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Abstract

This thesis studies dispersion management and modulation formats for
optical communication systems using per channel bit rates at and above
10 Gbit/s. Novel modulation formats—including recently proposed multi-
level phase modulation—are investigated and demonstrated at bit rates
up to 80 Gbit/s.

New dispersion compensating fibre (DCF) types—referred to as in-
verse dispersion fibres (IDFs)—allow for novel span designs by using the
DCF as cabled transmission fibre. These novel fibre span designs are com-
pared to conventional spans for 10 and 40 Gbit/s systems with 80 km span
length based on single mode fibre (SMF). We find that using SMF+IDF
results in improved transmission performance, compared to SMF+DCF,
primarily due to lower span loss.

A systematic investigation of non return-to-zero (NRZ) and return-to-
zero (RZ) line coding in 10 Gbit/s systems with 80 km fibre spans shows
that for a single-channel system, the optimum pulse width is very narrow.
We find that a pulse width equal to 5% of the bit slot results in op-
timum performance for the system studied here. These narrow RZ pulses
offer good receiver sensitivity and excellent tolerance to the nonlinear ef-
fect self phase modulation (SPM). However, due to the broad spectrum
associated with narrow pulses, the optimum pulse width in wavelength
division multiplexing (WDM) systems will be a tradeoff between receiver
sensitivity and nonlinear tolerance on one hand, and spectral efficiency
requirements on the other.

Several advanced modulation formats have recently been suggested in
order to mitigate effects of dispersion-induced broadening or non-linear
signal degradation, including carrier suppressed return-to-zero (CS-RZ),
single side band return-to-zero (SSB-RZ), duobinary, etc. A thorough
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ii Abstract

investigation of 40 Gbit/s systems with 80 km span length is carried out
to compare the relative performance of six different on-off keying (OOK)
modulation formats. We find that (plain-)RZ with narrow pulse width is
optimum for single-channel systems. For a 100 GHz spaced WDM system,
CS-RZ or SSB-RZ results in optimum performance as these formats offer
both narrow spectral width and good transmission properties.

The cost of an optical communication system can be lowered by using
longer span lengths to reduce the number of amplifier stations. We ex-
perimentally study optimum dispersion compensation schemes for systems
with 160 km fibre spans made of non-zero dispersion shifted fibre (NZDSF)
and DCF. Pre-, post- and symmetrical dispersion compensation schemes
are compared in a 40 Gbit/s RZ system using both lumped erbium doped
fibre amplifiers (EDFAs) and distributed Raman amplification. We show
that the symmetrical scheme results in optimum system performance.

Differential phase shift keying (DPSK) has recently been showed to
be a promising modulation format for optical communication. We study
DPSK with focus on differential quadrature phase shift keying (DQPSK).
In a 12.5 Gbit/s WDM system, we demonstrate the suitability of DQPSK
for ultra-long haul optical communication systems by obtaining good per-
formance even after transmission over 6500 km. Studying different channel
spacings, we demonstrate transmission over transoceanic distances of this
DQPSK system with up to 0.66 bit/s/Hz spectral efficiency.

Four-level modulation formats allow for generation of signal with bit
rate twice that of binary systems. We demonstrate this in an experiment
where 80 Gbit/s DQPSK is generated using 40 Gbit/s components. Using
four-wave mixing (FWM) in a highly nonlinear fibre, we demonstrate for
the first time wavelength conversion of such high-speed phase modulated
signals.

In summary, we show that dispersion management using recently de-
veloped fibres in combination with advanced modulation formats signi-
ficantly improves the transmission performance compared to traditional
systems. Multi-level phase modulation is demonstrated at bit rates up
to 80 Gbit/s, and we experimentally demonstrate that multi-level phase
modulated signals are suitable for transoceanic spectrally efficient WDM
systems.



Sammendrag

Denne avhandlingen omhandler dispersjonskompensering og modulasjons-
formater for optiske kommunikasjonssystemer med bitrater på eller over
10 Gbit/s. Nye modulasjonsformater, blant annet multinivå fasemodula-
sjon, er undersøkt og demonstrert ved bitrater opptil 80 Gbit/s.

Nye typer dispersjonskompenserende fiber (DCF)—kalt invers disper-
sion fiber (IDF)—har åpnet for nye fiber span design ved bruk av DCF
som kablet transmisjonsfiber. Bruk av IDF og DCF er sammenlignet for
10 og 40 Gbit/s systemer med 80 km fiber span basert på singel-mode
fiber (SMF). Vi viser at bruk av SMF+IDF gir betydelig bedre signal
etter transmisjon, sammenlignet med SMF+DCF, hovedsaklig på grunn
av lavere samlet fibertap.

Systematiske studier av non return-to-zero (NRZ) og return-to-zero
(RZ) pulsformer for 10 Gbit/s systemer med 80 km forsterkeravstand vi-
ser at den optimale pulsbredde er meget smal for énkanalsystemer. For
systemer studert her, var 5% pulsbredde optimalt. Disse smale RZ pul-
sene gir både høy følsomhet i mottakeren og utmerket toleranse ovenfor
den ulineære effekt self phase modulation (SPM). Men det brede optiske
spektrum til signaler med smale pulser forhindrer bruk i flerkanalsystemer
(WDM systemer) med liten kanalavstand. I slike systemer vil den optimale
pulsbredde være en avveining mellom transmisjonsegenskaper og motta-
kerfølsomhet på den ene siden, og spektraleffektivitet på den andre.

Flere avanserte modulasjonsformater er i de siste årene foreslått til
bruk i optiske kommunikasjonssystemer. Disse nye formater kan overkom-
me begrensninger tilknyttet pulsspredning på grunn av dispersjon, eller
ulineær signaldegradering på grunn av self phase modulation (SPM). En
systematisk undersøkelse av seks on-off keying (OOK) modulasjonsforma-
ter i et 40 Gbit/s system med 80 km span lengde viser at vanlig return-to-
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iv Sammendrag

zero (RZ) med smal pulsbredde er optimalt for énkanalsystemer. For et
100 GHz WDM system, fant vi at carrier suppressed return-to-zero (CS-
RZ) og single side band return-to-zero (SSB-RZ) ga best resultat, da disse
formater kombinerer liten spektralbredde med gode transmisjonsegenska-
per.

Én metode til å redusere kostnadene ved optiske kommunikasjonssy-
stemer er å bruke lange fiberspan for redusere antall forsterkerstasjoner.
Vi sammenligner tre forskjellige strategier for dispersjonskompenserings
i 40 Gbit/s systemer med 160 km fiber span basert på non-zero disper-
sion shifted fibre (NZDSF) og DCF. En kombinasjon av erbium doped
fibre amplifier (EDFA) og distribuert Ramanforsterkning ble brukt for å
kompensere for tapet i fibrene. Resultatene viser at symmetrisk disper-
sjonskompensering gir betydelige fordele over pre- og post-kompensering.

Differential phase shift keying (DPSK) har for nylig vist seg å væ-
re et lovende modulasjonsformat for optiske kommunikasjonssystemer. Vi
studerer DPSK med fokus på differential quadrature phase shift keying
(DQPSK). Vi demonstrerer transmisjonspotensialet til DQPSK i et eks-
periment der 12.5 Gbit/s RZ-DQPSK ble sendt over 6500 km i et 64 ka-
nalers WDM system. Fem forskjellige kanalavstander ble undersøkt, og
suksessfull transmisjon over 6500 km med dette 12.5 Gbit/s systemet ble
demonstrert med en spektraleffektivitet på opptil 0.66 bit/s/Hz.

Modulasjonsformater med fire symbolnivåer muliggjør generering av
signaler med dobbelt bitrate av den tilgjengelige elektriske og elektroop-
tiske utstyr. Dette ble demonstrert ved å generere og motta 80 Gbit/s
NRZ-DQPSK ved bruk av komponenter beregnet til 40 Gbit/s signaler.
Ved å bruke firebølgeblanding i en meget ulineær fiber, demonstrerer vi
for første gang bølgelengdekonvertering av et fasemodulert signal med så
høy bitrate.

Denne avhandlingen viser at optimering av dispersjonskompensering
sammen med avanserte modulasjonsformater tillater overførsel over be-
tydelig lengre avstander sammenlignet med tradisjonelle systemer. Vi
har vist at multinivå fasemodulasjon muliggjør signaler med ultrahøy
80 Gbit/s bitrate, og vi viser at multinivå fasemodulerte signaler er vel-
egnet til transoseaniske spektraleffektive WDM systemer.



Resumé

Denne afhandling omhandler dispersionskompensering og modulationsfor-
mater for optiske kommunikationssystemer med bitrater på 10 Gbit/s og
derover. Nye modulationsformater, blandt andet multiniveau fasemodu-
lation, er undersøgt og demonstreret ved bitrater op til 80 Gbit/s.

Nye typer dispersionskompenserende fiber (DCF)—såkaldt invers dis-
persion fiber (IDF)—muliggør nye design af fiber span med brug af DCF
som kablet transmissionsfiber. Brug af IDF og DCF er sammenlignet for
10 og 40 Gbit/s systemer med 80 km fiber span baseret på standard single-
mode fiber (SMF). Vi viser at brug af SMF+IDF giver et betydeligt bedre
signal efter transmission sammenlignet med SMF+DCF, hovedsagelig på
grund af lavere samlet fibertab.

Systematiske studier af non return-to-zero (NRZ) og return-to-zero
(RZ) kodning for 10 Gbit/s systemer med 80 km forstærkerafstand viser,
at den optimale pulsbredde er meget smal for énkanalsystemer. For syste-
mer studeret her var en pulsbredde på 5% af bitperioden optimalt. Disse
smalle RZ pulser giver både høj følsomhed i modtageren og fremragende
tolerance ovenfor den ulineære effekt self phase modulation (SPM). Men
det brede optiske spektrum kendetegnende for signaler med smalle pulser
forhindrer brug i flerkanalsystemer (WDM systemer) med lille kanalaf-
stand. I sådanne systemer vil den optimale pulsbredde være en afvejning
mellem transmissionsegenskaber og modtagerfølsomhed på den ene side
og spektraleffektivitet på den anden.

I løbet af de sidste år er flere avancerede modulationsformater blevet
foreslået til brug i optiske kommunikationssystemer. Disse nye formater
kan overkomme begrænsninger i forbindelse med pulsspredning forårsa-
get af dispersion eller signaldegradering på grund af self phase modulation
(SPM). En systematisk undersøgelse af seks on-off keying (OOK) mo-
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vi Resumé

dulationsformater i et 40 Gbit/s system med 80 km span længde viser,
at almindelig RZ med smal pulsbredde er optimalt for énkanalsystemer.
For et 100 GHz WDM system fandt vi at carrier suppressed return-to-
zero (CS-RZ) og single side band return-to-zero (SSB-RZ) gav det bedste
resultat, da disse formater kombinerer en lille spektralbredde med gode
transmissionsegenskaber.

Én metode til at reducere omkostningerne ved optiske kommunika-
tionssystemer er at bruge lange fiberspan til reduktion af antallet af for-
stærkerstationer. Vi sammenlignede tre forskellige strategier for disper-
sionskompensering for 40 Gbit/s systemer med 160 km fiber span baseret
på non-zero dispersion shifted fibre (NZDSF) og DCF. En kombination af
erbium doped fibre amplifier (EDFA) og distribueret Ramanforstærkning
blev brugt til at kompensere for tabet i fibrene. Resultaterne viser, at
symmetrisk dispersionskompensering giver betydelige fordele sammenlig-
net med pre- og post-kompensering.

Differential phase shift keying (DPSK) har for nylig vist sig at væ-
re et lovende modulationsformat for optiske kommunikationssystemer.
Denne afhandling studerer DPSK med fokus på differential quadrature
phase shift keying (DQPSK). Vi demonstrerer transmissionspotentialet til
DQPSK i et eksperiment, hvor 12.5 Gbit/s RZ-DQPSK blev transmitteret
over 6500 km i et 64 kanalers WDM system. Fem forskellige kanalafstan-
de blev undersøgt, og succesfuld transmission over 6500 km med dette
12.5 Gbit/s system blev demonstreret med en spektraleffektivitet på op
til 0.66 bit/s/Hz.

Modulationsformater med fire symbolniveauer gør det muligt at ge-
nerere signaler med dobbelt bitrate af det tilgængelige elektriske og elek-
trooptiske udstyr. Dette blev demonstreret ved at generere og modtage
80 Gbit/s NRZ-DQPSK ved brug af komponenter beregnet til 40 Gbit/s
signaler. Ved at bruge firebølgeblanding i en stærkt ulineær fiber, demon-
strerede vi for første gang bølgelængdekonvertering af et fasemoduleret
signal med så høj bitrate.

Denne afhandling viser, at optimering af dispersionskompensering
sammen med avancerede modulationsformater tillader transmission over
betydelig længere afstande sammenlignet med traditionelle systemer. Vi
har vist, at multiniveau fasemodulation muliggør signaler med ultrahøj
80 Gbit/s bitrate, og vi viser at multiniveau fasemodulerede signaler er
velegnede til transoceaniske spektraleffektive WDM systemer.
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Chapter 1

Introduction

In today’s information age, there is a large and rapidly growing demand for
transporting information from one place to another. This demand is very
diversified—ranging from relatively low-capacity, short-distance private
home connections to ultra-high capacity transoceanic submarine connec-
tions between continents. Optical communication systems are proven to
be a very suitable method for moving massive amounts of information over
long distances at a low cost. Today almost all long-haul high-capacity
information transport needs are fulfilled by optical communication sys-
tems [1, 2].

Internet traffic growth is the prime driver for increasing the capacity
of today’s fibre optic systems. Everyone agrees that the Internet traffic is
increasing, but there is no strong consensus on the actual rate of increase.
Most people have realised that the over-hyped statement “The internet
is doubling every three months” is not true today, if it ever was (see
e.g. [3]). Recent estimates on current Internet growth claim a doubling
of the traffic every year [4–6]. But even if the traffic “only” doubles every
couple of years, it will still be one of fastest growing markets in the world.

For an industry still struggling with the financial difficulties due to the
over-optimistic investments of the past, the light at the end of the tunnel
is becoming brighter. The increasing Internet data traffic will inevitably
lead to future capacity upgrades. More importantly—at least for the net-
work operators—is that the revenue from high-speed data subscriptions is
also dramatically increasing, due to a massive increase in the number of
subscribers. The U.S.A. is currently seeing almost 2 million new broad-
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band subscribers each quarter, to a total of 29 million subscriptions by the
middle of 2004 [7]. And in Denmark, the number of high-speed internet
subscribers increased by more than 60% just from 2002 to 2003 [8]. This
increased revenue to the telecommunication industry should allow for the
future capacity upgrades.

For the next generation of optical communication systems to fulfill
future capacity demands, state-of-the-art dispersion management will be
required to effectively compensate for dispersion in a wide bandwidth, and
minimise nonlinear signal degradation. Advanced modulation formats can
be used to improve the transmission performance and to achieve high spec-
tral efficiency. This thesis focuses on these two key aspects of optical com-
munication systems—dispersion management and modulation formats.

The dispersion in optical fibres is a main limitation for optical com-
munication systems with per channel bit rates above 2.5 Gbit/s. For-
tunately, the dispersion induced degradations can be compensated for by
using dispersion compensating fibres (DCFs). For a linear system, the dis-
persion can be compensated 100%, and the optimisation of the dispersion
compensation would be trivial. However, due to the complex interaction
of dispersion and nonlinear signal degradation, the optimisation process
becomes very complicated. The introduction of novel DCFs—referred
to as inverse dispersion fibres (IDFs)—has recently allowed for new span
designs, where the IDF is cabled and used as transmission fibre. We study
several different dispersion compensation schemes, both numerically and
experimentally. Results indicate that significant improvements can be ob-
tained by using new IDF compared to conventional DCF, primarily due
to reduced span loss.

Over the last years, many “new” modulation formats—some previously
known from radio communication—have been introduced as alternatives
to the commonly used non return-to-zero (NRZ) and 50% return-to-zero
(RZ). These include RZ with narrow pulse widths, carrier suppressed
return-to-zero (CS-RZ), single side band return-to-zero (SSB-RZ), and
duobinary. We study different modulation formats at per channel bit
rates of 10 and 40 Gbit/s, and compare their relative performance in
systems with various 80 km single mode fibre (SMF) + DCF fibre spans.

Recently, the use of phase modulation formats have also been stud-
ied, with focus on differential binary phase shift keying (DBPSK). We
study the four-level differential quadrature phase shift keying (DQPSK),
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describing transmitter and receiver designs, and experimental demonstra-
tion of a 12.5 Gbit/s wavelength division multiplexing (WDM) DQPSK
system over 6500 km with spectral efficiency of 0.66 bit/s/Hz. Genera-
tion and detection of 80 Gbit/s DQPSK is experimentally demonstrated.
Using four-wave mixing (FWM) in highly nonlinear fibre we demonstrate
wavelength conversion of phase modulated signals at 40 and 80 Gbit/s.

1.1 Structure of the Thesis

Chapter 2 presents a short introduction to the dispersion management and
modulation formats for optical communication systems, and introduces
the terminology used in this thesis.

In Chapter 3 the optimum dispersion compensation scheme for
10 Gbit/s systems using NRZ or RZ modulation format is discussed.
Three different RZ pulse widths are studied, 50, 10 and 5% of the bit
slot. We study four different dispersion maps based on SMF+DCF and
SMF+IDF×n, with n = {1, 2, 3} being the SMF to IDF length ratio. We
show that narrow pulse-width RZ signals offer a 3 dB transmission length
up to three times longer than NRZ due to improved tolerance to self phase
modulation (SPM). Spans with IDFs has lower span loss, resulting in up
to 20% improved 3 dB transmission distance.

Novel on-off keying modulation formats are compared in Chapter 4,
where NRZ, duobinary, RZ with 50 and 20% pulse widths, SSB-RZ and
CS-RZ are compared for 40 Gbit/s systems using SMF + DCF or SMF
+ IDF×2. Studying a single-channel system, we show that the conclu-
sions obtained at a bit rate of 10 Gbit/s are still valid at the higher bit
rate of 40 Gbit/s. Using narrow RZ pulses results in optimum perform-
ance. However, when a WDM system with 100 GHz channel spacing is
considered, the benefits of the SSB-RZ and CS-RZ are revealed. Narrow
spectral width combined with good transmission performance due to the
RZ waveform results in overall good performance for SSB-RZ and CS-RZ.

Chapter 5 presents an experimental investigation of three dispersion
maps for 160 km span length. Using such long span lengths can signific-
antly reduce the cost of the link, as the number of amplifier stations are
significantly decreased. We compare pre-, post- and symmetrical disper-
sion maps for a system using 40 Gbit/s bit rate, and the results shows
that the symmetrical dispersion map results in the best performance.
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DQPSK is dealt with in Chapter 6. First, an introduction to DQPSK
is presented, showing transmitter and receiver design, and basic properties
such as receiver sensitivity and dispersion tolerance are discussed. Then, a
series of DQPSK experiments is presented, starting with a demonstration
of a 12.5 Gbit/s WDM system with transatlantic transmission lengths.
We demonstrate the good WDM transmission properties of DQPSK by
transmitting 12.5 Gbit/s RZ-DQPSK over 6500 km using a channel spa-
cing of 15 GHz, corresponding to a spectral efficiency of 0.66 bit/s/Hz.
We study ultra-high speed signal by generating a 80 Gbit/s non return-to-
zero differential quadrature phase shift keying (NRZ-DQPSK) signal. Us-
ing FWM in a highly nonlinear fibre, we demonstrate the first wavelength
conversion of such high speed phase modulated signals.

Finally, the thesis is concluded in Chapter 7.
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Chapter 2

Introduction to Dispersion
and Modulation Formats

2.1 Introduction

This chapter gives a brief introduction to concepts and terminology critical
to this thesis: modulation formats, dispersion, dispersion compensation
and dispersion management. This is not intended as a complete intro-
duction to these topics, rather as a quick walk-through with references to
further information to set the stage for the following chapters.

2.2 Dispersion

2.2.1 Chromatic Dispersion

Dispersion1 in optical communication systems is dominated by two parts,
namely material dispersion and waveguide dispersion. The material dis-
persion comes from a wavelength dependence of the refractive index of
silica, the material used for optical fibres [1]. The other contribution to
the dispersion is the waveguide dispersion, caused by the structure of the
fibre. The waveguide dispersion depends on fibre parameters like the core
radius and the index difference [1].

In the wavelength area of interest for optical communication—around
1The term dispersion is used for chromatic dispersion throughout this thesis.
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(a) (b)

Figure 2.1: Illustration of the effect of dispersion on a 10 Gbit/s NRZ signal before
and after transmission through 200 km of (loss-less and linear) SMF for a single pulse
(a) and a pulse train (b).

1550 nm—the material dispersion is positive and the waveguide dispersion
is negative. By careful optimisation of the fibre parameters, the amount
of waveguide dispersion can be controlled such that the sum of material
and waveguide dispersion can be either positive, zero or negative at the
wavelength of interest. Standard single mode fibre (SMF) have a disper-
sion of about 17 ps/nm/km at 1550 nm.

The wavelength dependence of the refractive index causes the vari-
ous spectral components of the signal to propagate at different velocities
through the fibre, effectively broadening the pulse at the receiver. Fig-
ure 2.1(a) illustrates the effect of the dispersion from 200 km of standard
SMF2 on a single 10 Gbit/s non return-to-zero (NRZ) “one” bit. It is
seen that the initial almost square NRZ pulse is transformed into a much
wider pulse, that has energy far outside the bit slot. This leads to interfer-
ence with neighbouring bits—referred to as inter-symbol interference (ISI).
Figure 2.1(b) illustrates the effect ISI on the pulse train “0101110010”. The
ISI caused by dispersion is so severe at this point that the information is
lost.

As the bit rate increases, the spectral width is increased and the bit
time slot is decreased. Both the increased spectral width and decreased

2Assuming a linear, loss-less fibre with a dispersion of 17 ps/nm/km.
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time slot increases the detrimental effect of dispersion. Therefore, the
effect of dispersion scales with the square of the bit rate [2].

The dispersion length LD is a rule of thumb to judge when the effect
of dispersion becomes so large that the information in the signal can not
be recovered. The LD expressed in km can be written as3

LD � 0.252 · T 2

D
, (2.1)

where T is the full width at half maximum (FWHM) pulse width of the in-
put pulses expressed in ps and D is the dispersion expressed in ps/nm/km.

