) After 15 additional data points

Figure 4.3: Optimizing computer model by using a meta-model. a) shows the
initial model to the right and the true function to the left. The
estimated optimum is marked with ”1” and the data points with
”O”. b) shows the model after three iterations with the estimated
optimums marked by connected lines.
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but still not entirely correct. The relative difference between y(x̂∗) and ŷ(x̂∗)
(the difference between the true function value at the estimated minimum and
the estimated function value at the estimated minimum) is more than 50 %
(Figure 4.4(a)).

To improve the estimated minimum new points are added and evaluated by
the true function and the Kriging model and x∗ are updated until the relative
difference between y(x̂∗) and ŷ(x̂∗) is under 1 %. In this example we add four
new points around x∗ and reuse the already calculated value at the estimated
minimum (calculated for the evaluation of the estimated minimum). It can
be seen from Figure 4.4 that after 15 additional points the difference between
the estimated and true minimum is small in both location and function value.
Actually the estimated optimums are close in location after 10 additional points,
but the predicted value is not. If the computer code is very time consuming,
this method may give huge savings in computing time, since the Kriging model
is very cheap to evaluate. This is also utilized by Dellino et al. (2009) to find
robust solutions in simulation by using methods inspired by Taguchi (Taguchi,
1987).
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Chapter 5

Summary of papers

5.1 Paper A

Conditional Value at Risk as a Measure for Waiting Time in Simula-
tions of Hospital Units

The topic of Paper A is comparison of statistics describing waiting time distribu-
tions. In health care applications patient waiting time is a frequently occurring
measure of quality. The objective is therefore to summarize a sample of wait-
ing times, T = t1, . . . , tN , such that certain properties are highlighted. The
background of the paper is the simulation model in section 2.2 for which reduc-
ing long waiting times for the patients is an important performance parameter.
Avoiding or reducing long waiting times is important since according to Bielen
and Demoulin (2007) patient satisfaction decreases as the waiting time increases.

Several statistics for samples of waiting times such as the average and maximum
waiting time are used in the literature. In Paper A we propose Conditional Value
of Risk (CVaR) (Kibzun and Kuznetsov, 2003, 2006) as a measure of the extent
of long waiting times. CVaR originates from economics where it is used in, e.g.,
portfolio management as a measure of risk. For waiting times it becomes a
measure of the risk of long waiting times, which is an important parameter in
terms of patient satisfaction (Bielen and Demoulin, 2007). Often waiting time
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distributions are right skewed consisting of mainly short waiting times, but may
also have long tails corresponding to the less frequently occurring long waiting
times.

The average waiting time taken over all patients corresponds to disregard the
distribution of the waiting times and only focus on the overall waiting time. This
is in economics known to be a risk neutral strategy, i.e., it only considers the
expected loss and not the risk of big losses. Another measure is the maximum
waiting time, which is seen to belong to the other extreme where the shape of
the distribution once again is ignored but now only the longest waiting time
is used. Using the maximum is in economics known as a risk averse strategy.
The maximum waiting time is also a problematic statistic, since it is a measure
of an extreme (it relies on a single observation); that is, the uncertainty of the
maximum waiting time is high and hence may require a large sample and many
replications to estimate properly. Moreover, it may be a too restrictive strategy
and may also not represent the performance of the system, e.g., be an extremely
rare observation in an otherwise well performing system.

In Paper A we propose CVaR as a compromise between these two extremes.
CVaR is the average of the (1− α)100% longest waiting times and is given as

CV aRα(T ) =
1

1− α

[(
iα
N
− α

)
tiα +

N∑

i=iα+1

ti
N

]
(5.1)

where α is the level of risk aversion, t1 ≤ t2 ≤ · · · ≤ tN are the ordered waiting
times, iα is the index satisfying iα

N ≥ α > iα−1
N (the α-percentile) and N is the

sample size. It can be seen that CV aR0(T ) = T̄ (the average waiting time)
and limα→1 CV aRα(T ) = maxi=1,...,N ti (the maximum waiting time). CVaR
can therefore be seen as a compromise between the average and the maximum
waiting time and α determines the relative importance of the longest waiting
times or the level of risk aversion. A related measure is the Value at Risk
waiting time (VaR), which is given as V aR = tiα . It is however generally not
recommended, since it is not sensitive to the shape of the distribution of the
(1− α)100% longest waiting times.

The benefits of using CVaR are illustrated by a simulation model of an ortho-
pedic surgical unit. The model was developed in collaboration with Gentofte
University Hospital, Copenhagen. The paper consists of two examples; in the
first example the porter resource is varied from one to four porters and in the
second example the volume of the elective patients is increased by 7, 14 and
29 % while the number of porters is kept constant at four. The examples illus-
trate that the average waiting time is not always the best statistic since it may
overlook important shifts in the tail of the waiting time distribution. Figure 5.1
and 5.2 show that the absolute changes in CVaR are larger compared to the
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Figure 5.1: Estimated densities for seven different scenarios: 1-4 porters (top)
and 4 porters with 7, 14 and 29 % more elective patients (bot-
tom). The average waiting times are marked with solid vertical
lines, whereas the CVaR waiting times are marked with dashed ver-
tical lines.
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Figure 5.2: Comparison of six different performance measures for seven different
scenarios: 1-4 porters and 4 porters with 7 % (4a), 14 % (4b) and
29 % (4c) more elective patients. W̄T is the average waiting time,
MWT is the maximum waiting time, TT is the total throughput,
EOUT the percentage of elective patients treated outside regular
hours, CV aR is the CVaR waiting time and V aR is the VaR waiting
time.
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average waiting time, since CVaR is more sensitive to changes in the tail of the
waiting time distribution.

Figure 5.2 furthermore shows that using the maximum waiting time may be
problematic due to the uncertainty of this statistic; that is, the maximum wait-
ing time is close to being the same regardless the number of porters and elective
patient volume. The example shows that the compromise between the average
waiting time and the maximum waiting time given by the CVaR waiting time
is a reliable measure for measuring the extent of long waiting time.

Dellino et al. (2009) use constrained optimization, i.e., they optimize the mean
given a standard deviation constraint. This leads to the so-called Pareto-optimal
frontier, i.e., a curve showing the relationship between the risk (standard de-
viation) and the profit (the mean). They fit separate Kriging models for the
mean and for the standard deviation and use bootstrapping to estimate regions
of confidence for the mean and standard deviation given a specific constraint.
As also mentioned by the authors, CVaR may be used as replacement of the
mean-variance technique.

5.2 Paper B

Designing Simulation Experiments with Controllable and Uncontrol-
lable Factors

In Paper B design of simulation experiments with two types of factors (con-
trollable and uncontrollable) is considered. The two factor types have different
interpretation in the physical system and hence need to be treated differently;
that is, the system is optimized in the controllable factors such that the setting
is optimal disregarding the settings of the uncontrollable factors. The exper-
imental design is therefore required to be run under various settings of the
uncontrollable factors for each combination of the controllable factors.

Models with controllable and uncontrollable factors are often analyzed using a
crossed design (Kleijnen, 2008). This implies that the same combinations of set-
tings for the uncontrollable factors are used for all combinations of the control-
lable factor settings (whole plots) and hence that the uncontrollable factor space
is sparsely covered due to the replications as discussed in section 3.3. It could
therefore be argued that using different settings of the uncontrollable factors for
each whole plot is a better way of choosing the settings of the uncontrollable
factors. For nc whole plots this gives nc as many different uncontrollable factors
combinations, i.e., a higher coverage of the uncontrollable factor space.
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The main challenge in designing such an experimental plan is to make the sub-
designs for the uncontrollable factors similar from one whole plot to the next
while ensuring that the overall design is uniform. In Paper B this is achieved
in two different ways. The first strategy has a bottom-up structure and the
design is constructed from nu regions each consisting of nc space-filling points
(see Figure 5.3).
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Figure 5.3: Illustration of bottom-up design with four subregions

The whole plots are then assigned one design point from each of the nu re-
gions such that all points are assigned. However, the bottom-up strategy does
not guarantee the uniformity of the combined design, which can be seen from
Figure 5.4. The best bottom-up design with 200 runs (five controllable factor
settings each with 40 uncontrollable factor settings) for two uncontrollable fac-
tors is seen to have a WD-value approximately five times higher than an uniform
design generated directly.

Instead we propose a second strategy, which has more of a top-down structure
where the overall design is constructed first to guarantee the overall uniformity
(see section 3.4). The overall design is then split into subdesigns one for each
whole plot. The subdesigns are generated by splitting the N = nunc points
into nu subgroups of nc points and then assigning each whole plot one point
from each subgroup. The assignment of points can be done in many ways and
the WD-values of the subdesigns are used as criteria for the best assignment,
we choose the assignment where the maximum WD-value of the subdesigns
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Figure 5.4: Uniformity of combined design with bottom-up strategy

is lowest. In Paper C the top-down design is considered in more detail and
compared to the crossed design using the simulation model from section 2.2.

The main contribution in Paper B is the development of an experimental plan
giving a high coverage in the uncontrollable factor space for simulation models
having both controllable and uncontrollable factors. In paper C we show that
the higher coverage leads to a better understanding of the uncontrollable factors.

5.3 Paper C

Designing simulation experiments with controllable and uncontrol-
lable factors for applications in health care

In Paper C we reconsider the proposed experimental design in Paper B. The
benefit of using the top-down design is illustrated by the simulation model de-
scribed in section 2.2 (see also Paper 5.1). The top-down design is compared
with the crossed design (see equation 3.8), which is the most commonly used
design for simulation experiments with controllable and uncontrollable factors.
The output is analyzed with generalized additive models (Hastie and Tibshirani,
1990, Wood, 2006) for both of the considered experiments (see section 4.2).
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The model output is modeled by the GAM model, i.e., a flexible regression
method. In the paper it is shown that the top-down design identifies important
interactions between the controllable and uncontrollable factors, which in the
example is not identified using the crossed design (see Figure 5.5). These in-
teractions are important, since they may be used to put the system in a robust
operating mode.
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Figure 5.5: Interactions between controllable and uncontrollable factors

The top-down design may also be used as a method for generating a sequential
sampling scheme in the following manner: disregard the controllable/uncontrollable
setup, instead we consider the top-down design as nc batches of runs, which are
run sequentially one batch at the time. This may give a faster completion of
the experiment if not all batches are needed. However, this only works in the
simple case with only one type of factors in which the controllable factors set-
tings correspond to batches and the uncontrollable factors to the factors of the
model. Kleijnen and van Beers (2004) also consider sequential sampling using
Kriging as a meta-model, which is extended in van Beers and Kleijnen (2008)
who consider sequential sampling for random simulation. Sequential sampling
fits very well with simulation, since the simulation experiments are run sequen-
tially. Strategies for generating the next sampling point and/or stopping the
procedure can therefore be implemented between two runs or between batches
of runs.

A modification of the top-down design is to consider a different distribution of
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the points, i.e., instead of an uniform distribution in each dimension, it may be
more relevant to spread the points out corresponding to a gaussian distribution.
In such a design the emphasis is put on the center of the gaussian distribution
corresponding to that certain regions are of greater importance than others, e.g.,
a-priori knowledge lead us to believe that the optimum or the function is highly
variable in these regions. The uniform design spread the points evenly on each
factor, which can be transformed to a gaussian distribution in the following way

1. Construct a top-down design withN = ncnu runs and p uncontrollable fac-
tors and denote the settings of i’th uncontrollable factor xi = [xi1, . . . , x

i
N ],

which all belong to the interval [0, 1]

2. for the ith uncontrollable factor define a mean ui and a standard deviation
σi corresponding to the area of interest

3. transform xi by the transformation x̃i = [Φ−1(xi1), . . . ,Φ−1(xiN )] where
Φ−1() is the quantile function for the standard gaussian distribution

4. transform x̃i to xiG = µi + σix̃
i

This gives uncontrollable factor settings that independently of each other are
gaussian with mean µi and standard deviation σi. Figure 5.6 illustrates the
method for N = 4× 25 runs for one uncontrollable factor, which shows that the
subdesigns can be assumed to be gaussian (p-values for shapiro-wilk’s test for
normality are p > 0.93 for the subdesigns and p ≈ 1 for the combined design).
This procedure can be generalized to other distributions by replacing Φ−1()
with the relevant quantile functions in step 3 and skipping or modifying step 4.

5.4 Papers D and E

Analysis of Computer Experiments with Multiple Noise Sources (Eu-
ropean Network for Business and Industrial Statistics)

Paper D illustrates several modeling techniques for the output from simulating
the surgical unit from section 2.2. The paper was expanded and modified to the
journal article in Paper E and is hence covered by the summary for Paper E

Analysis of Computer Experiments with Multiple Noise Sources

Paper E is an extension of Paper D for the ”ENBIS8” special issue in Quality
Reliability Engineering International. The modeling techniques in Paper D are
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Figure 5.6: Transformation of uncontrollable factor settings in a top-down de-
sign to gaussian distributions

in this paper also evaluated on a simpler example in which the output function
is known.

In Paper E we consider the M/M/m-queuing system to illustrate the methods
applied on the more complicated model from section 2.2, since the M/M/m-
queuing system is a well-known system and is expected to behave similarly
to the simulation model. The M/M/m-queuing system has a vast literature
and possesses many nice properties including that the expected waiting time
is known (see section 2.3). This implies that the modeling techniques can be
compared with the true underlying signal.

The simulation models considered are both influenced by uncontrollable factors
and stochastic sources, which is dealt with in three different manners as de-
scribed in section 4.2. The paper shows that the variation in the output can be
split up in two sources by techniques known from physical experimentation. In
a linear mixed effects model a variance component for the variation coming from
changes in the settings of the uncontrollable factors and an estimator for the
variance coming from changes in the seed (the random error) can be estimated.
Moreover, the variation coming from changes in the setting of the uncontrollable
factors can be analyzed and interpreted by means of generalized additive models
(GAMs).

For the case-study two scenarios are considered: 1) the current setup and 2)
20 new settings of the controllable factor. The 20 new settings were found in
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Figure 5.7: Estimated effects of the uncontrollable factors. Top curves are the
reference setting and the bottom curves the new settings

a pilot study and were chosen such that the CVaR waiting time is expected to
be low while maintaining the same total throughput and percentage of elective
patients treated outside regular hours (EOUT). The analysis shows that with
the current setting the output varies more both due to the uncontrollable factor
settings and the seed, i.e., it is less robust compared to the new settings. This
can also be seen from Figure 5.7, which shows that the estimated effects of the
uncontrollable factors are flatter for the new settings compared to the current
setup. Moreover, the estimated CVaR waiting time is 6.5 minutes shorter with
the new settings, which shows that the improvement is significant. It was also
shown that the methods worked well on the M/M/m-queuing system, i.e., was
able to estimate the true function accurately.

The GAM framework also provides methods for handling binary and count out-
comes, which in Paper E was used to estimate the likelihood that a new setting
would perform at least as good as the current settings. The analysis highlighted
three different settings of the controllable factors that had both higher through-
puts, smaller percentages of elective patients treated outside regular hours and
shorter CVaR waiting times compared to the current setting. All three settings
suggested changing the number of operating days (for elective surgery) from five
to four, i.e., fewer but longer days.
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5.5 Paper F

2-stage approach for Kriging for simulation experiments with quan-
titative and qualitative factors

The topic of Paper F is Kriging for simulation models with quantitative and
qualitative factors. The simulation model in section 2.2 is used for illustration
of the extension of the Kriging interpolator after being put in a deterministic
operating mode. The controllable factors are now thought of as being qualitative
(they are ordinal having a few levels only), whereas the uncontrollable factors
correspond to the quantitative factors. In section 4.1 the basic Kriging model is
described and the following is based on those definitions. To ease the notation
we denote one setting of the qualitative factors a whole plot, which reflects the
structure of the top-down experiment (Dehlendorff et al., 2011) applied to the
simulation model.

The usual correlation function given in equation (4.2) is now modified by in-
cluding an extra term depending on the whole plots of the observations, i.e.,
R̃(xij , xkl) = R(xij , xkl) · (I(i = k) + I(i 6= k)αik), where xij is the ith whole
plot and jth observation. Five different correlation structures are considered

1. αik = θc: correlations between observations from different whole plots are
reduced by a constant quantity

2. αik = g(µ̂i, σ̂i, µ̂k, σ̂k): correlations between observations from different
whole plots are reduced by a quantity depending on the sample means
and standard deviations of whole plot i and k

3. 2-stage procedure (described below)

4. αik = exp

(
−

dz∑
q=1

θzqI(zqi 6= zqk)

)
where zqi is the level of the qth qualita-

tive factor for the ith observation (see Hung et al. (2009))

5. αik is parameterized by a hypersphere parameterization as proposed by Zhou
et al. (2010)

In the 2-stage procedure we first fit a Kriging model for each whole plot in the
quantitative factors

Yi(xij) = µi + Zi(xij) i = 1, . . . ,m (5.2)

New design sites are then generated by adding the correlation parameters of
model i to all observations from whole plot i, i.e., the design sites becomes
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X̃ =
[
X

[
CT

1 ⊗ 11×q1 . . . CT
m ⊗ 11×qm

]T ] where X is the original design
sites ordered by whole plot, qi is the number of observations from whole plot i
and Ci the correlation parameters for whole plot i. An overall model is then
estimated using y and the new design sites X̃ using the standard Kriging model
in (4.1). This implies that whole plots that have similar correlation structure
are defined to be close and therefore correlated. The idea is similar in the mean-
variance case, but now Ci = [µ̂i σ̂i]. This structure assumes that whole plots
with the same mean and variance are similar.

The five correlation functions are first evaluated on six test functions, which
shows that the mean-standard deviation and 2-stage procedures give the most
accurate meta-models. On two realistic examples using the simulation model of
the surgical unit from section 2.2 the 2-stage procedure outperforms the other
correlation structures.

One drawback of correlation structures 1-4 is that they can not handle negative
correlations between whole plots, which is possible with the fifth correlation
structure. However, the flexibility of the fifth correlation structure comes with
a price, which is the number of parameter required for correlation between whole
plots. This may result in overfitting for small data sets with many levels of the
qualitative factors, which is a likely scenario since computer and simulation
models tend to be very time consuming and have many factors. In the 2-stage
procedure several Kriging models are fitted, they are however somewhat easier
to fit since they are fitted on subsets of the data set in the initial step. Moreover,
the total number of correlation parameters in the combined model is twice the
number of quantitative factors and thus still manageable.

Kriging is a very powerful tool and many new methods within simulation are
based on this method. Stochastic Kriging models as considered by van Beers
and Kleijnen (2008) and Ankenman et al. (2010) handle simulation models with
stochastic output. Robustness analysis through Kriging is also a relatively new
topic and is for example considered by Dellino et al. (2009), who fit separate
Kriging models for the mean and standard deviation to estimate the Pareto
frontier. The method in this paper is seen to perform well on a simple yet
realistic case-study and hence is an alternative the more complex model by Zhou
et al. (2010).



Chapter 6

Discussion

Design and analysis of computer and simulation experiments is a relatively new
research area. Many challenges are encountered in this area and hence a wide
range of methods has been developed. In this thesis contributions in both the
design and the analysis part of the area are introduced.

The first major contribution is the development of the top-down experiment,
which provides an experimental plan with a better coverage of the uncontrollable
factor space compared to the crossed design. Furthermore, application of the
design on a simulation model showed that the coverage of the uncontrollable
factors improved the understanding of the interactions between controllable and
uncontrollable factors. The design is based on uniform designs and one idea
for future research is to consider different underlying designs such as, e.g., the
maximin design.

Qian et al. (2009a) and Qian et al. (2009b) consider nested space-filling designs,
i.e., a high accuracy experiment is nested within a low accuracy experiment.
Qian and Wu (2009) consider sliced space-filling designs based on orthogonal
designs. The overall design principal of the nested and sliced space-filling designs
are seen to be similar to ours, i.e., that the design on both the overall and sub
level is taking to account. In future research it would be interesting to compare
the performance of the top-down design with the nested and sliced designs.
Another interesting approach is sequential sampling as considered by Kleijnen
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and van Beers (2004) and van Beers and Kleijnen (2008), who use an adaptive
sampling scheme, i.e., the next sampling point is based on a criteria based on the
information from the already simulated settings. The adaptive procedure may
serve as a benchmark for evaluating the performance of deterministic sequential
sampling based on the top-down design structure as discussed in section 5.3.

The second area of contribution is related to output analysis of simulation mod-
els. First the CVaR statistic for waiting time distribution was introduced. Next
methods for analyzing simulation models with multiple noise sources were con-
sidered, and finally a method for Kriging for analyzing computer and simulation
models with quantitative and qualitative factors was proposed.

The CVaR statistic is a measure originating from finance as a measure of risk.
CVaR is relevant if the long waiting times are the primary concern, whereas the
average waiting time may be more appealing to the management for example if
the waiting times are related to the staff and not the patients. One drawback
of the CVaR criteria is that the required size of the sample increases as (1− α)
decreases. However, it may be seen as a robustness measure, i.e., a low CVaR
(close to the mean) indicates a setting that is robust since it implies that the
risk of long waiting times is low.

For stochastic simulation several modeling techniques from physical experimen-
tation were considered, which were shown to perform well for our case-study.
Stochastic Kriging is introduced in a recent paper by Ankenman et al. (2010),
who include an extra stochastic element in the usual Kriging model to account
for the variation from one replicate to the next. Kriging is a very flexible and
powerful meta-model for deterministic simulation and hence the stochastic ver-
sion is expected to be useful in applications, in which for example regression
methods fail. Fitting Kriging models for the average at each setting is an-
other method to deal with stochastic simulation as considered by van Beers and
Kleijnen (2003) and Kleijnen (2008), who apply boot-strapping to estimate the
uncertainty related to the replications.

Finally a Kriging model for simulation models with quantitative and qualitative
factor is introduced. The fitting procedure is done in two steps and each step
consists of ordinary Kriging models with simple correlation structures. Zhou
et al. (2010) also consider Kriging for models with quantitative and qualitative
factors and introduces a parameterization that can handle negative correlation
between different settings of the qualitative factors, which is not handled in our
method. For a simple yet realistic case-study it was shown that our method
performed better than the method by Zhou et al. (2010), it is however expected
that their method will perform better in cases where negative correlations are
present. Moreover, if the number of qualitative factors is low and the number of
quantitative factors is high the model by Zhou et al. (2010) uses fewer param-
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eters compared to our method, whereas with many qualitative factor settings
our method is more efficient in terms of the number of parameters.

Kriging is a popular method and interesting extensions to the Kriging model
may be analysis of models with multiple outputs and robustness studies as
considered by Dellino et al. (2009). In this thesis several methods for analysis
of the output from our case-study have been considered and robustness is an
interesting extension of our current results. Our results based on regression
methods indicate that the case-study may be put in a more robust operating
mode, but using methods based on Kriging may expand the knowledge about
the uncontrollable factors.
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Abstract

The utility of conditional value at risk (CVaR) of a sample of waiting

times as a measure for reducing long waiting times is evaluated with spe-

cial focus on patient waiting times in a hospital. CVaR is the average of the

longest waiting times, i.e. a measure at the tail of the waiting time distribu-

tion. The presented results are based on a discrete event simulation (DES)

model of an orthopedic surgical unit at a university hospital in Denmark. Our
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analysis shows that CVaR offers a highly reliable performance measure. The

measure targets the longest waiting times and these are generally accepted

to be the most problematic from the points of view of both the patients and

the management. Moreover, CVaR can be seen as a compromise between

the well known measures: average waiting time and the maximum waiting

time.

Keywords: Waiting time distribution, Conditional Value at Risk, Simu-

lation, Health Care

2

53



1 Introduction

Simulation studies are widely used in health care applications due to the large

number of uncertainties involved. The complexity of these systems together with

the physical and legal constraints in the actual systems make simulation a very

powerful tool for experimentation to serve as a basis for analytic optimization

methods [4, 9].

Simulation models in health care applications are used both for optimization of

existing facilities [8] and in planning new facilities [18]. Ferrin and McBroom [8]

maximized hospital revenue by process improvements in the emergency depart-

ments. Length of stay (LOS), the number of patients leaving without receiving

care, the percentage of admissions accepted and ambulance diversion hours were

used as outcomes. Miller et al. [18] considered the merging of six emergency de-

partments into one and focused on the average LOS. Their results show that the

LOS can indeed be considerably reduced. They further show that the distribution

of LOS is right-skewed with a long tail. Jun et al. [14] reviewed the health care

simulation literature and concluded that simulation is often used to optimize allo-

cations and as a tool in staff planning. They cited various studies related to patient

scheduling and to staff sizing and planning. They also reported that many studies

use trade-offs between the utilization of doctors, rooms etc. and patients’ waiting

times as outcomes.

Denton et al. [7] studied expected surgical suite waiting time, surgical suite

idle time and total overtime and used a linear trade-off combination of these mea-
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sures as a single measure. This linear combination is a cost measure which takes

into account the discomfort of patient waiting time and considers it together with

the lost revenue corresponding to idle surgical suite time and the cost of overtime.

Cayirli and Veral [5] reviewed out-patient scheduling and summarized a num-

ber of possible performance measures related to the quality of such systems. The

time-based measures included the mean, the maximum and the frequency distribu-

tion of the waiting times. Their summary for the suggested performance measures

showed that the majority of studies used mean waiting time, total costs of waiting,

percentage of patient waiting less than a certain threshold, and the variation of

waiting time.

The main objective in this article is to compare Conditional Value at Risk

(CVaR) as a optimization measure for patients’ waiting time with existing mea-

sures and to report on the performance of this new measure based on a specific

case-study of an orthopedic surgical unit. The concept of CVaR is formally in-

troduced in section 3.1 and originates from economics. CVaR was introduced by

Rockafellar and Uryasev [21] as a measure to quantify a distribution of losses;

typically in portfolio scenarios. The measure was introduced as an extension to

Value at Risk (VaR), one of the most commonly used performance measures in

portfolio management. The CVaR criterion focuses on the right tail of the loss

distribution and provides a measure of the expected value of the highest losses.

