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In the present Ph.D.-work a theoretical study of aspects of modelling
photonic crystal fibres was carried out. Photonic crystal fibres form a
class of optical waveguides where guidance is no longer provided by a
difference in refractive index between core and cladding. Instead, guidance
is provided by an arrangement of air-holes running along the length of the
fibre. Depending on the geometry of the fibre, the guiding mechanism
may be either arising from the formation of a photonic bandgap in the
cladding structure (photonic bandgap fibre), or by an effect resembling
total internal reflection, which may described by an effective refractive
index which is lower in the cladding than in the core (index guiding fibre).

By solving Maxwell’s equations, under the conditions defined by the
geometry of the fibre structure, we may predict the properties of the fi-
bre. In all but rare cases, this is done via an approximative numerical
modelling scheme. In this thesis, we describe some of the modelling pro-
cedures that have been proposed, with strong emphasis on the localised
function method, and propose a novel variant of the former, which may
overcome some of the shortcomings of the standard method. We give a
detailed description of the new variant — the Hermite-Gaussian method.
Hereafter, we model a range of photonic crystal fibres, including both
index guiding and photonic bandgap fibres, using the Hermite-Gaussian
method, and evaluate the results in view of the limitations inherent in
the modelling procedure. We present modelling results for triangular and
square lattice fibres, a novel pentagonal symmetric index guiding fibre, as
well as a honeycomb bandgap fibre and the first analysis of semi-periodic
layered air-hole fibres.

Using the modelling framework established as a basis, we provide an
analysis of microbend loss, by regarding displacement of a fibre core as a
stationary stochastic process, inducing mismatch between modes in con-
tiguous fibre segments curved at different radii. Overall microbend loss is
expressed as a statistical mean of mismatch losses.

Extending a well proven, established formula for macrobending losses
in step index fibres, we provide an estimate of macrobend losses in an
air-guiding photonic bandgap fibre, based on effective refractive index
arguments.
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I dette Ph.D.-projekt er udfgrt en teoretisk studie over nogle aspekter
af modellering af fotoniske krystalfibre. Fotoniske krystalfibre danner en
klasse af optisk bglgeledere, hvis bglgeledning ikke atheenger af en forskel
i brydningsindeks mellem kerne og kappe. I stedet fgres de elektromag-
netiske bglger gennem fiberen af et arrangement af luftcylindere pa langs
af fiberen. Afhaengig af geometrien i fiberen, kan den ledende mekanisme
opsta som fplge af den fotoniske bandgabseffekt (eng. photonic bandgap
effect) (bandgabsfiber), eller som en fglge af at lufthullerne saenker det
gennemsnitlige brydningdindeks i kappen (indeksfgrende fiber), hvilket
kan modelleres ved at indfgre et effektivt refraktivt indeks.

Vha. lgsninger til Maxwells ligninger under de randbetingelser som
fiberens geometri stipulerer, er det muligt at forudsige egenskaber hos den
enkelte fiber. I de fleste tilfeelde er dette kun muligt numerisk, vha. en
approksimativ lgsningsmetode. I denne athandling beskrives, kortfattet,
nogle af de lgsningsmetoder der hidtil er blevet foreslaet i litteraturen,
med tyngdepunkt pd den lokaliserede funktionsmetode. (eng. localised
function method) Herudover praesenteres, i detalje, en ny variant af denne
metode, Hermite-Gauss-metoden, der har til formal, at overkomme nogle
af ulemperne ved den lokaliserede funktionsmetode. Den nye metode
anvendes pa en bred vifte af fotoniske krystalfibre, indeksfgrende, sével
som bandgabsfibre. I fgrste omgang pé kendte eksempler, for at afprgve
graenserne for metodens muligheder, herunder praesenterer vi modeller-
ingsresultater for triangulaere og kvadratiske indeksfgrende fibre samt for
en honeycomb-bandgabsstruktur, og derefter pa nye fiberstrukturer for
finde lgsninger som ikke er mulige med andre metoder. De nye fiber-
strukturer inkluderer en pentagonal indeksfgrende fiber og to forskellige
semiperiodiske, luft-kernebandgabsfibre.

Med det udviklede modelleringsveerktgj som basis, udfgrer vi en anal-
yse af mikrobgjningstab. Her betragter vi en lateral forflytning, og dermed
bgjningsradius, af fiberkernen som en stationzer stokastisk proces. Dette
fgrer til en fejltilpasning mellem elektromagnetiske felter i fibersegment
med forskellige bgjningsradier. Det totale mikrobgjningstab kan derefter
skrives som en statistisk middelvaerdi af tilpasningstab.

I en afsluttende del af afhandlingen udbygges en velkendt formel for
makrobgjningstab, til at omfatte en fotonisk bandgabsfiber med hul kerne,
hvor analysen baseres pa betragtninger af effektive brydningsindeks.
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Introduction
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2 Introduction

Since their inception, optical fibres have been used for a wide variety
of applications. Strictly speaking, an optical fibre is a transmission line for
optically carried signals, analogous to electrical transmission lines. The
concept of transmitting signals at optical frequencies instead of electrical
is certainly appealing, due to their inherently higher carrier frequencies.
In light of this, the natural application of optical fibres is in the pure
transmission industry, where they have so far been widely deployed [1].
Optical fibres do, however have many other interesting features that may
be exploited. Numerous examples may be found in sensory applications,
where optical fibre sensors have been used in diverse applications: as
gyroscopes [2], naval hydrophones [3], chemical mixture sensors in oil/gas
wells [4], structural integrity sensors in buildings [5], and many others [6].

Standard optical fibres generally consist of a fibre core, with a higher
refractive index than the surrounding material — the cladding. The dif-
ference in refractive index is induced by selectively introducing dopants
in the background material. Since the availability of low-loss pure silica
is comparatively high, most fibres today are made in a silica-germanium
system (with Ge. as the dopant raising the refractive index), but other
material systems are used (for instance sapphire [7]), especially for wave-
lengths outside the visible and near-infrared ranges. Dopants introduce
scattering losses. Hence, the concentrations must be kept at a minimum.
A high refractive index contrast on the other hand, leads to better field
confinement in the fibre, which, in turn, helps in avoiding such generally
unwanted effects as bending loss. This tradeoff is in general balanced such
that the refractive index contrast is approximately 1% [1].

1.1 Photonic crystals

A photonic bandgap is a frequency range in which photons are not allowed
to propagate in certain directions (stop band), in analogy with the elec-
tronic bandgaps found in semiconductors, where electrons are disallowed
from certain energy ranges [8]. Electronic bandgaps arise from the peri-
odic variations of the atomic potential in a crystal, whereas a photonic
bandgap must be artificially introduced, by micro-manufacturing periodic
changes in the refractive index potential. The periodicity of the crystal
must be of the same order as the wavelength of the photons. Hence, very
strict demands on manufacturing tolerances are imposed when realising
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photonic bandgap structures.

Photonic bandgap structures, or photonic crystals [9], were proposed
by Yablonovitch and John in 1987 [10] [11], and are, with the rapidly
improving micro-manufacturing techniques, fuelled by the semiconductor
industry [12] (in an integrated optics context) and the telecommunications
industry (in a fibre context), becoming more and more technologically fea-
sible. 3-dimensional photonic bandgaps have been observed, and experi-
mentally verified in the microwave and optical ranges, in a number of dif-
ferent structures, such as the Yablonovite [13], the inverted opal [14] [15],
or the log-pile structure [16] [17]'. In this light, the vision of furthering
the semiconductor analogy into making optical components with proper-
ties analogous to those in integrated electronics, has been put forward as a
way of revolutionising the field of photonics as semiconductors have done
electronics [18].

1.2 Photonic crystal fibres

The terms photonic bandgap and photonic crystal, although originally
coined on structures exhibiting full, 3-dimensional stop bands, has also
been adopted for structures in only 2-dimensions. In these structures
complete bandgaps do not exist for all directions, and not necessarily for
both polarisations of the light. Consider, for instance, an arrangement
of parallel dielectric rods, prolonged into infinity (fig. 1.1(a)), where the
rods are situated on the lattice sites of a square lattice [18]. This structure
may exhibit a 2-dimensional photonic bandgap in the plane perpendicular
to the rods, provided that the refractive index contrast between the rods
and the surrounding material is sufficiently large. I.e. photons in a cer-
tain frequency range may not propagate perpendicular to the rods. The
inverse of this structure may also exhibit a bandgap, if the index contrast
is sufficient. A triangular lattice of air-cylinders (fig. 1.1(b)) in a silica
background does not exhibit a bandgap per se. It has, however, been
shown that bandgaps “open up” when the photons’ frequency components
parallel to the cylinders, rise above a certain level [19].

Again, in analogy with semiconductor bandgaps, photonic bandgaps
become ever more useful when defects are introduced into the perfect

!The inverted opal may be considered of particular interest since the artificial opal,
on which it is based, is a self-organising system
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crystal. Thus, we may for instance create line defects, along which photons
may travel, or point defects (fig. 1.1(c)) amounting to micro-cavities. In
a 2-dimensional sense, a point defect may be created by removing one of
the rods (or cylinders). A photon with a frequency in the bandgap may
travel along the defect, but is restricted from entering the surrounding
structure by the bandgap. Thus, a Photonic crystal optical fibre? (PCF)
is created, whose core is a 2-d “point” defect and whose cladding consists
of the periodic lattice structure. There are no fundamental requirements
on the nature of the defect, as long as it introduces an energy state within
the photonic bandgap. This includes the possibility of a low index defect,
yielding the unique opportunity of creating an optical fibre, which guides
light in an air-core [20]. Because of the fundamentally different light-
guiding principle, photonic bandgap fibres have, in many respects, very
different characteristics than conventional fibres [21] [22] [23].

A photonic crystal fibre with a triangular lattice structure may be re-
alised by stacking capillary tubes in a hexagonal pattern, replacing one
or more tubes to create a defect. The whole arrangement may then be
drawn into a fibre using conventional fibre drawing facilities. Generally
the gaps in such a fibre are narrow, depending on the size of the capillary
tubes. Stacking capillary tubes in a honeycomb pattern yields a struc-
ture with wider bandgaps, hence the structure is less sensitive to crystal
imperfections [24].

As mentioned, the periodicity of the cladding structure is on the same
order as the operating wavelength. Due to this fact a second kind of pho-
tonic crystal fibre has been intensively studied, namely the index guid-
ing photonic crystal fibre. This kind of fibre does not rely on photonic
bandgaps at all in order to guide light, instead guidance is provided by
the existence of an effective index contrast between core and cladding.
The core, defined by a “crystal defect” must have a higher index than
the elements forming the crystal. This might be effectuated in a trian-
gular lattice silica air system, by replacing one or more of the capillary
tubes by a solid silica rod. The effective index of the cladding is bounded
by the background material index and the index of the crystal elements,
but varies strongly with wavelength [25] [26] [27]. Manufacturing toler-
ances for this kind of fibre are significantly relaxed compared to photonic

2Other names found in the literature are microstructured optical fibre and holey
fibre.
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Figure 1.1: 2d-photonic crystal structures: Quadratic lattice arrangement
of rods (a). Triangular lattice cladding structure (b). Triangular structure

with defect forming a fibre core (c).
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bandgap fibres. The guiding principles in index guiding fibres are simi-
lar to conventional fibres — nevertheless they exhibit many features not
present in conventional fibre technology. In a telecommunications context,
the dispersion characteristics of index guiding PCFs are highly different
and may be tailored by proper fibre design [28]. As an example, a zero-
dispersion wavelength < 1.3um is possible. Also, the lack of dopants in
the fibre, yields a possibility of high confinement, as a result of a high
effective index contrast, whilst retaining low scattering losses. For other
applications, both photonic bandgap PCFs as well as index guiding PCFs
may be used to force an interaction between a material injected into the
voids of the crystal and the electromagnetic fields propagating through
the fibre. It is also conceivable to construct highly birefringent fibres by
introducing asymmetries in either core or cladding. This may be done by
altering the structure of the cladding or core [29] [30].

1.3 Modelling

To predict the properties of a particular photonic crystal fibre, it is nec-
essary to solve Maxwell’s equations under conditions specified by the ge-
ometry of the fibre. In a few special cases it is possible to obtain analytic,
closed form solutions [25] [31], but in general some numeric, approximative
scheme must be employed. Many different modelling schemes have so far
been suggested, each with their own strengths and weaknesses. The most
widely used method is probably the plane wave method [32] [33], which
relies on a Fourier expansion of the dielectric function, and electromag-
netic field solutions in terms of Bloch states, thus utilising the periodicity
of the underlying structure. Others methods include the finite element
method [34], which, although being an established and proven method
in many fields of science, has the disadvantage that it is computation-
ally very intensive, and the multipole method, developed by White et.
al. [35] [36], relying on a series expansion of the electromagnetic fields in
terms of cylindrical harmonics. The multipole method has the pleasing
features that it enables exact enforcement of boundary conditions and
possible inclusion of leakage loss [37].