Using Eq. 2.1, we see that for a NRZ signal at 1 Gbit/s, the dispersion
length is above 14 000 km for SMF.4 Thus dispersion is not a limiting
issue at such low bit rates, even for ultra-long transoceanic links. How-
ever, as the bit rate is increased the dispersion length decreases rapidly,
being 2300 km for 2.5 Gbit/s and 150 km for 10 Gbit/s. For a bit rate
of 40 Gbit/s, the LD is decreased to only 9 km SMF. With non-zero dis-
persion shifted fibre (NZDSF), the dispersion lengths are a factor of 5–10
times longer than with SMF.

Fortunately, there are methods to compensate for the effect of dis-
persion, enabling transmission over distances longer than the dispersion
length without expensive optical-electrical-optical conversions.

2.2.2 Dispersion Compensation

There are several different methods that can be used to compensate for
dispersion, including dispersion compensating fibre (DCF) [3–6], chirped
Bragg gratings [7–9], all-pass optical filters [10–13] and optical phase
conjugation [14–16]. These methods restore the signal such that it can
be received in a normal receiver. An alternative method is to detect
the dispersed signal and perform the dispersion compensation electric-
ally [17–19].

3Using LD =
T2
0

|β2| , β2 = − λ2

2πc
· D and TFWHM � T0

1.763
at λ = 1550 nm, where c is

the speed of light in vacuum and T0 is the 1/e pulse width [2]. LD is the length at
which an unchirped first-order Gaussian pulse has broadened by a factor

√
2, and gives

a rough estimate of when the effect of dispersion becomes significant.
4Using T=100% of the bit slot for the NRZ signal. This is not accurate—as Eq. 2.1

assumes Gaussian pulse width—but a useful rough approximation.
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As previously mentioned, careful optimisation of the fibre paramet-
ers can make the sum of material and waveguide dispersion negative for
wavelengths around 1550 nm. Dispersion compensation using negative
dispersion fibre was originally proposed in 1980 [20], and DCFs have now
been commercially available for more than a decade [1]. The use of DCF
is now a mature technique to compensate for the dispersion of already
deployed SMF, and the effectiveness of the latest generation of DCFs for
wide-band compensation has already been demonstrated [3]. Due to this,
and the wide-spread use of DCFs in commercial systems, this thesis deals
solely with dispersion compensation using DCF.

Fortunately, dispersion is a linear effect which can be completely com-
pensated. By placing one DCF with negative dispersion after a SMF with
positive dispersion, the net dispersion will be zero if

DSMF × LSMF = −DDCF × LDCF, (2.2)

where D and L is the dispersion and length of each fibre segment, respect-
ively.

Traditionally, the DCF has been placed on a fibre spool in the amplifier
station. In this configuration it is best to use a short DCF in order to
minimise the insertion loss. Thus, the negative dispersion of the DCF
needs to be large, and is normally around −100 ps/nm/km [3]. One length
of DCF thus compensates for about six lengths of SMF, thus about 14 km
DCF is required for an 80 km SMF span.

2.2.3 Dispersion Management

The previous section briefly introduced dispersion compensation. Here,
we take the concept a little further, and introduce the term dispersion
management. Increasing the capacity of optical communication systems
relies on the effective management of dispersion and optical fibre nonlin-
earities. The choice of the type of fibre used for transmission as well as
the dispersion management scheme are therefore of prime importance for
the design of optical fibre links.

We saw in the last section that long-haul transmission of high bit rate
signals such as 10 and 40 Gbit/s requires dispersion compensation. If the
optical transmission path was completely linear, all of the link dispersion
could have been compensated by one dispersion compensator, for example
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at the receiver. Unfortunately, the phase information that is required to
regenerate a dispersed signal is destroyed by nonlinear signal interaction
such as self phase modulation (SPM) and cross phase modulation (XPM)
in the optical path. Therefore, the dispersion should be compensated on
a regular basis, and this is normally performed on a per-span basis.

From a single-channel system, one could argue that the optimum
would be to produce a fibre with zero dispersion at the channel wavelength,
a fibre type referred to as dispersion shifted fibre (DSF). This can be done
by carefully adjusting the fibre design so that the waveguide dispersion
exactly cancels out the material dispersion [1]. However, in wavelength
division multiplexing (WDM) systems, fibres with zero or low disper-
sion suffer from enhanced nonlinear signal interaction such as four-wave
mixing (FWM) [2]. A compromise between SMF and DSF was introduced
in order to offer a dispersion that was lower than SMF, but high enough to
avoid excessive FWM, and is referred to as NZDSF. An experimental in-
vestigation using NZDSF with a dispersion of 5.5 ps/nm/km is presented
in Chapter 5.

In a linear system, it normally would be optimum to compensate for
100% of the dispersion. However, the nonlinear effect SPM creates a
frequency chirp that can be partially compensated for by positive dis-
persion [2]. Thus, the amount of dispersion compensation needs to be
optimised. Additionally, the location of the dispersion compensating fibre
in the span also affects the performance. The nonlinear signal evolution is
different for pre-compensated, post-compensated and symmetrically com-
pensated spans.

Furthermore, it is not always optimum to have equal dispersion com-
pensation ratio in each span. For long-haul submarine systems, the dis-
persion is often managed in a long dispersion map of about 10 spans
(see e.g. [21–24]). Some of the spans in the map are over-compensated,
and some of the maps are under-compensated so that the total accumu-
lated dispersion in each map is close to zero. This advanced dispersion
management improves performance, since as the pulse shape is different
at each span input, thus avoiding build-up of the same non-linear signal
degradation. Long dispersion maps are used in long-haul transmission
experiments presented in Chapter 6.

This introduction on dispersion management illustrates that the op-
timisation of dispersion management is a difficult task. There is no “glob-
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ally optimum” dispersion management scheme, as it will depend on system
parameters such as fibre types used, span length, transmission distance,
number of channels, modulation formats and per channel bit rate. Thus,
the choice of the dispersion management scheme must be considered for
each system.

The following chapters will present investigations of several dispersion
management schemes. Chapters 3 and 4 presents comparisons of disper-
sion managed 80 km fibre spans consisting of SMF and either conventional
DCF or one of three novel inverse dispersion fibres (IDFs), for bit rates of
10 and 40 Gbit/s, respectively. In Chapter 5, we compare three NZDSF
+ DCF dispersion maps for a 40 Gbit/s system.

2.3 Modulation Formats

When designing today’s optical communication links, there is a wide vari-
ety of modulation formats to choose from. Four properties of an optical
signal can be modulated—the amplitude, phase, frequency and state of
polarisation (SOP). Most systems today use a binary amplitude modu-
lation on-off keying (OOK) format with a pulse width equal to the time
slot—non return-to-zero (NRZ), since very simple (and thus cheap) trans-
mitters and receivers can be used.5

Over the last years, novel modulation formats with improved perform-
ance with respect to NRZ have been suggested and investigated. It has
been long known that using a return-to-zero (RZ) waveform can improve
the receiver sensitivity and nonlinear tolerance (see e.g. [25–28]), but at
the extra cost of one additional modulator and drive circuitry in the trans-
mitter. Recently, many OOK formats with additional phase modulation
have been shown to perform very well under certain circumstances, for
example chirped-RZ [29, 30]. This however, adds further complexity to
the transmitter.

Recently, phase modulation have been “rediscovered” in the optical
communication field [31]. Phase modulation combined with a balanced re-
ceiver offers a very attractive 3 dB improved receiver sensitivity compared
to OOK. However, this improvement comes at the cost of a more complic-

5Only digital modulation is considered in this thesis.
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ated receiver design. Four-level phase modulation—differential quadrat-
ure phase shift keying (DQPSK)—has also been studied recently [32–37].

Advanced modulation formats can offer significantly better perform-
ance compared to NRZ. However, these formats require significantly
increased complexity in transmitter and receiver designs, leading to in-
creased cost. For commercial systems, advanced modulation formats will
therefore only be used when NRZ is not sufficient, or the extra cost of
the modulation format lead to larger cost reductions in other parts of the
system.

The various modulation formats can be classified into the following
four categories, depending on which of the four properties of the carrier
is modulated—amplitude, phase, frequency and SOP:

• Amplitude shift keying (OOK)6 [28, 38–49]

• Phase shift keying [31–37,50–54]

• Frequency shift keying [55–59]

• Polarisation shift keying [60–65]

In this work, modulation formats from the first and second group lis-
ted above have been investigated. Frequency modulation and polarisation
modulation formats were not considered in this work. Chapter 3 presents
an investigation on optimum pulse width of 10 Gbit/s NRZ and RZ sig-
nals. Advanced OOK modulation formats are introduced and compared
in Chapter 4. Finally, phase modulated signals are discussed in Chapter 6,
where DQPSK is studied at bit rates of 12.5 and 80 Gbit/s.

2.4 Summary

This chapter has briefly introduced two aspects of optical communication
systems critical to this study—management of dispersion and modulation
of optical signals. The detrimental effects of dispersion on high-speed

6Apart from NRZ and RZ, this category also includes e.g. duobinary, carrier sup-
pressed return-to-zero (CS-RZ) and single side band return-to-zero (SSB-RZ). These
formats are all OOK signals with additional phase modulation or to improve transmis-
sion performance or spectral properties.
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optical signals have been illustrated, and the concept of dispersion com-
pensation and dispersion management have been discussed. Modulation
methods used in optical communication were discussed, and references to
the most well-known formats were given.
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Chapter 3

Dispersion Management and
Pulse Width Optimisation for
10 Gbit/s OOK Systems

3.1 Introduction

In Chapter 2 we saw that chromatic dispersion could be compensated for
by using e.g. dispersion compensating fibre (DCF). In a completely linear
system, dispersion compensation could be achieved by only compensating
at the receiver. However, in a system with non-negligible nonlinearities
and in-line erbium doped fibre amplifiers (EDFAs), the dispersion com-
pensation is more complicated. The dispersion is normally compensated
on a span-by-span basis, and the optimum dispersion compensation might
deviate from 100% under certain conditions [1, 2].

Traditionally, DCFs have been placed on a fibre spool in the amplifier
station. Recently, new DCF designs have been introduced—inverse dis-
persion fibre (IDF) [3] or reverse dispersion fibre (RDF) [4]—which enable
cabled compensation of the dispersion and dispersion slope of single mode
fibre (SMF) with various SMF to DCF length ratios. Such IDFs have
been used several recent high capacity wavelength division multiplexing
(WDM) [5–7] and optical time division multiplexing (OTDM) [8, 9] ex-
periments. The value of dispersion ranges from about −100 ps/nm/km
for conventional DCF to −17 to −55 ps/nm/km for IDF [10].

25
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These new fibre types introduce new possibilities in system design, as
the DCF now can be used as transmission fibre. This reduces the overall
span loss. Furthermore, valuable space is freed up at the amplifier station
since there is no longer need for bulky fibre spools. However, when the
dispersion compensating fibre design is changed from conventional DCF
to IDF, the intrinsic properties of the fibre (attenuation and nonlinear
coefficient) as well as its position with respect to the optical amplifiers
in the link will be changed. A consequence is that, due to nonlinear
effects, it is not intuitively clear which type of dispersion compensating
fibre performs the best for a given system.

Since the mid 1990’s, there has been a strong debate on whether
return-to-zero (RZ) or non return-to-zero (NRZ) waveform is the optimum
for on-off keying (OOK) modulation formats (see e.g. [11–23]). Various
bit rates, dispersion compensation schemes, span lengths, power levels
and transmission distances have been investigated, with varying conclu-
sions. There seems to be no clear answer that one is better than the
other—a careful investigation based on the actual system design might be
necessary. It is, however, clear that the use of RZ signalling results in an
improved receiver sensitivity [24]. Normally about 2 dB improvement is
obtained for optical communication systems, compared to NRZ [25].

This chapter presents a systematic investigation of optimum disper-
sion management and NRZ/RZ pulse widths for single-channel 10 Gbit/s
optical communication systems using both conventional and novel dis-
persion compensating fibres [26]. By combining the study of dispersion
management and modulation format, the results are more general than
previous work varying either of the two. We study 10 Gbit/s NRZ and RZ
OOK modulation with pulse widths of 100% (NRZ), 50%, 10% and 5% of
the bit slot. Four different dispersion management strategies are studied,
with fibre spans made of SMF + either DCF or one of three IDFs. The res-
ults allow us to find the optimum combination of dispersion management
and OOK pulse widths. Optimising the signal input power, we find the
maximum transmission distance that can be bridged using this system,
and thus finding the optimum combination of dispersion management and
pulse width.
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3.2 Dispersion Management

When the DCF is placed on a fibre spool in the amplifier station, it does
not contribute to the transmission length. When using a DCF this way,
the ratio between the dispersion and the attenuation, referred to as figure
of merit (FOM), should be as high as possible to minimise the fibre length
and thus the loss.1 The highest FOMs are obtained by having a large
negative dispersion, and conventional DCF normally have dispersion of
around −100 ps/nm/km [27].

However, with recent progress in fibre manufacturing, dispersion com-
pensating fibres can now be cabled with good performance, and thus be
used as transmission fibre [10, 28]. This opens up the door to novel dis-
persion compensation design, and reduces the span loss as the total fibre
length is reduced. However, this does of course make the optimisation
process more complicated, as the DCFs with high FOM is not necessary
optimum.

Here, we consider a dispersion management scheme where the dis-
persion is fully compensated after each span. Standard single mode fibre
with dispersion of 17 ps/nm/km at a wavelength of 1550 nm is used as the
main transmission fibre, and is followed by a length of negative dispersion
fibre—DCF or IDF—to compensate the dispersion. The fibre lengths are
chosen such that the sum of the length of the SMF and DCF/IDF equal
the span length of 80 km and the dispersion is fully compensated. As the
dispersion compensating fibre is placed after the main transmission fibre
and fully compensates for the dispersion in each span, these spans are
referred to as 100% post-compensated spans.

We study four different dispersion compensation schemes, conventional
DCF and three IDFs, with dispersion values of −100, −54, −40 and
−17 ps/nm/km at 1550 nm, respectively. The IDFs are referred to as
IDF×n where n = {1, 2, 3} is the SMF to IDF length ratio. For the re-
mainder of this chapter, DCF with a dispersion of −100 ps/nm/km at
1550 nm will be referred to as conventional DCF. When speaking about
dispersion compensating fibres in general, the term DCF will be used.

Plotting the attenuation and nonlinear coefficient versus dispersion as
in Figure 3.1, it can be seen that when the absolute value of the dispersion
is reduced from conventional DCF to IDF values, both attenuation and

1The figure of merit is defined as FOM = −DDCF
αDCF

[27].
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Figure 3.1: Attenuation and nonlin-
ear coefficient as a function of disper-
sion parameter for conventional DCF and
IDF×n. Fibre parameters are also listed
in Table 3.1.

Figure 3.2: Illustration of the studied
dispersion compensation schemes using
conventional DCF or IDF×n, showing ac-
cumulated dispersion versus distance.

nonlinear coefficient2 are significantly reduced. This is beneficiary in terms
of reduced span loss and nonlinear signal degradation.

The accumulated dispersion versus distance is plotted in Figure 3.2 to
illustrate the differences between the schemes. One length of conventional
DCF compensates for about 6 lengths of SMF. IDF×1, on the other
hand, compensates for only one length of SMF. We see from Figure 3.2
that when going from conventional DCF towards IDF×1, the maximum
accumulated dispersion is reduced and the length of SMF is reduced.

When the length of SMF before the DCF is decreased, the power
level at the output of the SMF will increase. Additionally, the pulses will
be less dispersed, resulting in even higher peak power. So even though
the nonlinear coefficient of the IDFs is decreased, it is not intuitively
clear how the effect is on the system performance. A trade-off has to be
found between increased input power and decreased nonlinear coefficient,
resulting in an optimal dispersion map. This optimisation requires a full
study taking nonlinear signal propagation into account.

2The nonlinear coefficient is defined as γ = 2π
λ

n2
Aeff

where n2 is the nonlinear re-
fractive index, Aeff is the effective area of the fibre and λ is the wavelength [29].
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(a) NRZ (b) RZ 50% (c) RZ 10% (d) RZ 5%

Figure 3.3: Optical eye diagrams of 10 Gbit/s NRZ and RZ signals having the same
peak power (top), and optical power spectrum (resolution bandwidth of 1.0 GHz)
having the same average power (bottom).

3.3 Modulation Format Pulse Width

Four pulse widths are studied here, ranging from 100% to 5% of the time
slot. The case of 100% pulse width corresponds to NRZ. The three
RZ pulse widths studied here—50%, 10%, and 5%— are referred to as
RZ 50%, RZ 10% and RZ 5%, respectively.

The eye diagrams and power spectra of the studied signals are com-
pared in Figure 3.3, clearly illustrating that as the pulse width is de-
creased, the spectral width is increased. It is apparent that for the case of
5 and 10% pulse widths there is no inter-symbol interference (ISI), whereas
the pulse shape of RZ 50% and NRZ clearly depends on the previous and
next bit.

These differences in pulse width and spectral width dramatically af-
fect the propagation properties. This is illustrated in Figure 3.4, where
the waveforms of a 10 Gbit/s NRZ and RZ 5% have been plotted after
transmission over various lengths of SMF. Self phase modulation (SPM)
and noise were not included to pinpoint the effect of dispersion. We see
that NRZ waveform is well maintained even after transmission over 60 km.
Whereas for the RZ 5%, the pulses are completely dispersed, and the peak
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(a) NRZ (b) RZ 5%

Figure 3.4: Propagation of 10 Gbit/s NRZ and RZ 5% signals over SMF. SPM and
noise not included to pinpoint the effect of dispersion.

power is lower. The waveform of the narrow RZ pulses is dominated by
beating between neighbouring dispersed pulses and is rapidly changing,
thus effectively reducing the nonlinear signal degradation.

3.4 Systems Under Investigation

We study a single-channel optical communication system with 100% post-
compensated spans, i.e. the DCF is placed after the SMF and perfectly
compensate the dispersion of the SMF. It has been shown that using a
dispersion compensation ratio slightly lower than 100% can lead to an im-
proved performance due to partial compensation of SPM [1,2]. However,
the exact value of the optimum dispersion compensating ratio depends
on many variables such as power level, modulation format and fibre type.
Also, since it is often not desirable for practical systems to rely on nonlin-
ear effects, we here only investigate 100% dispersion compensation ratio.
It should be noted that the dispersion compensating fibres studied here
provide simultaneous 100% dispersion and dispersion slope compensation
(i.e. the ratio of the dispersion slope S to the dispersion D is equal for
SMF and dispersion compensating fibre [27]).

The simulated systems are shown in Figure 3.5. The signal was
generated by modulating light from a continuous wave (CW) laser (for
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Figure 3.5: System under investigation. A CW or pulsed signal is modulated by a
MZ and then transmitted through N spans of SMF + IDF or DCF.
ATT: Optical attenuator, OBF: Optical band-pass filter, PD: Photodiode, ELPF: Electrical
low-pass filter, BER: Bit error rate estimation.

NRZ) or a pulse source (for RZ) with a 210 − 1 bit pseudo random bit
sequence (PRBS) at a bit rate of 10 Gbit/s using a chirp-free Mach-
Zehnder (MZ) modulator with 30 dB extinction ratio. The electrical data
drive signal had a rise-time of 20% of the time slot. The pulse source
produced a train of first-order unchirped Gaussian pulses with full width
at half maximum (FWHM) of 50, 10 and 5 ps for the RZ 50%, RZ 10%
and RZ 5% formats, respectively.

The modulated 10 Gbit/s signals were then transmitted through a
number of fibre spans each consisting of an EDFA with 5 dB noise figure
and SMF + conventional DCF/IDF×n as described in Section 3.2. The
loss of the fibres in each span was fully compensated by the gain of the
EDFA, so that the signal power was kept constant at the input of each
span. A splicing loss of 0.25 dB was assumed for each SMF to DCF splice
(two per span).

For this study, actual production average values were used for the
fibre parameters [10], as presented in Table 3.1. The total fibre span loss
is also shown. It is seen that the span loss varies from 18.6 to 16.8 dB
for conventional DCF and IDF×2, respectively. This 1.8 dB difference
in span loss will have a significant impact on the optical signal to noise
ratio (OSNR) after transmission over long distances.

After propagation through the desired number of spans, the signal was
fed to a pre-amplified receiver where an EDFA with noise figure equal to
5 dB was positioned between two second order Gaussian optical band-pass
filters with 100 GHz FWHM bandwidth. After detection, the electrical
signal was filtered with a fourth-order Bessel low-pass filter with 7.5 GHz
cut-off frequency. The receiver sensitivity was calculated at the input of
the pre-amplifier based on calculation of the bit error rate (BER) using
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D S Att. γ Span loss
[ps/(nm.km)] [ps/(nm2.km)] [dB/km] [1/(W.km)] [dB]

SMF 17 0.0578 0.180 1.03 –
IDF×1 -17 -0.0578 0.233 3.51 17.0
IDF×2 -40 -0.1360 0.258 4.25 16.8
IDF×3 -54 -0.1836 0.293 5.22 17.1
DCF -100 -0.3400 0.500 7.87 18.6

Table 3.1: Fibre parameters used in the simulations, and the resulting span loss for
SMF+DCF/IDF×n spans.

a Gaussian approximation taking ISI into account [30]. The back-to-back
sensitivity at a BER of 1.0×10−9 was found to be −37.0 dBm for NRZ,
−38.2 dBm with RZ 50%, −39.8 dBm with RZ 10% and −39.3 dBm with
RZ 5%. As expected the sensitivity for RZ is around 2 dB better than
for NRZ [25]. The sensitivity for RZ 5% is 0.5 dB worse than for RZ 10%
due to excessive optical and electrical filtering in the receiver.

The calculation of the field propagation in the fibre was performed
using the split-step method [31]. Impairments arising from group-velocity
dispersion, nonlinear Kerr effect, amplifier noise and their interactions
were considered. The quality of the system was quantified by the 3 dB
power penalty limit, i.e. the distance after which the sensitivity at a
BER of 1.0×10−9 is 3 dB worse than in the back-to-back case. The
relative performance of the different dispersion maps was investigated as
a function of the modulation format, span length and span input power.

