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We describe the structure and operation of a micro/nanofluidic

device in which individual metaphase chromosomes can be isolated

and processed without being displaced during exchange of reagents.

The change in chromosome morphology as a result of introducing

protease into the device was observed by time-lapse imaging; pres-

sure-driven flow was then used to shunt the chromosomal DNA

package into a nanoslit. A long linear DNA strand (>1.3 Mbp) was

seen to stretch out from the DNA package and along the length of

the nanoslit. Delivery of DNA in its native metaphase chromosome

package as well as the microfluidic environment prevented DNA

from shearing and will be important for preparing ultra-long lengths

of DNA for nanofluidic analysis.

The ability to extract, handle and visualize DNA from each indi-

vidual chromosome (from the human set of 46, for example) would

enable the native long-range organization of diploid genomes and the

variation between chromosomes within (i.e. homologs) and between

individuals to be investigated. Nanofluidic devices have emerged as

powerful tools for handling and analyzing single DNA molecules.

DNA stretching in nanofluidics has been applied to repressor

binding,1 restriction mapping2 and recently, denaturation mapping3

and barcoding4 of viral DNA or BACs of limited length (100–400

kbp). However, if the size of the DNA that can be handled could

extend beyond the megabase scale then individual haplotypes and

much of the structural variation in genomes would become acces-

sible.5 However, extracting mega base-pair long DNA from real-

world samples is a major challenge as single molecules of such lengths

are known to be sheared during micropipetting. Given that a micro-

fluidic device has been used for manipulating single chromosomes,6

we hypothesized that the metaphase chromosome could act as

a robust packaging for delivering DNA that would mitigate against

the shearing effects of pipetting (Fig. 1B). In this paper we report the

design, fabrication and use of a device (Fig. 1A) for handling and

extracting DNA from metaphase chromosomes. The device design

aims to immobilize a single metaphase chromosome in an isolation

zone (Fig. 1C) through which reagents can be exchanged by diffusion

(Fig. 1D) enabling proteins to be digested. The DNA thus extracted

can then be shunted out of the isolation zone into a nanoslit for

stretching (Fig. 1E).

The device was designed, with the aid of finite element simulations

(COMSOL, USA; see Fig. S1, ESI†), to have a series of isolation

zones to slow down the chromosomes in the trap area while main-

taining a high flow rate through the device. The parallel isolation

zones increased in area with increasing distance (3000 mm2, 6000 mm2,

9000 mm2, etc.) from the sample entry point, in order to obtain

a homogeneous flow rate into each of the zones during the intro-

duction of the sample. This was to ensure that all chromosomes

Fig. 1 (A) Optical image of the sealed device showing the trap area with

access microchannels. (B) A metaphase chromosome-enriched cell extract

is loaded into the device and (C) flushed through the trap area where

single chromosomes can be observed in an isolation zone. (D) Protease is

introduced in the device without displacing the chromosome of interest

and (E) released DNA is pushed into a 100 nm high nanoslit.
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entering isolation zones were moving at the same horizontal speed in

order to facilitate selection of individual chromosomes from the

parade of chromosomes and cell debris flowing through the device.

The device was fabricated using UV lithography and reactive ion

etching of a silicon substrate. Briefly, a 500 nm dry thermal oxide was

grown on a silicon wafer. The protease inlet slit and the slit for DNA

stretching were defined by UV masking and deep reactive ion etching

in the oxide at the depth of 500 nm and 100 nm respectively. The 50 mm

wide microfluidic channels connecting the inlet ports and the 400 �
400 mm trap area were defined using a third UV lithography step and

were etched in silicon at a depth of 10 mm. A thermal oxide was grown

in order to later allow fusion bonding. Inlet holes were made by

powder blasting from the backside of the device which was finally

sealed by fusion bonding to a 500 mm thick borofloat glass wafer. The

protease reagent was introduced from the top of the device with flow

occurring perpendicular to the isolation zones. In this configuration

there was no flow into the isolation zones; reagent exchange with the

stagnant volume inside the zones occurred by diffusion only.

We used streptavidin labelled with Cy3 to visualize the diffusion of

the reagent into the isolation zones to verify device operation before

chromosome isolation and protease digestion was conducted.

Observation of the introduction and spread of the Cy3 fluorescent

marker into the isolation zones (Fig. 2) validated the device design

and indicated that the reagent is able to spread quite well throughout

the isolation zones by time, 300s.

The device and reagent exchange process was then applied to

a sample containing metaphase chromosomes. The chromosomes

were isolated from Jurkat cells (DSMZ, Germany: ACC282) in

a polyamine buffer as described by Cram et al.7 with some modifi-

cations. Briefly, the Jurkat cells were grown at 37 �C in a 5% CO2

atmosphere. At exponential growth, they were arrested in metaphase

with colcemide at 0.06 mg mL�1 for 12–16 hours. The cells were

collected at 200g for 10 minutes and re-suspended in a swelling buffer

(55 mM NaNO3, 55 mM CH3COONa, 55 mM KCl, 0.5 mM

spermidine, 0.2 mM spermine) at approximately 106 cells per mL and

incubated for 45 minutes at 37 �C. The swollen cells were collected at

200g for 10 minutes and re-suspended in an ice-cold isolation buffer‡

at approximately 8 � 106 cells per mL. The cells were lysed by

vigorous vortex for 30 s. The chromosome content was estimated to

be in the order of 107 cells per mL. The device was mounted on

a holder interfacing the inlet holes of the device with pressured air

allowing movement of the solution inside the device as described

elsewhere.8 Fluorescence imaging was performed using an inverted

microscope (Nikon Eclipse TE2000, Japan) equipped with a 60�/

1.00 water immersion objective and an EMCCD camera (Photo-

metrics Cascade II512, USA). The temperature inside the device was

controlled by a cartridge heater held in contact with the backside of

the silicon device. Inlet holes were loaded with 30 mL of solution

unless otherwise mentioned. Prior to receiving the chromosomes, the

device was flushed by 1% sodium dodecyl sulfate, buffer solutionx
and BSA at 1 mg mL�1 for 10 minutes. 1000–2000 chromosomes