In order To scale down computational demands, the idea of using lo-
calised functions, in analogy to wavelets [38], has been suggested [39] [40]
[41] [42]. When using the standard Hermite Gaussian localised function
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methods, the refractive index of the cladding structure is expanded into
a Fourier series, whereas the electromagnetic fields (and possibly the re-
fractive index of the core), are expanded into series of two-dimensional
Hermite Gaussian functions. This facilitates efficient modelling of defect
modes at the expense of an accurate cladding mode description. A draw-
back of these methods is that it is not possible to model finite structures.
We propose a variant of the localised function method, where the electro-
magnetic fields as well as each air-hole in the cladding is expanded locally
into a series of Hermite Gaussian functions. The general photonic crystal
structure is then composed by a superposition of several, localised series
expansions.

1.4 Outline of thesis

The remainder of the thesis is organised as follows: Chapter 2 describes
the theoretical framework of Hermite Gaussian-series based localised func-
tions methods, existing versions briefly, the new modelling scheme we pro-
pose, in detail. Firstly the common ground of the modelling schemes is
established, where the Maxwellian wave-equations are transformed into an
operator matrix eigenvalue problem. Thereafter we derive the elements of
the operator matrix particular to the new formulation which, as noted, is
constructed from superpositions of localised basis expansions. The chap-
ter ends with a description of some key formulae of fibre optics, in a
form greatly simplified by the formulation in terms of Hermite Gaussian
functions.

In Chapter 3 we use the new modelling scheme from the preceding
chapter to predict features of several PCFs, ranging from the simple
triangular lattice structure through other index guiding fibres to pho-
tonic bandgap fibres (honeycomb and semi-periodic layered structures),
in terms of field distributions, mode effective area etc. This will serve to
showcase the versatility and illustrate the shortcomings of the localised
functions model. The section on modelling honeycomb and semi-periodic
layered fibres (colloquially referred to as “onion” fibres) presented in the
end of chapter 3 presents an attempt at modelling bandgap fibres with
localised functions although they are clearly not suited for the task.

Chapter 4 is devoted to an application oriented aspect of fibre tech-
nology, microbend induced losses. A real fibre is not perfectly straight
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after draw — instead it will exhibit small fluctuations around a mean
centreline, and, hence, will suffer from microbending losses. In this chap-
ter we present an extension to the localised functions method described
in earlier chapters, enabling us to evaluate the effect of microbends from
a statistical viewpoint. This approach is highly justified by the stochastic
nature of micro-bends.

Chapter 5 presents a return to a known modelling scheme, the plane
wave method, in order provide an estimate of macrobending losses in an
air-guiding PCF. The magnitude of macrobending loss depends highly on
the field amplitudes in the cladding. As the shortcomings of the localised
function method include an inability to accurately describe the electro-
magnetic fields in the cladding of a fibre, the decision was in favour of the
plane wave method. A well known formula is applied with modifications
to evaluate the overall bending loss of the fibre.

Chapter 6 holds some concluding remarks on the work described in
this thesis.
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2.1 Localised functions in general

A practically useful optical waveguide must have its power distribution
concentrated to the core region. For some applications a large core area
may be wanted - for others a high intensity is the target, but in both
cases, the electromagnetic field distribution is in some sense localised. It
is therefore reasonable to to express the field solutions to Maxwell’s equa-
tions in terms of functions that are localised around this core region. The
simplicity of a Fourier-series’ may be lost, but if this loss may be regained,
in terms of calculation efficiency, or resolution in targeted regions, it may
be well worth the effort. This train of thought is also the main argument
behind the whole field of wavelet study, i.e. to describe a phenomenon
using a set of functions which shows fine resolution around points of in-
terest while not wasting resources of resolution elsewhere, where it is not
needed. In the fibre case, the area of interest is usually the core region
- whereas areas far into the cladding may be of little interest. Also, any
real fibre will infallibly have imperfections, such as bends, which deform
the outer ends of the fields, rendering an ideal description inaccurate in
any case.

In the same way as there are multiple classes of wavelets, [1] [2] several
sets of functions have been suggested for this kind of localised expansion
[3] [4] [5]- It may be remarked, that although the term is rather general,
the modelling scheme usually referred to as the Localised Function Method
[4] [5], is based on expansion series in terms of Hermite polynomials.

Generally PCFs are of a periodic nature. This is partly due to their
origin in the notion of the photonic bandgap, and partly because of the
established manufacturing technique being a “stack-and-draw” procedure,
where glass (or indeed any other material that may be drawn into a fibre)
tubes are stacked, fused together, and thereafter drawn into a fibre using
conventional drawing facilities. PCFs operating by the photonic bandgap
effect do need a periodic cladding (or semi-periodic? [6]), whereas index-
guiding PCFs may even have a random distribution of low index material
[7]. Considering the periodicity of the structure we may take advantage
of Bloch’s theorem [8] in describing the electromagnetic fields. This is the
starting point of the so called plane wave method [9] [10], which relies on

!Generally the first choice for any series expansion
%Such as having cylinders on the nodes of a Penrose tiling
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a Fourier formulation of the wave equations. To avoid infinite expansion
series, periodical field distributions must be forced. When using the plane
wave method this is achieved via a supercell approximation, i.e. the field
distribution as well as the dielectric function is repeated indefinitely. If
the supercell is chosen to be large enough results will be accurate, but the
calculation effort scales with increasing supercell size.

Albert et.al. [3] [11] have proposed a method in which localisation is
taken advantage of, by letting a lattice structure be described by Bloch’s
theorem, but instead of enforcing a supercell to contain the electromag-
netic field distribution, it is described by generalised Wannier-functions.

The use of Hermite Gaussian series to express electromagnetic modes
in fibre optics is a natural choice, considering the fact that the modes of
an infinitely parabolic optical fibre are Hermite Gaussian [12]. Hermite
Gaussian functions (eq. 2.6) form a complete orthogonal set and so may
be used as a general basis for a series expansion to approximate any func-
tion. Because of their Gaussian nature, however, they are impractical
for resolving function features far away from the function series origin.
The orthogonality of the function set is helpful in the direct transfor-
mation into a matrix eigenvalue-problem, as it removes the need for a
diagonalisation and following inversion of one matrix of the same size as
the eigenvalue problem. Another reason for using Hermite polynomials
to form a basis of L? is that they are particularly simple to differentiate
(eq. 2.20). To use only Hermite Gaussian series centred around a waveg-
uide core, appealing as the thought may be, is not practical for realisable
microstructured waveguides since the low leakage loss operation generally
requires a cladding structure of an extent exceeding the limit of practical
use for the series.

To counter this, Mogilevtsev et.al. [4] and Monro et.al. [5] have sug-
gested using a combination of Fourier and Hermite Gaussian expansion se-
ries to exploit the “best of both worlds”. This has proven to be an efficient
and practical modelling scheme, although it requires that the dielectric
structure is somehow approximated by a periodic structure. Drawing on
ideas from quantum mechanics, we propose that the interaction between
the electromagnetic fields and the dielectric structure be expressed as a
superposition of the interaction between the fields and a number of defects
in a background material. In principle, the defects may be of any shape,
although PCFs are generally manufactured to have circular air-holes in a



“main” — 2005/7/7 — 14:36 — page 16 — #24

16 Theoretical framework

silica background?® (fig. 2.6).

2.2 Formulation of the eigenvalue problem

Assuming the fibre to be uniform in the z-direction (the direction of prop-
agation), we may write the magnetic field* of the jth mode as [12]:

Hj(x,y,2z)= (h;(a:,y) + hjz-(a:,y)fz) exp(jf;z) (2.1)

where h;- (z,y) = hjz + h?;@ is the transverse component of the mag-
netic field and h; the longitudinal. Substituting eq. 2.1 into the full vector
wave equation for magnetic fields, we get a pair of coupled wave equations:

(V3 + ek? — B2) h? (a_hy - %> <aln(6)> (2.2)

Oz oy oy
Ohi  OhY\ (dln(e)
(Vi + ek — B7) b (ay 81‘) < B > (2.3)

where V? is the transverse Laplacian operator and ¢ = ¢(x, ) is the dielec-
tric function of the structure considered. We now consider the following
series expansion of the transverse magnetic field:

Z Ha sy (,9)& + Ho e (2, 9) 9 (2.4)

a,b=0

Here the subscript m has been used to differentiate w,, of the field ex-
pansion series, from the structure characteristic width, wg, which will be
discussed later.

The Hermite Gaussian functions are defined as:

Vap(,y) = vg (@) ¥ (y) (2.5)

vy = s, () (26)

30Other shapes of holes tend to become circular during draw, due to surface tension.
“We have chosen to solve the wave equations for the magnetic field, since it yields
a slightly simpler structure of the calculations later on.
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where H, denotes the Hermite polynomial of order a (eq. 2.7). The pa-
rameter w is a characteristic width parameter of the functions.

a
H, = (—1)"6502% (e—x2) (2.7)
Differentiating Hermite Gaussian functions of this form is a simple op-
eration using the recursion formulae for Hermite polynomials (eqgs. 2.20
and 2.21). As noted above, this function series forms an orthogonal set.
Specifically the Hermite polynomials are orthogonal with respect to the
weight function e Le.:

27
/€_m2Ha(£L‘)Hb(£L‘)dZL‘ ={ vma @ b (2.8)
R 0; aF#b

If we substitute eq. 2.4 into egs. 2.2 and 2.3, multiply by ;7 (z,y)
and perform overlap integrals over the infinite cross-section, we, by or-
thogonality, directly get an eigenvalue problem of the following form?®.

52
MH = E’H (2.9)
where the eigenvectors to be solved for, are the expansion coefficients of
the modal fields and the eigenvalues are the modal indices, or propagation
factors, of the associated wave solution.

T
00
x

01

H=| Hip (2.10)
Hio

)
7_(FF

SHad the functions not been orthonormal, the right hand side of eq. 2.9 would have
read: MH = Z—;S’H To arrive at eq. 2.9 we would have to diagonalise S, i.e. calculate
its eigenvectors, and perform an additional matrix inversion. Although it has yet to
be shown, this procedure may in some cases be preferable, if the set of basis functions
and its corresponding set of overlap integrals, are sufficiently simple and numerically
stable.
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The matrix, M, of the eigenvalue problem is a 2(F + 1)% x 2(F +1)?2
matrix

M MTY sp MS(Z])OO T MSgFF
M = <My:c Myy> ; M = .]\.4.8%) ............ o 2.11)
FFO00 MFFFF

s,pe{x,y}; s#p

with matrix elements given by sums of overlap integrals:

ss L a
abed = ﬁfébid( m) + I(bid(wm) 2 It(zbid (wm)
s 3)s 2.12
Magcd - _plébzzip( m) ( )
s,p € {z,y}

where the uncoupled terms, [ (bZ a1 (2 4 and Ic(bbi 4 » are given by:

I8) (wom) = -
L v @i ) v e @ @) dady
Iﬁid(wm)z
(2.14)
/ / G () () () () e, ) daedy
and
Iéziflx(wm)
Oln (e(z,
// som @m0 ) <>¢d ! <8; D) gy
(2.15)
IS (@) =

L2 e @i g ) 2 daay
R2 r
(2.16)
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and the coupling terms, L(zbZd , by:

Toped! (wm) =
O ) oy On ((,9))
[ 2 v @y e ) =G - dady
(2.17)
Toped (wm) =
J[ @m0 g ) P g,
R2 T
(2.18)

2.3 The dielectric function.

The overlap integrals 1® and I®)*P;s,p € {z,y} express the interaction
between the electromagnetic fields and the dielectric medium. In order to
quantify this interaction we need to find a suitable, practical description
of the dielectric function. The most straightforward way of doing that
would be to simply integrate numerically over an infinite cross-section. If
the number of objects is small this may indeed be efficient and accurate.
For larger numbers of holes, however, it could pose a difficult numerical
problem, considering the often discontinuous nature of the dielectric func-
tion (such as air objects in a glass background). We may instead use a
series expansion to express the dielectric. For symmetry reasons a direct
expansion into a Hermite Gaussian series might seem reasonable®. As
noted above, a practical photonic crystal, however, needs to be of some
lattice periods (or in a non-lattice sense, the arrangement of low-index
objects must be large enough to create an efficient low-index barrier), ex-
tent in order to keep leakage loss at a reasonable level [13], which makes
this rather impractical. For this reason, especially considering the peri-
odic nature of most photonic crystal fibres, a Fourier expansion is more
adequate.

5This would yield a very practical structure of the overlap integrals in egs. 2.14
through 2.18. cf. sec. 2.3.2
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2.3.1 Hybrid methods

Thus far, the Hermite Gaussian based localised function methods consid-
ered in the literature [4] [5] [14] [15] have been based on hybrid expansion
schemes, where the dielectric function is expanded into either a combina-
tion of localised functions and periodic exponentials or a purely periodic
exponential (Fourier) series. Since cladding structures of photonic crystal
fibres generally are of a periodic nature, this has been proven efficient.
It is however, necessary to enforce periodicity of the dielectric function,
either by repeating the overall structure indefinitely or by extending the
cladding pattern into infinity. In many cases this is sufficient - and be-
cause of the simple structure of calculations based on these methods, the
methods are widely used.

