

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Integrating Design Decision Management with Model-based Software Development

Könemann, Patrick; Kindler, Ekkart

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Könemann, P., & Kindler, E. (2011). Integrating Design Decision Management with Model-based Software
Development. Kgs. Lyngby, Denmark: Technical University of Denmark (DTU). (IMM-PHD-2011-249).

http://orbit.dtu.dk/en/publications/integrating-design-decision-management-with-modelbased-software-development(c32509cb-1c67-469f-b0f0-f9e9625149b1).html

Integrating Design Decision
Management with Model-based

Software Development

Patrick P. Könemann

Kongens Lyngby 2011
IMM-PHD-2011-249

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

Design decisions are continuously made during the development of software sys-
tems and are important artifacts for design documentation. Dedicated decision
management systems are often used to capture such design knowledge. Most
such systems are, however, separated from the design artifacts of the system.
In model-based software development, where design models are used to develop
a software system, outcomes of many design decisions have big impact on de-
sign models. The realization of design decisions is often manual and tedious
work on design models. Moreover, keeping design models consistent with all
made decisions is a time-consuming manual task that is often performed in peer
reviews.

In this thesis, a generic technology has been developed for extracting model
differences from models and transferring them to other models. These concepts,
called model-independent differences, can be used to specify realizations of deci-
sions in design models. This way, recurring realization work of design decisions
can be automated. Since the concepts are generic and not bound to design de-
cisions, other recurring work on models can be automated as well, for instance,
design patterns and refactorings.

With such a technology at hand, design decision realizations can easily be spec-
ified and parts of the realization work can be automated. A binding is produced
as a by-product that links documented decision outcomes to design model ele-
ments which are affected by the respective decisions. With a set of constraints,
such a binding can be used to validate the consistency between the design and
made design decisions. Whenever the evolving design models become inconsis-
tent with realized decisions, developers are notified about the violations. The

ii

violations can be fixed by correcting the design, adjusting the binding, or by
ignoring the causes. This substitutes manual reviews to some extent.

The concepts, implemented in a tool, have been validated with design patterns,
refactorings, and domain level tests that comprise a replay of a real project. This
proves the applicability of the solution to realistic examples. The implementa-
tion of model-independent differences, called MPatch, is further contributed to
the Eclipse open source project.

Resumé

Ved udviklingen af software systemer er der taget design beslutninger, som
er vigtige artefakter til design dokumentation. Dedikeret beslutningsmanage-
mentsystemer bruges ofte til at dokumentere design viden. De fleste værktøjer
er dog adskilt fra designet af systemet. I model-baseret software udvikling har
resultaterne af mange design beslutninger stor indflydelse p̊a design modellerne.
Normalt kræver det manuelt og besværligt arbejde at realisere design beslut-
ninger i design modellerne. Desuden er det en tidskrævende manuel opgave, at
holde design modeller i overensstemmelse med alle trufne beslutninger, som ofte
foretages i peer reviews.

I denne afhandling blev der udviklet en teknologi til specifikation af realiseringer
af design beslutninger. De koncepter, der kaldes model-independent differences,
omfatter en generisk teknologi til udvinding af forskelle fra modeller og overføre
dem til andre modeller. P̊a denne m̊ade kan gentagne realiseringer af design
beslutninger automatiseres. Da koncepterne er generiske og ikke bundet til de-
sign beslutninger, kan ogs̊a andet gentagende arbejde p̊a modeller automatiseres,
for eksempel design patterns og refactorings.

Med s̊adan en teknologi ved h̊anden kan realiseringer af design beslutninger
nemt specificeres og noget af realiserings arbejdet kan automatiseres. En bind-
ing fremstilles som et biprodukt, som forbinder dokumenterede beslutninger
med model elementer, der er berørt af de respektive beslutninger. Med et sæt
af begrænsninger kan s̊adan en binding bruges til at validere sammenhængen
mellem design og realiserede beslutninger. N̊ar design under udvikling bliver
uforeneligt med trufne design beslutninger, bliver udviklerne underrettet herom.
Uoverensstemmelser kan rettes ved at korrigere design, tilpasse binding eller ig-
norere årsagerne. Denne metode erstatter manuelle reviewes i vid udstrækning.

iv

Disse koncepter, som er blevet implementeret i et værktøj, blev valideret med
design patterns, refactorings og domain level tests, som omfatter en replay af
et reelt projekt. Dette beviser anvendeligheden af løsningen til realistiske ek-
sempler. Implementeringen af model-independent differences, kaldet MPatch,
er yderligere bidraget til open-source projektet Eclipse.

Preface

“Software documentation is a waste of time!”

This was one of the statements I was making in the early days as a programmer.
All programs I was confronted with these days were at most 1000 lines of source
code, which can indeed be understood without documentation. Today, after
having participated in software development teams between a half and 30 man-
years, I have a different opinion on software documentation. Without properly
documenting a piece of software, it is very hard, for instance, for new team
members and maintainers to understand a software system, especially when it
continuously grows. Understanding such software and researching the rationale
behind a design then requires a lot of effort. This is why I revised my opinion
to the following provocative statement.

“If a software is not documented, it does not exist!”

This, of course, only applies to reasonably complex software in which the time
for understanding it might exceed the time for rewriting the software. Since the
pure documentation task of software is tedious and without immediate benefit
for most developers, one of my goals for this project is to provide developers
a method in which they immediately benefit from documenting their software.
There are several tradeoffs I was confronted with in order to reach that goal. I
would like to briefly reflect on two of them.

A tradeoff that I often discuss with others concerns the degree of automation.
“This is always the automation I was looking for!” vs. “such a sensible step
should never be automated – developers must know what is going on here!”

vi Preface

I believe that there is truth in both perspectives. For the concepts and the
prototype I developed, it was about finding the right balance between provid-
ing enough automation that developers do not need to do recurring tasks and,
at the same time, providing enough control and transparency to developers to
understand and steer the tasks.

This brings me to the next tradeoff concerning functionality vs. usability. “It
might even be the coolest feature ever, but if it is too complex to use, no one
will use it!” Unfortunately, the circumstances under which I developed the
prototypic tool in the past three years, did not involve others who could help
with this task. Therefore, I had to concentrate on functionality with the result
of decent usability. If the developed tool shall be used beyond an academic
evaluation of the proposed concepts, the user interface needs some improvements
to make the new features easily accessible to the average software developer.
Still, I hope that I can convince many developers that documenting software is
not anymore a tedious task without immediate benefits.

The five research papers below have been published at conferences and work-
shops in the last three years whose contents are incorporated into this thesis.

[Kön10a] Patrick Könemann. Capturing the Intention of Model Changes.
In Proceedings of the 13th International Conference of Model
Driven Engineering Languages and Systems (MoDELS), October
2010.

[KZ10] Patrick Könemann, Olaf Zimmermann. Linking Design Decisions
to Design Models in Model-based Software Development. In Pro-
ceedings of the 4th European Conference on Software Architec-
ture (ECSA), August 2010.

[Kön10b] Patrick Könemann. Semantic Grouping of Model Changes. In
Proceedings of the 2010 TOOLS International Workshop on
Model Comparison in Practice (IWMCP), July 2010.

[Kön09b] Patrick Könemann. Integrating Decision Management with UML
Modeling Concepts and Tools. In Working Session of the Joint
Working IEEE/ IFIP Conference on Software Architecture 2009
(WICSA) & European Conference on Software Architecture
(ECSA), September 2009.

[Kön09c] Patrick Könemann. Model-Independent Differences. In Proceed-
ings of the 2009 ICSE Workshop on Comparison and Versioning
of Software Models (CVSM), May 2009.

vii

This thesis was prepared at the department of Informatics and Mathematical
Modeling, Technical University of Denmark in partial fulfillment of the require-
ments for acquiring the Ph.D. degree in engineering.

Lyngby, May 2011

Patrick P. Könemann

viii

Acknowledgements

I thank my supervisor Assoc. Prof. Dr. Ekkart Kindler for an exceptional su-
pervision and flawless guidance of my Ph.D. project and for the countless and
enlightening discussions despite busy schedules. Thank you for all the support
during the fabulous three years.

I thank my colleagues at the Software Engineering section at DTU and at the
University of Paderborn for numerous helpful discussion. I also thank all the
people I met and had discussions with during conferences and workshops.

I thank Dr. Olaf Zimmermann for all the creative discussions we had, especially
for his suggestions and encouragements, and for his kind hospitality during my
visits at the IBM Research Lab in Zürich.

In addition, for reading parts of an early draft of this thesis, I thank Markus von
Detten, Christian Gerth, Stefanie Knust, Anna-Lena Meyer, Jan Rieke, Dietrich
Travkin, and Olaf Zimmermann.

I thank the EMF Compare team for their interest in my work, for helping with
technological problems, and for integrating MPatch into the project’s repository.

It has been a pleasure to be part of DTU Informatics the last three years. In
particular, I enjoyed plenty of coffee breaks with Julia Borghoff and Michael
Reibel Boesen which distracted me from work and made me gain new energy.

Last but not least, I thank Stefanie Knust and my family for supporting me, in
particular, when things were not going as expected.

x

Glossary

Alternative. An alternative is a possible solution of an issue for a decision; see
also Decision.

API. An Application Programmable Interface of an application allows commu-
nication and interaction with other tools.

(Software) Architect. The person who is responsible for the architecture of
a software system.

Architectural (Design) Decision. An architectural design decision is a spe-
cial kind of a design decision that concerns the architecture of the software
system.

(Software) Architecture. This is the global structure of a software system,
often described as a set of components and connectors between them; non-
relevant technical details or inner structures of components are usually
omitted.

(Decision) Binding. A decision binding or binding is a link between the out-
come of design decisions and particular elements in the design artifacts of
a software system.

Decision. A decision is the choice of a solution for a particular problem; possi-
ble solutions are called alternatives and the instance of a decision is called
outcome; see also Design Decision.

Decision Maker. The person who is responsible for making decisions.

xii Glossary

(Software) Design. The design of a software system includes the higher-level
architectural design and its refinements; this may also include technical
and platform-specific, details.

Design Decision. This is a decision that has an effect on the design of a soft-
ware system during its development; see also Decision.

Design Documentation. It contains details about the logical and technical
design of a software system, including structural and behavioral parts and
ideally also the rationale behind the design.

Design Issue/Problem. A design issue defines a particular issue or problem
in the design of a software system.

Design Model. The design is described in terms of a model such as a UML
model.

Design Model Changes/Updates. Design model changes or design model
updates are made by software developers whenever they work on or extend
the design model; model differences can be used to calculate and describe
such changes.

Design Pattern. A design pattern is a widely accepted solution to a recurring
design problem; the description often includes the problem, the solution,
variants, examples, and relations to other patterns.

(Software) Developer. A person who participates in the development of a
software system.

Metamodel. A metamodel is the model of a model which defines the structure
of a model, an example is the UML metamodel; see also MOF.

Model. A model is the abstraction of a software system, neglecting mostly
technical details; it may consist of multiple parts, each focusing on one
particular aspect of the system.

Model Change. A model change describes a modification in a model; exam-
ples for UML models are added elements like classes and activities, up-
dated properties like the names of elements, and removed references like
inheritance relations.

Model Differences. This is a set of model changes, typically calculated from
two versions of a model; see also Model-dependent and Model-independent
Differences.

Model Element. This is one particular element in a model; in case of UML
it might be a class or an attribute in a class diagram, or an event in a
sequence diagram.

xiii

Model-based Software Development. A branch of software development in
which formal models are used for describing the software system, for ex-
ample, to generate code out of it.

Model-dependent Differences. This is a concrete set of model changes for a
pair of models that has been compared with each other; the changes refer
to the compared models and cannot be applied to other models.

Model-independent Differences. This is a set of model changes that is in-
dependent of any concrete model, including the models from which the
differences have been calculated from; model-independent differences are
in particular also applicable to other models.

(Software) Modeler. A person who is responsible for or participates in the
development of the design model of a software system.

MOF. The Meta Object Facility defines meta levels for the definition of mod-
els; M0 specifies the data in a running system, M1 a model, for instance,
a design model, M2 the metamodeling language, and M3 the meta meta-
modeling language.

MPatch (upper case). This is the tool implementing model-independent dif-
ferences.

mpatch (lower case). This is an artifact containing model-independent dif-
ferences.

(Decision) Outcome. An outcome is the result of a design decision, includ-
ing in particular the rationale of the decision and information about the
affected parts in the design; see also Decision and Binding.

Refactoring. Structural changes of an artifact like code or a model without
altering the functionality of the artifact; refactorings are typically used to
clean up the artifact and/or to improve readability and extendibility.

UML. The Unified Modeling Language is a general-purpose modeling language
for software systems; it contains several types of diagrams to describe
structural and behavioral parts of a system.

xiv

List of Figures

1.1 Exemplary changes in UML models. 7

2.1 An excerpt of the presentation layer in the design model. 12
2.2 The decisions Session Awareness and Session Management. . . . 14
2.3 The solution Server Session State in the design model. 15

3.1 Architectural knowledge categorized into project-independent vs.
project-specific and implicit vs. explicit knowledge. 18

3.2 Kruchten’s ontology for design decisions. 19
3.3 The metamodel for reusable architectural decisions by Zimmer-

mann. 20

5.1 The refactoring extract superclass applied to a model MA. 36
5.2 Another model MB to which the refactoring extract superclass

should be applied. 37
5.3 The overall process for creating model-independent differences

from a model MA and applying them to a model MB 42
5.4 A simplified illustration of the process from Fig. 5.3. 43
5.5 The packages of the metamodel for model-independent differences. 48
5.6 An excerpt of the metamodel for model-independent differences

showing MPatchModel, IndepChange, ChangeGroup, Unknown-
Change. 49

5.7 The metamodel for added elements. 50
5.8 An instance of an IndepAddElementChange as a UML object di-

agram. 51
5.9 The metamodel for added and deleted references. 52
5.10 The metamodel for updated attributes. 53
5.11 The metamodel for symbolic references. 57

xvi LIST OF FIGURES

5.12 Several kinds of cross references between model changes. 62
5.13 The metamodel for model descriptors. 63
5.14 Two changes that depend on each other. 63
5.15 The metamodel for symbolic references that refer to model ele-

ments which are described by a model descriptor. 64
5.16 EMF Compare calculates and visualizes model changes. 66
5.17 Parts of the model changes in Fig. 5.16 in abstract syntax. 67
5.18 An excerpt of the EMF Compare metamodel. 68
5.19 An excerpt of the metamodel for model-independent differences. 69
5.20 Informal sketch of the transformation from emfdiff to mpatch. . . 70
5.21 The initial mapping Ψ produced in the matching phase. 82
5.22 The metamodel for mappings from model changes and their sym-

bolic references to model elements. 83
5.23 Result of the initial matching of generalized changes to model MB . 88
5.24 Model MB after the application of the generalized changes. . . . 89
5.25 Informal sketch and purposes of the binding. 90
5.26 An excerpt of the metamodel of the binding between model changes

(IndepChange) and model elements. 91
5.27 An excerpt of the metamodel for the binding concerning add ref-

erence model changes. 92
5.28 A binding for an add reference change, applied to two model

elements. 93

6.1 The design model has been evolved: a class has been moved and
an association has accidentally been deleted. 99

6.2 The decision making task depends on the role and context. . . . 101
6.3 The definition of design decisions in terms of a metamodel. . . . 103
6.4 The extended definition of design decisions includes a link layer

to affected design artifacts. 104
6.5 A scenario for handling a design decision: identification, making,

realization, and validation. 106
6.6 The proposed tool setup for our extension to modeling tools. . . 107
6.7 An example of ad-hoc decision capturing. 110
6.8 Prospective, retrospective, and ad-hoc decision capturing. 111
6.9 Preparing the documentation of a design decision. 114
6.10 Realization of a design decision. 116
6.11 Using model-independent differences as realizations for design de-

cisions. 117
6.12 The binding can be used to navigate between decisions and design

artifacts within the modeling tool. 118
6.13 The binding can be used to detect modifications in the design

that violate realized decisions. 120
6.14 Three element level constraints and the related parts of the bind-

ing metamodel. 123

LIST OF FIGURES xvii

6.15 Two realization level constraints and the related parts of the bind-
ing metamodel. 124

6.16 A decision level constraint and the related parts of the binding
metamodel. 125

6.17 The process of how violations are shown and fixed. 130
6.18 Fixing two violations of the example. 131
6.19 Relations between decisions in the example. 133
6.20 The decision identification process exploiting inducing and re-

stricting relations between design decisions. 135

7.1 The dialog for configuring the creation of an mpatch. 141
7.2 The dialog for applying mpatches to a model. 142
7.3 The design decision view connected to the ADK Web Tool. . . . 143
7.4 A detailed view on the binding shows all violations. 144
7.5 The architecture of our tool is based on the Eclipse platform. . . 147
7.6 The MPatch Extension Manager. 148
7.7 The interface for decision management systems. 152
7.8 Status transitions for design decision outcomes. 153
7.9 The automated MPatch testing process. 155
7.10 The results of the performance tests on generated models. 156

8.1 The system’s architecture shown as a UML component diagram. 165
8.2 The design model before and after the realization of decision 1. . 169
8.3 The realization specification of decision 1. 169
8.4 The chosen reference architecture for a business process engine

applied to the design model (decision 3). 170
8.5 Message queues have been removed by decision 6 and decision 3

is now violated in the design. 172
8.6 Fixing the violations by ignoring the invalid binding elements. . . 173
8.7 The realization of decisions 8 and 9 in the design model. 174

A.1 The complete metamodel of EMF Compare. 191
A.2 The complete metamodel of model-independent differences. . . . 192

C.1 The complete metamodel of the binding between design decisions
and design models. 200

xviii LIST OF FIGURES

List of Tables

2.1 A simplified template for making a design decision. 13
2.2 Documentation of the design decision Session Awareness. 13
2.3 Documentation of the design decision Session Management. . . . 14

3.1 Nine basic change types for MOF-based models. 24
3.2 Overview of existing model differencing approaches. 26

5.1 List of changes in model MA (Fig. 5.1). 36
5.2 Comparison of Model Transformations and Model Differencing

technologies for specifying realizations of design decisions. 40
5.7 An overview of all change types supported by model-independent

differences. 48
5.8 Different matching strategies used in related work. 58
5.9 List of different types of cross references. 62
5.10 Overview of all mappings of the transformation specification. . . 71
5.11 Overview of our generalization and structuring transformations. . 75
5.12 List of generalized changes after abstractions. 80
5.13 Criteria for detecting applicable model changes. 85
5.14 Criteria for detecting applied model changes. 85

6.1 Violations and possible ways to fix them. 129
6.2 Relations between design decisions in existing approaches. 134

7.1 Test cases and results for MPatch. 154
7.2 Test cases for the decision interface and results for the ADK Web

Tool and the DTU Decision Server. 157

8.1 Using design patterns as design decisions. 161
8.2 Using refactorings as design decisions. 162

xx LIST OF TABLES

8.3 An overview of all design decisions in the domain level test. . . . 167
8.4 Profile aggregation of all interviewees. 177

C.1 An overview of all affected model elements for each change type. 201
C.2 List of all constraints grouped by changes types. 202

Contents

Summary i

Resumé iii

Preface v

Acknowledgements ix

Glossary xi

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 Model-based Software Development 3

1.2 Decision Making in Software Development 4

1.3 Describing Model Changes . 6

1.4 Research Methodology . 7

1.5 Scope . 9

1.6 Contributions . 10

2 Example 11

2.1 Background . 11

2.2 Design Decisions . 13

2.3 Decision Characteristics . 15

2.4 Summary . 16

xxii CONTENTS

3 State of the Art 17

3.1 Design Decisions . 17

3.2 Specification of Model Changes 23

3.3 Traceability . 27

4 Research Methodology 29

4.1 How to improve Design Decision Documentation? 31

4.2 How to automate recurring Realizations of Design Decisions? . . 32

4.3 How to ensure Consistency between Decisions and Design Models? 33

5 Model-Independent Differences 35

5.1 Requirements for describing Model Changes 38

5.2 Process for Creating and Applying Model Differences 41

5.3 The Metamodel for Model-Independent Differences 44

5.4 Symbolic References . 55

5.5 Model Descriptors . 61

5.6 Creating Model-independent Differences 65

5.7 Generalizing and Structuring Model Changes 74

5.8 Applying Model-independent Differences 81

5.9 The Binding . 89

5.10 Related Work . 94

5.11 Summary . 95

6 Design Decisions in Model-based Software Development 97

6.1 Motivation and Goals . 98

6.2 Design Decisions in Software Development 100

6.3 Capturing Design Decisions . 109

6.4 Identifying, Making, and Realizing Design Decisions 113

6.5 Validating Design Decisions . 119

6.6 Design Model and Decision Evolution 126

6.7 Proposing Subsequent Design Decisions 133

6.8 Related Work . 136

6.9 Summary . 138

7 Tool Support 139

7.1 The Graphical User Interface . 140

7.2 Requirements for the Tool Design 145

7.3 Tool Architecture . 146

7.4 MPatch API . 148

7.5 Interface to Decision Management Systems 151

7.6 Testing the Prototype . 153

7.7 Conclusion and Discussion . 158

CONTENTS xxiii

8 Validation 159
8.1 Applicability . 160
8.2 Domain Level Test . 164
8.3 Interviews . 176
8.4 Summary . 180

9 Summary and Conclusion 183
9.1 Summary . 183
9.2 Conclusion . 186
9.3 Future Work . 187

A Transformation Specification from emfdiff to indepdiff 189

B Similarity Algorithm for Strings 197

C Binding Metamodel and Constraints 199

D Interviews 205
D.1 Interview Scheme . 205
D.2 Interview Summaries . 207

Bibliography 225

xxiv CONTENTS

Chapter 1

Introduction

The development of software systems is a big challenge and will become an
even bigger challenge in the future because the complexity of software systems
increases continuously. Especially big companies like banks, automobile man-
ufacturers, or telecommunication providers need sophisticated and customized
software, adjusted to their specific needs. Such software systems are not devel-
oped by individuals but in teams, so that different tasks are distributed among
the team members. The development of a complex software system might take
a long time, up to several years. The success of such a development project
depends on proper coordination of the development team, tools for planning,
implementing, and analysing software systems, communication between differ-
ent stakeholders, and proper documentation, to name just a few factors.

An important type of documentation in ongoing research of software architec-
ture during the last decade is design decisions. Any software developer and
in particular software architects make decisions that influence the architectural
design of software systems. The design of a software system comprises all arti-
facts that describe the design, code, models, and other artifacts describing the
system. The choice of technologies, databases, or architectural and other design
patterns are examples for design decisions. The outcome of a design decision
has an impact on the design of the software system, hence the name design
decisions. Jansen and Bosch present an extreme point of view in which the
architectural design consists of design decisions [JB05, p. 1]:

2 Introduction

”We define software architecture as the composition of a set of
architectural design decisions.”

The advantage of documenting design decisions instead of only documenting the
resulting design is that also the rationale behind the design is captured. This
makes the design documentation better understandable to others, for instance,
during software maintenance. Decision management systems help developers
to document such decisions. However, the state of the practice is that de-
sign decisions are rarely documented explicitly. Their documentation is often
not mandatory and takes too much time, nor is their documentation properly
supported by any mature software development tool. The reason for not doc-
umenting them is usually that developers do not see immediate benefit for the
extra effort. Instead, only the final design without the rationale behind it makes
its way into the documentation. That makes it hard for others to follow and
understand the design.

One particular field of software development uses models for the description
of software systems. In this field, known as model-based software development,
models with defined syntax and semantics are used to abstract from technology-
specific implementations. When such models are used for developing the logical
design and architecture of a software system without considering technical de-
tails, they are called design models. They can also be used for documenting
the system, especially when they have a graphical representation. Since design
decisions have an impact on the design, design models are also affected, and,
thus, the same problem occurs: without proper documentation, design models
might be hard to understand for people who did not create the design. If the
rationale behind the decisions or, even worse, the decisions themselves, are not
documented, the design knowledge vaporizes eventually. Another big problem
is to check whether made design decisions are properly realized in design mod-
els and that the design is consistent with the documentation. Especially when
decisions are not documented properly, a conformance check between design
decisions and design models is a tough and tedious job to do, if possible at all.

This thesis analyses design decisions from the perspective of model-based soft-
ware development and proposes methods for supporting developers with respect
to the aforementioned problems. So far, design decisions have been studied on
the architecture level and on linking them to code, but only little research has
been performed relating design decisions to models in model-based development
of software systems. Two major aspects are discussed in this work: the first is
an analysis of how software developers can be supported in making and realiz-
ing design decisions. This involves the consideration of alternative solutions for
open decisions, the actual documentation of made decisions, and in particular
the realization of the chosen solution in the design models. If the solution is

1.1 Model-based Software Development 3

realized in the design, we speak about realized decisions. The second aspect is
how design decisions are used after they have been made and realized. That in-
cludes using them for documentation, for visualizing affected parts of the design
models as well as for analyzing whether the design models and the outcomes of
design decisions conform to each other.

The overall goal is to improve support for design decisions in model-based soft-
ware development, structured in three subgoals. Frist, the documentation of
design decisions shall be related to design models that are affected by the re-
spective decisions. This way, design decisions shall be linked to the model.
Second, the realization of recurring design decisions shall be easier and less
error-prone. If design decisions recur in the same or similar projects, their solu-
tions and realizations in the design might be automated. Third, the consistency
between made design decisions and affected design models shall be validated
automatically.

In this project, tool-independent concepts have been developed for achieving
these goals. As a proof of concept, a prototypic tool realizes these concepts to
show the technical feasibility of the goals. It integrates with a modeling tool and
a decision management system as a central place for storing and maintaining
design decisions and for creating a knowledge repository.

The remainder of this chapter briefly introduces the main areas the thesis is
dealing with: model-based software development, decision making, and model
changes as an approach for describing design templates for models. Lastly, it
outlines the research methodology and contributions.

1.1 Model-based Software Development

This section introduces model-based software development as it is required to
understand the contributions of the thesis, because design models are the arti-
facts in which the outcomes of design decisions are realized. After describing
the characteristics and use of models, the next sections discuss what design de-
cisions are, how they are made, and how extensions and changes in models can
be expressed.

Models are used for several reasons to describe software systems. For many
developers the most important reason for using models is raising the level of ab-
straction. Complex software systems can be described by models ignoring tech-
nical or other details that are not relevant when the models are used. Moreover,
models offer a common and technology-independent language for developers to

4 Introduction

discuss software designs. For some models, the syntax and semantics are well-
defined and parts of the code can automatically be generated from such models.

There are different types of models for different purposes. Structural models are
typically used to describe the static structure of a software system or of parts
of it. Behavioral models, in contrast, can be used for describing the behavior
and, thus, the dynamics of a software system. The Unified Modeling Language
(UML), for instance, is a general-purpose modeling language for software sys-
tems that is widely used in academia and in industry. It includes notations for
structural as well as for behavioral aspects of a software system. More special-
ized modeling languages are the Business Process Model and Notation (BPMN)
for describing business processes, the Systems Modeling Language (SysML) as
an extended subset of UML for systems engineering, or Petri Nets that can be
used for simulations and software verification. The model-driven architecture
approach (MDA) specifies further how such formal models can be used to step-
wise refine a system specification down to the code level. This thesis focuses on
structural models because it would be too difficult to also consider the semantics
of behavioral models. The UML is used to illustrate examples.

Sometimes special non-functional requirements apply to a software system such
as safety and security requirements, real-time behavior, or other domain-specific
aspects. Such requirements entail special constraints on the design that are
omnipresent during the entire development. These cases are out of scope in this
thesis and it is the responsibility of the developers to properly integrate such
additional requirements and their implied constraints into the design.

1.2 Decision Making in Software Development

Decisions are made in any genre of software development, not only when models
are used. This section briefly explains what design decisions are, by whom
they are made, and what consequences arise when making them implicitly or
explicitly. Then the focus shifts towards model-based software development as
a special genre of software development.

Decisions can occur in every phase of a software development project. At the
beginning, the team size and members must be chosen, the development tech-
nologies must be decided, and the team must agree on one or many modeling
and/or programming languages. Further typical decisions are the architectural
style of the overall software system and individual components, which databases
and communication protocols should be used, whether third-party application
should be bought, etc.

1.2 Decision Making in Software Development 5

Many decisions refer to the design of the system, like choices concerning the
system architecture, databases, communication protocols, or the use of design
patterns. Only decisions concerning the design of a system are relevant, orga-
nizational, strategic, and other decisions are disregarded here. Whenever we
talk about design, we refer to it as a set of design artifacts. Kruchten and Kroll
[KK03] define an artifact as one of many kinds of tangible by-products produced
during the development of software. A design artifact can, for instance, be de-
sign documents, design models, test data, or code. We call any decision that has
direct or indirect impact on design artifacts a design decision; the result of such
decisions will be reflected in design artifacts. The meaning of indirect impact is
that the decision is related to the design and subsequent work or decisions will
modify the design.

The overall task of making design decisions can be divided into three steps:
first, the identification of a design issue, e.g. the need for an architectural style;
second, the choice of a particular solution, e.g. to use a layered architecture;
third, the realization of that solution in the design, e.g. to create appropriate
components in a design model. Depending on the severity and impact of the
decision, the selection of the solution and its realization might be performed by
people with different roles. Software architects are the main decision makers
for significant decisions and their realization in the design is mostly delegated
to developers like modelers or programmers, whoever is suited best. This may
also be the same person acting as both roles. Before explaining that delega-
tion, we briefly discuss the consequences of decisions whose outcomes are not
documented.

In small or short-term projects, the documentation of most design decisions
might not be necessary because asking other developers is often fast and easy.
Undocumented and unconsciously made decisions are implicit decisions – in
contrast to explicit decisions that are documented and, thus, consciously made.
In big and long-term projects, team members come and go, developers might
forget what they have developed a year ago, and, consequently, the undocu-
mented rationale behind the design vanishes eventually. New team members
and maintenance engineers have a tough job understanding the system properly
because of outdated or missing documentation. Hence, they either have to spend
much time understanding the design or they might add errors because they are
unable to estimate the impact of their modifications. In order to avoid these
scenarios, the project management or lead architects could enforce an explicit
documentation policy for the design and decisions affecting it.

After a design decision has been made, the chosen solution might require an
extension or change of the current design of the system. Assuming that a soft-
ware architect made the decision, he or she might delegate the realization task
to other developers. This delegation is usually carried out face-to-face or with

6 Introduction

an example solution and a description that show how the solution can be real-
ized in related design artifacts. A major part of this thesis discusses how such
realizations of design decisions and their implied changes in and extensions of
design models can be specified and automated. To this end, the next section
introduces model changes and how they can be described.

1.3 Describing Model Changes

Most design decisions imply changes in design artifacts which, in case of model-
based software development, are models. Considering design decisions that are
frequently made, like the realization of design patterns, the implied changes in
the design are recurring work every time this particular decision is made. This
section introduces the concepts of model changes for specifying such decision
realizations, similar to a template that can be applied to arbitrary design models.
That way, the realization of design decisions can, to some extent, be automated.

The naive way of describing changes in any model is to express what has been
removed and what has been added. However, we might lose important informa-
tion like the identity of particular model elements, for instance: moving some
element in a model to another place has a different meaning to the user than
deleting that element in the old place and adding some element at the other
place. It would be difficult for the user to see that an addition and a deletion
express a move, in particular if these are only two within a big set of model
changes. So we need adequate concepts to describe meaningful model changes
that the user understands.

All aforementioned types of models, including UML, can be represented as at-
tributed graphs which distinguish between nodes, references between nodes, and
node attributes. There are at least nine types of changes for attributed graphs
to cover all kinds of changes for such models: the addition, deletion, and update
of model elements (nodes), references (edges), and attributes. Fig. 1.1 illustrates
three of these changes on exemplary UML model fragments. The left-hand side
of Fig. 1.1 illustrates the deletion of an element, the UML interface IController.
The middle part depicts an added reference, an inheritance relation between
two classes. The right-hand side indicates an update of the attribute isAbstract
which is defined for all classifiers in UML.