were added to the diagonal inlet port (Fig. 1B); the depth of the

microfluidic structure allowed the cell extract to be flushed quickly

through the isolation zone while watching for the appearance of

chromosomes that could be isolated (Fig. 1C). A single chromosome

was trapped in an isolation zone of the device (as illustrated in

Fig. 1C). Simultaneously the temperature was adjusted to 37 �C and

a 100 mg mL�1 solution of protease K{was introduced (Fig. 1D). The

device enabled a high flow rate of 0.6 nL min�1 allowing the protease

to diffuse quickly into the stagnant volume within the isolation zone.

Moreover, a continuous flow through the device ensured that after

4 minutes the protease concentration around the isolated chromo-

some was maintained above 50 mg mL�1 (Fig. S1† and Fig. 2) and

that the digestion products were washed away from the isolation zone

Fig. 2 Experimental time-lapse imaging of the increasing fluorescence

in the trap area due to the diffusion of stretavidin-Cy3 as it is injected at

0.6 nL min�1. The diffusion constant is 60 � 10�12 m2 s�1.

Fig. 3 (A) Time-lapse image series of a single metaphase chromosome during digestion with protease at 37 �C. (B) A panel of different individually

isolated chromosomes after 40 minutes digestion.
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through diffusion. As proteolysis took place, the chromosome

swelled (Fig. 3A) and self-aligned in the plane of the device allowing

reliable and reproducible fluorescence time-lapse imaging. Although

no visible change of the chromosome was observed after t ¼ 25

minutes, digestion was allowed to proceed for one hour as recom-

mended by protocols for digestion in bulk solution.9 It is striking that

even after a digestion treatment that should be sufficient to remove all

proteins, sister chromatids could still be clearly identified and chro-

mosomes of different sizes and with different centromere positions

could be seen (Fig. 3B). Moreover heterogeneity in the chromatin

folding morphology could be observed at the micrometre scale.

The chromosomal DNA could be easily manipulated by using the

sample inlet/outlet microchannels and the reagent inlet/outlet slits as

a bi-directional flow system inside the trap area. This enabled the

chromosomal DNA to be moved in front of 100 nm high slit and then

forced in (Fig. S2, ESI†). Although, the bi-directional flow in the trap

area would enable DNA extracted from chromosomes trapped in

different isolation zones to each be individually manipulated and

moved toward the slit, the present study has worked with a dilute

solution of chromosomes and so only one chromosome at a time was

processed. The post-digestion chromosomal DNA was observed as

a densely packed core composed of separated loops (Fig. 4). The

chromosomal DNA was highly pliable: the DNA stretched by

increasing the flow through the nanoslit and recoiled when the flow

was stopped as in Fig. 4A. Loops of DNA were seen to escape from

the main core of the chromosomal DNA (Fig. 4B) and a longer

separate strand stretched across the whole length of the 450 mm long

nanoslit and out into a microchannel (Fig. 4C). This corresponded to

a minimal length of �1.3 Mbp (1.3 million bases) of fully elongated

DNA. Such separated DNA strands were also visible around the

chromosomal DNA before the introduction to the nanoslit (see last

frames of Fig. S2†).

In summary, we designed a silicon device able to trap a particle and

to exchange reagent over the particle without dislodging it from its

site of isolation. We applied the device to the trapping of single

metaphase chromosomes and were able to digest chromosomal

proteins to obtain a DNA package that retained a loose two-chro-

matid structure. The DNA package could be fluidically manipulated

and was forced into a nanoslit where a single linear strand was

elongated out. The stretching out of DNA from individual chro-

mosomes will be important for mapping the linear organisation of

sequence along the molecule which is essential for obtaining ultra-

long range haplotype and genome structural information. It is

expected that the ability to visualize the unravelling of chromatin and

extraction of DNA will enable studies into the organisation and

topology of chromatin in mitotic chromosomes. The device archi-

tecture, which contains isolation zones of various sizes, will provide

flexibility for analysing other biological samples that may be of

interest such as large macromolecular complexes and individual cells.
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‡ 15 mM Tris–HCl, 2 mM EDTA, 80 mM KCl, 20 mM NaCl, 0.5 mM
EGTA, 0.5 mM spermidine, 0.2 mM spermine, 0.12% digitonin, and
7 mM mercaptoethanol.

x 0.5� TBE, 3% b-mercaptoethanol (BME) and 0.5% Triton X-100.

{ 1 mM of YOYO-1 is added to the protease K solution for staining the
DNA strands while cut free from the chromatin in the vicinity of the
bright chromosome body.
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Fig. 4 (A) After completion of the digestion DNA released from an individual chromosome is passed through a 100 nm high slit; a long strand is seen to

emerge (B) close-up of loops of DNA emanating from the core package of DNA. (C) Close-up of the linear DNA strand emerging from the DNA package.
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