3.5 Transmission Performance

Using the system described in the previous sections, a thorough numer-
ical investigation of the transmission performance of a 10 Gbit/s single-
channel system with the studied pulse widths and dispersion compensation
schemes was undertaken. SMF input power ranging from −6 to +5 dBm
were investigated for each modulation format over both the SMF + con-
ventional DCF and SMF + IDF links. We quantified the quality of the
signal as the power penalty after transmission, i.e. the difference in re-
ceiver sensitivity compared to the back-to-back case.
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Figure 3.6: Penalty versus distance of 10 Gbit/s NRZ, RZ 50%, RZ 10% and RZ 5%
signals after transmission over 80 km SMF+IDF×2 spans. Each point corresponds to
the power penalty for the optimum power level at that distance.

In order to simplify the interpretation of the results, it was decided
to only show the processed results here.3 Figure 3.6 shows the power
penalty versus distance at optimum power level at each distance for the
SMF+IDF×2 dispersion map. We see a very clear trend that decreasing
the pulse width improves the performance, and that transmission over
more than 8000 km is feasible using RZ 10% or RZ 5%. The corresponding
curve for the other dispersion maps are included as Figures A.2, A.4, A.6
and A.8 in Appendix A.

The best way to compare the results from this investigation is to look
at the 3 dB power penalty limit at different power levels. This gives in-
formation about tolerance to low OSNR, nonlinear tolerance, optimum
power level and maximum transmission distance. This is illustrated in
Figures 3.7 and 3.8, presenting the 3 dB power penalty limit versus signal
average input power for the four different types of dispersion compensat-
ing fibre, for NRZ and RZ transmission at 10 Gbit/s. The same inform-

3For the interested reader, the raw data is included in Figures A.1, A.3, A.5 and
A.7 in Appendix A, showing the power penalty versus signal input power for different
transmission distances.
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(a) IDF×1 (b) IDF×2

(c) IDF×3 (d) DCF

Figure 3.7: 3 dB power penalty limit as a function of span average input power for
single-channel transmission at 10 Gbit/s over 80 km spans made of SMF + IDF×1,
IDF×2, IDF×3 or conventional DCF, and using NRZ, RZ 50%, RZ 10% or RZ 5%.

ation is included in both figures, in Figure 3.7 the results are grouped by
modulation format to allow easy comparison of the studied fibre spans.
Likewise, in Figure 3.8 the results are grouped by fibre types to allow for
easy comparison of the studied pulse widths. Finally, the 3 dB power
penalty limit at the optimum power level are summarised in Table 3.2 for
all the considered pulse widths and dispersion management schemes.

At low powers, the transmission distance is limited by low OSNR
and by SPM at higher powers. Thus there exists an optimum power level.
However, as the accumulation of degradations from amplified spontaneous
emission (ASE) and SPM is quite different, the optimum signal power is
not constant with distance.
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(a) NRZ (b) RZ 50%

(c) RZ 10% (d) RZ 5%

Figure 3.8: 3 dB power penalty limit as a function of span average input power for
single-channel transmission at 10 Gbit/s over 80 km spans made of SMF + IDF×1,
IDF×2, IDF×3 or conventional DCF, and using NRZ, RZ 50%, RZ 10% or RZ 5%.

At low power, the higher span loss of the SMF + conventional DCF
map (18.6 dB, compared to 16.8 dB for SMF + IDF×2) is responsible
for a reduced 3 dB transmission distance due to excess noise. For high
powers on the other hand, nonlinear degradation results in almost the
same distances for all fibres, except for IDF×1, which results in a signi-
ficantly shorter 3 dB power penalty limit. Due to a shorter SMF length
and therefore reduced attenuation and dispersion-induced pulse broaden-
ing before the IDF×1, the peak power is significantly higher at the IDF×1
input. Although the IDFs are less nonlinear than the conventional DCF,
their closer proximity to the amplifiers make them more vulnerable to
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IDF×1 IDF×2 IDF×3 DCF
NRZ 2080 2320 2240 2000
RZ 50% 2320 2480 2480 2240
RZ 10% 5520 6000 6000 5120
RZ 5% 6240 7600 7440 6240

Table 3.2: Maximum transmission distance in km for 3 dB power penalty at optimum
power level.

SPM. We see that IDF×2 or IDF×3 have good—and almost identical—
performance for all pulse widths and power levels.

It is seen that the RZ 50% modulation format performs slightly better
than NRZ, and that the shorter pulses of RZ 5% allow three times longer
3 dB transmission distance than NRZ. The reason for the improved per-
formance for the short RZ pulses is that, even though they initially have
a very high peak power, they will disperse very rapidly due to their broad
spectrum. Thus, at the input of the dispersion compensating fibre the
pulses are highly dispersed and their peak power is low, reducing the non-
linear degradation [32]. This also explains why the optimum span input
power is larger for the RZ 5% than for NRZ and RZ 50%. The power of
the shorter pulses can be increased while their nonlinear tolerance remains
high. This is in turn beneficial in terms of OSNR, therefore shifting the
optimum span input power to higher values.

Figure 3.9 presents the eye diagrams of the signal after transmission
over 4000 km using SMF + IDF×2 with −1 dBm span input power. Both
electrical and optical signals are shown, and for the optical signal, the
noise was disregarded for clarity. The optical signals can be compared to
the back-to-back case shown in Figure 3.3. Very strong ISI is apparent for
NRZ and RZ 50% resulting from SPM-induced pulse broadening. Both
these formats have a power penalty above 10 dB in this case. Significant
improvement is seen with the RZ 10% and RZ 5% formats, which pulse
shapes are very well maintained. Only slight amplitude and timing jitter
is visible.
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(a) NRZ (b) RZ 50% (c) RZ 10% (d) RZ 5%

Figure 3.9: Eye diagrams of 10 Gbit/s signals after transmission over 4000 km of
SMF+IDF×2 using an average span input power of −1 dBm. Top row shows optical
eye diagram where the noise has been disregarded, and the bottom row shows the
electrical received signal. Vertical scale varies.

3.6 Summary

This chapter has discussed optimum pulse width for NRZ and RZ signals
in 10 Gbit/s optical communication systems. We presented a systematic
comparison of single-channel transmission performance through disper-
sion managed 80 km fibre spans based on SMF and conventional DCF or
IDF×n.

Dispersion compensation using IDF×2 or IDF×3 provided the longest
transmission distance for our system irrespective of the modulation format
(RZ or NRZ) or pulse width (5%, 10% or 50%). These fibres offers a good
compromise between low loss and low nonlinear signal degradation, result-
ing in good performance for all power levels. For NRZ and RZ 50% there
were only small differences in the performance for the studied dispersion
maps. The choice of dispersion map is more critical when using narrow
pulse width—the maximum 3 dB power penalty limit is 20% longer when
using IDF×2 compared to conventional DCF for RZ 5%.

For the modulation formats, using RZ pulses resulted in significantly
improved transmission distances compared to NRZ modulation format.
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Short RZ pulses were found to be optimum, and RZ 5% offers three times
longer transmission distance than NRZ. Nonlinear effects in the dispersion
compensating fibre were significantly reduced when using RZ 5%, due to
highly dispersed pulses at the SMF output.

In conclusion, narrow pulse width RZ modulation leads to greatly in-
creased transmission limit for single-channel 10 Gbit/s systems, compared
to the traditional NRZ format. Using novel dispersion compensating fibres
that can be cabled and used as transmission fibres improves the transmis-
sion performance by effectively lowering the span loss. Optimising the
dispersion map is especially important when using narrow pulse widths.
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Chapter 4

Novel Modulation Formats for
40 Gbit/s Systems

4.1 Introduction

In recent years several novel modulation formats have been suggested as
alternatives to the commonly used non return-to-zero (NRZ) and return-
to-zero (RZ). The new formats include carrier suppressed return-to-zero
(CS-RZ) [1], single side band return-to-zero (SSB-RZ) [2] and duobinary
[3]. These new formats offer various improvements over NRZ or RZ. Due
to their narrower spectra, duobinary and SSB-RZ are expected to provide
improvements in terms of tolerance to group-velocity dispersion (GVD)
and could allow increased spectral efficiency in dense wavelength division
multiplexing (WDM) systems, whereas CS-RZ was initially proposed for
its resilience to self phase modulation (SPM).

In this chapter, six different modulation formats are compared for
single-channel and WDM systems operating at a per channel bit rate of
40 Gbit/s. We compare the transmission performance over a link consist-
ing of single mode fibre (SMF)-based dispersion maps with 80 km fibre
spans, with dispersion compensation using either conventional dispersion
compensating fibre (DCF) or novel inverse dispersion fibre (IDF×2).

43
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4.2 Modulation Formats

Six different on-off keying (OOK) modulation formats—NRZ, duobinary,
RZ 50%, RZ 20%, SSB-RZ and CS-RZ—were studied at a bit rate of
40 Gbit/s. Figure 4.1 shows the schematic of the transmitters for these
modulation formats, with the resulting optical eye diagram and power
spectrum of the generated signal. Data and clock signal drive levels and
Mach-Zehnder (MZ) modulator bias settings are included.

All the modulation formats studied in this chapter are OOK or variet-
ies of OOK. In the simplest form of OOK, the data signal drives the laser
directly, such that the laser is on for a logical one, and off for a logical zero
(hence the name on-off keying). However, this operation method—known
as direct modulation—results in a chirped signal, which reduces dispersion
tolerance [4]. Additionally, as of today there are no commercially available
directly modulated lasers for bit rates above 10 Gbit/s.1

The alternative to direct modulation is to use the laser to gener-
ate a continuous wave (CW) signal that is modulated using an external
modulator—thus referred to as external modulation. The most frequently
used external modulator is the MZ modulator [4], and all the modula-
tion formats studied in this chapter are generated using one or more MZ
modulators.

The basic OOK signal is referred to as non return-to-zero (NRZ), as
the power of the signal does not drop to zero between consecutive bits.
Many varieties of OOK signals exist, using different pulse widths or ad-
ditional phase modulation in order to improve the receiver sensitivity,
transmission performance or the spectral efficiency. When using a pulse
width less than the bit slot, the modulation format is referred to as return-
to-zero (RZ), as the intensity returns to zero in every bit. By modifying
the phase of the signal, various advantages can be obtained. Both duo-
binary, CS-RZ and SSB-RZ are OOK modulation formats with additional
phase modulation.2

However, it is important to remember that the information in all OOK
signals is still encoded in the same way—the presence of a light pulse

1However, in 2003 a 40 Gbit/s NRZ signal generated with a directly modulated
laser was experimentally demonstrated [5].

2The phase modulation required for these formats can be applied using either a
phase modulator, or driving a MZ modulator in a special way, as discussed later in this
chapter.
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(a) NRZ

(b) Duobinary

(c) RZ 50%

(d) RZ 20%

(e) CS-RZ

(f) SSB-RZ

Figure 4.1: Details of the transmitter setups of the studied modulation formats,
indicating drive voltage and bias setting for the MZ modulators in push-pull configur-
ation. The eye diagrams and optical power spectra (2 GHz resolution bandwidth) of
the generated signals are also shown.
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represents a logical one, and the absence of a light pulse represents a
logical zero.

To illustrate how the information is coded onto the optical carrier for
the studied modulation formats, the real part of the electric field of the
generated signals versus time is plotted in Figure 4.2. Note that a pulse
with amplitude +1 and −1 have the same power, but with π relative phase
offset.

The following paragraphs introduce the six studied modulation
formats.

NRZ

NRZ is the modulation format used in most commercial systems. A NRZ
signal is a pure OOK modulation format; zero power is transmitted for
a logical zero, and a pulse filling the entire bit slot is transmitted for a
logical one.3

To generate the NRZ signals studied in this chapter, a CW signal
is modulated by a MZ modulator biased at quadrature, as illustrated in
Figure 4.1(a). The modulator is assumed to have infinite extinction ratio.
An electrical 40 Gbit/s NRZ shaped data signal with a rise/fall time of
5 ps drives the MZ modulator, which is operated in push-pull mode so that
a chirp-free optical NRZ signal is obtained. A data signal and an inverted
data signal—both with a voltage equal to half the modulator switching
voltage Vπ—are applied to the two modulator arms. The waveform of the
generated NRZ signal is shown in Figure 4.2(a), illustrating the simple
coding.

Duobinary

Duobinary modulation [3,6–9] was initially suggested to increase the tol-
erance to dispersion. In a duobinary signal, a logical one is coded as a
light pulse with either 0 or π phase, and zeros are coded as either absence
of a pulse, or a pulse with low intensity depending on the generation
method. The phase of the ones is chosen such that there is a π phase-
change between strings of ones separated by an odd number of zeros. This
phase change helps to reduce the spectral width, and causes the dispersed

3Of course in real systems there is always some power in the zeros.
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(a) NRZ

(b) Duobinary

(c) RZ 50%

(d) RZ 20%

(e) CS-RZ

(f) SSB-RZ

Figure 4.2: Waveforms of the six studied modulation formats, showing the real
part of the electric field versus time. The data pattern used for this figure was
[00110011101011010011101101111001].
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(a) (b)

Figure 4.3: Illustration of MZ driving for duobinary generation using a drive sig-
nal generated by digital encoding (a) and low-pass filtering (b) for the bit pattern
[10011101011010011101].

energy from the blocks of opposite phase to interfere destructively—thus
reducing the effect of dispersion.

In order to generate a duobinary signal, a MZ modulator is normally
driven with a multi-level data signal. The multilevel signal can either
be generated using digital encoding with a dalay and addition circuit,
or using a narrow-band electrical low-pass filter [10]. With the digital
encoding, the current and the previous bit is added to form a three-level
signal. The low-pass filtering relies on the inter-symbol interference (ISI)
caused by the narrow filtering to generate a multi-level electrical signal.
With this method a logical zero is coded as a pulse with non-zero intensity,
and a phase of either 0 or π. Thus, a four-level signal is generated with
the low-pass filtering method. For both methods, two drive signals each
having an amplitude of Vπ are used to drive a MZ modulator in the push-
pull mode and biased at a null point as illustrated in Figures 4.1(b) and
4.3.

Both these generation methods change the information of the signal,
and precoding of data signal at the transmitter is required in order for
the received data signal to be equal to the transmitted. The precoding
formula for duobinary can be written as [9]

pk = bk ⊕ pk−1, (4.1)
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(a) (b)

Figure 4.4: Precoding and encoding of a duobinary signal using low-pass filtering (a)
and feed-back and addition circuit (b). The delay τ is equal to one bit duration.

where p is the precoded signal, b the inverted data signal4 for bit number
k and ⊕ represent logical XOR operation. In the case of digital encoding,
the encoded signal e can be written as

ek = pk + pk−1 − 1, (4.2)

which has values in {-1 0 1}. The −1 term in Eq. 4.2 is normally imple-
mented by simply blocking the DC component of the signal. Figure 4.4
illustrates schematics of duobinary pre- and en-coders for both the digital
encoding and low-pass filtering generation methods.

The data signal r after the photodiode in the receiver will simply be

rk = |dk|, (4.3)

and is identical to the transmitted signal b. Table 4.1 illustrates the
different digital signals in a duobinary system, for an example bit pattern.
It is seen that the received data r is identical to the original data b.

The pre- and en-coder use digital logics that operates at the bit rate,
and can be very expensive for high bit rates. By using the low-pass filter
method, as illustrated in Figure 4.4(a), the encoder is significantly sim-
plified. As suggested in [11], the pre-coder can be built using AND and
Flip-Flop logics only, simplifying the design from the feed-back imple-
mentation illustrated in Figure 4.4. An implementation of this precoding
for 40 Gbit/s differential binary phase shift keying (DBPSK) was recently
demonstrated in [12].5

4Here, we assume that the data signal is inverted before pre- and encoding. Altern-
atively, the received data could be inverted instead, e.g. by using an inverting amplifier
in the receiver.

5The same precoding is used for duobinary and DBPSK.
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bk 1 0 0 1 1 1 0 1 0 1 1 0

bk 0 1 1 0 0 0 1 0 1 0 0 1
pk 0 1 0 0 0 0 1 1 0 0 0 1
ek − 0 0 −1 −1 −1 0 1 0 −1 −1 0
rk − 0 0 1 1 1 0 1 0 1 1 0

Table 4.1: Data, pre-coded data and received data at time t = tk in a duobinary
system.

A special case of interest for laboratory experiments is that a differ-
entially precoded pseudo random bit sequence (PRBS) results in a time-
shifted version of the same PRBS [9, 13–15]. Thus, the information is
maintained, and precoding is not necessary. However, the pattern is in-
verted, so to receive a non-inverted PRBS at the receiver, an inverted
PRBS must be transmitted.

For this work, we used the low-pass filtering generation method. The
electrical data signals were filtered with a 5th order Bessel low-pass filter
with a 3 dB bandwidth of 11.2 GHz, corresponding to 28% of the bit
rate, as illustrated in Figure 4.1(b). The MZ modulator was operated in
push-pull mode, biased at a null point and driving signals with a voltage
swing equal to Vπ applied to each arm.

Plain-RZ

Already in 1977, Personick noted that the receiver sensitivity could be
increased by using a pulse width less than the bit period [16]. Normally,
a 2 dB advantage is obtained by using RZ, compared to NRZ [17]. The
RZ waveform is also known to improve the transmission properties by
suppressing non-linear degradation [18–20]. In this chapter, we study two
(plain-)RZ modulation formats, with pulse widths of 50 and 20% of the
bit slot.6

The (plain-)RZ transmitter with 50% pulse width consists of a NRZ
transmitter plus a pulse carver, as illustrated in Figure 4.1(c). A MZ
modulator driven with a clock signal was used to carve the RZ pulses.

6The term (plain-)RZ is used as a general term for RZ signals without phase mod-
ulation, in order to distinguish these from CS-RZ and SSB-RZ.



4.2 Modulation Formats 51

The MZ modulator was biased at quadrature and operated in the push-
pull mode with a clock signal having a voltage swing of Vπ/2 to each arm
and a frequency equal to the bit rate. Thus, pulses with a full width at
half maximum (FWHM) of 50% of the bit slot—12.5 ps for 40 Gbit/s—are
generated. This modulation format is thus referred to as RZ 50%.

Another (plain-)RZ modulation format was studied, in which narrower
pulse width than RZ 50% was used. As shown in Figure 4.1(d), a pulse
source creating a 40 GHz pulse train consisting of first-order Gaussian
pulses with a FWHM of 5 ps was used as the input to a NRZ modulation
stage. Thus, at the output we get a RZ signal with 5 ps pulse width.
The 5 ps corresponds to 20% of the bit slot at 40 Gbit/s, and thus this
modulation format is referred to as RZ 20%.

CS-RZ

With the carrier suppressed return-to-zero (CS-RZ) modulation format,
suggested by Miyamoto [21], the phase of every other bit is reversed,
resulting in a suppression of the carrier frequency. This can be beneficial
as the carrier frequency is the component that has the highest power in
plain-RZ. By suppressing this carrier, the tolerance to nonlinear effects is
expected to improve [1]. At the same time, the spectral width is slightly
reduced compared to that of plain-RZ.

Advantages of CS-RZ include the aforementioned increased nonlin-
ear tolerance, and slightly increased dispersion tolerance (compared to
plain-RZ). Another advantage is that the optimum value of dispersion
compensation is almost constant with increasing fibre power, significantly
simplifying link design [22].

A carrier suppressed signal is normally generated by driving a MZ
modulator from one peak in the transfer function to another, as illustrated
in Figure 4.5. As there is a π phase change associated with crossing the
zero point of the MZ transfer function, every other pulse has opposite
phase. When driving with a sinusoidal wave, an optical pulse train is
generated with twice the frequency of the driving signal. Thus the drive
signal should be at a frequency half that of the bit rate. This leads to
cost reductions in the MZ modulator and the drive electronics, compared
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Figure 4.5: Illustration of CS-RZ pulse train generation using a MZ modulator. The
drive signal has a frequency equal to half the bit rate, and the generated pulse train
has a frequency at the bit rate. There is a π phase change between every consecutive
pulse in the generated signal.

to plain-RZ with 50% pulse width.7 To generate a CS-RZ signal, a NRZ
modulator followed by a carrier suppressed modulator is used.

In Miyamoto’s original article [21], an electrical generation method
was used, where a three-level electrical drive signal was generated from
the rising and falling edge of the NRZ data signal. The three levels of
the drive signal are then 0 for a logical zero and ±V for a logical one.
This signal is then used to modulate a MZ modulator, converting the
levels ±V into symbols with equal intensity, but with opposite phase.
This generation method requires only a single MZ modulator and does
not require alignment of the data signal and a clock signal. However, it
suffers from signal distortion in the generation of the electrical drive signal
and the requirement of electrical pre-coding.

Recently, an alternative CS-RZ generation method using only one MZ
modulator was suggested [23]. A three-level drive signal is generated by
mixing the NRZ data signal with a clock signal with a frequency equal to
half the bit rate. It is also shown in [23] that the dispersion tolerance of
such a CS-RZ signal can be improved by narrow low-pass filtering of the
three-level electrical drive signal.

7However, a plain-RZ signal with 33% pulse width can also be generated with a
clock signal at half the bit rate by using the same drive signal as with CS-RZ, and
biasing at a maximum transmission point.



4.2 Modulation Formats 53

(a) (b) (c)

Figure 4.6: Illustration of how SSB can allow a doubling of the spectral efficiency (a)
and illustration of the phase properties, showing the phasar representation (b) and the
phase illustrated in the time domain (c).

The investigations in this work were based on the generation method
using two MZ modulators. As shown in Figure 4.1(e), an optical 40 Gbit/s
NRZ signal is modulated with a second MZ modulator biased at a null
point, driven with 20 GHz clock signals and a voltage swing of Vπ to each
MZ arm.

SSB-RZ

Intensity modulated signals have double side-band spectra that carry the
same information in both side-bands. Thus, one of the side-bands can be
suppressed, while maintaining the information in the other. Single side
band (SSB) signals [24–26] could therefore in theory double the spectral
efficiency by allowing closer channel spacing in WDM systems, or increas-
ing the per-channel bit rate for the same spacing. The principle of using
SSB to increase the spectral efficiency in a WDM system is illustrated in
Figure 4.6(a), where it is seen that removing one of the sidebands allows
for doubling the number of channels in the same bandwidth.

There are several different methods to generate SSB signals [26–37].
Details on and comparison of the different generation methods are beyond
the scope of this thesis, and the interested reader is referred to e.g. [36,37].