The outcomes of design decisions extend or change existing parts of a design
model. Such extensions or modifications could be described with a set of model
changes like the ones just presented. When a user wants to extend an existing
model by realizing a design pattern, which is the outcome of a design decision,

1.4 Research Methodology 7
change_examples example_changespackage []

-type : Integer
MyController

IController
-type : Integer
MyController

unchanged
changed

IView

IView

MyForm

MyForm

Form

Form

Figure 1.1: Example changes; left: a deleted element (node in UML: inter-
face); middle: an added reference (reference in UML: generalization); right: an
updated attribute (attribute in UML: isAbstract).

that realization has probably been performed before by someone else in another
project. Suppose that this realization is available as a set of prescribed model
changes, and that these model changes can be applied to the user’s model, we
can save time because there is no need anymore to realize the pattern by hand.
Moreover, the automated application of predefined model changes reduce the
likeliness to introduce modeling mistakes.

There are two large areas in the literature that deal with describing model
changes: model differencing technologies compare existing models and calculate
and visualize differences; model transformation technologies modify existing or
create new models based on a transformation specification. Their concepts in-
tersect to some extent, but their intentions are different. Model transformations
are mostly non-interactive and come with their own specification language and
notation for transformation rules. Model differencing, in contrast, is usually
interactive and uses the notation of the model of interest, but the computed
model changes are typically not applicable to other models than the compared
ones. Although both kinds of technologies have their advantages, neither of
them is properly capable of describing, applying, and persisting design model
changes. Section 5.1 compares the two technologies in more detail.

1.4 Research Methodology

This research project tackles existing problems in literature about design deci-
sion support in software development. In contrast to existing work, we concen-
trate on model-based software development and focus on design decisions that
relate to design models. Here we give a high-level overview of the motivation,
the goals, and the proposed solution.

8 Introduction

Motivation. Existing work deals with the documentation, capturing, mak-
ing, and reasoning of design knowledge including design decisions. However,
the support of design decisions in model-based software development is unsat-
isfactory, most concepts relate decisions to source code. Modeling tools and
decision management systems merely coexist without proper integration. Thus,
the ultimate motivation is to achieve an integration of design decisions with
design models similarly as it is already the case for source code.

Goals. The goal in this research project is an improvement of design decision
support in model-based software development in respect of the following aspects.

1. The documentation of design decisions shall be related to design models
which are affected by the respective decisions. A link between these two
artifacts, design decisions and design models, shall improve the documen-
tation of design decisions and design models.

2. The realization of design decisions shall be easier and less error-prone.
Design templates for recurring design decisions shall help developers to
automatically realize design decisions. The creation and application of
such design templates shall be easy and with little effort.

3. Realizations of design decisions in design models shall be validated auto-
matically.

Solution. We propose a model differencing technology to specify design deci-
sion realizations as design templates and, in this way, integrate design decisions
with design models. This addresses the aforementioned subgoals which have
not yet been solved for model-based software development. Our solution ex-
tends and adjusts existing use cases for handling design decisions to the new
setting. A prototype was developed that implements the conceptual solution
and shows the technical feasibility of the extended and adjusted use cases.

Evaluation. An evaluation of the proposed solution would at least consist of
a feasibility study and an experiment in which the concepts are applied in a
realistic environment like a running project. The first part of our evaluation
is a prototypic implementation of the proposed concepts including correctness
and interoperability tests. Due to time constraints of this research project, the
prototype was not applied in a running project. Instead, we performed several
applicability and domain level tests to simulate realistic examples. A case study
in which the prototype is applied in a running project remains as future work.

1.5 Scope 9

1.5 Scope

The solution presented in this thesis includes new and adjusted use cases for
design decision support in model-based software development as well as a new
model differencing technology. This section discusses the scope, important as-
sumptions, and limitations of the presented solution.

There exists already a lot of research about design decision support and the
literature lists plenty of use cases which support developers in, amongst others,
identifying, making, documenting, and analyzing design decisions. Instead of
reinventing the wheel, this thesis assumes that existing use cases and tools
can be extended and complemented to fit the context of model-based software
development. We focus on design decisions that are closely related to design
models. Many other approaches provide support for decisions concerning, for
instance, the development process of a project or its organization. Our solution
allows to document such decisions as well, but reuse of design decision solutions
is limited to decisions which imply concrete changes in design models. Hence,
the main purpose of the model differencing technology is to specify and automate
changes in design models that are implied by fine-grained design decisions. Since
changed model elements are later traced to design decisions and vice versa, our
solution works best if the number of changed model elements per decision is
concise and in total at most 20–30, depending on how the complexity of all
changes can be understood by developers.

Examples for model changes of interest are refactorings, application of design
patterns, or any other concrete modifications on design models. The differ-
encing technology defines model changes in terms of the models’ metamodels,
and some of the presented concepts require textual attributes on model ele-
ments. Hence, models must be defined in terms of a metamodel and individual
for the generalization of model changes, model elements must contain textual
attributes.

We further assume that model differences created from one particular type of
models shall again only be applicable to the same type of models. For instance,
if model changes were specified for UML models, it is sufficient that they are
again only applicable to UML models. This is reasonable in most cases, since
recurring design decisions are typically applied in the same context.

10 Introduction

1.6 Contributions

The previous sections introduced the two major areas of this research project,
decision making in software development and model-based software develop-
ment. The contributions are divided into conceptual work, two concrete frame-
works, and the lessons learned from the validation of these frameworks.

The first contribution refers to the first goal and presents an analysis and
concepts of how decision making tasks and their documentation can be inte-
grated into model-based software development. A tool implements the concepts.
This includes an interface description for the interoperability between decision
mangement systems and modeling tools. Benefits are easy-to-access documen-
tation of design decisions for design models and reuse of design knowledge.

The second contribution are concepts and tool support for specifying, creating,
and applying realizations of design decisions in design models. These technical
concepts are called model-independent differences and refer to the second goal.
Benefits are the automation of redundant, recurring, and tedious work on design
models as well as the consideration of alternative solutions. The latter requires
that realization specifications of design decisions can be stored, for instance, in
a knowledge repository.

The third contribution are concepts and tool support for validating that design
models conform to made design decisions. This refers to the third goal and
is achieved by linking the outcomes of design decisions to the affected design
model elements. Based on these links, a set of constraints ensures that the
models conform to all realized decisions. The benefit is an early detection of
potential modeling errors and inconsistencies.

Two tools have been developed and published as part of this thesis. First,
MPatch is an implementation of model-independent differences and has been
integrated into EMF Compare, part of the open source project Eclipse. Ex-
ample applications are capturing refactorings or design patterns and applying
them to other models. Second, the framework for Design Decision Support
in model-based software development integrates decision management systems
with model-based development tools. It realizes the concepts of the first and
third contributions, makes use of MPatch, and uses external decision manage-
ment systems to connect to a design knowledge repository.

Chapter 2

Example

The example in this chapter introduces the domain of making decisions in soft-
ware development. It is an excerpt from a bigger example [Kön09a] and illus-
trates two decisions for the logical design in the model-based development of a
fictitious enterprise application. In this chapter, the example is explained with-
out any new concepts that are introduced in this thesis. The remaining chapters
refer to this example and Chapter 6 extends it to illustrate concepts.

Both design decisions in this example originate from patterns from the book Pat-
terns of Enterprise Application Architecture [Fow02]. The decisions are made by
an architect whereas the realizations of their outcomes are performed by other
developers. Before diving into the decision making tasks, a fictitious background
and preceding decisions are outlined.

2.1 Background

A fictitious enterprise E sells and installs devices for end-users for measuring
their energy consumption. E’s agents visit the end-users for installing the de-
vices, for taking a reading from them, and for maintaining them. To this end,
the agents connect to a central server to access and update customer data and
the readings.

12 Example

Let us assume we develop the server software for enterprise E which shall provide
the customer data to the agents. We will develop this enterprise software in a
team consisting of a project lead and several developers, including one software
architect and several modelers and programmers. Let us further assume that
the design decisions below have already been made. It is irrelevant at this point
when and by whom these decisions were made, they are only listed here to
introduce the setting to the reader.

• A client-server architecture will be used, having one central enterprise
server and one client per agent.

• The communication between the agents and the server will be web-based
via the internet.

• Three layers will be used on the server to separate the data (data access
layer), the business logic (domain layer), and the communication between
the server and the agents (presentation layer).

• The presentation layer is organized according to the MVC (Model-View-
Controller) paradigm.

presentation

ContractControllerContractForm

ContractModel

sessions

DataSessionManager

getSession ()

CustomerSession

customerId : String
customerName : String
...

MeasurementSession

customerId : String
oldValue : double
...

«interface»
ISession

view_model
1

+ model

1+ view

view_controller
1

+ controller
1

+ view

controller_model
1

+ model

1+ controller

1
*

- sessions

controller_model
1

+ model

1+ controller

view_controller
1

+ controller
1

+ view

view_model
1

+ model

1+ view

1
*

- sessions

Figure 2.1: An excerpt of the presentation layer in the design model: the package
presentation comprises components according to the MVC paradigm, sessions
contains several components for session handling.

Let us assume that a design model already exists which incorporates all of these
design decisions. The two design decisions presented in the next section refer to
the presentation layer depicted in Fig. 2.1. Three classes on the left-hand side
represent the respective components of the MVC paradigm; package sessions
contains several classes for handling sessions in other parts of the application.
This model is a conceptual design model and not yet a low-level implementation
model.

2.2 Design Decisions 13

2.2 Design Decisions

We will now make two design decisions with the aid of a decision template. A
decision template enforces decision makers to prepare a decision before it is made
and forces them to properly document it afterwards. For better readability, the
template in Tab. 2.1 is a simplified version of what is used in literature [SLK09].

Preparation: Documentation:

• What is the problem to be solved?
• What are the decision drivers?
• For each potential solution:
− Description of the solution
− Advantages and disadvantages

• Which is the chosen solution?
• Justification of that choice
• Consequences of this decision

Table 2.1: A simplified template for making a design decision; the questions in
the left column should be prepared before the decision is made, the questions
in the right column should additionally be answered for documentation.

The first of the two following decisions that is made by the software architect
specifies whether or not to store the session during the communication between
the server and the agents. Sessions are useful if the agents work on web forms
that consist of several pages; then the data is stored in a session until submit-
ting it to the business logic of the server. Advantages are better usability and
optimized communication between server and client. The downside is a more
complex design for proper session handling. Let us assume the architect decides
to use sessions, then the decision could be documented as shown in Tab. 2.2.
The design issue is listed in the first column, possible solutions in the second,
and the result of the decision in the third column.

Design issue Possible alternatives Decision outcome

Session Aware-
ness:
whether or not to
store sessions dur-
ing the communi-
cation with clients
Decision drivers:
client-server com-
munication, per-
formance, usabil-
ity

Yes: the session is stored; this al-
lows complex communication between
a client and the server. Only reason-
able if there are complex transactions,
e.g. multi-page forms or similar sce-
narios in which data is collected.
Follow-up decision: Session Manage-
ment.
No: the session is not stored; only
reasonable for simple communication
or where session data may be volatile.

Choice: Yes.
Justification: main-
tenance and updates
of customer data
is complex and
involves multiple
pages on a web
form.
Consequences: con-
sider issue Session
Management.

Table 2.2: Documentation of the design decision Session Awareness with the
alternatives Yes and No and the outcome Yes.

14 Example

Although this decision has important consequences on the design model, namely
whether or not it should use sessions for the communication between server
and clients, it does not yet imply any immediate changes in it. Instead, the
outcome of the follow-up decision Session Management affects the design model.
Fowler presents three patterns that realize session management with different
advantages and disadvantages. The middle column in Tab. 2.3 summarizes these
patterns.

Design issue Possible alternatives Decision outcome

Session
Manage-
ment:
realization
of a ses-
sion and its
maintenance.

Client Session State: the
client is responsible for creat-
ing and maintaining sessions.
Server Session State: the
server is responsible for creat-
ing and maintaining sessions.
Database Session State:
session data will be stored in a
database and queried on each
request.

Choice: Server Session State.
Justification: only few clients are
expected and sessions can easily
be handled on the server; a ses-
sion manager already exists.
Consequences: proper mainte-
nance of a session is required; the
existing session manager should
be adequate and may be ex-
tended, if required.

Table 2.3: Documentation of the design decision Session Management.

Alternative
No

Issue
Session

Awareness

Alternative
Yes

Outcome

solution decision

Issue
Session

Management

Outcome

solution

decision

induces

solution

Alternative
Database
Session

State

Alternative
Client

Session
State

Alternative
Server

Session
State

solution
solution

ch
os

en
A

lte
rn

at
iv

e

ch
os

en
A

lte
rn

at
iv

e
project-independent
project-specific

example_decisions

Issue
Session

Awareness
Alternative

Yes

solution
Issue

Session
Management

induces

Alternative
Server

Session
State

solution
Issue
Server

Architecture
Alternative
Lightweight

Server

solution

excludes

restricting_relation

Figure 2.2: A simplified overview of both decisions Session Awareness and Ses-
sion Management from Tab. 2.2 and 2.3 and a relation induces between them.

The architect decides to use the server session state pattern for two reasons:
first, only few clients are expected so the server can easily handle session man-
agement; second, a session manager already exists on the server and, thus, the
realization effort is expected to be small. Figure 2.2 gives an additional overview
of both design decisions and their relation. The issues, alternatives, and decision
outcomes are the same as in Tab. 2.2 and 2.3. The relation induces links to the
follow-up decision Session Management.

2.3 Decision Characteristics 15

In the next step, the architect delegates the realization task to another devel-
oper. Besides an explanation of the decision and its outcome, the architect
provides a reference to the pattern definition, an example realization, and a
brief description of how the pattern should be integrated with existing compo-
nents. The resulting part of the design model is shown in Fig. 2.3 after the
decision has been realized: a new class ContractSession and appropriate asso-
ciations to and between existing classes were added by the other developer. In
addition, he or she adds a textual description to the decision outcome and the
design documentation about which model elements have been changed due to
that decision.

presentation

ContractController

ContractSession

sessions

DataSessionManager

getSession ()

«interface»
ISession

added by decision
'Session Management'

*

0..1 - sessionObject

1

* - sessions

*

0..1 - sessionObject

1

- sessionManager

*

1

* - sessions

Figure 2.3: The Server Session State solution has been chosen and realized in
the design model: ContractSession and three associations have been added.

There are further related follow-up decisions like session persistence [Kön09a],
but they not required to understand the example in this thesis. The remainder
of this chapter reflects on the example and discusses roles, development tools,
and some characteristics of design decisions.

2.3 Decision Characteristics

Both decisions discussed previously are related to the design of the system, but
decision templates like the one in Tab. 2.1 are generic and can be used for almost
any kind of decision made in a project, not only those affecting the design. This
thesis, however, concentrates on design decisions that imply changes in design
models.

Two types of decisions have been presented here, one has direct and the other
indirect impact on the design. Moreover, the decisions are related to each other,

16 Example

one induces the other. Other relations are exclusion of other decisions, or, more
general, compatibility relations.

The development of a software system involves a number of different stakeholders
like the customer, a project lead, software architects, developers, testers, and
others. The task of making decisions concerning the design, however, involves
primarily two roles: first, depending on the importance of the decision, the
decision maker(s), often an architect or modeler, and maybe others that are
involved in making the decision. Second, the developers realizing the outcome
of a decision in the design, typically modelers or programmers. These roles may
also be taken by the same person. Some decisions, in contrast, might have a
limited scope, for example, affecting one component only. Then a modeler might
make and realize the decision. This is important because the different roles use
different tools when making and realizing decisions.

The tool, or rather the strategy, for making decisions in this example is a simple
decision template. There are tools available that support developers in preparing
such decision templates and documenting decisions afterwards. Current research
also concerns the setup of a knowledge repository as a collection of such decision
templates.

2.4 Summary

This chapter gave an impression of the decision making task, which roles partic-
ipate, and what consequences might occur. Important characteristics of making
design decisions are the structured description and documentation of decisions,
the consideration of alternative solutions, and the realization in the design. The
second decision Session Management and its realization in the design model will
be used throughout this thesis to illustrate new concepts.

Chapter 3

State of the Art

This chapter presents the state of the art in making and organizing design deci-
sions, how they can be linked to design artifacts, and how model changes can be
represented. The concepts of model changes are of interest because realizations
of design decisions in model-based software development imply modifications in
design models which can be described with model changes. A summary of the
state of the art is also given in the respective parts of the remaining chapters of
this thesis, if appropriate.

3.1 Design Decisions

Design decisions and, in particular, their definition and tool support for doc-
umenting and making design decisions are widely discussed in the literature.
The state of the art of both aspects is presented here. A comparison with our
conceptual solution is stated later in Sect. 6.8.

Design decisions play an important role in the community of software archi-
tecture knowledge management. Figure 3.1 sets design decisions in relation
with other sources for architectural design knowledge like patterns, personal
expertise, and requirements. Architectural knowledge is split into project-
independent and project-specific parts in one dimension, and implicit (or tacit)

18 State of the Art

architectural_knowledge

Tacit knowledge

Explicit knowledge

Pr
oj
ec
t‐
in
de

pe
nd

en
t k

no
w
le
dg
e

Pr
oj
ec
t‐
sp
ec
ifi
c
kn

ow
le
dg
e

• Goals
• Constraints
• Assumptions
• Concerns
• Context

• Experience
• Expertise
• Skills

• Patterns
• Styles, tactices
• Reference architectures
• Architecture description
languages

• Standards

• Requirements
• Design decisions
• Design rationale
• Views
• Models

Figure 3.1: Architectural knowledge can be categorized in two dimensions,
project-independent vs. project-specific and implicit (or tacit) vs. explicit knowl-
edge; examples are given in each quadrant [BDLvV09].

and explicit knowledge in the other dimension. Tacit knowledge is undocu-
mented knowledge that resides in the developers’ mind, e.g. experiences or con-
cerns in a project, whereas explicit knowledge is documented in one or the other
way, e.g. pattern descriptions or design decisions. In this thesis, we focus on de-
sign decisions that are made in projects but also on reusable project-independent
aspects of design decisions. The transition from tacit to explicit knowledge is
also important but not in the scope of this thesis.

This section follows in large part the contents of Software Architecture Knowl-
edge Management [BDLvV09], a book written by many members of the archi-
tecture knowledge community. It contains a summary of all relevant definitions
and concepts of design decisions and available tool support.

3.1.1 Design Decision Definitions

One of the first appearance of design decisions was in the description of the
Rational Unified Process [Kru03] where they are mentioned as important parts
of a system’s architecture. Later, templates have been introduced by Tyree and
Akermann [TA05] which structure decisions according to important properties
like issue, status, rationale, and assumptions. Other researchers suggested fur-
ther properties for architectural design decisions: Kruchten’s ontology for de-
sign decisions [Kru04] classified them and introduced relations between them

3.1 Design Decisions 19
decision_ontology decision_ontologypackage []

isAlternativeTo

conflictsWith

isRelatedTo
dependsOn

constrains

isBoundTo

subsumes

comprises
overrides

enables
forbids

«enumeration»
DecisionRelation

obsolesced

challenged
approved

tentative

reflected

decided

idea

«enumeration»
DecisionState-epitome : String

-rationale : String
-scope : String
-author : String
-date : Timestamp
-state : DecisionState
-categories : String

DesignDecision

BehavioralDecisionStructuralDecision

ExistenceDecision ExecutiveDecisionPropertyDecision

TechnologyDesignRule Constraint

"Ontocrises" "Anticrises" "Diacrises" "Pericrises"

Guideline Process

Ban

Tool

-type : DecisionRelation
Relationship

Relationship

Figure 3.2: An overview of Kruchten’s ontology for design decisions represented
as a UML class diagram.

(see Fig. 3.2), Jansen et al. [JB05] defined them as first-class building blocks
for the architectural design itself, and Zimmermann et al. [ZGK+07] focus their
definition on reusability of architectural decisions. Moreover, the Core Model
of architectural knowledge [dBFL+07] does not set the focus specifically on de-
sign decisions but integrates them as an important artifact into architectural
knowledge in general.

The concepts in this thesis focus on reusable decisions, that is why we briefly dis-
cuss the two definitions that are closest to our intention. The first is Kruchten’s
ontology of design decisions, the second the SOAD (Service-Oriented Architec-
ture Decision Modeling) metamodel by Zimmermann [Zim09].

The ontology depicted in Fig. 3.2 introduces four categories for decisions: ex-
istence decisions refer to concrete parts in the design; non-existence decisions
or bans express parts or features that must not exist in the design; property
decisions concern features about the design (not in the design); and executive
decisions refer to the business environment, e.g. the development project and
process. Each of them is further classified as shown in the figure. The decision
attributes as well as the relationships between decisions are to a large extent
self-explaining.

The SOAD metamodel, depicted in Fig. 3.3, defines two model types: the
Reusable Architectural Decision Model (RADM) defines project-independent
parts of design decisions, comprising the design entities ADIssue and ADAlter-
native as alternative solutions. The Architectural Decision Model (ADM) is a

20 State of the Art

ADLevel

name : String

ADTopicGroup

id : String
name : String
shortName : String
description : String
modifiedBy : Role
modifiedWhen : Timestamp

ADIssue

name : String
shortName : String
scope : String
phase : String
role : Role
problemStatement : String
decisionDrivers : String
recommendation : String
enforcementRecommendation : String
backgroundReading : String
identifiedBy : Role
identifiedWhen : Timestamp
modifiedBy : Role
modifiedWhen : Timestamp
acknowledgements : String
status : String
toDo : String
iprLevel : String

ADAlternative

name : String
description : String
pros : String
cons : String
knownUses : String
backgroundReading : String
modifiedBy : Role
modifiedWhen : Timestamp

ADOutcome

name : String
status : String
candidateAlternatives : ADAlternative
justification : String
assumptions : String
consequences : String
validUntil : Timestamp
changedBy : Role
changedWhen : Timestamp

1

*

1 * - contains

1 *

- contains

1

*- isSolvedBy

1

* - hasOutcome

dependsOn

*0..1

- choosenAlternative

Figure 3.3: The SOAD metamodel for reusable architectural decisions by Zim-
mermann [Zim09]; unlike most others, this metamodel distinguishes between
design issues, their alternative solutions, and the instances (outcomes) of deci-
sions.

project-specific counterpart of the former and adds ADOutcomes which repre-
sent decision instances. This definition also includes a number of attributes that
specify important properties for design decisions, and relations between them:
dependsOn. The relations are discussed later in Sect. 6.7.

Other definitions of design decisions comprise similar attributes, but their focus
is typically one particular aspect. For instance, Burge et al. [BB04] propose an
approach to rationale knowledge management. Liang et al. [LJA10] concentrate
on knowledge management and decisions in different tools and views on the
architectural design. Tang et al. [TAJ+10] compare the latter and four other
approaches with a focus on reasoning knowledge. Shahin et al. [SLK09] also
compare several definitions and list their individual strengths. To conclude,
there is a multitude of design decision definitions in the literature, but none of
them involves design models.

3.1 Design Decisions 21

3.1.2 Design Decision Tool Support

Most of the conceptual definitions in the literature are underpinned with a
tool that implements the respective concepts. Just like their definitions, the
tools focus on different aspects. This section gives a brief overview of existing
tools and their capabilities, especially concerning their integration with design
artifacts and how they support reuse of design decisions.

Many tools for decision management are web-based tools for collecting, docu-
menting, and sharing architectural knowledge including design decisions: ADDSS
(Architectural Design Decision Support System [CND07]), ADK Web Tool (Ar-
chitectural Design Knowledge Web Tool [Zim09]), PAKME (Process-based Ar-
chitecture Knowledge Management Environment [BWG05]), SEI wiki (a wiki
developed by the Software Engineering Institute [BM05]). The Knowledge Ar-
chitect [LJA09] is a repository-based tool suite for capturing, documenting,
sharing, and managing architectural knowledge with focus on the integration
with different tools, e.g. office tools. Archium [JvdVAH07] and SEURAT (Soft-
ware Engineering Using RATionale system [BB08]) document design decisions
and link them to the code of the system’s architecture. AREL (Architecture Ra-
tionale and Elements Linkage [TJH07]) documents design decisions as profiled
UML models for documentation and analysis purposes.

The tool presentation by Babar et al. [BDLvV09] distinguishes 23 use cases. The
ones relevant for our concerns (which are discussed in detail in the subsequent
Chapter 4) are listed below, along with a list of the aforementioned tools that
support the respective use cases.

Integration with Design. Decision management systems are integrated with
the design of a system if they maintain a link between design decisions and
design artifacts. This corresponds to the use cases UC3 – Trace AK 1 and UC10
– Integrate AK.

AREL documents design decisions as UML models and, thus, they can be linked
to design models. The links are used for traceability and design reasoning, but
the decisions are neither project-independent nor reusable. Archium composes
the architecture (source code) out of architectural decisions and SEURAT cap-
tures the rationale of a system and links it to the code. But both tools do not
support design models. The other tools do not support these use cases.

1AK is an abbreviation for architectural knowledge.

22 State of the Art

Consistency. To our best knowledge, none of the existing approaches is able
to automatically validate whether design models conform to made design de-
cisions. This is to some extent similar to the use case UC22 – Cleanup the
architecture.

Archium and SEURAT are at least able to check the consistency between made
decisions and source code, but not design models. In addition, there are methods
like ATAM (the Architecture Tradeoff Analysis Method [KKC00]) and SAAM
(Software Architecture Analysis Method [KBAW94]) which require reviews and
reports as quality assurance tools that check the consistency between the de-
sign and decisions or, generically speaking, design documentation. But this is
typically manual work.

Decision Guidance. Most decision management systems support developers
only in documenting and analyzing design decisions, but not in making decisions
during forward engineering. Decision guidance corresponds to the use case UC23
– Offer decision-making support.

Archium is designed to create large parts of the architecture by making design
decisions, also SEURAT supports developers in making decisions during the
design process. But both do not support design models. The ADK Web Tool
shows at least one case in which a transformation is triggered from the decision
management system which induces updates in the design. Again, there are
methods like RUP (Rational Unified Process [Kru03]), CMMI (the Capability
Maturity Model Integration [Tea10]), or ATAM which enforce a decision making
and documentation process but they do not provide tool support.

To summarize, there are many decision management systems available which
support developers in documenting, capturing, and analyzing design decisions
and to some extent also for guiding developers through the decision space. All
tools have their own focus on one or a number of particular aspects. They can
also be used to fulfill documentation and consistency requirements in develop-
ment methods like ATAM, SAAM, and CMMI. However, none of them provides
an integration with design models. One decision definition and tool support
that is well suited for adding support for decision realizations in model-based
software development is the ADK Web Tool because it supports forward engi-
neering and has a separation of project-independent and project-specific parts.

3.2 Specification of Model Changes 23

3.2 Specification of Model Changes

Design decisions imply modifications in the design, including models in model-
based software development. There are many different kinds of models like
structural and behavioral models, and many different modeling languages. This
section gives an overview of model types and existing approaches and technolo-
gies that are capable of capturing and describing modifications in models. A
comparison with our conceptual solution is stated later in Sect. 5.10.

Structural models are typically used to describe static parts of the design. That
could be the system architecture down to the internal structure of individual
components. Behavioral models, on the other hand, describe the dynamics of
software systems. A widely used modeling language is the UML [OMG10], a
general purpose modeling language defined by the Object Management Group.
It comprises different types of structural diagrams like class and component di-
agrams, and behavioral diagrams such as sequence and activity diagrams and
state charts. Another modeling language is provided by MATLAB Simulink2, a
modeling, simulation, and analysis tool for dynamic and embedded systems. Ex-
amples for behavioral modeling languages are BPMN (Business Process Model
and Notation [OMG09]) and Petri Nets. Both can, for instance, be used to
describe business processes. The remainder of this section explains how changes
in such models can be captured and specified.

3.2.1 Change Types

Whenever a model is changed, we want to assure that the resulting model is
syntactically correct. The syntax of a model is defined by its metamodel, the
definition of the respective modeling language. If a model conforms to its meta-
model, it is syntactically correct. Models might also have particular semantics,
which is in particular important for behavioral models. A modification which
does not change the semantics of one model, might change the semantics in an-
other model [Dij07]. However, in this thesis we only concentrate on structural
models and neglect the semantics of dynamic aspects – that is future work.

Since models are defined in terms of their metamodels, descriptions of modi-
fications in models must be defined in terms of the models’ metamodels. We
use UML class diagrams as examples in this thesis, as we have already seen in
Sect. 2, but we want to support other modeling languages, too. Model modifi-
cations can also be described in terms of the meta metamodel of UML, which

2Available at: http://www.mathworks.com/products/simulink/

http://www.mathworks.com/products/simulink/

24 State of the Art

Type Adding Removing Updating

Element
level

Adding a class
to a package or
an event in a
sequence chart

Deleting a parameter
from an operation or
an activity from an
activity diagram

Moving an interface
to another package or
a property from one
to another class

Attribute
level

Adding a value to
a multi-valued at-
tribute

Deleting a value
from a multi-valued
attribute

Renaming a package
or changing the visi-
bility of a class

Reference
level

Adding an inheri-
tance relation be-
tween two classes

Deleting an in-
heritance relation
between two classes

Changing the tar-
get of an association
from one class to an-
other

Table 3.1: Nine basic change types for MOF-based models; all modifications
can be expressed by composing these basic change types; examples are given in
the table.

is defined in MOF (Meta Object Facility [OMG06a]), a metadata management
framework. Example modifications in UML models described in terms of MOF
have already been shown in Fig. 1.1 on page 7. The basic change types for MOF-
based modeling languages are listed in Tab. 3.1: changes are defined on model
elements, their attributes, and on references between model elements [CRP07].
The modifications are either the addition of new parts or the removal or update
of existing parts. Examples for each change type are given in the table.

There are different ways of how model changes can be specified. Two big ar-
eas exist in literature which deal with this question: model differencing and
model transformations. Existing approaches and technologies are briefly dis-
cussed next. Later in Sect. 5.1, their suitability is discussed for specifying design
decision realizations.

3.2.2 Model Differencing

One of the origins of model differencing approaches are version control sys-
tems. Analogously to differencing and merging source code, the same concepts
are required for models [AP03]. That is, a local and a remote version of the
same artifact can be compared and merged automatically or with user inter-
action. However, there is one big difference between text- and model-based
comparisons: text is a linear sequence of characters organized in lines, whereas
models conform to a particular metamodel. Although textual representations
of models could be compared, for instance as XMI (XML Metadata Interchange
[OMG07b]) or other text-based notations like EMF Text [HJK+09], there is an

3.2 Specification of Model Changes 25

important difference: text-based differencing approaches are not aware of mod-
els’ metamodels and might produce syntactically incorrect models. This is why
model-based differencing technologies are required.

Besides comparing and merging models in a version control system, another
use case, which is of interest for automating realizations of design decisions,
is the extraction of model changes from one model and their application to
another model. For texts, this use case is often called patching and a set of
textual changes is called patch. The research in model-based differencing is also
going towards model patching [CRP07, Eys09] and beyond it, that is, model
changes can even be customized and applied to arbitrary models [BLS+09]. This
scenario implies an important problem: how to reference model elements that
have been added, removed, or updated? Many approaches use unique identifiers
for referencing model elements, but identifiers are not always available. Others
use similarity heuristics or queries [KRPP09].

Next, we discuss several important characteristics of model differencing tech-
nologies. Tab. 3.2 lists existing approaches and their capabilities. The commu-
nity of model differencing agrees on three parts for such a technology [BP08,
KRPP09]: the calculation of model differences, their representation (abstract
syntax), and their visualization (concrete syntax). The calculation and repre-
sentation of model changes can either be state-based or operational. State-based
model changes are calculated from two snapshots of a model and describe the
state in the model before and after changes [FW07]. Operational model changes
are recorded and describe a sequence of modifications [HK10].

Each of the existing approaches listed in Tab. 3.2 focuses on one or more par-
ticular aspects of model differencing. We only consider generic approaches;
technologies for specific model types, like the difference calculation of business
process models only [KGFE08], are not relevant here. The compared features
are grouped in differencing capabilities, referencing strategies, and other features
like support for version control systems and patching models. The feature trans-
ferring changes denotes the capability of applying changes to models that are
different from the compared models from which the changes were calculated.
Merging changes denotes the capability of automatically combining multiple
similar changes into single generic changes (see Sect. 5.7.3 for details).

MPatch, our work, is also included in the table to compare it with existing
approaches. EMF Compare [emf10] adds differencing and merging to version
control systems in Eclipse. SiDiff [KWN05] is a generic differencing technology
which operates on basic graphs and can be customized for specific modeling
languages like UML. Cicchetti et al. [CRP07] present a metamodel indepen-
dent approach to difference representation which also allows patching, i.e. the
application of differences to other models. The ECL (Epsilon Comparison Lan-

26 State of the Art

Feature E
M

F
C

o
m

p
a
re

E
P

a
tc

h

A
M

O
R

S
iD

iff

C
ic

ch
e
tt

i
e
t

a
l.