Consider using trigonometric functions to expand the periodic part of
the dielectric function and cancel one or more features in it by selectively
adding a Hermite Gaussian series. In the simplest case, a single air-
hole will be cancelled to create a high-index core region. The structure
considered this way will have an infinite cladding - hence it is applicable
to fibres with many holes surrounding the core.

The dielectric function is expressed in the following form:

Z cfgcos (2 fx) cos (2 gy> +Zcfg¢fg x,y) (2.19)

f,g=0

where D1 and D, are the numbers of decomposition functions used.
Substituting eq. 2.19 into 2.14 through 2.18 and making use of recur-
sion formulae (egs. 2.20 and 2.21) for Hermite Polynomials [16],

dlil“f) = 2aH,_1(2) (2.20)
Hypi1(x) = 2xHy(z) —2aH,—1(x) (2.21)

we get overlap integrals of the two forms

i- / g (e () () (2.22)

and

I= /_Z Y™ (z)Yem (x) cos <2TXC$> dx (2.23)
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These integrals may be solved analytically, and we may now assemble the
eigenvalue problem and solve for eigenvalues and eigenvectors.

When combining expansion series of different types and/or lengths
one must take series mismatch into account. In analogy to the Gibbs’
phenomenon in Fourier series, Hermite Gaussian series exhibit an oscilla-
tory behaviour near discontinuities in the expanded function which may
interfere with the Gibbs’ phenomenon of the Fourier series”. Also notable
is general mismatch of the function series, who fail to cancel each other
completely (fig. 2.1). The Gibbs’ phenomenon of the Fourier series may
be efficiently suppressed through Lanczos’ o-factors [17] - the series mis-
match, however, may not. This effectively limits the gain of extending
the Fourier series without extending the Hermite Gaussian series.

Instead of creating the core region by way of cancellation, we may re-
peat a fibre structure, complete with core, and expand it in its entirety in a
Fourier series®. In this way we may take full advantage of many highly op-
timised algorithms and software packages developed for the Fourier trans-
form, at the same time avoiding any problems of mismatching function
series. In this case the dielectric function may be expressed in Cartesian
coordinates as®:

D
e(r.y)= D crgexp(i(Efr+gy)) (2.24)
J,g=—D
where the constants £ and ¢ depend on the imposed periodicity of the
structure.

Substituting eq. 2.24 into eqs. 2.14 through 2.18, and making use of
recursion formulae (egs. 2.20 and 2.21), we essentially get overlap integrals
of the two forms

i /_ Z 0o () () cos <5=ng”> da (2.25)
" I= /_ Z Yem (2)h@m (2) sin <C’%> da (2.26)

"The behaviour of the Gibbs’ like phenomenon is dependent on the relative charac-
teristic width of the series (fig. 2.3).

8This treatment of the dielectric function is the same as in the plane wave method.

9We may also take advantage of symmetries in the crystal structure, as is generally
done with the plane wave method, and instead express the structure in terms of its
reciprocal lattice vectors [18].
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Figure 2.1: 1-dimensional unit impulse train expanded into Fourier;sg

series 120 01 oos (2792 ) (front). 1-d unit impulse function as a Hermite
» Lug=0Cg A p

Gaussiang series, Z?P:O C?M/J?d(w) (middle). Inverted impulse train with

centre impulse cancelled, Z?co:o YT (x) — Z;z)o cp COs (27;{7””) (back).//
Notice the mismatch at the discontinuity between the series, limiting the

gain of extending the Fourier series.
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which may also be evaluated analytically. From these integrals we may
now assemble the eigenvalue problem and solve for propagation constants
and eigenvectors.

2.3.2 The Hermite Gaussian method

Expanding the cladding structure in a Fourier series does indeed make
sense as long as the cladding structure is of a certain size. When the extent
of the cladding structure diminishes, the assumptions implied may become
invalid. To counteract this we suggest expressing the dielectric function
as a superposition of a number of local expansion series. This allows us
to scale the local expansions according to the size of the element being
expanded, in analogy with the basic ideas behind wavelet theory. Thus,
we may use relatively short expansion series, even if the the expanded
features are small, and in this way retain efficiency in our calculatlonslo
We expand the dielectric function in the following way'!

D )
. i ) )
($ y = €pg + Z — €pg Z C}gd};}’dg(l‘ - rgw Yy — rg]/) (227)
f:9

where c7 . and w ' denote expansion coefficients and the normalised char-
acteristic width used for decomposition of the jth hole. ¢, and ¢; are
the dielectric constants of the background material and of the jth hole.
D is the number of expansion terms used to decompose the holes'?. The
factors 72 and 77 denote the Cartesian coordinates of the position vector
of the jth hole (fig 2.2). The characteristic width, wy, is not rigorously
defined by any physical properties of the structure. In theory, as the Her-
mite Gaussian functions form a complete set regardless of characteristic
width, it could be chosen arbitrarily. For simplicity we might set, ws = 1,
which would indeed simplify the overlap integrals (egs. 2.44...). In prac-
tise steps need to be taken to improve the convergence of the Hermite
Gaussian series, if the efficiency gain of using localised functions is not
to be lost. In the formulation (eq. 2.27) each defect is by scaled by its

10Since this method consists solely of Hermite Gaussian functions we name it the
Hermite Gaussian method

1When holes overlap, this expression must be refined in order to be valid.

12Tn principle, this number could be chosen individually for each hole, but in the
following we will, for simplicity, consider it to be equal for all holes.
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Figure 2.2: Schematic of a triangular lattice, small-core, PCF. rl =
(r2,ry) denotes the Cartesian coordinate vector of the jth hole.

dielectric constant, hence we may investigate expansion series behaviour
by expansion of a unit height defect. Assuming defects to be circular we
expand the function defined by:

feire(x,y) = u(l — 4(z? + y?)) (2.28)
mw:{%i;g (2.29)

for a set of wy-values.

We see in figure 2.3 that the choice of characteristic width for the series
has a tremendous impact on the convergence of the series. For accurate
modelling it is, therefore, necessary to study the convergence behaviour
of the expansion series as a function of the width parameter. We quantify
the convergence of the series by numerically integrating the error (fig. 2.4):

€= //R2 Jeire(T,y) — % Cf,gw‘}’,‘;(:n,y) dzdy (2.30)

Notice that the optimal choice of wy is dependent on the number of
expansion functions. From figures 2.3 and 2.4 we conclude that a good
general choice of characteristic width for circular defects is wy =~ 0.12.
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Figure 2.3: Slices along the x-axis of 2d circular, unit height, step function,
feire(z,y) (eq. 2.28), expanded into series of Hermite Gaussian functions
for width parameters: (a) w = 0.1, (b) w =0.12, (¢) w =0.2, (d) w =04
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integrated deviation from unit step function

1
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12 exp. terms 20 exp. terms =----=-- 30 exp. terms ===

Figure 2.4: Integrated truncation error of Hermite Gaussian expansion-
series from the circular unit step function, feir. (eq. 2.28), where 12, 20
and 30 expansion terms have been used to expand the unit step.

Also notice that for certain values of wy, the truncation error temporarily
rises as the number of expansion functions is increased. It is, therefore,
of vital importance that wy is chosen carefully.

Determining the expansion coefficients of a particular shape generally
involves performing an integral over the defect area. In the important
case of a circular defect the overlap integral is analytically solvable — in
other cases a numerical integration scheme has to be used. Due to the local
nature of the defects, it may be more efficient to use numerical integration
even in the case of a circular defect. Figure 2.5 shows the expansion
coefficients along some rows in the expansion coefficient matrix (2.31) for
wg = 0.12.

¢o0 --- CoD
¢po --- CDD

Notice, that if wg may be held constant, due to the orthogonality of the
expansion functions, we may “reuse” expansion coefficients when extend-
ing the expansion series, whereas they would have to be calculated anew,
were the functions non-orthogonal.
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Ci,j; j0{0,16,32};

Figure 2.5: Expansion coefficients along three rows in the expansion ma-

trix, for a circular defect expanded into an Hermite Gaussian series with
wg = 0.12.
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For some applications, such as polarisation maintaining fibres, ellip-
tical defects are highly interesting [19] [20]. Although it is, at present,
unclear whether the practical problems in actually making such a fi-
bre may be solved, it may theoretically represented within this frame-
work by simply scaling the expansions through an anisotropic wgq =
(W2, Wd,y) ; Wdz 7 Wd,y, and minor extensions to egs. 2.14 through 2.18.
Figure 2.6 shows expanded elements of different shapes, to indicate that
any shape is indeed possible.

Square defects, for instance defined by (egs. 2.28 & 2.29):

Fsquare(,y)) = u(l = 2[z]) - u(1 - 2[y[) (2.32)

appear even more difficult to control in a draw process (and, to the best of
our knowledge, have yet to be shown in a PCF), conventional fibres with
square (or indeed polygonal) claddings have been shown [21], suggesting
that such defects might be achieved with improved drawing techniques.
It is also plausible that square defects might be preferred over circular
defects in an integrated optics context'3. Upon inspection, the optimal
choice of characteristic width for expanding a square defect, is wg = 0.12,
as for circular defects — this is not surprising since by definition (eqs. 2.28
& 2.32), the discontinuity of both types of defect, by definition, is at the
same point on coordinate axes, i.e. for |z|, |y| = 0.5, although the volume
of the square defect is larger.

To theoretically construct a triangular defect is also possible, but presents
some practical difficulties. For instance, it is unclear as to where the origin
of the expansion series should be chosen. The triangle’s centre of gravity
is a natural choice, but gives rise to poor convergence. A better choice
is on one of the baselines of the triangle, but the series length necessary
for an accurate description is still considerably longer than that of even
defects, such as circles and squares.

Substituting eq. 2.27 into eqs 2.14 through 2.18 we may separate the

13Presently, the integrated photonic crystal community is concentrating on waves
propagating in the plane, perpendicular to the defects, in which case squares are not
advantageous over circles [22].
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Figure 2.6: Three geometric elements of unit height, each expressed by a
Hermite Gaussian expansion series of length 20.
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2 1\Wm

Il = /¢ 8 %x2( )dx (2.39)
12 = / g (e ()0 (z — 1) da (2.40)

Bufm o (@ — 1)
¥ = /R T'Z’T(“‘) gm(x)dex (2.41)

ot (z — 1)
acf /wwm wm )7f Oz dx (242)

o .
1= [ e @) - o (2.43)

where yi N denotes the expansion coefficient of order k,[ of the jth defect.

Consequently, ’y,g 19) is the k,l-order expansion coefficient of the loga-

rithmic jth defect. Using the recursion formulae (egs. 2.20 and 2.21), I3!,
I** and I%® may be expressed in terms of 7?2. Thus, we need only solve
integrals of the form:

i= /R G () (@) (o — 1) da (2.44)

to set up the eigenvalue problem. For r, = 0 we may use use Feldheim’s
identity (eq. 2.45) [23] and odd-even function symmetry properties to
reduce this integral to a summation. For r, # 0, the integrand of eq. 2.44
is neither odd nor even. The integral may, however, be evaluated using
the summation theorem for Hermite polynomials (eq. 2.46) [24]. It may be
remarked that due to the local nature of the expansion functions, it may
be efficient to use an adaptive numerical integration scheme considering
the complexity of the solutions. This is particularly the case, when the
order of the Hermite Gaussian functions is high, since the solutions involve
I'-functions on the same order as the polynomials, which makes them
sensitive to numerical error.

b i\
H,(z)Hy(z) = 20! Z <b ¢ j) Ha‘;’%{() (2.45)

2% Hy(z +y) = Ea: <]>Ha 5 (Vax) H; (Vay) (2.46)

J=0
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2.4 Coupling coefficients and effective area

An orthonormal expansion of electromagnetic fields is practical for cou-
pling considerations. In any physically deployed system containing optical
fibres of any kind, which must, naturally, contain connections, it is impor-
tant to consider coupling losses. Firstly, these losses arise from mismatch
of mode-shapes [12], the magnitude of which may be closely approximated
by eq. 2.47, where H; Hy represent the magnetic fields of two modes cou-
pling to each other. By orthonormality, the overlap integrals that need to
be solved may be replaced by a summation over expansion coefficients of
matching orders with no additional approximation needed.

[ s 1F13 () - B )ty
" e sl ) P ndy] [[ e 3 0)Pedy]
N (Zﬁgonf,fg 5+ HY  HY fg)2
SR )2 + (2] [, (57,2 + (4137, )?]

(2.47)

Thus, we may calculate coupling coefficients between modes in an a very
efficient manner (see chapter 4).