In this work we study single side band return-to-zero (SSB-RZ), and
a simple transmitter almost identical to a plain RZ transmitter was used,
as described in [35]. As seen in the schematic in Figure 4.1(f), a NRZ
signal modulated by a MZ modulator driven with a sinusoidal signal at
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a frequency equal to the bit rate and voltage swing equal to Vπ/2 to
each modulator arm was used to generate the SSB-RZ signal. The only
difference between the SSB-RZ modulator and a plain RZ modulator is
that there is a π/2 phase shift instead of π between the two drive signals,
as shown in Figure 4.1. Depending on the sign of the π/2 phase shift,
either the upper or lower side-band signal will be generated.

The output field of the SSB-RZ signal is illustrated in Figure 4.6(b),
where the values of the real and imaginary parts of the field are shown.
The phase in the time domain is illustrated in Figure 4.6(c), where it is
seen that the leading edge of the pulse has a positive chirp, whereas the
trailing edge has a negative chirp. The chirp in Figure 4.6(c) is for a SSB-
RZ signal where the upper (frequency) side band has been suppressed. If
the lower side band was suppressed instead, the chirp would be inverted.

Other modulation formats

On the previous pages the modulation formats studied in this chapter have
been presented. The six modulation formats selected for this study are
among the most well-known OOK formats. However, many more varieties
of other OOK formats have been suggested and investigated, including:

• Chirped RZ [38–40]

• Chirped duobinary [41,42]

• Duobinary return-to-zero [43]

• Duobinary carrier suppressed return-to-zero [44–46]

• Modified duobinary / alternate mark inversion (AMI) [14,43,46–51]

4.3 Receiver Sensitivity

We compare the receiver sensitivity of the studied 40 Gbit/s modulation
formats. In the receiver, the signal is first amplified by a pre-amplifier
positioned between two 100 GHz first-order Gaussian optical bandpass
filters (OBPFs) and, after detection, filtered by a 30 GHz, 4th order Bessel
electrical low-pass filter (ELPF). The bit error rate (BER) was estimated
assuming Gaussian noise distribution and taking inter-symbol interference



4.4 Dispersion and SPM Tolerance 55

into account [52]. A PRBS with a length of 210 − 1 bits was used as the
data pattern. Detailed simulation parameters are included in Appendix B.

The back-to-back receiver sensitivities at a BER of 1.0×10−9 was
found to be −29.5 dBm for duobinary, −33.0 dBm for NRZ, −33.8 dBm
for SSB-RZ, −34.2 dBm for RZ 50%, −34.3 dBm for CS-RZ and
−34.5 dBm for RZ 20%. As expected, the RZ waveforms have a 1–
2 dB better sensitivities compared to NRZ, and the best sensitivity is
obtained with the narrowest pulses [17]. The sensitivities are summar-
ised in Table 4.2, where also the receiver sensitivities resulting from a non
pre-amplified receiver are shown.

For SSB-RZ, the centre frequency of the optical bandpass filter in the
receiver must be tuned away from the laser frequency, since the spectrum
after suppression of one of the side bands is no longer symmetrical around
the carrier frequency. As shown in Figure 4.7, the receiver sensitivity
of the SSB-RZ signal is best when the signal and the filter are shifted
14 GHz such that the non suppressed sideband is aligned to the centre of
the band-pass filter. However, the sensitivity improvement is small, only
0.12 dB. As discussed in [31,53], optimising the offset between the centre
frequency of the band-pass filter and the laser can enable higher spectral
efficiency in SSB-RZ WDM systems.

4.4 Dispersion and SPM Tolerance

We first assessed the dispersion tolerance of the different modulation
formats. This was realised by applying a loss-less and linear dispers-
ive element between the transmitter and receiver. A full fibre model
was not used, to ensure that other signal degradation mechanisms such
as those due to SPM and amplified spontaneous emission (ASE) noise
are omitted in the dispersion tolerance evaluation. The resulting plot of
receiver sensitivity and power penalty versus accumulated dispersion is
shown in Figure 4.8. Duobinary offers the highest dispersion tolerance,
with a 1 dB power penalty limit of 440 ps/nm, compared to 65 ps/nm
for NRZ, 61 ps/nm for RZ 50%, 50 ps/nm for RZ 20%, 71 ps/nm for
CS-RZ and 73 ps/nm for SSB-RZ. These values and those for a receiver
without the pre-amplifier are summarised Table 4.2. These results clearly
show that the wider spectra of RZ modulated signals result in a reduced
dispersion tolerance.
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Figure 4.7: Receiver sensitivity as function of the offset between the laser frequency
and the optical band-pass filter for a 40 Gbit/s SSB-RZ signal.

(a) (b)

Figure 4.8: Receiver sensitivity (a) and power penalty (b) versus dispersion for the
studied 40 Gbit/s modulation formats using a pre-amplified receiver.
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Rec. Sensitivity Disp. limit SPM limit
pre-amp no pre-amp pre-amp no pre-amp SMF+DCF SMF+IDF×2

NRZ −33.0 −19.6 65 150 11.0 9.4
Duobinary −29.5 −18.2 440 480 10.1 10.2
RZ 50% −34.2 −21.5 61 58 13.4 12.8
RZ 20% −34.5 −22.1 50 44 15.4 14.6
CS-RZ −34.3 −21.0 71 91 14.1 13.3
SSB-RZ −33.8 −21.0 73 90 13.2 12.5

Table 4.2: Basic properties of modulation formats at 40 Gbit/s; Receiver sensitiv-
ity [dBm] and dispersion limit for a 1 dB power penalty [ps/nm] with and without
pre-amplified receiver, and maximum fibre input power [dBm] for a 3 dB SPM power
penalty tolerance for both fibre spans (using a pre-amplified receiver).

In order to explain why the tolerance to dispersion is so different, we
compare the waveforms and eye diagrams of the 40 Gbit/s optical sig-
nals after linear transmission over 3 km SMF in Figure 4.9. We see that
while the eye diagram of RZ 5% is completely closed after this distance,
the eye diagram of duobinary remains wide open. With RZ 50%, dis-
persing neighbouring pulses interfere constructively, causing high peaks
in between consecutive “ones” resulting in an eye diagram that resembles
that of a NRZ signal. With CS-RZ, the π phase change between every
bit causes neighbouring pulses to interfere destructively, ensuring that
the power level still drops to zero between every bit. SSB-RZ results in
improved eye opening compared to RZ 50% due to the reduced spectral
width.

The tolerance to SPM was investigated by transmission through
one dispersion compensated span comparing the resulting power pen-
alty for various average span input powers. The fibre span con-
sisted of 80 km SMF and 13.6 km DCF or 56 km SMF and 24 km
inverse dispersion fibre (IDF)×2 without an erbium doped fibre amplifier
(EDFA) after the SMF.8 Figure 4.10 presents the plot of power penalty
versus span input power.9 The maximum input powers for a 3 dB power
penalty are shown in Table 4.2. It can be seen that all the RZ-waveform

8Fibre parameters are listed in Table 4.3.
9Using a pre-amplified receiver.
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(a) NRZ

(b) Duobinary

(c) RZ 50%

(d) RZ 20%

(e) CS-RZ

(f) SSB-RZ

Figure 4.9: Optical waveforms and eye diagrams of the six studied modulation
formats at 40 Gbit/s after linear loss-less transmission through 3 km of SMF. The
bit pattern [00110011101011010011101101111001] was used for this example.
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signals have a higher SPM tolerance than NRZ and duobinary, and that
the narrow pulses with RZ 20% results in the highest SPM tolerance.

Using the SMF + DCF span, the 3 dB power penalty limit was
10.1 dBm for duobinary, 11.0 dBm for NRZ, 13.2 dBm for SSB-RZ,
13.4 dBm for RZ 50%, 14.1 dBm for CS-RZ and 15.4 dBm for RZ 20%.
However, for a 1 dB power penalty limit, RZ 50% tolerates a higher power
than CS-RZ (12.6 and 12.3 dBm, respectively). A similar behaviour was
reported in [54]. The RZ waveforms have better tolerance to SPM since
the pulses rapidly disperse, leading to reduced peak power. The RZ 20%
has the highest SPM tolerance since the narrow pulses, having broader
spectra, disperse more rapidly.

Comparing the SPM tolerances when using either DCF or IDF×2, we
see that about 1 dB higher tolerance are obtained with the SMF + DCF
span. As the length of SMF is 24 km shorter when using SMF + IDF×2,
the peak power into the IDF×2 is much higher than into the DCF—due
to both less attenuation and pulse broadening in the SMF. So even if the
IDF×2 has a lower nonlinear coefficient it results in lower SPM tolerances
in this case.

It is interesting to note that there exists a trade-off between dispersion
tolerance on one hand and SPM tolerance on the other. The wider spectra
signals disperse rapidly, but have very good SPM tolerance. Duobinary
offers very good dispersion tolerance, but poor SPM tolerance. CS-RZ
seems to offer a compromise with good tolerance to both dispersion and
SPM.

4.5 Dispersion maps

In this chapter we compare two SMF based dispersion maps; SMF
+ conventional dispersion compensating fibre (DCF) and SMF + in-
verse dispersion fibre (IDF). The conventional DCF has a dispersion
of −100 ps/nm/km, and will for the remainder of this chapter simply
be referred to as DCF. The IDF we study here has a dispersion of
−40 ps/nm/km, and is referred to as IDF×2 since one length of IDF×2
compensates for roughly two lengths of SMF. The fibre spans consist of
either 80 km SMF followed by 13.6 km DCF or of 56 km SMF followed
by 24 km IDF×2, with fibre parameters as presented in Table 4.3. The
IDF×2 can be used for cabled transmission [55], thus the sum of the SMF
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(a) SMF+DCF

(b) SMF+IDF×2

Figure 4.10: Power penalty versus span input power for the studied 40 Gbit/s mod-
ulation formats after propagation through one 80 km SMF+DCF (a) or SMF+IDF×2
(b) fibre span.
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D S Att. Aeff n2 γ
[ps/nm/km] [ps/nm2/km)] [dB/km] [µm2] [m2/W] [1/W/km]

SMF 17.0 0.0578 0.18 85.0 2.17×10−20 1.03
IDF×2 −40.0 −0.1360 0.26 30.4 3.19×10−20 4.25
DCF −100.0 −0.3400 0.50 19.0 3.69×10−20 7.87

Table 4.3: Fibre parameters for SMF+DCF and SMF+IDF×2 dispersion maps. The
nonlinear coefficient is given as γ = 2π

λ
n2

Aeff
.

and IDF×2 length is equal to the span length. Here, the DCF is assumed
to be placed at the amplifier station, so with SMF + DCF the SMF length
is equal to the span length.

We limit our investigation to post-compensated spans, where both the
dispersion and the dispersion slope are fully compensated. The signal
input power to the SMF and DCF/IDF×2 is independently controlled by
two EDFAs having a noise figure of 5 dB. The gain of the amplifiers is set
so that the signal input power is constant at the input of each span.

The two dispersion maps are compared in Figure 4.11, where the accu-
mulated dispersion versus distance is shown for three periods of the map.
We notice that the maximum accumulated dispersion with the SMF +
IDF×2 is 30% smaller than compared with the SMF + DCF map. Since
the IDF×2 is used as transmission fibre, the transmission distance equals
the fibre length in this case. For DCF, the fibre length is 17% longer than
the transmission distance. The extra fibre with the SMF + DCF map
also results in a higher span loss of 21.2 dB, compared to 16.3 dB with
the SMF + IDF×2 map.

4.6 Transmission Performance in 40 Gbit/s
Single-Channel Systems

Sections 4.2–4.4 have presented the generation method and basic proper-
ties of the six studied modulation formats. In this section, the relative
performance of those modulation formats are compared in a 40 Gbit/s
single-channel system. WDM systems will be discussed in Section 4.7.

The system under investigation is illustrated in Figure 4.12. Transmit-
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(a) (b)

Figure 4.11: Comparisons of three periods of the dispersion maps for SMF+DCF and
SMF+IDF×2. The accumulated dispersion is normalised to the maximum accumulated
dispersion for the SMF+DCF map.

ters details are illustrated in Figure 4.1 and were discussed in Section 4.2.
After the transmitter, the signal was transmitted through a number of
concatenated 80 km SMF+DCF or SMF+IDF×2 fibre spans as discussed
in Section 4.5.

In the receiver, the signal was amplified by a pre-amplifier positioned
between two 100 GHz first-order Gaussian OBPFs and—after detection—
filtered by a 30 GHz 4th order Bessel ELPF. The split-step method was
used to calculate the propagation in the fibre, taking the non-linear Kerr
effect, dispersion, ASE and their interaction into account. To quantify
the signal quality, the receiver sensitivity for a BER of 1.0×10−9 was
calculated after each span by estimating the BER assuming Gaussian
noise distribution and taking inter-symbol interference into account [52].
Then the 3 dB limit was found as the maximum transmission distance
where the power penalty was less than or equal to 3 dB. A PRBS with
a length of 210 − 1 bits was used as data pattern. Further simulation
parameter details are included in Appendix B.

In order to make a fair comparison between the different modulation
formats, many power levels were investigated, enabling us to find and
compare the optimum power level and the maximum transmission dis-
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Figure 4.12: Schematic of the optical communication system under investigation.
Details of the transmitters for the different modulation formats are presented in Fig-
ure 4.1.

SMF + DCF SMF + IDF×2
PSMF PDCF 3 dB limit PSMF PDCF 3 dB limit

NRZ −2 −9 720 −4 −9 1040
Duobinary −2 −9 480 −4 −9 640
RZ 50% −1 −8 1200 −2 −7 1600
RZ 20% +2 −7 1360 −1 −7 1600
CS-RZ −1 −7 1120 −2 −7 1440
SSB-RZ −1 −8 1120 −2 −7 1440

Table 4.4: Optimum signal input power [dBm] after 800 km, and maximum 3 dB
power penalty limit [km].

tance. Average signal input powers between −15 and +12 dBm to the
SMF and −15 and +3 dBm to the DCF/IDF×2 were evaluated (in steps
of 1 dB). In Figures 4.13 and 4.14, the results are presented as contour
plots showing the 3 dB power penalty limit for the different modulation
format versus SMF and DCF input power, for SMF + DCF and SMF +
IDF×2, respectively. The performance at optimum power level is summar-
ised in Table 4.4, presenting optimum signal input power and maximum
transmission distance resulting in a power penalty less than 3 dB.

The straight lines in Figures 4.13 and 4.14 show the input power to
the dispersion compensating fibre if no EDFA was used after the SMF. It
is seen that this line is far from the optimum point for all combinations of
modulation format and fibre type. Without the second EDFA, the 3 dB
limit would be about 15 and 30% shorter, for the SMF + IDF×2 and
SMF + DCF, respectively.

The optimum signal input power is 1–2 dB higher for the RZ signals
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(a) NRZ (b) Duobinary

(c) RZ 50% (d) RZ 20%

(e) CS-RZ (f) SSB-RZ

Figure 4.13: Contour plots showing the 3 dB power penalty for transmission through
80 km SMF+DCF fibre spans using various modulation formats at 40 Gbit/s. The
number on the contour lines indicate the 3 dB limit in number of spans. The straight
line shows the DCF input power if no EDFA was used after the SMF.
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(a) NRZ (b) Duobinary

(c) RZ 50% (d) RZ 20%

(e) CS-RZ (f) SSB-RZ

Figure 4.14: Contour plots showing the 3 dB power penalty for transmission through
80 km SMF+IDF×2 fibre spans using various modulation formats at 40 Gbit/s. The
number on the contour lines indicate the 3 dB limit in number of spans. The straight
line shows the IDF×2 input power if no EDFA was used after the SMF.
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than for the NRZ signals, as the RZ signals have a larger tolerance to
SPM. For RZ 20%, the optimal signal input power is 3–4 dB higher than
for NRZ. This increase in signal power results in significantly improved
optical signal to noise ratio (OSNR), allowing longer transmission dis-
tance. The maximum 3 dB limit (i.e. the 3 dB limit obtained using the
optimum signal input power) is more than 50% longer with RZ 50% com-
pared to NRZ. There are only minor differences between the RZ formats,
and CS-RZ and SSB-RZ result in slightly shorter 3 dB limit than plain
RZ. Duobinary suffers from low noise tolerance caused by the reduced
eye opening due to the ripples in the zero level [56]

Looking at the comparison of the two fibre spans, it is seen from
Table 4.4 that the SMF + IDF×2 fibre spans result in 18–44% longer
3 dB limit, depending on the modulation format, compared to SMF +
DCF. The improvement is largest for NRZ and duobinary.

Careful comparison of the contour plots in the high-power region shows
that the contours of SMF + DCF and SMF + IDF×2 overlap. This is
illustrated in Figure 4.15, where the combination of fibre input powers
resulting in a power penalty less than 3 dB after transmission over 400 km
is shown. It is seen that there is identical performance for the two fibre
spans in the high-power region. The investigation of tolerance to SPM
after transmission over a single 80 km fibre span presented in Section 4.4,
showed that there was more severe signal degradation due to SPM in
the SMF + IDF×2 span. However, this was done without amplification
between the SMF and DCF/IDF×2. Figure 4.15 clearly shows that for
transmission over several spans with optimisation of both the SMF and
DCF/IDF×2 input power levels, there is virtually no difference in the
nonlinear tolerance. The difference between the two fibre spans is found
in the low-power region, where the improved transmission distance of
the SMF + IDF×2 span is caused by the 4.9 dB lower span loss. The
lower span loss results in larger usable input power range and improved
performance at the optimum power level.

In order to compare the accumulation of nonlinear signal degradation
for the studied modulation formats in more detail, the power penalty
versus distance was calculated when the amplifier noise was disregarded.
This is shown in Figure 4.16, for the case of 80 km SMF + DCF spans using
average signal input powers of −1 and −7 dBm into the SMF and DCF,
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Comparison of performance of SMF+DCF (black lines) and
SMF+IDF×2 (grey lines), showing input power combinations resulting in a 3 dB limit
more than 400 km.
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Figure 4.16: Power penalty versus distance for single-channel simulation with both
noise and nonlinearities (top), without noise (centre) and without nonlinearities (bot-
tom), using the SMF+DCF fibre span. Span input powers were −1 dBm to the SMF
and −7 dBm to the DCF.

respectively.10 The difference in the 3 dB limit between RZ and NRZ
modulation formats would increase in the absence of noise, demonstrating
better tolerance towards SPM in multi-span systems with RZ pulse shape.
Among the RZ formats, we see that CS-RZ performs slightly better than
RZ 50%, and that RZ 20% performs the best, with a significantly longer
3 dB limit. As discussed in Chapter 3, the rapidly dispersing narrow RZ
pulses result in low peak power and rapidly changing waveform, which
limits the detrimental effects of SPM. The results shown in Figure 4.16
corresponds well to the SPM tolerance results presented in Table 4.2.

10Results for the SMF + IDF×2 span show almost identical behaviour, and are
included in Figure B.1 in Appendix B.
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4.7 Transmission Performance in 40 Gbit/s
WDM Systems

The previous section investigated the transmission performance of the
six studied modulation formats for single channel 40 Gbit/s optical com-
munication system. This section investigates an 8 channel 40 Gbit/s
wavelength division multiplexing system. Using dense channel spacing
of 100 GHz, we studied the performance of this WDM system after trans-
mission through the 80 km SMF + DCF and SMF + IDF×2 dispersion
compensated spans presented in Section 4.5.

Figure 4.17 presents the setup for the WDM case. The transmit-
ters for the WDM study were identical to the single-channel transmitters
discussed previously in this chapter. Eight 40 Gbit/s channels were gen-
erated, with a frequency spacing of 100 GHz, corresponding to a spectral
efficiency of 0.4 bit/s/Hz. The multiplexer and demultiplexer filter trans-
fer functions were modelled as 100 GHz FWHM second-order Gaussian.
A unique bit pattern was used for each channel in order to simulate real-
istic cross-talk between channels. At the receiver—which was identical to
the single-channel case—the receiver sensitivity of all eight channels were
calculated. The signal quality of the WDM system was then quantified
by the receiver sensitivity of the worst channel. Due to statistics of linear
and non-linear crosstalk, longer bit patterns of 214 − 1 bits were used in
the WDM system to get accurate BER estimation.11

In WDM systems, there are several additional sources of signal de-
gradation compared to single-channel systems. These impairments come
from both the multiplexing/demultiplexing and nonlinear impairments in
the fibre, such as cross phase modulation (XPM) and four-wave mixing
(FWM). We start by investigating the first part of this impairment—
the penalty from multiplexing and then demultiplexing (MUX-DMUX
penalty)—by comparing the receiver sensitivity after multiplexing and
demultiplexing to that of the back-to-back case for the single-channel sys-
tem. The results are presented in Table 4.5. RZ 20%, which was the

11The required bit pattern length was found by running the simulation with many
different noise realisations, and comparing the results. The bit pattern length was
increased until the different noise realisations resulted in a receiver sensitivity difference
less than 0.5 dB. Details on the investigation of required number of bits is included in
Appendix B.
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Figure 4.17: Schematic of the WDM system under investigation. Details of the
transmitters for the different modulation formats are presented in Figure 4.1.

optimum for the single-channels case, suffers from a 1.8 dB power penalty
due to its broad spectrum. For duobinary, a negative power penalty of
−0.2 dB is observed, due to improved receiver sensitivity due to optical
filtering. Tight optical band-pass filtering of duobinary signals is known
to improve the receiver sensitivity—but at the cost of reduced disper-
sion tolerance [56, 57]. NRZ, CS-RZ and SSB-RZ all have MUX-DMUX
penalty less than 0.2 dB.

We also investigated the transmission impairments due to WDM-
specific non-linear effects. The signal was transmitted through the same
concatenated spans as in the single-channel system. However, due to
the very time-consuming simulations, only one power level was invest-
igated for the WDM system, −1 dBm to the SMF and −7 dBm to the
DCF/IDF×2.12 These input powers are close to the optimum input power
for the single-channel system. As seen in Table 4.4 the optimum input
powers were not identical for the different modulation formats, but for
comparison the same power level were used here for all formats. The res-
ulting power penalty versus distance is shown in Figure 4.18 for the case
of SMF + DCF spans. Here, the power penalty is defined as the receiver
sensitivity of the worst channel in the WDM system compared to the back-
to-back receiver sensitivity in the single-channel system. The results for
SMF + IDF×2 show identical trends, and are included in Appendix B. In
order to simplify the comparison, the 3 dB limits for the different com-
binations of fibre type and modulation format are shown in Table 4.5. It
is seen that CS-RZ and SSB-RZ offer about 20% longer 3 dB limit than

12This is the per-channel power level. The total power is 9 dB higher, since there is
a total of eight channels.
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Figure 4.18: Power penalty (for the worst channel) versus distance for simulation
of the WDM system when disregarding the optical noise, after transmission over
SMF+DCF spans. The per channel span input powers were −1 dBm to the SMF
and −7 dBm to the DCF.