E
C

L
/
E

M
L

M
P

a
tc

h

difference calculation 4 7a) 7a) 4 7a) 4 7a)

difference representation 4 4 4 4 4 4 4

difference visualization 4 7b) 4 4 4 7b) ◦
id-based referencing 4 4 7 4 7 4 4

similarity-based referencing 4 7 7 4 7 4 7

query-based referencing 7 7 4 ? 4 4 4

version control systems 4 7 4 ? ? ? 7

patching models 7 4 4 ? 4 4 4

transferring changes 7 7 4 ? 7 4 4

merging changes 7 7 7 7 7 ◦ 4

4 – supported; 7 – not supported; ◦ – partially supported; ? – unknown

a) another technology is used for difference calculation

b) no dedicated graphical syntax but only textual syntax is available

Table 3.2: Overview of existing model differencing approaches.

guage [Kol09]) is a language specifically for matching models and EML (Epsilon
Merging Language [KPP06a]) allows to merge models based on such match-
ings. Although AMOR [BLS+09] is an extension for version control systems,
it includes a generic recorder for model changes, similar to what we require
for specifying design decision realizations; however, this approach was not yet
available at the start of our project. Otherwise it could have been adjusted to
be used in our decision support tool.

Specialized technologies such as EWL (the Epsilon Wizard Language [KPRP07])
and Refactory, a dedicated tool for role-based refactoring [RSA10], comprise dif-
ferent strategies to achieve a similar functionality. The former uses the Epsilon
Object Language [KPP06b] to specify arbitrary parameterized model changes,
the latter uses a proprietary specification language for refactorings on models.

3.2.3 Model Transformations

Model transformations can also be used to specify modifications on models. In
a wider sense, model differencing is a specialized kind of model transformations.

3.3 Traceability 27

However, model transformation technologies have specific characteristics which
we briefly discuss in this section. Most of them are from Mens and Gorp [MG06]
and Czarnecki and Helsen [CH06].

In general, model transformations are either model-to-text or model-to-model
transformations; the former produces text from a model, and the latter creates
a new or modifies an existing model. Transformations that operate on only
one model, which is modified, are called in-place transformations; otherwise
the transformation creates or updates a target model from a source model. In
that case, transformations may be endogenous (source and target metamodels
are the same) or exogenous (source and target metamodels differ). We are
only interested in endogenous and in-place transformations and also further
properties like uni- or bi-directionality and incremental transformations are not
relevant for us. Moreover, transformations are either automated or allow user
interaction to influence the transformation.

Transformation specifications are either declarative and typically defined as
a set of transformation rules in a specific transformation language, or oper-
ational and programmed in an interactive transformation language, possibly
also structured in rules. Examples for declarative transformation languages
are TGG (Triple Graph Grammars [SK08]), QVT Relations (Query/View/
Transformation [OMG07a]), Story Diagrams [FNTZ00], and AGG (Attributed
Graph Grammars [HET08]). Operational ones are QVT Operational Mappings
[OMG07a] and ATL (ATL Transformation Language [Atl08]).

For the specification and use of design decision realizations, it must be possible to
derive transformation specifications from example models (supported by TGGs
by Wagner [Wag08], for instance) because we cannot expect a developer, who
wants support for design decisions, to learn a transformation language. To our
best knowledge, however, no existing transformation technology fulfills all of
these requirements. This discussion is continued in Sect. 5.1.

3.3 Traceability

The realization of design decisions implies changes in the software design. In
order to ensure that the design conforms to made decisions, we need to keep
track of all affected model elements. In other words, we need to trace the affected
model elements to the corresponding decisions. Some tools like Archium and
SEURAT do this on the code level, but they do not support models. This
section gives a brief excursion on traceability and outlines the state of the art
for creating and maintaining traceability relations.

28 State of the Art

Two important purposes of traceability links are the support of developers dur-
ing software maintenance and evolution by providing the corresponding docu-
mentation, as well as a compliance analysis between the software and the docu-
mentation. The evolution of software, however, requires to update the traceabil-
ity relations accordingly. Mäder [MCH10], for instance, provides a methodology
for updating the traceability relations semi-automatically; it records the changes
made to UML design artifacts and uses predefined rules for keeping the require-
ments and the design consistent with each other.

The multitude of involved software artifacts (requirement documents, design ar-
tifacts, code, etc.), the stakeholders, and the high expectations the community
has regarding traceability (impact analysis and integration of changes, coverage,
verification and validation analysis, compliance analysis, consistent documenta-
tion, system inspection, etc.) make it hard to come up with an ultimate solution.
An important part is the creation of traceability relations: ”The cost of iden-
tifying traceability relations manually clearly outweighs the expected benefits of
traceability and makes organisations reluctant to enforce them, unless there is a
regulatory reason for doing so” [SZ05, p. 3]. For specialized purposes, however,
such as an automated creation of traceability relations from requirement docu-
ments to design documents and code for documentation reasons, some (mostly
commercial) tools like IBM Rational DOORS [IBM10] do a good job and are
also used in large industrial projects. As a final remark, practical traceabil-
ity support always depends on the CASE tools and their formats for storing
documents and design artifacts, respectively.

A survey by Spanoudakis and Zisman [SZ05] concludes that most traceability
approaches have some definitions and models for traceability relations, however,
they mostly serve a special purpose (case-specific traceability links). Drivalos
et al. [DKPF08] presented a metamodeling language for deriving case-specific
traceability metamodels as a step towards a generic structure for traceability
links. However, they focus on the definition and creation of such metamodels.
Some common generic traceability relations emerged in several approaches like
dependency relations, refinement relations, constraining relations, and docu-
mentation relations. The latter type refers to relations between design artifacts
and their requirement documentation that is similar to the relation between de-
sign decisions and their affected design artifacts. In order to perform analyses
on the relations, for example, to validate the conformance of a design against
made decisions, the semantics of traceability relations must be clear and vali-
dation constraints must be defined. However, the validation is done manually
today for design decisions even though there exist some proprietary approaches.
This manual validation takes a lot of time. One of our goals is to reduce the
manual effort and ideally provide an automated validation.

Chapter 4

Research Methodology

This research project analyzes support of design decisions in model-based soft-
ware development and how it can be improved with respect to design models.
In this chapter, we outline the research methodology and state our goals in more
detail in three research questions.

1. Motivation. Literature studies, personal experience, and a workshop with
software architects have shown that support for design decisions that are made
in model-based software development is not satisfactory. Existing approaches
for architectural design decisions do not operate properly on design models;
we already discussed that in the previous chapter. The state of the art was
analyzed and research directions were established in a workshop with a research
staff member at IBM Research – Zürich in 2008. The results are elaborated in
a technical report [Kön09a].

The identified problem is that both artifacts, design decisions and design models,
are created and maintained in separate tools. State-of-the-art approaches do not
include fine-grained links between made design decisions and individual elements
within models. A fine-grained link between these artifacts could enable many
useful use cases as stated next.

30 Research Methodology

2. Goals. Design decision support in the literature involves numerous use
cases, like the documentation, application, and validation of design decisions.
Further use cases concern the management of design knowledge including design
decisions, and its production and consumption. Our goal is to improve design
decision support in model-based software development for such use cases:

1. Formerly separated design decisions and design models shall be linked
to each other so that developers are able to navigate from documented
design decisions to affected design model elements and vice versa. This
shall improve the documentation of design decisions and design models.

2. Whenever recurring design decisions are realized in design models, these
realizations may be recurring work. Using design templates as design deci-
sion realizations for design models, this recurring work shall be automated
and, thus, easier and less error-prone. Developers shall be able to create
such design templates with as little effort as possible.

3. After design decisions have been realized in design models, consistency
between the documented design decisions and design models shall be val-
idated. In case of inconsistencies, developers shall be notified and sup-
ported in restoring consistency between both artifacts.

3. Development. New concepts and a prototypic tool were developed that
integrate design decisions and design models to realize all three aforementioned
use cases. The artificial example from Sect. 2, which was initiated at the work-
shop in 2008, was used to develop and test the functionality. Furthermore,
regression tests were used to continuously test the prototype whenever new
functionality was added or third-party components were updated.

4. Validation. A proper evaluation for our concepts would comprise a feasi-
bility study as well as an experiment in which the tool is applied in a running
project. Since we did not do the latter experiment due to time constraints of
this research project, we provide a set of correctness, applicability, and domain
level tests. This is why we do not call it an evaluation but a validation of our
concepts. The applicability tests cover refactorings and design patterns as de-
sign decisions, the domain level tests replay a realistic model of a real project to
demonstrate the concepts on a real example. In addition, we received valuable
feedback from experts in informal interviews about usability and success factors
that are important for using the tool in practice. The interviews are, however,
not meant to be an evaluation.

4.1 How to improve Design Decision Documentation? 31

5. Conclusion. The validation shows that our concepts are applicable to
realistic examples and that they are capable of automating recurring realization
work of design decisions. The consistency checks come without extra effort. This
shows the technical feasibility of the proposed goals and that they are applicable
to realistic examples. However, an application under realistic conditions, e.g.
under time pressure, and the effort for maintaining the binding could not be
evaluated yet because the tool could not yet be applied in a running project.
The latter as well as improvements on tool usability are future work.

The remainder of this chapter points out the three research questions in detail,
each followed by a solution outline.

4.1 How to improve Design Decision Documen-
tation?

Problem. Many decisions are made implicitly when designing a software sys-
tem. Knowledge about and rationale behind the design are often not docu-
mented (tacit knowledge) but they reside only in developers’ minds and vanish
eventually. Tools for capturing such design knowledge exist and were already dis-
cussed in Sect. 3.1. They provide sophisticated metamodels, concepts, and tools
for the analysis, for capturing, and for documenting design decisions. However,
even if design decisions are documented, they are either captured and main-
tained separately from design artifacts or linked to source code. Concepts for
linking documented design decisions to affected elements in design models do
not yet exist.

Consequences. Since design decisions are documented separately from design
models, laziness and oblivion cause imprecise documentation because decisions
are not or too late documented. Thus, the quality and completeness of software
design documentation suffers and the rationale behind the design is lost. This
makes the design hard to understand for other developers, especially during
system maintenance. Due to this bad comprehensibility, error fixing – which
often has to take place under high time pressure – may introduce even more
errors and decreases the comprehensibility further; this results in a vicious cycle.
Projects may fail because of that reason [Par94].

Solution. One major cause of that problem is that the software is not doc-
umented properly. Therefore, we propose tool support for capturing design

32 Research Methodology

decisions with only little overhead. That design knowledge is then available to
other developers, following the intention of decision management systems. An
integration of design decisions with design models links related documentation
directly to the design artifacts. However, the two types of tools, modeling tools
and decision management systems, shall remain separate because both may be
used by different types of developers, namely software architects and modelers.
Moreover, the concepts are independent of any concrete tool, which requires a
technology-independent interface between the two types of tools.

Expected Benefits and Limitations. The expected benefit of an integra-
tion of design decisions and design models are threefold. First, in-place doc-
umentation of the design artifacts eases the understandability of the design.
Second, storing design decisions as best practices spreads design knowledge to
other developers. Third, instead of choosing their habitual solution, architects
and modelers may consider other documented solutions by other developers
which may be better suited. A remaining problem is that developers still have
to decide which decisions to document and which not. If too many decisions are
captured, developers run the risk of spending too much time producing design
documentation that is probably never used. If too few decisions are captured,
important parts of the design knowledge may remain undocumented. Devel-
opers must find the right balance which decisions to capture and which not.
However, this discussion is out of scope for this thesis.

4.2 How to automate recurring Realizations of
Design Decisions?

Problem. Whenever design decisions recur in the same or other projects, their
realization in the design may be recurring work. Moreover, developers may have
their own design templates like best practices which they use over and over again.
This is all recurring manual work in similar contexts and manual realizations
take a lot of time.

Consequences. Developers spend a lot of time realizing the same design frag-
ments again and again. Of course, they gain experience in realizing such recur-
ring design fragments and become faster each time they do it. But it is still
manual and tedious work. Each time the developers may introduce errors and
careless mistakes, especially because they are feeling confident in doing recurring
work. This requires frequent and time-consuming design reviews.

4.3 How to ensure Consistency between Decisions and Design Models? 33

Solution. Once a solution is realized for a particular decision, that solution
can be captured for reuse. Then this proven solution can be used again every
time that particular decision is made, and it may also be useful for other devel-
opers. One has to record the model changes and add them as a design template
to the documentation of the corresponding design decision. The next time this
decision is made (by the same or another developer), this design template can
either be applied directly or it can be used as an inspiration for alternative
realizations. A big challenge for this solution is to make the captured model
changes applicable to arbitrary models.

Expected Benefits and Limitations. The major benefit for automating
recurring realizations is to avoid tedious and error-prone modeling tasks. A side-
effect is that developers, especially unexperienced ones, can learn from others by
studying existing realizations. The drawback is that developers might use such
design templates carelessly without putting it correctly into the context of their
concrete model. Also, too many templates for a design decision might confuse
developers and considering them all might be time-consuming. However, the
last aspect is out of scope for this thesis.

4.3 How to ensure Consistency between Design
Decisions and Design Models?

Problem. Let us assume that a developer changes a design model due to
an explicitly made design decision. Other team members might also work on
the model and make modifications. They may accidentally make changes that
conflict with the decision of the first developer.

Consequences. An inconsistent design may lead to errors that are hard to
find. In order to identify and fix such errors properly, a comprehension of the
original decision is required. It might be impossible to gain that, in particular,
if the decision is not documented and the responsible developer is not available,
maybe because he or she left the team. If the design is not well understood,
improper fixes may introduce further errors and, obviously, result in improper
and incomplete design documentation. Hence, the design quality decreases.

Solution. Realizations of design decisions may imply changes of particular
design model elements. We propose concepts to bind all affected model elements

34 Research Methodology

to the respective design decisions, just like traceability links. Every invalid
modification of these model elements is then reported to the developers. This
tackles the problem at the source by warning developers that the design model
does not comply anymore with made design decisions.

Expected Benefits and Limitations. The advantage is that inconsisten-
cies between made design decisions and affected design models can be detected
automatically. This way, potential errors can be detected immediately. In case
inconsistencies are found, the documentation of the design decision should give
information about which developers are or were working on the conflicting parts.
Together, the developers can then discuss how to correct the inconsistencies.
However, this assumes that developers document their design decisions prop-
erly. Moreover, the consistency check can be arbitrarily complex, especially if
the semantics of models are taken into account.

The following chapter introduces concepts for specifying model changes with
which recurring realization work for design decisions can be automated. Then,
Chapter 6 presents novel concepts to elaborate the solutions discussed for all
three research questions.

Chapter 5

Model-Independent
Differences

Tool support exists for defining and applying refactorings1, design pattern elabo-
rations, design decisions, and other recurring changes on code. For models, there
is also tool support available for specific use cases. However, an automated spec-
ification of model changes from example models such that they are applicable
to arbitrary models is only partially supported. This chapter presents model-
independent differences, a concept for the representation of model changes which
can be created from example models and are applicable to arbitrary models of
the same kind. Hence, model-independent differences can be used for defining
and applying refactorings, design pattern elaborations, realizations of design
decisions, or other recurring changes directly on models.

The running example of Sect. 2 was chosen for explaining design decisions but
it is not well-suited for illustrating model changes. Therefore, another example
is introduced which shows a refactoring. Two aspects will be shown which are
not covered by the other example: first, model changes are captured from one
model and applied to another model; second, model changes are generalized.

Figure 5.1 shows on the left-hand side the first UML model MA of this example,
a package data containing several classes, some of them owning an attribute

1Refactorings for models restructure a given model in order to improve the quality of the
model without altering the functionality.

36 Model-Independent Differences

data data

IdElement

id : String

Book

title : String

Article Cover

Author

name : String

Article

id : String

Book

id : String
Title : String

Cover

id : String

Author

name : String

Model M Model M'A A

*

*

- authors
1..

- authors

*

*

- authors

*

1..* - authors

1..

- authors

*

*

- authors

Figure 5.1: The refactoring extract superclass has been applied to model MA

on the left-hand side: several classes contain an attribute id : String which is
extracted into a superclass IdElement ; the resulting model M ′A is shown on the
right-hand side.

id : String. The refactoring extract superclass, defined by Fowler [Fow99], was
applied to it and the resulting model M ′A is shown on the right-hand side in the
figure. A new class IdElement has been added including the attribute id : String
which has been removed from the other three classes; instead, a generalization
has been added between them and the newly added class. In addition, the at-
tribute Title : String of the class Book has been renamed to title. The individual
model changes are summarized in Tab. 5.1.

Change type Change description

1 add class IdElement to data, including attribute id : String

2 delete attribute id : String from Book in data
3 delete attribute id : String from Cover in data
4 delete attribute id : String from Article in data

5 add generalization from Book in data to IdElement
6 add generalization from Cover in data to IdElement
7 add generalization from Article in data to IdElement

8 update attribute Title : String in Book to title

Table 5.1: List of changes (∆) in model MA (Fig. 5.1), grouped by change types.

Suppose the user wants to apply the same refactoring to another model shown in
Fig. 5.2. This UML model MB contains a package customerdata including three
classes Customer, Contract, and Invoice, and several associations between them.
Since we extracted the refactoring already from model MA, it would save the
user time and effort to automatically apply the same intentional changes (#1–7

37

customerdata

Customer

name : String

Contract

cont_id : String

Invoice

inv_id : String

1

- customer

* - invoices

1

- contract

*

- invoices

*- contracts
1

- customer

*- contracts
1

- customer

1

- customer

* - invoices

1

- contract

*

- invoices

Figure 5.2: Another model MB to which the refactoring extract superclass
should be applied.

in Tab. 5.1) also to model MB . This is, however, not possible with existing
concepts due to the following reasons:

• The package to which the changes should be applied is named customer-
data and not data.

• The classes from which a superclass should be extracted (Invoice and
Contract) are named differently and their number differs (2 instead of 3).

• The attributes that should be deleted are named differently (inv id and
cont id) and their number differs (two instead of three).

Existing model differencing technologies are either not capable of transferring
model changes from one model to another, or they fail as soon as the other
model, model MB in this case, differs from the original model MA – these dif-
ferences have just been listed. The idea of model-independent differences is to
uncouple model changes from the original model in order to make them applica-
ble to other models. The latter is achieved by generalizing model changes. As we
will se later, the resulting model changes are in fact applicable to other models
like model MB and changes do not need to be made manually anymore. Spe-
cialized approaches like EWL, in contrast, are capable of applying such changes,
but their specification must be done manually in a specific language.

This chapter is structured as follows. The requirements for model-independent
differences are discussed in Sect. 5.1, then Sect. 5.2 introduces the process of
using them, and the subsequent Sect. 5.3–5.6 define model-independent differ-
ences in detail. Afterwards, sections 5.7 and 5.8 explain the generalization and
application of differences, the key features for a differencing technology to be
used for describing model changes for design decisions. Sect. 5.9 introduces a
binding, Sect. 5.10 discusses related work, and Sect. 5.11 concludes this chapter.

38 Model-Independent Differences

5.1 Requirements for describing Model Changes

This section discusses the requirements for a technology that is capable of de-
scribing model changes and specifying realizations of design decision outcomes.
There are in particular three use cases that must be supported:

(A) specifying model changes from examples,
(B) applying model changes to other models, and
(C) checking that all applied changes prevail in a model.

There are two potential areas of research which are capable of describing changes
in models: model transformations and model differencing. Both of them were
already introduced in Sect. 3. Here we compare their suitability concerning the
three use cases (A)–(C). The section concludes with the justification of the de-
cision to use a model differencing instead of a model transformation technology.

A. Specification of Model Changes by Example

Whenever a design decision including possible solutions is documented, the de-
scription of solutions might contain example realizations in the form of sample
code, model fragments, textual descriptions, etc. In model-based software devel-
opment, the obvious way is to provide example models along with a description
of the solutions. Our new idea is to provide realization specifications as sets of
model changes that can automatically be applied to any model instead of only
describing examples. This reduces the error rate when re-modeling the solution
in a design because the solution is applied as-specified, and it saves time because
the manual modeling task is in large part obsolete.

A specification of model changes from scratch, as it is often the case for model
transformation rules, is not feasible for two reasons: first, we cannot assume
that every developer is familiar with a model transformation language; second,
it takes a lot of time to specify new transformation rules. Hence, a specification
of model changes by-example is more appropriate because the modeling language
of the models is used. Also, the specification of model changes from example
models is fast because the examples are either already available in a model or
the developer can quickly create an example model.

This requirement applies to all model differencing technologies that are capable
of difference calculation [TBWK07, BP08, XS05, OWK03, CRP07]. Few model
transformation technologies also include concepts for deriving transformation
rules from example models [Var06, Wag08].

5.1 Requirements for describing Model Changes 39

B. Application of Model Changes to other Models

A set of model changes should be applicable to arbitrary other models. Since
the application domain of design decisions does not often change, we assume
that the models, to which model changes should be applied, are of the same
kind as the model from which the changes were created. For example, if model
changes were specified from UML models, it is sufficient that they are again
only applicable to UML models.

Although model changes could be specified by example models, they should be
applicable to other models whose contents differ from the example models. This
is of course not always possible, some changes require the existence of particular
parts in the model which we call context. Model changes shall be applicable as
soon as their context exists in the target model. Hence, the computed model
changes and their context description shall be generalized in a way that they are
applicable to a wide range of models. Most of the studied model transformation
technologies support this, but hardly any model differencing approach does.

The application of model changes must be interactive and comprehensible for
developers. Whenever model changes are applied to a model, developers shall
have control over the process: all affected model elements shall be shown and
the developer shall be able to manually specify to which model elements the
changes will be applied. This feature is not supported by any technology so far.

C. Consistency between Model and Applied Changes

Whenever model changes are applied to a model, we want to assure that these
changes prevail; in other words, we want to assure that the model reflects all
applied changes even when it evolves over time. This requires to keep track of all
changed model elements and to check whether modifications in the model might
violate any applied change. This consistency check can either be performed ’live’
whenever developers are working with the model, or the check can be ’offline’
and performed on demand. Developers committing the model to the repository,
simply saving the model, or making design decisions are example triggers for
consistency checks on demand. Either of these solutions shall be integrated.

Some transformation technologies offer traces or correspondence links between
the transformed models, but rather for incremental transformations than for
consistency checks. Nevertheless, these links could be exploited for consistency
checks. Model differencing technologies do not have such a feature.

40 Model-Independent Differences

Comparison

Here we compare both technologies for model differencing and model transfor-
mations, and make the decision which one to use. Table 5.2 lists the evaluation
at a glance. There is even another option which was neglected so far, namely
the development of a new technology from scratch – but this alternative has
been discarded because of the high effort and developing time required.

Requirement Model Transformations Model Differencing

A. Specification
by example

With few exceptions, trans-
formation specifications (typ-
ically rules) must be specified
by the user.

The nature of model differ-
encing is to extract changes
from models, which is already
by-example.

B. Applicability
to other models

The nature of model transfor-
mations is to apply transfor-
mations to arbitrary models;
however, the transformation
is usually automated, i.e. not
interactive.

Some model differencing tech-
nologies support ’patching’;
that is, applying changes to
other models. There are,
however, many limitations.
The application is usually in-
teractive.

C. Consistency
between model
and applied
changes

Some model transformation
technologies produce trace ar-
tifacts as a link between
models to enable incremental
transformations.

There is usually no way of
validating whether changes in
the model conform to any pre-
viously applied changes.

Table 5.2: Comparison of the requirements of the technologies Model Transfor-
mations and Model Differencing for specifying realizations of design decisions.

Neither of the technologies meet all requirements. Although model transforma-
tion technologies come with a general applicability to arbitrary models, their lack
of interactive transformations and the required knowledge of a specific transfor-
mation specification language are strong arguments against them. Model differ-
encing technologies, on the other hand, are already by-example and provide an
interactive application of changes, but the tradeoff is the limited applicability
to other models and lacking traceability links.

Based on this analysis, we decided to build on top of existing model differencing
technologies and improve on flexibility and applicability to other models. The
following section outlines a new process which integrates with existing technolo-
gies and which meets requirements A and B. Then we present a new metamodel
for model changes with focus on a general applicability to models. Requirement
C is dealt with later in Chapter 6.

5.2 Process for Creating and Applying Model Differences 41

5.2 Process for Creating and Applying Model
Differences

The creation and application of model-independent differences can be divided
into six steps that are introduced in this section to give an overview of how the
technology is used. The subsequent sections define the concepts and describe
each of the six steps in detail.

The name, model-independent differences, reflects two aspects. First, the new
format for describing model changes is self-contained and does not depend on
or use any model. Second, and in contrast to traditional model differencing
concepts, model-independent differences are not restrained to the original mod-
els from which they were calculated but they are applicable to arbitrary other
models of the same type. The key feature is so-called symbolic references which
are explained in detail in Sect. 5.4.

Several terms are used in this chapter whose definition is required for properly
understanding the concepts. Model changes are descriptions of modifications in
a model; examples are adding or deleting elements (more examples in Tab. 3.1
on page 24). The term model differences refers to a set of model changes that
can be calculated from two versions of a model; they describe how the two model
versions differ. An example is the set of all changes in Tab. 5.1. The term delta
(∆) is often used in the literature to represent a concrete artifact containing
model differences; we also use the symbol ∆ to represent model differences.

The overall process is divided into six steps as sketched in Fig. 5.3. The first
part involving steps 1–3 covers the creation of model-independent differences,
the second part (steps 4–6) covers their application. Model MA, from which the
model changes are calculated, is available in two versions, an unchanged original
MA and a changed version M ′A. Figure 5.4 illustrates the process for change #1
of the example in Tab. 5.1, adding a new class IdElement.

1. Calculation of model differences: ∆ = δ(MA,M
′
A)

There are many sophisticated approaches for the calculation of differences be-
tween two versions of a given model MA (cf. Sect. 3.2). Therefore, we make
use of existing difference calculation algorithms that are configurable and ex-
tendable instead of reinventing the wheel. A difference calculation algorithm δ
calculates the differences ∆ from two models MA and M ′A (or three models in
case of 3-way comparison [FW07]). Most technologies, however, produce deltas
that refer to and require the original model MA – that is meant literally, i.e. the
delta ∆ is invalid without the original models. This is why we call such a delta
model-dependent differences.

42 Model-Independent Differences

1. calculate
diff (δ)

2. transform (θ1) 4. match model
f ()

6. apply changes (π)5. refine
i ()

Model MB
(original)Model MA

(original)

differences (δ) references (φ1) mapping (φ2)
(interactive)

model differences
(not applicable to M d l M’

Model M’A
(changed)

model-independent differences3. additional trans-

Mapping

Creation of model-independent differences

(not applicable to
other models)

Application of model-independent differences

Model M’B
(changed)

model-independent differences
(applicable to other models)

3. additional trans
formations (θ2)
(user’s choice)

Figure 5.3: The overall process for creating model-independent differences from
a model MA (steps 1–3) and applying them to a model MB (steps 4–6); steps
marked with () require user interaction.

The example in Fig. 5.4 simplifies the change in the model-dependent differences
as “Add ’IdElement’ to ’data’ in ’MA’”.

2. Transformation into model-independent format: ∆a = θ1(∆,MA,M
′
A)

The model-independent format, created by a transformation θ1, decouples all
changes from the original model MA and the resulting model-independent dif-
ferences are in particular applicable to other models. The key for that feature
is the concept of symbolic references in ∆a which replace direct references to el-
ements of the original model MA in ∆. The framework supports different types
of symbolic references, see Sect. 5.4 for details.

The example in Fig. 5.4 simplifies the change in the model-independent differ-
ences as “Add ’IdElement’ to ’data’”. This change is, in particular, not bound
anymore to the original model MA.

3. Generalization of atomic model changes: ∆s = θ2(∆a)
This step applies additional transformations θ2 to changes of the initially created
model-independent differences; each of these additional and optional transfor-
mation yields a particular purpose, for instance, to make changes applicable to
multiple model elements, or to combine similar changes. The idea of generaliza-
tions is to keep the intention of the original changes but to extend their scope
of application; that is, making them applicable to other models, too.

The example in Fig. 5.4 simplifies the generalized change as “Add ’IdElement’
to ’*data*’”. The ’*’ in the model reference ’*data*’ denotes the generalization
and can be read as wildcards here.

5.2 Process for Creating and Applying Model Differences 43

Class4

Class3

Class2

jasdfasfdas

Class
1

zb

bb

i

i

data

IdElement

1. calculate
differences

"Add
'IdElement'

to 'data' in 'M ' "

Model M

A

A

Model M'A

data

2. transform
 differences

3. generalize
 changes

'*data*'
matches

'customerdata'
and 'userdata'

4. match to model M

customerdata

userdata

Model MB

customerdata

userdata

IdElement

Model M'B

B

'*data*'
is mapped to

'customerdata'
"Add

'IdElement'
to '*data*' "

5. refine
mapping

6. apply
changes

"Add
'IdElement'
to 'data' "

Figure 5.4: A simplified illustration of the process from Fig. 5.3 applied to
change #1 of Tab. 5.1 and simplified versions of model MA and MB .

4. Initial (automated) matching of changes to model elements of an
arbitrary model: Ψ = ψ1(∆s,MB)
Each change in model-independent differences specifies individually via symbolic
references to which model elements it is applicable. These symbolic references
are responsible for identifying that set of elements in an arbitrary model; this
step is typically called matching in the literature. Doing that for all changes
yields an initial mapping Ψ from changes to model elements.

The example in Fig. 5.4 matches both packages customerdata and userdata for
the model reference ’*data*’.

5. Refinement of the mapping: Ψ′ = ψ2(Ψ)
The user may review and refine the initial mapping Ψ. This is required whenever
a change is mapped to too many or too few model elements or when changes
are not applicable to the set of matched model elements. It is in particular also
possible to map a single change to multiple model elements; an example is the
movement of several elements (e.g. UML classes) from one container (e.g. UML
package) to another. The user may also, for each change, freely add/remove
model elements to/from the mapping – as long as the change is still applicable
to all selected model elements.

In the example in Fig. 5.4, the initial mapping was reduced to the package
customerdata.

44 Model-Independent Differences

6. Application of changes: M ′B = π(∆s,Ψ
′,MB)

In this step, the framework automatically modifies all mapped model elements
in model MB according to the changes in ∆s. This step is often called merging
in the literature. Conceptually, the application of changes is straightforward
except for some minor obstacles that are discussed in Sect. 5.8.

The example in Fig. 5.4 shows the resulting model M ′B after the change has
been applied to the model element customerdata as specified in the mapping.

Conclusion and Discussion

The process of using model-independent differences consists of six steps, each of
which is explained in detail in the subsequent sections. The actual calculation
of model differences is performed by other technologies, the concepts presented
here build on top of that.

In contrast to related work, our proposed process supports a generalization of
model changes in form of optional transformations. Furthermore, the mapping
Ψ, that specifies which model elements will be changed, can not only be re-
viewed, as is the case in most related work, but also refined. Model changes
can then, in particular, be applied multiple times. The corresponding sections
explain these features in detail.

5.3 The Metamodel for Model-Independent Dif-
ferences

The important characteristics of model-independent differences are self-contain-
ment and applicability to arbitrary models. This and the following two sections
introduce concepts in terms of a the metamodel for model-independent differ-
ences that enable these characteristics. The core of the metamodel is covered in
this section, additional concepts for symbolic references and model descriptors
are covered in Sect. 5.4 and 5.5, respectively.

This section starts with several decisions we made concerning the design of
model-independent differences. Based on the outcome of these decisions, the
metamodel is presented and explained. The section concludes with a brief dis-
cussion of the presented concepts.

5.3 The Metamodel for Model-Independent Differences 45

5.3.1 Design Decisions

Based on experiences, literature studies, and related work, we made four fun-
damental design decisions concerning the definition of model-independent dif-
ferences: the scope of model differences, the applicability to other models, the
internal representation of model differences, and the set of supported change
types. Understanding these decisions and the rationale behind them helps to
understand the metamodel. The first decision concerning the scope of model-
independent differences is discussed in the following table.

Decision 1: Scope of model-independent differences

Issue: Related work differentiates between the calculation, representation,
visualization, and application (also known as merging) of model
differences [BP08]. All of these aspects are required for a model
differencing technology.