Secondly, and often much more important, coupling losses arise from splice
mismatch, i.e. when two fibre ends fail to line up correctly. We may
define a coupling coefficient 7(rs,r,) where r, and r, denote the offset
in Cartesian coordinates, and calculate the coupling coefficients through
overlap integrals analogous to eq. 2.47. In this case we may, again take
advantage of the summation theorem for Hermite polynomials (eq. 2.46)
to express the coupling coefficients'. It is of course also of interest to
consider coupling between a conventional step index fibre and a PCF. To
a good approximation level we may represent the field of the fundamental

ze+
mode in a step index fibre as a Gaussian, |Fy(z,y)| = e 2ot [12]. In

1 Clever reuse of the integrals evaluated in equation 2.44 may expedite these calcu-
lations
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this case the coupling coefficient may be expressed as:

SRty (e e eiie) (e Fvn )

[P omo (M 12 + (Y ,)?] 270

N~ (2.48)

The integrals in the numerator of eq. 2.48 are analytically solvable [16]:

(fE
(4) a+a®

1 2
a2:<§+;7”3>; f even

[NIE

f 2

(2.49)

Sl

1
T4W

/ e 2T (z)da = (—1)
R

In many situations the effective area of a mode is an important param-
eter. This is especially the case when non-linear effects, such as Raman
and Brioullin scattering, are to be considered [25] [26] [27]. Given the
high effective index contrast possible in PCFs, the intensity in a fibre may
be very high, increasing non-linear effects. We may express the effective
area as [28]: )

(S 1F (@, dady)
= 1 (2.50)

JJgz |F(2,y)|" dedy
Again, orthogonality is instrument in efficient calculations of the resulting
overlap integrals, although the denominator of eq. 2.50 becomes rather
complicated [15].

eff

2.5 Summary of chapter 2

In this chapter we have established the theoretical framework of the pro-
posed purely Hermite Gaussian function series based modelling procedure.
Firstly, we have discussed the general steps of overlap integrals transform-
ing Maxwell’s equations for propagating waves'® into a matrix eigenvalue
problem by performing overlap integrals. Thereafter we have briefly dis-
cussed the possible descriptions of the dielectric function of the structure
under study, that constitute the Localised Function Methods known in the

151n the scalar case: Helmholtz’ equation.
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literature. This lead into a detailed discussion of our proposed expansion
scheme expressing the dielectric as a sum of parts.

Once the eigenvalue problem has been assembled, it may be solved
using standard eigenvalue solvers, where the eigenvalues and eigenvectors
directly represent the modal index (or propagation constant), and electro-
magnetic field distribution, respectively, in the sense that the eigenvectors
consist of expansion series coefficients of the fields.

We have also discussed expressions for key features such as coupling
to and from fields described by Hermite Gaussian series, as well as the
nonlinear effective area.
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In this chapter we proceed to use the model described in the preceding
chapter, to simulate a range of different structures. We start out with a
much studied fibre structure, namely the triangular, small core, index
guiding fibre, to verify the model and its limitations, proceeding with a
variation on the simplest triangular lattice fibre that may be more suitable
for applications (sec. 3.1). Thereafter we examine a quadratic lattice fibre
(sec. 3.2), and a novel, pentagonal symmetric fibre design (sec. 3.3) in
order to showcase the flexibility of the modelling procedure. In section 3.4
we further examine limitations and possibilities of the model by testing
it on a honeycomb photonic bandgap fibre. We end this chapter with
simulations of variations of the so called “onion™fibre (sec. 3.5), where air
holes are used to effectively form high contrast, concentric circles around
a core region [1].

As noted in the introduction, manufacturing tolerances for index guid-
ing PCFs are, by nature, less stringent than for their photonic bandgap
counterparts. This has lead to a concentration of research on index guid-
ing fibres in the early years of PCF studies. As the localised functions
methods force localised solutions there is an inherent problem in mod-
elling bandgap structures, since the bandgaps are formed by interactions
between many lattice periods in a crystal. Also, keeping in mind that
cladding modes are not resolved well, for index guiding fibres, simple ex-
ternal means of determining whether modes are guided or not, exist [2] [3].
Finding the fundamental guided mode of the fibre becomes a simple a mat-
ter of sorting the eigenvalues of eq. 2.9 by magnitude. The effective index
approach, or plane-wave method on a single-cell lattice, may be used to
determine cutoff-wavelengths for higher order modes.

As mentioned above we have chosen to implement this method with
expansion series along the Cartesian axes. This implies a favouring of
structures with a four-fold rotational symmetry.

3.1 Triangular lattice, index guiding structures

Our first case study is the triangular lattice, index guiding fibre. This has
been extensively studied, in the literature, theoretically as well as exper-
imentally. It therefore serves well as a test case for the model. An issue
with all functions approximated using Hermite Gaussian expansion series,
as defined in equations 2.5 and 2.6, is the inclusion of the series character-
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istic width. As discussed it has a major impact on the convergence of the
function series when expanding the dielectric function. This, of course,
applies to the electromagnetic fields, found as solutions to the eigenvalue
problem, as well. It is, therefore, necessary to validate the choice of char-
acteristic width for each type of structure, as the optimal choice may (in
fact is expected to), vary depending on the fibre geometry.

3.1.1 Small-core triangular fibre

This fibre is one the most studied so far and so is a reasonable choice as a
validation measure for the model. One of the reasons that this structure
has been so extensively studied is that it is relatively simple to make,
by simply stacking glass tubes on top of each other. The holes will then
form a triangular lattice. By replacing one tube with a solid glass rod, a
core is formed. The tubes may then be fused together and drawn using
conventional fibre drawing techniques' Unless the tubes have a hexagonal
circumference, interstitial holes remain between the tubes after stacking.
Because of their comparatively small diameter, however, they tend to
collapse during draw and only contribute negligibly to the properties of the
fibre. Figure 3.1 shows a SEM- (Scanning Electron Microscope) picture
of a simple triangular structure. Notice the absence of interstitial holes.

It is common in the photonic crystal fibre community to let the scale of
the structures be defined by two parameters, namely the lattice pitch and
the hole diameter, commonly denoted A and d? (fig. 3.2). The pitch defines
the overall size of the lattice, to which all other measures are commonly
normalised. This allows for scaling of results to any desired wavelength, if
material effects are neglected. Although Ferrando et. al. have suggested
another pair of parameters more suitable for dispersion-tailoring of fibres
of this type [4], we shall adhere to this practise.

The discussion on scaling the expansion series according to the features
of the underlying function (chapter 2) also applies to the electromagnetic

'In practise, this is true to some extent only. In order to achieve low losses, care has
to be taken to prevent polluting elements from entering the glass during the stacking
process. (Preferably this should be down in a clean-room, which vastly increases the
manufacturing costs.). In comparison, a conventional fibre preform may easily be made
in a closed environment process, such as CVD (Chemical Vapour Deposition).

2The 2nd parameter is naturally only meaningful when all the holes are of equal
size
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Figure 3.1: End face of an endlessly single mode, triangular Photonic
Crystal Fibre. Notice that no interstitial holes remain. Courtesy of Crys-
tal Fibre A/S
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Figure 3.2: Schematic drawing of a 5-ring triangular PCF. The closeup
show two important parameters: The lattice spacing, or pitch, A, and
the hole diameter, d, which are commonly used to describe the scale of a
structure.
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field solutions, with the important difference that an absolute measure of
convergence no longer exists. It is conceivable to choose the best possi-
ble fit with another modelling scheme such as the plane wave method.
This would, however, make this procedure equally dependent on an in-
finite cladding structure. Instead we proceed by performing the overlap
integrals as outlined previously (sec. 2.3.2) and solve the associated eigen-
value problem for several different values of wy, at different wavelengths —
to find an interval, where the modal indices depend weakly on the char-
acteristic width, i.e. where the convergence of the series is reasonably
fast (fig. 3.3). Differentiating (3/k with respect to w,, yields two overall
inflection points®, w,, ~ 0.6 and w,, ~ 0.85, around which the eigenso-
lutions may be considered stable to second order. Keeping in mind that
the expansion series behaviour for the dielectric function showed several
local minima (fig 2.4), it is not surprising to find more than one candi-
date for w,,. We may also recall that although the optimal characteristic
width does indeed vary with expansion series length, D, we may find an
average choice that is reasonable for a range of Ds. By varying D in the
whole w,,-range we identify an overall stability region around w ~ 0.6. We
may note that this is in agreement with what has been used by Monro
et al. [5]. This is in agreement with effective index analysis found in the
literature [6], where it is argued that the equivalent step index fibre should
have a core radius of 0.625A, as the optimal characteristic width should
reflect the width of the underlying function?.

The remaining parameter to evaluate is the number of basis functions
needed for stable solutions to the eigenvalue equation(eq. 2.9). Choosing
wmy = 0.6 in the stable region, we consider solutions as a function of
normalised frequency, A/, for some different numbers of basis functions
(figs. 3.1.1 and 3.1.1). From this we draw the conclusion that in the higher
frequency-range the eigenvalues are sufficiently converged for 20 and 12
basis functions in the structure and field expansions, respectively. As the
frequency decreases, however, we also see that an increase in expansion
functions reveals a “return” towards the core index. This implies that the
fields now spread so far into the cladding that the effect of the surrounding
glass becomes non-negligible, and that a longer, D > 12, expansion series

3The exact positions depend on the wavelength.
4The optimal w,, is larger than the corresponding wy, due to the less sharp nature
of the field functions.
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Figure 3.3: Modal index, 3/k, for the fundamental mode vs. characteris-
tic width, wy,, as calculated at four wavelengths with Hermite Gaussian
functions, with 20 and 12 expansion functions for the holes and the fields,
respectively. The structure considered is a 5-ring triangular PCF with

d/A = 0.30.
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Figure 3.4: Modal indices, §/k, vs. normalised frequency, A/\, for three
defect expansion series of different lengths, for a 5-ring triangular, close
packed structure, with d/A = 0.30 and 12 terms in the field-expansion
series. Notice that the curve showing the expansion with 20 defect-
expansion functions coincides almost completely with the curve for 30
functions.
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Figure 3.5: Modal indices, §/k, vs. normalised frequency, A/\, for three
field-expansion series of different lengths, for a 5-ring triangular, close
packed structure, with d/A = 0.30 and 20 expansion terms in the defect
expansion series.
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is needed to express the solutions accurately.

We proceed by solving the wave equations for several different hole-
sizes to evaluate their effect on the solutions. The highest two resulting
eigenvalues, representing modal indices of the fundamental mode and its
counterpart, polarised in the other principle direction, are shown in fig.3.6.
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Figure 3.6: Modal indices of the fundamental guided mode for a 5-ring,
close-packed, triangular PCF with d/A = 0.10...0.45, calculated with 20
expansion functions, a pitch: A = 2.3um and a characteristic width of:
w = 0.5. The open symbols denote predominantly y-polarised solutions,
closed symbols x-dominant solutions.

Given the solutions of the eigenvalue problem, we may readily calcu-
late the magnetic field distribution in the modelled structure, from the
associated eigenvectors of eq. 2.9. Fig. 3.7 shows the transverse compo-
nent of the magnetic field distribution for two different hole-sizes. Notice
the hexagonal shape of the mode, which agrees with the symmetry of the
structure and previous calculations of triangular structures [2] [7] [5].

Clearly, there is a dominant direction of the mode. Thus, the sym-
metry arguments of Steel et. al. [8] are applicable, stating that a PCF
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Figure 3.7: Transverse magnetic field vectors for the fundamental mode
of a 5-ring, close-packed, triangular PCF, with A = 1.0um at A = 850nm

(a) 0.20, (b) 0.45, using 20 field expansion

and hole diameter, d/A
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with m-fold rotational symmetry, m > 2, cannot be birefringent. Hence,
we may consider the fibre as being non-birefringent. If we again view the
modal indices as a function of wavelength (fig. 3.6), the second eigensolu-
tion should, by symmetry, be exactly degenerate with the first. Clearly,
this is not the case, indicating an error in the eigenvalues. This is an
effect arising from the Cartesian expansion axes used which do not reflect
the symmetry of the structure (cf. sec. 3.2). This could be counteracted
by simply using a longer expansion series, or by by using another set
of expansion axes, which would imply reformulating the overlap integrals
(egs. 2.14 and 2.18) to include cross terms between coordinates. If we now
view the intensity profile, shown in fig. 3.10, of the fundamental mode in
the triangular small core fibre we see more clearly that it matches the
symmetry of fibre geometry. We also note that, as expected [7], a longer
wavelength tends to push the fields further into the air-holes.

In conventional fibre technology the mode field diameter [9] of the fun-
damental mode, is often used to quantise the extent of the mode. A large
mode-field diameter is often wanted, since it renders the fibre less sensi-
tive to splice mismatch, making coupling into the fibre less complicated.
For a PCF, with its inherently non-circular mode shape, the mode field
diameter loses its meaning and may only be replaced by an average mode
field diameter. We study this by viewing the radius where the intensity
of the modal field has dropped to e~2 of its centre (maximal) value, as
a function of wavelength and hole diameter (fig. 3.8) in the two princi-
pal directions of the fibre. The e 2-radius rises with wavelength and is
greater in the y-direction as expected. If the holes become small, however,
we note that the radius tends to toward a finite value, implying that the
basis functions are no longer able to resolve the fields properly, i.e. that
a longer expansion series is needed. This effectively limits the parameter
space where the method is useful, since the expansion series length itself
is limited by numerical errors in the overlap integral calculations and by
the size of the eigenvalue problem, in the sense that the calculation time
gain of localisation is lost. We now define an optimal Gaussian coupling
coefficient, 7, as the coupling efficiency between a guided mode and
a Gaussian field scaled to maximise coupling (eq. 2.47), to get a scalar
measure of coupling to the fibre. We find that coupling efficiency drops
significantly as the wavelength increases and as the hole-size is reduced
(fig. 3.9).
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Figure 3.8: e~ 2-radius as a function of wavelength for the fundamental
mode of 5-ring, triangular PCF with d/A = 0.10...0.45 for the principal
directions x=solid, and y=dashed.