The CVaR criterion has been used in a wide variety of applications (see for exam-

ple [1], [10] and [27]), but not in the context of our study. The suggested use of

CVaR is for optimization of a given system’s performance in terms of waiting time
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and is relevant in cases where the frequency of long waiting times is the primary

concern.

In this article, a discrete event simulation model of an orthopedic surgical unit

in Copenhagen, Denmark is presented as the case-study. The long term goal for

the simulation study is to minimize the total waiting time, with special focus on

long delays. In the case-study analysis of the uncertainties and behaviour of differ-

ent performance measures including CVaR under various resource and simulation

settings are presented. Moreover, CVaR is compared to other measures using this

model as illustration. The article is structured in the following way: Section 2 de-

scribes the case-study. CVaR is defined in section 3 followed by section 4 where

the performance measure is evaluated by considering the simulation model under

different resource and simulation setups. Finally the key findings are summarized

in section 5.

2 Simulation model

In this section, we present our case-study for evaluating the performance of the

CVaR waiting time criterion in the simulation of an orthopaedic surgery unit. The

level of detail of the model is intentionally kept low, since our main objective is

to use it as an illustration of the CVaR measure.
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2.1 The surgical unit

As in much of the rest of the world, over the past decade the Danish public health

care system has been subject to increasing demands for efficiency [14]. The sys-

tem is now under considerable pressure for higher throughput in order to reduce

waiting lists. Avoiding or reducing delays in the system is certainly one of the

many options to reach this goal. Furthermore, fewer and/or shorter delays may

also increase patient satisfaction, an issue that is central to today’s quality and

productivity improvement strategies in general.

The case-study is a surgical unit, which is part of an orthopedic department at a

university hospital in Copenhagen, Denmark. The unit undertakes both acute and

elective surgery and performs more than 4,600 operative procedures a year. While

the patients come from various wards throughout the hospital, the main sources of

incoming patients are the four stationary orthopaedic wards or the emergency care

unit. The outpatients treated in outpatient clinics are not considered in this model

but the resources shared between outpatients clinics and the surgical unit are in-

cluded. Also day-case surgery patients with short recovery times are included in

the model.

2.2 Model description

The conceptual model is outlined in Figure 1. It consists of three main modules: 1)

the incoming module with arrival and wards, 2) the surgical unit with preparation

and operating rooms and 3) the recovery. Module 3 is linked back to module 1,
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since the patients return to the wards for final recovery and discharge.

Figure 1: Conceptual model for an orthopedic surgery unit. The 3 modules are
separated by vertical lines and the arrows indicate the patient flow

The simulation model is implemented in ExtendTM version 6 [17] and con-

trolled from a Microsoft Excel spreadsheet with a Visual Basic for application

script. The patient flow is outlined in Figure 2. All patients are either acute or

elective and are admitted to one of the four stationary wards from where the pa-

tients are collected when an operating theater is ready. Patients are then either

sedated, sent to a preparation room and brought to the operating room or brought

directly to the operating room for sedation and preparation. The patients are op-

erated and hereafter attended to by an anesthesiologist before being moved to the

recovery room. As the patients are moved out of the operating room, cleaning and

preparation of the rooms for the next patients are started.

The resource constraints in the system are process related: available surgeons

for the operation, a free recovery bed and an available porter for moving the patient

to the recovery room, etc. These resources are controlled by a central mechanism
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Figure 2: Process diagram for patient flow through the system from ward to dis-
charge.

controlled by different schedules, e.g. more resources during regular hours. Shar-

ing between different specialties is handled with the resource pools. In our model

the resources include staff and physical facilities such as operating rooms and re-

covery beds. It should be noted that some resources such as surgeons, anesthesiol-

ogists, porters and recovery beds are shared with other departments or procedures

not directly related to the surgical unit.

2.3 Empirical Data

Prior to the simulation study, a simple registration of the time from patients’ ar-

rival at the surgical unit until their departure to the recovery room was done by

the staff for a period of 3 months. The initial data set held no information on sub-

processes, which implied that a more elaborate registration system was needed.

In the new registration system, the nurses at the surgical unit recorded the patient

flow through the unit from the ward to the recovery room, i.e. each subprocess
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was recorded over a period of 1 month.

The new data was validated on the data collected routinely by the staff prior

to the simulation study by comparing the total time spent at the surgical unit

recorded in the two data sets with a Kolmogorov-Smirnoff (K-S) goodness of

fit test [6], which indicated no significant difference. Furthermore, tests for cor-

relation [12, 2] between processes in the new data set indicated that the subpro-

cess durations were statistically uncorrelated indicating that subprocesses could

be modeled individually.

2.4 Validation and verification

The model was inspected graphically by the management of the department to

verify the patient routing and the procedures. Animation was included in the

model to assist and simplify verification during the presentation of the model.

Model validation corresponding to patient volume and waiting time was car-

ried out by comparing the simulation output with the observed data. All validation

was carried out using graphical methods (QQ-plots, density plots and histograms)

and formal statistical tests (K-S and Wilcoxon rank-sum tests [13]) with a signifi-

cance level of 5 %. A more elaborate validation was also carried out correspond-

ing to the scheme outlined by Sargent [22] and although this concluded that the

model was adequate, it is not presented in this article.

The model parameters were calibrated on the individual processes and queu-

ing times, and finally validated on the total duration defined as the time from

the patient leaving the ward to the the time the patient is moved to the recovery

9
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Figure 3: Estimated density functions for observed (black solid line) and 100
simulation runs (gray dotted lines) for total time at surgical unit

room. Figure 3 shows that the model tends to mimic the system’s overall behav-

ior, which was confirmed with K-S and Wilcoxon tests indicating no statistical

difference. The throughput, mixture of patients and distribution of patients per

day were validated as a part of the tuning and calibration process.

The incoming rate of elective patients per day was shown to fit a discretized

triangular distribution function, which was also validated by a K-S test. The acute

patients were assumed to have exponentially distributed inter-arrival times. K-

S tests indicated that the distribution of acute patients per day and the ratio of

elective to acute patients were modeled adequately. The acute incoming rate was

much more volatile compared to the one for elective patients. The coefficient of
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variation (CV ), which is defined as the standard deviation divided by the mean,

was 2.5 times higher for the acute patients compared to the elective patients. In

both cases the variation in the observed data set was large with CV greater than

90 %.

3 Performance measures

One of the most essential issues in any simulation study is to define sound and

reliable performance measures [19]. Each simulation run is summarized in a set

of measures, which characterizes the overall performance of the system. Often

more than one measure is investigated in order to quantify the objectives of the

study, e.g. avoiding long waiting times while keeping a certain level of patient

throughput. In this paper Conditional Value at Risk is introduced as a waiting

time measure targeting the longest waiting times and compared to other existing

measures.

3.1 Conditional Value at Risk

Conditional Value at Risk is a concept originating from finance as a measure of

risk [21, 15, 16]. For a distribution of waiting times, T , CVaR is defined as the

expected value of the (1−α)-tail of T , i.e. given as

CVaRα(T ) = E[T |T > qα ] (1)
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where qα is the α-quantile, where P(T ≤ qα) = α . For a sample of simulated

waiting times, Tx = {tx1, . . . , txN} (obtained from the xth run), the CVaRα(Tx) is

estimated by

CVaRα(Tx) =
1

1−α

[(
iα
N
−α

)
txiα +

N

∑
i=iα+1

txi

N

]
(2)

with tx1 ≤ tx2 ≤ ·· · ≤ txN , iα is the index satisfying iα
N ≥ α > iα−1

N , txiα is the

α-quantile and in economics denoted as the Value at Risk (VaR). VaR is seen

to be indifferent to the shape of the (1−α)-tail, i.e. a given VaR value covers

situations from short (1−α)-tails to long (1−α)-tails. In most applications of

CVaR the estimate is based on the (1−α)100% = 5% longest waiting times and

in the following CVaR is therefore estimated by equation (2) with α = 0.95.

For waiting times the VaR waiting time is the value of the α-quantile of the

total waiting times, e.g. for α = 0.95, 95 % of the patients have a total waiting

time less than or equal to VaR. CVaR is the average of the 5% longest waiting

times, i.e. a measure about the tail of the waiting time distribution. It is seen that

CVaR is at least as large as VaR and that the difference indicates the skewness of

the distribution, hence the two measures are correlated. CVaR is seen to be more

sensitive to samples with very long waiting times compared to VaR. However,

Webby et al. [27] noted that CVaR, as opposed to VaR, is more stable with changes

in the α-value. This can be explained by the fact that CVaR is an average of the

tail, whereas VaR is the quantile defining the tail. The quantile is likely to jump

with a small sample, whereas the average will shrink this effect.
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The rationale for introducing CVaR waiting time measure is that it is a well

known measure of risk in finance. It fits well in an optimization framework with

the objective of minimizing the overall waiting time while controlling the risk of

experiencing very long waiting times. The tail of the waiting time distribution

in these studies is quite important since as shown by Bielen and Demoulin [3],

in terms of patient satisfaction, waiting time influences satisfaction negatively.

That is, longer waiting times decrease patient satisfaction significantly. Using the

average waiting time inherently imply that the distribution of the waiting times

is unimportant as long as the overall waiting time is low. This is, however, not

in accordance with patient satisfaction and quality perception. On the other hand

the maximum waiting time may be a too risk averse measure and could potentially

confound good settings with bad settings since it is based on only the most extreme

observation.

The benefits of using CVaR as performance measure are that it is easy to com-

pute, easy to interpret and targets the long waiting times. As mentioned above,

if the mean waiting time (denoted risk neutral) is used, an increase in the longest

waiting times can be overlooked since a shift in the tail may be averaged out by

the rest of the distribution. On the other hand, using the maximum waiting time

(risk averse) may corrupt the results, since a single long waiting time may be an

outlier in an otherwise well performing setup. CVaR can be seen as a compro-

mise between the average waiting time (α = 0) and the maximum waiting time

(1−1/N < α < 1), with (1−α) reflecting the risk of long waiting times. Hence

a low α corresponds to a high risk of overlooking long waiting times since the

13

64
Conditional Value at Risk as a Measure for Waiting Time in Simulations of

Hospital Units



importance of these is low.

3.2 Other measures

Other measures have been suggested in the health care literature, which are dis-

cussed in the following. Tang et al. [26] presented mean residual life, i.e. the

expected residual life time given that a unit has lived a certain amount of time.

In terms of waiting time this is equivalent to the expected residual waiting time

having waited a certain amount of time. Length of additional stay (LAS) is an-

other metric for measuring waiting times, Silber et al. [24] defined it as the re-

maining length of stay (LOS) after the transition point at which the stay becomes

prolonged. A stay may become prolonged at the first time point, x, where the

probability of a total length of stay of x + y is greater than the probability for a

LOS of y from the beginning. The test for the prolonging point is done with the

Hollander-Proschan test [11]. LAS is seen to be the mean residual life at the point

where the stay becomes prolonged. The rationale behind LAS is that if a stay is

prolonged it is more likely to be associated with a complicated case [24].

Both LAS (the MRL at the prolongation point) and MRL are similar to the

CVaR measure. However, CVaR is the expected waiting time of the (1−α)100%

longest waiting times, whereas mean residual life at the α-quantile is the expected

remaining waiting time after having waited txiα minutes. Silber et al. [24] suggest

using the point at which a stay becomes prolonged as the choice for α . This im-

ply that for different setups the corresponding LAS’s (or MRL’s) are the average

residual waiting times for the prolonged stays, i.e. for different α-values. Fur-
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thermore, the scale is different depending on the setting: in one case it may the

residual waiting time after having waited 30 minutes while in another it may be

the residual waiting time after having waited 60 minutes. For LAS and MRL in

general unlike for CVaR the interpretation is seen to be dependent on the distri-

bution. This implies that the scale and interpretation are maintained for different

settings, which makes it suited for use in optimization. Moreover, the distribu-

tion of waiting times may be on time, i.e. no prolongation point is present, which

implies that the LAS concept breaks down.

From a quality point of view the waiting time may be more interesting than the

residual waiting time, since the patient’s perception of the quality of the treatment

is related to his/her total waiting time and not the residual waiting time after hav-

ing already waited for x minutes. In terms of waiting times the length of additional

stay may not be as important as for the length of a hospital stay, since the waiting

time indicates something about the system’s performance and not of the severity

of the operation or complications for the individual patient. Moreover, the waiting

time is the time between activities and hence complicated cases have longer ac-

tivity times and more difficult recovery, which do not influence the waiting time.

Silber et al. use the LAS as an indicator of health care outcomes and the measure

is hence not targeted at evaluating a system’s performance. The LAS framework

does not seem to be well suited for evaluating waiting times, whereas it is highly

relevant for seeking complicated hospital stays.
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4 Case Study

This section presents the performance measures by applying them to output from

the simulation model presented in section 2. The measures are initially examined

under the existing setup in terms of the variation from run to run and the sensitivity

to length and number of runs. They are then considered under different resource

settings. The proposed measure, CVaR, is analyzed and compared to other well

known measures presented in section 4.3.

4.1 Simulation setup

The simulation model is run for at least 300,000 minutes (see section 4.4). This

corresponds to 30 weeks with a warm-up period of 10,080 minutes (1 week) for

each run. In each run different performance measures are obtained as described

in section 4.3. These measures are summarized by their minimum, maximum, av-

erage and coefficient of variation (sample standard deviation in % of the average)

across runs.

4.2 Analysis methods

The results from the simulation model are analyzed using statistical test methods.

Wilcoxon two-sample tests [13] are used to compare two samples in terms of their

location. The test is a non-parametric test. Comparing two samples in terms of

their distributions is done with Kolmogorov-Smirnoff two- sample test [6], which

is also a non-parametric method. Here we compare the empirical distributions
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and test whether they can be assumed to be identical. Significance of correlation

coefficients is tested based on Spearman’s rho [12, 2], a non-parametric approach

based on ranks. The main rationale for using non-parametric tests is that they do

not rely on specific distribution assumptions and are robust against outliers. All

data analysis was done in R version 2.7.1 [20].

Densities functions are estimated with the density procedure from the stats-

package and plotted with the densityplot function from the lattice-package

in R [20, 23] using the default values. The defaults are a Gaussian kernel with

a bandwidth, h = 0.9n−1/5 min[σ̂x, IQRx/1.34], where x is the sample, which has

sample standard deviation σ̂x, inter-quartile range IQRx and sample size n (Silver-

man’s rule-of-thumb) [25].

4.3 Performance measures

The main focus of the simulation study is on the waiting times defined as the

time wasted between processes and is measured in minutes. For each patient a

number of waiting times are identified: waiting time before the surgeon talks to

the patient before sedation, waiting time for the anesthesiologist, waiting time

before operating room is ready and waiting time for a porter and a free recovery

bed, etc. The total waiting time for the jth patient in the ith simulation run, ti j,

is estimated as the sum of K sub waiting times, ti jk. The waiting time measures

considered in this article are

• Average waiting time, WT
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• Maximum waiting time, MWT

• Conditional Value at Risk, CVaR, waiting time, CVaR(WT )

• Value at Risk, VaR, waiting time VaR(WT )

Additionally total throughput (total number of patients treated, TT ) and percent-

age of elective patients treated outside regular hours, EOUT , are considered.

These measures are included in the simulation study to ensure that the throughput

remains the same and the elective patients are not treated outside regular hours,

hence without creating additional costs due to overtime. The average and maxi-

mum waiting times are frequently used measures to quantify the waiting time [5].

VaR is included to highlight the additional information contained in our main

measure, CVaR, and to illustrate its close relationship to CVaR.

4.4 Run length and sample size analysis

The first example consists of simulations on the system at its current configuration.

Here, the main objective is to examine the performance measures under different

run lengths and numbers of repetitions (runs). Table 1 shows the summary for

three types of simulation runs for the system as it is: 1) 30-weeks simulation

repeated over 100 runs, 2) 30-weeks simulation repeated over 200 runs and 3)

60-weeks simulation repeated over 60 runs.

From the first block in Table 1 it is seen that the total waiting times are highly

skewed with an average WT of around 31 minutes, a 95 % quantile of around 61

and a maximum of 111 minutes. It is seen from the CV column in the first block
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Table 1: Summary for performance measures over runs, e.g. the minimum, maxi-
mum, average and CV of total throughput for three types of simulation setups. The
Min-entry for the first row e.g. summarizes the minimumWT of the 100 runs, Max
the maximum, Mean the average and CV the standard deviation in percent of the
mean. The units for the waiting time statistics are minutes, the unit for EOUT is
percent and TT is measured in number of patients.

Min Max Mean CV (%)
30 weeks, 100 runs, 3 porters

WT 30.03 32.21 30.97 1.52
MWT 89.00 157.88 111.25 11.34
T T 1635 1797 1711 2.02
EOUT 8.25 12.69 10.15 9.22
CVaR 67.98 77.47 71.17 2.26
VaR 58.05 64.01 60.95 1.92

30 weeks, 200 runs, 3 porters
WT 29.69 32.29 30.98 1.49
MWT 89.00 163.36 111.92 11.48
T T 1615 1827 1715 2.15
EOUT 8.25 12.97 10.36 9.15
CVaR 67.58 78.09 71.36 2.30
VaR 58.05 64.40 60.94 1.99

60 weeks, 60 runs, 3 porters
WT 30.21 31.52 30.91 0.94
MWT 94.30 153.97 118.57 10.27
T T 3347 3599 3468 1.82
EOUT 8.95 11.73 10.51 5.91
CVaR 67.90 73.35 71.17 1.43
VaR 58.96 62.16 60.69 1.25
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Figure 4: Coefficient of variation as function of included runs for the 6 perfor-
mance measures

in Table 1 that the most varying measure is the MWT (CV = 11.3%) followed by

EOUT (CV = 9.2 %). The remaining four measures are comparable in terms of

coefficient of variation (1.5% ≤CV ≤ 2.5%).

Figure 4 illustrates the evolution of the CV ’s as the number of runs is increased.

It can be seen that all CV ’s are stabilized after 70 runs, however subdivided into the

two groups as described previously. It can also be seen that the two upper curves

take more runs to settle in compared to the bottom four. Clearly the maximum
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Figure 5: Coefficients of variation for 60 runs with varying run lengths for the 6
performance measures

waiting time is a measure highly dependent on the simulation run, since it is the

most extreme observation in each run. The average waiting time is as expected the

least varying measure, whereas the CVaR and VaR are seen to vary almost equally

much. Figure 4 indicates that the four best performing measures have stabilized

after 30-40 repetitions.

Figure 5 shows that a run-length of 300,000 minutes (30 weeks) seems to

be adequate for obtaining a low CV for 5 out of 6 measures (no significant im-
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provements hereafter). EOUT is seen to be improving by more than 2 %-points

from 300,000 minutes to 600,000. Simulating 30 weeks repeated 60 times is a

good trade-off between simulation time and precision for MWT , which leads to

an approximate half width of a 95 % confidence interval for the average of MWT

corresponding to 2.7% of its estimated value. For WT , TT , VaR and CVaR con-

siderably fewer repetitions are needed. In fact Figure 4 suggests that fewer than

20 repetitions will be sufficient.

In the 100 run simulation of 30 weeks each CVaR is significantly correlated

with VaR (as expected), MWT and WT . Moreover, VaR is significantly correlated

with WT , whereas TT is correlated both with EOUT and WT . The correlations

are all positive, which implies that higher throughput is associated with longer

waiting times. The VaR is seen to be uncorrelated with the MWT , whereas CVaR

is. This in fact fits well with the definition of CVaR and VaR. The connection

between CVaR and WT and MWT was shown in section 3.1.

4.5 Sensitivity to Changes in Resource Allocation

The sensitivities of the measures to changes in resource allocation are analyzed by

changing the number of porters at the surgical unit in regular hours. Three porters

are available in regular hours in the current system described in section 4.4. This

number is set to 1, 2 and 4 in the following analysis. The porters are a relatively

less costly resource to adjust than the number of surgeons, nurses and operation

rooms. The expectations are that lowering the number of porters will increase the

waiting times and decrease the throughput or increase the percentage of patients
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being treated outside regular hours. Hence increasing the number of porters may

enable an increase in the incoming flow of patients without increasing the waiting

times if the remaining resources are underutilized in the current setup.

Table 2 summarizes the results from 60 runs of 30 weeks for three different

settings of porters. It can be seen that having 2 or 4 porters are equivalent with

the results for 3 porters in Table 1, whereas having 1 porter clearly increases the

waiting times in terms of the average, CVaR and VaR waiting time. In the top part

of Figure 6 the associated estimated density functions indicate that 2-4 porters lead

to equivalent waiting time distributions, whereas the 1 porter distribution seems

to differ.

With 1 porter it is observed that all measures besides the total throughput are

changed significantly (Wilcoxon two-sample test [13]: p < 0.001) compared to

having 3 porters. The patients wait longer on average (8.56 % increase on av-

erage), have higher maximum waiting times (8.41 % increase on average), more

patients are treated outside regular hours (19.41 % increase on average) and CVaR

and VaR are increased significantly (7.53 % and 6.97 %, respectively). Figure 6

shows that the primary change from 2-4 porters to 1 porter is a heavier tail. This

is reflected in the CVaR in Table 1 and 2, which show that the increase is around

2 times the increase in the average waiting time. The top part of Figure 6 shows

that the estimated density function with 1 porter is flatter around the peak and has

a thicker tail, which increase the CVaR more than WT . The increase by 5 minutes

in CVaR from 3 to 1 porter corresponds to an increase in waiting time for the

approximately 85 patients with the 5 % longest waiting times of 7 hours. In our
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Table 2: Summary for performance measures over runs for three different config-
urations as in Table 1. The units for the waiting time statistics are minutes, the
unit for EOUT is percent and TT is measured in number of patients.

Min Max Mean CV (%)
30 weeks, 60 runs, 4 porters

WT 29.85 31.93 30.89 1.56
MWT 92.58 161.64 113.01 12.17
T T 1609 1812 1710 2.45
EOUT 6.87 12.69 10.48 9.99
CVaR 66.97 74.24 71.17 2.44
VaR 58.09 63.35 60.67 1.97

30 weeks, 60 runs, 2 porters
WT 30.08 32.34 31.16 1.42
MWT 87.70 139.94 110.49 10.27
T T 1629 1815 1718 2.42
EOUT 8.38 13.05 10.88 8.11
CVaR 67.79 75.33 71.13 2.54
VaR 57.99 63.14 60.92 1.89

30 weeks, 60 runs, 1 porter
WT 32.70 34.42 33.62 1.16
MWT 97.88 151.27 120.01 10.86
T T 1625 1815 1715 2.41
EOUT 10.36 14.08 12.12 6.51
CVaR 71.78 80.61 76.53 2.37
VaR 62.40 67.65 65.20 1.92
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Figure 6: Estimated densities for 1, 2, 3 and 4 porters (top) and 4 porters with
different patient load (bottom). Vertical lines correspond to mean waiting time
(solid lines) and CVaR value (dashed lines). Porters 4a, 4b, and 4c correspond
to 4 porters with 7 %, 14 % and 29 % more elective patients, respectively. The
dashed area in the lower right of each panel is highlighted in the upper right.

simulation study the difference in CVaR is statistical significant, but the practical

importance of the increase may be limited.

Adding an extra porter does not shorten the waiting times (top block in Ta-

ble 2), the situation is comparable with the original 3 porter setting. The perfor-

mance measures were not significantly different. The lowest p-value is obtained

for VaR with a p-value of 0.18. Figure 7 furthermore shows that increasing the

number of elective patients leads to a significantly worse performance compared

to both the 3 and 4 porter situation (for all measures other than MWT ). The bot-

25

76
Conditional Value at Risk as a Measure for Waiting Time in Simulations of

Hospital Units



WT

Porters

30

31

32

33

34

1 2 3 4 4a 4b 4c

MWT

Porters

100

120

140

160

1 2 3 4 4a 4b 4c

TT

Porters

1600

1700

1800

1900

2000

2100

1 2 3 4 4a 4b 4c

EOUT

Porters

10

15

20

1 2 3 4 4a 4b 4c

CVaR

Porters

70

75

80

1 2 3 4 4a 4b 4c

VaR

Porters

58

60

62

64

66

68

1 2 3 4 4a 4b 4c

Figure 7: Box plots for comparing performance criteria for different resource
settings. 4a, 4b, and 4c correspond to 4 porters with 7 %, 14 % and 29 % more
elective patients, respectively.

tom part of Figure 6 indicates that the patients are waiting longer on average as

the incoming rate is increased and that the tail of the waiting time distribution has

the same length (MWT the same) but is heavier (VaR and CVaR increased).

It can be seen that CVaR has a higher absolute increase compared to WT for

the 3 vs. 1 porter comparison, showing that the 5 % longest waiting times are in-

creased the most. For increased patient input MWT does not increase, whereas

CVaR and VaR do. This shows that using the MWT as criterion for judging the

waiting time performance is a poor choice as it may not pick up differences in the

waiting time distribution due the large uncertainty on this measure of the extreme.

Moreover, the MWT does not consider the shape of the waiting time distributions,
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which may differ in the thickness of the tails but have the same MWT . It is seen

that CVaR picks up the change in the distribution of waiting times by using infor-

mation from the whole tail rather than relying on the most extreme observation in

each run.

5 Conclusions

The analysis of simulation studies needs reliable performance measures to answer

the relevant research questions. In this article CVaR is suggested as a measure

of the tail distribution of waiting times for a surgical unit with the objective of

avoiding long waiting times. Our analysis shows that CVaR is a reliable measure

that is specific to the tail. Moreover, CVaR can be seen as a compromise between

the risk neutral average waiting time and the risk averse maximum waiting time.

The results presented in this article show that using the maximum waiting time is

a poor choice since it is highly variable and ignores changes in the shape of the

waiting time distribution.