Alternative 1: Development of a complete technology that realizes all of the men-
tioned aspects.

Pros: + Independence of third party tools.
+ Perfect adjustments to our needs.

Cons: − High effort for development and maintenance.
− Realization of already existing concepts is not reasonable for a
research project.

Alternative 2: Use existing tools for tasks that are out of focus.
Pros: + Saves work and time.

+ Collaboration with community of other tools.
Cons: − Dependency on other tools and their development.

− Effort to get familiar with the other tools’ concepts.

Outcome: Reuse as many components as possible (Alternative 2).
Assump.: Several other tools have a public API and can easily be reused

(technically and legally).
Just.: Reuse existing and sophisticated open source solutions for the cal-

culation and visualization of model differences and concentrate on
new concepts for their representation and application.

The first decision is to build model-independent differences on top of existing
difference calculation concepts. The next decision concerns which types of mod-
els will be supported by model-independent differences.

Decision 2: Applicability to models

Issue: Although this thesis is focusing on the UML, other modeling lan-
guages may be supported, too. That implies the need for sup-
porting different metamodels because model changes are defined in
terms of the model’s metamodel.

46 Model-Independent Differences

Alternative 1: Optimize metamodel for a particular set of modeling languages
(SiDiff [TBWK07] is an example for that strategy).

Pros: + Fast and precise detection and application of model changes.
+ Notation-specific details can be addressed.

Cons: − Support for other types of models requires high configuration
effort.

Alternative 2: Define model differences generically in terms of a meta metamodel
like MOF [OMG06a]. Reflection could be used to generically oper-
ate on the metamodel of the used modeling language.

Pros: + Any MOF-based modeling language is supported.
Cons: −Only changes that can be defined in terms of the meta metamodel

can be expressed, metamodel specific changes are not possible.
− The algorithms for creating and applying model changes might
be slower because of the use of reflection.

Outcome: Generic specification of model differences based on MOF (Alterna-
tive 2).

Assump.: All modeling languages of interest are based on MOF.
Just.: MOF is widely used by many modeling languages. Supporting

many modeling languages is of higher interest than supporting only
a single one.

As outcome of the second decision, multiple types of models will be supported,
e.g. the UML, SysML, BPMN, or any other MOF-based modeling language.
Reflection, a property of MOF-based metamodels, will be used to access and
modify models. The next decision discusses the representation of model changes.

Decision 3: Internal difference representation

Issue: Two concepts dominate in the literature to represent model differ-
ences: declarative and operational. Both coming with their specific
advantages and disadvantages.

Alternative 1: Each model change is represented declaratively by the state of the
model before and after the actual change. This kind of representa-
tion typically results from state-based model comparisons.

Pros: + Flexibility: by interpreting the declarative change description,
the change can be re-applied and undone.
+ It is irrelevant who or how changes have been made, e.g. manually
or by automated model processing.

Cons: − Only changes reflected in the resulting model are covered, inter-
mediate changes are lost.2

Alternative 2: All changes are recorded as they are made by the user.
Pros: + The changes are described as precisely as possible [HK10].
Cons: − Changes must always be recorded while the model is edited.

− Only editors may be used that support recording of model
changes.

2Example: a move and update could be detected as a delete and add.

5.3 The Metamodel for Model-Independent Differences 47

Outcome: State-based model change descriptions (Alternative 1).
Assump.: The versions before and after model changes are available.
Just.: The user shall not be limited to particular modeling tools. So it

must be possible to compare two snapshots of a model. A hybrid
approach could be used in the future to increase precision.

The outcome of this decision induces a state-based and declarative representa-
tion of model changes. A hybrid approach including a change recorder could be
added in the future. The last decision concerns the types of changes which will
be supported by model-independent differences.

Decision 4: Supported set of change types

Issue: All changes that can possibly be made in a model are described
in terms of its metamodel. However, the basic operations add and
delete can be used to describe any change. Additional change types
like movements and updates increase the accuracy of change de-
scriptions. A sub-issue is the representation of complex changes.

Alternative 1: Support only additions and deletions.
Pros: + The change metamodel is simple.

+ Tooling implementation is easy.
Cons: − Low accuracy for describing changes; the user may not recognize

his or her actual changes in the calculated set of model changes.

Alternative 2: All change types that are possible for a particular metamodel.
Pros: + Covering all possible change types of the given metamodel pro-

vides the best accuracy for describing model changes.
Cons: − The change metamodel and tooling realizations might get very

complex, depending on the model’s metamodel.

Alternative 3: A subset of all possible change types.
Pros/Cons: ± A compromise of the previous two alternatives.

Outcome: Support most common change types (Alternative 3).
Just.: The concepts shall support most common change types: addi-

tion, deletion, and update of model elements, their attributes,
and references between them [BP08]. The metamodel for model-
independent differences shall also be extendable for other change
types.

Conseq.: Other change types shall be documented in model-independent dif-
ferences even though they are not supported.
Complex changes are described by composing basic changes.

As a result of the last decision, the supported change types covers the following
basic types: addition, deletion, and update of model elements, references, and
attributes. However, the concepts are extendable for further specific types.

48 Model-Independent Differences

5.3.2 The Metamodel

The concepts of model-independent differences are defined in terms of a meta-
model which is presented in the remainder of this section. It comprises three
packages, a core package called indepdiff (an abbreviation of ’model-independent
differences’) and two packages symrefs and descriptors. The latter define how
model elements are referenced and stored, respectively. The dependency rela-
tions between all three packages are shown in Fig. 5.5.metamodel_packagespackage packages []

descriptors

indepdiff

symrefs

Figure 5.5: Dependencies between the different packages of the metamodel for
model-independent differences.

The Package indepdiff

The package indepdiff describes eleven change types in total, listed in Tab. 5.7:
nine concrete change types, one for composed changes, and one for unsupported
changes. Six of them are presented in detail, the others are defined analogously.

Element Reference Attribute

A
d
d Adding a new model

element ∗

Adding a model element
to a multi-valued refer-
ence ∗

Adding a value to a
multi-valued attribute

R
e
m

o
v
e

Removing an existing
model element

Removing a model el-
ement from a multi-
valued reference ∗

Removing a value from
a multi-valued attribute

U
p

d
a
te Moving an existing

model element to an-
other parent

Updating the referenced
model element of a
single-valued reference

Updating the value of a
single-valued attribute ∗

Change group ∗ Unknown change ∗

Table 5.7: An overview of all change types supported by model-independent
differences; changes marked with (∗) are explained in detail.

5.3 The Metamodel for Model-Independent Differences 49
metamodel_containerdiff_metamodelpackage []

+match(model : ModelElement) : ModelElement [0..*]
+matchesEqual(other : IElementReference) : boolean
+getLowerBound() : integer
+getUpperBound() : integer

IElementReference

-details : String
UnknownChange

-oldModel : String
-newModel : String
-source : String

MPatchModel

IndepChange

ChangeGroup Classifier
From meta metamodel

-resultingElement
0..1

-correspondingElement
0..1

-changes
0..*

-subChanges *

-dependsOn*-dependants *

+type 0..1

Figure 5.6: An excerpt of the metamodel for model-independent differences
showing the container MPatchModel, the abstract change type IndepChange,
and two concrete change types for groups and unknown changes.

The excerpt in Fig. 5.6 shows the abstract superclass IndepChange for all
changes along with the two change types for change groups (ChangeGroup)
and unknown changes (UnknownChange); the complete package is depicted in
Appendix A. MPatchModel represents model differences between two models
for which the attributes oldModel and newModel may be used to store addi-
tional information. Source may be used to store information about the source
from which the model-independent differences were created, like the difference
calculation algorithm.

The nine atomic change types are added, removed, or updated model elements,
their attributes, or references. Other change types, for instance, order changes
of an ordered reference, are currently not supported. Whenever the creation
of model-independent differences (discussed later in Sect. 5.6) detects such an
unsupported change type, an UnknownChange will be created including appro-
priate information about the original change in the property details. To imple-
ment unknown changes, a new change type can be added to the metamodel by
adding a new subclass of IndepChange with respective properties to describe
the desired change.

Change groups do not describe any concrete change in a model but they may
contain other changes. This way, complex changes can be composed of several
other changes, and the changes may be hierarchically structured – this is an
instance of the composite design pattern [GHJV95].

References to model elements. Each of the atomic change types describes
a particular change on one or more model elements or their properties. The
property correspondingElement, common to all changes (cf. IndepChange in
Fig. 5.6), specifies that particular set of model elements in the unchanged state,
and resultingElement in the changed state. They contain instances of IElement-
Reference, an abstract concept which we call symbolic references that matches

50 Model-Independent Differences
metamodel_elementsdiff_metamodelpackage []

+applyStructure(parent : ModelElement, containment : Reference) : ModelElement [*]
+applyCrossReferences(element : ModelElement) : IElementReference [*]
+isDescriptorFor(element : ModelElement) : Boolean

IModelDescriptor

+match(model : ModelElement) : ModelElement [0..*]
+matchesEqual(other : IElementReference) : boolean
+getLowerBound() : integer
+getUpperBound() : integer

IElementReference

IndepAddRemElementChange

IndepAddElementChange

IndepElementChange

IndepChange

Reference
From meta metamodel

-correspondingElement
0..1

-/subModelReference
1

-containment
1

-subModel 1 +/crossReferences 0..*

Figure 5.7: The metamodel for changes describing added elements; implemen-
tations of IModelDescriptor contain a self-contained description of the element
that was added.

such a set of model elements in a given model. LowerBound and upperBound
are used to constrain the size of that set. Details about symbolic references are
explained in the subsequent section, for now it is sufficient to understand them
as a concept for referencing arbitrary model elements.

Change #2 in Tab. 5.1 on page 36, for example, describes a change on the
model element Book. Hence, a symbolic reference describing the corresponding
element for this change would contain some information to resolve the class
Book in model MA (cf. Fig. 5.1 on page 36). It is the responsibility of the
symbolic reference, how this (in this case single-valued) set of model elements
is determined.

Changes on model elements. Model changes on elements comprise the ad-
dition, deletion, and move of model elements. A model element is a node in
the graph-representation of a model. These change types do not include modi-
fications of model element properties (attributes of graph nodes) or references
between them (graph edges). In the metamodel excerpt in Fig. 5.7, the addi-
tion in presented in detail; a deletion is represented similarly, a move slightly
different without the need for a model descriptor. The following information is
required to describe an addition: what is added and where.

Where: The symbolic reference of correspondingElement defines the parent to
which the new element is added. The containment defines the property of
the parent to which the new element is added; the containment property is
of type Reference which is part of the MOF meta metamodel. Instances of

5.3 The Metamodel for Model-Independent Differences 51
add_element_objectsadd_changepackage []

idElement : IModelDescriptor

parent : IElementReference

packagedElement : Reference string : IElementReference

[Excerpt from UML metamodel]

id : IModelDescriptor Attribute : Classifier

Package : Classifier:
IndepAddElement

Change

correspondingElement

Class : Classifier

PrimitiveType :
Classifier

containment type

type

type

subModel

type

Sub-descriptor for
attribute "id : String"
Sub-descriptor for
attribute "id : String"

Figure 5.8: An instance of an IndepAddElementChange as a UML object dia-
gram; the containment reference and the types are parts of the UML metamodel.

Reference are, amongst others, containment relations in the UML meta-
model. The following example clarifies this containment reference.

What: The model descriptor of subModel is a concept for describing arbitrary
model elements; it is a self-contained description of the new element.

Change #1 in Tab. 5.1 is an example for an added element, a UML class to
be precise. An instance of IndepAddElementChange describes such a change, as
illustrated in an object diagram in Fig. 5.8. The corresponding element (parent)
is a Package, defined in the UML metamodel. The parent’s property which holds
the added class is packagedElement, a Reference in the UML metamodel. The
new element IdElement is described with a model descriptor which may also
contain sub model descriptors such as the one for the attribute id : String. The
type of the attribute (String) is, however, part of a basic UML profile and, hence,
a cross reference to the type that is contained in that profile. Cross references
of model descriptors are references from the described model elements to other
model elements that are not described by this model descriptor. Cross references
are again stored as symbolic references.

Changes of model element references. Model changes on references com-
prise the addition, deletion, and update of references between model elements. A
reference is a directed edge in the graph-representation of a model, for instance,
an inheritance relation in UML models. Here we only present the addition
and deletion in detail (cf. metamodel in Fig. 5.9); an update of a reference is

52 Model-Independent Differences
metamodel_referencesdiff_metamodelpackage []

+match(model : ModelElement) : ModelElement [0..*]
+matchesEqual(other : IElementReference) : boolean
+getLowerBound() : integer
+getUpperBound() : integer

IElementReference

IndepAddRemReferenceChange

IndepRemoveReferenceChangeIndepAddReferenceChange

IndepReferenceChange

IndepChange

-lower : integer
-upper : integer

Reference

From meta metamodel

-reference
1

-changedReference 1

-correspondingElement
0..1

Figure 5.9: The metamodel for changes describing added and deleted references.

described slightly different with two instead of one reference targets. Again,
the following information is required to describe an addition or a deletion of a
reference: the source or owner and the target of the added/deleted reference.

Source: The symbolic reference of correspondingElement defines the source/
owner of the added/deleted reference. The reference specifies the property
of the source which holds the reference to be added/deleted.

Target: The symbolic reference of changedReference defines the target of the
added/deleted reference.

Change #5 in Tab. 5.1 is an example for an added reference, a UML generaliza-
tion from the class Book to the class IdElement. An IndepAddReferenceChange
describes such a change. The source is described by the correspondingElement
(the class Book), the target by the changedReference (the class IdElement).

The distinction between added/deleted and updated references is defined by
the cardinality of the Reference of the model’s metamodel (lower and upper).
If upper > 1, as it is the case for UML inheritance relations, then references
are added or deleted; if upper = 1, as it is the case for type reference of UML
attributes, for instance, then references are updated.

Changes of model element attributes. Model changes on attributes com-
prise the addition, deletion, and update of attributes owned by model ele-
ments.3 Examples are the attributes name : String and isAbstract : boolean of

3UML attributes (cf. changes #2–4 in Tab. 5.1), on the other hand, are just model elements
in contrast to meta attributes of model elements to which we refer here.

5.3 The Metamodel for Model-Independent Differences 53
metamodel_attributesdiff_metamodelpackage []

+match(model : ModelElement) : ModelElement [0..*]
+matchesEqual(other : IElementReference) : boolean
+getLowerBound() : integer
+getUpperBound() : integer

IElementReference

IndepUpdateAttributeChange

IndepAttributeChange

IndepChange

AttributeObject

From meta metamodelFrom meta metamodel

-attribute 1

-correspondingElement
0..1

-oldValue
1

-newValue
1

Figure 5.10: The metamodel for changes describing updated attributes.

UML classes [OMG10]. Only updated attributes are explained here (cf. meta-
model in Fig. 5.10) because multi-valued attributes are rarely used4. However,
we decided to include them in order to be symmetric and consistent with refer-
ence change types. Again, the following information is required to describe the
update of an attribute: what attribute was changed and how.

What: The symbolic reference of correspondingElement defines the model ele-
ment that owns the updated attribute. Attribute specifies which attribute
is updated.

How: The value before the change is stored in oldValue, the value after the
change is stored in newValue.

Change #8 in Tab. 5.1 is an example for an updated attribute, the name of a
UML attribute to be precise. An IndepUpdateAttributeChange describes such
a change. The corresponding element defines the model element that owns the
attribute, the UML attribute Title in this case. The updated meta attribute is
name and the actual change is described by oldValue = ’Title’ and newValue
= ’title’.

The same distinction between added/deleted and updated attributes applies as
explained for reference change types.

5.3.3 Dependencies

A set of model changes describes what exactly was changed between two versions
of a model. When only a subset of model changes shall be applied to other

4Just like references, attributes may also have a cardinality and, hence, can be multi-valued.

54 Model-Independent Differences

models, some changes may require the prior application of other changes. The
example changes in Tab. 5.1 illustrate the problem: change #5 (adding Id-
Element as a superclass to Book) can obviously not be applied before change
#1 (adding class IdElement) has been applied, because the former change adds
a reference to the class that is first created by the latter change. In general, the
problem can be stated as follows: a change C1 depends on another change C2
if C1 is only applicable to a model after C2 has been applied.

The following dependency relation between changes defines which changes must
be applied before others can be applied. This is important in case of partial
application of model changes, that is, when only a subset of model changes shall
be applied to a model. Whenever a depending change is not contained in that
subset, the selected changes cannot be applied successfully. The dependency
relation is defined as follows.

• A change C1 depends on a change C2, if C2 describes the addition of
model elements and C1 contains a reference to any of these added model
elements.

• A change C1 depends on a change C2, if C1 describes the removal of
model elements and C2 contains references to any of these removed model
elements.

These two rules are sufficent because of the following reasons. Attribute changes
do not correlate with any other change, this is why they are not relevant for
dependencies. Adding or updating a reference, adding an element with cross
references, or the new parent of a moved element may refer to a newly added
element; hence, these changes may depend on the change describing the newly
added element. Removing or updating a reference, removing an element with
cross references, or the old parent of a moved element may refer to a removed
element; hence, the change describing the removed element may depend on these
changes. This list covers all supported change types.

5.3.4 Conclusion and Discussion

This section first documented four important design decisions concerning the
scope, applicability, internal representation, and the supported set of change
types of model-independent differences. These decisions led to the design of
model-independent differences that was explained for changed elements, their
attributes and references. The entire metamodel of model-independent differ-
ences is shown in Appendix A.

5.4 Symbolic References 55

Extendibility of these concepts is an important requirement. The first step for
adding a new change type is its integration into the metamodel, i.e. to add a new
subclass of IndepChange, with the desired properties. Afterwards, and that is
the major part of the extension, the creation and application of the new change
type must be defined. See Sect. 5.6 and 5.8 for details.

The ability to express complex changes is another important requirement. Com-
plex changes might be refactorings like the one presented in the beginning of
this section; they basically consist of a set of atomic model changes. Change
groups can be used to arrange changes and to structure them hierarchically.
Grouping may be performed either at creation-time of the model changes or at
any time afterwards. See Sect. 5.7 for details.

5.4 Symbolic References

The metamodel for model-independent differences presented so far covers eleven
change types as discussed in the previous section. The specification of which
model elements are changed, however, was only vaguely mentioned as symbolic
references. There are many different matching strategies in the literature, each
having its own strengths and shortcomings. Instead of restricting the metamodel
to one strategy only, we define an interface which allows the use of different
matching strategies. This section explains the concepts of symbolic references
along with three example realizations: id-, condition-based, and static referenc-
ing of model elements.

The most important characteristic of symbolic references is that they define
the matching strategy during the application of model changes. That is, dur-
ing change application (step 4 in Sect. 5.2), each symbolic reference matches
elements in the target model. The results of all matchings yields the initial
mapping Ψ that maps each symbolic reference to the set of model elements it
matches. We first discuss the meaning of symbolic references before defining
the interface and realizations.

A widely used and simple solution are unique identifiers where a (single) model
element with a given identifier is matched. Typically, identifiers are unique in
the scope of the model that contains the model element, in contrast to globally
unique identifiers, which are unique even across other models. However, not all
metamodels provide unique identifiers. Other solutions are similarity metrics or
model queries. Overall, we call the parts that define which elements are matched
in a model symbolic references. The term is inspired by Venvers:

56 Model-Independent Differences

”A symbolic reference is a character string that gives the name
and possibly other information about the referenced item – enough
information to uniquely identify [it].” [Ven99, p. 56]

However, we do not limit symbolic references to character strings but we retain
the characteristics that symbolic references are self-contained (as a character
string is) and it must contain some information to (not necessarily uniquely)
identify the referenced items. Consequently, a symbolic reference must in par-
ticular not depend on any other artifact like other models.

Let us assume a model change describing the addition of a generalization shall
be applied to all classes in a package “data”. Moreover, there shall be at least
one and at most three such classes: [1..3]. The subsequent sections discuss how
such a model reference can be matched to the unchanged version of model MA

in Fig. 5.1 on page 36.

5.4.1 The Interface for Symbolic References

A symbolic reference must provide a matching algorithm that matches all el-
ements in a given model which are potential candidates. Symbolic references
may be used at many places, so they do not know about any model change
they belong to. A matching algorithm may in particular return a set of model
elements. Hence, the signature of the algorithm is:

match(model : ModelElement) : ModelElement [0..∗] (cf. metamodel in Fig. 5.11)
The parameter model is the root element of the given model or, to reduce com-
plexity and to improve performance, of a sub-model.

For each symbolic reference, bounds must be set which specify whether or not the
number of matched model elements is valid (cf. the interface IElementReference
in Fig. 5.11). Matching the symbolic reference all classes in a package “data” to
the unchanged version of model MA in Fig. 5.1 on page 36, returns four classes,
Article, Book, Cover, and Author. According to the specified bounds [1..3], the
size of this set is not valid. The refinement of the mapping (step 5 in Sect. 5.2)
must resolve that issue by removing at least one of the classes from the set.

5.4.2 Matching Strategies – Package symrefs

This section presents several realizations of symbolic references including their
matching strategies. An overview of existing matching strategies in the liter-
ature and related work is given in Tab. 5.8. Each of the existing approaches,

5.4 Symbolic References 57
symref_metamodel metamodel_symrefpackage []

+match(model : ModelElement) : ModelElement [0..*]
+matchesEqual(other : IElementReference) : boolean
+getLowerBound() : integer
+getUpperBound() : integer

IElementReference

+collect(model : ModelElement) : ModelElement [0..*]
Condition

-uri : String
ExternalElementReferenceElementSetReference

-idValue : Object
IdElementReference

-expression : String
OclCondition

Classifier+type
0..1

-conditions 1..*

-context 0..1

Figure 5.11: The metamodel for symbolic references and three example imple-
mentations (package symrefs).

however, allows only one specific matching strategy at a time; since model-
independent differences specify the matching strategy per symbolic reference,
several different strategies are possible even in the same set of model changes.

The table lists often used matching strategies from literature along with their
pros and cons. Id-based matching is typically fast and the only one that matches
at most one element. All others are capable of matching multiple model elements
although they often return only a single element, for instance, the most similar
one in case of similarity-based matching. In order to make model-independent
differences applicable to other models as motivated in the example in the be-
ginning of this Sect. 5, we would like to configure the matching strategy or, in
other words, manipulate the matching criteria. All matching strategies but the
id-based one are to a greater or lesser extend configurable.

The package symrefs contains three implementations of symbolic references as
shown in Fig. 5.11. Two of them (IdElementReference and ExternalElement-
Reference) comprise id-based matching strategies, whereas ElementSetReference
comprises a condition-based matching strategy. Each of them is presented next
with a brief description, an outline of the matching algorithm, and a discussion
of their advantages and disadvantages.

Id-based Symbolic References. This strategy of referencing model ele-
ments requires a distinguished property as identifier on each model element
that is unique within its model. This is a common and efficient way of referenc-
ing model elements. The proposed realization IdElementReference stores the
value of such a unique identifier in idValue. The upper bound is always 1.

58 Model-Independent Differences

Type Uses Description

Id-based ∗ [OWK03]
[AP03]
[BP08]

Each model element has an identifier that is either
unique within its model or globally unique. A symbolic
reference matches the model element with a particular
identifier.

Adv.: + Exact and very fast
Disadv.: − Unique identifiers are not available in all models

− Independently created models have different identi-
fiers
− It is not possible to match more than one element
− Configurable only by adjusting the id value

Similarity-
based

[TBWK07]
[BP08]
[LGJ07]

A reference model (e.g. copy of original model) is used
to match the model element of interest. Usually at-
tribute values and/or graph structure are compared.

Adv.: + No unique identifiers required
+ Generically applicable
+ Configurable by adjusting the similarity threshold
+ Possibility to match a set of elements

Disadv.: − Weak performance (n ∗m comparisons in the worst
case; n = #elements in reference model, m = #ele-
ments in target model)
− False positives might occur in case the model differs
from the original model
− Configuration: adjusting the reference model is cum-
bersome

Query- or
signature-
based

[FBFG07] A user-defined function is used to query the model
which returns a set of elements with particular prop-
erties (defined in a signature). Performance depends
on the queries.

Adv.: + Highly configurable
+ Returns a set of multiple elements

Disadv.: − A signature specification is required for each type of
model elements
− Ambiguity (matching more than one element) may
not always be desired

Condition-
based ∗

[BLS+09] This specialization of signature-based referencing uses
conditions as signatures.

Adv.: + Configurable by adjusting the conditions
+ Standardized query languages are available (e.g. SQL
[GWO09], OCL [OMG06b])
+ Signature can easily be generated

Disadv.: − Performance depends on query execution engine
− Ambiguity (matching more than one element) may
not always be desired

Table 5.8: Different matching strategies used in related work; matching strate-
gies marked with a (∗) are also realized in this project.

5.4 Symbolic References 59

Examples:
idValue=” wK5TIkMyEd−jXvz6ingaZQ” (value of id attribute in a UML model)
idValue=”324” (value of id attribute in an EMF model)

Matching Algorithm: If the given model contains a model element with the iden-
tifier stored in idValue, that model element is returned. Otherwise an empty
set is returned.
Advantages: The algorithm is fast (it typically runs in O(1) with a one-time
calculation of O(n), n being the total number of elements in the model). By
definition of unique identifiers, its return value is unambiguous, that is, at most
one element.
Disadvantages: Id-based references are not suited for applying changes to other
models that are created independently of the original model, because the other
model elements usually have different identifiers assigned.

Static Symbolic References. This specialization of id-based symbolic refer-
ences uses absolute5 URIs (Uniform Resource Identifier [BLFM05]) for referenc-
ing model elements. Compared to the preceding id-based symbolic references,
static symbolic references use URIs as absolute paths whereas the former may
use relative paths to the model root. Hence, URIs can be used to refer to static
model elements such as data types in UML profiles. A URI consists of several
parts, those before the fragment (separated with ’#’) typically locate the model.
The fragment is typically the unique identifier or path to the element of interest
within that model. Since such referenced elements are typically located in other
than the compared models, our realization is called ExternalElementReference.
Examples:

uri=”pathmap://UML LIBRARIES/UMLPrimitiveTypes.uml#String” (UML profile)
uri=”platform://resources/example/library.ecore#//Book/id” (EMF model)

Matching Algorithm: The algorithm is the same as the previous one with a pre-
ceding loading of the model specified in the URI. The parameter model is not
used here.
Advantages: In addition to the advantages of the previous strategy, static model
elements outside the target model can be referenced.
Disadvantages: Only one single fixed model element can be referenced.

Condition-based Symbolic References. This is a mixture between query-
and similarity-based referencing strategies (cf. Tab. 5.8). The proposed realiza-
tion (cf. ElementSetReference in Fig. 5.11) uses Conditions that must hold for
referenced model elements. These conditions contain boolean expressions and
can, for instance, be expressed in OCL (Object Constraint Language [OMG06b]).

5The specification of URIs allows absolute and relative paths, starting from a context
element; however, static symbolic references only use absolute paths.

60 Model-Independent Differences

Conditions may check attribute values, graph structure, or any other properties.
In contrast to signature-based model referencing, we create conditions automat-
ically from the original model elements (more details are given later in Sect. 5.6).
A context may be used to restrict the matching to a sub-model in order to re-
duce complexity and to increase performance.
Examples:

expression=”self.name=’data’” (UML package)
expression=”self.name=’Book’ and self.isAbstract=false and...” (UML class)

Matching Algorithm: For each condition, collect is called and returns all ele-
ments for which that condition holds6 (cf. metamodel in Fig. 5.11). The inter-
section of the results from all conditions yields the overall matching result. This
may in particular be a set of multiple model elements. If the context is set, then
the conditions are not evaluated on the entire model but on the matching result
of the context.
Advantages: The matching strategy is very flexible, any kind of conditions may
be used here. Users may also manually refine automatically created conditions.
Disadvantages: Checking the conditions on each model element during the
matching process might be a time-consuming operation.

5.4.3 Conclusion and Discussion

This section motivated the term symbolic references and presented its interface.
Several matching strategies have been presented that are used in the literature
and that could be integrated into model-independent differences; id-, condition-
based, and static symbolic references, have already been integrated.

Although the default cardinality for the matching result of symbolic references is
1..1, all but id-based realizations can potentially match multiple model elements.
That means, model changes could be applied to multiple model elements instead
of just one. However, except for the work by Brosch et al. [BLS+09], none of
the related work exploits this feature.

The remaining parts of the thesis focus on condition-based symbolic references
because conditions can easily be manipulated. This fact will be used later in
Sect. 5.7 to generalize atomic changes to make them applicable to other models.
This is not possible with id-based and only hardly possible with similarity-based
model referencing strategies. Id-based model referencing, on the other hand, is
the best choice for the traditional way of creating and applying a patch, which
is also supported by model-independent differences.

6For OCL conditions, an OCL engine evaluates the expression on the model elements; no
extra traversal algorithm is required.

5.5 Model Descriptors 61

5.5 Model Descriptors

Symbolic references can be used to refer to arbitrary model elements without the
need of any other model. That could, for instance, be the place where new model
elements are added. But how to express what to add? Since model-independent
differences shall be independent of any model (including the original model
from which they have been created), all information about the changes must be
included in the differences, including the model elements that have been added.

A description of an added element must include all sub-elements and all their
properties including attribute values and references to other model elements.
A copy or naive serialization of the added parts is not sufficient, because in-
formation about cross references to other model elements will be lost. Holding
a copy of the entire compared models is impractical especially in case of big
models. Others use unique identifiers or URIs to describe cross references, but
such descriptions are not applicable to models with different contents.

This section continues with a classification of cross references on an extended
example in order to highlight the problem of describing added parts of a model.
Then the interface for model descriptors is presented that is capable of describing
added model elements sufficiently such that they are again applicable to other
models. The section concludes with a discussion about the presented concepts.

5.5.1 Cross References in Model Descriptors

The crucial part of describing elements that have been added to a model is to
store cross references between these model elements and the rest of the model.
Fig. 5.12 is a variation of the change that adds a class IdElement to a model; it
does not only contain an attribute id : String but in addition an inheritance rela-
tion to an existing class IdGenerator. There are two changes, add generalization
from Book to IdElement, and the already mentioned addition of IdElement. We
must consider three types of cross references when adding elements to a model,
all of them are covered in this example. See Tab. 5.9 for an overview.

In order to be applicable to other models, the description of cross references
must be detached from the originally compared model. Therefore, symbolic
references can be used for describing the different kinds of cross references:
cross references between changes: internal element references,
cross references to model elements: id- or condition-based symbolic references,
cross references to external elements: static symbolic references.

62 Model-Independent Differences

data_ext

Book

title : String

IdGenerator

gen ()

data_ext

: String

IdGenerator

gen (): String

Book

title : String

IdElement

id : String

(unchanged version) (changed version)

(1) between changes

(3) to external model

(2) to existing
 element

Figure 5.12: Several kinds of cross references might occur in model changes:
cross references within changes, to model elements, or to external models.

Cross reference Description

(1) between changes A change, e.g. an added reference, refers to a model ele-
ment that is added to the model.

(2) to existing model
elements

A change, e.g. an added element, refers to an existing
model element.

(3) to external model
elements

A change, e.g. an added element, refers to a model ele-
ment that is located in another than the compared model.

Table 5.9: List of different types of cross references that may occur when de-
scribing added model elements.

The latter two types of cross references have already been discussed in Sect. 5.4.
Internal element references are references to model elements that do not exist in
a model unless the according change has been applied that creates that model
element. These references are explained later in Sect. 5.5.4 after the interface
for model descriptors has been presented.

5.5.2 The Interface for Model Descriptors

Our proposed concepts for describing added model elements sufficiently is called
model descriptors. The interface IModelDescriptor in Fig. 5.13 requires, on the
one hand, that realizations store all cross references properly. On the other
hand, it requires that realizations are able to apply described model elements
to another model, as explained next.