As stressed before, one of the main strengths of the localised function
methods lies in the orthogonality of the expansion functions. In the same
way we took advantage of the orthogonality when formulating the eigen-
value problem 2.9, we may easily integrate fields over the infinite trans-
verse plane, by replacing the integrals with a sum of the field expansion
coefficients, for instance enabling efficient coupling coefficient calculations
between fields (eq. 2.47 and chapter 4) or evaluation of the mode effective
area [10] (eq. 2.50).

Another important difference between conventional fibres and PCFs,
is their dispersion characteristics. PCFs consisting of a silica-air system
with a high index core, will always fundamentally display the material dis-
persion characteristics of silica on a large wavelength scale, yet on account
of the highly wavelength dependent behaviour of the cladding it is possible
to target dispersion characteristics impossible in conventional fibre tech-
nology [4]. Assuming non-linear effects to be negligible we may readily
calculate the dispersion in the PCF, once we have solved the eigenvalue
problem, from the obtained eigenvalues [11] [12] (fig. 3.12). These dis-
persion characteristics are in reasonable agreement with results reported
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Figure 3.9: Optimal Gaussian coupling efficiency toward a triangular small
core PCF, with d/A = 0.10...0.45.

with the localised function method [5] and experimentally [13], albeit the
latter was measured in a rather deformed fibre.

3.1.2 Large-core triangular fibre

Although PCFs may in theory be scaled to fit any wavelength, in practise
the structure size must be on the same order as the wavelength, in order
to avoid such unwanted effects, as bending loss [6] [14]. Hence the core
diameter of the simple triangular structure is of the same order as the
wavelength. For many applications this is impractical as it puts very
strict tolerances on connectors and splices. One way of ameliorating this
problem is to replace several of the inner glass cylinders with solid rods
in the stacking process, thereby creating a larger core®.

We investigate this further by removing the innermost ring of holes
in the simple triangular structure, creating a fibre with a core radius,
a =~ 2A. The other rings are left in place (fig. 3.13).

5The presence of many interfaces between stacking elements in the core, where the
intensity is at its highest, has been shown not to significantly influence the overall loss
of the fibre [15].
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(b)

Figure 3.10: Squared magnetic field distribution of small core, triangular
lattice, 5-ring PCF, with (a): d/A = 0.20 and (b) d/A = 0.45, at A\/A =
0.85. Contours are spaced 2dB apart between —2dB and —24dB.
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(b)

Figure 3.11: Squared magnetic field distribution of small core, triangular
lattice, 5-ring PCF, with (a): d/A = 0.20 and (b) d/A = 0.45, at \/A =
1.55. Contours are spaced 2dB apart between —2dB and —24dB.



‘main” — 2005/7/7 — 14:36 — page 53 — #61

3.2 Quadratic lattice index guiding fibre 53

o dIA=0.45 ‘ ‘ -
a0 © 030 ]
& 0.20
v 0.10
T material disp.
< 20 r
E
c
3
s
= ot
c
S
2]
g
& 20t
[a)]
o -0t
3 0.8 1 12 1.4 16 18 2

Alpm

Figure 3.12: Dispersion characteristics of triangular, small core fibres,
with 5 rings of holes, for d/A = 0.10...0.45 and lattice pitch, A = 2.3um,
material dispersion of silica included.

Due to the increased core size of this fibre, the eigenvalue solutions, ob-
tained through eq. 2.9, are expected to exhibit a different w,,-dependence.
Again (sec. 3.1.1), we calculate the eigenvalues for several different char-
acteristic widths, in order to locate a region which has stable solutions
for a small number of expansion functions. Clearly the power distribution
spreads (fig. 3.14), as expected, more than in the small core case. Further
analysis of the fundamental mode for fibres of this type shows a gain in
mode effective area between > 3 for d/A = 0.45, at A/A = 0.25 to a gain
of approximately unity for d/A = 0.10 (fig. 3.19). In the small hole case,
however, one must remember that we are close to the localisation limit
of the model. Hence, there is significant uncertainty in the effective area
measure in this case.

3.2 Quadratic lattice index guiding fibre

Most of the PCFs considered in the literature so far have been varia-
tions on the triangular lattice, whereas the properties of photonic crystals
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Figure 3.13: Schematic drawing of a large core, triangular lattice, PCF
with d/A = 0.30.

with a quadratic lattice have been more extensively studied in planar,
integrated photonic crystal waveguides. As discussed earlier, the main
reason for the concentration on triangular lattice structures, is the rela-
tive ease with which one may manufacture a fibre-preform by a, in theory,
simple stacking procedure using circular elements. A quadratic lattice
may also be stacked using circular cylinders and rods. It would, however,
be necessary to include another element (for instance circular rods with
do = (v/2 — 1)A), for the stack to be stable (fig. 3.15).

We briefly investigate the properties of a quadratic lattice, small core
PCF, using the Hermite Gaussian model. In this case the principal sym-
metry axes of the structure coincide with the Cartesian coordinate axes,
which is beneficial to the convergence of the expansion series. We follow
the procedure established above for modelling a new type of fibre, and
solve the eigenvalue problem for a number of characteristic widths. The
core volume in this fibre is larger than that of the corresponding triangu-
lar fibre (sec. 3.1.1), and that the air filling fraction [7] is correspondingly
lower. We note from section 2.3.2, page 28, that even though its volume
is larger, the characteristic width of the quadratic defect expansions has
an optimum at approximately the same value as the circular defect ex-
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Figure 3.14: Squared magnetic field distribution of large core, triangular
lattice, 5-ring PCF, with d/A = 0.45, at A/A = 0.85. Contours are spaced
- 2dB apart between —2dB and —24dB.

Figure 3.15: Stacking diagram of a quadratic lattice PCF.

pansion. Therefore we expect the optimal w,, to not differ much from the
triangular optimum. A specific study of w,, along the lines outlined in
section 3.1 shows first order zeros at w,, ~ 0.6 and w,, ~ 1.0. Further
study of the field distributions shows that a good choice in this case is
wm = 0.6. Fig. 3.17 shows a field distribution of the fundamental mode in
this fibre at a wavelength in the middle of the interval for two hole sizes.

Since the symmetry of the fibre coincides with the expansion axes,
the erroneous numerical birefringence seen in the triangular fibre is not
present to the same extent when modelling this fibre. No evidence of the
erroneous numerical birefringence seen in the triangular fibres 3.1 is found
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Figure 3.16: Modal indices of the fundamental guided mode for a 5-ring,
quadratic lattice PCF with d/A = 0.10...0.45, calculated with 12 expan-
sion functions, a pitch: A = 2.3um and a characteristic width of: w = 0.6.
The open symbols denote predominantly y-polarised solutions. The x-
dominant solution (solid symbols) is completely covered as the mode is
degenerate (to machine precision).
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in the quadratic lattice fibre (fig. 3.16). In fact for the whole frequency
interval studied the numerical birefringence of the quadratic lattice fibre
is on the order of machine precision, when using as little as 12 expansion
functions. This is because the symmetry of the fibre coincides with the
expansion axes.
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(b)

Figure 3.17: Squared magnetic field distribution of quadratic lattice 5-ring
PCF, with (a) d/A = 0.20 and (b), at A/A = 1.05. Contours are spaced
2dB apart between —2dB and —24dB.
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3.3 Pentagonal structure

So far we have only considered lattice structures that may be fabricated
by the simple stack and draw technique. A strong point of the model
used, is that there is no formal restriction on the kinds of structures that
may be considered other than that of a localised mode. In the high index
case there is always a fundamental mode bound to the core. Thus, any
kind of structure with an effective cladding index lower than that of the
core may be considered. Monro et.al. [16] have shown that even a fibre
structure with holes randomly distributed in the cladding may guide light,
as long as the holes are spread fairly evenly in the cladding. To stress this
versatility of the modelling procedure, we construct a pentagonal fibre,
where the hole positions are given by

20 .
rig = Aji+ 5—?/@0 (3.1)
ke0...5 je€l.#rings

This kind of fibre may presently not be of much practical interest, since
it is a challenging task to fabricate it using common “stack-and-draw”
techniques. At present, a more feasible technique, currently developing for
material systems other than silica-air, in cases like this, is fibre extrusion
[17] [18] [19]. We assemble and solve the associated eigenvalue problem,
in the same manner as for the triangular and quadratic cases, including
characteristic width analysis, to find stable solutions. The eigenvalues
show a mode-splitting for the fundamental mode on the same order as for
the triangular fibre, which may be accredited to similar symmetry effects
as in the triangular cases.

This structure has the potential advantage over the studied triangu-
lar and quadratic lattice fibres with comparable core size, that the ef-
fective area of the fundamental mode is larger for this fibre, which may
be explained by its lower air-filling fraction. We find that the increase
in effective area of the fundamental mode is [93,58] % for wavelengths
A/A € ]0.25,1.40]. Although the increase is smaller than what was ob-
tained for the increased core size, triangular fibre investigated earlier, the
pentagonal structure, however, has an added advantage. When fibres are
scaled to fit into systems with standard fibre radii (= 5um [20]) the abso-
lute sizes of the air-holes in the pentagonal fibre become larger than in the
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Figure 3.18: Schematic drawing of pentagonal 5-ring PCF, d/A = 0.45.
No simple stacking pattern is evident

large core triangular fibre. Within reasonable limits, larger object sizes
are easier to control precisely during draw. We also find that the increase
in effective area is bought at the expense of coupling efficiency, 7pens.
(sec. 3.1.2), (to and from an optimally shaped Gaussian field (sec. 3.1))
which is 7pene. € [93,96] % of 1iri, and Mpent. € [87,98] % of 14i g, Where
Neri and 14514 denote coupling coefficients from a triangular small core
fibre, and triangular large core fibre respectively, to an optimally shaped
Gaussian field. The decreased coupling efficiency is hardly surprising con-
sidering the oddly shaped fundamental mode of the fibre (fig. 3.20).
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Figure 3.19: Effective area, A.s¢ (eq. 2.50) for a few different index guiding
photonic crystal fibres, with d/A = 0.30.
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(b)

Figure 3.20: Squared magnetic field distribution of pentagonal 5-ring
PCF, d/A = 0.20 = 0.20(a) ,0.45. (b), at A/A = 0.85. Contours are
spaced 2dB apart between —2dB and —24dB.
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3.4 Honeycomb photonic bandgap structure

As noted, inherent in the localised functions method is a difficulty in mod-
elling photonic bandgap structures. The formation of photonic bandgaps
depends on interaction between, in theory, a perfect crystal with an in-
finite number of periods, and the electromagnetic fields therein. As the
restriction to a localised domain, limits this interaction, the usefulness of
the proposed method is also limited by the forced localisation. Neverthe-
less, depending on the strength of the localisation of the defect modes,
meaningful results can be obtained, especially when modelling fibres with
finite, or small, cladding structures.

Photonic bandgaps do open in a triangular lattice structure [21] [22]. If
the holes are not very large, however, the gaps tend to be narrow. Instead
we consider the honeycomb structure (fig. 3.21), which inherently has
larger bandgaps [23] [24]. This will serve as a case study to show that it is
indeed possible to model bandgap structures with the Hermite Gaussian
model®. For simplicity, we have not optimised the structures that we
model in this section, instead the core hole is kept at the same size as the
cladding holes, although bandgaps are wider for another configuration.
The gaps have been shown to widen even further if targeted doping of the
glass around the air-holes is used [25]".

In a honeycomb configuration, the holes are situated on the corners of
hexagons surrounding a central hexagon, in the centre of which the core
defect is located. We define the size of the structure by the number of
hexagon-rings surrounding a core. Thus, the structure in fig. 3.21 is a
3-ring structure. Our calculations were carried out for 3, 4, and 7 rings
respectively. We set up the eigenvalue problem in the usual way and
solve for eigenvalues and eigenvectors as before. Whereas, earlier, finding
the eigenmodes of the fibre was a simple matter of sorting the eigenvalue
by magnitude, the modes associated with a bandgap are expected to lie
“sandwiched” between non-localised cladding modes. We also have to
consider the possibility of “false” modes that become localised due to the
forced localisation of the function series.

5Later on we shall use the Hermite Gaussian model where the plane wave method
is not an option

"One way of achieving such a structure could be to use a CVD-process on a pre-
stacked preform and deposit doped glass on the inner walls of the capillary tubes.
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Figure 3.21: Schematic of a honeycomb cladding structure with d/A =
0.40. The lattice defect forming the core is the extra air-hole marked in
the centre.

Taking the max-norm of the average difference between the j- and k-
ring solution bands, ||A; k||mas, to be a measure of convergence, we arrive
at the conclusion, that with as few as 4 rings of hexagons, solutions are
stable with respect to structure size. (||A34llmaz < 1073, [|Agz7
10—12)8.