RZ 50%, and that CS-RZ is slightly better than SSB-RZ. Duobinary and
RZ 20% have a 3 dB limit less than half of CS-RZ. Compared to the
single-channel case, it is seen that NRZ, duobinary, CS-RZ and SSB-RZ
give very little additional penalty, as the 3 dB limit is no more than 10 %
lower than for the single-channel case. The (plain-)RZ formats suffer from
significant WDM-specific penalties compared to the single-channel case,
due to the band-pass filtering in the MUX and DMUX. Using SMF +
IDF×2 results in a 13–60% longer transmission distance than using SMF
+ DCF, depending on the modulation format—due to the lower span loss.
This improvement is about the same as in the single-channel case. Fig-
ure 4.18 also shows the power penalty when the noise was excluded from
the simulations. As in the single-channel case, this illustrates the good
transmission properties of the RZ signals.
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MUX-DMUX 3 dB limit [km]
penalty [dB] SMF+DCF SMF+IDF×2

NRZ 0.1 640 720
Duo-NRZ −0.2 400 560
RZ 50% 0.4 880 1040
RZ 20% 1.8 400 640
CS-RZ 0.2 1040 1280
SSB-RZ 0.2 960 1200

Table 4.5: MUX-DMUX power penalty and 3 dB limit (worst channel) for 8-channel
40 Gbit/s WDM system using SMF+DCF or SMF+IDF×2.

4.8 Summary

This chapter has presented an investigation on OOK modulation formats
for 40 Gbit/s systems. Promising novel modulation formats—duobinary,
RZ 20%, CS-RZ and SSB-RZ—were compared to the commonly used NRZ
and RZ 50%.

NRZ and duobinary offer the highest dispersion tolerance, but suffer
from reduced tolerance to SPM. On the other hand, RZ waveform sig-
nals offer higher SPM tolerance but reduced dispersion tolerance. Thus
there exists a tradeoff in the choice of modulation format between high
dispersion tolerance and high SPM tolerance.

The six modulation formats have been evaluated in a repeatered
40 Gbit/s dispersion managed system based on 80 km fibre spans. In
the single-channel case the plain RZ formats perform the best, and there
is only a small additional advantage from using narrower pulses.

CS-RZ and SSB-RZ offer better performance in the 40 Gbit/s WDM
system studied here due to low MUX-DMUX penalty compared to plain
RZ and low transmission penalty compared to NRZ waveforms. CS-RZ
and SSB-RZ offered the best performance in the WDM system, with a
small advantage for CS-RZ. RZ formats with narrow pulse width are not
suitable for WDM systems due to their large spectral width.

Using SMF + IDF×2 resulted in a 13–60% longer 3 dB power penalty
limit compared to SMF + DCF, depending on the modulation format.
The nonlinear performance of the two fibre spans were found to be indis-
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tinguishable for these systems. SMF + IDF×2 results in better perform-
ance due to 4.9 dB lower span loss.

Optimum performance was obtained by using SMF + IDF×2 fibre
spans in combination with RZ 20% modulation in the single-channel case,
and CS-RZ modulation in the WDM system.
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Chapter 5

Dispersion Map Comparison
with 160 km Fibre Spans

5.1 Introduction

Chapters 3 and 4 discussed dispersion maps for 10 and 40 Gbit/s systems
with fibre span lengths of 80 km. Normally, fibre spans have lengths
around 40 km for transoceanic systems and around 80 km for terrestrial
systems [1]. Therefore, most work on optimising the dispersion maps has
focussed on span lengths less than 80 km.

This chapter presents an experimental investigation of optimum dis-
persion maps for a 40 Gbit/s system using ultra-long fibre spans of 160 km.
Increasing the span length can be an effective way to reduce system cost,
as fewer amplifier stations are needed. Unfortunately, in order to main-
tain a high optical signal to noise ratio (OSNR) the distance between the
amplifiers should be as low as possible [2]. Thus, there exists a trade-off
between cost on one hand and OSNR of the received signal on the other
hand.

In order to partly overcome OSNR degradations associated with long
fibre spans, we use a combination of distributed Raman amplification
and conventional lumped erbium doped fibre amplifiers (EDFAs) to com-
pensate for the span loss. This approach enables the use of far longer span
lengths than when using EDFAs only.

We study a 40 Gbit/s system using return-to-zero (RZ) coding and
fibre spans based on non-zero dispersion shifted fibre (NZDSF) and dis-
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persion compensating fibre (DCF). Three different dispersion schemes for
this span length are compared: pre-compensation (DCF at the start of
the span), post-compensation (DCF at the end of the span) and a sym-
metrical compensation scheme where the DCF is placed at the centre of
the span.

Good performance for this 40 Gbit/s system with ultra-long span
lengths of 160 km is experimentally demonstrated. Comparing the per-
formance of the three dispersion compensation schemes, we show signific-
ant better performance using the symmetrical compensation [3].

5.2 Ultra-long Fibre Spans

Using ultra-long fibre spans can reduce the system cost and management
complexity by reducing the number of amplifier stations. Having a large
loss (coming from a long fibre span) between two optical amplifiers de-
creases the OSNR of the signal at the receiver. This is discussed in details
in e.g. [1, Ch. 10], where it is found that the optimum amplifier spacing is
10–20 km for transoceanic systems.1 For a given system, the span length
should be as large as possible (to save cost) while satisfying the OSNR
requirement at the receiver.

The use of ultra-long fibre spans changes the link design in several
ways. First, as the span length is increased, the maximum value of the
accumulated dispersion also increases. This leads to transmission of very
dispersed pulses. Second, the higher span loss requires higher input power
or distributed amplification to achieve the same OSNR as shorter spans.
Figure 5.1 compares a system with 40 and 160 km span lengths, show-
ing link schematics and accumulated dispersion versus distance. Here the
span length is increased by a factor of four, leading to the same reduc-
tion of number of amplifiers. The maximum accumulated dispersion is
accordingly four times larger.2

Due to these differences between systems with long and short span
lengths, the optimum dispersion compensation schemes—optimum dis-
persion value and relative position of the different fibre segments—can
not be assumed to be the same. Therefore a separate study for long span
lengths is necessary.

1When only considering amplified spontaneous emission and excess amplifier loss.
2Assuming that the same fibre types are used for both span lengths.
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Figure 5.1: Comparison of dispersion maps for 40 and 160 km fibre spans, showing the
link schematic and the accumulated dispersion versus distance for a post-compensated
link.

Many recent publications present experimental or numerical studies of
optimum dispersion compensation scheme for various bit rates and span
lengths (see e.g. [4–15]), but not for 40 Gbit/s systems with ultra-long
span lengths.

5.3 System under Investigation

To compare different dispersion compensation schemes for ultra-long fibre
spans, an experimental 40 Gbit/s single-channel system was set up. The
40 Gbit/s signal was generated using optical time division multiplexing
(OTDM), where a 10 Gbit/s RZ signal was multiplexed to 40 Gbit/s using
passive delay lines. The full width at half maximum (FWHM) pulse width
was 3 ps, corresponding to 12% of the 25 ps bit slot.

The experimental setup is illustrated in Figure 5.2. A mode locked
fibre ring laser (MLFRL) produced a 10 GHz pulse train with 3 ps FWHM
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Figure 5.2: Experimental setup showing the transmitter (top), the three span con-
figurations (centre) and the receiver (bottom).
MLFRL: Mode-locked fibre ring laser, OBF: Optical band-pass filter, EA: Electro-absorbtion
modulator, CR: Clock recovery, PWR: Optical power metre, PD: Photodiode.
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Figure 5.3: Eye diagram of the
10 GHz pulse train from the MLFRL.
The FWHM pulse width was 3 ps.

Figure 5.4: Optical spectrum of the
generated signal, showing both clock and
data signals.

pulse width. This pulse train was modulated at 10 Gbit/s using a Mach-
Zehnder (MZ) modulator driven with a 1031 − 1 bit pseudo random bit
sequence (PRBS). The “eye diagram” of the optical 10 GHz pule train is
shown in Figure 5.3. A 40 Gbit/s signal was generated by optically mul-
tiplexing the 10 Gbit/s RZ signal using passive delay lines. Figure 5.9(a)
shows the eye diagram of the generated 40 Gbit/s RZ signal.

Due to the lack of a 40 GHz clock recovery at the time of this ex-
periment, a rather complicated clock recovery setup had to be implemen-
ted. An optical 10 GHz clock signal was transmitted at a wavelength
of 1552 nm to provide clock recovery in the receiver. The clock signal
was generated by wavelength converting the 10 GHz pulse train from the
MLFRL to a wavelength of 1552 nm. The wavelength conversion was
performed by a nonlinear optical loop mirror (NOLM) with 2.5 km of dis-
persion shifted fibre (DSF). A continuous wave (CW) signal at 1552 nm
with a power of 10 dBm was inserted into the NOLM, along with the
pulse train having an average power of 18 dBm.3 The data and clock
signals were multiplexed using a 3 dB coupler, and the optical spectrum
of the generated signal is shown in Figure 5.4. In order to prevent the
clock signal from interfering with the data signal, the power of the clock
signal was kept at least 10 dB lower than the data signal.

The 40 Gbit/s RZ signal was then transmitted through a link consist-
3For details on wavelength conversion using NOLMs, please refer to e.g. [16].
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Figure 5.5: Dispersion maps for pre-, post-, and symmetrical compensation schemes.

ing of one span made of 160 km NZDSF and 7 km DCF fibre segments. We
investigated three different dispersion management schemes—pre-, post-
and symmetrical compensated fibre spans. Figure 5.5 illustrates the differ-
ence between these dispersion maps, showing the accumulated dispersion
versus distance.

The respective lengths of the NZDSF and DCF were matched to of-
fer very close to 100% dispersion compensation at the signal wavelength
of 1559 nm. A novel DCF was used, which was specifically designed
to provide simultaneous dispersion and dispersion slope compensation of
the NZDSF [17, 18]. The per span accumulated dispersion and disper-
sion slope were −1.1 ps/nm and 0.05 ps/nm2 at the signal wavelength,
respectively. This corresponds to a dispersion compensation ratio of
99.9%. The per span accumulated dispersion and dispersion slope is
illustrated in Figure 5.6. Fibre parameters were D = 5.5 ps/nm/km,
S = 0.055 ps/nm2/km, Aeff = 55 µm2 for the NZDSF and D =
−110 ps/nm/km, S = −1.1 ps/nm2/km, Aeff = 15 µm2 for the DCF,
all at a wavelength of 1550 nm.

The total loss of the 160 km fibre span was 44 dB, which proved
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Figure 5.6: Measured dispersion profile of the studied 160 km fibre span, show-
ing total accumulated dispersion of the span versus wavelength. At the signal
wavelength of 1559 nm, the dispersion and dispersion slope was −1.1 ps/nm/span
and 0.05 ps/nm2/span, respectively. The vertical line indicates the signal wavelength.

too high to be covered by EDFA amplification only. It should be noted
that this span loss is about 7 dB higher than what would be expected
from the fibre loss itself since the fibre was placed on six different fibre
spools. This caused significant excess loss from splices and connections.
In order to overcome this high span loss, a combination of EDFA and
Raman amplification scheme was used. The span was backward-pumped
using a Raman pump offering 1 W of average power at a wavelength
of 1455 nm. Figure 5.7 shows the optical power spectrum of the signal
after transmission through one 160 km span with and without Raman
pumping, for each of the three dispersion compensation schemes. The
Raman pumping resulted in an on-off gain of 17 dB for the pre- and
symmetrical compensation schemes. The loss of the last 80 km NZDSF
was so large (∼20 dB) that there was no significant gain in the DCF in
neither of the two configurations. Thus, all the Raman gain comes from
the last 80 km NZDSF. For the post-compensated scheme, a higher gain
of 26 dB was obtained, due to the higher Raman gain (smaller Aeff) of the
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(a) (b) (c)

Figure 5.7: Optical spectrum at the end of the link with and without Raman gain
for pre-compensation (a), symmetrical compensation (b) and post-compensation (c).
The spectra were recorded with a 1 nm resolution bandwidth, after disabling the clock
signal at 1552 nm.

DCF compared to the NZDSF. In this case, there is significant Raman
gain both in the DCF and the NZDSF.

At the receiver, the clock and data signal were demultiplexed into
two separate branches by a 3 dB coupler and two optical bandpass filters
(OBPFs), as illustrated in Figure 5.2. An electrical 10 GHz clock signal
was recovered from the optical clock signal and was used for demultiplex-
ing. An electro-absorption modulator (EAM) was used to demultiplex the
data signal from 40 Gbit/s down to 10 Gbit/s.4

The signal quality was quantified as the receiver sensitivity of one
of the demultiplexed 10 Gbit/s channels at a bit error rate (BER) of
1.0×10−9 using a pre-amplified receiver. The back-to-back sensitivity of
the demultiplexed 10 Gbit/s signal was −38.1 dBm at a BER of 1.0×10−9.

5.4 System Performance

The input power to the fibre span was adjusted to get optimum
performance—in term of best possible receiver sensitivity. Due to the
high span loss, the optimum input power was as high as 11 dBm, which
was the maximum output power of the booster EDFA. This was the
optimum power level for all three span configurations.

We compare the relative performance of the three dispersion maps by
4For details on EAMs, please refer to e.g. [19].
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Figure 5.8: BER curves of one of the demultiplexed 10 Gbit/s tributaries in the
40 Gbit/s signal for the back-to-back case and after transmission over 160 km.

comparing the power penalty after transmission through one 160 km fibre
span. The power penalty is defined as the receiver sensitivity degradation
after transmission compared to the back to back case. The measured
BER curves after transmission are shown in Figure 5.8. The resulting
power penalty was found to be 5.4, 3.1 and 2.4 dB for pre-, post- and
symmetrical compensation schemes, respectively. Eye diagrams of the
signal at the output of the transmitter and after transmission through
one symmetrical 160 km fibre span are shown in Figure 5.9. We see that
even though the signal has considerably more noise, the pulse shape is
maintained due to accurate dispersion compensation.

Even though the post-compensated scheme offered 9 dB higher Raman
gain, the symmetrical scheme resulted in the best performance. The extra
Raman gain increased the optical power at the end of the link, but did not
improve the signal quality. Actually, the high gain in the DCF leads to
non-linear signal degradation and enhanced multi-path interference (MPI)
[20–22], limiting the performance compared to symmetrical compensation.
The pre-compensated span suffers from severe nonlinear degradation due
to the high input power to the DCF. The symmetrical map offers high
amplification where the signal power is lowest, and reduces at the same
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(a) (b)

Figure 5.9: Eye diagram of the 40 Gbit/s signal at the output of the transmitter
(left) and after transmission through the symmetrical span (right).

time nonlinear signal degradation and MPI by having the DCF in the
centre of the span where both the pump and signal have been attenuated.
Therefore, the symmetrical map has best performance.

5.5 Summary

Ultra-long fibre spans can be an efficient way of reducing both the install-
ation and operational costs of optical communication system by reducing
the number of amplifier stations.

We have presented an experimental comparison of transmission per-
formance of 40 Gbit/s RZ signals over pre-, post- and symmetrical dis-
persion compensated 160 km NZDSF + DCF fibre spans. A combination
of lumped EDFA and distributed Raman amplification was used to over-
come the high span loss associated with long fibre spans. By combining
high gain at the point where the signal power is low, with reduced nonlin-
ear signal degradation and MPI, the symmetrical map results in the best
performance.
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Chapter 6

Differential Quadrature Phase
Shift Keying

6.1 Introduction

Differential phase shift keying (DPSK) modulation is well-known from di-
gital radio communication, and was investigated as a modulation format
for optical coherent communication system about two decades ago (see
e.g. [1–4]). In 2000, DPSK was “rediscovered” in the field of optical com-
munication systems by Rohde et. al. [5]. Since then, differential binary
phase shift keying (DBPSK) has been intensely studied, and recent exper-
iments have demonstrated good performance for long-haul transmission
with high spectral efficiency (see e.g. [6–8]).

Four-level DPSK, differential quadrature phase shift keying (DQPSK),
is also known from radio communication (see e.g. [1, 2, 9]), and there has
also been some interest in four-level phase modulation for coherent sys-
tems [10–12]. Griffin et. al. suggested the use of direct detection DQPSK
for optical communication systems in 2002 [13], and recent experiments
have demonstrated long haul transmission, high spectral efficiency and
80 Gbit/s per channel bit rates using DQPSK (see e.g. [14–18]).

This chapter presents a study of direct detection DQPSK, discussing
generation, transmission and reception for long-haul system applications
for per channel bit rates above 10 Gbit/s. First, an introductory de-
scription of DQPSK is given for direct detection optical communication
systems, presenting different designs for transmitters and receivers. The
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effect of imperfect components is discussed, and conclusions are made on
basic design requirements. The dispersion tolerance of DQPSK is com-
pared to that of on-off keying (OOK), showing an improvement of almost
a factor of four when using DQPSK (at the same bit rate). DQPSK trans-
mission experiments were performed in a wavelength division multiplexing
(WDM) system with a per channel bit rate of 12.5 Gbit/s, obtaining trans-
mission distances of up to 6500 km [14], thus demonstrating DQPSK as
a suitable modulation format for transoceanic transmission systems. We
show that DQPSK is suitable for very close channel spacing by demon-
strating transmission over 6500 km with up to 0.66 bit/s/Hz spectral dens-
ity [15]. Finally, results from the first wavelength conversion experiment of
ultra-high speed phase modulated signals is presented. Using four-wave
mixing (FWM) in a highly nonlinear fibre, we successfully wavelength
converted an 80 Gbit/s non return-to-zero differential quadrature phase
shift keying (NRZ-DQPSK) with only 2.8 dB power penalty [19].

6.2 DQPSK Overview

DQPSK is a four-level phase modulation format, where each symbol is
coded with one out of four possible phase transitions, i.e. the phase change
between two consecutive symbols. As each symbol has four possible states,
two bits are transmitted for each symbol, and the symbol rate is therefore
half of the bit rate B.

Instead of detecting the phase change as with DPSK, the absolute
phase can also be detected. This modulation format is referred to as
phase shift keying (PSK).1 PSK benefits from a better receiver sensitivity
than DPSK, but puts very strict requirements on the phase stability of the
system. For example, phase noise from the source laser can be a significant
problem. The laser linewidth must be four orders of magnitude smaller
than the bit rate for it to be negligible [20]. This is one of few limitations
that is actually relaxed for an increased bit rate, and can normally be
disregarded for high bit rates such as 10 or 40 Gbit/s. When transmitting
over optical fibres, even the smallest change in temperature will cause
significant phase change at the receiver, making PSK not suitable for
optical communication systems. However, when the information is coded

1Referred to as quadrature phase shift keying (QPSK) for four-level systems.
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in the phase change, the system only needs to have phase stability over
the duration of two symbol periods, as only the phase change between two
symbols is detected. At high bit rates, this is a very short time period
(400 ps for a 10 Gbit/s DQPSK system), and thus the phase drift in that
period is normally negligible. The laser linewidth of the source laser in a
direct detection DQPSK system should be three orders of magnitude less
than the symbol rate [21].

Detection of phase modulated signals is not possible using normal
receivers. Photodiodes only detect the optical power, thus losing all in-
formation about the phase of the signal. By mixing the incoming phase
modulated signal with the light from a laser at the receiver, the photo-
current can be made dependent on the phase of the incoming signal (or
rather, the phase difference between the laser at the receiver and the in-
coming signal) [20]. Thus the phase modulation in the optical signal can
be demodulated to an amplitude modulated photocurrent. Systems using
this type of receiver are referred to as coherent systems.2

Phase modulated signals can also be demodulated by so-called delay
demodulators, where the incoming signal is split into two branches, and
the signal in one of the branches is delayed for a time corresponding to
one symbol period. The phase change between two consecutive symbols
determines the amount of contructive/destructive interference when re-
combining the signals. Thus, the phase information has been transferred
into an optical amplitude modulation, and can be converted into an elec-
trical signal with a normal photodiode. This receiver method is referred
to as direct detection, and if one of the signals from the demodulator is
received, it is referred to as single-ended detection. Preferably, balanced
detection would be used, where both outputs of the demodulator are detec-
ted, and one photocurrent subtracted from the other. Balanced detection
offers a 3 dB receiver sensitivity improvement compared to single-ended
detection [23].

Optical coherent DQPSK systems have been investigated in the past—
see e.g. [12,24,25]—and offer up to 20 dB better receiver sensitivity than
direct detection systems [20], but require very complex and expensive
receivers that prohibit commercial use. Furthermore, the advent of the
optical amplifier has limited the interest in coherent systems.

Direct detection receivers for phase modulated signals allow for much
2For details on coherent systems, the interested reader is directed to e.g. [20,22].
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Figure 6.1: Overview of a direct detection DQPSK system. The delay τ is equal to
the symbol length.

simpler receiver designs and more stable operation. Therefore, this work
focuses solely on direct detection DQPSK.

6.3 Direct Detection DQPSK

A basic DQPSK3 system is illustrated in Figure 6.1. Two data signals,
u and v at a bit rate B/2, are input to a precoder, which generates two
pre-coded signals I and Q. The pre-coded signals are then used to drive
the modulator(s). Every symbol is coded into one of four possible phase
levels, representing one of the four combinations of the two bits I and Q.
The input signals u and v could be demultiplexed from a signal b at the
bit rate, or be two independent data inputs at half the bit rate.

In a direct detection receiver, a demodulator converts the phase mod-
ulated DQPSK signal into four amplitude modulated signals. After de-
tection by two pairs of balanced photodiodes the received signals r and
s are obtained. The most frequently used demodulators for DPSK direct
detection systems are one symbol delay interferometers. The light is split
into two paths, one of the paths is delayed one symbol, and then the light
is combined again. The amplitude of the combined light then depends
on the phase difference between two consecutive symbols. However, due
to this differential decoding, the system is no longer bit transparent. A
pre-coder is therefore needed in order to ensure that the received data is
identical to the transmitted data.