The average waiting time is not always representative for the waiting times,

since such distributions often are skewed and long waiting times may potentially

be more problematic from the points of view of patients and management. The

VaR criterion is a measure of a quantile in the distribution but is indifferent to

the tail distribution and does not quantify the tail distribution. In terms of quality

management with patient satisfaction as outcome CVaR is highly relevant since

it quantifies the problematic long waiting times. Moreover, the CVaR criteria
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is more stable compared to VaR with respect to the chosen α-level since it is a

sample average. It has nice properties as it is easy to compute and interpret and it

is robust. CVaR of the waiting times may therefore be a relevant outcome in many

quality improvement studies within health care with the objective of reducing the

risk of long waiting times.
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ABSTRACT

In this study we propose a new method for de-
signing computer experiments inspired by the
split plot designs used in physical experimen-
tation. The basic layout is that each set of con-
trollable factor settings corresponds to a whole
plot for which a number of subplots, each cor-
responding to one combination of settings of
the uncontrollable factors, is employed. The
caveat is a desire that the subplots within each
whole plot cover the design space uniformly.
A further desire is that in the combined de-
sign, where all experimental runs are consid-
ered at once, the uniformity of the design space
coverage should be guaranteed. Our proposed
method allows for a large number of uncon-
trollable and controllable settings to be run in
a limited number of runs while uniformly cov-
ering the design space for the uncontrollable
factors.

1 INTRODUCTION

With the current advances in computing tech-
nology, computer and simulation experiments
are increasingly being used to study complex
systems for which physical experimentation is
usually not feasible. Our case study involves a
discrete event simulation model of an orthope-

dic surgical unit. The discrete event simulation
(DES) model describes the individual patient’s
progress through the system and has been de-
veloped in collaboration with medical staff at
Gentofte University Hospital in Copenhagen.
The unit undertakes both acute and elective
surgery and performs more than 4,600 opera-
tive procedures a year. While the patients come
from various wards throughout the hospital, the
main sources of incoming patients are the four
orthopedic wards or the emergency care unit.

The simulation model is implemented in
Extend version 6 (Krahl 2002) on a Windows
XP platform and controlled from a Microsoft
Excel spreadsheet with a Visual Basic for ap-
plication script. The model consists of 3 main
modules: The wards and arrival, the operating
facilities, and the recovery and discharge. In-
teractionwith thesurroundinghospital is forex-
ample modeled with simplified processes using
the same resources as the processes in the surgi-
cal unit (occupying the resources) and with the
patients entering and exiting the model. Oper-
ating rooms, recovery beds, wards and staff are
included in the model. The average run time for
simulating 6 months (with one week of warm-
up) operations is around 7 minutes. Typical
outcomes are waiting times, patient through-
put and the amount of overtime.
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The simulation model has two sources of
noise coming from variations in the uncontrol-
lable factors (a.k.a. environmental factors in
physical experimentation) and from changes in
theseedcontrolling therandomnumbergenera-
tionprocessembedded in thesimulationmodel.
The controllable factors are for example the
number of operating rooms and the number
of surgeons, whereas the uncontrollable fac-
tors may include for example the arrival rate
of acute patients and the time required to clean
the operating rooms.

In this type of application, several issues
need to be considered. First, the controllable
factors tend to be numerous and often discrete.
Moreover a single experiment usually takes
several minutes to run. Therefore a simple ex-
haustive method, where all possible combina-
tions of the factor settings are considered, is
often computationally infeasible due to the ex-
ponentially increasing number of factor com-
binations. Furthermore, the settings of the un-
controllable factors, e.g. the acute patient ar-
rival rate or the duration of surgical procedures,
are also of interest and must be determined as
they may influence the outcome of the simula-
tions and hence the robustness of the simulation
analysis.

The paper is organized in the following
manner: Section2 introduces design of com-
puter experiments and defines the performance
measure for the designs. Section3 describes
the proposed design method and contrasts it
with other methods. In section4 opportunities
for future research are presented. Finally the
main conclusions are summarized in section5.

2 DESIGN OF COMPUTER
EXPERIMENTS

2.1 Literature Review

A general discussion on the issues regarding
the design and analysis of computer exper-
iments can be found inSacks et al. (1989),

Santner, Williams, and Notz (2003)
and Fang, Li, and Sudjianto (2006). The
outputs from the computer experiments are
often considered to come from a determin-
istic computer code. In such experiments,
the classical design of experiment meth-
ods such as replication is deemed to be
redundant as replication of an experiment,
for example, yields exactly the same result
(see Santner, Williams, and Notz (2003)and
Fang, Li, and Sudjianto (2006)).

Experiments based on a simulation
model often involve some stochastic com-
ponent; making the output also stochastic.
Kleijnen (2008) discusses the design and
analysis of simulation experiments which
typically have some sort of noise in the output.
Therefore these experiments differ from the
deterministic computer experiments. Further-
more, a typical simulation application will
have both controllable and uncontrollable (en-
vironmental) factors, which should be handled
differently. In these applications the aim is
to manipulate the controllable factors so that
the system is insensitive (robust) to changes
in the uncontrollable factors. As described
by Kleijnen (2008) and Sanchez (2000)the
solution’s robustness needs to be considered in
order to obtain applicable solutions in systems
with uncontrollable factors. That is, a good
solution needs to perform well over the entire
range of uncontrollable factors.

The original concept of robustness
in physical systems is often attributed
to Taguchi (1987). Taguchi’s methods involve
an inner array for the controllable factors and
an outer array for the uncontrollable factors.
In simulation studies,Kleijnen (2008) sug-
gests using a crossed design, e.g. combining
a central composite design (CCD) for the
controllable factors and a Latin Hypercube
Design (LHD) for the uncontrollable factors.
In a crossed design the same set of subplots is
used for each whole plot. However, as we will
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show in this study, this may not be the most
efficient way of running such experiments.

2.2 Simulation Model

Our basis is a discrete event simulation model
generatingoutput,y = f (xc,xe), for thesettings
for the sc controllable factors,xc, and the set-
tings for these uncontrollable factors,xe. The
objective is not only to select the settings,x∗c ,
such that the solution is robust to changes in the
uncontrollable factor settings as described in p.
130-134 inKleijnen (2008), but also to under-
stand the variation coming from the changes in
the uncontrollable factor settings.

Since little prior knowledge of both con-
trollableanduncontrollable factors isavailable,
we require that a good design is simultaneously
uniform over the design space of the control-
lable and uncontrollable factors. In the follow-
ing, we will assume that the uniform coverage
of the design space of the controllable factors
is already achieved and that we are only con-
cerned with the uncontrollable factors.

Robustness studies in physical exper-
imentation often involve split-plot de-
signs (Montgomery 2005). We will therefore
use similar terminology when robustness
studies are performed using computer exper-
iments. In classic split-plot designs, a set of
experiments called whole-plots is designed so
that for each whole-plot another set of exper-
iments called subplots are run. In robustness
studies, the settings of the controllable factors
often constitute the whole-plots, whereas the
settings of the uncontrollable factors constitute
the subplots. In Table1, a whole-plot corre-
sponds to a row in which randomly selected
combinations of settings for the uncontrollable
factors are run. It should be noted that the
randomization issue is irrelevant for computer
experiments.

In the proposed method, each whole-plot
corresponds to one combination of settings of
the controllable factors (a row in Table1), i.e.

a total ofnc whole-plots are needed (nc = 5 in
Table1). Each subplot (a column entry in any
row in Table1) corresponds to a combination
of settings for the uncontrollable factors with
a total ofk subplots for each whole-plot. Thus
the overall design consists ofN = nck runs. In a
crossed design as proposed byKleijnen (2008)
thesek subplots would be the same from one
whole-plot to the next. Therefore there will
only be a total ofk combinations of settings
for the uncontrollable factors. In our proposed
methodology, differentk combinations of set-
tings for the uncontrollable factors will be used
for each whole-plot. This is expected to give
better overall coverage of the uncontrollable
factor space compared to the crossed design.
The challenge with the proposed method is to
make the uncontrollable factor settings compa-
rable from one whole-plot to the next.

Table 1: Uncontrollable factor design for five
controllable settings and five environmental
settings within each controllable setting

Controllable Environmental setting
setting 1 2 3 4 5

1 xe1 xe2 xe3 xe4 xe5
2 xe6 xe7 xe8 xe9 xe10
3 xe11 xe12 xe13 xe14 xe15
4 xe16 xe17 xe18 xe19 xe20
5 xe21 xe22 xe23 xe24 xe25

2.3 Measure of Uniformity

In order to evaluate the designs presented in the
following sections a measure of uniformity is
needed.Fang, Li, and Sudjianto (2006)sum-
marize a set of performance measures fre-
quently used for measuring the uniformity of
a design: the star discrepancy, centered dis-
crepancy and the wrap-around discrepancy.
The centered and the wrap-around discrep-
ancy were proposed byHickernell (1998b)and
Hickernell (1998a), respectively. Both have
desirable properties. They are easy to compute,
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invariant to permutations of factors or runs and
rotation of coordinates, and reliable measure-
ments for the uniformity of projections. How-
ever the wrap-around discrepancy is said to be
unanchored (i.e. it only involves the design
points), while the centered discrepancy is not,
since it involves the corners of the unit cube.

In this study only the wrap-around dis-
crepancy is considered as the measure of
uniformity with a low value corresponding
to a high degree of uniformity. The mea-
sure is chosen since the literature generally
suggests it as a good measure of unifor-
mity (see for exampleFang and Ma (2001);
Fang, Lin, and Liu (2003);
Fang, Li, and Sudjianto (2006)). The idea
behind this measure is that for any two points
from a uniform design,x1 and x2, spanning
a hyper cube (potentially wrapping around
the bounds of the unit cube); the hypercube
should contain a fraction of the total number
of points equal to the fraction of total volume
covered by the cube. An analytic expression
for the wrap-around discrepancy (WD(D)) is
given byFang and Ma (2001)as

(WD(D))2 = −
(

4
3

)s + 1
n

(
3
2

)s

+ 2
n2

n−1

∑
k=1

n

∑
j=k+1

s

∏
i=1

di( j,k)
(1)

with di( j,k) = 3
2 −|xki − x ji|(1−|xki − x ji|), n

being the number of points,s the number of fac-
tors (the dimension), andxki thei’th coordinate
of thek’th point.

There are various ways of constructing uni-
form designs. In this study the good lat-
tice point method based on the power gener-
ator is used with the modification described
in Fang, Li, and Sudjianto (2006). The design
construction is based on a lattice{1, . . . ,n} and
a generatorh(k) = (1,k,k2, . . . ,ks−1)(modn),
with k fulfilling that k,k2, . . . ,ks−1(modn) are
distinct. h(k) is chosen such that the result-

ing design consisting of the elementsui j =
ih(k) j(mod n) scaled down to[0,1]s has the
lowest WD-value.

3 DESIGN ALGORITHM

A method for generating good designs for sim-
ulation models with both controllable and un-
controllable factors is presented in the follow-
ing section. Here we assume that all factors
have been scaled to[0,1] and that the wrap-
around discrepancy is the measure of unifor-
mity. It is furthermore assumed that a design
for the controllable factors is available. That is,
we are primarily concerned with designing ex-
periments for the uncontrollable factors. Two
and three dimensional examples are used since
they can be illustrated graphically. However,
the method is general and results for 4 and 10
factors are also presented.

3.1 Bottom-up Approach

In section2.2 the limitations of crossing a de-
sign for the controllable factors with a design
for the uncontrollable factors were described.
A better method in terms of covering the uncon-
trollable factor space compared to the crossed
design is to generate different designs for the
whole-plots, each withk different combina-
tions of uncontrollable factor settings. This
implies thatnc designs of sizek should be con-
structed. For this method to succeed in the
combined design, not only sets ofk subplots
fordifferentwhole-plotsshouldbecomparable,
but alsonck subplots need to cover the design
space for the uncontrollable factors uniformly.
This can be achieved by dividing the design
hyperspace for the uncontrollable factors into
k sub-regions and samplenc settings in each.
As shown in Figure1, this can be achieved
fairly easily in two dimensions. However, in
higher dimensions an efficient way of generat-
ing the sub-regions is required since the curse
of dimensionality dictates that exponentially
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Figure 1: A total design of size 160 settings
in 16 regions with 10 settings in each. Circles
correspond to centers and crosses to sample
settings.

increasing numbers of runs have to be used in
higher dimensions to obtain the same density
of runs as in the lower dimensions.

If regular partitioning of the hypercube is
possible, a design can be generated by ran-
domly taking a run from each sub-region for
each whole-plot. Figure1 illustrates the ap-
proach in two dimensions with 16 subplots in
each of the 10 whole plots. The design in Fig-
ure 1 has poor overall uniformity, which can
also be seen from WD-values being 12 to 51
times higher compared to a uniform design of
the same size.

A general method for generating the sub-
regions is to generate a uniform design of size
k and use these points as center points ofk
hypercubes or spheres that will constitute the
sub-regions. The subplots are then generated
within these sub-regions by either uniform de-
signs or maxi-min distance designs for which
the minimum distance of two runs in a sub-
region is maximized. Figure2 illustrates the
performance of these methods for five control-
lable and 40 environmental settings for two en-
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Figure 2: Average WD-value normalized us-
ing theWD-valueobtained forauniformdesign
with 200 runs. Black curve with marks is for
the maximum design and the red for the uni-
form design with dashed curves corresponding
to approximate 95 % confidence intervals, the
bottom black solid curve indicates a ratio of 1,
i.e. no difference. The black dotted curve cor-
responds to a maxi-min distance. The overall
design consists of 200 settings with the number
of environmental settings being 40.

vironmental factors. The performance param-
eter in the figure is the WD-value for the com-
bined environmental factor design, normalized
by the WD-value of a uniform design of size
200. It can be seen that, compared to a uni-
form design generated directly for the same
number of runs, both bottom-up methods are
significantly worse. A maxi-min design gen-
erated directly is also seen to be better than
the bottom-up generated designs. Figure2 il-
lustrates that using a bottom-up approach does
not ensure an overall uniform design for the
uncontrollable factors.

3.2 Top-down Approach

The second method we propose has more of
a ”top-down” structure. First, we generate a
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uniform design of sizeN which is equal toknc.
This assures that the combined design is indeed
uniform. But this does not solve the problem
of assigningk settings to each of thenc whole-
plots such that in each whole-plot the subplots
are uniformly spaced.

One approach to generate the designs is first
to constructk sub-regions aroundk centers,
where each region consists ofnc points. A
method to obtain such a structure is to gener-
ate another uniform design of sizek and use
these points as starting center points,c, in an
optimization algorithm that finds the optimal
center points by minimizing

∑
j

min
i
||x j − ci||+ k∑

i

(ni −nc)2 (2)

In the above expression,ni is the number of
points having centeri as the closest center. That
is, the objective is to choose the centers,c∗ such
that they minimize the sum of the smallest dif-
ferencesbetweenpointsandthecenters, andthe
deviations from the required size of the region.
This should ensure reasonably good separation
of the points.

Based on the optimal centers,c∗, the N
points need to be assigned to a center such that
all points are assigned and all centers have ex-
actly nc points. This can be done in various
ways, for example by assigning the point with
the smallest distance to its nearest center, or
by assigning the point with the largest second-
shortest distance to its nearest center, or by
simply considering the points’ membership to
each center based on euclidean distances.

A resultofassigning400points to10groups
of40pointseach isshownonthe leftofFigure3,
where it can be seen that the resulting groups
are not well defined. Applying an exchange-
algorithm on the assignment significantly im-
proves the assignment as seen on the right of
Figure3. The total distances of the points to
their center are reduced by 5 % by swapping
less than 20 points and the points are grouped in

well-defined clusters. An example in three di-
mensions is shown in Figure4. The grouping in
Figure4 is generated by applying the exchange
algorithm to a completely random assignment
leading to a 49 % improvement in the distance
of the points to the centers by more than 200
swaps.

3.2.1Generating Whole Plots

After grouping the subplots ink groups, we
generate the whole-plots. Each whole-plot is
assignedtoonesetting fromeachof thek groups
so that all settings are assigned. One method is
to assign the settings such that the maximum
WD-value of the sub-designs is minimized,
which can be obtained by repeatedly assigning
the settings randomly to the whole-plots until
a certain degree of uniformity is obtained.

Another method is to move the small uni-
form design of sizek so that the point closest
to the origin in the small design is placed at
the points in the group closest to the origin
and then assign points based on the smallest
distance. The advantage of this approach com-
pared to random assignment is that the whole-
plot approximately mimics the uniform design
structure.

For the designs considered in Figure3and4
the performance of each whole-plot is com-
pared to a uniform design generated directly in
Table2. The table shows that the overall unifor-
mity of the combined design cannot be fulfilled
without getting sub-designs that are not com-
pletely uniform. The designs with lowest max-
imum relative WD-value all have WD-values
below 3.7 times and the highest minimum WD-
values are less than twice the reference designs.

It can be seen from Table2 that the results
are consistent for up to 10 factors. The mean
and the smallest maximum WD-value are all
decreasing, whereas the remaining values are
inconclusive with respect to the number of fac-
tors. It can also be seen from Table2 that a
design, which ensures relative WD-values for
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Figure 3: Left: The optimal assignment corresponding to a membership assignment. Right: The
assignment after swapping in the optimal design.

all whole-plots between 2 (Max min) and 3.7
(Min max) can be achieved for up to 10 fac-
tors. The results seem to be independent of the
number of settings but with 10 factors generally
giving significantly lower values. This may be
caused by the sparsity of the settings in the 10
dimensional design space.

4 DISCUSSION

This study was originated from application of
discrete event simulation and computer exper-
imentation at a hospital unit. In health- care
applications in general, it is desireable that the
final solutions are robust to changes in the un-
controllable factors. In the proposed design a
large set of combinations of the uncontrollable
factor settings is achieved using only a limited
number of runs in each whole-plot. This is due
to the fact that in each whole-plot a different set
of subplots is used. When considered together,
however, the subplots in the combined design
show a uniform coverage of the design space.

Based on the proposed design, a meta-
model of the following form

y(xe,xc) = f1(xc)+ f2(xe)+ f12(xc,xe)+ e
(3)

could be considered withf1(xc) being a func-
tion describing the fixed effects related to the
controllable setting,f2(xe) and f12(xc,xe) be-
ing random effects describing the variations on
the mean effect and the effect of the uncontrol-
lable factor variations on the fixed effects.

By ensuring the overall uniformity of the
uncontrollable factor settings, the functions
f2(xe) and f12(xc,xe) can be estimated over
the whole region. The functionsf2(xe) and
f12(xc,xe) describe the impacts of the varia-
tions in the uncontrollable factors. These can
be used for quality improvement purposes if
the variation in some of the uncontrollable fac-
tors is somehow possible to reduce. Moreover,
f12(xc,xe) is of interest in robustness studies
since the interaction between controllable and
uncontrollable factors is the key to reducing
the impact from changes in the uncontrollable
factors.
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Figure 4: 400 settings assigned to 10 groups in
3 dimensions. Each panel corresponds to one
group.

Table 2: Summary for relative WD-values for
2, 3 and 4 dimensional examples with 40 con-
trollable factors, each with 10 environmental
settings (400) or 20 controllable factors, each
with 10 environmental settings (200). The per-
formance is summarized by minimum (Min),
mean (Mean) and maximum (Max) relative
WD-value and by the highest minimum (Max
min)and lowestmaximum(Minmax). Theval-
ues are relative to the WD-value for a uniform
design of the same size as the whole-plots

Factors Min Max min Mean Min max Max
2 (400) 1.15 1.99 2.78 3.67 8.39
3 (400) 1.19 1.93 2.70 3.47 7.21
4 (400) 1.25 1.94 2.56 3.20 7.28
10 (400) 1.32 1.60 1.76 2.00 2.38
2 (200) 1.14 2.17 2.69 2.94 7.20
3 (200) 1.17 2.21 2.68 2.94 6.98
4 (200) 1.22 2.22 2.50 2.54 5.65
10 (200) 1.29 1.63 1.73 1.78 2.45

5 CONCLUSION

In this study, a methodology to design uni-
formly distributed experiments for simulation
experimentation in the presence of both con-
trollable and uncontrollable factors is intro-
duced. The method ensures that the subplots
in the combined design for the uncontrollable
factors are uniform while keeping an accept-
able level of uniformity of the subplots within
each whole-plot. Complete uniformity com-
pared to uniform design of the size equal to the
total number of subplots could not, however,
be achieved.

The proposed methodology is primarily
based on Euclidian distances. Therefore the
method can be used in designs with many
uncontrollable/environmental factors. Our re-
sultsshowthatauniformitymeasureof the indi-
vidual whole-plots can be minimized to within
two to four times the value of an overall uni-
form design. Furthermore, it was shown that
the method was applicable to designs with 2 to
10 uncontrollable factors. Since the methodol-
ogy is based on distances, increasing the num-
ber of factors may be possible, although spar-
sity of the experiments in the design space may
become an issue.

The proposed design contains as many un-
controllable factor settings as the number of
runs (N), which in contrast to a crossed de-
sign of the same size hask = N/nc unique un-
controllable factor settings. This implies that
the simulation time for a crossed design with
the same number of unique uncontrollable fac-
tor settings becomesnc times longer. For a
fixed experimental design size, the proposed
design optimally covers the uncontrollable fac-
tor space in terms of overall uniformity. In the
modeling and analysis of the simulation out-
put, the uniformity provides good coverage for
the uncontrollable factor effects.
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Summary.
We propose a new methodology for designing computer experiments inspired by the split plot
designs often used in physical experimentation. The methodology has been developed for a
simulation model of a surgical unit in a Danish hospital. We classify the factors as controllable
and uncontrollable based on their characteristics in the physical system. The experiments
are designed so that for a given setting of the controllable factors, the various settings of the
uncontrollable factors cover the design space uniformly. Moreover the methodology allows for
overall uniform coverage in the combined design when all settings of the uncontrollable factors
are considered at once.

Keywords: Computer Experiments, Design of Experiments, Discrete Event Simulation, Uniform
design, Robustness

1. Introduction

With the current advances in computing technology, computer and simulation
experiments are increasingly being used to study complex systems for which
physical experimentation is usually not feasible. Our case study involves a
discrete event simulation model of an orthopedic surgical unit at Gentofte
University Hospital in Copenhagen. The discrete event simulation (DES)
model describes the individual patient’s progress through the system and has
been developed in collaboration with medical staff at the hospital. The surgical
unit undertakes both acute and elective surgery, and performs more than 4,600
operative procedures a year. Even though the patients come from several
wards throughout the hospital, the main sources of incoming patients are four
orthopedic wards and the emergency care unit. The patient’s route through
the unit is sketched in Figure 1.

Fig. 1. Patient route through orthopedic surgical unit
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The simulation model consists of three main modules: the wards (admis-
sion and discharge), the operating facilities, and the recovery. Interaction with
the surrounding hospital is modeled as auxiliary processes using the same re-
sources as the processes in the surgical unit (occupying the resources) and with
the flow of patients between the unit and the rest of the hospital. Resources
in the model are operating rooms, recovery beds and wards. The staff is also
included in the model as a resource and controlled by resource pools. Outpa-
tients treated in outpatient clinics are not considered in this model but the
resources shared between outpatient clinics and the surgical unit are included.

The simulation model is implemented in Extend version 6 (Krahl, 2002) on
a Windows XP platform and controlled from a Microsoft Excel spreadsheet
with a Visual Basic for application script. The average run time for simulating
six months’ (with one week of warm-up) operation is approximately seven
minutes excluding summarizing the run. Typical outcomes are waiting times,
patient volume and amount of overtime. Waiting time is defined as the time
a patient unnecessarily waits between procedures and it is closely related to
patient satisfaction as described in Bielen and Demoulin (2007). As patient
waiting time and patient satisfaction are the primary concerns, we restrict our
focus to the patient waiting times; i.e., a single performance measure.

The simulation model has two sources of noise: external noise Ankenman
et al. (2010) coming from variations in the uncontrollable factors (a.k.a. en-
vironmental factors in physical experimentation) and internal noise coming
from changes in the seed controlling the random number generation process
embedded in the simulation model. In addition, a set of controllable factors
influence the system in a deterministic manner. The controllable factors are,
for example, the number of recovery beds and the number of anesthesiologists,
whereas the uncontrollable factors include the arrival rate of acute patients
and the amount of time the recovery beds and anesthesiologists are being used
by other processes.

In this type of application, several issues need to be considered. First,
the controllable factors tend to be numerous and often discrete. Moreover a
single experiment takes several minutes to run, and simple exhaustive meth-
ods, where all possible combinations of the factor settings are considered, are
computationally unfeasible due to the exponentially increasing number of fac-
tor combinations. Thus, the selected factor combinations for experimentation
must be chosen carefully. The second issue is that the settings of the uncon-
trollable factors are also of interest and must be analyzed, as their effect may
influence the outcome of the simulations.

This paper is organized in the following manner: Section 2 introduces de-
sign of computer experiments and defines the performance measure for the
designs. Section 3 describes the proposed design method and contrasts it
with other methods. The design is illustrated by experimentation on the case
study in section 4. In section 5 possible areas for future research are presented.
Finally the main conclusions are summarized in section 6.
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2. Design of computer experiments

A general discussion on the issues related to the design and analysis of com-
puter experiments can be found in Sacks et al. (1989), Santner et al. (2003)
and Fang et al. (2006). The main characteristic of computer experiments
is that output is most often considered to come from a deterministic com-
puter code. In such experiments, the classical design of experiment methods
such as replication, randomization and blocking are deemed to be redundant
(see Santner et al. (2003) and Fang et al. (2006)).