To find candidates for truly guided modes we solve the eigenvalue
problem with (figs. 3.22 & 3.23, red) and without (fig. 3.22 & 3.23, black)
the central core defect. By superimposing the modal indices we may find
eigenvalues associated with the core, that are absent from the solutions of
the homogeneous honeycomb structure. We identify two major gaps: The
upper running from A/A <1 to A/ = 4.7, the lower from A/\ ~ 3.2 to
A/X > 8. Two solutions associated with the defect, enter the upper gap at
a A/X = 1.3 (fig: 3.22, inset), but we find no defect associated solutions
in the lower major gap. Upon closer inspection, we find a minor gap,
centred around A/\ &~ 1.7, which has defect-associated modes traversing

‘ma:c <

8We are, of course, still limited by the same factors as seen earlier for index guiding
fibres, resulting from the forced localisation. Thus, cladding modes cannot be expected
to be properly resolved.
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the bandgap. (fig 3.23). We also note that there is a non-core mode
traversing this minor bandgap.

Thus far we have not discussed the impact of a change of characteristic
width, w.,, it is, as stressed before necessary to perform such an analysis
to get useful results. Although varying w,, is complicating the system
further, we may turn it to our advantage by using a variational like ar-
gument: Any real mode which is not an artifact of the model, should be
reproducible, to some extent, with wy, o + dwy, ;0 << 1, whereas other
“false” solutions should vary strongly with the model parameters. Thus,
the ambiguity of the characteristic width may help us sort out the wanted
solutions. An analysis along these lines shows that the solutions in the
upper major bandgap are unstable whereas the ones in the minor bandgap
have counterparts for other values of wy,.

Figure 3.24 shows intensity distributions in the minor bandgap. (fig. 3.23)
Notice, for instance, the “doughnut” shape of the distribution in fig. 3.24(a),
which agrees with the shape of a mode found using other means of cal-
culation [23]. These solutions indicate that it is indeed possible, albeit
rather complicated and with a need for many iterative calculations, to
model photonic bandgap structures using the proposed Hermite Gaussian
function method, bearing in mind that the validity of the solutions must
be cross checked against variations in wy,.
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Figure 3.22: Eigenvalues of the first 144 solutions, for a honeycomb struc-
ture, d/A = 0.40, with (red), and without (black), core defect. The inset
show two solutions entering the upper major bandgap.
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Figure 3.23: Close up of a minor bandgap among the first 144 eigenvalues

(fig. 3.22), for a honeycomb structure, d/A = 0.40, with (red), and without
(black), core defect.
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(b) (c)

Figure 3.24: Squared magnetic field distributions for modes (eigenvalues
nos. 124, 125 and 126 respectively), in the minor bandgap (fig 3.23) of
a honeycomb photonic bandgap fibre with d/A = 0.40, for A/\ = 1.48.
Contours range from —2dB to —24dB in 2dB steps.
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3.5 Semi-periodic layered microstructured fibres.

In 1999 Fink et. al. [26] proposed an all dielectric version of the Bragg-
fibre [27], the omniguide, where light is confined to the fire core by a
Bragg-reflector which is “wrapped” around the core. If the refractive in-
dex variations of the dielectrics in the Bragg-reflector are tailored correctly
an omnidirectional mirror may be formed [28]°. At present, hollow core
metallo-dielectric [29] fibres are used as delivery systems in high-power
laser systems, such as C'Oo-lasers in surgery, where silica cannot be used
due to its extreme absorption in the far infrared range. A hollow core per-
mits linear operation at high intensities, as well as a potentially lower loss
than in dense material fibres since material absorption may be avoided.
Therefore, hollow dielectric fibres have been suggested as a candidate for
next generation transmission fibres [30].

Instead of directly making a Bragg-fibre with dielectrics of different
refractive index, we may construct a fibre where the index steps are in-
duced by arranging air-holes in concentric circles around a hollow core [1]
(fig 3.25). Thus, we may retain the structural integrity of a fibre of un-
doped silica and air, while forming a Bragg reflector using effective indices
of the structure. The design space of these fibre structures is massive, as
the the hole-pattern within the concentric rings may be chosen freely, to
fit whatever specifications might be wanted. As a starting point for future
investigations we choose the two structures shown in fig. 3.25. They are
relatively simple, and may be stacked, using large glass tubes to form high
index rings and many small tubes to form the low index rings.

Using the same procedure as for the honeycomb photonic bandgap
fibre, we may set up, and solve the eigenvalue problem defined by the
structures, and search for solutions that meet criteria analogous to those
in sec. 3.4. A fibre may be truly air-guiding if and only if, the index of a
guided mode drops below the light-line [31]}°. A thorough investigation
of the solutions obtained by the Hermite Gaussian method along the lines
of sec. 3.4, reveals a doublet of modes in a narrow bandgap for both
structures (figs. 3.26(a) and 3.27(a)). Using the obtained eigenvectors
we calculate the electromagnetic field distribution of the bandgap modes,
(figs. 3.26(b) and 3.27(b)) and find that the majority of the power carried

°For the omniguide a material system of Tellurium and polymers have been used.
0Defined by the dispersion relation for air.
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Figure 3.25: Schematic drawings of (a) hollow core, 3-ring, singlet, layered
semi-periodic, and (a) hollow core, 2-ring, triplet, layered semi-periodic
structure. (colloquially referred to as “onion”-fibres.)

by the modes, is indeed carried inside the hollow core. As expected the
accompanying solutions (not shown) are degenerate with the ones shown
with respect to a F-rotation. The fraction of power in air: p = % =0.73
for the singlet structure and p = 0.84 for the triplet structure. Compared
with p = 0.98 obtained in an air-guiding triangular photonic crystal fibre
(chapter 5), this it not impressive, but it may be remarked that these
are the first (to the best of our knowledge) such fibre structures analysed,
and no optimisation with respect to p has been attempted. As mentioned
the design space is large, and a targeted search is expected to reveal much
larger power fractions.
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Figure 3.26: Modal indices (a) and field intensity contours (b) for an air-
guided mode in a 2-ring single, layered structure. Contours range from
—2dB to —32dB and are spaced 2dB apart. (fig. 3.25(a))
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Figure 3.27: Modal indices (a) and field intensity contours (b) for an air-
guided mode in a 2-ring triplet, layered structure. Contours range from
—2dB to —32dB and are spaced 2dB apart. (fig. 3.25(b))



‘main” — 2005/7/7 — 14:36 — page 72 — #80

72 Hermite Gaussian simulations

3.6 Summary of chapter 3

We have employed the modelling framework established in chapter 2 and
used it to predict the properties of a range of different photonic crystal
fibre structures, both index guiding and photonic bandgap fibres. As a
starting point we have used the small core triangular fibre, which has been
studied extensively in the literature. We have found that we may describe
the general features of this fibre with the purely Hermite Gaussian model,
using fairly short expansion series, if and only if the characteristic width
of the function series is chosen carefully. We have also encountered lim-
itations of the model, in terms of mode-field resolution, and erroneous
splitting of degenerate modes. The first of which simply arises as an ef-
fect of the average mode-field diameter rising sharply with wavelength,
eventually conflicting with the assumption of strongly localised fields, im-
plied in the formulation in terms of Hermite Gaussian functions. The
second is an effect of the expansion series not reflecting the symmetry
of the underlying structure (in the triangular case six-fold rotational).
Both effects may be counteracted at the expense of calculation time by
using longer function series. To use a larger characteristic width is not
feasible, since the interaction with small structural features may not be
resolved properly. An investigation of a quadratic lattice crystal fibre did,
in comparison, not show the splitting of degenerate modes.

We have calculated dispersion characteristics of the small core triangu-
lar fibre. These results agree with corresponding results in the literature,
which have been obtained experimentally and with the standard localised
function methods.

We have also investigated the possible gain, in terms of effective area
and coupling efficiency, in a variant of the basic triangular fibre with an
increased core size. We found an increase in effective area of up to a factor
of 3, depending on hole size and wavelength. We have also investigated
a novel pentagonal symmetry fibre, which may be advantageous over the
large core fibre, although its manufacturing feasibility is unclear, and its
effective area gain is smaller.

We have also applied our model to photonic bandgap structures: A
honeycomb lattice structure and two layered semi-periodic “onion” struc-
tures. We have shown that it is possible, to model bandgap fibres with
localised functions, although a lot of effort has to be made in examining
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results, as “false” modes may appear on account of the forced localisa-
tion. Notable is that the first attempts at modelling the semi-periodic
fibres show air-guided modes with an air-power fraction of 0.73 and 0.84
respectively.
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Microbends in optical fibres are statistical variations in the geometry
of an optical fibre, introduced in the fabrication process. The bend radii
of these bends are, by nature, generally much larger than for macrobends
(chapter 5, and the loss in each bend significantly lower. On the other
hand, the number of microbends is expected to be much higher than that
of macrobends. In the microbend case the main source of loss is transition
loss - not radiation loss. A bend deforms the mode! and introduces a
mismatch with the undeformed mode. As modes in PCFs are not generally
circularly symmetric the mode mismatch may depend on the direction in
which the fibre is bent.

In this chapter we present an approach toward predicting microbend
induced transition losses, by considering the statistical distribution of cur-
vature transitions in fibres.

4.1 Model

If the bend is sufficiently small, a bent conventional optical fibre may be
modelled by an equivalent straight fibre with a a slope, or tilt, in the
direction of the bend, added to the refractive index profile of the fibre [1].
This procedure is also applicable to the Hermite Gaussian formulation
(chapter 2) in a straight forward manner, by adding a linear term in x
and/or y to eq. 2.27.

D ,
. 0.)] . .
€(z,y) = by + (bex +byy) Y (€5 — €6g) Y _ ¢h 1% (w =1,y — 7)) (4.1)
J f.g

where b, and b, are slope constants in = and y-directions. The overlap
integrals involved in transforming eq. 2.2 and 2.3 to eq. 2.9 are bounded
due to the strong localisation of the Gaussian function, and are easily
evaluated using a recursion formula (eq. 2.21. Given b, and b,, we can
solve the eigenvalue problem as before and calculate electromagnetic fields,
in a photonic crystal fibre with a tilted dielectric function.

Thus, we evaluate the transition loss between two fibre segments with
different bend radii, using the coupling equation (eq. 2.47). Through
a weighted summation of such transitions between fibre segments, we

!Pushes its centre of gravity in the opposite direction of the bend.
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compute a mean transition loss, where the weight function is derived from
statistical properties of the microbends describing the probabilities for the
occurrence of each transition.

Implied in this argumentation is the assumption that the power frac-
tion reflected at an interface is lost. In principle, a photon reflected at a
radius-transition at z; may be trapped in a backward travelling mode, in
which case it may also be re-reflected back into a forward travelling mode
at any of the preceding transitions z; < z;. This subjects the photon to
a delay of t > 2@. For transmission purposes, due to the statistical
nature of the bends, such photons would not contribute constructively to
a transmitted signal, wherefore we will, in the following, regard it as being
lost.

4.1.1 Curvature model

We model the axial fibre displacement, d(z), of the fibre as a Gaussian
stochastic process [2] [3] with mean zero and covariance function g(7);7 =
zo — z1 This ensures that, given a four times differentiable covariance
function, we may differentiate the process itself two times. This facilitates
the use of a standard formula for curvature,x, of a function on one variable,

f(t) [4]:

2
1 f |5t
kf=—=sgn(—5)————— 4.2
T A RN A .
where Sgn(f;—gf) is the sign of Jz;—gf and r; is the curvature radius?. A
dx{t}

differentiated Gaussian process, ——, is also itself a Gaussian process
and, therefore, at any given point ¢, uncorrelated with the undifferenti-
ated process at ¢ [5]. Thus, we may consider the curvature a stationary
stochastic process as a quotient of two uncorrelated stationary processes
where the numerator is a Gaussian process and the denominator a function
of a x%-process [6]. Using standard formulae for uncorrelated stochastic
variables [5], we may express the momentary distribution function of the

2The derivation of eq. 4.2 requires fracd”fdt> to be either positive or negative —
d2f

2
) ‘;Tﬂ may as well be lumped in the numerator.

the factor sgn(
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curvature as:

(y = 1*?

g"(0) %

& 2
P (k(2) <) = Fyz)(C) :/1 Fdﬂ(z)(Cy)Wfd/(z) (

(4.3)
where fx denotes the probability density function and F'x the distribution
function of the stochastic variable X. This integral has no simple solution
— we therefore rely on an adaptive numerical integration scheme [7] for
its evaluation.

4.1.2 Displacement process

The properties of the fibre displacement process is dependent on the en-
vironment the fibre is subject to. We choose to focus on a known scheme
in order to compare our results to those obtained for step index fibres.
This scheme describes the situation where an outer disturbance is pressed
against the fibre. This is applicable when an irregular fibre coating, or
jacket, is put around the fibre. Following Gloge 8], we write the power
spectrum of d(z) as:

1 o2

(1 n l282)3 (1 + %84)2

Ga(s) = (4.4)

Here s denotes frequency, | and ¢ denote the correlation length and the
standard deviation of the outer disturbance pressed against the fibre, such
as an irregularly thick coating. H and D represent the stiffness (Young’s
moduli) of fibre and coating material, respectively. Although, this form
is valid under the assumption that there is complete, continuous contact
between fibre and coating, effects of incomplete contact may readily be
included within the framework of this model, by a straightforward ex-
tension [8]. Disallowing discontinuous contact is expected to result in an
overestimate of the losses for stiff contact materials, but also requires that
the pressing force be considered.