In a DQPSK system operating at a bit rate B, all electronic and
3From this point on, only direct detection DQPSK is discussed, and is thus simply

referred to as DQPSK.
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(a) NRZ (b) RZ

Figure 6.2: Comparison of calculated optical power spectra of DQPSK signals at bit
rate B and OOK signals at bit rate B/2. Both NRZ (a) and RZ (b) waveforms are
shown (with the same peak power). The resolution bandwidth is 0.08B.

electro-optic components operate at the symbol rate equal to B/2. This
reduced bandwidth leads to significant cost reduction compared to a bin-
ary system where all components need a bandwidth sufficient for a bit
rate B. For example, in order to generate and receive a 40 Gbit/s signal,
bandwidth sufficient for only 20 Gbit/s communication is needed. How-
ever, the more complex receiver required for DQPSK will lead to a cost
increase compared to a binary system, and a detailed investigation would
be required to determine the overall cost perspective.

As the symbol rate is reduced, the spectral width is significantly re-
duced. A DQPSK signal at bit rate B has the same spectral width as an
OOK signal at bit rate B/2, as shown in Figure 6.2 for both return-to-
zero (RZ) and non return-to-zero (NRZ) waveforms. The reduced symbol
rate leads to significant dispersion tolerance improvements: DQPSK has
about four times larger dispersion tolerance compared to an OOK signal
at the same bit rate.

DQPSK can be a good method for upgrading the capacity of existing
OOK WDM systems. A DQPSK channel at bit rate 2B can be added
to an OOK WDM system with per channel bit rate of B. Since the
DQPSK channel has the same spectral width and pulse shape as the OOK
channel, existing filters and dispersion compensation will still be suitable
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(a) PM

(b) MZ-PM

(c) Dual MZ

Figure 6.3: Three different methods to generate DQPSK (left) and the phase and
power versus time of the modulated signal (right), using a rise-time of 0.2/B of the
drive signals.

for DQPSK, as shown in [26]. If the system is fully loaded, OOK channels
can be replaced by DQPSK channels to further increase the capacity.

6.3.1 Transmitter

Three different methods to generate a DQPSK signal will be described;
using a phase modulator only, using phase modulator and a Mach-Zehnder
(MZ) modulator in series and using two MZ modulators in parallel. The
generation methods, along with the resulting phase modulation and wave-
forms are illustrated in Figure 6.3.

The following sections describe the three generation methods.
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(a) PM or MZ-PM (b) Dual-MZ

Figure 6.4: Symbol allocation for DQPSK using PM or MZ-PM (a) or dual-MZ (b)
generation. The states are referred to as [Ik Qk]. Note that the states [1 0] and [1 1]
are coded differently in the two cases.

Phase Modulator

The phase modulator method uses electrical processing to generate a four-
level electrical signal that is used to directly drive a phase modulator, as
illustrated in Figure 6.3(a). The drive signal is generated by adding I and
Q, with I having twice as large voltage as Q, such that the drive signal has
values within {0, Vπ

2 , Vπ, 3Vπ
2 }. The resulting signal has phase levels within

{0, π
2 , π, 3π

2 }, with the symbol allocation as shown in Figure 6.4(a). This
method is simple to implement, since only one optical modulator is needed.
However—due to the linear transfer function of the phase modulator—any
imperfection in the drive signal will be directly transferred to a deviation
from the intended phase level. The distribution of the electrical drive
levels caused by inter-symbol interference (ISI) and noise will reduce the
eye opening of the demodulated signal.

The output field from the transmitter using the PM generation method
can be written as

E(tk) = E0e
iπ

(
Ik+

Qk
2

)
, (6.1)

where the time t = tk indicates the centre of the symbol.

Mach-Zehnder + Phase Modulator

With the Mach-Zehnder + Phase Modulator (MZ-PM) method, two op-
tical modulators in series are used. As seen in Figure 6.3(b), a MZ modu-
lator driven with the precoded signal I having an amplitude equal to 2Vπ
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Figure 6.5: Illustration of NRZ-DBPSK generation using a MZ modulator. A two-
level data signal drives the modulator from one peak of the transfer function to another,
generating equal-amplitude pulses with 0 or π phase. Every time the drive signal
changes value, the zero point of the modulator is crossed, resulting in a power dip of
the generated signal.

generates a non return-to-zero differential binary phase shift keying (NRZ-
DBPSK) signal.4 NRZ-DBPSK generation using a MZ modulator is illus-
trated in Figure 6.5. After the MZ modulator, a phase modulator driven
with the precoded signal Q, having an amplitude of Vπ/2, adds a π

2 phase
modulation. The resulting data signal is then four-level phase modulated
with phase levels within {0, π

2 , π, 3π
2 }, with symbol allocation shown in

Figure 6.4(a). The symbol allocation is identical to that of the phase
modulator generation method.

An advantage of using a MZ modulator to modulate the phase is that
there will be a perfect π phase modulation in the first stage, since the
null transmission point of the MZ transfer function is crossed. On the
other hand, driving the MZ modulator this way causes the optical power
to drop to zero for each phase change. This amplitude modulation can
degrade NRZ coded signals, but RZ coded signal are unaffected, as these
transitions are suppressed by the RZ pulse carving [27].5

A distribution of the amplitude of the drive signal to the MZ mod-
ulator does not change the phase modulation, but it will cause a small

4In the case of a single-drive MZ. For a dual-drive MZ in push-pull configuration,
two drive signals each having a voltage swing of Vπ would be used.

5The waveforms of NRZ-DQPSK and RZ-DQPSK will be compared in Section 6.4.1.
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residual amplitude modulation. The amplitude fluctuations will be small
due to the nonlinear transfer function of the MZ modulator. However, the
distribution of the data signal that drives the phase modulator will still
cause a distribution on the modulated phase.

The output field from the dual-MZ transmitter will be equivalent to
that of the phase modulator generation method (at time t = tk) as shown
in Eq. 6.1.

Dual Mach-Zehnder

With the dual-MZ transmitter option, two MZ modulators are inserted in
a MZ interferometer, as illustrated in Figure 6.3(c). Two NRZ-DBPSK
signals are generated from the precoded signals I and Q, and the signal in
the upper arm is phase shifted with π

2 before both signals are combined,
resulting in a four-level phase modulated signal with phase values within
{π

4 , 3π
4 , 5π

4 , 7π
4 }. The power drops to zero when both I and Q change value

at the same time. When either I or Q change value, the power drops to
half. From Figure 6.4(b), it is seen that the symbol allocation is different
from the two previous generation methods. Disregarding the constant π

4
phase offset, it is seen that the position of the states [1 0] and [1 1] have
been switched. Therefore, as we will see in the next section, the pre-coding
is not the same for all generation methods.

The MZ modulators give exact phase changes and only the π
2 phase

shift in the upper arm needs to be tuned. Since this is a constant phase
shift, it can easily be tuned to the optimum value. Thus, this transmitter
structure gives very close to optimum four-level phase modulation. How-
ever, this implementation requires that there is a constant phase shift
between the two arms of the interferometer structure. These stability is-
sues can be overcome by integrating the entire transmitter structure as
demonstrated in [28,29].

At the centre of the bit slot the output signal from the dual-MZ trans-
mitter will be

E(tk) = E0 cos

[
π(Ik − Qk) + π

2

2

]
e
j

(
π(Ik+Qk)+ π

2
2

)
. (6.2)

In Table 6.1 the pre-coding, encoding and decoding of a DQPSK sys-
tem using a dual-MZ transmitter is illustrated. It is seen that the trans-
mitted data equals the received data, thus verifying that the precoding is
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uk 0 0 1 1 0 1 1 1 1 0 0
vk 0 1 0 0 0 1 0 1 0 1 1
Ik 0 1 0 0 0 1 0 1 1 1 0
Qk 0 0 0 1 1 0 0 1 0 1 1

Pk
E2

0
2

E2
0

2
E2

0
2

E2
0

2
E2

0
2

E2
0

2
E2

0
2

E2
0

2
E2

0
2

E2
0

2
E2

0
2

φk
π
4

7π
4

π
4

3π
4

3π
4

7π
4

π
4

5π
4

7π
4

5π
4

3π
4

∆φk – 3π
2

π
2

π
2 0 π π

2 π π
2 −π

2 −π
2

rk – 0 1 1 0 1 1 1 1 0 0
sk – 1 0 0 0 1 0 1 0 1 1

Table 6.1: Input, pre-coded, encoded and received data at time t = tk for a DQPSK
system with Dual-MZ generation.

correct. We also notice that the power of each symbol P (tk) = Ek · E∗
k

from the transmitter is constant, showing that there is no residual amp-
litude modulation. The corresponding analysis for the PM or MZ-PM
generation method is given in Table C.1 in Appendix C.

6.3.2 Precoding

As already mentioned, the transmitted data needs to be precoded to en-
sure that it is correctly detected following the differential demodulation.
For DBPSK, researchers have enjoyed the special property of pseudo
random bit sequences (PRBSs) that causes a PRBS precoded with the
DBPSK precoder to maintain its information. Thus, no precoding is ne-
cessary for testing DBPSK systems using PRBSs. Unfortunately, this is
not the case for DQPSK, and precoding must be implemented also for
system testing using PRBSs.

In the previous section, we saw that the symbol allocation was not
the same for all generation methods. Therefore, the precoding is also
different. For the dual-MZ transmitter, the precoding formula is known
from radio communication theory [2], and can be written as

Ik = (uk ⊕ vk)(uk ⊕ Ik−1) + (uk ⊕ vk)(vk ⊕ Qk−1) (6.3)

Qk = (uk ⊕ vk)(vk ⊕ Qk−1) + (uk ⊕ vk)(uk ⊕ Ik−1). (6.4)
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With the PM or MZ-PM transmitter methods, the precoding formula
can be found to be

Ik = vk ⊕ Ik−1 · Qk−1 + uk ⊕ Ik−1 · Qk−1 (6.5)

Qk = uk ⊕ vk ⊕ Qk−1. (6.6)

For laboratory testing, the precoding is normally not implemented in
hardware. Two methods based on software-based precoding have been
used in recent DQPSK experiments. One method implements the precod-
ing in software on a computer, using a PRBS and an inverted PRBS as
the input signals u and v, respectively. The precoded signals I and Q are
then calculated using Eqs. 6.3 and 6.4 or Eqs. 6.5 and 6.6, depending on
the generation method. I and Q can then be programmed to a pattern
generator, and used to drive the DQPSK modulator. The signal at the
receiver will either be a PRBS or an inverted PRBS depending on the sign
of the ±π

4 phase shift in the demodulator. Alternatively, the precoding
in the transmitter can be replaced by a “postcoding” in the receiver. By
using a PRBS and an inverted and/or time-shifted PRBS to directly drive
the modulators, the expected signal at the receiver can be calculated in
software on a computer and transferred to a programmable error detector.
Both methods were used for the experimental work presented later in this
chapter.

It is worth noting that a precoding method that does not include feed-
back circuits has recently been demonstrated for DQPSK [30], similar to
feedback-free precoding for DBPSK and duobinary as presented in [31].
This method is based on simple logical gates and uses T flip-flop gates
instead of feedback circuits, and thus allows for easier implementation at
high bit rates.

6.3.3 Receiver

A receiver for DQPSK basically consists of two DBPSK one symbol delay
demodulators offset ±π

4 from the maximum transmission point, as illus-
trated in Figure 6.6. First, the incoming signal is split into two branches,
one for each tributary. Then the signal is demodulated by a MZ interfero-
meter with a delay of one symbol period, corresponding to a free spectral
range (FSR) equal to the symbol rate (half the bit rate). Balanced de-
tection offers a 3 dB improvement in receiver sensitivity compared to
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Figure 6.6: DQPSK demodulator and
receiver schematic. The time delay τ is
equal to one symbol period.

Figure 6.7: Illustration of the signals in
a DQPSK receiver for a signal generated
with the dual-MZ generation method.

single-ended reception [23]. The same 3 dB improvement is also seen for
DBPSK [32].

If the input signal to the demodulator is E0e
iφ(t), and we assume

identical photo diode responsitivities R, the balanced receiver currents
will be

r(tk) = −R
E2

0

2
[cos(∆φk) − sin(∆φk)] (6.7)

s(tk) = −R
E2

0

2
[cos(∆φk) + sin(∆φk)] (6.8)

where ∆φk = φ(tk)− φ(tk−1) is the phase difference between two consec-
utive symbols.

Figure 6.7 illustrates some of the signals in a DQPSK receiver for a
signal generated with the dual-MZ generation method, showing the wave-
forms of the received signals r and s. The corresponding illustrations
for MZ-PM and PM generation methods are presented in Figure C.1 in
Appendix C.

Demodulators for DQPSK can easily be made from two standard 3 dB
couplers, but this method suffers from severe stability problems. Due to
small temperature drift in the demodulator, the phase change between
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the two arms will vary. Therefore, the demodulator needs to be temper-
ature stabilised, and the interferometer length should be made as short as
possible. By minimising the interferometer delay and using temperature
controlled packaging, fibre-based demodulators can be sufficiently stable.

The DQPSK demodulator can also be made with planar integration.
In [33] a demodulator for 20 Gbit/s DQPSK signals was integrated on
an area less than 1.5 cm2 using high index contrast SiON technology.
The small size of planar integration is an important advantage, but a
significant drawback is an increased polarisation dependence.

For both methods, the ±π
4 phase shift applied to one of the arms of

each delay interferometer can be generated by temperature tuning. This
method is also used for DBPSK, in order to tune the demodulator to the
laser frequency. Today, only fibre based demodulators are commercially
available, for example from [34].

In this work, two different demodulators were used. For experiments
with 12.5 Gbit/s bit rate, a “home-made” fibre-based demodulator was
used. It consisted of one delay interferometer, with length of about 28 cm.6

One arm of the interferometer was about 33 mm longer than the other,
corresponding to free spectral range of 6.25 GHz. The interferometer
was packaged with a heater element to obtain phase tuning in a foam-
insulated box and inserted in a temperature controlled chamber to obtain
sufficient temperature stability. For experiments with 80 Gbit/s bit rate,
a commercial fibre-based demodulator was used. This demodulator has a
shorter interferometer length and good packaging, resulting in very good
stability.

6.4 Receiver Sensitivity

In this section we present experimental investigations of the receiver sens-
itivity of DQPSK, and compare it to that of DBPSK. All comparisons
were performed at the same symbol rate, such that the same setup could
be used—allowing for a fair comparison. Thus, the bit rate of the DQPSK
signal was twice that of the DBPSK signal.

6Early implementations of this demodulator were made with longer interferometer
lengths, but suffered from excessive instability due to very high temperature and po-
larisation sensitivity. 28 cm was the shortest interferometer length we could make by
splicing 3 dB couplers.
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(a) 6.25 Gbaud

(b) 40 Gbaud

Figure 6.8: Schematics of experimental setups for investigation of DQPSK receiver
sensitivity using 6.25 Gbaud (a) and 40 Gbaud (b) symbol rate.
PG: Pattern generator, ED: Error detector, PWR: Optical power metre.

First, the receiver sensitivity of 12.5 Gbit/s return-to-zero differential
quadrature phase shift keying (RZ-DQPSK) and 6.25 Gbit/s return-to-
zero differential binary phase shift keying (RZ-DBPSK) was compared.
The setup consisted of an external cavity laser (ECL) followed by a MZ
modulator and a phase modulator in series, as illustrated in Figure 6.8(a).
The precoded sequences I and Q were calculated in software for input
data streams 215 − 1 PRBS and inverted 215 − 1 PRBS.7 A 12.5 Gbit/s
pattern generator followed by a 2:1 demultiplexer was used to apply the
6.25 Gbit/s precoded data signals to the modulators. A second MZ mod-
ulator driven with a 12.5 GHz clock signal was used to carve 50% RZ
pulses. We measured the optical signal to noise ratio (OSNR) receiver
sensitivity by adding a variable amount of noise from an broadband noise
source. The OSNR was measured by an optical spectrum analyser (OSA)
in a 0.1 nm bandwidth. At the receiver, the signal was filtered using an
optical bandpass filter with a 3 dB bandwidth of 0.25 nm and demodu-
lated using our “home-made” demodulator designed for a symbol rate of

7A PRBS sequence of 215 −1 bits was selected because it was the longest pre-coded
sequence that would fit in the pattern generator memory.
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Figure 6.9: OSNR receiver sensitivity measurements for 12.5 Gbit/s RZ-DQPSK and
12.5 Gbit/s RZ-DBPSK.

6.25 Gbaud. The received pattern was 215 − 1 PRBS or inverted 215 − 1,
depending on the sign of the ±π

4 phase shift in the demodulator. Two
15 GHz photodiodes in a balanced configuration were used to detect the
signal. As a differential amplifier was not available for this experiment,
an inverting amplifier was used to invert the signal in one of the arms
before adding the two signals using a 6 dB power splitter. The signal
quantity was quantified by the Q-factor, found by converting the bit error
rate (BER) measured by a 6.25 Gbit/s error detector.

Figure 6.9 presents the Q-factor versus OSNR measurement of the
input signal for 12.5 Gbit/s RZ-DQPSK and 6.25 Gbit/s RZ-DBPSK. At
a Q-factor of 15.6 dB—corresponding to a BER of 1.0×10−9—the RZ-
DQPSK signal requires 5.9 dB higher OSNR than the RZ-DBPSK signal.
At a Q factor of 10 dB or a BER of 1.0×10−3, the difference is 3.7 dB.

Second, we compared the receiver sensitivity of NRZ-DQPSK and
NRZ-DBPSK using 40 Gbaud symbol rate. Light from a distributed
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Figure 6.10: BER versus receiver input power measurements for 80 Gbit/s NRZ-
DQPSK and 40 Gbit/s NRZ-DBPSK.

feedback (DFB) laser was modulated by a phase modulator and MZ mod-
ulator in series, as illustrated in Figure 6.8(b). The phase modulator was
driven with an inverted 27 − 1 PRBS, and the MZ modulator was driven
with a 27 − 1 PRBS delayed 48 bits to decorrelate the two signals. For
this setup, we investigated the receiver sensitivity, and varied the optical
power into the pre-amplified receiver. The signal was demodulated using
a commercial demodulator designed for a symbol rate of 43 Gbaud, and
received with a 45 GHz balanced detector. As precoding was not imple-
mented in this experiment, instead the error detector was programmed
with the expected pattern. Due to the lack of a 40 Gbit/s error detector
with programmable data pattern, the signal was electrically demultiplexed
to 10 Gbit/s and a programmable 10 Gbit/s error detector was used.

The resulting BER versus receiver input power is presented in Fig-
ure 6.10, and it is seen that 80 Gbit/s NRZ-DQPSK requires 3.1 dB more
receiver input power compared to 40 Gbit/s NRZ-DBPSK in order to
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achieve a BER of 1.0×10−9. For a BER of 1.0×10−3, the difference was
2.5 dB.

In conclusion, we see that the receiver sensitivity of our DQPSK signals
is only slightly more than 3 dB higher than DBPSK at half the bit rate.
We can compare the performance at the same bit rate by taking into
account that DBPSK would perform 3 dB worse by doubling the bit rate.
Then, at a BER of 1.0×10−9 we see an excess penalty of 0.7 dB for our
12.5 Gbit/s RZ-DQPSK signal and 0.1 dB for the 80 Gbit/s NRZ-DQPSK
signal.

Other reports suggest that there should be a 1.5 to 2 dB worse sens-
itivity for DQPSK compared to DBPSK at the same bit rate, as shown
experimentally for 20 Gbit/s optical DQPSK in [23] and theoretically
for radio communication in [1]. We attribute the difference between those
works and the work presented in this chapter to experimental uncertainty,
and conclude that—at the same bit rate—DQPSK has slightly worse re-
ceiver sensitivity compared to DBPSK, and better sensitivity compared
to OOK.

6.4.1 RZ vs. NRZ

In on-off keying it is well-known that the use of RZ coding results in an
improved receiver sensitivity, due to better peak power to noise ratio in
the receiver. Already in 1977, Personick noted that if the received pulse
energy is constant, the best performance is obtained with a pulse width
less than the bit slot [35]. About 2 dB improved receiver sensitivity is
obtainable with RZ compared to NRZ, as discussed in Chapter 3 and
in [36].

The phase modulated DQPSK signal is converted into an amplitude
modulated signal after demodulation. A demodulated RZ-DQPSK sig-
nal has a RZ shape while a demodulated NRZ-DQPSK signal has a NRZ
shape. Thus, it is to be expected that there should be the same 2 dB
advantage for RZ coding with DQPSK as with OOK systems. The wave-
forms of NRZ-DQPSK and RZ-DQPSK are compared in Figure 6.11.8

It is seen that the power-dips in symbol transitions caused by the MZ
modulator are no longer visible after the RZ pulse carving.

8The waveforms in Figure 6.11 are created using the Dual-MZ transmitter option.
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(a) NRZ-DQPSK

(b) RZ-DQPSK

Figure 6.11: Waveforms and eye diagrams of transmitted and received NRZ (a) and
RZ (b) DQPSK signals.

To demonstrate the advantage of RZ in DQPSK systems an experi-
ment was carried out to compare NRZ-DQPSK and RZ-DQPSK at a bit
rate of 12.5 Gbit/s. The results are presented in Figure 6.12, showing
the Q-factor versus OSNR of the received signal. It is seen that the RZ-
DQPSK requires 2 dB less OSNR for the same Q-factor as NRZ-DQPSK.
Thus, we verify the advantage of RZ waveform for DQPSK. The same
2 dB improvement was also demonstrated for RZ-DBPSK compared to
NRZ-DBPSK.

6.5 Component Tolerance

In a real system, there will be several factors degrading the perform-
ance compared to the ideal case. The most likely problem areas are the
π
2 phase modulation, demodulator extinction ratio, demodulator delay
and demodulator phase shift. Using numerical simulations, we quantify
the impact of deviations from the optimum values of these parameters
and find design requirements.
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Figure 6.12: Receiver sensitivity comparison of NRZ-DQPSK vs. RZ-DQPSK at a
bit rate of 12.5 Gbit/s, verifying the 2 dB advantage of the RZ waveform. The line at
Q=15.6 dB corresponds to a BER of 1.0×10−9.