Experiments based on simulation models often involve some stochastic com-
ponent; making the output also stochastic. Kleijnen (2008, 2009) discusses the
design and analysis of simulation experiments which typically have some sort
of noise in the output. Therefore these experiments differ from determin-
istic computer experiments. As in the case of physical experimentation, a
typical simulation application will have both controllable and uncontrollable
(environmental) factors. In these applications the aim is to manipulate the
controllable factors so that the system is insensitive (robust) to changes in the
uncontrollable factors. As described by Kleijnen (2008) and Sanchez (2000)
the solution’s robustness needs to be considered in order to obtain applicable
solutions in systems with uncontrollable factors.

The original concept of robustness in physical systems is often attributed
to Taguchi (1987). Taguchi’s methods involve an inner array for the control-
lable factors and an outer array for the uncontrollable factors. In simulation
studies, Kleijnen (2008, 2009) suggests using a crossed design, e.g., combining
a central composite design (CCD) for the controllable factors and a Latin Hy-
percube Design (LHD) for the uncontrollable factors. In a crossed design the
same set of uncontrollable factor settings is used for each controllable factor
setting. However, as we will show in this study, it can be argued that this
may not be the most efficient way of running such experiments.

2.1. Simulation model
We consider a discrete event simulation model generating output, y = f(xc,xu),
for the settings for the sc controllable factors given in xc and the settings for
the su uncontrollable factors given in xu. The objective is not only to select
the settings, x∗c, such that the solution is robust to changes in the uncontrol-
lable factor settings as described in Kleijnen (2008, p. 130-134), but also to
provide insight into how the variation coming from changes in the uncontrol-
lable factor settings causes variation in the output.

In the following, we will assume that an experimental plan for the con-
trollable factors is already available (for example, a factorial design) so that
we are only concerned with choosing the uncontrollable factor settings. Be-
cause little prior knowledge of the effects of these factors is usually available,
we require that the factor space for the uncontrollable factors is uniformly
covered for each controllable factor setting (the sub-designs) as well as in the
combined design for which all uncontrollable factor settings are considered
at once. Overall uniformity is important for the robustness of the analy-
sis (Fang et al., 2006) and the uniformity of the sub-designs is required in
order to achieve similar environmental variations for all combinations of the
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controllable factor settings. Another objective of the experiment plan could
be to generate informative data for building computationally less expensive
surrogates for the simulation models.

Robustness studies in physical experimentation often involve split plot de-
signs (Montgomery, 2009). We will apply a similar terminology when robust-
ness studies are performed using computer experiments. In classical split plot
designs, a set of experiments called whole plots is designed so that for each
whole plot another set of experiments called subplots is run. In robustness
studies, the settings of the controllable factors often constitute the whole plots,
whereas the settings of the uncontrollable factors constitute the subplots. In
Table 1, a whole plot corresponds to a row in which randomly selected com-
binations of settings for the uncontrollable factors are run.

In physical experimentation, the whole plots and subplots are randomized
separately; that is, for each randomly selected whole plot, corresponding sub-
plots are run in a random order. The separate randomization of whole plots
and subplots is typically applied when the whole plot factors are hard to
change; i.e., keeping them at a fixed level while varying the subplot factors
makes the experiment less time consuming and/or expensive. Our design is
not a split plot experiment, but it has some similarities in the structure. For
computer and simulation experiments the randomization is not an issue, since
everything is controlled. To ease the notation in the rest of the paper, we will
use a whole plot for a setting of the controllable factors and a subplot for a
setting of the uncontrollable factors.

In the proposed method, each whole plot corresponds to one combination
of settings of the controllable factors (a row in Table 1); i.e., a total of nc

whole plots are needed (nc = 5 in Table 1). Each subplot (a column entry
in any row of Table 1) corresponds to a combination of settings for the un-
controllable factors with a total of k subplots for each whole plot. Thus, the
unreplicated overall design consists of N = nck runs. In a crossed design as
proposed by Kleijnen (2008) these k subplots would be the same from one
whole plot to the next. Therefore there will only be a total of k unique com-
binations of settings for the uncontrollable factors in a crossed design. In our
proposed methodology, different k combinations of settings for the uncontrol-
lable factors will be used for each whole plot. This is expected to give better
overall uniform coverage of the uncontrollable factor space compared to the
crossed design, which is thought to be of increasing importance as the num-
ber of uncontrollable factors increases. One of the greatest challenges with
the proposed method is to make the variations in the uncontrollable factor
settings comparable from one whole plot to the next.

2.2. Measure of uniformity
In order to evaluate the proposed designs, a measure of uniformity is needed.
Fang et al. (2006) summarize a set of performance measures frequently used
for measuring the uniformity of a design: the star discrepancy, the cen-
tered discrepancy and the wrap-around discrepancy. The centered and the
wrap-around discrepancies were proposed by Hickernell (1998b) and Hick-
ernell (1998a), respectively, and both have desirable properties. They are

99



Designing simulation experiments with controllable and uncontrollable factors 5

Table 1. Uncontrollable factor design for five control-
lable settings and five environmental settings within
each controllable setting

Controllable Environmental setting
setting 1 2 3 4 5

1 xe1 xe2 xe3 xe4 xe5

2 xe6 xe7 xe8 xe9 xe10

3 xe11 xe12 xe13 xe14 xe15

4 xe16 xe17 xe18 xe19 xe20

5 xe21 xe22 xe23 xe24 xe25

easy to compute, invariant to permutations of factors, runs and rotation of
coordinates, geometrically interpretable, and reliable measurements for the
uniformity of projections. However, the wrap-around discrepancy is said to
be unanchored (i.e. it only involves the design points), while the centered
discrepancy also involves the corners of the unit cube. The computational
costs of the star discrepancy make this criterion unsuitable as a uniformity
measure (Fang et al., 2006).

Fang et al. (2006) do not give any recommendations for whether to choose
the centered discrepency or the wrap-around discrepency. In this study we
consider the wrap-around discrepancy, since it has the same desirable proper-
ties as the centered discrepancy, but involves the design points only and not
the corner points as mentioned above. However, the method is not limited
to this particular uniformity measure. The idea behind this measure is that
for any two points from a uniform design, x1 and x2, spanning a hypercube
(potentially wrapping around the bounds of the unit cube), the hypercube
should contain a fraction of the total number of points equal to the fraction of
total volume covered by the cube. An analytic expression for the wrap-around
discrepancy for an experimental plan D is given by Fang and Ma (2001) as

(WD(D))2 = −
(

4
3

)s
+ 1

n

(
3
2

)s
+ 2

n2

n−1∑

k=1

n∑

j=k+1

s∏

i=1

di(j, k) (1)

with di(j, k) = 3
2 − |xki − xji|(1− |xki − xji|), n being the number of points, s

the number of factors (the dimension), and xki the i’th coordinate of the k’th
point. It is required that xki ∈ [0, 1], which shows that di(j, k) is maximal
with a distance of 0 or 1 between xki and xji and minimal with a distance of
0.5. A low WD value corresponds to a high degree of uniformity. For more
details about the properties of WD, see for example Fang and Ma (2001), Fang
et al. (2003) and Fang et al. (2006).

There are various ways of constructing uniform designs. In this study the
good lattice point method based on the power generator is used with the mod-
ification described in Fang et al. (2006). The design construction is based on
a lattice {1, . . . , n} and a generator h(k) = (1, k, k2, . . . , ks−1)(mod n), with k
fulfilling that k, k2, . . . , ks−1(mod n) are distinct. The generator h(k) is chosen
such that the resulting design consisting of the elements uij = ih(k)j(mod n)
scaled down to [0, 1]s has the lowest WD value.
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3. Design algorithm

In this study we will assume that all factors have been scaled to be in the
interval [0, 1] and that a design for the controllable factors is available; that is,
we are primarily concerned with designing experiments for the uncontrollable
factors. A two dimensional example is used as the primary example, since it
can be easily visualized. However, the method is general and results for 3 to
19 factors are also presented.

In section 2.1 the limitations of crossing a design for the controllable factors
with a design for the uncontrollable factors were discussed. A better method
in terms of improving the coverage of the uncontrollable factor space compared
to the crossed design is to generate different designs for the whole plots, each
with k different combinations of uncontrollable factor settings. This implies
that nc designs of size k should be constructed. For this method to succeed
in the combined design, not only should sets of k subplots for different whole
plots be comparable, but also when the combined design is considered as a
whole, the nck subplots should cover the design space for the uncontrollable
factors uniformly.

In Dehlendorff et al. (2008) we analyzed a ”bottom-up” approach in which
the overall design is constructed by splitting the hypercube spanning the un-
controllable factor space into k sub-regions. These k sub-regions are con-
structed so that each contains nc points. We then select one point from each
sub-region to form a set of k points and assign those to a single whole plot.
The main problem with this construction method is that the overall uniformity
of the combined design cannot be guaranteed. For a two dimensional exam-
ple this yields WD values at least five-times higher than a uniform design
generated directly for the entire uncontrollable factor space.

3.1. Top-down approach
The method we propose here has more of a ”top-down” structure. First, we
generate a uniform design of size N = knc in the uncontrollable factor space.
This assures that the combined design will indeed be uniform. But this does
not solve the problem of assigning k settings of the uncontrollable factors
to each of the nc whole plots such that in each whole plot the subplots are
uniformly spaced.

One approach to generate various k settings is first to construct k sub-
regions around k centers, where each region consists of nc points. A method
to obtain such a structure is to generate another uniform design of size k in
the hyperspace for the uncontrollable factors and use these points as starting
center points, C = {c1, . . . , ck}, in an optimization algorithm that finds the
optimal center points as

C∗ = {c1, . . . , ck}∗ = arg min
{c1,...,ck}

N∑

j=1

min
i
||xj − ci||+ k

k∑

i=1

(ni − nc)
2 (2)

where ni is the number of points having center ci as the closest center; that is,
the objective is to choose the centers, C, such that they minimize the sum of
the smallest differences between points and their respective centers, and the
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deviations from the required size of the region. This should ensure reasonably
good separation of the points.

On the basis of the optimal centers, C∗, the N points need to be assigned
to a center such that all points are assigned and all centers have exactly nc

points. This can be done in various ways, for example by simply considering
the points’ membership to each center based on Euclidean distances and then
assigning them to their closest center (if the center has fewer than nc points
assigned already). The results of this initial grouping may be that some groups
are not well defined; i.e., have points separated from the core of the group. In
order to obtain well defined regions some sort of exchange algorithm may be
needed after the initial grouping. One way to obtain more well defined regions
is to swap the centers of two points as long as the total distance between points
and their center becomes smaller. For example, we would exchange the centers
for the points xi and xj if

∆ij = [d(xi, c(xi)) + d(xj , c(xj))]− [d(xi, c(xj)) + d(xj , c(xi))] > 0 (3)

where c(xi) is the location of xi’s center and d() measures the Euclidean
distance. The implemented algorithm chooses the pair of points giving the
highest reduction in each iteration and terminates when no further reduction
is possible; i.e., ∆ij ≤ 0 ∀i, j.
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Fig. 2. (a): The optimal assignment corresponding to a membership assignment. (b): The assign-
ment after applying an exchange algorithm to the optimal design.

The resulting scheme of assigning 400 points to 10 groups of 40 points
each is shown in Figure 2(a), where it can be seen that the resulting groups
are not well defined, e.g., group 3 in Figure 2(a) has a single point placed
between groups 2, 5, 6 and 10. Applying the exchange algorithm on the initial
grouping improves the tightness of the groups, as seen in Figure 2(b). The
total distances of the points to their center are reduced by 5 % by swapping
less than 20 points and the points are now grouped in well defined clusters.
An example in three dimensions leads to a 49 % improvement in the distance
of the points to the centers by approximately 200 swaps after a random initial
assignment.
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3.2. Generating whole plots
After grouping the subplots into k groups, of course the next question is about
effectively assigning subplots for each whole plot. In the previous section we
showed how to efficiently group the subplots in k groups of nc points each.
For a given group of nc points, we assign each subplot to a whole plot so
that all nc subplots of a group are assigned to nc distinct whole plots. In
the assignment of the subplots we want the resulting nc designs (sub-designs),
corresponding to the nc whole plots, to be as uniform as possible. One way
is to choose the assignment minimizing the maximal (min-max) WD value of
the sub-designs, and this reduces the risk of getting a sub-design with a low
degree of uniformity.

Assignment of the points can be done by repeatedly assigning the subplots
within each region randomly to the nc whole plots and then choosing the
assignment giving the lowest min-max value. However, this strategy becomes
computationally intensive for a large number of subplots. Another method is
to mimic the structure of the uniform design for the k centers used as starting
points for the minimization in equation (2). This can be achieved by, for each
of the nc whole plots, superimposing the same uniform design of size k as used
for construction of the center points on the combined design of size N such
that the point closest to the origin in the design of size k matches one of the
nc subplots (the anchoring point) in the region closest to the origin. Having
superimposed the design of size k, the i’th whole plot is generated by assigning,
in each of the k regions, the subplot (which is not already assigned) closest
to the superimposed design, such that the i’th whole plot is assigned exactly
one subplot from each region. This can be repeated by choosing different
sequences of subplots as anchoring points until the best assignment is chosen.
A top-down design with nc whole plots with sc factors and k subplots with su

factors is denoted TD(nc, sc, k, su).
We summarize the procedure of constructing the top-down design in the

following steps

(a) Generate uniform design (Ub) with N = nck points and su factors
(b) Split Ub into k sub-regions with nc points each as follows

(i) generate uniform design (Us) with k points and su factors
(ii) use Us as starting points for optimizing equation (2) for C∗

(iii) assign nc points to each center by considering the Euclidean dis-
tances

(iv) exchange centers as long as equation (3) is valid for a pair of points

(c) Assign k points to nc whole plots as follows

(i) find sub-region closest to the origin (i)
(ii) find point in Us closest to the origin (j)
(iii) set current whole plot number to 1
(iv) superimpose Us on Ub such that the j’th point in Us is placed in a

random point not already assigned in the i’th sub-region of Ub

(v) in each sub-region assign the point closest to Us (if not already
assigned) to the current whole plot
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Table 2. Whole plot performance for different numbers of uncontrollable factors (su) and
different numbers of overall number of subplots (N ). The whole plot size is kept fixed at
k = 10 corresponding nc = 20 and nc = 40 for N = 200 and N = 400, respectively.
The performance for the nc whole plot is summarized in the max-min corresponding to
the highest minimum relative WD value and the min-max corresponding to the smallest
maximum .

su N max-min min-max N max-min min-max

2 200 1.95 2.84 400 1.65 3.08
3 200 2.29 4.21 400 2.01 5.24
4 200 2.37 3.99 400 2.10 4.81
5 200 2.75 3.43 400 2.72 3.94
6 200 2.67 3.14 400 2.66 3.82
7 200 2.32 2.82 400 2.39 3.30
8 200 2.21 2.62 400 2.26 2.92
9 200 2.08 2.39 400 2.01 2.69
10 200 1.82 2.08 400 1.97 2.51

11 200 1.67 1.83 400 1.73 2.09
12 200 1.58 1.71 400 1.58 1.92
13 200 1.42 1.54 400 1.46 1.69
14 200 1.41 1.53 400 1.41 1.67
15 200 1.35 1.44 400 1.37 1.54
16 200 1.30 1.38 400 1.29 1.51
17 200 1.27 1.34 400 1.27 1.41
18 200 1.22 1.27 400 1.24 1.35
19 200 1.20 1.24 400 1.21 1.32

(vi) if current whole plot number is nc then stop, otherwise increment
current whole plot number by 1 and go to step c(iv)

(d) repeat step c and keep best assignment according to the min-max value,
TD(nc, sc, k, su)

For each combination of su and N , the sub-designs are summarized in
Table 2 in terms of the maximal minimum (max-min) relative WD value (rel-
ative to a uniform design of size k generated directly for the same region) of
the k sub-designs and the minimal maximum relative WD value (min-max).
This implies that a design with all sub-design WD-values lying between the
max-min and min-max can be constructed. Table 2 shows that the overall uni-
formity of the combined design cannot be fulfilled without getting sub-designs
that are not completely uniform. The designs with lowest maximum relative
WD value all have WD values less than 5.3 times the reference designs and the
highest minimum WD values are less than three times the WD values of the
reference designs. For the design considered in Figure 2(b) the performance of
each whole plot is compared to a uniform design generated directly in Table 2
for su = 2 and N = 400, and shows that the uniformity of the whole plots is
between 1.65 and 3.08 higher than of a comparable uniform design generated
directly.

It can be seen from Table 2 that the results are consistent for up to 19
factors. The max-min value is highest for 5 factors, whereas the min-max
value is highest for 3 factors. It can also be seen from Table 2 that a design
that ensures relative WD values for all whole plots between 2.8 (max-min) and
5.3 (min-max) can be achieved for up to 19 factors. The values for max-min
and min-max tend to go down with increasing su. This could be caused by
the increasing sparsity in higher dimensions.
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Table 3. Controllable factors for simulation experi-
ment. Current corresponds to the current setting at
the surgical unit

Factor Low High Current

Anesthesiologists (A) 2 3 2

Porters (B) 3 4 3

Recovery beds (C) 6 8 6

Operating days (D) 5 4 5

4. Case study

To illustrate the advantages of using the top-down design, two different exper-
iments with the simulation model are studied. The first experimental plan is
a crossed design between nc controllable factor settings and k uncontrollable
factor settings. The results from this design are compared to the results from
a top-down design of the same size.

We consider four controllable factors with two levels, each as shown in
Table 3. The variable Operating days is constructed such that the number of
weekly hours remains the same irrespective of the number of Operating days.
The remaining three factors are related to the staffing during regular hours.
Moreover, the levels are organized such that the current setting is the reference
(low level) for all factors, which for Operating days implies that five days is
the low level and four days the high level. For the controllable part of the
design a 24 factorial design is employed (Montgomery, 2009); i.e., nc = 16.

Because an important goal is to analyze the system performance under
challenging settings of the uncontrollable factors, they are varied around their
current estimated settings from a 20 % better scenario to a 50 % worse for
each. This implies that the majority of the scenarios will have more challenging
operating conditions compared to the current estimated settings. We select
k = 10 uncontrollable factor settings for each controllable factor setting.

For the crossed design, a uniform design with k = 10 runs and eight uncon-
trollable factors is constructed and crossed with the 24 factorial experiment
for the controllable factors. Moreover, a TD(16, 4, 10, 8) is also constructed;
i.e., a top-down design of the same size as the crossed design. This gives a
total of two experimental plans, each with 160 (= 16 × 10) runs, together
requiring around 40 hours of simulation time.

Even though the uncontrollable factors used in our example come from a
thorough study of the real system, we suspect (and to some extent expect)
that the list is incomplete. For the effects of “unknown” factors that may have
an effect, albeit small, on the response and hence creating additional noise, we
choose to use random seed in our simulation model causing our simulations to
become stochastic rather than deterministic. Hence a robust setting should
not only be robust against the uncontrollable factors, it should also be robust
against the intrinsic uncertainty introduced by the queues and procedures.
The commonly used variance reduction technique of using common random
numbers was tested, but gave similar results and did not give a clear-cut
reduction in the variance of the estimates in section 4.2. Moreover, using
different seeds implies that the observations can be assumed to be independent
and this means that standard techniques can be applied.
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As the response, we primarily focus on long patient waiting times measured
by the average of the α = 5 % longest waiting times. This corresponds to the
conditional value at risk (CVaR), which is frequently used in finance (see
e.g., Kibzun and Kuznetsov, 2003; Alexander et al., 2006). Dehlendorff et al.
(2010) compared CVaR to other measures in the literature and found that
CVaR was a reliable measure of the tail distribution of waiting times. The
main advantage of using CVaR compared to, for example, the average or the
maximum waiting time is that it is related to the distribution of the tail,
whereas the average waiting time is based on the whole distribution and the
maximum waiting time is a measure of an extreme. The two α-extremes 0 %
and 100 % for CVaR correspond to the maximum and the average waiting
time respectively, and CVaR forms a compromise between the two. In finance
the average and the maximum waiting time correspond to risk-neutral and
risk-averse strategies, respectively.

4.1. Taguchi approach
In Figure 3 the standard deviations and sample averages for each controllable
factor setting (whole plot) are plotted for each of the designs. The results
are similar with some minor differences, however as shown in Figure 4 and in
the analysis based on equation (4) the difference is in the estimation of the
uncontrollable factors. It can be seen that the crossed design (Figure 3(a)) has
four settings in the lower left corner (marked with x) and the top-down design
(Figure 3(b)) has the same four plus an additional two settings. These settings
give both low and reliable waiting times. It can be seen that factor A is at its
high level, indicated by a, in all settings having both low average and standard
deviation, i.e. the anesthesiologist resource is potentially an important factor
in obtaining consistently low waiting times. Likewise the four settings in the
upper right corners of Figure 3(a) and 3(b) have factor A at its low level.

Taguchi (1987) uses the signal-to-noise ratio as the robustness measure
in systems with controllable and uncontrollable factors. It is given as SN =
20 log(ȳ/s̄), where ȳ is the sample average for a given setting of the controllable
factors and s̄ the sample standard deviation. Taguchi proposes the signal-to-
noise ratio as a trade-off between high mean and low uncertainty to quantify
the robustness of a system. Using SN on the sample averages and standard
deviations in Figure 3 gives different optimal solutions for the two designs;
i.e., the top-down design suggests that acd is the optimal setting, whereas the
crossed design suggests that abc is the optimal setting. Bursztyn and Steinberg
(2006) point out that using signal-to-noise is not an optimal way to assess the
robustness of the system, instead they recommend that the noise factors are
included in the analysis, and this is considered in the following. The main
drawback of the signal-to-noise performance measure is that it disregards the
settings of the uncontrollable factors.

4.2. Spline method
In order to use the information in settings of the environmental factors, we
consider models with the environmental factors included. The experiments are
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Fig. 3. Sample mean and standard deviation of the CVaR waiting times summarized by setting for
the crossed design (a) and the top-down design (b). The natural grouping is indicated by symbols; x
represents the group with low sample mean and sample standard deviation, o the middle group and
+ the group with high mean and standard deviation. (1) corresponds to having all factors at their
low levels and e.g., acd to having factors A, C and D at their high level as described in Montgomery
(2009)

analyzed following the standard techniques for factorial experiments (Mont-
gomery, 2009) for the controllable factors A-D, while the uncontrollable/environ-
mental factors are handled differently. Since little knowledge is available in
advance, and to make the analysis as robust as possible, we use a generalized
additive model (Hastie and Tibshirani, 1990; Wood, 2003, 2006) to estimate
the impact of the environmental factors on the CVaR waiting times. By using
the generalized additive model framework, the environmental effects are esti-
mated in a non-parametric fashion. The effect of each uncontrollable factor on
the output is fitted by penalized regression splines (fj(xej ) in equation (4)),
which implies that the model covers the range from simple regression lines
to complex non-linear functions. Combining the two model parts gives the
overall model as

E(CV aR) = β0 +

4∑

j=1

βjxj +

3∑

j=1

4∑

k=j+1

βj,kxjxk +

2∑

j=1

3∑

k=j+1

4∑

l=k+1

βj,k,lxjxkxl

+ β1,2,3,4x1x2x3x4 +
8∑

j=1

fj(xej) (4)

where xej is the j’th environmental factor, fj its smooth function and x1

corresponds to factor A, x1x2 to the interaction between factors A and B, etc.
The four controllable factors are all coded as -1 and 1 for the low and high
levels, respectively.

In terms of the controllable factors the significant effects are the main effects
of factors A, C and D in both designs. Reducing the model to having only the
significant controllable factors together with the uncontrollable factors leads to
insignificant increases in the residual deviance with p = 0.30 and p = 0.23 for
the crossed and the top-down design, respectively. Table 4.2 summarizes the
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Table 4. Significant parametric effects for
crossed and top-down designs, where β0 cor-
responds to the intercept, β1 is the effect of
anesthesiologists, β3 the effect of recovery
beds and β4 the effect of operating days

Estimate (S.E)
Parameter Crossed Top-down

β̂0 70.37(0.27) 70.29(0.26)

β̂1 −3.60(0.27) −3.69(0.25)

β̂3 −2.33(0.27) −1.95(0.28)

β̂4 −0.60(0.27) −0.90(0.27)

parametric effects and it can be seen that the estimates coincide. Furthermore
the optimal strategy is to increase the number of anesthesiologists and recovery
beds while having a week with four operating days. The number of porters is
seen to have an insignificant impact on the CVaR waiting time.

The difference between the top-down design and the crossed design is, how-
ever, substantial in terms of estimating the significant environmental factors.
The crossed design suggests that only the environmental factor related to occu-
pancy of the recovery beds is significant, and this is only borderline (p = 0.07
as the highest p-value). In contrast, the top-down design identifies three highly
significant factors; the acute arrival rate, the occupancy of the recovery beds
and the occupancy of the anesthesiologist (p ≤ 0.02). The effects of the sig-
nificant environmental factors in the top-down design are shown in Figure 4.
The corresponding plots for the crossed design are shown in the lower part of
Figure 4 as reference, which shows that only the environmental factor related
to occupancy of the recovery beds is borderline significant.

The crossed design is based on only ten environmental settings, which im-
plies that the corresponding estimated effects become highly uncertain. In
contrast the effects estimated with the top-down design are estimated with
much higher certainty. From Figure 4, for example, it can also be seen that
as the acute arrivals are increased, the waiting time increases. Likewise the
effects of having less access to recovery beds and anesthesiologists (higher oc-
cupancy) cause significant increases in the waiting time. The impact on the
waiting time is seen to be most pronounced for occupancy of the recovery beds
and the anesthesiologists.

By combining the parametric and smoothed functions it is seen that factors
A (the anesthesiologists) and C (the recovery beds) are the the most important
factors; they have the largest estimated effects and moreover the environmen-
tal effects related to factors A and C (the occupancy of the anesthesiologist
and the occupancy of the recovery beds) are also highly significant.