Other types of covariance functions have been suggested, such as an
oscillating exponential [9]. We choose the form of eq. 4.4, since it it
may be derived directly from the mechanics of bending of a thin beam,
whereas, as the production of PCFs is still in its infancy, statistical data
for microbends are bound to be unreliable. Hence the decision to rely
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solely on basic theoretical assumptions. Even so, this is a flexible model,
which may easily be extended to evaluate the effect on microbending of,
for instance, fibre bundling.

Given the power spectrum we may now calculate the curvature distri-
bution for given fibre parameters. Using the stiffness of silica, 7000 kg/mm?,
for the fibre and some different materials for the jacket we evaluate the
probability density function for a disturbance with standard deviation,
o = 1pm and correlation length, [ = 1 mm (fig. 4.1).
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Figure 4.1: Probability density functions of the curvature of a fibre in
contact with jacket materials of varying stiffness. The roughness of the
surface is described by a standard deviation, o = 1-107% and a correlation
length, [ = 0.001m

4.1.3 Coupling coefficients

We calculate the electromagnetic fields using the Hermite Gaussian model
(chapters 2 and 3) in a curved fibre, with bend radius r, through an
equivalent straight fibre with a tilted refractive index profile as [10] [11]:

2 2
€ = €str. + RSN by = il (4.5)
r r
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assuming the fibre to be bent in the x-direction only 2. Modal fields
calculated in a triangular lattice, small core fibre (chapter 3, sec. 3.1)
with a tilted index profile are shown in fig. 4.2.

| | 0.0

1 O O
AN

< I i < i )
1+ OO0 O
-0.5 N ,;ff -0.5] —
;. OO0 | 1 OO
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
xIN xIN

Figure 4.2: Magnetic field of a photonic crystal fibre with d/A = 0.45,
bent in the two principal directions. (an excessively small bend radius is
used to emphasise the displacement of the field)

Using eq. 2.47 and two sets of Hermite Gaussian expansion series,
obtained as eigenvectors from fibre segments with different curvatures, we
calculate coupling coeflicients, 7,, ., for a set of radius-transitions in a
triangular PCF (fig. 4.3).

We now write an averaged momentary coupling coefficient, (), 7), as

n(\T) = / / Nry—ry - P (1(22) =12 | 7(21) = r1) dridre
ri=—00 Jro=—00

(4.6)
where P (r(z3) =ry | r(z1) = r1) denotes the probability of a transition
between the bend radii 71 and 7o in the interval |21, 29[, and 7,,_,, the
coupling coefficient between electromagnetic fields in fibre segments with
bend radii 7 and 7 respectively. As noted 7,,_.,, may readily be calcu-
lated through the expansion coefficients of the Hermite Gaussian descrip-
tion of the fields in index profiles tilted appropriately.

Averaging the coupling coefficients, 7j(\, 7), over the length of the fibre
we get a total mean coupling coeflicient only dependent on wavelength as:

L
70 = lim — /O 70 T) dr (@7)

3Bending in another direction is, of course, completely analogous
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R(z,)=12.8 m

R&? R(z,)=-0.8 m
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curvature radius, R(zz) /'m

Figure 4.3: Coupling coefficients for some curvature transitions at a wave-
length of A = 1.25um, Fibre is bent in the x-direction.

If lim; .o g(7) = 0 we approach a steady state solution where the two
instances d(z;1) and d(z2) are uncorrelated. The weighting probabilities in
eq. 4.6 may then be calculated using eq. 4.4 in eq. 4.3.

In order to numerically evaluate the integral (eq. 4.6) we assume the
coupling coefficients to be piecewise constant, and so replace the integral
with a summation

TNT) =1y omy O P (rog <7(22) <t | 110 <7(21) <7113)  (4.8)

The intervals used in our calculations are indicated in fig. 4.1. According
to fig. 4.3, assuming coefficients to be constant in the larger, “outer” in-
tervals, is a crude approximation. In the cases investigated here, however,
transitions to and from the outermost intervals are correspondingly un-
likely (fig. 4.1). Hence, the “outer” contributions to the mean loss factor
are correspondingly small, justifying the approximation.
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4.2 Microbend loss factor

Once the mean coupling coefficient has been calculated it may expressed

as a microbending loss factor or mean loss. We have performed these cal-

culations on a triangular fibre structure with a lattice spacing, A = 1.0um

and then evaluated the mean coupling losses as a function of wavelength.

The lattice has two principal directions in which the holes closest to the
s

fibre core, are in the % rotational group of the x-direction (fig. 4.2) and
the farthest holes are in the y-direction or its associated rotations.
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Figure 4.4: Mean transition loss for fibres with three different jacket ma-
terials. Solid curves: PCF with microbends in (solid symbols) x-direction
and (open symbols) y-direction. Dashed curve: Step index fibre, with
similar index contrast, with microbends in one direction. For A > 0.5 the
mode field diameter rises sharply (in the step index fibre) — fields are not
resolved well.

We therefore expect these directions to form bounds for one-dimensional
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microbend induced transition losses. Figure 4.4 shows the predicted mean
loss factor in the two directions. Also, as a comparison we have performed
the same analysis on a step index fibre with an index contrast similar to
the effective index contrast of the PCF [12]. Firstly, The PCFs show,
under the assumptions of the model, a significantly different spectral be-
haviour. Secondly, is apparent that PCFs do not show significantly higher
losses due to overall microbends compared to step index fibres, on the
contrary. Thirdly, the calculations imply that curvature transition losses
caused by microbends may be efficiently avoided by using a soft coating
material. In this case non-uniformities in the coating tend to be absorbed
by the softer material rather than affect the fibre.

As mentioned above the reported model may be extended by allowing
discontinuous contact between fibre and surrounding medium. Extensions
allowing bends in all directions and/or twists in the fibre are also possi-
bilities within the framework of the stochastic process approach we have
employed.

4.3 Summary of chapter 4

In chapter 4 we have presented a technique for modelling microbend
induced losses in photonic crystal fibres. By regarding the displacement
of the fibre core, generating the microbends, as a stationary Gaussian
process and regarding coupling losses between fibre segments of different
curvature, we have calculated a mean loss factor for the fibre. Results
imply that index guiding photonic crystal fibres have significantly different
spectral characteristics when compared with step index fibres, and that
overall microbends do not explain the comparatively higher losses found in
PCFs. We have also not found any major difference between microbending
loss factors, associated with bends being oriented in either of the two
principal lattice directions of the fibre.
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By using a photonic bandgap fibre with a large air-filling fraction in the
cladding region, Cregan et. al. in 1999 [1] demonstrated an air-guiding
fibre with the property of guiding most of the optical power in a large
air-filled core region. A very similar crystal fibre design was suggested
and theoretically analysed by Broeng et. al. [2] indicating that the power
fraction propagating in the air-filled core could be as high as 98%.

One of the obvious consequences of the photonic bandgap wave-guiding
properties is a different kind of spectral sensitivity towards macrobends.
For the effective deployment of air guiding fibres as transmission fibres it
is of vital importance to characterise them in terms of macrobending loss
behaviour. This spectral response may also be of great interest for sen-
sory applications. In this chapter we will present a means of estimating
macrobending losses in photonic bandgap fibres.

5.1 General characteristics and mode calculation

Whenever an optical fibre is bent, some fraction of the transported power
will be radiated from the fibre core. This is the main source of loss when
considering macrobend losses. In a geometric optic description, the frac-
tion of electromagnetic fields on the outer side of the bend, must travel
faster in order to “keep up” with the wavefront. The fractions of the fields
that need to exceed the speed of light will be radiated from the mode. A
mode’s concentration to the core, and hence the magnitude of its mac-
robending loss, depends strongly on the index contrast between core and
cladding. The fundamental mode of a standard optical fibre, contracts
monotonically to the core with decreasing wavelength, leading to a single,
long wavelength loss edge. As noted earlier, (chapter 3), an index guiding
PCF exhibits a very different behaviour. As the effective index of the
cladding [3] [4] is wavelength dependent, and approaches that of the core
as the frequency increases, a second, short wavelength, macrobending loss
edge is present.

The picture is less clear for a photonic bandgap fibre. In contrast
to a real step index fibre, which has one single long wavelength, cutoff
wavelength, a photonic crystal fibre operating by the photonic bandgap
principle, will have two cutoff limits, i.e. the bandgap edges, defining a
wavelength interval in which a mode may be guided. This is indicated in
fig. 5.1, in which the photonic bandgap of the triangular cladding structure
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is shown, limited by the upper and lower bandgap edges. A full analysis
of the large-core photonic bandgap fibre reveals the presence of a degen-
erate core mode, and the small circles show the trace of these modes for
a normalised propagation constant interval from A = 8.4 to SA = 9.15.
Within the bandgap, the mode is confined within the air-core. Hence,
the leakage-free operational window of bandgap fibres is determined as
the spectral range for which the mode is positioned inside the photonic
bandgap. Outside the bandgap, the mode becomes resonant with allowed
cladding modes, and for a real (finite) fibre it must, therefore, be consid-
ered leaky. For a relatively broad spectral range, however, the leaky mode
retains its maximum within the air-core.
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Figure 5.1: Photonic band structure diagram for a silica-air, triangular
photonic crystal fibre with an air-filling fraction of 70%, and a core region
formed by the removal of seven central holes as illustrated in fig. 5.2. By
the circles, the band of the fundamental guided mode is indicated as it
traverses the band gap. The dashed line is the air-line where g = k.
The two deltas represent the two ways of determining the relative index
difference.
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5.2 Macrobending loss estimation

We analyse the mode-propagation properties of the air-guiding photonic
crystal fibres, by employing a plane-wave expansion method [5] [2] [6]. An
example of the air-guiding fibre structure analysed is shown in fig. 5.2,
where also the contour curves for the squared magnetic field distribution
of the guided mode are illustrated.

The fundamentally different properties of standard optical fibres ver-
sus those of photonic bandgap fibres, also reflect on the way to deter-
mine the macrobending loss. A full analysis of these properties, forms
an intensive computational task. In order to make a first estimate of
the macrobending losses, we have chosen a simpler approach, in which a
well-proven bending loss formula for standard optical fibres is applied [7]

(eq. 5.1).

P, JTA2 aexXp _421“’3R
Fq =2a = IP - (w;f—’_ivgw) 122 (5.1)

where R is the radius of the bend investigated.

To apply the formula we must express some key elements, in terms of
analogies between the step index fibre and the photonic bandgap fibre.
In a step index fibre, the modal index of a guided mode is bounded by
the core- and cladding refractive indices, and the mode’s confinement is
governed by the contrast, A, between these indices. A photonic bandgap
mode, on the other hand, is bounded by the modal indices of the permitted
cladding modes on the edges of the bandgap (or the zero dispersion, air
line [8] if it lies within the bandgap). It is therefore natural to define
A, as the difference between the upper and lower bandgap edges, 3, and
B respectively (fig. 5.1), or as the difference between the air line and f
where the it lies within the bandgap. As modes become leaky on either
side of the bandgap, we have chosen to let the the refractive index of
the cladding be defined by the bandgap edge closest to the propagating
mode. Following this analogy, we identify the following parameters of the
formulation (eq. 5.1):

- The effective v-parameter v = v s [3]'.

!"Known in the conventional fibre community as normalised frequency



? ‘main” — 2005/7/7 — 14:36 — page 91 — #99 ?

5.2 Macrobending loss estimation 91

Figure 5.2: Air-guiding photonic bandgap fibre structure. The cladding
structure is triangular with a pitch A = 1.1um and a relative hole diameter
d/A = 0.9. Also shown are the contour curves of the squared magnetic
field distribution of the guided mode calculated at a wavelength of 1.55um.
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- The cladding propagation factor, w = a(3% — ﬂgladdmg), where a is
the core radius of the fibre, and Bdding is B, By or the air line
— whichever is closer to to the mode. a is estimated through the

effective v-parameter, yielding a = 0.625A.

- the coefficient of the modified Bessel-function describing the field in
the cladding of a step index fibre, A..

- the total power carried in the mode, integrated over the fibre cross
section, P.

For added simplicity we have also used a Gaussian field approximation,
which greatly simplifies the representation of the ratio A2 to P [9].

5.3 Macrobending loss properties of air-guiding
fibres

With the above described formulation we calculated the macrobending
losses for a number of different wavelengths for two principal directions
shown in figure 5.3. A Gaussian field was fitted to each field distribution
to simplify the calculation of the macrobending loss. The tails of the field
distribution vary somewhat for the two directions, but are otherwise very
similar.