Added elements might refer to each other as sketched in Fig. 5.14. The figure
illustrates two changes, an added element A including a reference to B and an
added element B including a reference to A. Assume both changes shall be ap-

5.5 Model Descriptors 63
descriptors_metamodel metamodel_descriptorspackage []

+applyStructure(parent : ModelElement, containment : Reference) : ModelElement [*]
+applyCrossReferences(element : ModelElement) : IElementReference [*]
+isDescriptorFor(element : ModelElement) : Boolean

IModelDescriptor

ReflectiveModelDescriptor IElementReference

CrossReferencesSubDescriptorsAttributes

ReferenceAttributeObject

Classifier

from meta metamodelfrom meta metamodelfrom meta meta modelfrom meta metamodel

-crossReferences 0..*

+/crossReferences 0..*

-attributes 0..*

+type
1

-property
1

-referencedElements 0..*

-property
1

-property 1

-subElements0..*
-subDescriptors 0..*

-values 0..*

Figure 5.13: The metamodel for model descriptors and a realization for reflective
models (package descriptors).

p

p

A B

(unchanged
 version)

(changed version)
another_p

A i?

(another model)

Figure 5.14: Two changes that depend on each other; the application of add
element changes requires two steps: first, all elements are added; second, all
cross references are restored.

plied to another model, then none of them is applicable individually because
the reference to the other element cannot be restored. A solution is to per-
form the application of added elements in two steps: first, the described model
elements including their attributes are created in the target model; second, all
cross references are restored. These two steps are reflected in the two operations
applyStructure and applyCrossReferences of the interface IModelDescriptor.

5.5.3 A Generic Model Descriptor

The proposed realization of a model descriptor ReflectiveModelDescriptor uses
reflection to access and restore properties on model elements. Three types of in-
formation must be stored: attributes values, cross references, and sub-elements.
Each of them is described as depicted in Fig. 5.13:

64 Model-Independent Differences
metamodel_internalrefsymref_metamodelpackage []

+match(model : ModelElement) : ModelElement [0..*]
+matchesEqual(other : IElementReference) : boolean
+getLowerBound() : integer
+getUpperBound() : integer

IElementReference

ModelDescriptorReference IModelDescriptor-descriptor
1

Figure 5.15: The metamodel for symbolic references that refer to model elements
which are described by a model descriptor.

• attributes contains a list of attribute values for a property (Attribute);

• subDescriptors contains a list of sub-element descriptors for a property
(Reference);

• crossReferences contains a list of symbolic references (the actual referenced
model elements) for a property (Reference). IModelDescriptor.crossRefer-
ences is an accumulated set of all cross references including sub elements.

This is all information required to apply a model element to a model: all sub-
elements and all attributes and references can be restored, assuming that the
symbolic references are resolved properly. The latter is, however, part of step 5,
the resolution and refinement of symbolic references, as outlined in Sect. 5.2.

5.5.4 Internal Model References

In addition to the symbolic references presented in Sect. 5.4, we need another
type of model references, namely references to model elements that have not
yet been added to a model. Changes #5–7, for example, describe adding a
generalization from existing model elements to the not yet existing element Id-
Element. Id- or condition-based references will not work, because they cannot
match an element that does not yet exist in a model. Going through all cases
of referencing model elements within model changes, there are three cases in
which such references may occur:
• Added/updated references that refer to added model elements
• Removed/updated references that refer to deleted model elements
• Cross references within the same or across model descriptors

The targets of these model references are always elements described by model
descriptors. Our consequent realization of these particular symbolic references
is called ModelDescriptorReference and is shown in Fig. 5.15.

5.6 Creating Model-independent Differences 65

The matching strategy of these symbolic references is obvious: they match ex-
actly those model elements that have been created by the referenced model
descriptor. This implies that these symbolic references do not return concrete
model elements during the matching phase; but they return the added elements
after the first phase during the application step (applying structure of added
elements, cf. Sect. 5.5.2).

5.5.5 Conclusion and Discussion

This section presented the requirements, concepts, and a realization of how
model elements including sub-elements can be described in model changes. The
crucial part of these model descriptors is to store cross references properly such
that they can be restored whenever the described element is applied to a model.
The solution is the use of appropriate symbolic references.

There is not much information about related work for describing model ele-
ments including cross references; Cicchetti et al. [CRP07] and Hermannsdörfer
et al. [HK10] bypass that issue by using separate add reference changes for cross
references, Brosch et al. [BLS+09] use copies of the compared model fragments,
and all others refer to the originally compared models.

The concept of model descriptors are again designed in a modular way in case
other realizations will be developed in the future. Imaginable are specific model
descriptors for models that do not support reflection or model descriptors that
work without symbolic references.

5.6 Creating Model-independent Differences

The previous sections introduced the metamodel of model-independent differ-
ences and explained how they are used. Their creation was only briefly men-
tioned in step 2 of Sect. 5.2, which said that they are the result of a trans-
formation from another model-dependent differencing format. After giving an
example of model-dependent differences, this section discusses the requirements
for the creation task and then introduces a transformation using QVT Opera-
tional Mappings from differences of EMF Compare into the format of model-
independent differences.

The use of EMF Compare is one example for model-dependent differences. We
could use others, for instance, the operation recorder from Hermannsdörfer et

66 Model-Independent Differences

Figure 5.16: EMF Compare calculates and visualizes all changes between the
two versions of model MA shown in Fig. 5.1: a newly added class, three deleted
attributes, three added generalizations, one updated attribute.

al. [HK10] which hooks into model editors and records all model changes. Such
recorded model changes are much more precise than those created with EMF
Compare, but the model must always be edited with specific editors. Those
other sources are imaginable as well and may be added in the future.

5.6.1 Example of Model-dependent Differences

Eight changes have been made to the model in Fig. 5.1 on page 36 as part of
the refactoring extract superclass. Fig 5.16 depicts them in the GUI of EMF
Compare. The upper part summarizes all changes, the lower part visualizes the
changes in a tree-based view of the model. All eight changes are shown: a new
class IdElement has been added to the package data, generalizations have been
added and attributes have been removed for three classes, and the attribute
Title was renamed.

These are model-dependent differences because the unchanged and the changed
model versions are required to represent and visualize the changes. Fig. 5.17
shows the addition of the class IdElement in abstract syntax as a UML object

5.6 Creating Model-independent Differences 67

example_emfcompare_objectsEMF Comparepackage []

: ModelElementChangeLeftTarget

: ComparisonResourceSnapshot

IdElement : Class

sample : Modelsample : Model

data : Packagedata : Package

: DiffModel

: DiffGroup

packagedElement

rightParent

rightParentleftElement

leftRoots rightRoots

Right (unchanged) versionLeft (changed) version

Figure 5.17: Parts of the model changes in Fig. 5.16 are shown here in abstract
syntax as a UML object diagram, its metamodel is given in Fig. 5.18; this
description of model changes refers directly to the compared model versions.

diagram. The ComparisonResourceSnapshot specifies that two resources have
been compared and it contains a DiffModel. The latter contains the actual
changes, hierarchically structured corresponding to the containment hierarchy
in the unchanged version of the model that is compared. ModelElementChange-
LeftTarget specifies that the left model version, which is the changed version
of the model, had an element change – which means that an element has been
added to the model. The added element is referenced via the association left-
Element, its parent via rightParent.

In total, EMF Compare supports ten types of changes (cf. Sect. 3.2), all are
represented similarly: direct references to model elements specify which model
elements have been changed and the meta type (ModelElementChangeLeftTarget
in this case) specifies how it was changed. The meta type of the root container
(here ComparisonResourceSnapshot) specifies whether two single resources or a
set of resources, e.g. multiple files, have been compared.

5.6.2 Transformation Requirements

This section explains the requirements for the transformation to create model-
independent differences so that they can be used as illustrated in the scenarios
in Sect. 5.2. Both model-dependent and model-independent differences, can be
treated as models. Therefore, we define a model-to-model transformation for
the creation of model-independent differences. The requirements as well as the
source and target metamodels for this transformation are stated and the chosen
transformation language is discussed below.

68 Model-Independent Differences
source_metamodelEMF Comparepackage []

ModelElementChangeLeftTarget

ComparisonResourceSnapshot

-date : EDate
ComparisonSnapshot

ModelElementChange

-conflicting : EBoolean
-kind : DifferenceKind
-remote : EBoolean

DiffElement

EObject
...

DiffGroup

DiffModel

From meta
metamodel

-leftElement0..1
-rightParent0..1

-rightParent0..1
-leftRoots 0..*

-ownedElements

0..*

-rightRoots0..*

-subDiffElements 0..*

-diff
0..1

Figure 5.18: An excerpt of the EMF Compare metamodel that is the source
metamodel for the transformation θ1 to create model-independent differences.

The transformation θ1 to create model-independent differences requires a valid
set of model-dependent differences ∆ as input. Valid means that all refer-
enced elements must exist, including the unchanged and the changed versions
of the compared model. Moreover, there must not be a conflicting model ele-
ment (conflicts might occur in three-way model comparisons, which is neglected
here). Then θ1 transforms the model-dependent differences ∆ including the
unchanged and changed versions of the model MA and M ′A into self-contained
model-independent differences: ∆a = θ1(∆,MA,M

′
A). The model-independent

differences ∆a must contain all information about the changes made to MA

such that M ′A can be restored from MA: M ′A = π(∆a, ψ1(∆a,MA),MA) and
vice versa; as a reminder, ψ1 is the matching, π the application of model differ-
ences as defined in Sect. 5.2.

There are also two important non-functional requirements to the transforma-
tion: automation and extendibility. The transformation must be automatic, i.e.
no user interaction must occur, because it should be possible to provide the
creation of model-independent differences via a public API7. Furthermore, the
transformation must be easily extendable, for instance, for adding additional
change types or new matching strategies.

The source metamodel for the transformation is the EMF Compare metamodel.
Fig. 5.18 shows an excerpt of it, the full metamodel is shown in Appendix A.
The object diagram in Fig. 5.17 is an instance of this metamodel. The ex-
cerpt covers resource-based model differences (ComparisonResourceSnapshot)
and the change type for added elements (ModelElementChangeLeftTarget). The

7An Application Programming Interface (API) can be used by third party application to
access provided functions.

5.6 Creating Model-independent Differences 69
target_metamodeldiff_metamodelpackage []

IndepAddRemElementChange

IndepAddElementChange

IndepElementChange

IElementReference

IModelDescriptor

-oldModel : String
-newModel : String
-source : String

MPatchModel IndepChange

Reference

From meta
metamodel

-correspondingElement
0..1

-resultingElement
0..1

-changes
0..*

-subModel
1

-containment
1

Figure 5.19: An excerpt of the metamodel for model-independent differences,
the target metamodel for the transformation θ1.

subclasses of DiffElement represent the individual change types. Both attributes
conflicting and remote, are irrelevant because they state properties for three-way
comparisons and comparisons of models in repositories, respectively. References
to EObject, on the other hand, are important because they refer to the actual
changed elements in the compared models. No information of the change itself
is described with this metamodel, it is derived information from the referenced
model elements. An added element, for instance, is expressed indirectly via the
reference leftElement which points to the added element in the changed version
of the compared model (as shown in Fig. 5.17).

The target metamodel for the transformation is the one defined in Sect. 5.3.
Fig. 5.19 shows an excerpt of it with all relevant elements to understand the
transformation of added elements. MPatchModel is the container for all changes.
IndepChange is an abstract superclass for all change types, similar to Diff-
Element in the source metamodel. Its concrete subtypes encode the change
type, just as the source metamodel. Direct references to the compared models
are, in contrast to the previous metamodel, represented with the two interfaces
IElementReference and IModelDescriptor.

Before explaining the transformation specification, we informally sketch the
transformation for the example in Fig. 5.17. Figure 5.20 shows the source in-
stance at the top and a target instance at the bottom. The arrows sketch the
actual transformation: DiffModel is transformed into an MPatchModel, Model-
ElementChangeLeftTarget into IndepAddElementChange. PackagedElement, the
property that contains the added element, is transformed into a reference to
packagedElement : Reference, which is defined in the UML metamodel. The cre-
ation of model descriptors (denoted with MD) and symbolic references (denoted
with SR) are modular and exchangeable operations, because there might be dif-

70 Model-Independent Differences

idElement : IModelDescriptor parent : IElementReference

packagedElement : Reference

: IndepAddElementChange
correspondingElement

: MPatchModel

subModel

containment

: ModelElementChangeLeftTargetIdElement : Class

sample : Modelsample : Model

data : Package data : Package

: DiffModel

: DiffGroup

packagedElement

leftRoots

rightParent

rightRoots

rightParent

leftElement

Instance of model‐independent differences

Instance of model‐dependent differences

MD SR

transformation_sketch

Figure 5.20: Informal sketch of the transformation of model-dependent differ-
ences from Fig. 5.17; the arrows denote the actual transformation; MD states
the creation of a model descriptor, SR the creation of a symbolic reference.

ferent realizations for these two concepts (cf. Sect. 5.4 and 5.5).

Based on these requirements, the chosen transformation language is QVT Oper-
ational Mappings [OMG07a]. Most importantly, the language allows the import
of libraries for exchangeable modules for the creation of model descriptors and
symbolic references. Moreover, the language constructs allow an easy and ele-
gant way of defining short and concise mappings for each change type. Details
are stated in the following section.

5.6.3 Transformation Specification: θ1

This section outlines the transformation θ1 of model-dependent differences cal-
culated by EMF Compare into model-independent differences. The entire trans-
formation specification in QVT is given in Appendix A.

The transformation specification consists of a set of transformation mappings,
starting with a root mapping and one mapping for each change type. Tab. 5.10
gives an overview of all mappings. The mapping toIndepChange is overloaded
and exists for each change type – the source model element type defines which
concrete mapping is used. The mappings themselves are listed in the appendix.
Figure 5.20 illustrates the application of two mappings, namely toMPatchModel
to create the root element of model-independent differences, and toIndepChange
for the type ModelElementChangeLeftTarget.

5.6 Creating Model-independent Differences 71

Mapping Source model element Target model element
toMPatchModel DiffModel MPatchModel
toIndepChange DiffElement – (redirected to

toUnknownChange)
toIndepChange ConflictingDiffElement – (transformation aborts)
toIndepChange MoveModelElement IndepMoveElementChange
toIndepChange ModelElementChangeRightTarget IndepRemoveElementChange
toIndepChange ModelElementChangeLeftTarget IndepAddElementChange
toIndepChange UpdateAttribute IndepUpdateAttributeChange
toIndepChange AttributeChangeLeftTarget IndepAddAttributeChange
toIndepChange AttributeChangeRightTarget IndepRemoveAttributeChange
toIndepChange UpdateUniqueReferenceValue IndepUpdateReferenceChange
toIndepChange ReferenceChangeLeftTarget IndepAddReferenceChange
toIndepChange ReferenceChangeRightTarget IndepRemoveReferenceChange
toUnknownChange < any > UnknownChange

Table 5.10: Overview of all mappings of the transformation specification.

Except for the creation of model descriptors and symbolic references, the map-
pings are straightforward; most elements are transferred one-to-one. Two opera-
tions toSymbolicReference() and toModelDescriptor() are used by the mappings
to create symbolic references and model descriptors, respectively (denoted by
the arrows MD and SR in Fig. 5.20). They are not part of the actual transfor-
mation but delegated to an imported library. The latter is explained next.

5.6.4 Transformation Configuration and Extensions

The transformation is configurable in terms of the selection of symbolic refer-
ences and model descriptors. Both cannot be created with QVT Operational
Mappings because the essential reflective operations for accessing element prop-
erties (get(Property) : Object, defined for MOF-based models [OMG06a]) are not
available. A blackbox library provides these two operations:

EObject.toSymbolicReference() : IElementReference

EObject.toModelDescriptor() : IModelDescriptor

The library does not implement the logic of these operations itself but delegates
them to other modules that must be specified for each transformation. These
modules are extensions to the transformation as explained below.

Creating Symbolic References. Symbolic references define the matching
strategy of the created model-independent differences when applying them to
a model. A symbolic reference creator is a module that realizes the operation
toSymbolicReference to create a symbolic reference for a given model element.
As mentioned in Sect. 5.4, three concrete realizations are already supported.

72 Model-Independent Differences

The one creating static symbolic references is automatically used whenever the
given model element is not contained in the model on which the transformation
was started. Either of the other symbolic reference creators must be used for
all other model elements. Instead of showing the code for each module, the
following outlines the algorithms that create the respective symbolic references.

• Static symbolic references: an instance of ExternalElementReference is
created and uri is set to the URI of the given model element.

• Id-based symbolic references: an instance of IdElementReference is created
and idValue is set to the value of the attribute that is the unique identifier
of that element. If the element does not have a unique identifier, the
fragment of the element’s URI is used instead.

• Condition-based symbolic references: an instance of ElementSetReference
is created and conditions are added that contain sufficient information for
matching the given model element. By default, the conditions consider
only attribute values, assuming that the set of all attribute values identifies
the model element sufficiently8. Moreover, another ElementSetReference
is created as context for the container of the given model element.

Example conditions of condition-based symbolic references for the class Book in
Fig. 5.1 are:

self .name=’Book’and self.isAbstract=false and self. isActive=false and self . isLeaf=false

and self . visibility =VisibilityKind::public

The default conditions check all attributes values. In addition, the type must
match, which is a UML Class. The context is another symbolic reference to the
container, the package data, having the following condition:

self .name=’data’and self. visibility =VisibilityKind::public

That condition involves only two attributes because UML packages do not own
other attributes.

Since the symbolic reference creator is a module in this framework, it can be
exchanged, for instance, by replacing it with another condition-based symbolic
reference creator that considers the graph structure or other model-specific at-
tributes.

Creating Model Descriptors. Model descriptors defines how added and
removed model elements are stored within model changes. Again, a model de-
scriptor creator is a module that realizes the operation toModelDescriptor to

8In contrast to id-based symbolic references, this condition might match more than a single
model element; depending on the usage scenario, all these other elements may be false positives
that must be eliminated during the refinement (step 5, Sect. 5.2).

5.6 Creating Model-independent Differences 73

create such a model descriptor for a given model element. The only realiza-
tion at the moment is the ReflectiveModelDescriptor, whose creation is briefly
sketched with the help of the example.

A model descriptor for the model element IdElement in Fig. 5.1 on page 36 is
created as follows. First, an instance of ReflectiveModelDescriptor is created
(cf. the metamodel in Fig. 5.13 on page 63). Then all attributes (name, is-
Abstract, isActive, isLeaf, and visibility) and their values are stored in attributes.
For each referenced model element, an appropriate symbolic reference is created
using symbolic reference creators and stored in crossReferences (the class Id-
Element does not have cross references but its sub element id : String has a cross
reference to the type String, located in an external UML profile). Finally, the
model descriptor creator is recursively called on all sub elements (UML attribute
id) and their result is stored in subDescriptors.

This way, entire models can be stored in model descriptors and restored from
them without losing any information.

5.6.5 Additional Transformations

So far, a transformation produces an unstructured set of model changes. One
important part, the dependency graph between model changes (cf. Sect. 5.3), is
still missing. Further properties like structured model changes might be desired,
depending on the scenario. To this end, additional in-place transformations
on the initially created model changes can be performed to incorporate such
properties. The dependency graph is the only mandatory transformation and
explained next, all other transformations are optional and explained later in
Sect. 5.7.

The dependency graph is created according to the dependency rules stated in
Sect. 5.3. These rules describe a directed graph on model changes, may contain
cycles, and is not necessarily connected. The graph is stored in the bidirectional
relation dependsOn/dependant of IndepChange (see metamodel in Fig. 5.6). The
algorithm for creating the dependency graph analyzes all cross references to
model descriptors in order to identify dependencies that are required in the
dependency rules. Having all these dependencies collected, the realization of
the algorithm is straightforward.

74 Model-Independent Differences

5.6.6 Conclusion and Discussion

The creation of model-independent differences has been presented as a trans-
formation from model-dependent differences. The relevant parts of the trans-
formation specification have been explained to understand the transformation,
the full specification is given in Appendix A.

The creation of model-independent differences depends on the selection of sym-
bolic references, because different symbolic references comprise different match-
ing strategies during their application. For this reason, the selection of symbolic
references must be configured. Furthermore, the transformation is extendable in
case new symbolic references or model descriptors are defined, and appropriate
creator modules can be added to the transformation.

The dependency graph (required for the partial application of model changes)
can only be calculated after all changes have been created. Therefore, the cal-
culation of dependencies takes place in an in-place transformation that is per-
formed after the main transformation. We use two static rules for calculating
the dependencies, dynamic approaches [GKLE10] might be interesting alterna-
tives. Moreover, the initial set of model changes is unstructured, in contrast to
most other differencing technologies [BP08, CRP07, TBWK07, XS05]. Group-
ings or other strategies of structuring the differences can also be performed via
optional transformations, which is discussed in the next section. We have cho-
sen this separation to make the creation of model-independent differences as
modular and flexible as possible.

5.7 Generalizing and Structuring Model Changes

The creation of model-independent differences results in an unordered set of
model changes; the only property that is set so far is the dependency graph. This
section first motivates the generalization and structuring of model-independent
differences before explaining heuristic algorithms for both aspects.

The motivation for raising the abstraction level of calculated atomic model
changes was already given in the example on the first pages of this Sect. 5.
If model differences calculated from example models are applicable to other
models as well, then users can save a lot of manual modeling effort by apply-
ing the generalized model differences to the other models. Structuring, on the
other hand, does not at all alter the applicability of model differences, but it
improves readability (and, hence, usability) of model-independent differences.

5.7 Generalizing and Structuring Model Changes 75

An overview of all generalization and structuring transformations are listed in
Tab. 5.11 and each of them is explained below.

Transformation Description

θS : Scope Expansion Makes model changes applicable to model elements
that are similar to the original one.

θU : Unbounding References Makes model changes applicable multiple times.

θM : Merging Changes Merges similar model changes into a single generic
change that is applicable to multiple model ele-
ments.

θG: Grouping Introduces groups for unstructured model changes.

θR: Reversal Reverses the direction of model-independent differ-
ence application.

Table 5.11: An overview of our generalization (θS , θU , θM) and structuring
(θG, θR) transformations.

5.7.1 Scope Expansion: θS

The purpose of Scope Expansion is to add fuzziness to the matching process.
That is, the scope of a change, which denotes the set of model elements that can
potentially be matched, will be extended. Consequently, also slightly different
model elements could be matched. The valid number of matched model ele-
ments is not changed, scope expansion only intends that the matched element is
similar and not necessarily equal to the original one. For similarity-based model
references, for instance, scope expansion could mean to decrease the threshold
when two elements are considered being the same; e.g. 50% instead of 90% of
the elements’ properties must be equal.

For condition-based references, which check the elements’ attributes (cf. Sect. 5.4),
we propose a modification of the OCL conditions: the equality checks of string
attributes is replaced with a similarity check. The heuristic algorithm is based
on two rules:
Rule 1: containment is important.
Rule 2: case sensitivity is not important but should neither be neglected.
Then the similarity s ∈ [0, 1] between two strings has the following meaning:

If 1 = s The two strings are equal.
If 1 > s > 0.5 One of the strings is a substring of the other: the higher s,

the more similar the two strings are.
If 0.5 > s ≥ 0 The similarity is calculated by the Levensthein distance9.

9An algorithm that calculates the similarity of two strings. See Appendix B for details.

76 Model-Independent Differences

In general, the higher the value, the more similar the strings are. The intervals
were specified due to our experiences with refactorings and design patterns (see
also Sect. 8.1.1). The full algorithm is listed in Appendix B. Example results of
the algorithm are shown below:

id id → 1.0 4 data DATA → 0.9 4

id mid → 0.85 4 data data2 → 0.88 4

id cont id → 0.72 4 data customerdata → 0.75 4

id name → 0.0 7 data date → 0.37 7

id middleman → 0.69 7 season person → 0.33 7

id blind → 0.2 7 observer subjectObserver → 0.72 4

Two strings, the calculated similarity, and the comparison result for a threshold
of t = 0.7 are listed. Using a higher similarity threshold would reduce the
number of false positives while a lower threshold would match more potentially
relevant model elements. Based on our experiments, we have chosen a threshold
of t = 0.7 as an appropriate compromise between successfully matched model
elements and false positives.

The symbolic references for attributes id : String in Fig. 5.1 on page 36, for
example, is changed from

expression=”self.name=’id’ and self.isDerived=false and...”

to
expression=”self.name.isSimilar(’id ’, t) and self .isDerived=false and...”

with t = 0.7. So the new symbolic reference matches id, mid, and cont id, but
not name, middleman, or blind. In the end, however, a manual review of the
initially matched set of model elements is always recommended.

5.7.2 Unbounding References: θU

Symbolic references based on unique identifiers match the single model element
that has the given identifier. Condition-based symbolic references, in contrast,
are able to match a set of model elements instead of just one. In order to
make a change applicable to multiple model elements, its upper bound must be
removed. Some example scenarios are:

• An attribute is deleted from several classes.

• A generalization is added to several classes.

• All classes in one package are moved to another package.

5.7 Generalizing and Structuring Model Changes 77

That is done by changing the bounds of symbolic references from [1..1] (default)
to [1..*] (cf. upperBound in the metamodel in Fig. 5.11 on page 57). The trans-
formation θU only changes the cardinality of the symbolic references which de-
fine where changes are applied (IndepChange.correspondingElement and Indep-
Change.resultingElement).

However, for some changes it does not make sense to automatically unbound
the cardinality; for instance, if a class that is supposed to exist only once in the
entire model is added to multiple packages. Then this issue must be resolved in
the refinement step 5 (cf. Sect. 5.2).

5.7.3 Merging Changes: θM

This transformation merges similar changes into single, generic changes. This
reduces the number of changes in order to make the model differences more con-
cise. Moreover, generic changes are applicable to many more model elements,
in contrast to unmerged model changes. The algorithm works as follows:
Search for two or more changes that are equal except for the symbolic reference
corresponding element that specifies where the changes are applied. Replace
these changes with one that combines the differing symbolic references.
For condition-based symbolic references, the replacement is done by keeping
those conditions that all changes have in common and removing all other con-
ditions. Id-based symbolic references cannot be merged.

Regarding the example, the addition of a UML generalization to three elements
(changes #5–7 in Tab. 5.1) can be merged into a single change. These are the
conditions for the individual changes before the merge (t being the threshold):

name.isSimilar(’Article ’ , t) and isAbstract=false and ... (type: Class)
name.isSimilar(’Book’,t) and isAbstract=false and ... (type: Class)
name.isSimilar(’Cover’,t) and isAbstract=false and ... (type: Class)

All of them have the same context, that is by default their container – the
package data in our example. The condition for the context is:

name.isSimilar(’data’, t) and visibility =VisibilityKind::public (type: Package)
The resulting condition after merging the three individual conditions is:

isAbstract=false and isActive=false and ... (type: Class)
So the remaining conditions are the ones that all unmerged symbolic references
have in common, only the differing condition name.isSimilar(..) was removed.
The context remains the same since it does not differ for the unmerged changes.
If necessary, the upper bound for the merged symbolic reference is increased to
the number of unmerged changes (3 in this example): If Unbounding References
has already been applied, then the merged symbolic reference keeps the bounds
[1..*], otherwise it is set to [1..3].

78 Model-Independent Differences

The symbolic reference of this merged change matches indeed all classes Article,
Book, and Cover, as intended, but also Author. In other words, merging changes
might produce false positives in the matching phase. If the bounds are [1..3],
then the four matched elements are not a valid set because they are too many;
the refinement step 5 (cf. Sect. 5.2) must again resolve that issue.

5.7.4 Grouping Model Changes: θG

A large set of unstructured model changes might be confusing to the user. To
the best of our knowledge, all related work reflect the hierarchical structure
of the compared model also in the model changes. Since model-independent
differences are applicable to other than the originally compared models, we
propose a different grouping strategy:
Whenever two changes affect common model elements, they are in the same
group.
The realization of the grouping algorithm is straightforward:
groups are defined by connected components in a bipartite graph in which changes
and referenced model elements are disjunct sets of nodes and model element
references (symbolic references) are edges.
This heuristic ensures also that changes which depend on each other (cf. rules
in Sect. 5.3), are placed into the same group; the reason is that dependencies
occur only on changes that refer to common model elements.

The main drawback of this heuristic algorithm are again false positives: inde-
pendently performed modifications may relate to the same set of model elements
and, hence, result in the same group. Changes #2 and #5 in Tab. 5.1, for ex-
ample, would both result in the same group because they both affect the class
Book in model MA. If we ignore all other changes for a moment and assume that
the user performed only these two changes, they are put into the same group
although the individual changes do not necessarily correlate (false positive).
Grouping the entire set of changes #1–8, on the other hand, yields two groups:
(#1–7) and (#8). In this case, the heuristic algorithm works as expected, be-
cause all changes representing the refactoring are placed into one group, and
the remaining change is placed into another one.

5.7.5 Reversing Model Changes: θR

Sometimes it is useful to undo changes in a model, in other words, to apply
model changes in the opposite direction. For instance, if design decisions have
been made and realized in the model but are rejected afterwards; then the

5.7 Generalizing and Structuring Model Changes 79

model changes must be undone. The metamodel for model-independent dif-
ferences describes model changes declaratively, however, it denotes the direc-
tion of model changes in the change types (for instance, IndepAddElement-
Change). Given a delta computed from two versions of a model MA: ∆a =
θ1(δ(MA,M

′
A),MA,M

′
A) (from steps 1 and 2 in Sect. 5.2), it can be used to re-

store M ′A from MA and ∆a: M ′A = π(∆a, φ(∆a,MA),MA), but not vice versa.
That is, it is not intended to restore MA from M ′A.

There are two obvious ways to allow undoing changes in models. The first
is to adjust the algorithms and tooling to interpret the model changes in the
opposite direction (additions are interpreted as deletions, etc). This is, however,
an enormous effort. The second way is to reverse the model changes, (to turn
additions into deletions, etc). Since all required information is available, such a
reversal can easily be provided as another transformation.

In essence, all information about the unchanged and changed state of model
changes must be swapped: additions become deletions, the old and new par-
ents of movements and attribute changes are swapped, etc. The most important
swap is that of corresponding elements with resulting elements, which denote the
set of changed model elements in the unchanged and changed model versions,
respectively. Let this transformation be θR. Having that done, the reversed
delta can be used to restore MA from M ′A. This means, in particular, that the
following properties hold (assuming ∆a = θ1(δ(MA,M

′
A),MA,M

′
A)):

∆a = θR(θR(∆a)) (inversion)
MA = π(θR(∆a), φ(θR(∆a),M ′A),M ′A) (reverse application)

We do not provide formal proofs for these properties; however, the prototypic
implementation of these concepts has proven the correctness of these properties
for all tested models (see Sect. 7.6 for details).

5.7.6 Example

The model changes from Tab. 5.1 on page 36 were not applicable to model
MB in Fig. 5.2. Executing scope expansion, unbounding references, merging
changes, and also grouping them yields a new set of changes that is listed in
Tab. 5.12. The result of scope expansion is denoted with wildcards, e.g. *data* ;
the result of merging changes is reflected in columns ’#’ and ’old #’; the result
of grouping is reflected in two rows, showing groups #1’–3’ and #4’. The result
of unbounding references is not visible here. The next section explains the
application of model changes to another model like model MB in the example.

80 Model-Independent Differences

old # Change type Change description
1’ 1 add class IdElement to package *data*, incl. attribute id : String
2’ 2–4 delete attribute *id* : String from all classes (that have one) in *data*
3’ 5–7 add generalization from classes in *data* to IdElement (added by #1’)
4’ 8 update attribute Title : String in Book to title

Table 5.12: List of generalized changes (∆s) after scope expansion, merging
changes, and grouping; #1’–3’ are in one group, #4’ is in another group.

5.7.7 Classification of Generalization

One must keep in mind that the semantics of model changes may change when
executing transformations. The matching phase (step 4 in Sect. 5.2) may, in
particular, include false positives – that is, more elements are matched than
intended. As a consequence, the user has to correct that manually in the re-
finement phase (step 5). We analyzed modifications of symbolic references and
identified four categories:

Refactoring: the semantics remain unchanged; the symbolic reference matches
exactly the same set of elements as before the modification.

Widening: the semantics change; the symbolic reference matches more model
elements than before the modification.

Reducing: the semantics change; the symbolic reference matches less model
elements than before the modification.

Altering: the semantics change; the symbolic reference matches a set of model
elements that includes other model elements than before the modification,
but not all of them.

Grouping changes θG is a refactoring transformation because it does not change
the applicability to the target model. All three generalizations (θS , θU , and
θM)10 shown earlier are widening modifications, because the resulting symbolic
references match to more model elements than before the generalization, de-
pending on the target model. It depends on the intended scenario which type of
generalization is appropriate. Using model differences in the sense of traditional
patches would only allow refactoring modifications, whereas widening modifica-
tions are, for instance, useful to describe model refactorings. In most cases we
would like to avoid altering modifications unless a change should explicitly be
applied to another model context.