All of these imperfections will degrade the quality of the demodulated
signal. Figure 6.13 illustrates the effect of various imperfections, showing
the eye diagrams of the demodulated electrical signal for a RZ-DQPSK
input signal.9 From Figure 6.13(b) it is seen that the effect of the imperfect
delay is to shift the centre of the eye in time and to reduce the amplitude
of the demodulated signal. An imperfect phase offset in the demodulator
results in two distinct traces for both the “1” and “0” levels, as seen in
Figure 6.13(c). A low demodulator extinction ratio simply reduces the
amplitude of the received signal, as seen in Figure 6.13(d). Imperfect
phase modulation levels of the DQPSK signal creates three distinct traces
on both “1” and “0” levels, as seen in Figure 6.13(e). This effect is enhanced
since the worst case deviation on ∆φk = φk −φk−1 is twice the worst case
deviation on φk.

It is interesting to note that in some cases using a demodulator delay
other than the symbol period might be beneficial. Using a shorter delay

9The RZ-DQPSK signal was generated using the PM method, assuming 1/5 symbol
period rise time of the electrical signal.
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(a) (b) (c) (d) (e)

Figure 6.13: Calculated eye diagrams of the balanced electrical received signal in an
imperfect RZ-DQPSK receiver for a noise-free case back-to-back. For reference, the
ideal case is shown in (a). The imperfections studied were a 40% longer interferometer
delay (b), a 35◦ demodulator phase offset (c), a demodulator extinction ratio of 6 dB
(d) and phase modulation of π/5 in the phase modulator (e). The same scale is used
for all plots.

length can cause a conversion from NRZ to RZ waveform, as described
in [37].

We studied the effect of key parameters using numerical simulations
in order to conclude on design requirements for a RZ-DQPSK receiver. A
12.5 Gbit/s RZ-DQPSK was generated using the PM method, assuming
square drive signals. By changing different variables, and calculating the
Q-factor at the receiver, the impact of various imperfections could be
quantified. Using the Q-factor penalty10 as the quality measure, we found
the tolerable variations from the optimum values for a 0.1 dB and 1.0 dB
penalty. The results are summarised in Table 6.2.

From a practical point of view, the requirement most difficult to meet
in practice is the transmitter phase modulation, with allowable deviation
of ±1.5◦ for a 0.1 dB Q factor penalty. It is most likely only the Dual-MZ
transmitter option that can generate signals with such low deviation. For
a signal generated with a phase modulator to reach such values, the drive
signal must deviate only 3.3% from Vπ/2. The laser stability tolerance of
±20 MHz is also very strict, but could be solved by tracking the frequency
of the laser with the tuning of the demodulator. The requirements on the

10Defined as the difference between Q-factor for the ideal and imperfect case,
Penalty(dB)) = Qideal(dB) − Q(dB).
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0.1 dB 1 dB
CW laser stability ±20 MHz ±105 MHz
Transmitter π/2 phase modulation ±1.5◦ ±6.3◦

Demodulator extinction ratio >21 dB >13 dB
Demodulator delay ±9.1 ps ±25 ps
Demodulator π/4 phase offset ±2.0◦ ±7.0◦

Table 6.2: Component tolerance of a 12.5 Gbit/s RZ-DQPSK signal found by numer-
ical calculations, for a 0.1 and 1 dB Q-factor penalty.

extinction ratio and delay of the demodulator—±9.1 ps and > 21 dB,
respectively—should be relatively easy to obtain.

6.5.1 Polarisation Dependent Frequency Shift

A special case of interest for DPSK signals demodulated using delay in-
terferometers is the polarisation dependent frequency shift (PDFS) of the
demodulator.

The wave propagation constant in optical fibres, and thus the speed of
propagation, depends on the state of polarisation (SOP) of the light [38].
When the propagation speed of the light changes, the relative delay of the
two arms of the DQPSK demodulator also changes. Thus, the phase shift
seen by the light going through the demodulator becomes polarisation
dependent. Varying the polarisation shifts the transfer function of the de-
modulator in frequency, referred to as a polarisation dependent frequency
shift. We investigated the effect of PDFS at a bit rate of 12.5 Gbit/s using
our “home-made” delay interferometer.11

A 12.5 Gbit/s RZ-DQPSK signal was generated using the MZ-PM
transmitter method. The OSNR of the signal into the receiver was adjus-
ted by varying the amount of noise added from a noise source based on er-
bium doped fibre amplifiers (EDFAs). To investigate the effect of PDFS,
the Q-factor versus OSNR was measured for optimised SOP, averaged
SOP and worst-case SOP. In the case of the average SOP, a polarisation
controller was used to continuously adjust the state of polarisation. The

11This was the same demodulator used for all 12.5 Gbit/s DQPSK experiments
presented in this chapter.
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Figure 6.14: Experimental investig-
ation of PDFS for 12.5 Gbit/s RZ-
DQPSK, showing Q-factor versus OSNR
for the optimum, average and worst SOP
into the demodulator.

Figure 6.15: Experimental investig-
ation of PDFS for 6.25 Gbit/s RZ-
DBPSK, showing Q-factor versus OSNR
for the optimum and average SOP into
the demodulator.

results of this investigation are shown in Figure 6.14. For comparison, an
investigation of DBPSK was also performed (at a bit rate of 6.25 Gbit/s so
that the same demodulator could be used), and these results are presented
in Figure 6.15.

We observed no measurable effect of the PDFS with the DBPSK sig-
nal, but for DQPSK there was 1 dB OSNR penalty at a Q-factor of 16 dB
when switching from optimum to average or worst SOP. The performance
of the average SOP was similar to that of the best-case SOP for low OSNR
and similar to worst-case for high OSNR. For low OSNR, the system is
limited by noise which dominates over the effects of PDFS. However, in
the case of high OSNR, PDFS from the worst-case SOP is the dominating
source of errors, and then the difference between average and worst SOP
decreases.

6.6 Dispersion Tolerance

One of the main benefits of DQPSK is the improved tolerance to chro-
matic dispersion. In this section, the dispersion tolerance of 12.5 Gbit/s
RZ-DQPSK and 12.5 Gbit/s return-to-zero on-off keying (RZ-OOK) is
compared.

Using numerical simulations, the OSNR sensitivity was calculated
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(a) (b) (c)

Figure 6.16: Dispersion tolerance of 12.5 Gbit/s RZ-DQPSK compared to 12.5 Gbit/s
RZ-OOK; Calculated (lines) and measured (squares) OSNR sensitivity penalty versus
dispersion (a) and calculated eye diagrams of RZ-DQPSK (b) and RZ-OOK (c) after
applying 500 ps/nm dispersion. The grey dot in (c) indicates the centre of the eye.

after propagation through a linear, lossless dispersive element. Fig-
ure 6.16(a) presents the resulting OSNR sensitivity penalty versus accu-
mulated dispersion, and it is seen that the dispersion tolerance for a 1 dB
penalty is 1860 ps/nm for RZ-DQPSK, corresponding to about 110 km
single mode fibre (SMF), which is 3.5 times larger than the 525 ps/nm
limit for RZ-OOK. Figures 6.16(b) and 6.16(c) show the eye diagrams
of a 12.5 Gbit/s RZ-DQPSK and RZ-OOK signal, respectively, after ap-
plying 500 ps/nm of dispersion (corresponding to about 30 km of SMF).
While the RZ-OOK eye is (almost) completely closed, the RZ-DQPSK
stays wide open.

These simulation results are compared with experimental results for
12.5 Gbit/s RZ-DQPSK (represented as squares in Figure 6.16). The re-
ceiver OSNR sensitivity was measured after transmission through different
lengths of fibre, keeping the input power sufficiently low to ensure linear
propagation.12 We see a very good correlation between the experimental
and numerical results, demonstrating the good dispersion tolerance of
DQPSK.

12Due to lack of a clock recovery for this investigation, only short lengths of negative
dispersion fibre were used.
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Figure 6.17: Simplified schematic of setup used for transoceanic 12.5 Gbit/s DQPSK
WDM system demonstration.
AOM: acousto-optic modulator, ED: error detector, CR: clock recovery, GEF: gain-equalising
filter.

6.7 Transoceanic 12.5 Gbit/s DQPSK WDM
System Demonstration

This section describes an experiment set out to demonstrate that DQPSK
can be a suitable modulation format for WDM systems even over
transoceanic distances. Using 12.5 Gbit/s RZ-DQPSK channels in a
64 channel WDM system, we demonstrated good performance over dis-
tances up to 6500 km [14].

The experimental setup showing transmitter, re-circulating loop test-
bed and receiver is illustrated in Figure 6.17. Transmitter details are
identical to the setup presented in Figure 6.8(a). Even channels were
modulated with 12.5 Gbit/s RZ-DQPSK using the MZ-PM transmitter
option. A 12.5 Gbit/s pattern generator was programmed with a data
signal that was demultiplexed to the two 6.25 Gbit/s signals, Ik and Qk.
These signals had been precoded using Eqs. 6.5 and 6.6 so that the signal
at the receiver was a 215 − 1 bit PRBS or a inverted 215 − 1 bit PRBS,
depending on the sign of the ±π

4 phase shift in the demodulator. Fig-
ure 6.18(a) shows the eye diagram of the generated optical 12.5 Gbit/s
RZ-DQPSK signal.

Odd channels were modulated with 6.25 Gbit/s RZ-DBPSK in order
to reduce system complexity. Since 6.25 Gbit/s RZ-DBPSK has the same
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(a) (b) (c)

Figure 6.18: Eye diagrams of the generated 12.5 Gbit/s DQPSK signal. The gener-
ated optical signal (a), the electrical received signal in the back-to-back configuration
(b) and after transmission over 6500 km (c). All eye diagrams were recorded for the
channel at 1553.1 nm.

waveform and spectral shape as 12.5 Gbit/s RZ-DQPSK, this simplifica-
tion does not affect the inter-channel crosstalk.13

The amplifier chain was 465 km long and consisted of 11 fibre spans
made of large effective area fibre with a dispersion of 20 ps/nm/km SMF,
and IDF×2 with dispersion of −40 ps/nm/km, with two of the fibre span
consisting of SMF only. The average span length of the SMF + IDF×2
spans was 45 km, and the respective lengths of the SMF and IDF×2 fibres
had been adjusted to get a dispersion and dispersion slope compensated
map. The amplifier chain was inserted in a re-circulating loop to reach
longer distances.

At the receiver, the WDM demultiplexing was achieved using a series
of optical bandpass filters, where the narrowest filter had a full width
at half maximum (FWHM) of 0.25 nm.14 After filtering, the signal was
demodulated in our demodulator with a free spectral range of 6.25 GHz.
The signal was detected using a balanced detector, and the resulting eye
diagram of one of the received channels in the back-to-back configuration
is shown in Figure 6.18(b). The signal quality was quantified by measuring
the BER of one of the demodulated DQPSK tributaries, and then finding
the Q-factor as QdB = 20 × log10[

√
2erfc−1(2 × BER)].

The signals were transmitted through 14 roundtrips in the recircu-
lating loop, corresponding to a distance of 6500 km. We measured the

13The spectral shape of 6.25 Gbit/s RZ-DBPSK and 12.5 Gbit/s RZ-DQPSK signals
are compared in Figure C.2 in Appendix C.

14Using the same configuration as the 66 GHz case shown in Figure 6.23.
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Figure 6.19: Optical spectrum (top), and Q-factor measurement (bottom) of
12.5 Gbit/s RZ-DQPSK after transmission over 6500 km. A resolution bandwidth
of 0.5 nm was used when recording the spectrum.

Q-factor of the received signal for a number of channels after that dis-
tance, as presented in Figure 6.19. The optical power spectrum of the
received signal is also shown. We see that the Q-factor is above 11 dB
for all measured channels. When using 25% overhead for forward error
correction (FEC), a Q-factor of 8.5 dB is required to achieve error free
performance [39]. Thus, after 6500 km we have more than 2.5 dB margin
to the FEC threshold.

System performance was limited by the dispersion map in the link
available for this experiment. This particular dispersion map was de-
signed for symbol rates at or above 10 Gbaud. The under-compensation
of the SMF + IDF×2 spans was too small to significantly disperse the
wide pulses of our 12.5 Gbit/s RZ-DQPSK signal. Thus, the pulse shape
was preserved throughout the link, leading to enhanced nonlinear signal
degradation. If a dispersion map optimised for 6.25 Gbaud symbol rate
had been used, significant performance improvement would be expected.
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Figure 6.20: Illustration of the power evolution of the channel at 1553.1 nm, showing
signal power versus distance for different launched powers from the ECL.

6.8 Comparison of 6.25 Gbit/s RZ-DBPSK and
12.5 Gbit/s RZ-DQPSK over 6500 km

In the previous section we demonstrated WDM transmission over
transoceanic distances using RZ-DQPSK. However, it did not tell us
how the performance of RZ-DQPSK is compared to other modulation
formats. This section presents a comparison 12.5 Gbit/s RZ-DQPSK and
6.25 Gbit/s RZ-DBPSK.

Using the same setup as in the previous section, 12.5 Gbit/s RZ-
DQPSK and 6.25 Gbit/s RZ-DBPSK signals were transmitted in a 64
channel WDM system. We study the channel at 1553.1 nm, and by apply-
ing a power pre-emphasis on the channel of interest, we were able to study
different span input powers. When a large negative power pre-emphasis
was used, the power of that channel would grow with increasing trans-
mission distance. The power evolution for different input power levels is
shown in Figure 6.20. The channel power was measured using an optical
spectrum analyser on a tap port from the input of the first span in the
last loop.

Adjusting the power of the continuous wave (CW) laser at 1553.1 nm
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Figure 6.21: Comparison of Q-factor versus channel power level for 6.25 Gbit/s RZ-
DBPSK and 12.5 Gbit/s RZ-DQPSK after transmission over 6500 km. Arrows indicate
Q-factors above 16 dB (BER < 1.5×10−10).

and measuring the resulting Q-factor of the signal after transmission,
we could study both the case of noise-limited low-power case and the
nonlinearity-limited high-power case.

By turning the phase modulator off, and changing the drive signal
to the MZ modulator to a 215 − 1 bit PRBS, we could change between
RZ-DQPSK and RZ-DBPSK.15

Figure 6.21 presents the resulting Q-factor versus span input power
after transmission over 6500 km for 12.5 Gbit/s RZ-DQPSK and
6.25 Gbit/s RZ-DBPSK. We see that the DBPSK performs about
4 dB better than the RZ-DQPSK signal. Taking into account that the
6.25 Gbit/s RZ-DBPSK would perform 3 dB worse at 12.5 Gbit/s, the
results indicate that our RZ-DQPSK signal performs about 1 dB worse
than RZ-DBPSK for this system. Eye diagrams of the two signals after

15For RZ-DBPSK we could simply have measured on one of the even channels, but
we chose to modify the odd channels in order to use exactly the same components for
the comparison.
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(a) 6.25 Gbit/s RZ-DBPSK (b) 12.5 Gbit/s RZ-DQPSK

Figure 6.22: Comparison of eye diagram of the electrical received signal of the channel
at 1553.1 nm from the 6.25 Gbit/s RZ-DBPSK and 12.5 Gbit/s RZ-DQPSK signals
after transmission over 6500 km.

transmission at optimum power are shown in Figure 6.22. Significantly
better eye opening is obtained with the RZ-DBPSK signal.

It is clear from Figure 6.21 that the optimum span input power is
1–2 dB higher for the RZ-DBPSK signal, compared to RZ-DQPSK. This
indicates that the non-linear tolerance of RZ-DBPSK is higher than that
of RZ-DQPSK, and partly explains the difference in performance.

6.9 High Spectral Efficiency Demonstration

As previously mentioned, DQPSK has half the spectral width compared
to binary modulation formats at the same bit rate. This reduced spectral
width will naturally lead to better tolerance to narrow channel spacing
in WDM systems. In order to demonstrate these benefits in a system
environment, a WDM transmission experiment over 6500 km was carried
out using five different channel spacings [15].

The experimental setup was based on that presented in Figure 6.17.
By moving a group of seven channels around 1553 nm closer together, we
were able to vary the channel spacing from 66 GHz down to 15 GHz. Also,
by turning off the even channels, we could measure with a channel spacing
of 133 GHz. With the reduced channel spacing, more receiver filtering
was required to get sufficient suppression of neighbouring channels. The
filtering setup is illustrated in Figure 6.23, along with the optical power
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Figure 6.23: Illustration of channel selection filtering at the receiver for different
channel spacings (left), optical power spectra at the transmitter (centre) and after
transmission over 6500 km and filtering (right). The optical spectra were recorded
with a resolution bandwidth of 0.01 nm.

spectra out of the transmitter and after filtering. Neighbouring channels
were launched in the same polarisation state (parallel launch) for channel
spacings from 133 to 25 GHz. When using 15 GHz channel spacing, it
was necessary to launch neighbouring channels with orthogonal state of
polarisation (orthogonal launch) in order to get Q-factors above the FEC
threshold.

The Q-factor for the different channel spacings was measured after
transmission over 6500 km. Figure 6.24 presents the measurements of the
tributaries of the 12.5 Gbit/s RZ-DQPSK channel at 1553.1 nm. We see
that there is a very small difference between the case of 133, 66 and 33 GHz
channel spacing, with resulting Q-factors of 11.5, 11.4 and 11.2 dB, re-
spectively. When the channel spacing is decreased to 25 GHz, the obtain-
able Q-factor becomes 10.2 dB. Further decreasing the channel spacing to
15 GHz did not allow for a Q-factor above the FEC threshold with parallel
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Figure 6.24: Q-factor of the 12.5 Gbit/s RZ-DQPSK channel at 1553.1 nm as a
function of channel spacing after transmission over 6500 km.

launch. However, by introducing orthogonal launch, where odd and even
channels were transmitted on orthogonal SOPs, a Q-factor of 10.0 dB was
obtained after 6500 km. Thus even with the very dense channel spacing
of 15 GHz, there is a 1.5 dB margin to the FEC threshold.

The spectral efficiency of a system is defined as the per channel bit
rate without FEC overhead divided by the channel spacing. For the case
with 15 GHz channel spacing with and a pre-FEC data rate of 10 Gbit/s
we thus get a spectral efficiency of 0.66 bit/s/Hz.

In Figure 6.25 the optical spectrum and the eye diagrams of the signal
after transmission are shown for the case with 15 GHz channel spacing.
It is seen that the neighbouring channels are suppressed by only 10 dB.
The optical filters used for demultiplexing the WDM channels had a filter
bandwidth of 0.25 nm, corresponding to 31 GHz. Therefore, it is believed
that if filters with narrower bandwidth had been used even denser channel
spacing would be achievable.
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(a) (b)

Figure 6.25: Eye diagram of the received optical (a) and electrical (b) signal after
transmission over 6500 km with 15 GHz channel spacing.

6.10 Wavelength Conversion of Phase
Modulated Signals

The high spectral efficiency makes DQPSK an attractive modulation
format for designing new or upgrading existing optical links in order to
maximise the capacity in a given bandwidth. Large dispersion tolerance
is required in reconfigurable optical networks where the fibre path—and
thus the accumulated dispersion—is dynamically changed. DQPSK can
increase the reach of such systems.

Wavelength conversion is expected to be an essential feature of fu-
ture all optical networks. However, conventional wavelength conversion
methods—such as those based on cross gain modulation (XGM) in a semi-
conductor optical amplifier (SOA) or cross phase modulation (XPM) in
SOA interferometric structures [40]—disregard the phase information and
thus prevent the conversion of phase modulated signals. FWM can be util-
ised to obtain phase-preserving wavelength conversion, as demonstrated
in [41] for a 2.5 Gbit/s DBPSK signal using FWM in non-linear fibre, and
in [42] for a 10 Gbit/s DBPSK signal using FWM in a SOA.

This section presents an experiment demonstrating wavelength conver-
sion of 40 Gbit/s NRZ-DBPSK and 80 Gbit/s NRZ-DQPSK signals [19].
Wavelength conversion is performed by using FWM in a 1 km highly
nonlinear fibre (HNLF).
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Figure 6.26: Experimental setup, showing transmitter, wavelength converter and
receiver.

As shown in Figure 6.26, the 80 Gbit/s NRZ-DQPSK signal was gen-
erated using a phase modulator and a MZ modulator in series. CW light
from a laser at a wavelength of 1552.0 nm was first modulated by a phase
modulator driven by a 40 Gbit/s data signal having an amplitude result-
ing in a π

2 phase change. After the phase modulator, a single-drive MZ
modulator driven with a 2Vπ drive signal added a π phase shift. By turn-
ing off the drive signal to the phase modulator, a 40 Gbit/s NRZ-DBPSK
signal could be generated instead.

Due to the low bandwidth—28 GHz—of the drive amplifier for the
MZ modulator, the drive signal has significant amount of ISI. This is
illustrated in Figure 6.27, where the eye diagrams of the electrical drive
signals are shown. The drive signal to the phase modulator was amplified
by an amplifier with 38 GHz bandwidth, and shows no sign of significant
ISI.
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(a) (b) (c)

Figure 6.27: Eye diagrams of the electrical drive signals used to generate the 80 Gbit/s
DQPSK signal. The output of the pattern generator is shown in (a), and the amplified
drive signal to the PM and MZ modulators are shown in (b) and (c), respectively.
Significant ISI is present in the MZ drive signal due to insufficient amplifier bandwidth.

The eye diagram of the generated optical signal is shown in Fig-
ure 6.28(a). No difference on the optical eye diagram was observed
between the NRZ-DBPSK and NRZ-DQPSK signal, as the phase modu-
lator did not add significant amplitude modulation. The signal has the
classical characteristic of a MZ-generated NRZ-DBPSK signal.

In the receiver, the signal was pre-amplified before demodulation in a
one bit delay demodulator. The demodulator had a time-delay of 23.5 ps,
optimised for a symbol rate of 43 Gbaud. For 40 Gbit/s NRZ-DBPSK,
the phase offset between the two demodulator arms was tuned to the peak
of the transfer function, whereas for 80 Gbit/s NRZ-DQPSK it was offset
by ±π/4. After the demodulator, the signal was received using a 45 GHz
balanced photo detector. Eye diagrams of electrical back-to-back signals
are shown in Figures 6.28(b) and 6.28(c), for 40 Gbit/s NRZ-DBPSK and
80 Gbit/s NRZ-DQPSK, respectively. It is seen that the distorted drive
signal to the MZ modulator results in significant ISI on the generated
signals. Going from two to four phase levels (DBPSK to DQPSK) clearly
adds more ISI primarily caused by a very limited bandwidth—22 GHz—of
the phase modulator.