Results of our bending loss calculations are shown in figure 5.3 where
we have used a fibre designed to transmit power at a wavelength of
A = 1.55um. Note that both principal directions are plotted in figure 5.3.
Thus, we conclude that the macrobending loss function (under the given
simplifications) is comparatively insensitive to the directional field varia-
tions we see in figure 5.3. A further numerical analysis of the elements of
eq. 5.1 shows that the exponential function in the numerator is the overall
dominating factor, which yields the “on-off”-like behaviour.

In comparison, we have attained macrobending loss data for a stan-
dard, step index fibre?, and compared them to the calculated loss function
of the air-guiding fibre (fig. 5.3). Clearly the slopes of the air-guiding fi-
bre’s loss function are very much steeper. In a practical sense we obtain
a transmission window = 100nm wide. This very steep slope may for

2Chosen such that the loss edges coincide.
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Figure 5.3: The squared magnetic field in two principal directions of the
silica-air, triangular crystal fibre with air filling fraction of 70%, and core
region as depicted in fig. 5.2. The solid lines represent the calculated
fields, the dashed the fitted gaussians. The x-direction and y-direction
are represented by blue and red lines respectively.
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instance be used to differentiate wavelengths as the difference between a
radiated, and a transmitted wavelength is on the order of 10nm.
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Figure 5.4: Macrobending loss versus wavelength for two principal di-
rections for an air-silica photonic crystal fibre. Bending radius is 3cm.
Circles and triangles correspond to the photonic bandgap fibre, diamonds
to a standard step index fibre.

5.4 Summary of chapter 5

We have presented an analysis of macrobending losses in air-guiding pho-
tonic crystal fibres. The analysis shows that such fibres, as opposed to
standard optical fibres, show two bending loss flanks, in effect creating a
transmission band, in which optical power is transmitted with very lit-
tle appreciable bending loss regardless of bending radius. The slopes of
the loss-flanks are radically steeper than the slope of the bending loss
function encountered in standard fibres — the difference between a trans-
mitted and a radiated wavelength is on the order of 10nm facilitating a
means of differentiating between two wavelengths, which may be of use
for sensory applications.
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A wide range of modelling tools are available for modelling of PCFs
in general. Which one to choose depends on the application of the re-
sults. The most common method for PCF-modelling is, as noted before,
probably the plane wave method. It is a general approach which has
many of features wanted in a modelling system, such as availability of
highly optimised algorithms. It does, however, require that the fibre be
repeated indefinitely. This requirement also applies to the standard lo-
calised function method — hence, both methods are limited to fibres with
large cladding structures. Localised functions may be advantageous in
situations where electromagnetic field coupling is to be considered, due
to its representation of the fields in an orthonormal function set, with
a comparatively low number of expansion coefficients. If leakage loss is
to be considered, the multipole method is a better choice, which has the
added feature of respecting the full symmetry of the structure and there-
fore does not introduce any erroneous, numerical birefringence, which may
otherwise be encountered with other methods.

The purely Hermite Gaussian method, presented in this thesis, may be
a candidate for optimisation calculations, of for instance a single hole-size,
since the formulation of structures from superposition of defects in a back-
ground matrix. This allows altering a single air-hole, without the need
for recalculating the whole structure. The straightforward formulation
of the method also makes it particularly easy to set up a new structure
from scratch. It is conceivable to take a SEM-micrograph of a fibre end-
face, find the positions and shapes of holes by means of automatic image
processing, and calculate the properties of the fibre. For this vision to
become reality, however it is necessary to lessen the strong dependence on
the series characteristic width.

Our results for standard index guiding PCFs (triangular and square
lattice fibres) show that the general features of index guiding fibres may
be modelled using a formulation of this type, once an optimal character-
istic width has been determined. In the triangular case we experienced
a splitting of modes who should, by symmetry, be degenerate. This ef-
fect was not present in the quadratic lattice fibre, We concluded that this
was due to the Cartesian expansion axes, used in the formulation of the
model. Other notable results are dispersion characteristics for triangular
fibres which agree with previously reported results.
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The analysis of the pentagonal fibre (which although it is a mere gen-
eralisation of the triangular and quadratic lattice fibres, has, to the best
of our knowledge, not been presented before), also exhibits mode splitting
of degenerate modes similar to the case for the triangular fibre. This fibre
has interesting effective area characteristics, increasing the mode effective
area by up to 93% compared to the basic triangular fibre, for a moder-
ate hole size, with no increase in core size. This may be of interest in
applications demanding low nonlinear effects.

Localised function method are inherently not suited particularly suited
for bandgap calculations, since the forced localisation inhibits the inter-
action of the electromagnetic fields with a large number of lattice periods.
Furthermore, it is generally not an efficient procedure for bandgap calcu-
lations, since a large number of bands must be considered simultaneously
when evaluating the effect of the characteristic width of the function se-
ries, in order to sort out unstable solutions. Nonetheless, we have shown
that bandgaps may be identified in a honeycomb structure, and found
them to support defect modes. The bandgap modes were found to have
modal indices 3/k > 1. Hence, the fields distributions did, as expected,
not have their maximal field intensity in the central air-hole defect.

In some cases, such as the semi-periodic layered structures it is equally
difficult to use other models, which are generally more suitable to bandgap
calculations. In a plane wave formulation, the solutions associated with
the hollow core would be obscured by solutions associated with the high-
index voids inevitably appearing between supercells. This may be solved
by inserting extra holes in the voids, but might also perturb the solutions.
We have found localised stable solutions situated in a bandgap for two
types of layered semi-periodic structures. These mode were truly air-
guiding solutions (ratios of power in air: 73% and 84%).

Our calculations of microbend induced transition losses, lead us to the
conclusion that index guiding PCFs may be designed to be less sensitive
to such imperfections than step index fibres, on account of the compara-
tively large effective index contrast. It is necessary to keep in mind that
the formulation only took overall bends into account, and did not include
microdeformations of the fibre structure which inevitably will occur dur-
ing the manufacturing process. We may, however, conclude the overall
microbend induced transition losses are not the dominant cause of the
higher losses found in low-loss index guiding PCFs (~ 1dB/km), when
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compared to commercial, low-loss step index fibres (= 0.2dB/km).

The spectral characteristics of macrobending loss in an air-guiding
PCF, were investigated using an equivalent step index fibre approach, and
predicted to have extremely steep loss-curve slopes: Within a wavelength
range of 10nm the state of the bendloss is switched from full transmission
to full radiation loss. On account of this verifying the results experimen-
tally is predicted to be a difficult task.

6.1 Future work

Throughout the thesis, we have reminded ourselves of the dependence of
solutions on the series characteristic width. It is our conclusion that, if the
Hermite Gaussian method is to be useful beyond a few special cases, the
dependence on this parameter must be reduced. Drawing on ideas from
quantum chemistry, one way of reducing the dependency , could be to use
several simultaneous expansion series, centred on sites (for instance on
the centres of the inner ring holes) offset from the fibre centre. It is also
conceivable to use simultaneous series of different characteristic width.
Not that both of these strategies violate the the orthonormality of the
function set. Hence, additional matrix operations would be needed in the
formulation of the eigenvalue problem, which may be costly in terms of
calculation time. It is our firm conclusion that future versions Hermite
Gaussian method should include at least one of these solutions, regardless
of the extra cost.

As noted, natural extensions to the formulation of microbend losses,
include twists and bends in any direction. Bends may be formulated in
any directions during calculation, in which case we may extend the cur-
vature probability density function and the coupling coefficients into two
dimensions, i.e. let fibre core displacement be determined by two stochas-
tic processes, and use that as weight function for coupling coefficients.
If the displacement processes may be considered independent the prin-
ciple is straightforward. To consider twists, additional overlap integrals
would have to be evaluated since coupling coefficients may no longer be
expressed by summation over expansion coefficients.

With respect to macrobending loss investigations in air-guiding fibres
it is our conclusion that further investigations need to take vectorial field
effects into account to gain a more accurate description of the effect.



“main” — 2005/7/7 — 1%:36 — page 101 — #109

Acknowledgements

101



“main” — 2005/7/7 — 14f:36 — page 102 — #110

102 Acknowledgements

The author wishes to thank the following people for their help and sup-
port during the conception of this thesis. Without you it wouldn’t have
been possible. Thank you!

Anders Bjarklev, Jes Broeng
For kind supervision during these years.

Andrei Lavrinenko, Stig E. B. Libori, Morten G. Dyndgaard,
Thomas Sgndergaard, Thorkild Sgrensen, Kristian G. Hougaard,
Jesper Riishede, Theis P. Hansen

For fruitful discussions — scientific and otherwise.

Sofia Bergbick
Bettina Petersen



“main” — 2005/7/7 — 14:36 — page 103 — #111

List of publications

103



104

“main” — 2005/7/7 — 14:36 — page 104 — #112

List of publications

List of publications:

As a result of this Ph.D. project the following publications have arisen:

J. Broeng, S. E. Barkou, A. Bjarklev, T. Sgndergaard, E. Knudsen,
“Review paper: Crystal fibre technology”, DOPS-NYT, vol. 15, no.
2, pp- 22, 2000.

E. Knudsen, J. Broeng, S. E. Barkou, A. Bjarklev, “Investigations of
Photonic Crystal Fibers”, Photonic Crystals and Light Localisation
in the 21st Century, Hersonissou, Greece, jun., 2000.

E. Knudsen, A. Bjarklev, J. Broeng, S. E. Barkou, “Macrobending
loss estimation for air-guiding photonic crystal fibers”, 14th interna-
tional conference on Optical Fiber Sensors, pp. 904, Venice, Italy,
oct., 2000.

T. Sgrensen, J. Broeng, A. Bjarklev, E. Knudsen, S. E. B. Libori,
“Macrobending loss properties of photonic crystal fibre”, Electronic
Letters, vol. 37, no. 5, pp. 287, 2001.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev,
J. R. Jensen, H. Simonsen, “Highly Birefringent Index-Guiding Pho-
tonic Crystal Fibers”, Photonics Technology Letters, vol. 13, no. 6,
pp. 588, 2001.

A. Bjarklev, J. Broeng, S. E. Barkou Libori, E. Knudsen, H. R. Si-
monsen, “Photonic crystal fiber modelling and applications”, Optical
Fiber Communication Conference and Exhibit, vol. 2, mar., 2001.

A. Bjarklev, T. P. Hansen, K. Hougaard, S. B. Libori, E. Knudsen,
J. Broeng, “Microbending in photonlic crystal fibres - an ultimate
loss limit?”,27th European Conference on Optical Communication,

2001, vol. 3, pp. 322, sep., 2001.

T. Sgrensen, J. Broeng, A. Bjarklev, E. Knudsen, S. E. B. Libori,
H. Simonsen, J. R. Jensen, “Macrobending loss properties of pho-
tonic crystal fibres with different air filling fractions”, 27th European
Conference on Optical Communication, vol. 3, pp. 380, sep., 2001.



“main” — 2005/7/7 — 14:36 — page 105 — #113

105

J. Riishede, S. E. B. Libori, A. Bjarklev, J. Broeng, E. Knudsen,
“Photonic crystal fibres and effective index approaches”, 27th Euro-

pean Conference on Optical Communication, 2001, vol. 4, pp. 522,
sep., 2001

e T. Sgrensen, J. Broeng, A. Bjarklev, T. P. Hansen, E. Knudsen, S.
E. B. Libori, H. Simonsen, J. R. Jensen, “Spectral Macro-bending
Loss considerations on Photonic Crystal Fibres”, IEE Proceedings:
Optoelectronics, vol. 149, no. 5, pp. 206, 2002.

e K. G. Hougaard, A. Bjarklev, E. Knudsen, S. B. Libori, J. Ri-
ishede, P. M. W. Skovgaard, J. Broeng, “Coupling to photonic crys-
tal fibers”,Optical Fiber Communication Conference and FExhibit,
vol. 6, pp. 627, 2002.

e E. Knudsen, A. Bjarklev, J. Broeng, S. E. B. Libori, “Modelling pho-
tonic crystal fibers with localised functions”,SPIE Photonics West
2002, vol. 4616, pp. 81, San Jose, USA, jan., 2002.

e E. Knudsen “Modelling photonic crystal fibres with Hermite-Gaussian
functions”, Optics Communications, vol. 222, pp. 155, jul., 2003.

e E. Knudsen “Modelling of photonic crystal fibers with localized func-
tions”, Journal of Optical and Fiber Communications Reports, vol.
1, no. 3, 2004.

Patents:

e S. E. B. Libori, J. and Broeng, A. O. Bjarklev, C. Rasmussen and
E. Knudsen, “Optical fibre for transmitting light, has improved po-
larization and dispersion properties, and includes micro-structured
cladding region surrounding core region”,

Patent numbers: W0200241050-A2,AU200223515-A, may, 2002.

e J. Broeng, P. M. W. Skovgaard, E. Knudsen, J. B. Jensen and M.
D. Nielsen, “Optical waveguide for laser application, has cladding
region surrounding core region and one-dimensional periodic struc-
ture of structural units with specific period, where core units has
cross sectional elongated shape”,

Patent numbers: W02003100488-A, AU2003229545-A1., may, 2003.



“main” — 2005/7/7 — 14:36 — page 106 — #114