In order to further investigate the significant uncontrollable factors in the
top-down design, we include interaction terms between the controllable fac-
tors recovery beds and anesthesiologists and their associated uncontrollable
factors, occupancy of recovery beds and occupancy of anesthesiologists, in the
reduced model. We restrict ourselves to considering only these interactions be-
cause there is a direct connection between the controllable and uncontrollable
factors for these two factors. The inclusion of interactions between control-
lable and uncontrollable factors is also recommended by for example Bursztyn

108
Designing simulation experiments with controllable and uncontrollable

factors for applications in health care



14 Dehlendorff et al.

Acute arrival rate
(% increase)

P
ar

tia
l e

ffe
ct

 o
n 

C
V

aR
 (

m
in

ut
es

)

−2

−1

0

1

2

3

−20 −2 15 32 50

Acute arrival rate
(% increase)

P
ar

tia
l e

ffe
ct

 o
n 

C
V

aR
 (

m
in

ut
es

)

−30

−20

−10

0

10

20

30

−20 −2 15 32 50

Recovery beds occupancy
(% increase)

P
ar

tia
l e

ffe
ct

 o
n 

C
V

aR
 (

m
in

ut
es

)

−2

−1

0

1

2

3

−20 −2 15 32 50

Top−down design

Recovery beds occupancy
(% increase)

P
ar

tia
l e

ffe
ct

 o
n 

C
V

aR
 (

m
in

ut
es

)

−30

−20

−10

0

10

20

30

−20 −2 15 32 50

Crossed design

Anesthesiologist occupancy
(% increase)

P
ar

tia
l e

ffe
ct

 o
n 

C
V

aR
 (

m
in

ut
es

)

−2

−1

0

1

2

3

−20 −2 15 32 50

Anesthesiologist occupancy
(% increase)

P
ar

tia
l e

ffe
ct

 o
n 

C
V

aR
 (

m
in

ut
es

)

−30

−20

−10

0

10

20

30

−20 −2 15 32 50

Fig. 4. Significant environmental factors. The solid lines indicate the mean effect and the dashed
lines the uncertainty of the mean effect. The x axis is measured in % corresponding to the 20 %
better and 50 % worse scenario range used in the experiment plan for the environmental factors

and Steinberg (2006) and Myers et al. (2009) for physical experimentation.
This gives the following model

E(CV aR) = β0 + β1x1 + β3x3 + β4x4 + f1(xe2) + f2(xe1)z(−1)1

+ f3(xe1)z11 + f4(xe3)z(−1)3 + f5(xe3)z13 (5)

where x1, x3 and x4 are as defined in equation (4), xe2 is the acute inter- arrival
rate, xe1 is the occupancy of the anesthesiologists and xe3 is the occupancy
of the recovery beds and zij is an indicator variable for whether controllable
factor xj has level i.

Estimating the model in equation (5) shows that two environmental fac-
tors interact with their respective controllable factors (the occupancy of the
recovery beds and the anesthesiologists) in the top-down design. Figure 5
shows the interactions, which can be seen to be a steeper linear effect at the
low level of the recovery beds (factor C) compared to the high level for the
occupancy of the recovery beds. For the anesthesiologist resource, it can be
seen that, at the low level, the estimated effect is linear and, at the high level,
an S-shaped curve is seen, the latter indicating that the setting is robust up
to a certain level, as we initially observe a flat curve. For the crossed design
the occupancy of the anesthesiologist is insignificant and the occupancy of the
recovery beds is only (borderline) significant at the low level for the number
of recovery beds.

From Figure 5 it can be seen that the analysis of the top-down experiment
suggests that the system is much more robust in terms of the CVaR with high
levels of recovery beds and anesthesiologists. However this is not picked up
by the crossed design, for which the analysis shows a borderline significant
interaction between occupancy of the recovery beds and the number of recov-
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ery beds. Moreover, the interaction for anesthesiologists and occupancy of the
anesthesiologists is seen to be insignificant.
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Fig. 5. Estimated interactions between environmental and controllable factors. The solid lines are
the estimated mean effects and the dashed lines indicate the uncertainty of the mean effects

5. Discussion

This study is based on an application of a discrete event simulation model
of a hospital unit. In healthcare applications in general, it is desirable that
the final solutions are robust to changes in the uncontrollable factors. In
the proposed design a large set of combinations of the uncontrollable factor
settings is achieved by using only a limited number of runs for each controllable
factor setting. This is done by using a different set of uncontrollable factor
settings for each controllable factor setting. Moreover the subplots are selected
so that, when considered together, they provide uniform coverage of the design
space. One restriction in the design method is the number of subplots which
needs to be the same in all whole plots. Unbalanced designs may also be of
interest, but this would require a more general construction method.

Qian et al. (2009) and Qian et al. (2009) propose designs where a high-
accuracy experiment is nested within a low-accuracy experiment. The main
idea is to construct two experiments, where the smaller one is nested in the
complete design. Qian et al. use this for cases where two computer codes
for the same problem are available; one slow but accurate and one fast but
less accurate. Thus the experimenter wants to run fewer experiments with
the slow code but more using the fast code. Qian and Wu (2008) integrate
the information in the two experiments using a Bayesian hierarchical model.
The model is primarily built on the low-accuracy experiment, whereas the
high-accuracy experiments are used to calibrate and correct the model such
that it fits the high-accuracy code. Calibration is done on points that the
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two experiments have in common. In a recent paper Qian and Wu (2009)
consider a slice space-filling design, which is based on latin hypercubes from a
customized orthogonal array for the quantitative factors. The overall design
is then sliced into subdesigns corresponding to the setting of the qualitative
factor settings.

Rennen et al. (2009) consider nested maximin latin hypercube designs.
They consider the nested design useful in the dual experiments described by
Qian et al., but also for developing training and test data sets and for se-
quential experimentation. For the development of the training and test data
sets, the design procedure can provide the experimenter with a space-filling
(with respect to the max-min criteria) design for the training data and a larger
test data set, which, together with the training data set, is also space-filling.
Similarly for sequential experimentation, a small space-filling experiment is
initially run and then potentially expanded with further experimentation by
evaluating the complete design, which once again, together with the initial
design, also forms a space-filling design. Sequential sampling is also consid-
ered by for example van Beers and Kleijnen (2008, 2003) and Kleijnen and
van Beers (2004) for metamodeling with kriging. Sequential sampling with
controllable and uncontrollable factors is an interesting strategy for future
research but beyond the scope of the current work.

In the case study presented in section 4 it is shown that the top-down de-
sign is better suited for estimating the environmental effects compared to the
crossed design. The estimated parametric effects in the two designs coincide
in terms of the three factors of major importance. It was shown that the
crossed design overlooked some of the important environmental effects, since
the coverage of the environmental factor space was worse. More importantly,
the crossed design overlooked significant interactions between controllable and
uncontrollable factors. Identifying these interactions is crucial to being able
to set the system in a robust operating mode. Thus, the significantly better
coverage of the environmental factor space implies that analysis based on the
top-down approach is less likely to overlook important effects of the uncon-
trollable factors as well as important interactions between controllable and
uncontrollable factors.

In this paper we consider spline models for analyzing the output from the
simulation model. In the deterministic computer experiments literature the
kriging (DACE) model is often used (Santner et al., 2003; Sacks et al., 1989).
For simulation models Kleijnen (2008, 2009) and Ankenman et al. (2010) con-
sider kriging for stochastic simulation models. Kleijnen (2008, 2009) uses
bootstrap methods for estimating the uncertainty around the kriging predic-
tor, whereas Ankenman et al. (2010) expand the usual kriging model with
an extra stochastic component corresponding to the variation for replications.
These methods may be relevant for the type of application presented in this
paper. One limitation of the above methods is that the factors are considered
to be continuous, which is not the case for the controllable factors in our study.
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6. Conclusion

In this study, a methodology for the design of uniformly distributed exper-
iments for simulation experimentation in the presence of both controllable
and uncontrollable factors is introduced. The methodology ensures that the
uncontrollable factor settings in the combined design for the uncontrollable
factors are uniform, while keeping an acceptable level of uniformity of the
subplots for each controllable factor setting.

The proposed methodology is primarily based on Euclidean distances. There-
fore the method can be used in designs with many uncontrollable/environmental
factors. Our results show that the method is applicable to designs with two
to 19 uncontrollable factors. Because the methodology is based on distances,
increasing the number of factors may be possible, although the sparsity of
experiments in the design space may become an issue.

For our case study it was shown that the effects of the uncontrollable fac-
tors, together with the interaction between controllable and uncontrollable
factors, were significantly better estimated with the proposed design com-
pared to a crossed design. The crossed experiment overlooked the important
interactions between controllable and uncontrollable factors, and these are
important for making the system robust. This also implies that the uncon-
trollable effects are better understood with the top-down design. Moreover,
since the uncontrollable factor space is better covered with the top-down ap-
proach, the reliability of the results is higher compared to a crossed design.
The results in terms of the controllable part of the model were seen to be the
same in both designs, which implies that the benefit of the proposed design is
primarily related to the extended coverage of the uncontrollable factor space.

In future work we focus on the analysis part; i.e., applying the Kriging
model on the output from the proposed design. The Kriging model is very
popular in simulation and an useful extension to the Kriging model will be to
incorporate the uncontrollable/controllable factor framework discussed in this
paper.
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1 Introduction

In the classic computer experiments analysis the output from the computer model is de-
terministic [18, 16]. For deterministic output a natural requirement is that the predictor
interpolates the data, since the output is observed without noise. Kriging [8, 10] is an
often used modeling technique, where interpolation is incorporated by the specification of
a covariance function depending on distances to the observed data.

The focus in computer experiments is often the deterministic/fixed effects, i.e. which pa-
rameter settings yield the best outcomes. However, some applications includes factors that
are uncontrollable in the sense that they can not be controlled in the physical system. Such
uncontrollable factors could for example be the customer arrival frequency in a grocery
store or the room temperature in a laboratory. The levels of the uncontrollable factors can
not be decided by experimenter and the factors therefore need to be treated differently in
the analysis. The analysis of uncontrollable factors is the focus of this paper.

Kleijnen [7] considers simulation models as a special class of computer models, which typ-
ically includes one (or more) stochastic part(s). The sources of variation are the seed con-
trolling the random number generator and the uncontrollable factors included in the model
to account for environmental variations. The variation from varying the seed in a simula-
tion model arises from the embedded stochastic components such as queues and activities
and can be considered as corresponding to experimental error in a physical experiment.

The second type of variation in simulation models is coming from changes in the uncontrol-
lable factors. The uncontrollable factors are settings that, although in the simulation model
are fixed, can not be controlled in the physical system. To mimic the uncertainty from the
environment the settings of the uncontrollable factors are varied (see section 4). The ran-
dom effects associated with the uncontrollable factors are important for the robustness [17].
Often the functional relationship between the uncontrollable factors and the outcome is left
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unspecified and considered merely as a source of variation. Kleijnen [7] suggests for robust-
ness analysis to summarize the mean and the variability for each controllable factor settings
and model them by two separate second order polynomials.

Another approach would be to model the functional relationship between the outcome and
the uncontrollable factor. This may unveil which uncontrollable factors are important.
Moreover, if the uncertainty of an important uncontrollable factor can be improved by e.g.
quality improvements the functional relationship could quantify the gain by doing so.

In this paper the sources of variation are quantified by means of a linear mixed effects model
to separate the variation into a component corresponding to changing the uncontrollable
factor settings and a component corresponding to the seed. Additionally, a generalized
additive model is introduced as an easy to use tool for modeling the functional relationship
between the outcome and the uncontrollable factors, i.e. model the variance components
from the linear mixed effects model.

2 The case-study

The system considered in this paper is a discrete event simulation model of an orthopaedic
surgical unit. The discrete event simulation model describes the individual patient’s flow
through the unit (illustrated in Figure 1) and is developed in collaboration with medical
staff at Gentofte University Hospital in Copenhagen. The unit undertakes both acute and
elective (planned) surgery and performs more than 4,600 operative procedures a year. While
patients come from various wards throughout the hospital, the main sources of incoming
patients are the four orthopedic wards and the emergency care unit.

The simulation model includes two sources of noise coming from changes in the uncontrol-
lable factors (a.k.a. environmental factors in physical experimentation) and from changes
in the seed controlling the random number generation process embedded in the simulation
model. The uncontrollable factors are for example the arrival rate of acute patients and
cleaning time of the operating rooms. Moreover, a set of controllable factors, for example
the number of operating rooms and the number of surgeons, is included. Typical out-
comes are waiting times, patient throughput (the total number of patients treated) and
the amount of overtime used on elective operations. The simulation model is implemented
in Extend [9] and controlled from a Microsoft Excel spreadsheet with a Visual Basic for
applications script.
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Figure 1: Basic layout of surgical unit. The patient flow is from left to right.

2.1 Performance measures

The performance measures considered for the simulation model are the total throughput
(TT), the percentage of elective patients treated outside regular hours (EOUT) and the
extent of long waiting times. Often the long waiting times are the most important ones
since they from the patient perspective tend to be the most bothersome [1]. The waiting
time distribution for the case-study is highly right-skewed with a minimum of 0 minutes, a
mean of 28 minutes, a 95 % quantile of 51 minutes and a maximum of 140 minutes, which
shows that long waiting times are present.

We suggest measuring the extent of long waiting times by the Conditional Value at Risk
(CVaR) measure. The measure originates from economics as an extension of Value at
Risk (VaR) [15, 5, 6]. Both measures quantify a distribution of losses in e.g. portfolio
management with a single statistic. For the set of waiting times Tx = {tx1, . . . , txN} from
the x’th run, CV aRα(Tx) is defined as the expected value of the α-tail distribution of
Tx [15], i.e.

CV aRα(Tx) =

(
iα
N
− α

)
txiα +

N∑
i=iα+1

txi

N

1− α
(1)

with tx1 ≤ tx2 ≤ · · · ≤ txN , iα is the index satisfying iα
N
≥ α > iα−1

N
. tiα is the α-quantile and

in economics denoted the Value at Risk (VaR). CVaR can be seen as a compromise between
the average waiting time (α = 0) and the maximum waiting time (1−1/N < α < 1), where
α reflects the weight of the longest waiting times in the measure. In the following α = 0.95
is used corresponding to that CVaR is the average of the 5% longest waiting times.

TT and EOUT are quality measures that are required to fulfill the quality constraints

1. At least the same number of patients treated compared to the reference setting
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2. At least the same percentage of elective patients treated outside regular hours com-
pared to the reference setting

where the reference setting corresponds to the current setting (see section 4), i.e. corre-
sponding to the performance under the current resource allocation at the department. The
requirements are constraints that ensures that a low CVaR is not obtained by treating fewer
patients or by treating more patients outside regular hours.

Two main questions that involves treatment of the uncontrollable factors are addressed in
this paper

1. How big are the variations in long waiting times?

(a) from which sources do they arise?
(b) which uncontrollable factors are influential?

2. Can the risk of not meeting the quality requirements for the total patient throughput
and the extent of overtime be minimized?

3 Model

Models that interpolate the data are not a requirement for non-deterministic output, which
imply that the kriging framework looses its intuitive appeal. Our case study furthermore
complicates the analysis, since most controllable factors are discrete. Moreover, the pres-
ence of uncontrollable factors implies that the factors fall in two groups with different
interpretations. We focus on the uncontrollable factors and treat the controllable factor
settings as a single factor. As a starting point a linear model is considered

y(xci
, xej

, sk) = βi + εk (2)

where βi is the effect of controllable setting i and εk ∼ N(0, σ2
ε ) the residual variation. This

model has parameters for each contpollable factor setting and a single erros term for the
variation corresponding to the seed and the uncontrollable factor settings.

The linear model estimates the variations related to the uncontrollable factors and the
seed separately. To target both types of variations explicitly a linear mixed effects model
(LME) [13] is proposed. The LME is formulated such that it quantifies the two sources of
variation, i.e.

y(xbi
, xej

, sk) = βi + Ej + Sk (3)

where βi is the effect of controllable setting i, Ej ∼ N(0, σ2
E) is the variation from the

varying uncontrollable factor settings and Sk ∼ N(0, σ2
S) the variation corresponding to
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the seed. The variation corresponding to changes in the uncontrollable factors is modeled
by considering the j’th uncontrollable factor setting’s effect as random Ej ∼ N(0, σ2

E). The
remaining variation is contained in the Sk’s. In gage R&R terminology the seed variation,
σ2

S, corresponds to the repeatability and the total variance (the σ2
ε in the linear model),

σ2
T = σ2

E + σ2
S, to the reproducibility [12].

An alternative approach is to model the functional relationships between y and the un-
controllable factors. This functional relationship can straight forward be estimated with a
Generalized Additive Model (GAM) [19]. The GAM models the functional relationship by
a sum of additive smooth functions

y(xci
, xej

, sk) = βi +
m∑

l=1

fl(x̃
l
ej

) + Sk (4)

with x̃l
ej

being the j’th setting for the l’th uncontrollable factor and Sk ∼ N(0, σ2
S) the

residual or seed term. fl is a spline based smooth function with the smoothness determined
by a penalty term. By estimating the functional relationship between the uncontrollable
factors and the outcome, the factors most important to control (if possible) are identified.
This could be the basis for focused strategies for reducing the environmental variations, i.e.
corresponding to reducing σ2

E in the LME.

The risk of not fulfilling the quality requirements can also be analyzed within the GAM
framework. For the output yq and the quality requirement cq, the outcome is binary,
I(yq < cq). A GAM with a binomial distribution family is considered and the linear
predictor is given as

E

[
log

(
p

1− p

)

ij

]
= βi +

m∑

l=1

fl(x̃
l
ej

) (5)

where p is the risk of not meeting the requirements.

The advantage of using the GAM framework is that the interpretation of the smoothed
functions is intuitive and can for example be presented graphically to the medical staff.
Moreover, the GAM does not impose a parametric form on the functional form (besides
the additivity), which imply that the data drives the analysis. Another advantage is that
the controllable factor settings are corrected by the levels of the uncontrollable factors.
The disadvantage of the GAM framework is the additivity assumption, which in this paper
implies that only marginal effects are considered. It is possible to expand the GAM to
include functions of more than one variable and interactions with e.g. controllable factors,
which potentially could involve rather complex meta models. Moreover, GAM modeling
methods are freely available in statistical software [19, 14].

5

120
Analysis of Computer Experiments with Multiple Noise Sources (European

Network for Business and Industrial Statistics)



60 70 80 90 100 110 120

0.00

0.05

0.10

0.15

0.20

CVaR

D
en

si
ty

Reference
New settings

15 20 25

0.00

0.05

0.10

0.15

0.20

TT (in hundres)

D
en

si
ty

Reference
New settings

10 20 30 40 50

0.00

0.02

0.04

0.06

0.08

0.10

Elective

D
en

si
ty

Reference
New settings

Figure 2: Estimated densities for CVaR (top), TT (middle) and EOUT (bottom) for reference
design (dashed lines) and new settings (solid lines)
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4 Data

In the remaining part of the paper output from the simulation model is considered. The
average run time for simulating 6 months operation (with one week of warm-up) is around
7 minutes. For each run the system’s performance is summarized in a set of measures, e.g.
the total patient throughput, the percentage of elective patients treated outside regular
hours and the CVaR waiting time. Two sets of data are considered:

1. 1 controllable factor setting corresponding to the current setting with

(a) 400 different uncontrollable factor settings chosen such that the ranges of the 8
uncontrollable factors are uniformly covered with respect to the wrap around L2

discrepancy [4, 3]

(b) 2 repetitions with different seeds for each uncontrollable factor setting, i.e. a
total of N = 800 runs

2. 20 different controllable factor settings, which were found in a pilot study with the
objective of finding good settings in terms of reducing the predicted CVaR waiting
time while maintaining the performance on TT and EOUT

(a) each controllable setting was assigned 20 different uncontrollable factor settings
by splitting a 400 run uniform design with 8 factors into 20 sub designs

(b) sub designs were generated such that the wrap around L2 discrepancy uniformity
criteria was minimized

(c) 5 repetitions with different seeds for each uncontrollable and controllable factor
combination, i.e. a total of N = 2000 runs

The analysis here is concerned about the second experiment if not stated otherwise, whereas
the first experiment serves as reference. The outputs from the two simulation experiments
are shown in Figure 2. The CVaR waiting times are the averages of the 5 % longest waiting
times in each run corresponding to the 90-100 longest waiting times. The potential range is
from the 95 % quantile (51 minutes) to the maximal waiting time (140 minutes). However,
as the waiting time distribution is right skewed the CVaR-values tend to be in the range
from 55 to 80 minutes with the exception of 4 observations in the reference experiment.

5 Results

Figure 2 shows the CVaR waiting times for the 20 new settings and the current settings. It
is seen that the waiting times for the new settings are lower compared to the current setup.
Furthermore, the coefficient of variation is lower for CVaR for the new settings (CV=2.58 %)
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Figure 3: Box plots of CVaR for the 20 new setting (the panels labeled 1 to 20 above the panel)
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overall mean in the reference design, the dot-dashed to the overall mean of the 20 new
settings and the solid lines to the individual setting means. Note that the box plot for
the reference has been cut off at 80, which imply that 4 observations are missing see
section 5
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Table 1: Variance components, overall means and adjusted R2 for the 20 suggested settings and
the reference scenario, respectively. † Linear regression model. ? The outcome has been
square root transformed. ∗ The linear model corresponds to the null-model since only
one controllable factor setting is present.

New settings
Outcome Model σ2

E σ2
S R2

a µ

CVaR
LM† - 1.632 0.02

63.77LME 1.172 1.162 -
GAM - 1.152 0.51

EOUT? LM - 0.502 0.33
4.77LME 0.482 0.182 -

GAM - 0.182 0.91

TT
LM - 223.502 0.18

2005.45LME 224.012 42.412 -
GAM - 42.742 0.97

Reference scenario
σ2

E σ2
S R2

a µ

CVaR
LM† - 4.342 0∗

70.23LME 2.192 3.742 -
GAM - 3.692 0.28

EOUT? LM - 0.522 0∗

4.68LME 0.482 0.192 -
GAM - 0.182 0.88

TT
LM - 226.802 0∗

1888.92LME 222.602 43.732

GAM - 41.702 0.97

compared to the reference (CV=6.18 %), TT (CVold = 12.01 % and CVnew = 12.23 %)
and EOUT 1 (CVold = 11.03 % and CVnew = 12.81 %). The increase in the CV in the
reference scenario for the CVaR waiting times is caused by the right skewed distribution
with observations ranging from 63.40 to 121.17 minutes. Without the 4 largest observations
the CV reduces to 4.13 %, i.e. still considerable higher. The overall mean of the CVaR
was estimated to 63.77 and 70.23 minutes for the new settings and the reference setting,
respectively.

The CVaR waiting times from the two experiments are summarized by box plots in Figure 3.
From the figure it is seen that most of the variation in the new settings can be attributed to
variations in the uncontrollable factors and the seed. The controllable factor setting means
are seen to be distributed closely. The linear model considered in Table 1 does indicate
significant differences between the 20 new settings with setting 2 being the setting with the
lowest CVaR waiting time. Furthermore, the variances of for the residuals by controllable
setting show evidence of being heterogeneous (p = 0.005 for Bartlett’s test of variance
homogeneity). Moreover, Figure 3 indicates that the reference setting is more sensitive to
the uncontrollable factor settings compared to the new settings.
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5.1 LME

The REML variance components in the LME of the CVaR for the new settings are sum-
marized in Table 1. The two components for CVaR are seen to be comparable in size
and a bootstrapped 95 % confidence band [2] for the intraclass correlation [11] gives

0.46 ≤ σ2
E

σ2
E+σ2

S
≤ 0.55. For the reference setup the variance components of the CVaR

are seen to be significantly larger, which shows that not only is the current setup inferior
to the proposed setups it also tends to be more sensitive to changes in the uncontrollable
factors and the seed.

Figure 2 shows that the CVaR waiting time in the reference scenario is a highly right
skewed distribution with 4 runs with values above 100, whereas the remainder of the runs
are contained in the interval [63.40; 79.87]. The 4 observations furthermore violate the
model assumptions: Bj ∼ N(0, σ2

E) and Sk ∼ N(0, σ2
S). Omitting the observations from

the analysis gives σ2
E = 2.362 and σ2

S = 1.672, which is seen to increase σ2
E and decrease

σ2
S (the average decreases from 70.23 to 70.00). The intraclass correlations before and after

removing the 4 observations are 0.26 and 0.67 corresponding to the difference between seeds
is significantly smaller after the removal. The diagnostics after omitting the observations
do not indicate problems with the model assumptions. The size of the variance components
for TT and EOUT are seen to be equivalent for the two experiments. The analysis shows
that the old setting is most sensitive to changes in the uncontrollable factors.

5.2 GAM

To identify the important uncontrollable factors a GAM model with smooth functions
for each of the 8 uncontrollable factor and a parameter corresponding to each of the 20
controllable factor settings is fitted. The GAM shows that 4 uncontrollable factors are
significant associated with the CVaR waiting times while the remaining 4 uncontrollable
factors seem not to be related to the CVaR waiting time. The significant factors are the
incoming rate of acute patients and the amount of time the anesthesiologists, porters and
the recovery beds are occupied by other activities.

The estimated functional forms of the 4 significant factors are illustrated in Figure 4. The
curves fitted for each of the 5 repetitions for the new settings show that the functional
form is consistent from one repetition to the next. It is from Table 1 seen that the residual
variation is estimated to σ2

S = 1.152, which is seen to match the component from the LME.
This indicates that no information is lost by requiring the smooth functions to be additive.
Moreover, the adjusted R2s show that the benefits of including the uncontrollable factors
are significant with absolute improvements in R2 by 0.50 or more compared to the linear

1Square root transformed for symmetry and for consistency with Table 1
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Figure 4: Significant uncontrollable factors. The two top curves in each of the 4 sub figures
correspond to the 95 % confidence limits in the reference design. The bottom curves
consists of two solid curves corresponding to a 95 % confidence limits in a model with
all 5 repetitions included and 5 dashed curves corresponding to each of the repetitions.

model.