A 27 − 1 PRBS and a 27 − 1 PRBS were used for the MZ modulator
and phase modulator, respectively. The two patterns were decorrelated by
a relative delay of 48 bits. Pre-coding was not applied to the transmitted
data, instead the error detector was programmed with the expected bit
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(a) Generated optical signal

(b) 40 Gbit/s DBPSK back-
to-back electrical

(c) 80 Gbit/s DQPSK back-
to-back electrical

(d) 40 Gbit/s DBPSK conver-
ted optical

(e) 80 Gbit/s DQPSK conver-
ted optical

(f) 40 Gbit/s DBPSK conver-
ted electrical

(g) 80 Gbit/s DQPSK conver-
ted electrical

Figure 6.28: Eye diagrams of signals at various points in the system. The generated
signal shown in (a) is identical for both 40 Gbit/s NRZ-DBPSK and 80 Gbit/s DQPSK.
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Figure 6.29: Optical power spectrum at the input and output of the HNLF, illus-
trating the generation of the FWM products at 1550.8 and 1554.4 nm.

pattern. As no programmable 40 Gbit/s error detector was available at the
time of this experiment, the received signal was electrically demultiplexed
to 10 Gbit/s, and the errors counted on a programmable 10 Gbit/s error
detector.

Wavelength conversion was realised using FWM in a 1 km HNLF with
a non-linear coefficient γ = 10.9 W−1km−1. The signal was fed into the
HNLF along with a CW pump at a wavelength of 1553.2 nm. At the fibre
input, the power of the data and pump was 14 and 17 dBm, respectively.
Due to FWM between the pump and the signal, two new signals were
generated at wavelengths of 1550.8 and 1554.4 nm, as seen in Figure 6.29
where the optical power spectrum of the signals at the input and output of
the HNLF is shown. Detailed description of FWM is beyond the scope of
this thesis, and the interested reader is directed to e.g. [38, 43–45]. After
the HNLF, the converted signal at 1554.4 nm is filtered by an optical
bandpass filter and amplified by an EDFA. The conversion efficiency,
defined as the ratio of the power of the converted signal and the power of
the original signal at the output of the HNLF, was −12.4 dB.

In Figure 6.30, the receiver sensitivity measurements are presented,
showing the measured BER as a function of the receiver input power.
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Figure 6.30: Measured BER vs. receiver input power for 80 Gbit/s DQPSK (one
of the two tributaries are shown) and 40 Gbit/s DBPSK before and after wavelength
conversion.

The BER was measured on one of the four 10 Gbit/s electrical tributaries
demultiplexed from the 40 Gbit/s received signal. A receiver sensitivity of
−21.8 dBm for 80 Gbit/s NRZ-DQPSK was measured in the back-to-back
case. After conversion we measured a receiver sensitivity of −19.0 dBm,
corresponding to a conversion power penalty of 2.8 dB.

For 40 Gbit/s NRZ-DBPSK, an almost identical conversion power
penalty of 2.6 dB was measured. It is interesting to note that the increased
number of symbol levels of DQPSK does not lead to significant extra
wavelength conversion penalty compared to DBPSK.

Eye diagrams of the converted optical signals are shown in Fig-
ures 6.28(d) and 6.28(e). The corresponding electrical received signals are
shown in Figures 6.28(f) and 6.28(g). It is seen that the optical signals
are quite distorted compared to the back-to-back signal. It is seen that
the waveforms of the electrical signal after conversion is not significantly
degraded compared to the back-to-back case, and that the main degrad-
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ation is due to reduced optical signal-to-noise ratio after the wavelength
conversion.

6.11 Summary

Differential quadrature phase shift keying has been presented as a prom-
ising modulation format for optical communication systems. DQPSK
four-level encoding results in half the spectral width of binary signals
at the same bit rate, offering four times larger dispersion tolerance and
double spectral efficiency. The use of DQPSK in optical communication
systems allows for design of high bit rate systems using lower symbol
rate to reduce impact of transmission impairments and electronic band-
width requirements. Alternatively, DQPSK can be used to generate sig-
nals with twice the bit rate of state-of-the-art electronics. This chapter
has described both approaches.

We presented an introduction to DQPSK including different transmit-
ter/receiver designs and precoding methods. Receiver sensitivity, toler-
ance to dispersion, polarisation dependent frequency shift and transmit-
ter/receiver imperfections were studied and design requirements based on
RZ-DQPSK systems were found.

Transmission experiments have demonstrated the feasibility of WDM
transmission over transoceanic distances. We successfully transmitted
12.5 Gbit/s DQPSK in a 64 channel WDM system over 6500 km. The
performance of 12.5 Gbit/s RZ-DQPSK was compared with that of
6.25 Gbit/s RZ-DBPSK, and we found a 4 dB difference in Q-factor
after transmission over 6500 km. The inherent tolerance of DQPSK to
close channel spacings was demonstrated by transmitting 12.5 Gbit/s RZ-
DQPSK over 6500 km using very dense channel spacing of 15 GHz, cor-
responding to a spectral density of 0.66 bit/s/Hz.

Using a symbol rate of 40 Gbaud, we demonstrated an 80 Gbit/s NRZ-
DQPSK system. We presented the first wavelength conversion experiment
of such high speed phase modulated signals. Using FWM in a 1 km HNLF
we obtained a conversion penalty of 2.8 dB, which was only 0.2 dB more
than the conversion penalty for a 40 Gbit/s NRZ-DBPSK.
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Chapter 7

Conclusion

Dispersion management and modulation formats have been studied for
single-channel and wavelength division multiplexing (WDM) optical com-
munication systems with per channel bit rates at or above 10 Gbit/s.

Dispersion Management

New dispersion compensating fibres (DCFs) referred to as inverse disper-
sion fibres (IDFs) allow more freedom in fibre span design, as the DCF
itself can be cabled and used as transmission fibre. Three novel fibre types
were investigated, with dispersion ranging from −17 to −54 ps/nm/km.
These fibres are referred to as IDF×n, with n = {1, 2, 3} being the single
mode fibre (SMF) to IDF length ratio. We show that IDFs can effect-
ively reduce the accumulation of amplified spontaneous emission (ASE),
compared to the conventional DCF with a dispersion of −100 ps/nm/km,
due to significantly lower span loss. We found that IDF×1 suffers from
enhanced nonlinear signal degradation due to less attenuation and pulse
dispersion in the SMF before the IDF×1. IDF×2 and IDF×3 offer a com-
bination of good nonlinear signal propagation and low span loss, resulting
in good performance for all power levels.

We experimentally compare three different dispersion management
schemes in a 40 Gbit/s system with ultra-long 160 km fibre spans. A
combination of amplification using lumped erbium doped fibre amplifiers
(EDFAs) and distributed Raman amplification was used to overcome the
high span loss of such long fibre spans. Comparing pre-, post- and sym-
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metrical dispersion compensation, we showed that the symmetrical scheme
offers best performance, primarily due to reduced nonlinear signal inter-
action.

Modulation Formats

There has been a fierce debate regarding “optimum” modulation formats
for optical communication systems for some time, starting with the debate
of non return-to-zero (NRZ) vs. return-to-zero (RZ), and later with the
suggestion of advanced modulation formats such as CS-RZ, SSB-RZ and
duobinary.

We investigated the question of pulse width in 10 Gbit/s system with
80 km span lengths, comparing the performance of NRZ and RZ cod-
ing using pulse widths of 50%, 10%, and 5% of the bit slot. Results
clearly showed that all the studied RZ formats outperformed the tradi-
tional NRZ formats—due to a 2 dB improved receiver sensitivity and
greatly improved nonlinear tolerance. We found that, as the narrow RZ
pulses disperse rapidly and have a rapidly changing waveform, the nonlin-
ear signal degradation due to self phase modulation (SPM) is significantly
relaxed.

Advanced on-off keying (OOK) modulation formats were studied for
40 Gbit/s single-channel and WDM systems with 80 km fibre spans. We
studied the relative performance of six modulation formats—NRZ, RZ
(50% and 20% pulse width), duobinary, CS-RZ and SSB-RZ. For the
single-channel case we found that the narrow RZ pulses were optimum,
as in the 10 Gbit/s system. However, the broad spectrum associated with
narrow pulses puts a natural limitation on use in WDM systems. We found
that CS-RZ and SSB-RZ resulted in optimum performance in a 100 GHz
spaced 40 Gbit/s WDM system, as these formats offer a combination of
good transmission properties and high receiver sensitivity with a relatively
narrow spectrum.

DQPSK

Differential quadrature phase shift keying (DQPSK) is a modulation
format well-known from radio communication, where multilevel signalling
is frequently used to enhance the spectral efficiency. We show that multi-
level phase modulation is suitable for use in optical communication sys-
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tems, and can be used either to generate high speed signals using low
symbol rates, or to generate ultra-high bit rates signals with bit rates
higher than obtainable with OOK.

Following the proven success of differential binary phase shift keying
(DBPSK) in recent experiments, we demonstrate the suitability of four-
level DQPSK for transoceanic optical communication systems. We show
successful transmission of DQPSK signals in a 12.5 Gbit/s 64 chan-
nel WDM system over a transatlantic distance of 6500 km. Further-
more, we use DQPSK to achieve high spectral efficiency, obtaining up to
0.66 bit/s/Hz even after transmission over 6500 km.

Using components with bandwidth suitable for 40 Gbit/s OOK, we
experimentally demonstrated a 80 Gbit/s non return-to-zero differential
quadrature phase shift keying (NRZ-DQPSK) system. Using four-wave
mixing (FWM) in a highly nonlinear fibre (HNLF), we demonstrated
for the first time wavelength conversion of ultra-high speed phase mod-
ulated signals. We obtained a conversion power penalty of 2.8 dB for
80 Gbit/s NRZ-DQPSK, which was only 0.2 dB higher than the pen-
alty for 40 Gbit/s non return-to-zero differential binary phase shift keying
(NRZ-DBPSK).

Summary

The work presented in this thesis has shown that novel dispersion manage-
ment schemes and advanced modulation formats offer significant benefits
compared to traditional systems, in some cases allowing three times longer
transmission distance. However, there is no universal optimum combin-
ation of modulation format and dispersion management, and a detailed
study is required for each system.

DQPSK has been demonstrated as a suitable modulation format for
optical communication systems, even for spectrally efficient transoceanic
WDM systems. We also showed that DQPSK can be implemented at bit
rates as high as 80 Gbit/s with 40 Gbit/s electronics.

Hopefully, the benefits of the advanced modulation formats demon-
strated in this work will be sufficient to overcome the drawbacks of extra
transmitter and receiver complexity. If so, these formats will allow for
future ultra-high capacity spectrally efficient optical communication sys-
tems.





List of Acronyms

AMI alternate mark inversion

ASE amplified spontaneous emission

BER bit error rate

CS-RZ carrier suppressed return-to-zero

CW continuous wave

DBPSK differential binary phase shift keying

DCF dispersion compensating fibre

DFB distributed feedback

DPSK differential phase shift keying

DSF dispersion shifted fibre

DQPSK differential quadrature phase shift keying

ECL external cavity laser

EAM electro-absorption modulator

EDFA erbium doped fibre amplifier

ELPF electrical low-pass filter

FEC forward error correction

FOM figure of merit

FSR free spectral range

FWHM full width at half maximum

FWM four-wave mixing

GVD group-velocity dispersion
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HNLF highly nonlinear fibre

IDF inverse dispersion fibre

ISI inter-symbol interference

MLFRL mode locked fibre ring laser

MPI multi-path interference

MZ Mach-Zehnder

NOLM nonlinear optical loop mirror

NRZ non return-to-zero

NRZ-DBPSK non return-to-zero differential binary phase shift keying

NRZ-DQPSK non return-to-zero differential quadrature phase shift keying

NZDSF non-zero dispersion shifted fibre

OBPF optical bandpass filter

OOK on-off keying

OTDM optical time division multiplexing

OSA optical spectrum analyser

OSNR optical signal to noise ratio

PDFS polarisation dependent frequency shift

PRBS pseudo random bit sequence

PSK phase shift keying

QPSK quadrature phase shift keying

RDF reverse dispersion fibre

RZ return-to-zero

RZ-OOK return-to-zero on-off keying

RZ-DBPSK return-to-zero differential binary phase shift keying

RZ-DQPSK return-to-zero differential quadrature phase shift keying

SOA semiconductor optical amplifier

SMF single mode fibre

SOP state of polarisation

SPM self phase modulation
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SSB single side band

SSB-RZ single side band return-to-zero

WDM wavelength division multiplexing

XPM cross phase modulation

XGM cross gain modulation
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Appendix A

Details from Chapter 3

This Appendix presents detailed list of parameters and results not in-
cluded in the study of dispersion maps and pulse widths presented in
Chapter 3.

These simulations were carried out using the “VPI Transmission
Maker” simulation tool. The amplified spontaneous emission (ASE) noise
was sampled and included in the signal band. Detailed simulation para-
meters are presented in Table A.1.

In Chapter 3, the simulation results were presented as maximum 3 dB
limit versus signal power for various combinations of dispersion compens-
ating fibres and pulse widths. In this Appendix, additional simulation
results are presented. Figures A.1, A.3, A.5 and A.7 presents the power
penalty versus span input power for different span lengths, for IDF×1,
IDF×2, IDF×3 and conventional dispersion compensating fibre (DCF),
respectively. Figures A.2, A.4, A.6 and A.8 show the power penalty versus
distance at the optimum power level,1 for IDF×1, IDF×2, IDF×3 and
conventional DCF, respectively.

1Note that as the optimum power level changes with distance, the points in these
figures are for different power levels.
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Parameter Value
Laser frequency 193.1 THz
Laser linewidth 0 Hz
MZ extinction ratio 30.0 dB
Rise-time of electrical signal 25 ps
EDFA noise figure 5.0 dB
Splice loss 0.25 dB
Optical filter shape 2nd-order Gaussian
Optical filter 3 db bandwidth 100.0 GHz
Photodiode dark current 0 A
Photodiode responsitivity 1 A/W
Photodiode thermal noise 10 pA/

√
Hz

Low-pass filter shape 4th-order Bessel
Low-pass filter cut-off frequency 7.5 GHz
Simulated bits 1024 bits
PRBS length 210 − 1 bits
NLSE step max 1000 m or 0.05 rad
Samplerate – NRZ 32 samples/bit
Samplerate – RZ 50% 32 samples/bit
Samplerate – RZ 10% 128 samples/bit
Samplerate – RZ 5% 256 samples/bit

Table A.1: Simulation parameters for 10 Gbit/s simulations presented in Chapter 3.
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(a) NRZ (b) RZ 50%

(c) RZ 10% (d) RZ 5%

Figure A.1: Penalty versus power of 10 Gbit/s NRZ, RZ 50%, RZ 10% and RZ 5%
signals after transmission over 80 km SMF+IDF×1 spans. Lines represent different
transmission distances. Results after every second span are shown.

Figure A.2: Penalty versus distance of 10 Gbit/s NRZ, RZ 50%, RZ 10% and RZ 5%
signals after transmission over 80 km SMF+IDF×1 spans. Each point corresponds to
the power penalty for the optimum power level at that distance.
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(a) NRZ (b) RZ 50%

(c) RZ 10% (d) RZ 5%

Figure A.3: Penalty versus power of 10 Gbit/s NRZ, RZ 50%, RZ 10% and RZ 5%
signals after transmission over 80 km SMF+IDF×2 spans. Lines represent different
transmission distances. Results after every second span are shown.

Figure A.4: Penalty versus distance of 10 Gbit/s NRZ, RZ 50%, RZ 10% and RZ 5%
signals after transmission over 80 km SMF+IDF×2 spans. Each point corresponds to
the power penalty for the optimum power level at that distance.
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(a) NRZ (b) RZ 50%

(c) RZ 10% (d) RZ 5%

Figure A.5: Penalty versus power of 10 Gbit/s NRZ, RZ 50%, RZ 10% and RZ 5%sig-
nals after transmission over 80 km SMF+IDF×3 spans. Lines represent different trans-
mission distances. Results after every second span are shown.

Figure A.6: Penalty versus distance of 10 Gbit/s NRZ, RZ 50%, RZ 10% and RZ 5%
signals after transmission over 80 km SMF+IDF×3 spans. Each point corresponds to
the power penalty for the optimum power level at that distance.
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(a) NRZ (b) RZ 50%

(c) RZ 10% (d) RZ 5%

Figure A.7: Penalty versus power of 10 Gbit/s NRZ, RZ 50%, RZ 10% and RZ 5%
after transmission over 80 km SMF+DCF spans. Lines represent different transmission
distances. Results after every second span are shown.

Figure A.8: Penalty versus distance of 10 Gbit/s NRZ, RZ 50%, RZ 10% and RZ 5%
after transmission over 80 km SMF+DCF spans. Each point corresponds to the power
penalty for the optimum power level at that distance.



Appendix B

Details from Chapter 4

This Appendix presents detailed list of parameters and additional results
not included in the discussion of novel modulation formats presented in
Chapter 4.

These simulations were carried out using the “VPI Transmission
Maker” simulation tool. Noise from amplified spontaneous emission (ASE)
was sampled and included in the signal band.

Detailed fibre parameters are listed in Figure 4.3 in Chapter 4. The
fibre input power were adjusted by changing the gain of the erbium doped
fibre amplifier (EDFA) amplifiers. In some special combinations of the
input power to the single mode fibre (SMF) and dispersion compensating
fibre (DCF), the EDFA was replaced by an attenuator. For example, in
the case with 12 dBm SMF input power and −14 dBm DCF input power,
an attenuation of 11.6 dB was needed.1 Table B.1 lists detailed simulation
parameters used to calculate the results presented in Chapter 4.

In Chapter 4, the power penalty versus distance for a single-channel
system using SMF + DCF when disregarding optical noise was shown
in Figure 4.16. For completeness the corresponding figure using SMF +
IDF×2 is shown in Figure B.1. And in Figure B.2, the noise-free results
from the wavelength division multiplexing (WDM) system using SMF +
IDF×2 are presented.

Before starting the simulations on the WDM system, an investigation
to find the required number of bits was performed. An 8×40 Gbit/s

112 dBm SMF input power leads to −2.4 dBm SMF output power, thus 11.6 dB
attenuation is needed to reach −14 dBm DCF input power.
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Parameter Value
Laser frequency 193.1 THz
Laser linewidth 0 Hz
Rise-time of electrical signal 5 ps
MZ modulator extinction ratio infinite
Duobinary low-pass filter shape 4th-order Bessel
Duobinary low-pass filter cut-off frequency 11.2 GHz
EDFA noise figure 5.0 dB
Splice loss 0 dB
Optical filter shape 2nd-order Gaussian
Optical filter 3 dB bandwidth 100.0 GHz
Photodiode dark current 0 A
Photodiode responsitivity 1 A/W
Photodiode thermal noise 10 pA/

√
Hz

Receiver low-pass filter shape 4th-order Bessel
Receiver low-pass filter cut-off frequency 30.0 GHz
Simulation bits 1024 bits
PRBS length 210 − 1 bits
NLSE step max 1000 m or 0.05 rad
Samplerate 32 samples/bit

Table B.1: Simulation parameters for the 40 Gbit/s modulation formats comparison
presented in Chapter 4.

return-to-zero (RZ) 50% WDM system with 80 km SMF + DCF spans
was investigated using different number of bits. Figure B.3 presents the
power penalty versus distance for this system, showing several different
noise realisations. It is seen that there is very large variance of the results
based on 129 and 1024 bits. By setting the threshold at 0.5 dB variance
at 3 dB power penalty, we found that 16384 bits were required for this
WDM simulation study.
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Figure B.1: Power penalty versus distance for single-channel simulation with both
noise and nonlinearities (top), without noise (centre) and without nonlinearities (bot-
tom), using the SMF + IDF×2 fibre span. Span input powers were −1 dBm to the
SMF and −7 dBm to the IDF×2.
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Figure B.2: Power penalty (for the worst channel) versus distance for simulation
of the WDM system when disregarding the optical noise, after transmission over
SMF+IDF×2 spans. The per channel span input powers were −1 dBm to the SMF
and −7 dBm to the IDF×2.
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(a) 128 bits (b) 1024 bits

(c) 16384 bits

Figure B.3: Power penalty versus distance for 40 Gbit/s RZ 50% after transmission
over 80 km SMF + DCF fibre spans when simulating 128 bits (a), 1024 bits (b) and
16384 bits (c).





Appendix C

Details from Chapter 6

This appendix presents additional information not included in the differen-
tial quadrature phase shift keying (DQPSK) study presented in Chapter 6.

The pre-coding, encoding and decoding of a DQPSK system using a
dual-MZ transmitter is illustrated in Table C.1. A corresponding table
for a system with dual-Mach-Zehnder (MZ) generated DQPSK system is
shown in Table 6.1 in Chapter 6.

The signals in a DQPSK receiver were illustrated in Figure 6.7 for
signals generated with a dual-MZ modulator. For completeness, the sig-

uk 0 0 1 1 0 1 1 1 1 0 0
vk 0 1 0 0 0 1 0 1 0 1 1
Ik 0 1 0 0 0 1 0 1 1 1 0
Qk 0 1 0 1 1 1 0 0 1 0 1
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rk - 0 1 1 0 1 1 1 1 0 0
sk - 1 0 0 0 1 0 1 0 1 1

Table C.1: Input data, pre-coded data, encoded data and received data at time t = tk

for a DQPSK system with PM or MZ-PM generation.
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(a) PM (b) MZPM

Figure C.1: Illustration of the signals in a DQPSK receiver for a signal generated
with the PM (a) and MZ-PM (b) generation option. The dual-MZ generation method
is depicted in Figure 6.7 in Chapter 6.

nals in the receiver when using the PM or MZ-PM generation method are
presented in Figure C.1.

In the transmission experiment presented in Chapter 6, half of the
channels were 12.5 Gbit/s return-to-zero differential quadrature phase
shift keying (RZ-DQPSK), and the other half were 6.25 Gbit/s return-
to-zero on-off keying (RZ-OOK). It was argued that as the pulse shape
and optical power spectrum is indistinguishable, this simplification of the
setup did not affect the cross-talk between neighbouring channels. Fig-
ure C.2 presents an comparison of the calculated optical power spectra of
12.5 Gbit/s RZ-DQPSK and 6.25 Gbit/s return-to-zero differential binary
phase shift keying (RZ-DBPSK), and no difference between them can be
seen.
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Figure C.2: Comparison of calculated spectral shape of 6.25 Gbit/s RZ-DBPSK and
12.5 Gbit/s RZ-DQPSK signals.