10Reversing model changes θR is non-competitive because it manipulates the change types
and not their symbolic references.

5.8 Applying Model-independent Differences 81

5.7.8 Conclusion and Discussion

The presented transformations are used to add specific properties to a set of cal-
culated model-independent differences. Some of them (scope expansion θS and
merging changes θM) require condition-based symbolic references. The idea of
these three transformations (including unbounding references θU) is to raise the
abstraction level of model-independent differences and to make them applicable
to other models. Grouping θG and reversing model changes θR, in contrast,
structure the changes and reverse their direction of application, respectively.

We identified four categories of modifying symbolic references that specify where
model changes are applied. Refactoring transformations do not alter the seman-
tics of model changes; for example, grouping changes structures the changes
without affecting their applicability. Widening transformations are the actual
generalizations like scope expansion, merging changes, and unbounding refer-
ences. The other two categories, reducing and altering, should be avoided unless
the resulting changes should explicitly be applied to another model context.

All generalizations have been developed with focus on structural models like
UML component or class diagrams, or Ecore models. Other models, especially
when describing behavioral aspects, may require different heuristics, such as
business process models [GKLE10]. This is why the framework for model-
independent differences is modular and different heuristics may be provided
as additional transformations.

5.8 Applying Model-independent Differences

This section covers the application of model changes to a target model, namely
the matching of model elements, refinement of the mapping, and the applica-
tion of model changes to the target model. There are several aspects that differ
from most related work: the matching algorithm is distributed over all symbolic
references; model changes are applicable multiple times; an interactive and au-
tomated selection of the affected model elements is possible; and already applied
changes are detected.

The application of model changes is also called merging models in the literature
[Men02]. The term originates from the use of versioning systems when the
remote and the local version of a model are merged. However, in a standalone
manner, i.e., without a common ancestor of the compared model and the model
to which the changes are applied, the situation is a bit different. If the changes

82 Model-Independent Differences

add
reference

add
reference

delete
reference
delete

reference

add
element
add

element

delete
element
delete
element

sr

sr

sr

sr

sr

sr

e

e

e

e

e

sr

e

e

b

a

f

f

srce
sm

ce
cr

cr
ce

ce
sm

–
+

Legend:
ce – corresponding element
sm – sub model reference
cr – changed reference
sr – symbolic reference
e – model element

Validation results:
a – state after change found
b – state before change found
f – invalid state

– bounds ok
– – too few matches
+ – too many matches

update
attribute
update
attribute srcef

e

dependsOn

dependsOn

e

elements of the target modelmodel changes mapping

[1..*]

[1..1]

[1..*]

[1..*]

[1..1]

[1..1]

[1..*]

[1..*]

[1..*]

mapping

Figure 5.21: The initial mapping Ψ produced in the matching phase; only 2/5
changes validate successfully.

exist apart from any model and are then applied to another model, there are just
the two artifacts, the changes and the target model. Then it is not reasonable
anymore to call it merging, but application of changes.

5.8.1 Matching Model Elements: ψ1

The first step towards the application of model changes is to find the locations
where the changes shall be applied (matching). The matching ψ1 produces
a mapping Ψ from all changes in the delta ∆s to the model elements of a
model MB that shall be modified: Ψ = ψ1(∆s,MB). This initial mapping Ψ is
calculated automatically by calling IElementReference.match(..) on all symbolic
references of all changes. Hence, the matching algorithm is distributed over all
symbolic references. To be more precise, the symbolic references of all changes
are mapped to elements in model MB . Fig. 5.21 sketches an example mapping:
five changes contain in total nine symbolic references which refer to eight out of
nine elements in the target model. As indicated by the status ’a’, ’b’, and ’f ’,
three of the changes are not applicable with the initial mapping; the validation
in the following subsection explains why.

The mapping is defined in terms of the metamodel in Fig. 5.22. It consists of
Change Mappings, one for each change; if the attribute ignore is set to true,

5.8 Applying Model-independent Differences 83
mapping_metamodel metamodel_mappingpackage []

+match(model : ModelElement) : ModelElement [0..*]
+matchesEqual(other : IElementReference) : boolean
+getLowerBound() : integer
+getUpperBound() : integer

IElementReference

ReferenceMapping
-ignore : boolean
ChangeMapping ModelElement

IndepChange

Mapping
** *

1
1

Figure 5.22: The metamodel for mappings from model changes and their sym-
bolic references to model elements.

then this change is ignored for validation and application (in Fig. 5.21, none of
the changes is ignored). A Reference Mapping maps each symbolic reference of a
particular change to the set of matched model elements. The example mapping
in Fig. 5.21 contains five change mappings (one for each change; not visible in
the figure), nine reference mappings (one for each symbolic reference; also not
visible in the figure), and in total twelve references to model elements (mapping
arrows in the figure). Before the application of model changes can be performed,
a successful validation of the mapping is required.

5.8.2 Validating the Mapping

The initial mapping might not be valid, that is, the model changes might not
be applicable to the target model. The example mapping in Fig. 5.21 shows all
three cases in which a change is invalid and not applicable to a model. Each of
them is explained next.

1. Bounds. The number of matched elements must be within the bounds
specified by the symbolic reference (violated by delete reference change).

2. Application Status. All matched model elements must reflect the state
before the change (add reference change) or after the change (add element
change), to ensure its applicability or to ensure that it is already applied,
respectively (violated by update attribute change).

3. Dependencies. All changes on which the current change depends on
must be valid and not be ignored (violated by delete element change).

1. Bounds. The bounds of symbolic references are a strict limitation of how
many model elements may be mapped. Too few (marked with “–”) or too many
(marked with “+”) mapped model elements denote an invalid mapping for the

84 Model-Independent Differences

respective change. The mapping can be corrected be adjusting the number of
mapped model elements to conform the specified bounds.

2. Application Status. The mapped model elements must reflect the state
before or after the change. The first change add element in Fig. 5.21 is mapped
to two model elements, one being the corresponding element and one being
a model element that matches the respective model descriptor. Hence, the
added model element does already exist and the change is valid. During the
application phase, no element will be added; however, a successful validation
is required to successfully apply other changes that depend on the current one,
like add reference in the depicted example. This is why we decided to detected
already applied changes in the model.

Next, we discuss the state of an example change: the add element change in
Fig. 5.21 describes the adding of a new model element. The state before the
change requires the parent to be mapped and that the newly added element
is not found as a child of that parent; to this end, model descriptors must
provide the operation isDescriptorFor(..) (cf. metamodel for model descriptors
in Fig. 5.13 on page 63). On the other hand, if any of the parent’s children
is described by the model descriptor, then the state after the change is found
in the model. In case the parent is not mapped in the model, the change is
invalid. The criteria for the states before and after a change are summarized
in Tables 5.13 and 5.14, respectively. For add element changes, for example, it
lists the just mentioned criteria.

The criteria for removed model elements, marked with ∗ in the table, is different
from the corresponding criteria for added elements. We do not require that the
removed model element (including sub elements) equals the deleted element in
the target model for two reasons. First, especially the applicability to other
models would be very limited if that exact model element must exist, including
all sub elements and properties; that would decrease the applicability a lot com-
pared to just using the symbolic reference for identifying the model element(s)
to delete. Second, the user should be able during the mapping refinement in
step 5 to add additional elements that shall be deleted; if these elements have to
equal the original deleted element, it is not possible to add arbitrary elements
to this set. This would be an impractical limitation of that kind of change.

Detecting the state before a change is an indicator that the model change is
applicable. Detecting the state after a change denotes that it will not be applied
later, but other changes, that depend on the former, can still be applicable. In
contrast, if a change for which the state after that change is detected, is ignored,
then all other changes, that depend on the former, will also be ignored.

5.8 Applying Model-independent Differences 85

Element Reference Attribute

A
d
d

• Parent mapped
• No element mapped
that conforms to the
model descriptor

• Element mapped
• Reference target
mapped and it is not
referenced, or
• Element target could
not be mapped

• Element mapped
• Element’s attribute
does not contain the
added value

R
e
m

o
v
e • Parent mapped

• Element mapped that
shall be deleted ∗

• Element mapped
• Reference target
mapped
• Element does refer to
that target

• Element mapped
• Element’s attribute
does contain the
added value

U
p

d
a
te

• Moved element mapped
• Parent before the
change is mapped and
contains moved element

• Element mapped
• Reference target be-
fore the change mapped
• Element refers to that
target

• Element mapped
• Element’s attribute
has the value before
the change

Table 5.13: Criteria for detecting whether mapped model elements reflect the
state before the change (all listed criteria have to be fulfilled, it not stated
otherwise).

Element Reference Attribute

A
d
d

• Parent mapped
• Element mapped that
conforms to the model de-
scriptor

• Element mapped
• Reference target
mapped
• Element does refer to
that target

• Element mapped
• Element’s attribute
does contain the
added value

R
e
m

o
v
e • Parent mapped

• No element mapped
that conforms to the
model descriptor

• Element mapped
• Reference target
mapped and it is not
referenced, or
• Element target could
not be mapped

• Element mapped
• Element’s attribute
does not contain the
added value

U
p

d
a
te

• Moved element mapped
• Parent after the change
is mapped and contains
moved element

• Element mapped
• Reference target after
the change mapped
• Element refers to that
target

• Element mapped
• Element’s attribute
has the value after
the change

Table 5.14: Criteria for detecting whether mapped model elements reflect the
state after the change (all listed criteria have to be fulfilled, if not stated oth-
erwise)

86 Model-Independent Differences

3. Dependencies. The last validation criteria is that all dependencies must
be valid and not ignored. Although the state before the change of delete element
was found in the example model in Fig. 5.21, a depending change is invalid –
hence, this change is not applicable either.

5.8.3 Refining the Mapping: ψ2

In case the initial mapping is not valid, all invalid changes must be resolved.
Both user-interactive as well as automatic resolutions, are possible. If the initial
mapping is already valid, this step is optional but still the user may review and
refine the mapping.

The resolution of an invalid mapping Ψ to a valid mapping Ψ′, denoted as
Ψ′ = ψ2(Ψ), consists of two actions: (1) adding and removing model elements
to/from Reference Mappings (cf. mapping metamodel in Fig. 5.22); (2) ignor-
ing entire model changes. These actions can either be performed manually by
the developer or by an algorithm. The following descriptions apply to a user-
interactive refinement strategy.

If too few or too many model elements are matched for a symbolic reference such
that the change is not applicable, the user may add/remove model elements
to/from the mapping until the number matches the denoted bounds and the
change is applicable (that is, the mapped model elements reflect the state before
or after the change). The developer can, in particular, also add arbitrary model
elements to the mapping even if they were not initially matched by the symbolic
references; the only condition is that the mapping is still valid (the bounds match
and the state before or after the change is reflected in the model).

Lastly, the user can ignore a change. This will remove the ignored and all
depending changes (which are not applicable without the ignored change) from
the mapping. Ignored changes are neither validated nor applied.

5.8.4 Applying Model Changes: π

The final step in the process of applying model-independent differences takes
the target model MB , the changes ∆s, and the successfully validated mapping
Ψ′ and applies all non-ignored changes to the model: M ′B = π(∆s,Ψ

′,MB).
The application of model changes is completely automated and works as follows
(the order is important because of the reasons given in parentheses).

5.8 Applying Model-independent Differences 87

1. All reference deletions are performed
(must be performed before element deletions because targets of reference
deletions may be deleted).

2. All element deletions are performed
(must be performed before element additions because a deleted element may
block the location of a newly added element).

3. All element additions are performed
(must be performed before reference additions because added elements may
be targets for new references).

4. All reference additions are performed.

5. All attribute changes and element movements are performed.

This algorithm or variants are also found in existing work; nevertheless, it is
mentioned here for the sake of completeness. After performing all changes in
the target model, a summary is available showing the result of the application.
We require such a summary because a metamodel may contain constraints on
the model. Hence, the resulting model may be syntactically or semantically
incorrect although each atomic model change was correct on its own. Having a
log of all automatically performed changes available helps developers to analyze
the situation in such a case.

5.8.5 Example

The initial matching of the generalized changes listed in Tab. 5.12 on page 80
on the model MB (shown in Fig. 5.2 on page 37) is sketched in Fig. 5.23. The
validation succeeds for changes #1’–3’, but it fails for #4’; this is not surprising
since there is no attribute Title : String in model MB whose name could be
updated. Change #1’ matches one model element, the package customerdata;
the mapping to the symbolic reference ’sm’ of change #1’ is an internal model
reference. Change #2’ matches the two attributes cont id and inv id, and their
respective parents. Change #3’, however, matches all three classes; but the
meaning of the refactoring is to match the same set of classes as change #2’.

The obvious refinement of this mapping is to ignore the invalid change #4’ and
to remove the false positive mapping. Then the validation succeeds and all
changes can be applied to the model of change #3’. The resulting model M ′B
is depicted in Fig. 5.24. A new class IdElement with the according inheritance
relations has been added and the attributes cont id and inv id have been deleted.

88 Model-Independent Differences

add
element
add

element
srb

srce
sm

dependsOn [1..*]

[1..*]#1’
Legend:
ce – corresponding element
sm – sub model reference
cr – changed reference

add
reference

add
reference

sr

sr

b
ce
cr

p

[1..*]

[1..1]#2’

b

sr – symbolic reference
e – model element

Validation results:
a – state after change found

delete
element
delete
element

sr

srce
sm

updateupdate cef

[1..*]

[1..*]

#3’
b a state after change found

b – state before change found
f – invalid state

– bounds ok
– – too few matches

target modelmodel changes mapping

–
attribute
update
attribute srce

[1..*]
#4’

too few matches
+ – too many matches

target modelmodel changes mapping

Figure 5.23: Result of initial matching of generalized changes to model MB ; the
corresponding element of #4’ did not match any model element, and, according
to the refactoring, #3’ maps one false positive.

Let us briefly discuss the false positive mapping. It originates from the general-
ized change #3’ which was merged from three atomic changes. The generaliza-
tion removed the condition for the class names, hence, all non-abstract classes
are matched now. This is one of the drawbacks of generalizations – the loss
of information might yield false positives. Therefore, a manual review of the
mapping is highly recommended. However, one could fix that issue by manually
adjusting the condition of the symbolic reference to match only classes that own
an attribute that will be deleted. The following OCL expression only matches
model elements that own a property whose name is similar to the string ’id’
(with a threshold t = 0.7). Using that condition avoids the false positive.

self .ownedAttribute−>exists(a | a.oclAsType(Property).name.isSimilar(’id’, t))

Yet another solution would be to couple the two symbolic references denoting
the corresponding elements for changes #2’ and #3’. This makes sense because
both shall match the same model elements. This is, however, future work.

5.8.6 Conclusion and Discussion

To summarize, the application of model-independent differences is performed in
three steps: an initial matching, a refinement of the initially created mapping,
and the actual application of model changes. Before any change is applied, the
mapping must be validated successfully. The purpose of the refinement step is
to resolve invalid mappings until all selected model changes are applicable.

5.9 The Binding 89

customerdata

Customer

name : String

Contract Invoice

IdElement

id : String

1

- customer

*- contracts
1

- customer

* - invoices

1

- contract

*

- invoices

Figure 5.24: Model MB after the application of the generalized changes.

The algorithms for validation and application are applied on a new situation in
contrast to all existing algorithms for merging models or applying changes: this
is the first scenario in which changes are applicable multiple times and already
applied changes are detected. Only Brosch et al. [BLS+09] are also capable of
applying changes multiple times (they call it iterations), but they are not able
to detect already applied model changes.

One aspect is a high degree of flexibility to provide a framework that allows
applying model differences to arbitrary models, not only the ones from which
they have been calculated. Keeping each of the steps modular and exchangeable
enables customizations, for instance, for specific modeling languages.

5.9 The Binding

This chapter defined the structure of model-independent differences, explained
their creation, application, and several additional features like generalization
to make them applicable to other than the originally compared models. These
concepts are sufficient to apply model-independent differences to other models
as motivated in the introduction of this chapter. When they are used for au-
tomating realizations of design decisions, however, there are additional use cases
that motivate a binding between the individual model changes and the affected
model elements.

The example in Sect. 5.8.5 maps each change to a set of affected model elements
during the application of model changes. Assuming the refactoring extract su-
perclass is the realization of a design decision, all changes shall remain applied in

90 Model-Independent Differences

binding_overview

Model‐independent
differences

ModelBinding

Documentation:
Keep track of which model elements
have been affected by which change.

Consistency:
Ensure that changes
prevail in the model.

Rollback:
Allow undoing changes,

even selectively.

Figure 5.25: Informal sketch and purposes of the binding between model-
independent differences and the model to which they have been applied.

the model. In big models and when many modifications are made, it is nearly im-
possible to keep track of all model modifications manually and to check whether
the changes remain applied, especially if many people are working on the model.
So we need some concepts for checking that automatically. Figure 5.25 sum-
marizes the motivation for a binding: besides the just mentioned consistency,
additional information about the date, author, and reason of changes provide
traceability information to the developers, and rejected decisions require the
possibility to undo or to roll back model changes.

The requirements for a binding are briefly discussed next, then a formal binding
is defined that enables the three aforementioned use cases.

5.9.1 Requirements

To conclude the state of the art analysis from Sect. 3.3, a common format and
definition of traceability relations is still missing. Drivalos et al. [DKPF08] pro-
pose an approach to automatically generate case-specific traceability metamod-
els, however, we need exactly one case-specific traceability metamodel. Tracing
design artifacts to documents and vice versa is typically done via bi-directional
relations. Concerning the use of traceability links during runtime, their man-
ual creation is, in general, impractical and rarely beneficial. The same applies
to a binding between changes and model, it should automatically or at least
semi-automatically be created to be beneficial. For long-term use, literature
recommends tool-supported methods for the evolution of traceability relations.

A naive binding could be a persistent version of the mapping like the one in
Fig. 5.23, which is a by-product of the application process for model changes.
This is, however, not sufficient for the motivating examples especially with re-
spect to model evolution. The following requirements for a binding are derived
from the aforementioned use cases.

5.9 The Binding 91

A The binding must be created automatically. Additional effort for creating
a binding is impractical and not beneficial, as discussed before.

B The binding must be easily maintainable. The model evolves over time
and may affect model elements that are linked by a binding. It must be
possible to edit and update the binding.

C An automated validation of all applied changes must be possible. The
binding must be formally defined such that automated validation is pos-
sible.

D Information about changes must be available at the model. This infor-
mation includes the date, author, and reason why the changes have been
applied. Other developers must be able to easily retrieve this information.

5.9.2 The Binding Definition

The starting point for a binding could be the mapping that is used during the ap-
plication of model-independent differences (cf. mapping metamodel in Fig. 5.22
on page 83). However, this mapping does neither provide a way to add additional
information, nor does it differentiate between different model elements mapped
to the same symbolic reference. Nevertheless, it is available as an automatically
created by-product during the application of model-independent differences.binding_conceptual binding_metamodelpackage []

Model-independent differences

ChangeElementBindingIElementReference

MPatchModelBinding
-ignore : boolean
ElementBinding

-ignore : boolean
ChangeBinding

Difference binding

ModelElement

IndepChange

MPatchModel

Design model

-text : String
-user : String
-date : Date

Note

*
-elementReference
1

-modelElement 1

-mPatch
1

-change
1

-correspondingElements *

-changeBindings *

-correspondingElement0..1

-changes0..*

Figure 5.26: An excerpt of the metamodel of the binding between model changes
(IndepChange) and model elements.

Figure 5.26 is an excerpt of our binding definition in terms of its metamodel
showing the relation between changes and model elements. The full binding
metamodel is available in Appendix C. The MPatchModelBinding contains the
individual Change Bindings for all applied model changes (IndepChange). The
latter include a fine-grained binding per model element (ElementBinding), that
is, each affected model element has a corresponding element binding – in contrast

92 Model-Independent Differences

to the mapping, where a reference mapping links to a set of model elements.
Moreover, individual model element bindings and also the entire change binding
can be ignored for validation. Additional information about the change can be
provided via Notes.

With the proposed binding, requirement D is met because individual docu-
mentation can be added via Notes. Requirement B, the maintainability of the
binding, is met because Element Bindings can be updated according to modifi-
cations in the model. Binding updates are discussed in detail later in Sect. 6.5.
The automated creation of a binding (requirement A) must be realized during
the application of model changes – it is straightforward to convert a mapping
into a binding, so we omit the details here. The automated validation (require-
ment C), however, requires additional information about the change itself; for
instance, which elements are affected besides the corresponding elements? Sub-
types of Change Binding add this information per change type. The concrete
metamodel for the binding of add reference change types is explained next.

binding_metamodel_addbinding_conceptualpackage []

IndepAddRemReferenceChange AddReferenceChangeBinding

Model-independent differences

ChangeElementBindingIElementReference

-ignore : boolean
ElementBinding

-ignore : boolean
ChangeBinding

Difference binding

ModelElement

IndepChange

Design model

-change
1

-correspondingElement

0..1

-modelElement 1-correspondingElements *

-changedReference
1..*

-changedReference1

-/addReferenceChange

1

Figure 5.27: An excerpt of the metamodel for the binding concerning add ref-
erence model changes.

Besides the binding of the corresponding element, which denotes the model
elements to which a reference was added, this change type also refers to the
target model element of the reference via changedReference (cf. metamodel in
Fig. 5.9 on page 52). Figure 5.27 shows the definition of the binding of added
references which contains an additional Element Binding for precisely the target
of the added reference. This way, all affected model elements are covered by the
binding. The same applies to all other change types as listed in Appendix C.

5.9 The Binding 93

5.9.3 Example

The following example binding of change #3’ in Fig. 5.28 was created from the
mapping in Fig. 5.23 on page 88. It shows how the binding links the add ref-
erence change, a UML generalization which was applied twice, to all affected
model elements. Corresponding elements are the two classes Contract and In-
voice, the target of the reference is the class IdElement.

b

Legend:
ce – corresponding element
cr – changed reference
sr – symbolic reference

text = ’Refactoring of…’
user = ’pk’
date = 2010‐01‐01 13:00

eb
ignore

ar‐cb
ignore

ar‐cb – add‐reference change binding
eb – element binding

addadd
reference

sr
ce
cr

[1..1]#3’

eb
ignore

eb
ignore

changed modelmodel changes binding

referencereference sr
[1..*]

ignore

Figure 5.28: A binding for an add reference change, applied to two model ele-
ments.

All requirements are met with such a binding. A: the binding can be created
automatically from the mapping. B: since the binding is specified for each
affected model element, updates can be made as we will see later in Sect. 6.5.
C: all affected model elements are linked via a formal binding, so constraints
can be defined to automatically validate that all changes remain applied in the
model (constraints are explained later in Sect. 6.5). D: additional information
is available and can be added in a fine-grained manner, because notes can also
be added to element bindings.

5.9.4 Conclusion and Discussion

The binding defined in this section is based on the mapping that is created
during the application of model-independent differences. However, additional
properties are required compared to the mapping definition: the binding is
created automatically and includes information when, by whom, and why the
model was changed. Moreover, it is possible to update the binding in case of

94 Model-Independent Differences

model evolution and an automated validation checks that all changes are still
applied in the model.

The next chapter makes use of the binding as documentation and also to ensure
that design decisions are and remain realized in the design models. Together
with the reversal of model-independent differences, the binding can also be used
to automatically reverse model changes and, thus, undo them in models. Further
use of the binding includes customization of the application of model changes,
but that is future work.

5.10 Related Work

There are many model differencing concepts that are similar to the conceptual
solution presented in this chapter. Sect. 3.2 presented them already and com-
pared their features with our solution. Here we first compare our work with
related generic differencing technologies and then we compare some individual
features.

Just like other differencing metamodels, e.g. EMF Compare, SiDiff, and AMOR,
the representation of model-independent differences is fix and contains one meta-
class for each change type. The approach by Cicchetti et al. [CRP07], in con-
trast, dynamically derives a differencing metamodel from the metamodels of the
compared models. Since there is a multitude of fixed differencing metamodels,
an abstraction to a family of domain specific languages could lead to a uniform
and general core for defining model differences. Zschaler et al. [ZKD+09] pro-
pose a metamodeling language for domain specific languages which could be
used to define such a family. The diverse features of each individual differencing
metamodel would be variation points in their approach. This is, however, future
work.

Concerning model differencing concepts, the operation recorder of the AMOR
project [BLS+09] incorporates similar concepts as model-independent differ-
ences. This is the only work that has a similar referencing strategy for model
elements based on OCL conditions. However, it has a different approach for ap-
plying model changes, namely by using the merger of a third-party tool (EMF
Compare). Our solution, in contrast, uses a new way of applying model changes
that allows to detect and bind changes that are already applied.

Although other related work is also able to transfer model differences from
one model to another (e.g. [CRP07, Kol09, Eys09]), they are not capable of
generalizing model changes to make them applicable in another context.

5.11 Summary 95

In contrast to generic differencing approaches, there are other technologies which
perform specific tasks better, for instance, refactorings [RSA10] and model mi-
gration [RHW+10]. The reason is that these approaches are specifically designed
for the tasks mentioned, but, on the other hand, are not as flexible as model-
independent differences (supporting multiple difference calculation components,
referencing and matching strategies, generalization and application algorithms,
and grouping strategies). The EWL [KPRP07] also provides a flexible way for
defining custom and parameterizable model changes that can be applied with
user interaction; however, all change specifications must be coded manually in
particular languages and cannot be specified by example models.

There are several novel features of model-independent differences that are, to
the best of our knowledge, not covered in related work. The detection of al-
ready applied changes is essential in many model transformation technologies,
in particular for incremental transformations [CH06], but existing model dif-
ferencing technologies do not yet support that feature. The generalization of
model differences by merging similar model changes into single generalized ones
has been proven to be a useful feature for specifying refactorings. Since model
changes are extracted and abstracted from the original model, they are applica-
ble to other models in different contexts. AMOR is the only related work that is
also capable of generalizing model differences, by manually adjusting the OCL
conditions of model element references.

There is again no related work that uses the same grouping strategy for model
changes. However, the experiences with refactorings and design patterns as
model changes (cf. Sect. 8.1.2) as well as the domain level test (cf. Sect. 8.2)
have shown that this grouping strategy works well.

5.11 Summary

This chapter presented novel concepts for a flexible representation of model
differences and their use. The concepts complement existing differencing tech-
nologies that provide difference calculation algorithms. Our main use case is the
creation of model differences from an example model and their application to
other models; in contrast to most related work, these two models do not need to
have a common ancestor. The concepts support any MOF-based modeling lan-
guage such as the UML, BPMN, or custom domain-specific modeling languages
based on MOF.

The key features of model-independent differences are their flexibility and mod-
ularity. Several properties can be configured to make the model differences ap-

96 Model-Independent Differences

plicable to different scenarios, for instance, to use them as model refactorings,
to store and apply frequently used model fragments, or to patch other models
in the traditional sense. Further, all components such as the matching strategy,
conflict resolution, difference creation or application are exchangeable modules
in case additional, for example, model-specific features should be added.

Symbolic references are the most important concept that allow different ways of
describing which model elements are affected when applying model-independent
differences to a model. They allow different matching strategies such as id-based
and condition-based matching. The latter can be used to generalize model
differences in order to make them applicable to models with different contents
than the originally compared models.

Although model-independent differences are the basis for integrating design de-
cisions with design models (this is what the subsequent chapter is about), the
concepts are a contribution on their own right. The technology is a generic
tool for describing and applying model differences and has been appreciated by
the modeling community: the implementation is contributed to the open source
Eclipse project EMF Compare and available in the Eclipse Modeling Edition.

Chapter 6

Design Decisions in
Model-based Software

Development

Decisions are made all the time during the development of software systems;
the choice of programming languages, databases, components’ architectures,
but also the use of design patterns are examples. Sometimes developers are
aware of these decisions, especially if they affect several components of the
design. Sometimes they are not and, thus, follow their intuition: they change the
design like they did in the past without considering other, maybe better suited
solutions. The consequence is that the software design is hard to understand
and, thus, hard to maintain and sometimes better solutions could have been
chosen. We motivate an integration of design decisions as first-class artifacts
in model-based software development and explain how they can be used to
improve software documentation, to automate recurring work on the design,
and to validate whether design artifacts conform to made design decisions.

This chapter is organized as follows. Sect. 6.1 motivates and states the goals of
the integration of design decisions and design models with a continuation of the
example from Sect. 2. Sect. 6.2 defines design decisions, discusses how they are
used and supported today, and outlines our conceptual contributions. Sect. 6.3
and 6.4 recapitulate decision capturing, making, and realization techniques and

98 Design Decisions in Model-based Software Development

explains adjustments for model-based software development. Sect. 6.5 intro-
duces novel concepts for validating consistency between design models and de-
sign decisions. Sect. 6.6 discusses how consistency could be maintained in case
of design model and design decision evolution. Sect. 6.7 gives ideas for a guid-
ance tool of design decisions in model-based software development. Sect. 6.8
gives an overview of related work and Sect. 6.9 concludes this chapter.

6.1 Motivation and Goals

We motivate our goals with a continuation of the example in Sect. 2. It deals
with the development of a server application for a fictitious company E that
sells devices for measuring energy consumption. Bad design documentation and
collaborative work accidentally introduce inconsistencies between made design
decisions and design models as explained below.

The system under development maintains customer data and values measured
by devices which are installed at E’s customers. During the development of the
server application, a design issue Session Management was identified. The lead-
ing architect decided that the Server Session State alternative shall be realized
in the design model, because there are not many clients expected and sessions
can easily be handled on the server (cf. justification in Tab. 2.3 on page 14).
Then she explains important characteristics concerning the realization of this
decision to another developer who is then responsible for realizing the chosen al-
ternative in the design model. The resulting design model is shown in Fig. 2.3 on
page 15. The architect also documents the decision (the information in Tab. 2.3)
in a decision management system and in the design documentation.

Later in the development, another developer cleans up the model and moves
the session object ContractSession from the package presentation to data which
already contains all other session objects – depicted in Fig. 6.1. Suppose, he also
accidentally deletes the association from ContractController to ContractSession
because he is not aware of the decision SessionManagement. As a consequence,
this modification introduces an error in the system because parts of the realiza-
tion of decision Session Management is now missing in the model. If he would
have known about the decision, this error may not have been introduced.

Inconsistencies between design documentation (including design decisions) and
design artifacts are a big problem in software development. Inconsistencies be-
tween these artifacts may produce errors in the system that are not immediately
visible. The later the errors are found, the more expensive it will be to fix them
[Par94]. Later, we will see how a proper documentation of design decisions

6.1 Motivation and Goals 99

presentation

ContractController

(moved)

data

DataSessionManager

getSession ()

«interface»
ISession

ContractSession

x
(deleted)

1

* - sessions

1

* - sessions

*

0..1- sessionObject

1

- sessionManager

*

Figure 6.1: The design model has been evolved: ContractSession has been
moved and the association sessionObject has accidentally been deleted.

automatically creates a fine-grained relation between design models and design
decisions that can be used to automatically detect such inconsistencies.

Below, we briefly recapitulate the thesis goals and relate them to the aforemen-
tioned example.

Goal 1: improve design decision documentation. Easy to use oppor-
tunities shall be offered to developers for adding/retrieving documentation of
design decisions to/from design models – instead of having the documentation
separately in a decision management system or design documentation. The de-
sign knowledge shall be linked to design artifacts so that tool (and context)
switching to a decision management system becomes obsolete. Thus, the design
should be easier to understand.

Concerning the example, developers shall easily see the design decision (e.g. Ses-
sion Management) which affected particular model elements (e.g. the class
ContractSession).

Goal 2: automate recurring work. The realization of a design decision
may appear in the same or in other projects. Recurring realizations are recur-
ring work that is tedious and error-prone, especially if realizations imply many
modifications in design models. The user shall be supported by the modeling
tool to automate recurring model changes.

Concerning the example in Fig. 2.1 on page 12, there are at least three session

100 Design Decisions in Model-based Software Development

objects in the design model that are similar and managed by the same session
manager; their realization shall be automated to save manual modeling effort,
to avoid modeling errors, and to pave the way for uniform realizations of the
same design issues.

Goal 3: consistency between design models and design decisions. An
automated validation shall check whether design models still conform to all
made design decisions. This way, modifications in the design which violate
previously made design decisions shall be identified immediately and the user
shall be notified.