Figure 4 shows that the same functional relationships are present for the uncontrollable
factors in the reference design except for the occupancy of the recovery beds. The occupancy
of the recovery beds has a steeper increase in CVaR in the reference setting compared to
the new settings, which is likely to be caused by the fact that fewer beds are available in
the reference setting. The smoothed curves for the occupancy of the recovery beds show
that the new settings are more robust against variations in this factor.

5.3 Risk profiles

The risk profiles of CVaR, TT and EOUT as function of the controllable settings are shown
in Figure 5. The risks are defined as the risk of not fulfilling the quality requirements
defined in section 2.1 after adjusting for the uncontrollable factor settings. In addition to
the already defined requirements, it is for CVaR waiting time required that the new settings
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Figure 5: Risk profiles for CVaR (dotted line marked 3 ), TT (dashed line marked 2 ) and EOUT
(solid line marked 1 ). Arrows indicate settings with risks lower than 0.5 (marked by
dashed line) for TT and EOUT.

have a lower CVaR-value than the 5 % quantile in the reference setting (65.43 minutes).
Table 1 shows that the performance in both mean value and variance components is similar
for TT and EOUT with the new setting compared to the current setting. On average the
TT is better (higher) with the new settings, whereas EOUT is worse (higher).

The risks are estimated with a GAM, which models the 8 uncontrollable factors with smooth
functions and the controllable factors settings as one factor. For the risks corresponding
to TT and EOUT, it is seen that settings 2, 5 and 10 perform well for both measures. It
can also be seen that the TT and EOUT risks are negatively correlated (Spearman’s rho:
−0.89), i.e. that lowering the risk of treating to few patients increases the risk of treating
more elective patients outside regular hours.

The risk of exceeding the 5 % quantile in the CVaR distribution for the reference scenario
is lowest for setting 2, which coincide with Figure 3. The 3 solutions are quite similar, i.e.
they operate with 4 operating days, 4 operating rooms and an increase in elective patients
by 2 per day. The 3 proposed settings use more resources compared to the current setup
with the lowest additional costs for setting 5. It is seen that all 3 suggested settings on
average fulfill the requirements in more than 80 % of the runs.
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6 Conclusion

The main contribution in this paper was the analysis of the simulation model, which in-
volved two sources of variation. The results showed that the variations in the CVaR waiting
time with a linear mixed effects model could be split into two equally large variance com-
ponents for the new settings, whereas the seed variance in the reference scenario was lower
compared to the variance caused by changes in uncontrollable factors. The generalized
additive model showed that the main source of variation for the new settings was the oc-
cupancy of the anesthesiologist. Moreover, the new settings eliminated the impact of one
of the important uncontrollable factors with the reference setting.

The use of the linear mixed effects model gave insight to the extent of uncontrollable
variation and the generalized additive model identified the most important uncontrollable
factors. This may assist decision makers to construct focused strategies to control the
uncontrollable factors better.

Moreover, the quality constraints were seen to be fulfilled in more than 80 % of the time
for 3 specific settings. The total throughput and the CVaR waiting time criteria were the
constraints most easy to fulfill. The draw back of the improvements in the CVaR waiting
time was the cost of the additional resources needed. By combining cost and performance it
may be possible to find solutions with a CVaR performance inferior to the new settings but
at a significant lower cost while still improving the performance compared to the reference.
Moreover more complex model structures may give a deeper understanding of the system.
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Abstract

In this paper we present a modeling framework for analyzing computer mod-
els with two types of variation. The paper is based on a case study of an or-
thopedic surgical unit, which has both controllable and uncontrollable factors.
Our results show that this structure of variation can be modeled effectively with
linear mixed effects models and generalized additive models.

1 Introduction

Computer and simulation experiments are becoming the preferred method for ana-
lyzing systems for which physical experimentation is usually not feasible. Computer
experiments are based on computer codes for which a given set of inputs generates
the output(s) frequently in a deterministic manner [1, 2]. Therefore in the analysis
of computer experiments, interpolation models such as Kriging are used to guarantee
the zero prediction error at the data points [3, 4, 5]. In some applications however the
outcome is stochastic. In stochastic simulation models for example a seed controls a
random number stream and changing the seed results in different outcomes. There
are also applications where the factors can be separated into two groups as "con-
trollable" and "uncontrollable" based on their characteristics in the physical system.
The uncontrollable factors could for example be the customer arrival rate in a grocery
store or the room temperature in a laboratory and the controllable factors could for
example be the number of checkout counters. Since the uncontrollable factors can
not be controlled in the actual physical system, their input values in the simulation
model have to be varied. These uncontrollable factors are different from the control-
lable factors and thus need to be treated differently in the analysis as well as when

1
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designing the experiments. The analysis of the uncontrollable factors is the primary
focus of this paper.

Kleijnen [3, 5] considers simulation models as a special class of computer models,
which typically include one or more stochastic elements. The sources of variation are
the seed controlling the random number generator and the set of uncontrollable factors
that are included in the computer model to account for the environmental variations
of the underlying physical system. The variation in the output from varying the
seed in a simulation model originates from the embedded stochastic components such
as queues, arrival processes and procedures and can be considered to correspond to
the experimental error in a physical experiment. The second type of variation in
simulation models is coming from changes in the uncontrollable factors. To mimic
the uncertainty from the environmental factors in the physical system the settings
of the uncontrollable factors are varied in the simulation model (see section 5). The
variation associated with the uncontrollable factors is important for robustness [6],
since the results from a simulation model generally need to be reliable under different
environmental settings in the actual physical system.

The functional relationship between the uncontrollable factors and the outcome is
often left unspecified and considered merely as a source of variation. Kleijnen [5]
suggests for robustness analysis to summarize the mean and variance for each con-
trollable factor settings and model them by two separate second order polynomials.
Another approach is to model the functional relationship between the outcome and
the uncontrollable factors. This may unveil the important uncontrollable factors.
But more importantly it may unveil important interactions between controllable and
uncontrollable factors, which may then be used to set the system in a more robust
operating mode.

In this article the sources of variation are quantified by means of a linear mixed
effects model to separate the variation into a component corresponding to changing
the uncontrollable factor settings and a component corresponding to changes in the
seed. Additionally, a generalized additive model is used to model the functional
relationship between the outcome and the uncontrollable factors, which replaces the
variance components in the linear mixed effects model.

2
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Figure 1: Basic layout of surgical unit. The patient flow is from left to right.

2 The case study

The computer model considered in this paper is a discrete event simulation model
of an orthopaedic surgical unit. The model simulates the individual patient’s flow
through the unit (illustrated in Figure 1) and has been developed in collaboration
with the medical staff at Gentofte University Hospital in Copenhagen. The unit
undertakes both acute and elective (planned) surgery and performs more than 4,600
operations a year. The patients come from several wards throughout the hospital,
but the main sources of incoming patients are the four orthopedic wards and the
emergency care unit.

2.1 Input factors

The simulation model has several noise sources; these can be separated into noise
caused by variations in the uncontrollable factors and noise caused by variation in
the seed. The seed controls the random number stream embedded in the simulation
model and thus variations influence the embedded queues and processes and mimic
the experimental error in a physical experiment. The uncontrollable factors are for
example the arrival rate of acute patients and the cleaning time of the operating rooms
(ORs). Moreover, a set of controllable factors, for example the number of operating
rooms and the number of surgeons, is influencing the performance of the model. The
factors in the model are summarized in Table 1, which shows that the majority of the
uncontrollable factors are related to resources being shared with other segments of
the department and other departments of the hospital and hence might be occupied
for other tasks. The outcomes from the simulation model are waiting times, patient
throughput (the total number of patients treated) and the amount of overtime used
on elective surgery. The simulation model is implemented in Extend [7] and controlled
from a Microsoft Excel spreadsheet with a Visual Basic for applications script.

3
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Table 1: Controllable and uncontrollable factors used in the simulation model
Controllable factors Uncontrollable factors
Porters Porters occupied
Elective patients Surgeon occupied
ORs OR cleaning time
Recovery beds Recovery bed occupied
Cleaning teams Cleaning teams occupied
Anesthesiologists Anesthesiologist occupied
Operating days Length of procedures
Acute intake Acute arrival rate

2.2 Performance measures

As performance measures, we consider the total throughput (TT), the percentage of
elective patients treated outside regular hours (EOUT) and the extent of long waiting
times. Often the longest waiting times are the most important ones since from the
patient’s perspective they are the most bothersome [8]. The waiting time distribution
for the case study is highly right-skewed with a minimum of 0 minutes, a mean of 28
minutes, a 95 % quantile of 51 minutes and a maximum of 140 minutes.

We suggest measuring the extent of long waiting times by the Conditional Value at
Risk (CVaR) measure [9]. The measure originates from finance as an extension of
Value at Risk (VaR) [10, 11, 12]. Both VaR and CVaR quantify a distribution of
losses for example of a portfolio of assets in a single statistic. For the set of waiting
times Tx = {tx1, . . . , txN} from the x’th run, CV aRα(Tx) is defined as the expected
value of the α-tail distribution of Tx [10], i.e.

CV aRα(Tx) =

(
iα
N
− α

)
txiα +

N∑
i=iα+1

txi

N

1− α
(1)

with tx1 ≤ tx2 ≤ · · · ≤ txN , iα is the index satisfying iα
N
≥ α > iα−1

N
. tiα is the

α-quantile and in economics denoted the Value at Risk (VaR). CVaR can be seen as
a compromise between the average waiting time (α = 0) and the maximum waiting
time (1−1/N < α < 1), where α reflects the weight put on the longest waiting times
in the sample: A high α implies fewer waiting times used in the statistic and hence
more weight on the longest waiting times. In the following α = 0.95 is used so that
CVaR is the average of the 5% longest waiting times.

The two other outcomes, TT and EOUT, are quality measures. They are required to
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fulfill the following quality constraints

1. At least the same number of patients treated compared to the reference setting
2. The percentage of elective patients treated outside regular hours compared to

the reference setting may not increase

where the reference setting corresponds to the current setting (see section 5), i.e.
corresponding to the performance under the current resource allocation at the de-
partment. The requirements are constraints that ensure that a performance improve-
ment in terms of CVaR is not obtained by treating fewer patients or generating more
overtime by treating more patients outside regular hours. In this study, we focus
on estimating the size of the variations in CVaR and from which sources they arise.
Moreover, we want to analyze the possibility of lowering CVaR while fulfilling the
quality requirements.

3 Modeling framework

As mentioned earlier, the output from the simulation model is stochastic with two
types of noise coming from the uncontrollable factors and the seed controlling the ran-
dom number stream. The Kriging framework often used in analysis of computer expe-
riments is seen not to be well suited in our case, since the output is non-deterministic.
There are further complications, since in our case study most controllable factors
are discrete and thus interpolation is not necessarily appropriate. The presence of
uncontrollable factors implies that the factors fall in two groups with different in-
terpretations. In this study the focus is on the uncontrollable factors and we treat
the controllable factor settings as a single factor. As initial model a linear model is
considered

y(xci
, xej

, sk) = βi + εjk (2)

where βi is the effect of controllable setting xci
and εjk ∼ N(0, σ2

ε ) the residual
variation. xci

is the i’th controllable factor setting, xej
the j’th environmental factor

setting and sk the seed in the k’th replicate. The model has parameters for each
controllable factor setting and a single error term covering the variation due to both
the seed and the uncontrollable factor setting.

The linear model does not estimate the variations related to the uncontrollable factors
and the seed separately. To target both types of variations explicitly a linear mixed
effects model (LME) is proposed [13]. The LME is formulated such that it quantifies

5
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the two sources of variation by estimating the variance component for each in the
following model

y(xci
, xej

, sk) = βi + Ej + Sk (3)

βi is the effect of controllable setting i, Ej ∼ N(0, σ2
E) is the random effect of the j’th

uncontrollable factor setting and Sk ∼ N(0, σ2
S) is the variation corresponding to the

seed. The model is estimated by restricted maximum likelihood estimation (REML)
as described in Venables and Ripley [14].

The LME model quantifies the variation corresponding to varying the settings of the
uncontrollable factors in a single term. It is estimated in the variance component
σ2

E . An alternative approach is to model the functional relationship between y and
each of the uncontrollable factors. These functional relationships can for example be
estimated using a generalized additive model (GAM) [15]. In this modeling frame-
work the effects of the uncontrollable factors are modeled as non-parametric smooth
additive functions and the resulting model is given as

y(xci
, xej

, sk) = βi +

m∑

l=1

fl(x
l
ej

) + Sk (4)

with xl
ej

being the j’th setting for the l’th uncontrollable factor and Sk ∼ N(0, σ2
S)

the residual or seed term. fl is a spline based smooth function with the smoothness
determined by a penalty term. By estimating the functional relationship between the
uncontrollable factors and the outcome, the uncontrollable factors that are needed to
be tightly controlled may be identified. But more importantly interactions between
controllable and uncontrollable factors may also be estimated. The estimation of the
β’s and the smooth functions can for example be done with the R-code provided by
Wood [16, 17].

The fraction of runs not fulfilling the quality requirements can also be analyzed within
the GAM framework. For the output yq, q ∈ {CV aR, TT, EOUT}, and the quality
requirement cq, the outcome is binary, I(yq < cq) (1 if fulfilled and 0 if not). A GAM
with a binomial distribution family is considered with the linear predictor given as

E

[
log

(
p

1− p

)

ij

]
= βi +

m∑

l=1

fl(x
l
ej

) (5)

where p is the fraction of runs not meeting the requirements for a given controllable
factor setting.

The advantage of using the GAM framework is the employment of the smooth func-
tions, which for example implies that a potential complex effect of an uncontrollable

6

137



factor can be easily presented graphically. Moreover, the GAM does not impose a
parametric form on the functional relationship except for the spline-based functions
and the additivity, which implies that the data decides the model. Another advantage
is that the controllable factor effects can be corrected for the effect of the uncontrol-
lable factors. The disadvantage of the GAM framework is the additivity assumption,
which in this paper implies that only marginal effects are considered. It is possible
to expand the GAM to include functions of more than one variable and interactions
with e.g. controllable factors, which could potentially lead to rather complex models.

4 Example

To illustrate our modeling framework presented in section 3, we consider a simple
queuing-system operating in one of two modes: M/M/1 or M/M/2 (2 servers working
in parallel). The M/M/1 (M/M/2) queue consists of a single arrival process with
Poisson arrivals and one (two) server(s) with exponential service times. The arrival
rate, the service rate and the number of servers are denoted λ, µ and m, respectively.
In the single server system the service time is defined to be approximately half as
long as the service time of the servers in the two server system, which corresponds to
the server utilization, ρ = λ

mµ
, being constant for fixed λ.

We consider the expected waiting time in the queue, Wq, as the performance param-
eter of the system. The expected waiting time is known to be

Wq =

{
λ

µ(µ−λ)
= ρ2

λ(1−ρ)
m = 1

λ2

µ(4µ2−λ2)
= 2ρ3

λ(1−ρ2)
m = 2

(6)

instead of considering µ directly, we use ρ. On log-scale the expected waiting time in
the queue is given as

log(Wq) =

{
− log(λ) + 2 log(ρ)− log(1− ρ) m = 1

− log(λ) + log(2) + 3 log(ρ)− log(1 + ρ)− log(1− ρ) m = 2
(7)

The advantage of considering the expected waiting time on log-scale is that it provides
a more interpretable model that separates λ from ρ. Another advantage is that it
gives a more symmetric distribution of the output, which would be the argument for
transforming the data if the true model were not known. In the following we set
LWq = log(Wq) for ease of notation. We treat m as a controllable factor, and λ and ρ
as uncontrollable factors since it is deemed possible to control the number of servers
but not the average arrival nor the service rates. The difference in waiting time for
m = 2 vs. m = 1 is LWq(2)− LWq(1) = log(ρ)− log(1 + ρ) + log(2).

7
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4.1 Design

A simulation model that can operate as both a M/M/1 and a M/M/2 queue is im-
plemented in Extend [7]. Each run of the simulation model is run for 20000 minutes
where the first 10000 minutes are used as warm up period to ensure that the waiting
time is stabilized. Moreover the seed controlling the random number generator is
changed before each run, which makes the simulation model stochastic.

Two experimental plans are constructed; one for each setting of m. Each experimental
plan consists of a uniform design with 2 factors (λ, ρ) and 100 runs. We use uniform
designs since they are robust against model misspecification and do not rely on a
certain model structure [18]. The uncontrollable factor region is given as the rectangle
spanned by the intervals λ ∈ [0.67, 1] and ρ ∈ [0.48, 0.72] corresponding to varying the
uncontrollable factors 20 % around their average values. The simulation model takes
µ = λ

mρ
as input value, but the design and analysis are done for ρ. To estimate the

variation related to the random seed, 5 replications are taken for each combination
of m, λ and ρ, which in total gives 1000 runs.

4.2 Results

The LM, LME and GAM models defined in section 3 are used to model the LWq

values obtained from the simulation model. The parametric part of the models is
given as

LWq = β0 + β1I(m = 2) (8)

where I() is the indicator function. ρ and λ are included in the GAM model on their
original scale with a smoother for each m, yielding the following combined model

LWq =β0 + β1I(m = 2) + f1(λ)I(m = 1) + f2(λ)I(m = 2)

+ f3(ρ)I(m = 1) + f4(ρ)I(m = 2)
(9)

where the smooth functions are expected to be f1(λ) = f2(λ) = − log(λ), f3(ρ) =
2 log(ρ) − log(1 − ρ) and f4(ρ) = log(2) + 3 log(ρ) − log(1 + ρ) − log(1 − ρ). In the
LME model each combination of m, ρ and λ corresponds to one level of Ej.

Table 2 summarizes the parameters of the models for LWq. The estimates for the
LME model show that the residual variation in the LM model for LWq mostly consists
of variation caused by varying the uncontrollable factors. The residual variation in
the LM-model is split into a main component corresponding to the variation related

8
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Table 2: Summary for modeling LWq-results from queuing system
Model σE σS β0(SD) β1(SD)
LM 0.48 0.11(0.02) −0.30(0.03)
LME 0.47 0.08 0.11(0.05) −0.30(0.07)
GAM 0.08 0.11(0.01) −0.30(0.01)

to the uncontrollable factors and a minor component corresponding to the variation in
the seed in the LME model. The residual variance in the GAM is seen to be the same
as in the LME model, which indicates that the variation related to the uncontrollable
factors is modeled adequately by the smooth function. Moreover, it is seen that sum
of the variance component in the LME models is comparable with the total variation
in the linear model.

The estimated partial effects of ρ and λ on LWq are shown in Figure 2 with the
corresponding theoretical partial effects superimposed. It can be seen that the effects
of the uncontrollable factors are close to the theoretical values of the effects. For λ
some minor deviations from the expected functions are seen and the two estimated
curves are not perfectly parallel. The smoothed and theoretical curves are tightly
superimposed, since a simple simulation model is used and the outcome is additive.
The difference between the estimated effect of λ for one and two servers is however
insignificant, whereas the difference for ρ is highly significant. The model explains
more than 98 % of the variation in the data and the residual variation is seen to be
0.082 compared to the LWq values varying from −1.82 to 1.62.

The estimates of the parameters do also coincide with the true values. Together the
models provide insight on the properties of the two queuing system, by using no prior
information. In the next section, we return to the case study given in section 2 and
apply the proposed approach to model the CVaR waiting times.

5 Case study continued

For the case study given in section 2, the average computer time needed for simulating
6 months of operation (with one week of warm-up) is around 7 minutes. For each run
the system’s performance is summarized in a set of measures, e.g. the total patient
throughput, the percentage of elective patients treated outside regular hours and the
CVaR waiting time. Two experimental designs are considered

9
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Figure 2: Estimated partial effects of ρ and λ on LWq. Lines indicated with "o" are
estimated partial effects of ρ and λ on LWq, solid lines are the theoretical partial
effects. For both ρ and λ the top curves correspond to m = 1 and the bottom curves
to m = 2.

1. The current controllable factor setting corresponding to the current setup sim-
ulated with

(a) 400 different uncontrollable factor settings chosen such that the ranges of
the 8 uncontrollable factors are uniformly covered

(b) 2 repetitions with different seeds for each setting of the uncontrollable
factors, i.e. a total of N = 800 runs

(c) the combined design is denoted DC

2. 20 new controllable factor settings, which were found in a pilot study with
the objective of finding good settings in terms of reducing the predicted CVaR
waiting time while maintaining the performance on TT and EOUT. Each setting
is simulated under

(a) 20 different uncontrollable factor settings chosen from the 400 run uniform
design with 8 factors consider in the reference design

(b) 5 repetitions under different seeds for each uncontrollable and controllable
factor combination, i.e. a total of N = 2000 runs

(c) the combined design is denoted DN
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Figure 3: Estimated densities for CVaR (top), TT (middle) and EOUT (bottom) for
reference design (dashed lines) and new settings (solid lines)

The sub-designs (the designs for the uncontrollable factors used for a certain setting of
the controllable factor) considered in DN are generated such that all 400 settings are
assigned to one controllable factor setting each. This is done by first constructing a
uniform design with 400 runs, then assigning each run to a whole plot (a combination
of the settings of the controllable factors) such that all runs are assigned and each
whole plot has 20 runs. The uniformity of the design is measured by the wrap-
around discrepancy as suggested by Fang et al. [18]. Likewise the optimal construction
of the sub-designs is achieved through the assignment of runs that minimize the
maximal value of the wrap around values of the sub-designs. The main benefit of the
design is that more uncontrollable factor settings can be tried compared to a crossed
design, which is often used in applications with controllable and uncontrollable factors.
This gives a better coverage of the uncontrollable factor space. For more detail, see
Dehlendorff et al. [19].

11
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The analysis here is focused on the output from DN if not stated otherwise. The
results from DC serve as baseline. The outputs from both designs are shown in
Figure 3 and are seen to be similar for TT and EOUT. The CVaR waiting times
are seen to be lower for the new settings. Each run consists of approximately 2000
patients. Thus the CVaR waiting time becomes the average of the approximately 100
longest waiting times. The potential range for CVaR is from the 95 % quantile (51
minutes) to the maximal waiting time (140 minutes). However, as the waiting time
distribution is right skewed the range of the CVaR-values goes from 55 to 80 minutes
with the exception of 4 runs.

5.1 Results

Figure 3 shows the CVaR waiting times for the 20 new settings and the current
settings. It can be seen that the CVaR waiting times for the new settings are shorter
compared to the current setup as expected from the pilot study. Furthermore, the
coefficient of variation (CV) is lower for CVaR for the new settings (CV=2.58 %)
compared to the reference (CV=6.18 %). The CVs for CVaR are also seen to be
lower compared to TT (CVcur = 12.01 % and CVnew = 12.23 %) and EOUT (CVcur =
11.03 % and CVnew = 12.81 %). For EOUT, we use the square root transformation
for symmetry and consistency with Table 3. The significant increase in the CV
in the reference scenario for the CVaR waiting times reflects a more right skewed
distribution with observations ranging from 63.40 to 121.17 minutes. Without the 4
largest observations in the reference scenario the CV reduces to 4.13 %, which is still
considerably high compared to the new settings. The overall mean CVaR is estimated
to be 63.77 and 70.23 minutes with the new and reference settings, respectively. The
initial analysis suggests that the new settings give lower CVaR on average and the
performance is less sensitive to changes in the controllable factors.

Fitting the linear model (LM in Table 3) does indicate significant differences in mean
CVaR among the 20 new settings with setting 2 having the lowest CVaR waiting time.
Furthermore, the variances around the means for each setting of the controllable
factors show evidence of being heterogeneous with p = 0.005 for Bartlett’s test of
variance homogeneity. From Table 3 it can also be seen that the residual variation in
the reference scenario is 7 times higher compared to the new settings, which indicates
that the new settings are more robust against changes in the uncontrollable factors.
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Table 3: Estimate for models in section 3. The variance components are summarized
in σE and σS, the overall means in µ, and the adjusted R2 in R2

a for the 20 suggested
settings and the reference scenario for CVaR, EOUT and TT, respectively. † Linear
regression model. ? The square root of the outcome is used. ‡ The linear model
corresponds to the null-model since only one controllable factor setting is present.

New settings
Outcome Model σE σS R2

a µ

CVaR
LM† - 1.63 0.02

63.77LME 1.17 1.16 -
GAM - 1.15 0.51

EOUT? LM - 0.50 0.33
4.77LME 0.48 0.18 -

GAM - 0.18 0.91

TT LM - 223.50 0.18
2005.45LME 224.01 42.41 -

GAM - 42.74 0.97
Reference scenario

σE σS R2
a µ

CVaR
LM† - 4.34 0‡

70.23LME 2.19 3.74 -
GAM - 3.69 0.28

EOUT? LM - 0.52 0∗

4.68LME 0.48 0.19 -
GAM - 0.18 0.88

TT LM - 226.80 0∗

1888.92LME 222.60 43.73
GAM - 41.70 0.97
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5.2 LME

The REML estimates of the variance components in the LME analysis of the CVaR
waiting times are also included in Table 3. The two components for CVaR are seen
to be comparable in size for DN and a bootstrapped 95 % confidence band [20] for
the intraclass correlation [21] gives 0.46 ≤ σ2

E

σ2
E+σ2

S
≤ 0.55. For the reference setup, the

variance components of the CVaR are seen to be significantly larger. This shows that
not only is the current setup inferior to the proposed setups on average, but it also
tends to be more sensitive to changes in the uncontrollable factors and the seed. The
total reduction in variance with the new settings compared to the reference settings is
86 % with the largest relative reduction for variation corresponding to the seed being
90 %.

From Figure 3 it can be seen that the CVaR waiting times in the reference scenario
have a highly right skewed distribution with 4 runs with CVaR-values greater than 100
minutes, whereas the remainder of the runs are contained in the interval [63.40, 79.87].
Furthermore, the 4 observations violate the model assumptions: Bj ∼ N(0, σ2

E) and
Sk ∼ N(0, σ2

S). Omitting the observations from the analysis gives σ2
E = 2.362 and

σ2
S = 1.672 which means an increase in σ2

E and a decrease in σ2
S with the average

also decreasing from 70.23 to 70.00. The reduction in total variation without the 4
observations from the reference settings to the new settings is 68 %. The diagnostics
after omitting the observations do not indicate problems with the model assumptions.
It is seen that the current setting (with or without the 4 observations) is more sensitive
to changes in the uncontrollable factors. The size of the variance components for TT
and EOUT are equivalent for the two experiments, whereas the sample means are
higher with the new settings.

5.3 GAM

To identify the significant uncontrollable factors a GAM model is fitted to the CVaR
waiting times. From the estimated model it can be seen that 4 uncontrollable factors
are significantly affecting the CVaR waiting times while the remaining 4 uncontrol-
lable factors do not have an effect on the CVaR waiting times. The significant factors
are the incoming rate of acute patients and the amount of time the anesthesiologists,
porters and the recovery beds that are occupied by other processes.

The estimated effects of the significant uncontrollable factors are shown in Figure 4.
The curves fitted individually for each of the 5 repetitions for the new settings show
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that the functional form is consistent from one repetition to the next. In Table 3 it can
also be seen that the residual variation is estimated to be σ2

S = 1.152, which matches
the component from the LME model. This compared to the LME indicates that
no information is lost by restricting the smooth functions to be additive. Moreover,
the adjusted R2’s show that the benefit of including the uncontrollable factors is
significant with 50 % or more improvements in R2 compared to the linear model.

From Figure 4 it can be seen that the same functional relationships exist for both the
current setting and the new settings for the occupancy of the anesthesiologists and
the porters. The occupancy of the recovery beds has a steeper increase in CVaR in
the reference settings compared to the new settings, which is likely to be caused by
the fact that fewer beds are available in the reference settings. The smoothed curves
for the occupancy of the recovery beds show that the new settings are more robust
against variations in this factor. It can further be seen that the new settings are less
sensitive to the arrival rate of the acute patients (Figure 4(a)). Moreover, it can also
be seen from the curves for the occupancy of the porters and the anesthesiologists
that the curves for the new settings are flatter compared to the current settings.
This indicates an interaction between the controllable and the uncontrollable factors,
and shows that with the new controllable settings the system is more robust against
changes in the arrival rate and the occupancy of the recovery beds. Compared to
Figure 2, the effect of increasing the arrival rate shown in Figure 4(a) corresponding
to shortening the time between arrivals, is similar to the M/M/1 and M/M/2 queues
for which it also increases the waiting time.

5.4 Risk profiles

The risk profiles of CVaR, TT and EOUT for each combination of the controllable
factor settings are shown in Figure 5. The risks are defined as the risk of not fulfilling
the quality requirements defined in section 2.2. In addition to the already defined
requirements, we require that the new settings have a lower CVaR-value than the
5 % quantile in the reference setting (65.43 minutes). From Table 3 it can be seen
that the performances in mean value and variance components are similar for TT and
EOUT with the new settings compared to the baseline scenario. On average the TT
is 6 % better (higher) in the new settings, whereas EOUT is 2 % worse (higher). This
implies that it can be expected that meeting the requirement for EOUT will be more
challenging.

The risks are estimated with the model in equation (5), which estimates the effect of
the uncontrollable factors on the linear predictor with smooth functions. For the risks
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Figure 4: Estimated effects of the significant uncontrollable factors. (a) Acute inter-
arrival time, (b) amount of time porters are occupied by other procedures, (c) amount
of time anesthesiologists are occupied by other procedures and (d) amount of time
the recovery beds are used for other patients. The two top curves in each of the 4
sub figures correspond to the 95 % confidence limits for the estimated effects in the
reference design. The bottom curves consist of two solid curves corresponding to a
95 % confidence limits for the estimated effect in a model with all 5 repetitions in DN

included and 5 dashed curves corresponding to a model for each of the 5 repetitions.
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Figure 5: Risk profiles for CVaR (dotted line marked 3 ), TT (dashed line marked 2 )
and EOUT (solid line marked 1 ). Arrows indicate settings with risks lower than 0.5
(marked by dashed line) for TT and EOUT.

corresponding to TT and EOUT, it can be seen that settings 2, 5 and 10 perform well
for both measures. It can also be seen that the TT and EOUT risks are negatively
correlated with Spearman’s rho is equal to−0.89, i.e. that lowering the risk of treating
too few patients increases the risk of treating more elective patients outside regular
hours. Settings 2, 5 and 10 are quite similar, that is they operate with 4 operating
days, 4 operating rooms and an increase in elective patients by 2 per day. The 3
settings use more resources compared to the current setup with the lowest additional
costs for setting 5. It can be seen that settings 2, 5 and 10 on average fulfill all the
requirements in more than 80 % of the runs. Compared to the reference setting the
most interesting difference in the controllable factors is the use of 4 operating days
compared to 5 as in the current setting.

6 Conclusion

In this article, we present the analysis of a simulation model with two types of vari-
ation due to changing seed and changes in the settings of the uncontrollable factors.
The usefulness of using a generalized additive model and a linear mixed model models
were illustrated by a theoretical queuing system, which showed that the suggested
modeling framework performed equally well for the well-known queuing systems. The
analysis for our case study shows that the variation in the CVaR waiting time with
a linear mixed effects model can be split into two equally large variance components
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for a set of new settings, whereas the seed variance in the reference scenario is lower
compared to the variance caused by changes in uncontrollable factors. A generalized
additive model shows that the main source of variation for the new settings is the
use of the anesthesiologist for other tasks. Moreover, the new settings eliminate the
impact of one of the most important uncontrollable factors.

The use of the linear mixed effects model provides additional insight on the variation
related to the settings of the uncontrollable factors and the generalized additive model
identifies the most important uncontrollable factors. This may assist decision makers
in constructing focused strategies for controlling the uncontrollable factors better and
if possible to improve the robustness of the system. In this application for example
to ensure a more reliable access to the anesthesiologist seemed to be beneficial. The
analysis also shows that the uncontrollable factors interacted with the controllable
factors. Given the new settings the system was deemed more robust to changes in
the uncontrollable factors.

Moreover, specific settings of the controllable factors improved the long waiting times
significantly while keeping a low risk of treating fewer patients or more patients outside
regular hours. The drawback of the improvements in the CVaR waiting time was the
cost of the additional resources needed. By combining cost and performance, it may
be possible to find cost-effective solutions balancing cost and waiting time. The cost-
effectiveness issue is important for further analysis as resources are a constraint. This
could be done by translating waiting time into cost or by letting waiting time serve
as a risk measure in a Pareto frontier analysis.
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Abstract

Kriging is often used to obtain meta-models for deterministic sim-

ulation. In this article we propose a procedure that handles simulation

experiments with both quantitative and qualitative factors, i.e., with

the input domain divided into two strata. The proposed procedure

relies on the usual Kriging framework, but introduces an initial step

to assess the similarity of the model segments, which is used in the

estimation of a combined model over all segments.

key words: Computer experiments, kriging, meta-modeling, sim-

ulation model
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1 Introduction

Computer experiments have been receiving increasingly more attention with

the growing use of computationally expensive computer models to simulate

complex systems (Sacks et al., 1989; Santner et al., 2003; Martin and Simp-

son, 2005). Often these expensive computer models are replaced by cheaper

meta-models, which are better suited for analysis and optimization. Com-

puter experiments are often assumed to give deterministic output, which

implies that a natural criterion for the meta-models is to interpolate the

data. A method originating from geo-statistics called Kriging, developed by

Krige and improved by Matheron (1963), is often applied in the field of com-

puter experiments (Martin and Simpson, 2005; Sacks et al., 1989; Santner

et al., 2003). The usual Kriging model is an interpolator and can fit com-

plex responses surfaces, which makes it a model well suited for deterministic

computer experiments.

Simulation models are a subtype of computer models, which can be analyzed

within the Kriging framework (Kleijnen (2008a,b, 2009); van Beers and Klei-

jnen (2008); Ankenman et al. (2008) and Johnson et al. (2008)). Simulation

models are usually divided into two subcategories; deterministic and stochas-

tic. In deterministic simulation the output is observed without uncertainty

and hence interpolation is a desired property, whereas in stochastic simula-

tion replicates give different outputs and therefore the objective is to fit a

predictor for the underlying signal. The variation in the output in stochastic

simulation is caused by stochastic components such as arrival processes and

queues. Stochastic simulation models are analyzed by for example Kleijnen
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(2008a) and Ankenman et al. (2008). The former uses the usual Kriging

framework on the averages at each design site and bootstraps to estimate the

true predictor variance, whereas the latter expand the Kriging model with an

extra term corresponding to the replication variation. In this paper, we only

consider deterministic output by means of a discrete event simulation model

for an orthopedic surgical unit at a hospital (Dehlendorff et al., 2010b) given

in section 6.

A subtype of simulation models with two factor types; qualitative and quan-

titative is considered in this paper. This is not handled in the usual Kriging

framework, which assumes that all factors are quantitative. Moreover, the

response surface may be different from one level of a qualitative factor to the

next, which implies that unrestricted interpolation across the levels of the

qualitative factors may not be appropriate. On the other hand some cor-

relation is expected between the levels of the qualitative factors and hence

treating these levels independently is not appropriate either. In this article

a novel method, which uses methods from the usual Kriging framework in a

two stage estimation method for experiments with two types of input factors,

is proposed.

Hung et al. (2009) and Qian et al. (2008) consider another framework for

Kriging for computer models with qualitative and quantitative factors. They

use the levels of the qualitative factors to define the closeness of the observa-

tions together with the usual correlation function for the continuous factors.

Hung et al. (2009) focus on computer experiments with branching and nested

factors, where the branching factors can be seen as a special case of having

3
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qualitative factors. A different approach for modeling computer models with

quantitative and qualitative factors is given by Zhou et al. (2010). They use

a penalty based on a hypersphere parameterization. We discuss this method

in detail in section 4.2.

We start by introducing the case-study in section 2 and the usual Kriging

model in section 3. In section 4 the Kriging framework is expanded to handle

quantitative and qualitative factors. The new framework is compared to the

methods suggested by Hung et al. (2009) (Qian et al. (2008)) and Zhou et al.

(2010) on a set of test functions in section 5 and on a specific application

in section 6. with results indicating that our method gives more accurate

meta-models.

2 Case-study

In this section we consider a discrete event simulation model for an orthopedic

surgical unit at a hospital. The basic outline of the surgical unit is illustrated

in Figure 1 and consists of three main modules: arrival, operating facilities

and recovery.

The model simulates the patient route through the unit and the model con-

sists of eight qualitative factors such as the staffing, the number of operating

rooms and recovery beds (we treat these factors as qualitative, since only a

few levels are present for each factor) and eight quantitative factors such as

the incoming rate of acute patients (the factors are given in Table 1). The

eight quantitative factors are uncontrollable in the physical system and hence

4

157



Figure 1: Surgical unit

the system can only be controlled only through the eight qualitative factors,

e.g., making the system robust is done by setting the qualitative factors (see

for example (Dehlendorff et al., 2010a, 2011)). In this article we however only

deal with the qualitative/quantitative aspect of the model and for robustness

issues we refer to Dellino et al. (2009).

Type Factors

Controllable

Porters Anesthesiologists
ORs Recovery beds

Cleaning teams Elective patients
Operating days Acute intake

Uncontrollable

Porters occupied Anesthesiologist occupied
OR cleaning time Recovery bed occupied

Cleaning teams occupied Surgeon occupied
Length of procedures Acute arrival rate

Table 1: Factors used in simulation model for surgical unit

In this simulation study the primary concern is the extent of long waiting

times, which is measured by the Conditional Value of Risk (CVaR) waiting

time as described in Dehlendorff et al. (2010b). The measure is a statistic

used in finance for example to quantify a distribution of losses in portfolio

optimization (Kibzun and Kuznetsov, 2003, 2006; Alexander et al., 2006).
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The measure corresponds to the sample average of the 5 % longest waiting

times and is a compromise between using the overall sample average (called a

risk neutral strategy) and the sample maximum (called a risk averse strategy).

The simulation model is kept in a deterministic operating model by keeping

the seed controlling the random number generator fixed. A single run cor-

responds to approximately 2000 surgical procedures and takes around seven

minutes to complete, which implies that trying all possible settings is simply

computationally unfeasible. The model is implemented in Extend (Krahl,

2002) and controlled from an Excel spreadsheet by a Visual Basic for Appli-

cations script.

3 Kriging

In this section we briefly introduce Kriging (for further details see Sacks et al.

(1989); Kleijnen (2008a) and Santner et al. (2003)). Kriging is a modeling

method that approximate a deterministic function (model) with a random

function (Santner et al., 2003), but for practical reasons we will use Kriging

as the acronym for the modeling framework. We estimate the model with

the Matlab toolbox DACE (Lophaven et al., 2002a,b), which is one of the

commonly used publicly available toolboxes for Kriging.

We consider a function or computer code that, given the input vector x,

generates the scalar and deterministic output y(x). The Kriging model relies

on the assumption that the deterministic output y(x) can be described by
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the random function

Y (x) = f(x)Tβ + Z(x) (1)

where f(x)Tβ is a parametric trend with p parameters and Z(x) is a zero

mean gaussian random field assumed to be second order stationary with co-

variance function σ2R(xi,xj) (Santner et al., 2003; Ankenman et al., 2008).

We will return to the correlation structure in section 4.2. Y (x) is a ran-

dom field required to interpolate the true function at the design sites. The

interpolation property is one of the main advantages of using Kriging for

deterministic computer models.

We consider a set of n design points X = {x1, . . . ,xn} and corresponding

observations y = {y(x1), . . . , y(xn)} where y() is the true function (computer

model). The correlation matrix for the design points is denoted R(θ) where

the (ij)th element is the correlation between the ith and jth design points

given as R(xi,xj). Likewise the vector of correlations between the point, x,

and the design points is defined as

r(x) = [R(x1,x), . . . , R(xn,x)]T (2)

The regressor f(x) is given by a vector with p regressor functions [f1(x) . . . fp(x)]T

and the regressors for the design sites are given by F = [f(x1)T · · · f(xn)T ]T .

Usually ordinary Kriging is used and hence f(x) reduces to f(x) = 1 corre-

sponding to the model Y (x) = µ+ Z(x).

The correlation function is parameterized by a set of parameters θ, which is

described in more detail in section 4.2. Given θ, the restricted maximum like-
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lihood estimate of β (Santner et al., 2003) (assuming a gaussian distribution)

is

β̂ = (FT R̂(θ)−1F)−1FT R̂(θ)−1y (3)

where R̂(θ) is the correlation matrix for the design sites and parameterized

by the estimated parameter vector θ. The estimate of σ2 is

σ̂2 =
1

n− p(y − Fβ̂)T R̂(θ)−1(y − Fβ̂) (4)

where n is the number of observations and p is the rank of F (the number of

parameters in β̂). σ̂2 is seen to be adjusted for the number of parameters in

the parametric part of the model. The correlation parameters are found by

minimizing the negative restricted profile log-likelihood (Lr) for θ

θ̂ = arg min
θ

[
(n− p) log σ̂2 + log(|R(θ)|)

]
(5)

where |R(θ)| is the determinant of the correlation matrix corresponding to

the design points. Given R̂(θ), β̂ and σ̂2 the predictor at x is

ŷ(x) = f(x)T β̂ + r(x)T R̂(θ)−1(y − Fβ̂) (6)

At a design point x ∈ X the vector r(x)T R̂(θ)−1 consists of (n − 1) zeroes

and a single one at the index corresponding to x, which implies that the

predictor is y(x).
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4 Kriging with qualitative and quantitative

factors

In this section, we consider Kriging for computer models with qualitative

factors (or at least ordinal factors with few levels) and quantitative factors.

This is often the case for simulation models, e.g., the number of operating

rooms at a surgical unit at a hospital vs. the incoming rate of acute patients

to the unit. The output from such a model depends on both qualitative

and quantitative factors. Even though the simulation may behave differently

from one combination of the qualitative factors to another, some correlation

between observations having different qualitative factor settings is expected.

The setup is similar to a split-plot experiment in which a combination of

the qualitative factors corresponds to a whole plot and a combination of the

quantitative factors is a subplot.

We now consider a set of observations of size n = mq with m qualitative

factor combinations and q quantitative factor settings. In this setup, for

a given combination of settings for the qualitative factors (a whole plot),

experiments are run at various settings of the quantitative factors resulting

in n different quantitative factor settings in the combined design. For a more

detailed explanation of such a set up, see Dehlendorff et al. (2008, 2011).

To ease the notation in the following, we will denote a combination of the

qualitative factors a “whole plot”, but note that the experimental design is

not a split-plot design. We furthermore assume that the observations are

ordered by whole plot. Hence the input consists of two components, where

9
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wi is the whole plot or qualitative component and xij the quantitative part.

4.1 Model

For a model with qualitative and quantitative factors, we assume that the

Kriging predictor of interest is of the form

ŷ(wi,xij) = f(wi)β̂ + r(wi,xij)
T R̂(θ)−1(yx − Fβ̂) (7)

where f(wi) depends purely on the whole plot setting. Here the special case

f(wi) = [1 I(wi = 2) · · · I(wi = m)] is considered in which I() is the

indicator function and wi the whole plot number of observation i (a scalar

wi ∈ {1, . . . ,m}). β consists of [µ1, τ2, . . . , τm], where µ1 is the expected

value for whole plot 1 and µ2 = µ1 + τ2 the expected value for whole plot 2,

etc. The parametric structure is introduced to handle the difference in the

output from one whole plot to the next, but without assuming a structure

for the qualitative factors. To simplify the notation in the remainder of the

paper we denote the jth quantitative factor settings (the quantitative factor

settings in the jth subplot) in the ith whole plot xij. Moreover, the input

matrix X is a matrix consisting of the quantitative component of the input

ordered by whole plot

X =

[
x11

T x12
T · · · x1q

T x21
T · · · xm(q−1)

T xmq
T

]T
(8)

that is; X is a (mq) × dx matrix, where dx is the number of quantitative

factors.
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4.2 Correlation structure

For a simulation experiment with m whole plots (i.e., qualitative factor com-

binations) and q quantitative factor combinations within each whole plot

(having the same number of quantitative factor combination is not a require-

ment for the method but it eases the notation in the following), we now

address how the correlation between two observations from different whole

plots could be defined. First, we consider the simple situation with two ob-

servations from the same whole plot: xij and xil. If the simple Gaussian

correlation correlation structure is used the correlation between two observa-

tions within the same whole plot is given as

R̃(xij,xil) = exp

(
−

dx∑

p=1

θp(x
p
ij − xpil)2

)
(9)

where dx is the number of quantitative factors and θp is the correlation pa-

rameter for the pth quantitative factor (see for example Sacks et al., 1989).

Observations from different whole plots are not expected to be as correlated

as observations coming from the same whole plot. This implies that the

correlation in Equation (9) should be reduced by a factor depending on the

similarity of the qualitative factor settings

R(xij,xkl) = R̃(xij,xkl) · (I(i = k) + I(i 6= k)αik) (10)

where R̃(xij,xkl) is the correlation function in equation (9) evaluated as if

the observations were from the same whole plot, I() is the indicator function

and 0 ≤ αik ≤ 1. Three simple ways of defining αik are
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1. αik = 0: xij and xkl are uncorrelated for i 6= k

2. αik = θc: same correlation reduction for observations from different

whole plots, where θc ∈ [0, 1]

3. αik = 1: no reduction

Clearly correlation structures 1 and 3 are special cases of correlation structure

2 and hence we only need to consider structure 2. In correlation structure 2

the θc-parameter is estimated together with the other correlation parameters.

One issue in the choice of αik is that the resulting correlation matrix should

be positive definite (Qian et al., 2008), which is ensured by the correlation

structure in (10).

Hung et al. (2009) (HRM) propose a different correlation function, which is

developed for computer experiments with branching, nested and shared fac-

tors. Of theses factors the branching factors are considered to be qualitative

factors in this study. If one disregard the nested factor aspect the computer

model in this study can be analyzed using their model. HRM propose the

following correlation function for the Kriging model

R((zi, xi), (zk, xk)) = exp

(
−

dx∑

p=1

θp(x
p
i − xpk)2

)
exp

(
−

dz∑

q=1

θzqI(zqi 6= zqk)

)

(11)

where zqi is the qth qualitative/branching factor and xpi the pth quantita-

tive/shared factor for observation i and I() is the indicator function. With

one qualitative factor this is seen to be similar to the correlation structure

with αik = θc.
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Zhou et al. (2010) (ZQZ) consider a hypersphere parameterization of the cor-

relation between observations with different qualitative factor levels. They

consider the combinations of the qualitative factor levels as a single categor-

ical variable with m levels. The correlation structure has the same structure

as in equation (10), where αik is given by the (ik)th element of matrix T. The

penalty matrix is constructed by the hypersphere decomposition in two steps.

Step 1 is a Cholesky decomposition T = LLT and step 2 is the construction

of the lower triangular matrix L given as

Lrs =





1 r = s = 1

cos(θr,s) s = 1 (r > 1)

sin(θr,1) · · · sin(θr,s−1) cos(θr,s) s = 2, . . . , r − 1 (r > 1)

sin(θr,1) · · · sin(θr,r−2) sin(θr,r−1) r = s (r > 1)

(12)

where Lrs is the (rs)th element of L and θr,s ∈ [0, π]. This way T is ensured

to be positive definite matrix with unit diagonal elements and hence the

correlation function in equation (10) is a valid correlation function. The cor-

relation structure can handle both negative and positive correlations between

observations from different levels of the categorical factors. One drawback of

the method is the number of correlation parameters needed for T is given as

1/2m2 + 1/2m− 1, e.g., 209 parameters are required to be estimated for 20

qualitative factor settings. This implies that the model requires a lot of data

and estimation may become slow.

A simpler approach is to use the sample averages and standard deviations for
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each whole plot as a measure of their similarity. This implies that αik may

be defined as αik = exp (−θµ̂(µ̂i − µ̂k)2 − θσ̂(log(σ̂i)− log(σ̂k))
2), where µ̂i

and σ̂i are the sample average and standard deviation for the ith whole plot

(log-transformed to make it robust to outliers). This correlation structure is

motivated by the fact, that we expect similar whole plots to have the similar

average and standard deviations, i.e., observations with similar mean and

standard deviation are also expected to be correlated.

The mean-standard deviation model can be estimated within the usual Krig-

ing framework by augmenting the input matrix X in (8) with a matrix M

X̃ =

[
X M

]
(13)

where

M =




µ̂1 log(σ̂1)

µ̂2 log(σ̂2)

...
...

µ̂m log(σ̂m)



⊗ 1q×1 (14)

and fit the Kriging model on X̃. It can be seen that the model allows for

predictions for whole plots not already observed provided that estimates for

the mean and standard deviation are available. This can be handled by the

ZQZ-model, but requires correlation parameters for the correlation between

the new whole plot and all existing whole plots, which may be more difficult

to give.
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4.3 2-stage procedure

Instead of using the average and standard deviations as whole plot similar-

ity measures as suggested in section 4.2, one could argue that the similarity

between the whole plots should be judged on a measure relating to the cor-

relation structure. Instead of using the levels of the whole plot factors or the

sample mean and standard deviation, the similarity of observations from the

different whole plots is measured by the similarity of the correlation function

parameters for the whole plots. This can be done with a procedure in two

stages: 1) fit m Kriging models for the quantitative factors in the m subsets

of the data corresponding to m whole plots and 2) use the correlation pa-

rameters estimated in these m Kriging models as similarity measures. The

first stage gives m models for the quantitative factors in each whole plot

Yi(xij) = µi + Zi(xij) i = 1, . . . ,m (15)

where Zi() has the correlation function

Ri(xij,xik) = exp

(
−

dx∑

p=1

θip(x
p
ij − xpik)

2

)
i = 1, . . . ,m (16)

This gives a matrix of correlation parameters

C =




θ11 · · · θ1dx

...
. . .

...

θm1 · · · θmdx




(17)
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where θij is the correlation parameter for the jth quantitative factor in the

ith whole plot and Ci the correlation parameters for the ith whole plot.

The intuition is that similar whole plots tend to have similar correlation

parameters and thus the difference in the correlation parameters determines

the correlation. To measure the whole plot similarity the information in the

C-matrix is added to the original design sites X such that the design sites

are given as

X̃ =

[
X C̃

]
(18)

where

C̃ = C⊗ 1q×1 (19)

This can straightforward be generalized to the general case where the number

of quantitative factor settings tried at the whole plots is not the same for all

whole plots. The combined Kriging model with X̃ becomes

Y (x̃ij) = µ+ Z(x̃ij) (20)

where Z() has correlation function

R(x̃ij, x̃kl) = exp

(
−

2×dx∑

p=1

θ̃p(x̃
p
ij − x̃pkl)

2

)
(21)

Estimating the parameters for the models in equations (15) and (20) can be

done with the methods described in section 3.

The main challenge of this method is to get reliable correlation parameters in

the first stage in which the models are based on few data points. Moreover,
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the time for fitting the models is an issue, since m models need to be fitted.

This may however not be a problem if the number of whole plots is not too

small, since the execution time of the fitting procedure is proportional to

n3 (Lophaven et al., 2002a); that is, fitting m model with n/m observations

each gives an execution time in the order of n3/m2. In the final model the

full data set is used, but from the C-matrix in equation (17) a good initial

guess for the dx first correlation parameters can be found to speed up the

convergence, e.g., by using the column-wise averages.

A potential benefit of using this correlation function compared to the one

proposed by HRM is that it uses the correlation structure as the similarity

measure instead of the levels of the qualitative factors. The latter may run

into problems if the similarity of the whole plots depends for example on an

interaction between two factors. Compared to the method proposed by ZQZ

fewer correlation parameters are used, i.e., for m whole plots and dimension

dx, the 2-stage model uses dx parameters to parameterize the whole plot cor-

relation in the final model, whereas ZQZ use m2/2 + m/2 − 1 parameters.