Concerning the example, developers shall be notified about the inconsistency
after doing the refactoring, because the deleted association was part of the
realization of the previous design decision Session Management (cf. Fig. 6.1).

The remainder of this chapter presents definitions and new concepts for meeting
these goals. A tool implementing these concepts should then support developers
to avoid the aforementioned problems in the motivating example.

6.2 Design Decisions in Software Development

In this section, we discuss how and by whom design decisions are made and re-
alized in the literature and in practice. We define design decisions and point out
the causes that lead to bad design documentation and inconsistencies between
design decisions and design models. Then we outline our conceptual solution as
improvements for the tasks of handling design decisions.

Design decisions are made on different levels of abstraction: higher-level design
decisions that also classify as architectural decisions, are typically made by
software architects or groups of developers. Lower-level design decisions are
typically made and realized by single or small groups of developers. Experience1

shows that architectural design decisions are often, but not always documented
whereas lower-level decisions are rarely, but at least sometimes documented in
practice. The documentation could be text documents, tables, but also wikis or
decision management systems.

We observed significant differences between the two roles architect and modeler
that are also highlighted in Fig 6.2: architects document decisions directly in

1Sources are literature [KLvV06, BDLvV09] and discussions with experts (Sect. 8.3).

6.2 Design Decisions in Software Development 101

Modeling
tool

Regular work on
design model
(enhancements
and refinements)

Identify
design
decision

Realize
design
decision
in design
model

Make design
decision *

Modeler(s)

Decision
management

system

Analyze
design *

Identify
design
decision

Delegate
realization
task to

developers

Make design
decision *

Architect(s)

* May include discussions
with other team members,
manager, and/or customer.

Design Design
models

Design
decisions

No
fine‐grained
relation
between
them

roles

Explicit/concious
Implicit/unconcious
Using tool

Figure 6.2: The task of making a decision depends on the role and the context,
e.g. on the project’s documentation guidelines or whether a decision manage-
ment system is used.

design models, in a design documentation, and/or in separate decision man-
agement systems. Modelers, in contrast, either document design decisions as
comments in design models and code, or not at all. Sometimes they are not
even aware that they made a decision which has alternative solutions besides
the one they have chosen. Hence, they make decisions implicitly and sometimes
even unconsciously.

Implicit and unconscious decision making implies that decisions are not docu-
mented (tacit knowledge). Consequently, the design is hard to understand and
it is almost impossible to keep it consistent with undocumented decisions, espe-
cially if many developers are working on the design. But even if decisions are
documented in a decision management system or in a design documentation,
as architects often do, there is no relation between design decisions and design
models2. Hence, understanding a design and validating whether it conforms to
made design decisions requires both tools, the decision management system and
the modeling tool, and is tedious manual work. To overcome these problems,
we propose an integration of design decisions and design models.

2Existing work [BB04, TJH07, JvdVAH07] provides links between decisions and design
artifacts, but not on a fine-grained level for design model elements. Hence, it is not possible
to check whether design models conform to made design decisions.

102 Design Decisions in Model-based Software Development

6.2.1 Definition of Design Decisions

This section first defines our view on design decisions based on related ap-
proaches. Afterwards we present new extensions to the definition for an inte-
gration of design decisions with design models.

There are many definitions of design decisions in the literature. An often cited
definition concerning the system’s architecture is made by Kroll and Kruchten:

“Software architecture encompasses the set of significant deci-
sions about the organization of a software system: selection of the
structural elements and their interfaces by which a system is com-
posed, behavior as specified in collaborations among those elements,
composition of these structural and behavioral elements into larger
subsystems, architectural style that guides this organization.” [KK03,
p. 315]

In other words, significant decisions have major impact on the architectural
design of a software system by specifying its structure and behavior. Starting
in 2004, Kruchten et al. published an ontology/taxonomy of design decisions
[Kru04, KLvV06] which classifies four different types of design decisions (exis-
tence decisions, non-existence decisions, property decisions, and executive de-
cisions) with properties and relations between them (more details about it in
Sect. 3.1 on page 17). At the same time, Tyree and Akermann [TA05] present
a decision capture template and Jansen and Bosch [JB05] even compose sys-
tem architectures as sets of architectural design decisions. Zimmermann et
al. [ZKL+09] focus their definition of design decisions on reuse (depicted in
Fig. 3.3 on page 20).

Since the focus in this thesis is on reuse and the distinction between project-
specific and project-independent parts, we adopt the definition of design de-
cisions from Zimmermann [Zim09] which was already presented in Fig. 3.3 in
Sect. 3.1 on page 20. We define design decisions in terms of the metamodel in
Fig. 6.3: a design decision addresses a particular design problem (Issue), con-
sidering arbitrary many solutions (Alternatives), and contains the rationale why
a particular alternative was chosen (part of the Outcome). Issues are further
organized in Groups which are part of a Decision Catalogue. The outcome rep-
resents the Project-specific instance of a decision and includes assumptions and
justifications whereas the issue and alternatives are independent of the actual
project.

6.2 Design Decisions in Software Development 103
decision_definition decision_definitionpackage []

-name : String
-problemStatement : String
-decisionDrivers : String
-scope : String

Issue

-name : String
-justification : String
-assumptions : String
-consequences : String
-status : OutcomeStatus

Outcome

DecisionCatalogue

project-independent

-name : String
-description : String
-pros : String
-cons : String

Alternative

decided
realized

open

«enumeration»
OutcomeStatus

project-specific

-name : String
Project

-name : String
Group

-chosenAlternative
0..1

-decisionFor
1

*
-subGroups

-outcomes *

-dependsOn
*
*

-issues *

-groups *

*-alternatives

Figure 6.3: The definition of design decisions in terms of a metamodel: the
decision catalogue contains project-independent issues and their solutions; the
outcomes of decisions are part of particular projects.

The project-independent parts correspond to Zimmermann’s reusable architec-
tural decision model, and the complete definition (including the project-specific
parts) corresponds to his architectural decision model for a particular project
[Zim09, Zim11]. This results in two different models in his definition and re-
quires an additional step to transfer design issues that are captured in a project
to the reusable decision model so that they can be reused in other projects, too.
We decided to avoid this redundancy of issues and alternatives in favor of their
reusability in several projects without this additional step.

Like in most other approaches, design knowledge and decision rationale consist
of informal information (text), specified as attributes like problemStatement of
the issue, pros and cons of alternatives, or justification of decisions’ outcomes.
Moreover, decisions might depend on each other (dependsOn relation), the ref-
erence induces in Fig. 2.2 on page 14 is an example for such a relation. Both
decisions in that figure are example instances of this metamodel.

There are several properties with this definition that are worth mentioning.
First of all, the rationale of a decision, probably the most important property of
related approaches in the literature, is stored in the attribute justification of out-
comes. Second, the status of an outcome denotes the state of a decision: when it
is set to decided or realized, the chosen alternative must be set; when it is set to
realized, the decision should be realized in the design. Third, relations between
design decisions have special meanings in the literature [KLvV06, ZKL+09]. Ex-
amples are: constrains, forbids, forces, influences, overrides, conflicts with. At
this point, we do not fix the set of concrete relations but leave it open. They
are discussed in Sect. 6.7.

104 Design Decisions in Model-based Software Developmentdecision_definition_extdecision_definitionpackage []

«artifact»
MetaDescriptionOfDesignArtifact

-notes : String

+apply(Model)

RealizationSpecification

-name : String
-justification : String
-assumptions : String
-consequences : String
-status : OutcomeStatus

Outcome

MPatchModelBinding
-notes : String

+validate() : boolean

DecisionBinding

project-independent

-name : String
-description : String
-pros : String
-cons : String

Alternative

«artifact»
DesignArtifact

ModelElement

project-specific

MPatchModel

MetaModel

Link Layer
between
Decisions
and Design

Design
Decision
Layer

Design
Layer instanceOf

-mPatch

+realizationSpec
0..1

describedBy

-chosenAlternative
0..1

+affected *specifiedFor

-realizationSpec *

-model *-specifiedFor 1

-decisionBinding 0..1

-mPatch

*

-mpatchBinding

0..11

Figure 6.4: The extended definition of design decisions includes a link layer to
affected design artifacts.

Extended Definition of Design Decisions. So far, design decisions are not
yet connected to any design artifacts, but they are defined on their own. The
status realized already indicates a relation between the outcome of decisions and
design artifacts, but it is not explicit in most existing approaches. Kruchten et
al. [KLvV06] use a traces from relation as a link to design artifacts, Jansen et
al. [JvdVAH07] generate code out of design decisions, and Zimmermann [Zim09]
triggers a model transformation on a design artifact. However, none of them
provides a fine-grained link between design decisions and affected design model
elements which allows, for example, precise consistency checks (goal 3).

We extend the metamodel from Fig. 6.3 with a link layer that binds outcomes
to design artifacts that are affected by the respective decision (cf. Fig. 6.4). A
RealizationSpecification is a description of how a particular alternative can be
realized in a design artifact. Several realization specifications may be added
to an alternative representing different variants. Design artifacts are not nec-
essarily course-grained artifacts like an entire design model, but may also be
individual design elements such as elements within a design model like classes
or their attributes in UML models. A DecisionBinding links the outcome of a
decision and the specification of the realization of a chosen alternative to affected
design artifacts which realize the chosen solution. The link layer uses model-
independent differences (MPatchModel) as realizations with a corresponding
binding (MPatchModelBinding, cf. Sect. 5.9).

6.2 Design Decisions in Software Development 105

For decision Session Management in the example in Sect. 2.2, the binding refers
to several ModelElements, namely ContractController, DataSessionManager,
ISession, and ContractSession as well as to the associations between them.

6.2.2 Decision Handling Scenario

This section explains a scenario of capturing, making, realizing, and validating
design decisions – this is at the same time an overview of the remainder of this
chapter. In the state of the art, design decisions and design artifacts are main-
tained separately as discussed earlier in Sect. 3.1. Our extended definition of
design decisions, however, includes a link between both artifacts (cf. Sect. 6.2.1).
The following scenario sketches a novel way of handling decisions that integrates
both kinds of artifacts. Instead of switching back and forth between the two
types of tools, decision management systems and development tools for design
models, the scenario assembles all steps within one extended development tool
only.

In the state of the art, strategies for making decisions involve the identification
of a design issue, the actual choice of a solution that shall be realized, and
finally the realization itself [Zim09, Tea10]. The realization is typically separated
from the other activities, because design decisions and design models reside in
separate tools.

The proposed scenario in Fig. 6.5 supports developers by meeting the three goals
mentioned in Sect. 6.1. This scenario assumes that the proposed link between
design decisions and design models exists and that a technology is available
to capture and apply realizations of design decisions (model-independent dif-
ferences, for instance). Each activity in the scenario suggests a use case that
requires tool support: a tag ’D’ denotes work on design decisions, a tag ’M’ work
on design models; the tags ’G1’–’G3’ denote which of the goals are addressed
by new or improved activities. The respective sections dealing with an activity
are stated in parentheses below the activity.

Next, we go through the scenario with the help of the example. Whenever a
design issue like Session Management is identified by a developer (activity 1a in
Fig. 6.5), the issue is either known and already stored in a decision management
system, or not. If it is a new issue, the developer has to specify the new design
issue in the decision management system, ideally including potential solutions
(1b), like Server Session State and Client Session State. As soon as the issue is
available in the decision management system, the actual decision can be made,
the rationale behind it can be documented, and a solution can be chosen (2a);
in the example, an outcome is created pointing to the chosen alternative Server

106 Design Decisions in Model-based Software Development
decision_handling decision_handlingactivity []

Identifying, making, and realizing a design decision

2c: Extract realization
specification from example

1a: Identify design issue

3: Apply chosen
realization to design

2b: Create example
model realizing the

chosen solution

MD,M

D

D

M

G1

G2 G2

(Sect. 6.4, 6.7)

(Sect. 6.3, 6.4)

improved

improved

(Sect. 6.3)

(Sect. 6.3)

(Sect. 6.3)(Sect. 6.4)

5b: Fix invalid design artifacts
and design decisions

5a: Validate all made
design decisions

4: Evolve design model
or design decisions

D,M

D,M

G3

improved

improved

(Sect. 6.6)

(Sect. 6.5)

(Sect. 6.6)

Validating design decisions

2a: Make design decision
(choose solution)

Update design decision
Work on design models
Goal: Documentation
Goal: Reuse
Goal: Consistency

1b: Specify issue
and solution(s)

G3

D

new
D
M
G1
G2
G3

[no suitable issue found on
decision management system]

[no suitable realization found on
decision management system]

[else]

[else]

[else]

[violations found]

Figure 6.5: A scenario for handling a design decision: identification, making,
realization, and validation; the validation comprises all made decisions and,
thus, can be triggered separately.

Session State and the state of the outcome was set to decided. When it comes
to the realization of the chosen solution in a design model, the developer must
switch to the modeling tool. Realization specifications for that solution might
exist, for instance, from previous projects within the same or a similar domain.
In the example, the realization specification consists of several model changes,
describing a new class ContractSession and appropriate associations. As stated
previously, if a realization specification does not yet exist, developers may cap-
ture one from a design model of the project or by creating an exemplary model
that incorporates a realization of the chosen solution (2b). Then the model
differencing technology captures a realization specification that is applicable to
other models (2c). Now a developer can apply the realization to the design
model semi-automatically, that is, by manually specifying where in the model
the realization shall be integrated (3). The model is then automatically mod-
ified instead of manually modeling the solution in the design. The decision’s
outcome status is changed to realized. The result of these steps for our example
is shown in Fig. 2.3 on page 15. The activities in this scenario address and sup-
port goals 1 and 2: the rationale behind design decisions is explicitly captured
and their realizations are partly automated.

6.2 Design Decisions in Software Development 107

Modeler(s)

Architect(s)

Design Design
models

Design
decisions

Extension

API
Decision

management
system

Modeling
tool

RealizationsRealizations
& Bindings

An arbitrary
modeling tool

Integrating extension:
• Improve documentation
• Provide validation
• Automate realizations

An arbitrary decision
management system

tool_setup

Figure 6.6: The proposed tool setup for our extension to modeling tools; decision
management systems must provide an API for accessing the design decisions;
this setup makes our extension independent of concrete tools.

Finally, after the decision has been realized in a design model, the current and
all previously made design decisions are validated (5a). The validation is an
activity that is executable at any time, for instance, whenever manual work
has been done on design models (4). The validation criteria cover, amongst
others, that all model elements affected by made design decisions still exist in
the design models. When validating the decision Session Management against
the corresponding design model, for instance the one in Fig. 6.1, all three classes
and the associations between them must exist3. If that is not the case, the
violating elements must be fixed (4b). Validation supports goal 3: consistency.

This scenario covers a typical life cycle of a design decision starting with its
creation until its successful realization in a design model. Every time both
artifacts are involved (an activity that has both tags ’D’ and ’M’), developers
had to swap between the two tools – this was our motivation for improving the
individual tasks. The activities of identifying, making, and realizing decisions
are already discussed in detail in the literature [Zim09, JvdVAH07, FCKK01,
BDLvV09]. A specification of realizations that are automatically applicable
to design models, and also an automated validation of made design decisions,
however, are novel features that can smoothly be integrated into the design
decision life cycle. Developers do not have to switch back and forth between the
two types of tools anymore when performing these tasks.

The conceptual tool setup is independent of any concrete tool and is sketched
in Fig. 6.6. The extension to modeling tools provides required user interfaces,
for instance, for visualizing and realizing design decisions. It is in particular
possible to use different decision management systems. To this end, the latter

3Existence of design model elements is only one criteria among others; Sect. 6.5 discusses
all validation criteria.

108 Design Decisions in Model-based Software Development

must provide an API4 for accessing design decisions; this interface definition is
one of our contributions and is discussed in Sect. 7.5. Realizations and bindings
of the link layer (cf. extended decision metamodel in Fig. 6.4) are maintained
by the extension. This setup keeps the conceptual solution for realizations and
bindings independent of concrete tools.

6.2.3 Conclusion and Discussion

This section points out how software architects and modelers handle design de-
cisions, gives an extended definition of design decisions, and presents a typical
scenario of a design decision life cycle. We improved several tasks to support the
three goals stated Sect. 6.1: (1) design documentation is improved by supporting
developers in documenting decisions and linking them to design models; (2) au-
tomated realization of design decisions eases recurring and error-prone manual
modeling work; (3) a validation of made design decisions identifies inconsisten-
cies between both artifacts.

Our definition of design decisions is based on the one by Zimmermann and
describes them as design issues, potential alternative solutions, and outcomes
of the decisions [Zim09, Zim11]. Our extension to this definition is a link layer
to design models. This includes realization specifications of alternatives and a
fine-grained binding to individual design artifacts such as design model elements.

The decision handling scenario covers the identification, capturing, making, re-
alization, and validation of design decisions. Further decision-related activities
like editing or rejecting decisions are not listed here to preserve a clear overview
of a decision life cycle. However, our concepts and the tool implementing the
concepts support such additional activities.

The proposed binding between design decisions and design artifacts allows yet
more use cases than the ones discussed so far. One example is a proposal of
subsequent design decisions exploiting the relation between design decisions.
Sect. 6.7 discusses this feature.

4Application Programming Interface; an interface that enables a program to interact with
other programs.

6.3 Capturing Design Decisions 109

6.3 Capturing Design Decisions

Before design decisions can be made, they should be captured. Capturing
denotes the documentation of design issues together with potential alterna-
tives, typically in a decision management system, without making any decision.
To clarify, decision capturing is a project-independent activity to prepare the
project-specific activities of making and realizing decisions. This section first
discusses the state of the art in decision capturing before it presents our solution.

6.3.1 State of the Art in Decision Capturing

There are many concepts in the literature for capturing architectural knowledge
including design decisions [uhB09, LJA10, TAJ+10, LK08a]. The three methods
below are suited for capturing reusable design decisions in model-based software
development.

Prospective decision capturing (also known as elicitation of design decisions)
is a dedicated decision modeling step in which domain experts prepare design
issues and alternative solutions and document them, for instance, in a decision
management system [Zim09, BGJ05]. This extra effort pays off when making
decisions, because only a choice must be made, documented, and the chosen
solution must be realized; the issue itself and potential solutions are already
documented. Moreover, this way gives other developers the opportunity to
extend their design knowledge when they have to make or realize decisions.

Retrospective decision capturing (also known as bottom-up capture), in contrast,
is the documentation of already made decisions [CND07]. For instance, during
dedicated decision capturing phases after a design or parts of it are finished.
The advantage is that there is no documentation effort before and during the
decision making and realization activities, only afterwards. However, making
decisions requires information about design issues and potential solutions, which
takes a lot of time – prospective decision capturing does that beforehand. Also,
developers must recall their decisions and justifications afterwards; decisions,
potential solutions, and rationale may have been forgotten and, thus, could be
missing in the documentation.

On-the-fly or ad-hoc decision capturing (also known as top-down capture) docu-
ments design issues, selected alternatives, and captures the realization specifica-
tion while making or realizing decisions. Hence, the documentation is integrated
into the activities of making and realizing decisions. This method also allows
partial decision capturing pro- or retrospectively.

110 Design Decisions in Model-based Software Development

Issue
Session

Management

Outcome

solution

decision

Alternative
Database
Session

State

Alternative
Client

Session
State

Alternative
Server

Session
State ch

os
en

A
lte

rn
at

iv
e

Decision
binding

example_capture_ad-hoc

1. identify and
make decision

2. realize
alternative

3. extract
realization
specification

(before realization) (after realization)

4. attach
realization
specification

Design Model:

Figure 6.7: Ad-hoc decision capturing also includes to identify, make, and realize
a decision; issue, alternative, and outcome are created ad-hoc, if required.

We experienced ad-hoc decision capturing mostly with software modelers and
rarely with software architects. The latter typically capture decisions prospec-
tively or retrospectively. Our solution supports all three methods; ad-hoc deci-
sion capturing is explained in more detail using the running example.

6.3.2 Example

Suppose a developer captures the decision Session Management from Sect. 2.2
on page 13 ad-hoc (sketched in Fig. 6.7). First, she identifies the design issue
Session Management, creates an outcome, and makes the decision to realize the
alternative Server Session State. Second, since there is no appropriate realiza-
tion specification available for this alternative, she realizes it in the design model
manually. Third, she uses the technology for model-independent differences to
extract the realization specification and, fourth, attaches it to the alternative.
The third step includes the creation of a decision binding (cf. Sect. 5.9).

Since the developer used the ad-hoc capturing method, she also made and real-
ized the decision. Both activities are explained in detail in Sect. 6.4.

6.3.3 Extended Decision Capturing Methods

This section presents our conceptual solution as an extension of the three exist-
ing decision capturing methods. When capturing design decisions, one or many
realization specifications can be attached to alternatives. These realizations can
be extracted from exemplary models (in case of prospective decision capturing)

6.3 Capturing Design Decisions 111
capturing_methods capturing_methodsactivity []

Extract realization
specification from example
and attach it to alternative

Create example
realizing the alternative

Extract realization
specification from

design and attach it to
alternative

Realize solution
in design

Create a new
issue

Create a new
issue

Create a new
alternative

Create a new
alternative

2. Retrospective
decision capturing

1. Prospective
decision capturing

3. Ad-hoc decision
capturing

Next step:
make decision

[else]

[alternative exists][issue exists]

[realization specification to add?]

[alternative to add?]

[else][else]

[else]

[realization
specification
to extract?]

[else]

Figure 6.8: The three extended methods for decision capturings: prospective
decision capturing is independent of any project whereas the other two methods
require a concrete design artifact.

or from existing project models (either ad-hoc or retrospective decision cap-
turing). Later, when making a decision for which a realization specification is
attached, developers are able to semi-automatically apply this realization to a
design model (cf. application of model-independent differences in Sect. 5.8). All
three extended decision capturing methods are shown in Fig. 6.8 and work as
follows. They assume that a developer already identified the decision to capture.

1. Prospective decision capturing is independent of any project. It describes
the creation of new issues, arbitrary many alternatives, and for each alter-
native arbitrary many realization specifications. A realization specification
can be extracted from exemplary models and attached to an alternative.

2. Retrospective decision capturing requires a concrete project. It describes
the creation of an issue that appeared during the design of a project; if
such an issue is already documented, the existing issue can be used, other-
wise a new issue is created. Then an alternative is created that was chosen
for the selected issue; again, if such an alternative exists, the existing al-
ternative can be used. If the decision’s realization in the design models
can be expressed with model-independent differences, developers can ex-
tract a realization specification. The subsequent step is to document the
decision they just made (next section).

3. Ad-hoc decision capturing is the same method as retrospective decision
capturing, but during and not after the design phase. As presented in
the example in Sect. 6.3.2, decision identification, the realization of the

112 Design Decisions in Model-based Software Development

alternative in design models, and decision capturing are tightly integrated.
Again, the subsequent step is to make the decision, explained in the next
section.

In contrast to the existing capturing methods in the literature, the extended
methods include realization specifications of alternatives. This is possible be-
cause model-independent differences can be used to specify changes in design
models. In case a realization cannot be specified as design model changes or a
decision does not imply a realization, the activities concerning realizations can
be skipped. Otherwise the methods integrate the creation of realization spec-
ifications from examples into the decision capturing activity. Since examples
in design models are usually available in retrospective or ad-hoc decision cap-
turing, the additional effort is very low. In prospective decision capturing, the
effort is only low if example models already exist.

For capturing realization specifications, the additional effort is the configuration
of model-independent differences and adding additional information (informa-
tion of realization, cf. extended definition in Fig. 6.4). This should include
information about the author, the date of creation, as well as a brief descrip-
tion including further references about that particular realization, for example,
a reference to a design pattern definition.

6.3.4 Conclusion and Discussion

The existing decision capturing methods in the literature do not comprise re-
alizations in the design. Three methods dominate: prospective, retrospective,
and ad-hoc decision capturing. Each of them is reasonable depending on the use
case scenario, so we support all of them for meeting our goals 1 and 2 (improved
documentation and reusing realizations).

The challenge is to distill realization specifications without much extra effort,
and that they are applicable to other models when realizing the decision. We
use model-independent differences to describe realization specifications, because
they can be created from exemplary models and generalizations make them ap-
plicable to arbitrary models (cf. Sect. 5.7). Then we extended existing capturing
methods with new tasks that integrate these realizations into the decision cap-
turing activities.

6.4 Identifying, Making, and Realizing Design Decisions 113

6.4 Identifying, Making, and Realizing Design
Decisions

The two tasks of identifying and making a decision are closely related to each
other and some people see them as a single step. The identification of a decision
occurs whenever a developer becomes aware of a design issue in a concrete
project. Making the decision, however, denotes the selection of a solution for
an identified issue. The final step is its realization in the design. Although the
order of these three steps is compulsory, the time frame is open – there might be
days or weeks between the identification of a decision until its realization. All
three steps are discussed in this section, first the state of the art, then problems
concerning model-based software development, and lastly our solution.

In the example introduced in Sect. 2, the identification of the design issue Ses-
sion Management could be made in several ways. One could be that a developer
working on the design model recalls from personal experiences that a controller
in a web application should use and maintain a session. Another way would be
that a developer reads about this issue in a decision management system and
recognizes the issue during the design of a system. Part of the identification
step is the documentation of the particular issue and the creation of an open
outcome5. Making the decision, on the other hand, is the choice of the alterna-
tive Server Session State; the outcome status is then updated to decided. After
the chosen alternative has been realized in the design as illustrated in Fig. 2.3
on page 15, the outcome status is set to realized.

6.4.1 Decision Identification

There are many activities in the literature that involve the three abovementioned
ones. Tang et al. [TAJ+10] present activities that do not only cover reusable
design decisions (part of general knowledge), but also context, reasoning, and
design knowledge. However, we spcificaly concentrate on the identification of
design decisions, list the state of the art, highlight problems in practice, and
discuss ways to support developers with this task.

The identification of design issues must be made by a developer and, thus, the
identified issues depend on the developer’s skills and knowledge. Architects are
typically more practiced in this step than modelers as discussed in Sect. 6.2. De-
sign studies, software documentation, reading technical and research papers, and

5An open outcome is an instance of Outcome having the status open, cf. metamodel in
Fig. 6.4 on page 104.

114 Design Decisions in Model-based Software Development
prepare_decision prepare_decisionactivity []

study project context
of design problem

create a new
open outcome

create a new
issue

create new
alternative(s)

update open
outcome

next step:
make decision

[open outcome exists][alternative exists][issue exists]

[else] [else] [else]
[design problem identified]

Figure 6.9: Prepare the documentation of an identified design issue: create issue,
alternative, and open outcome, if necessary.

especially personal experience are the main resources for being able to identify
design issues [FCKK01, Zim09, TAJ+10, BGJ05, Tea10]. The method of Zim-
mermann proposes an explicit technique for decision identification: systematic
analysis of available pattern documentation and available sources for architec-
tural knowledge lead to stepwise identification of design issues in a project.

Problem. Learning about potential design issues, i.e. studying design knowl-
edge resources, takes a lot of time. As we recall from personal experience and
from experience of other developers (also reflected in the interviews in Sect. 8.3),
the chosen solution for a decision is often the one that is already known from
previous projects. The reason is that developers feel confident with previously
chosen solutions and it does not take extra time learning about a new solution.
The drawback is that potentially better suited solutions are not considered and
the rationale for the design might not be objective. Even worse, since software
development is typically a time-critical undertaking, developers tend to neglect
documentation tasks, but rather concentrate on the realization and implemen-
tation only. In the end, the design rationale is only “in the developers’ mind”
which causes not or badly documented design knowledge to vanish eventually.
Furthermore, a realized solution in the design may not be the best suited one,
because alternatives were not considered.

Solution. The idea is to make it as easy as possible for developers to access
available design knowledge in order to minimize the effort for learning about
alternative solutions, and to tightly integrate the decision identification task
into the development environment. Therefore, we recommend the method of
Zimmermann [Zim09] and briefly outline in Fig. 6.9 how to properly document
an identified design issue in a project.

Suppose a developer identified a design issue either from personal experience or
from another knowledge source, the next step is to study the issue in the context
of the current project. A decision is then prepared in a structured way in terms

6.4 Identifying, Making, and Realizing Design Decisions 115

of an issue to document the general design problem; one or many alternatives
denote potential solutions; and an outcome denotes the actual decision that has
to be made. Since the decision is not yet made, the outcome status is open.
The last four activities – creating/updating issue, alternative(s), and outcome
– are explicitly supported by the development tool to avoid a context switch to
another tool. In regard to the tool setup in Fig. 6.6, these activities are provided
by the modeling tool extension.

6.4.2 Decision Making

The decision making step in our solution does, just like the decision identification
step, not differ from techniques in existing work. Therefore, we also briefly
discuss the state of the art of this step as it can be used with our concepts.

Making a design decision requires that developers are aware of the design issue
for which a decision must be made. Alternative solutions must be available
or may be captured ad-hoc (cf. decision capturing in Sect. 6.3). The result of
making a decision is the selection of one of the available alternatives together
with a justification.

Falessi et al. [FCKK01] analyse existing decision making techniques. They con-
sider alternative properties such as terminology (e.g. “performance”) and mea-
sures (e.g. in seconds) and evaluate potential alternatives based on different
weighing strategies, fulfillment estimations, and uncertainty factors. Each of
the considered techniques can potentially be used with our conceptual solution.

In our solution, the task of making a decision is supported by both tools, the
decision management system and the extended modeling tool, in order to offer
the functionality to both roles, software architects and modelers (cf. tool setup
in Sect. 6.2). This avoids the need for switching tools. The subsequent task of
realizing design decisions is discussed next.

6.4.3 Decision Realization

This section explains how a design decision is realized in design models after
it has been identified and made. However, not all decisions can be realized
in the design. Other than existence decisions (cf. design decision ontology in
Sect. 6.2.1) do not necessarily relate to particular design elements. Because
of this, the concepts in this section are only applicable to decisions, whose
realizations are expressible in terms of design model changes! As discussed in

116 Design Decisions in Model-based Software Development
realize_decision realize_decisionactivity []

Extract realization
specification from design

Realize chosen
alternative in design

Store binding,
update outcome

status to 'realized'

Study realizations
specifications

Apply realization
to design

[else]

[appropriate realization
specification exists]

Figure 6.10: Realizing a design decision: either an existing realization for a
chosen solution can be used or a new realization can be created.

Sect. 3.1, there is, to the best of our knowledge, no approach that supports
design decision realizations in design models.

Problem. In contrast to code, realizations of design decisions in a model-
based software development context cannot be described that easily. The two
fields, model differencing and model transformations, are potentially capable of
detecting and describing changes in design models. In Sect. 5.1 on page 38,
we already discussed the pros and cons of both approaches. We decided to use
model-independent differences to specify realizations of design decisions. Besides
the technical challenges, another challenge is to properly integrate realizations in
the design process. That is, realization specifications must be easily producible
and applicable by all developers with as little extra time and effort as possible.

Solution. An outline of our solution is given in Fig. 6.10. First, a developer
studies existing realization specifications, maybe there is already one available
that suits the current design model. If so, the developer is supported by the tool
to apply that realization to the design. Otherwise, the developer may realize
the chosen alternative in the design and, with the help of model-independent
differences, the realization can be extracted as a realization specification and
attached to the chosen alternative. This way, the new realization specification
may be reused whenever the same alternative of this decision is chosen again
– in the same or another project. Lastly, the outcome status is set to realized
and all changed design model elements are bound to the particular realization
specification. The concepts for the binding between alternatives, realizations,
and the design have been defined in the metamodel in Fig. 6.4 on page 104. The
binding can later be used to validate whether decisions remain applied in the
design – Sect. 6.5 explains that in detail.

The idea behind this solution is to avoid redundant work, especially recurring
modeling tasks in design models. Realizations can be extracted and general-
ized as realization specifications with model-independent differences (details in

6.4 Identifying, Making, and Realizing Design Decisions 117

Issue

Alternative Outcome

Model-
Differences

1. review / refine
location

2. change model
(automatically)

Decision-
Model-
Binding

3. create binding
(automatically)

project-independent
project-specific
ModelElementBinding

Figure 6.11: Using model-independent differences as a realization specification
in three steps; the model is changed and a binding is created automatically.

Sect. 5.7) which makes them applicable to other models and, thus, reusable.
Hence, if a realization specification has been attached to an alternative, it can
easily be reused the next time this particular alternative has been chosen.