Figure 2 illustrates the difference in the number of parameters needed to

parameterize the whole plot correlation, which shows that for example with

m = 10 whole plots the number of quantitative factors must be more than 54

to favor the ZQZ parameterization. The 2-stage model is considerably easier

to fit compared to the model by ZQZ, but it can not handle the negative cor-

relations between whole plots as in ZQZ. Furthermore, the ZQZ is a simpler

model if the number of whole plots is limited and the number of quantitative

factors is large (see Figure 2).
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m

Figure 2: Comparison of correlation parameters needed for parameteriz-
ing the whole plot correlation in the ZQZ and 2-stage models. The dark
area corresponds to cases in which the 2-stage model has fewer parame-
ters

5 Test functions

In this section we consider three functions as test cases, which are listed in

Table 2. They represent three situations: identical whole plots, whole plots

with one active factor in common and whole plots with completely different

active factors. All three cases consist of two groups of whole plots, such that

whole plots from different groups are different, whereas whole plots from the

same group are similar. The constant h in the sinusoidal function determines

the variance of this whole plot group.

Function
Whole plots 1 2 3

1, 2 xi1 exp (−x2
i1 − x2

i2) h sin(xi1) h sin(xi3)
3, 4 xi1 exp (−x2

i1 − x2
i2) xi1 exp (−x2

i1 − x2
i2) xi1 exp (−x2

i1 − x2
i2)

Table 2: Test functions
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In Table 3 the performance for four different correlation structures are com-

pared in terms of their mean squared prediction error. Each model is based on

the same training data, which has 50 observations in each whole plot. Like-

wise the same validation data set is used for all combinations of functions

and correlation structures and consists of 10.000 randomly chosen points.

Case Model Function 1 Function 2 Function 3

h = 0.56

2-stage 1.05 · 10−8 2.21 · 10−4 4.29 · 10−3

αik = θc 8.39 · 10−9 5.11 · 10−4 8.16 · 10−3

αik = g(µ̂i, σ̂i) 1.12 · 10−8 5.04 · 10−5 3.41 · 10−3

ZQZ 1.83 · 10−8 3.12 · 10−4 3.71 · 10−3

h = 0.15

2-stage 1.05 · 10−8 4.27 · 10−5 8.98 · 10−4

αik = θc 8.39 · 10−9 1.48 · 10−4 2.67 · 10−3

αik = g(µ̂i, σ̂i) 1.12 · 10−8 3.81 · 10−5 1.66 · 10−3

ZQZ 1.97 · 10−8 2.13 · 10−4 1.47 · 10−3

Table 3: MSPE for test functions. h = 0.56 corresponds to 14 times
higher variance in sinusoidal group and h = 0.15 to equal variance

In the first example in Table 3, the whole plot groups are designed such

that the variance in the sinusoidal part of functions 2 and 3 is approximately

14 times higher than the other group (with h = 0.56). This should favor

the mean-standard deviation correlation structure, since it uses the standard

deviation in the correlation among whole plots. The results show that the

correlation structure that bases the similarity of whole plots on the sample

averages and standard deviations performs better than the 2-stage approach.

The 2-stage procedure uses the first correlation parameter estimates to differ-

entiate between whole plots, whereas the correlation structure using the mean

and standard deviations utilizes the information contained in the difference

in standard deviations.
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The HRM-model corresponds to a constant reduction, since only one branch-

ing (qualitative) factor is present. In section 6 a more general model is

considered for which the whole plots are generated from several qualitative

factors, i.e., better suited for model considered by HRM. Finally it can be

seen that the model proposed by ZQZ has a performance comparable with

the 2-stage model. Figure 3 compare the correlation between whole plots

estimated with the four methods. It can be seen that they are similar except

for the correlation structure with a constant reduction.

1 2 3 4

1
2

3
4

i

k

2−stage

1 2 3 4

1
2

3
4

i

k

θc

1 2 3 4

1
2

3
4

i

k

g(μ̂i, σ̂i)

1 2 3 4

1
2

3
4

i

k

ZQZ

Figure 3: Correlation matrices for the correlation between whole plots
corresponding to αik in equation (10) for Function 3 with h = 0.56. The
color scale is goes from white (αik = 0) to black (αik = 1). In the model
by ZQZ the small negative correlations (in the order of 10−2) have been
truncated to 0.

In the lower half of Table 3 the performances of the different correlation

structures are shown for the three test functions, in which the variances of

the whole plot groups are designed to be equal. It can be seen that the

2-stage method performs better in terms of MSPE compared to the other

correlation structures for the third function. For the first function the all

three models give the same Kriging model and the same prediction error

(with some minor numerical variation). It can be seen that using the sample

means and standard deviations is a viable option as long as the whole plots
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are not too different. Thus it performs a little better than the 2-stage model

for the second model.

In section 6, we evaluate the correlation structures on a discrete event simula-

tion model, which illustrates the benefits of using the 2-stage Kriging model

in a more realistic setting.

6 Case-study continued

We now return to the case-study from section 2 for which two experiments are

considered. In the first example the whole plots are expected to be different,

whereas in the second example the whole plots are chosen such that they are

expected to be similar.

The first example consists of a 24 factorial design for the qualitative factor

and the design for the quantitative factors is constructed using the “top-

down”-design in Dehlendorff et al. (2011). The design has ten quantitative

factor settings for each whole plot. The four qualitative factors are: anaes-

thesiologists (2 or 3), porter (3 or 4), recovery beds (6 or 8) and operating

days (5 or 4). Operating days is the number of days with elective surgery,

i.e., four days implies longer days compared to five days. We treat the factors

as qualitative, since the number of levels of the factors is small and hence

interpolation may not be reasonable. In Dehlendorff et al. (2011) this data

set was analyzed by a generalized additive model (GAMs) (Hastie and Tib-

shirani, 1990; Wood, 2006). In this paper we however use a constant seed,

which makes the output deterministic, and hence the performance of the
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GAM models is updated.

The second example has 20 qualitative factor settings, which were chosen

from an initial design such that their predicted CVaR waiting time would be

short. For each whole plot 20 quantitative factor settings are tested and the

design was constructed by the “top-down” method as for the first example.

These 20 qualitative factor combinations have 6 active factors: porters (4-5),

operating days (4-5), operating rooms (3-4), recovery beds (9-12), cleaning

teams (2-4) and increase in elective patient volume (0-5). The second example

was in Dehlendorff et al. (2010a) also analyzed by GAM, where it was shown

that these settings give better and more robust performance compared to

the existing setup of the unit. The model is however in this paper kept in a

deterministic operating mode through a constant seed.

6.1 Performance

In Table 4 the 2-stage Kriging model’s performance in terms of predicting the

CVaR waiting time in the first example at 16×5 = 80 new sites is summarized

and compared with the methods discussed previously. As mentioned earlier

in this example the 16 whole plots are generated to perform differently in

terms of the CVaR waiting time. It can be seen that the 2-stage model is

performing better than the GAM model and the other Kriging models.

In the second example 20×5 = 100 new quantitative factor settings are used

as test cases. The prediction performance for the 2-stage model is better

than the other Kriging models, but not as good as the GAM model. This

indicates that the Kriging models tend to overfit the data. In both examples
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Model Correlation structure Example 1 Example 2

Kriging

αik = θc 16.72 1.78
αik = g(µi, σi) 9.71 2.00
2-stage 9.04 1.68
HRM 11.93 1.83
ZQZ 9.54 1.75

GAM 12.08 1.27

Table 4: Performance of models measured in MSPE

it is seen that the 2-stage model is the best Kriging model followed by the

model by ZQZ.

6.2 Discussion

The 2-stage model proposed in this paper is seen to give good fits for the ex-

amples considered. The model by HRM was seen to give poorer fits compared

to the 2-stage model. This may be explained by the additional information

contained in the m Kriging models fitted for each whole plot. The model by

ZQZ is seen to perform better than the model by HRM, but not as good as

the 2-stage model. This may be explained by the complexity of this model

compared to the 2-stage model. In the example with 20 different qualita-

tive factor settings the correlation model proposed by ZQZ consists of 209

parameters, whereas the 2-stage procedure uses 16 parameters (eight for the

quantitative factor and eight for the whole plots).

It should be noted that the model by ZQZ is a more general model, however

for simpler applications it may result in overfitting. The overfit is primarily

related to the potentially huge number of parameters used for the correlation

matrix corresponding to the correlation between whole plots. However, in
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cases with negative correlation between whole plots the model by ZQZ may

perform better. More data may also improve the model, but the number

of experiments is often limited and hence a trade-off between meta-model

accuracy and simulation time should be taken into account.

7 Conclusion

In this article we introduced a Kriging model for computer experiments with

qualitative and quantitative factors. Estimation of the model parameters

consisted of two stages and was shown to perform better compared to other

Kriging models. However, the resulting model is more complex and has more

parameters compared to some of the other Kriging models considered in this

article, which implies that the time needed for fitting the model may be of

concern. The recently proposed model by Hung et al. (2009) was shown to

give a poorer fit even with the same number of parameters. Moreover, it was

seen that for the examples considered the flexible model proposed by Zhou

et al. (2010) did not perform as well as the 2-stage model. This model was

furthermore seen to require many parameters, which makes the estimation

slow and may require more data.

Typically a single run in a computer or simulation model can take long time,

which implies that the added time for estimating a more complex model is less

of a concern compared to using extra runs. The proposed method is more

efficient than analyzing the qualitative factor combination separately and

hence requires fewer experiments. Moreover, the proposed 2-stage procedure
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can easily be implemented since it only involves a series of simple Kriging

models, which are commonly used in practice.

References

Alexander, S., T. Coleman, and Y. Li (2006). Minimizing cvar and var for a

portfolio of derivatives. Journal of Banking and Finance 30 (2), 583–605.

Ankenman, B., B. L. Nelson, and S. Jeremy (2008). Stochastic kriging for

simulation metamodeling. In Proceedings of the 2008 Winter Simulation

Conference, pp. 362–370.

Dehlendorff, C., M. Kulahci, and K. K. Andersen (2008). Designing simula-

tion experiments with controllable and uncontrollable factors. In Proceed-

ings of the 2008 Winter Simulation Conference, Miami, FL, 2008.

Dehlendorff, C., M. Kulahci, and K. K. Andersen (2010a). Analysis of com-

puter experiments with multiple noise sources. Quality and Reliability

Engineering International 26 (2), 137–46. DOI: 10.1002/qre.1035.

Dehlendorff, C., M. Kulahci, and K. K. Andersen (2011). Designing simula-

tion experiments with controllable and uncontrollable factors for applica-

tions in health care. Journal of Royal Statistical Society: Series C 60 (1).

DOI: 10.1111/j.1467-9876.2010.00724.x.

Dehlendorff, C., M. Kulahci, S. Merser, and K. K. Andersen (2010b). Condi-

tional value at risk as a measure for waiting time in simulations of hospital

units. Quality Technology and Quantitative Management 7 (3), 321–336.

25

178
2-stage approach for Kriging for simulation experiments with quantitative

and qualitative factors



Dellino, G., J. Kleijnen, and C. Meloni (2009). Robust optimization in sim-

ulation: Taguchi and Krige combined. Working paper: http://center.

uvt.nl/staff/kleijnen/RO_Krige.pdf ( July 28th 2010).

Hastie, T. and R. Tibshirani (1990). Generalized Additive Models. Chapman

& Hall/CRC.

Hung, Y., V. Roshan Joseph, and S. N. Melkote (2009). Design and analysis

of computer experiments with branching and nested factors. Technomet-

rics 51 (4), 354–365.

Johnson, R. T., D. C. Montgomery, B. Jones, and J. W. Fowler (2008).

Comparing designs for computer simulation experiments. In Proceedings

of the 2008 Winter Simulation Conference, pp. 463–470.

Kibzun, A. and E. Kuznetsov (2003). Comparison of var and cvar criteria.

Automation and Remote Control 64 (7), 153–164.

Kibzun, A. I. and E. A. Kuznetsov (2006). Analysis of criteria var and cvar.

Journal of Banking & Finance 30 (2), 779–796.

Kleijnen, J. P. (2008a). Design and Analysis of Simulation Experiments.

Springer.

Kleijnen, J. P. (2008b). Design of experiments: Overview. In Proceedings of

the 2008 Winter Simulation Conference, pp. 479–488.

Kleijnen, J. P. (2009). Kriging metamodeling in simulation: A review. Eu-

ropean Journal of Operational Research 192 (3), 707–716.

26

179



Krahl, D. (2002). The extend simulation environment. In Proceedings of the

2002 Winter Simulation Conference, pp. 205–213.

Lophaven, S., H. Nielsen, and J. Søndergaard (2002a). Aspects of the

matlab toolbox dace. Technical Report IMM-REP-2002-13, Informatics

and Mathematical Modelling, Technical University of Denmark. http:

//www.imm.dtu.dk/~hbn/publ/TR0213.ps.

Lophaven, S., H. Nielsen, and J. Søndergaard (2002b). Dace - a matlab

kriging toolbox version 2.0. Technical Report IMM-REP-2002-12, Infor-

matics and Mathematical Modelling, Technical University of Denmark.

http://www.imm.dtu.dk/~hbn/publ/TR0212.ps.

Martin, J. D. and T. W. Simpson (2005). Use of kriging models to approxi-

mate deterministic computer models. AIAA Journal 43 (4), 853–863.

Matheron, G. (1963). Principles of geostatistics. Economic Geology 58 (8),

1246–1266.

Qian, P. Z. G., H. Wu, and C. J. Wu (2008). Gaussian process models for

computer experiments with qualitative and quantitative factors. Techno-

metrics 50 (3), 383–396.

Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn (1989). Design and

analysis of computer experiments. Statistical Science 4 (4), 409–423.

Santner, T. J., B. J. Williams, and W. I. Notz (2003). The Design and

Analysis of Computer Experiments. Springer.

27

180
2-stage approach for Kriging for simulation experiments with quantitative

and qualitative factors



van Beers, W. C. and J. P. Kleijnen (2008). Customized sequential designs

for random simulation experiments: Kriging metamodeling and bootstrap-

ping. European Journal of Operational Research 186 (3), 1099–1113.

Wood, S. (2006). Generalized Additive Models - An Introduction with R.

Chapman & Hall/CRC.

Zhou, Q., P. Z. Qian, and S. Zhou (2010). A simple approach to emulation

for computer models with qualitative and quantitative factors. Working

paper: http://www.stat.wisc.edu/~zhiguang/qpqq2.pdf.

28

181



182
2-stage approach for Kriging for simulation experiments with quantitative

and qualitative factors



Bibliography

Ankenman, B. E., B. L. Nelson, and J. Staum (2010). Stochastic kriging for
simulation metamodeling. Operations Research 58 (2), 371–382.

Banks, J., J. S. Carson II, B. L. Nelson, and D. M. Nicol (2005). Discrete-Event
System Simulation (Fourth ed.). Pearson Education, Inc.

Bettonvil, B. and J. P. Kleijnen (1997). Searching for important factors in sim-
ulation models with many factors: Sequential bifurcation. European Journal
of Operational Research 96 (1), 180–194.

Bielen, F. and N. Demoulin (2007). Waiting time influence on the satisfaction-
loyalty relationship in services. Managing Service Quality 17 (2), 174–193.

Brailsford, S. C. (2007). Tutorial: Advances and challenges in healthcare simu-
lation modelling. In Proceedings of the 2007 Winter Simulation Conference,
pp. 1436–1448.

Bursztyn, D. and D. Steinberg (2006). Screening: Methods for Experimentation
in Industry, Drug Discovery and Genetics, Chapter Screening Experiments
for Dispersion Effects, pp. 21–47. Springer New York. Editors: A. Dean and
S. Lewis.

Chang, P., B. Williams, T. Santner, W. Notz, and D. Bartel (1999). Robust op-
timization of total joint replacements incorporating environmental variables.
Transactions of the ASME. Journal of Biomechanical Engineering 121 (3),
304–310.

Dehlendorff, C., M. Kulahci, and K. K. Andersen (2008). Designing simulation
experiments with controllable and uncontrollable factors. In Proceedings of
the 2008 Winter Simulation Conference, Miami, FL, 2008.



184 BIBLIOGRAPHY

Dehlendorff, C., M. Kulahci, and K. K. Andersen (2010a). Analysis of computer
experiments with multiple noise sources. Quality and Reliability Engineering
International 26 (2), 137–46. DOI: 10.1002/qre.1035.

Dehlendorff, C., M. Kulahci, and K. K. Andersen (2011). Designing simulation
experiments with controllable and uncontrollable factors for applications in
health care. Journal of Royal Statistical Society: Series C 60 (1). DOI:
10.1111/j.1467-9876.2010.00724.x.

Dehlendorff, C., M. Kulahci, S. Merser, and K. K. Andersen (2010b). Condi-
tional value at risk as a measure for waiting time in simulations of hospital
units. Quality Technology and Quantitative Management 7 (3), 321–336.

Dellino, G., J. Kleijnen, and C. Meloni (2009). Robust optimization in simu-
lation: Taguchi and Krige combined. Working paper: http://center.uvt.
nl/staff/kleijnen/RO_Krige.pdf ( July 28th 2010).

Donohue, J. (1995). The use of variance reduction techniques in the estimation of
simulation metamodels. In Simulation Conference Proceedings, 1995. Winter,
pp. 194 –200.

Fang, K.-T., R. Li, and A. Sudjianto (2006). Design and Modeling for Computer
Experiments. Chapman & Hall/CRC.

Fang, K.-T. and C.-X. Ma (2001). Wrap-around l2-discrepancy of random sam-
pling, latin hypercube and uniform designs. Journal of Complexity 17 (4),
608–624.

Ferrin, D. M. and D. L. McBroom (2007). Maximizing hospital financial impact
and emergency department throughput with simulation. In Proceedings of the
2007 Winter Simulation Conference, pp. 1566–1573.

Gross, D. and C. M. Harris (1998). Fundemental of Queueing Theory (Third
ed.). Wiley Series in Probability and Statistics. John Wiley & Sons, Inc.

Hastie, T. and R. Tibshirani (1990). Generalized Additive Models. Chapman &
Hall/CRC.

Hung, Y., V. Roshan Joseph, and S. N. Melkote (2009). Design and analy-
sis of computer experiments with branching and nested factors. Technomet-
rics 51 (4), 354–365.

Johnson, M. E., L. M. Moore, and D. Ylvisaker (1990). Minimax and maxmin
distance design. Journal of Statistical Planning and Inference 26 (2), 131–148.

Kibzun, A. and E. Kuznetsov (2003). Comparison of var and cvar criteria.
Automation and Remote Control 64 (7), 153–164.

http://center.uvt.nl/staff/kleijnen/RO_Krige.pdf
http://center.uvt.nl/staff/kleijnen/RO_Krige.pdf


BIBLIOGRAPHY 185

Kibzun, A. I. and E. A. Kuznetsov (2006). Analysis of criteria var and cvar.
Journal of Banking & Finance 30 (2), 779–796.

Kleijnen, J. and W. van Beers (2004). Application-driven sequential designs for
simulation experiments: Kriging meta-modeling. Journal of the Operational
Research Society 55, 876–883.

Kleijnen, J. P. (2008). Design and Analysis of Simulation Experiments. Springer.

Kleijnen, J. P. (2009). Kriging metamodeling in simulation: A review. European
Journal of Operational Research 192 (3), 707–716.

Krahl, D. (2002). The extend simulation environment. In Proceedings of the
2002 Winter Simulation Conference, pp. 205–213.

Lant, T., M. Jehn, O. M. Araz, and J. W. Fowler (2008). Simulation pandemic
influenza preparedness plans for a public university: A hierarchical system
dynamics approach. In S. Mason, R. Hill, L. Mönch, O. Rose, T. Jefferson,
and J. Fowler (Eds.), Proceedings of the 2008 Winter Simulation Conference,
Miami, pp. 1305–1313.

Law, Awerill M. and Kelton, W. David (2000). Simulation Modeling and Anal-
ysis (3rd ed.). McGraw-Hill.

Li, R. and A. Sudjianto (2005). Analysis of computer experiments using penal-
ized likelihood in gaussian kriging models. Technometrics 47 (2), 111–120.

Lophaven, S., H. Nielsen, and J. Søndergaard (2002a). Aspects of the matlab
toolbox dace. Technical Report IMM-REP-2002-13, Informatics and Mathe-
matical Modelling, Technical University of Denmark. http://www.imm.dtu.
dk/~hbn/publ/TR0213.ps.

Lophaven, S., H. Nielsen, and J. Søndergaard (2002b). Dace - a matlab kriging
toolbox version 2.0. Technical Report IMM-REP-2002-12, Informatics and
Mathematical Modelling, Technical University of Denmark. http://www.
imm.dtu.dk/~hbn/publ/TR0212.ps.

Martin, J. D. and T. W. Simpson (2005). Use of kriging models to approximate
deterministic computer models. AIAA Journal 43 (4), 853–863.

Matheron, G. (1963). Principles of geostatistics. Economic Geology 58 (8),
1246–1266.

McKay, M., R. Beckman, and W. Conover (1979). A comparison of three meth-
ods for selecting values of input variables in the analysis of output from a
computer code. Technometrics 21 (2), 239–245.

http://www.imm.dtu.dk/~hbn/publ/TR0213.ps
http://www.imm.dtu.dk/~hbn/publ/TR0213.ps
http://www.imm.dtu.dk/~hbn/publ/TR0212.ps
http://www.imm.dtu.dk/~hbn/publ/TR0212.ps


186 BIBLIOGRAPHY

Mellor, G. R., C. S. Currie, E. L. Corbett, and R. C. Cheng (2007). Targeted
strategies for tubercoulosis in areas of high hiv prevalence: A simulation study.
In Proceedings of the 2007 Winter Simulation Conference, pp. 1487–1493.

Montgomery, D. C. (2009). Design and Analysis of Experiments (7th ed.). John
Wiley and Sons, Inc.

Myers, R., D. Montgomery, and C. Anderson-Cook (2009). Response surface
methodology: process and product optimization using designed experiments
(3rd ed.). Wiley, New York.

Qian, P. Z. G., M. Ai, and C. F. J. Wu (2009a). Construction of nested space-
filling designs. The Annals of Statistics 37 (6A), 3616–3643. DOI: 10.1214/09-
AOS690.

Qian, P. Z. G., B. Tang, and C. J. Wu (2009b). Nested space-filling designs
for computer experiments with two levels of accuracy. Statistica Sinica 19,
287–300.

Qian, P. Z. G. and C. F. J. Wu (2009). Sliced space-filling designs.
Biometrika 96 (4), 945–956.

R Development Core Team (2007). R: A Language and Environment for Statis-
tical Computing. Vienna, Austria: R Foundation for Statistical Computing.
ISBN 3-900051-07-0.

Sacks, J., S. B. Schiller, and W. J. Welch (1989a). Designs for computer exper-
iments. Technometrics 31 (1), 41–47.

Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn (1989b). Design and
analysis of computer experiments. Statistical Science 4 (4), 409–423.

Santner, T. J., B. J. Williams, and W. I. Notz (2003). The Design and Analysis
of Computer Experiments. Springer.

Schruben, L. W. and B. H. Margolin (1978). Pseudorandom number assignment
in statistically designed simulation and distribution sampling experiments.
Journal of the American Statistical Association 73 (363), 504–520.

Taguchi, G. (1987). System of experimental design, volumes 1 and 2.
UNIPUB/Krauss International, White Plains, New York.

van Beers, W. and J. Kleijnen (2003). Kriging for interpolation in random
simulation. Journal of the Operational Research Society 54, 255–262.

van Beers, W. and J. Kleijnen (2004). Kriging interpolation in simulation. a
survey. In R. Ingalls, M. Rosetti, J. Smith, and B. Peters (Eds.), Proceedings
of the 2004 Winter Simulation Conference, pp. 113–121.



BIBLIOGRAPHY 187

van Beers, W. C. and J. P. Kleijnen (2008). Customized sequential designs for
random simulation experiments: Kriging metamodeling and bootstrapping.
European Journal of Operational Research 186 (3), 1099–1113.

Wood, S. (2006). Generalized Additive Models - An Introduction with R. Chap-
man & Hall/CRC.

Zhou, Q., P. Z. Qian, and S. Zhou (2010). A simple approach to emulation for
computer models with qualitative and quantitative factors. Working paper:
http://www.stat.wisc.edu/~zhiguang/qpqq2.pdf.

http://www.stat.wisc.edu/~zhiguang/qpqq2.pdf

	Summary
	Resumé
	Preface
	Papers included in the thesis
	Acknowledgements
	Table of contents
	1 Introduction
	1.1 Simulation models
	1.2 Experimental design
	1.3 Output analysis
	1.4 Outline of the thesis

	2 Simulation models
	2.1 Model types
	2.2 Case-study: a surgical unit at a hospital
	2.3 Queuing systems

	3 Experimental design
	3.1 Latin hypercube sampling
	3.2 Optimal designs
	3.3 Crossed designs
	3.4 Top-Down design

	4 Output analysis
	4.1 Kriging
	4.2 Regression models
	4.3 Example: Optimization using a meta-model

	5 Summary of papers
	5.1 Paper A
	5.2 Paper B
	5.3 Paper C
	5.4 Papers D and E
	5.5 Paper F

	6 Discussion
	List of abbreviations
	A Conditional Value at Risk as a Measure for Waiting Time in Simulations of Hospital Units
	B Designing Simulation Experiments with Controllable and Uncontrollable Factors
	C Designing simulation experiments with controllable and uncontrollable factors for applications in health care
	D Analysis of Computer Experiments with Multiple Noise Sources (European Network for Business and Industrial Statistics)
	E Analysis of Computer Experiments with Multiple Noise Sources
	F 2-stage approach for Kriging for simulation experiments with quantitative and qualitative factors
	Bibliography