6.4.4 Example

Let us continue the example from Sect. 6.4.2. Assuming that a developer made
the decision to realize the alternative Server Session State in the design model,
the tool applies the realization specification semi-automatically to the design
model. Figure 6.11 sketches the individual steps (recapitulation of Sect. 5.2).
First, the tool proposes an initial mapping of model elements that are about to
be changed and the developer may review and refine that mapping. Second, the
tool updates the model automatically according to the realization specification
and the refined mapping. Third, the tool creates a binding that links all affected
model elements to the outcome of the decision.

6.4.5 Decision Binding Visualization

The previous sections explained how to identify, make, and realize a design
decision. The result is a properly documented decision, its realization in the
design, and a binding between them. Here we discuss how the binding can be
exploited for visualizing this relation.

Once the binding links design decisions and design artifacts with each other, it
can be used as traceability links: the binding supplies information about which
design elements are affected by design decisions. The tool integration is sketched

118 Design Decisions in Model-based Software Development

Modeling tool

Area for viewing and editing design artifacts Area for viewing and editing design decisions

Show design decisions that are
related to selected design elements

Show design elements that are
affected by selected design decisions

tool_tracing

Figure 6.12: The binding can be used to navigate between decisions and design
artifacts within the modeling tool.

in Fig. 6.12. It allows navigating between design decisions and design artifacts
in both directions.

Whenever a set of design elements is selected, e.g. UML packages, classes, or
attributes, the tool shows all related design decisions, their outcomes and ratio-
nale, but also information about the respective design issues. This is convenient
for retrieving the documentation for particular design model elements. Vice
versa, whenever a set of design decisions is selected, the tool shows all affected
design elements. This way, the user gets a quick overview of the decisions’
impact in the design.

There are two related areas in the literature, design decision visualization and
traceability. Kruchten et al. [LK08b] present tool support for different visu-
alizations, for instance, chronological or as a decision dependency graph. But
this does not involve design artifacts. The traceability community, discussed in
Sect. 3.3, exploits links between individual design elements and requirements or
design documentation in order to provide a better understandability of the de-
sign. To the best of our knowledge, these two fields have not yet been combined
on a fine-grained manner such that individual design elements can be traced to
design decisions and vice versa.

6.4.6 Conclusion and Discussion

Design decisions are first identified, then made, and finally realized in the design.
There are no new requirements to the decision identification and making steps,
so we refer to existing work. The decision realization in design models, in
contrast, is a new feature. Realization specifications are automatically extracted
from design models and can semi-automatically be applied to other models. This
way, redundant realization work on design models can be reduced.

6.5 Validating Design Decisions 119

Overall, our vision is to use a decision management system as a knowledge repos-
itory and ultimately as a decision guidance tool. Model-independent differences
have the advantage that they can easily be created from exemplary models.
There are generalization algorithms available to make model-independent dif-
ferences applicable to arbitrary other models.

One must keep in mind that realization specifications must be created carefully
by developers because they may be reused multiple times, also by other devel-
opers. If there is a modeling error in a realization specification, it is of course
applied whenever that particular realization is chosen. Nevertheless, the task of
applying realizations automatically shows its strength when realizations are rich
in detail. Hereby we meet goal 2: automation of recurring work (cf. Sect. 6.1).

A critical success factor is developers’ discipline to properly identify design is-
sues, weigh up alternatives, and document made decisions – these steps cannot
be enforced by a tool, it can only support them. In particular programmers
but also modelers may neglect these steps and simply realize the solution which
they already know because the tasks of identifying and making decisions does
not appear beneficial to them. Therefore, benefits must be visible to developers
and the extra effort must be minimal. Besides the automated application of re-
alizations, the benefits are goals 1 and 3: better documentation (cf. Sect. 6.4.5)
and validation (next section).

6.5 Validating Design Decisions

The previous sections explained how design decisions can be used in model-based
software development to support forward engineering and to improve a system’s
documentation. The degree of automation can be increased for realizations of
decisions and a binding between decisions and design model elements can be
exploited for improving navigation between both artifacts. But how do we keep
the design model consistent with made decisions? How to find out whether or
not design models conform to the outcomes of all decisions?

In this section, we define formal constraints on the binding to automatically
validate whether design models conform to the outcomes of design decisions. In
essence, these constraints check whether any of the model elements, which are
affected by made design decisions, violate a realization as it was applied to the
design. If so, the user will be notified and supported to fix these violations.

Inconsistencies might introduce errors which shall be found as early as possible
as discussed in Sect. 6.1. We use the example in Fig. 6.1 on page 99 to illustrate

120 Design Decisions in Model-based Software Development

add
element

add
element

add
element

add
element

add
element

add
element

add
reference

add
reference

add
element

add
element

srsr

srsr

srsr

srsr
srsr

srsr

srsr

srsr

srsr

design modelmodel changes binding

srsr

srsr

srsr ?

srsr

srsr

example_violation

Figure 6.13: The binding for the decision Session Management can be used to
detect modifications in the design that violate the applied realization (model
changes).

the constraints and their violations. Figure 6.13 sketches the binding for the
decision Session Management along with the evolving model: the target of one
link was deleted (association between ContractController and ContractSession)
and the class ContractSession was moved to another package. The binding is
the same as introduced in Sect. 5.9. Before explaining how to automatically
detect such violations, we discuss the state of the art in literature and practice.

State of the Art. There are several approaches that are similar to our vali-
dation of design decisions. Timbermacine et al. [TDSF10] present a method in
which architects can manually attach constraints to architectural components
in a constraint language similar to OCL. However, these constraints must be
specified manually for each component. Wahler [Wah08] presents an approach
to automatically propose and manually refine consistency constraints on class
diagrams. But these constraints do not involve other artifacts like design docu-
mentation or design decisions. AREL [TJH07] links design decisions to design
models, however, these traceability links are only used for documentation and
rationale analyses, but not for consistency checks. In the end, manual peer re-
views dominate in practice (cf. Sect. 8.3) which is a tedious and time-consuming
task.

Solution Outline. The validation whether design models conform to made
design decision must neither require manual constraint definitions nor manual
reviews. The idea is that a set of formal constraints on the binding check that
all applied realizations prevail in the design. In addition, developers are able to

6.5 Validating Design Decisions 121

add custom constraints on the design, e.g. using OCL. We first discuss the levels
of abstraction on which constraints occur and then illustrate some excerpts for
constraints on each of the levels.

6.5.1 Constraint Levels

Our goal is to ensure that all changes, which were applied during the realization
of design decisions, prevail in the respective design models. Before we can check
that, we must ensure that all affected design model elements exist. Altogether,
there are constraints on three different levels of abstraction which are explained
below.

1. Element level: all design model elements linked to the binding must exist.
This level is independent of any concrete design decision and any realiza-
tion specification that has been applied to the design model. It requires
that bound elements must exist in the design model.
Example: the class ContractSession is referenced by the binding and, thus,
must exist in the design model.

2. Realization level: all changes applied from a realization specification must
prevail in the respective design models.
This level is specific for realizations which have been applied due to a
design decision. The design must reflect all changes that have been applied
as part of the design decision’s realization.
Example: if a class is changed to being abstract, that class must remain
abstract.

3. Decision level: additional custom constraints for design decisions.
Constraints on this level are specific for design decisions and do not neces-
sarily relate to realization specifications. They are specified manually by
the developer during design-time.
Example: the classes Controller and SessionManager must be located in
the same package in the design model.

Constraints for the first two levels are static – we defined them once and for
all below. Custom constraints (decision level), in contrast, can be specified by
developers during design-time and concern individual decision-related properties
in design models.

Some constraints are more important than others. It is, for example, a severe
violation if a design model element, that has been added as part of the decision’s
realization, does not exist anymore. It is, on the other hand, not that severe

122 Design Decisions in Model-based Software Development

if the added element has been moved to another place. Nevertheless, this is
still considered a violation because it is located at another place than specified
during the realization of the decision. Therefore, we classify constraints either
as warnings or as errors.

Excerpts/examples for each of the three levels follow. We use the OCL (Object
Constraint Language [OMG06b]) to define them as invariants in the following
Sect. 6.5.2–6.5.4.

6.5.2 Element Level Constraints

Element level constraints check whether all elements in the design exist which
are affected by design decisions. Since the number of bound design elements
may be restricted by the realization specification that has been applied, this
number is also checked. In other words, if any bound design element does not
exist anymore or the number of bound design elements differs from the specified
number in the realization, the binding is violated on the element level.

The example model in Fig. 6.13 violates one of these constraints: the association
between ContractController and ContractSession was bound due to the decision
Session Management, but it has been deleted. So the developer is notified about
the missing association. Then the developer has to fix this violation – this is
explained later in Sect. 6.6.

The three OCL invariants in Fig. 6.14 reflect the aforementioned constraints.
They apply to all ChangeBindings (context in line 1); relevant parts of the
binding metamodel to understand the constraints are shown in the upper part
of Fig. 6.14. The first invariant (lines 4–5) checks that all referenced design
model elements are defined. The number of bound model elements is specified
by lowerBound and upperBound of symbolic references (IElementReference)
and is checked in lines 10–14. Furthermore, each of the binding elements may
be ignored in which case the related constraints are not checked (lines 8, 11,
and 13). This is important when fixing a violated binding, see Sect. 6.6 for
details.

6.5.3 Realization Level Constraints

If all bound model elements exist, realization level constraints check whether
the design model conforms to the applied realizations of made design decisions.

6.5 Validating Design Decisions 123
binding_constraint_elementbinding_conceptualpackage []

Model-independent differences

+getLowerBound() : integer
+getUpperBound() : integer

...

IElementReference
ChangeElementBinding

-ignore : boolean
ElementBinding

-ignore : boolean
ChangeBinding

Difference binding

ModelElement

IndepChange

Design model

-elementReference
1

-modelElement 1

-change
1

-correspondingElements *
-correspondingElement 0..1

1 context ElementBinding
2 −−−−−−−−−−−−−−−−−−−−−−
3 −− check tha t the referenced elements e x i s t s
4 inv Mode l e l ement s ex i s t :
5 s e l f . i gnore or (not s e l f . modelElement . oc l I sUnde f ined ())
6
7 context ChangeBinding
8 −−−−−−−−−−−−−−−−−−−−−
9 −− check bounds of corresponding elements

10 inv Lower bound corresponding e lements :
11 s e l f . i gno re or s e l f . correspondingElements−>s i z e () >=
12 change . correspondingElement . getLowerBound ()
13 inv Upper bound corresponding e lements :
14 s e l f . i gno re or s e l f . change . correspondingElement . upperBound < 0 or
15 s e l f . correspondingElements−>s i z e () <=
16 s e l f . change . correspondingElement . getUpperBound ()

Figure 6.14: Three constraints for the element level in OCL (severity: error)
and the related parts of the binding metamodel; the constraints validate the ex-
istence of model elements and that their number is within the specified bounds.

The constraints validate that all changes of the applied model-independent dif-
ferences prevail in the design model. There are nine possible change types
(cf. Sect. 5.3) which must be covered by the constraints. In other words, if any
change, that has been applied during the realization of a decision, has been
undone or modified otherwise, the binding is violated on the realization level.

The example model in Fig. 6.13 also violates one of the realization level con-
straints: ContractSession was originally added to the package presentation but
it has been moved to data as shown in the figure. This is not as severe as a
deleted element, so the user is notified with a warning that the design does not
conform anymore to the realization of the decision Session Management.

The constraints in Fig. 6.15 refer to one type of model changes, namely those
describing added elements; hence, the context is AddedElementChangeBinding
(line 1). The first constraint checks whether added elements are contained
in their expected containers. It uses the reflective call container()6 (line 6)

6This constraint requires a MOF-compliant [OMG06a] metamodel because the reflective
operation container() : ModelElement is provided by MOF.

124 Design Decisions in Model-based Software Development
binding_constraint_changebinding_conceptualpackage []

+isDescriptorFor(element : ModelElement) : Boolean
...

IModelDescriptor

IElementReference

IndepAddRemElementChange

-ignore : boolean
ChangeBinding

Model-independent differences

AddElementChangeBinding

+container() : ModelElement
ModelElement

IndepAddElementChange

IndepChange

ChangeElementBinding

SubModelBinding

-ignore : boolean
ElementBinding

Difference binding

Design model

-elementReference
1-subModelReference
1

-modelElement 1-subModel1
-modelDescriptor
1

-correspondingElement0..1

-change
1

-/addedElements *
-/subModelReference1

-/addElementChange1 -subElementBindings*

-correspondingElements *

-parent 1
+/crossReferences 0..*

1 context AddElementChangeBinding
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 −− Added model element e x i s t s at the expected parent
4 inv A dd ed m od e l e l e m en t i s c h i l d o f c o r r e c t e l e m en t :
5 s e l f . i gnore or s e l f . addedElements−>f o r A l l (e | e . i gnore or
6 e . modelElement . conta ine r () = e . parent)
7 −− Added model element must not have been modified
8 inv Added mode l e l ement i s not modi f i ed :
9 s e l f . i gnore or s e l f . addedElements−>f o r A l l (e | e . i gnore or

10 e . modelDescr iptor . i sDe s c r i p t o rFo r (e . modelElement))

Figure 6.15: Two of the constraints for the realization level in OCL (severity:
warning) and the related parts of the binding metamodel; the constraints vali-
date that added elements have not been modified and that they are contained
in their expected parents.

to retrieve the actual container and compares it with the value SubModel-
Binding.parent ; the latter stores the container to which the elements have been
added during the application of the change.
The second constraint checks whether the added elements have been modified.
It uses IModelDescriptor.isDescriptorFor(..) on each of the added elements
(line 10). Model descriptors must provide this operation which checks whether
the given model element differs from the originally added element and, thus,
has been modified. Again, the constraints are only evaluated if the flag ignore
is not set.

The constraints for the remaining eight change types are similar to the one just
presented and listed in Appendix C.

6.5 Validating Design Decisions 125
binding_constraint_decisionbinding_conceptualpackage []

Decisions

-severity : Severity
CustomElementBinding

MPatchModelBinding

-name : String
CustomConstraint

-expression : String
OCLConstraint

-ignore : boolean
ElementBinding

Difference bindingDecision binding

-notes : String
DecisionBinding

ModelElement

Design model

-text : String
-user : String
-date : Date

Note

Outcome

-modelElement 1

-decisionBinding
0..1

-mpatchBinding
0..1

-customConstraints *

-customBindings *

1 −− the context i s s p e c i f i e d via the re ference to a ’ModelElement ’
2 context WebApplication : : p r e s en ta t i on : : Con t r o l l e r
3 −−
4 −− parent of c on t r o l l e r and sess ion manager must be equal
5 inv C o n t r o l l e r c o n t a i n e r e q u a l s s e s s i o n m a n a g e r c o n t a i n e r :
6 s e l f . ownedAttribute−>s e l e c t (name = ’ sess ionManager ’) . type . owner =
7 s e l f . owner

Figure 6.16: A constraint example for the decision level in OCL (severity: warn-
ing) and an extension of the binding metamodel; the constraint checks that the
element Controller in the design model is located in the same package as the
referenced SessionManager (see corresponding model in Fig. 2.3 on page 15).

6.5.4 Decision Level Constraints

Decision level constraints can be specified by developers during design-time of
a project at any time after a decision was made. Such custom constraints
allow developers to validate additional company-, project-, or model-specific
properties. Hence, in contrast to the previous two levels, custom constraints are
specific for a concrete design model. Suppose the design model of interest is the
one in Fig. 6.13, a custom constraint could be that the two classes Contract-
Controller and SessionManager must be located in the same package.

The upper part of Fig. 6.16 extends the decision binding definition from Fig. 6.4
on page 104 with custom constraints. CustomElementBindings can be added
by developers to specify a constraint for a particular model element that must
be specified via the inherited reference modelElement. Then the developer may
add arbitrary many CustomConstraints, for instance, as OCL expressions.

The OCL invariant in the lower part of Fig. 6.16 is the constraint mentioned
before: the context is the UML class ContractController in the presentation
package (line 2), whose owner must be equal to the owner of the referenced
sessionManager (line 5). OwnedAttribute is a UML-specific property that holds

126 Design Decisions in Model-based Software Development

all attributes and also refers to other model elements [OMG10]. Just like all
other constraints, whenever this constraint is violated, as is the case in the
illustrating example, the developer is notified.

6.5.5 Conclusion and Discussion

This section introduced concepts and constraints for an automatic validation
that design models conform to made design decisions. The validation criteria
are based on a binding between decisions and models which is a by-product when
using model-independent differences to realize a decision in a design model. The
validation is successful if all bound model elements exist in the design and they
reflect the realizations that have been applied. In addition, developers may
specify custom constraints during design-time. Using all these constraints, it
is now possible to automatically validate that design decisions are realized in
design models.

The validation does obviously only work if a binding between made decisions
and the design model exists. If a design decision cannot be expressed in a real-
ization specification or if the decision was realized manually without capturing
the changes in the model, validation is not possible. Examples for decisions
whose realizations cannot be expressed are other than existence decisions like
coding or modeling guidelines (cf. Sect. 6.2.1). One could, however, add custom
constraints for these cases like the one in Sect. 6.5.4.

A remaining question is how to fix violated bindings? This is answered in the
next section which deals with the evolution of design models and decisions and
its consequences.

6.6 Design Model and Decision Evolution

The design of a software system rarely remains as it is initially created. Fowler
[Fow99] motivates that good software developers consistently adjust existing
designs to suit the circumstances, for instance, when extending it. The main
driver is to improve maintainability and extendibility of the software design.
Extending and changing the design is called design evolution or, in terms of
models, design model evolution. The very same happens with design decisions.
They are made, rejected, extended, and updated as the system evolves. We call
this decision evolution.

6.6 Design Model and Decision Evolution 127

The two typical use cases concerning design model evolution are the extension of
the design to add new functionality, and non-functional modifications to improve
the design structure. Figure 6.1 on page 99 illustrates an attempt to improve a
the structure of a design model by moving the class ContractSession to another
package which already holds other session objects. However, an association has
been deleted accidentally. These changes on the model result in two violations
as explained in Sect. 6.5: one violation on the element level (missing element)
and one violation on the realization level (wrong location of added element).

Since we consider design decisions as first class artifacts, we have to consider
their evolution, too. Concerning project-specific parts of decisions, an important
situation is the rejection of decision. If a decision has not been realized yet, there
is no relation to the design. However, if a decision has already been realized
in the design, then rejecting it typically implies to undo the realization. This
could become an arbitrary complex step, depending on the complexity of the
realization. Moreover, it might require to undo follow-up decisions.

The evolution of design decisions might also include modifications within re-
alizations that have already been applied to the design. For example, to add
model changes to realizations or to modify them.

In order to fix such violations, the developer has to identify the cause of the
violation and has to decide how to correct it. In case of errors, like the deleted
association, the design or the corresponding decision must be corrected to fix the
violation. Otherwise, if all modifications are as intended and correct, like the
moved class, then the binding must be updated and corrected. In this section,
we explain the different cases for fixing violations.

6.6.1 State of the Art in Design Evolution

The problem of keeping the design consistent with other artifacts like require-
ments or other kinds of documentation, is well-known in the traceability com-
munity. A partly automated approach is presented by Mäder [MCH10]. It uses
the observer pattern to detect modifications of traced design artifacts and then
automatically updates the traces, based on a set of predefined rules. However,
the definition of such rules is required beforehand and the design artifacts must
be edited with a particular editor. There are other solutions for specialized set-
tings like the one just explained, but, to the best of our knowledge, a generic
approach for consistent traceability links does not exist [SZ05].

128 Design Decisions in Model-based Software Development

In practice, two methods dominate for findings errors and inconsistencies be-
tween decisions and the design7. The first are tedious and time-consuming
manual design reviews. The second are regression tests. Automated test suites
for the functionality of the software system are a tool for quickly identifying
potential errors in the system when the design evolves. This requires, however,
that proper test cases were specified [UL07].

6.6.2 Fixing Violations

In this section, we explain how the different kinds of violations can be fixed. We
have the following requirements to the solution in order to provide the developer
a method for easily fixing the violations:

(1) All violations must be visible to the developers at the location of cause.
(2) Developers must be able to fix violations manually.
(3) It must be possible to ignore the cause of violations for further validation.

We identified three ways to fix violations after discussing the situation with other
experts and the interviews in Sect. 8.3 confirmed that they cover all practical
cases.

• Revert the modifications in the part of the design or decision that causes the
violation. This way is recommended in case of accidental modifications in
the design or decision. The previous versions can, for instance, be restored
from a versioning system.

• Adjust the violated binding/custom constraint such that the constraints are
met again. This way is recommended in case the modification on the part
of the design or decision causing the violation was made on purpose and
the constraints shall remain active.

• Ignore the violated binding. This way is only recommended if the violated
constraint is not relevant anymore in the current design.

So in order to fix a violation, the developer needs to identify the cause and then
has to choose either of the three ways. The reasonable way to fix a particular
violation may not be possible, for instance, if corrections in the models conflict
with other decisions or requirements. Then the developer is responsible for
resolving this issue. Each of the predefined constraints on the element and

7We recall these two methods from our own experience and from discussions with experts;
see also Sect. 8.3.

6.6 Design Model and Decision Evolution 129

Level Violation Possible Fixes Cause
E

le
m

e
n
t

(A) Dangling reference:

eb
ignore ?

eb
ignoresr

[1..1]

eb
ignoresr

[1..1]

changechange sr eb
ignore

eb
ignoreself.contai…

• ignore binding
• assign new model element

M

(B) Wrong number of bound
model elements:

eb
ignore ?

eb
ignoresr

[1..1]

eb
ignoresr

[1..1]

changechange sr eb
ignore

eb
ignoreself.contai…

• ignore binding
• adjust bounds
• assign/unassign model ele-
ments until bounds match

M, D

R
e
a
li
z
a
ti

o
n

(C) Model change does not
prevail in the design:

eb
ignore ?

eb
ignoresr

[1..1]

eb
ignoresr

[1..1]

changechange sr eb
ignore

eb
ignoreself.contai…

• ignore binding
• assign/unassign model ele-
ments until realization is re-
stored

M, D

D
e
c
is

io
n (D) Custom constraint is

not met:

eb
ignore ?

eb
ignoresr

[1..1]

eb
ignoresr

[1..1]

changechange sr eb
ignore

eb
ignoreself.contai…

• ignore binding
• assign/unassign model ele-
ments until the constraint holds
• adjust custom constraint

M

Table 6.1: Violations and possible ways to fix them; Cause indicates which
evolving artifact may cause the violation, Decision or M odel.

realization level has a brief description which helps, together with the bound
model elements, to identify the cause of violation.

Table 6.1 gives an overview of all kinds of violations that can be raised by the
constraints from Sect. 6.5. Column Cause indicates whether the cause is located
in a design Decision or design M odel. The violations are grouped into the three
constraint levels.

On the element level, two types of violations may occur. In case a bound
model element does not exist anymore, the binding has a dangling reference
that produces a violation (A). This violation can be fixed by re-assigning a
model element to this binding. If the bounds do not match the number of
bound model elements (B), the bounds or the number of bound model elements
were changed – either of these two causes must be corrected.

On the realization level, each constraint belongs to a change from a realization
specification which was applied to the design model. Either an update of the
change in the realization specification or modifications in the design model cause
the violation (C). Assigning the correct model elements is the typical way of
correcting the violation. In rare cases it is the realization specification that
must be corrected.

130 Design Decisions in Model-based Software Development
violation_fixing violation_fixingactivity []

Fixing violations

Fix custom constraints

Correct model to fix violation

Ignore violated binding

Fix binding by assigning
correct model elements Document

case in
binding
notes

Discuss violation and identify
cause with other developers

Select one of the violations
and identify its cause

Review list of violations

Validate decisions

Reviewing violations

[binding is mapped to wrong model elements]

[violated binding is obsolete]

[custom constraint is wrong]

[model is broken]

[else]

[else]

[violations exist]

[cause could not be identified]

Figure 6.17: The process of how violations are shown to and fixed by developers;
properly documenting the case is important for other developers to understand
the rationale behind the design.

On the decision level, all constraints are provided by developers (D). Violations
can either be fixed by adjusting the constraint, by adjusting the design, or by
assigning the right design model elements. The choice depends on the context.

Although the process of validating design decisions and fixing the violations
seems to be intuitive, we briefly outline it here to emphasize the documentation
of violations, how they are fixed, and what the reasons behind them are. This
information is just as important as the justification behind design decisions!
Maintaining this information in a separate document or maybe in a decision
management system is one possibility, but attaching it directly to the binding –
and, hence, at the elements which were violated – makes it easier accessible for
other developers. The definition of the decision binding already support such
notes (cf. binding metamodel in Fig. 6.4 on page 104).

Figure 6.17 summarizes the process of validating design decisions and fixing po-
tential violations. After the decisions have been validated, the violations should
be reviewed one by one. Especially in collaborative software development, com-
munication within the team might be required in order to identify the cause of
a violation. If the cause is known, one or multiple of the aforementioned actions
must be performed. Afterwards, the violation and its fix are documented such
that other developers can follow the reasoning of the design.

6.6 Design Model and Decision Evolution 131

ae‐cb
ignore

add
element

add
element

sr
sm

ce

sr

smb
ignore

add
element

add
element

sr
sm

ce

sr

smb
ignore

x

ceb
ignore

Legend:
ce – corresponding element
sm – sub model reference
cr – changed reference
sr – symbolic reference
cb – change binding
smb – submodel binding
ceb – custom element binding

newly added

example_fixing

ae‐cb
ignore

Figure 6.18: Fixing two violations: re-assign model element (2x), ignore binding
(1x), add new element to binding (1x).

6.6.3 Examples

This section explains how the exemplary violations from Fig. 6.13 on page 120
and a violation of a custom constraint can be fixed. These five violations cover
all cases in Tab. 6.1.

The first violation is the move of ContractSession to another package (case (C)
in Tab. 6.1). To fix that violation, the binding can either be ignored, the model
can be reverted, or the binding can be adjusted. We choose the last option, so
we have to change the bound package from presentation to data, as shown in the
upper part of Fig. 6.18. The binding element smb is an instance of SubModel-
Binding, defined in the metamodel in Fig. 6.15 on page 124. Once the binding is
updated, the constraints in the lower part of Fig. 6.15 are not violated anymore.

The second violation is the deletion of the association from ContractController
to ContractSession (cases (A) and (C) in Tab. 6.1). That can be fixed by
replacing the deleted association with a new component ContractData which
is now responsible for holding a reference to the session object (see lower part
of Fig. 6.18). This time, fixing the binding is a bit more complex: first, we
need to adjust the binding to consider the new association from ContractData
to ContractSession instead of the deleted one; second, we need to disable the
check whether the association is as specified in the realization (second constraint
in Fig. 6.15); third, we want to make sure that the class ContractData exists
in the model. The first part is just like the previous example. The second part
requires that we ignore the validation check whether the added element is as

132 Design Decisions in Model-based Software Development

specified – the ignore flag of the add element change binding (ae-cb) does that.
The third part requires a new custom element binding (ceb) which checks the
existence of ContractData (cf. constraint for element bindings in Fig. 6.14 on
page 123).

The third violation is the rejection of a decision that has already been realized
in the design. The task of fixing this consists of three steps: first, if the decision
has follow-up decisions that must be rejected as well, this must be done first
(recursive task). Second, the realization in the design must be undone – in
terms of model-independent differences, the easiest way to do this is to reverse
the model changes (cf. Sect. 5.7.5 on page 78) and apply them to the model.
Third, the binding of the rejected decision must be deleted.

The fourth violation is a modification in a realization specification that has
already been applied to the design, for instance, lowering the bounds of one of
the model changes or adding or removing a model change (cases (A), (B), or
(C) in Tab. 6.1). Again, the design and the binding could be adjusted to the
changed realization specification, similarly to the first two violations.

The last exemplary violation is the custom constraint in Fig. 6.16 on page 125
because ContractController and the session manager reside in different packages
(case (D) in Tab. 6.1). Here the development team should discuss whether this
constraint is required (resulting in an appropriate model refactoring) or not
(ignoring or deleting this constraint).

6.6.4 Conclusion and Discussion

The design as well as the decisions of the design evolve during the development of
a software system. There are plenty of ways how this happens, like manual work,
automated model-transformations, or merging branches in a versioning system.
If a binding exists between decisions and design models, the validation from
Sect. 6.5 is able to reveal some inconsistencies between these two artifacts. These
inconsistencies are violations of predefined constraints. This section discussed
the different kinds of these violations and their causes. Lastly, we outlined how
the violations can be fixed and how consistency can be restored.

We propose a tool-supported but to large extend manual strategy for fixing
inconsistencies. The approach by Mäder et al. [MCH10] could be a useful ex-
tension because it allows to automatically update the binding in case of model
refactorings. This could automate some of the re-assignments of model ele-
ments. In the end, the benefits of maintaining consistency must be higher than
the effort for fixing violations, and this extension would reduce the effort.

6.7 Proposing Subsequent Design Decisions 133

6.7 Proposing Subsequent Design Decisions

This section presents some ideas towards a decision guidance tool to support
the developer in identifying decisions. It comes without a supporting implemen-
tation or any other evidence, so it is an outlook to future research directions.
With decision guidance we mean both, the proposal of subsequent design issues
after a decision has been made, and a restriction of the decision space.

The example from Sect. 2.2 illustrates the proposal of a subsequent design issue
(also shown in Fig. 6.19): the chosen alternative Yes of the first decision, Session
Awareness, induces the follow-up design issue Session Management. We call
this type of relations inducing relations because they induce other decisions.
Figure 6.19 also shows another kind of relations: the alternative Lightweight
Server of a design issue Server Architecture is excluded by the alternative Server
Session State. We call this type of relations restricting relations, because they
restrict the decision space.

Alternative
No

Issue
Session

Awareness

Alternative
Yes

Outcome

solution decision

Issue
Session

Management

Outcome

solution

decision

induces

solution

Alternative
Database
Session

State

Alternative
Client

Session
State

Alternative
Server

Session
State

solution
solution

ch
os

en
A

lte
rn

at
iv

e

ch
os

en
A

lte
rn

at
iv

e

project-independent
project-specific

example_decisions

Issue
Session

Awareness
Alternative

Yes

solution
Issue

Session
Management

induces

Alternative
Server

Session
State

solution
Issue
Server

Architecture
Alternative
Lightweight

Server

solution

excludes

restricting_relation

Figure 6.19: Relations between decisions in the example: induces is an inducing
relation, excludes is a restricting relation.

Our hypothesis is that relations between design decisions can be used for guid-
ing developers through the decision space by proposing subsequent and hiding
incompatible decisions. This section discusses the state of the art in decision
guidance, presents our conceptual ideas, and concludes with a discussion about
this topic.

6.7.1 State of the Art in Decision Guidance

Current practice is to manually identify related and subsequent design issues
in a decision management system, in pattern specifications, or any other source
of documentation (see also Sect. 6.4.1). Although some of the existing deci-
sion management systems support relations between decisions, there is no guid-
ance support yet as motivated. The ADK Web Tool [ZKL+09] formally defines

134 Design Decisions in Model-based Software Development

seven types of relations between the different parts of design decisions, listed
in Tab. 6.2. They use these relations for educational purposes and for helping
knowledge engineers and software architects to detect design flaws. Zimmer-
mann [Zim11] also describes a guidance model for architectural decisions, but
that concerns the identification of relevant design issues in a project that is not
explicitly based on relations between decisions. The relations in Kruchten’s on-
tology [KLvV06] do not distinguish between issues and alternatives; however,
most of the relations can be expressed with the concepts of the respective other
approach as shown in the table.

Ontology ADK Web Tool From To Type

isRelatedTo isRelatedTo Issue Issue inducing

subsumes refines Issue Issue inducing

comprises decomposesInto Issue Issue inducing

— forces Alternative Alternative inducing

forbids / isIncompatibleWith Alternative Alternative restricting
conflictsWith

constrains isCompatibleWith Alternative Alternative —

enables triggers Alternative Issue inducing

overrides (implicitly expressed as decision outcomes) —

isAlternativeTo (implicit: alternatives of the same issue) —

isBoundTo (implicitly expressed as groups) —

dependsOn — inducing

Table 6.2: Relations between design decisions in existing approaches: Kruchten’s
ontology [KLvV06] and the ADK Web Tool [ZGK+07]; the latter defines rela-
tions more fine-grained, hence the columns From and To.

Recently, a tool for visualizing relations between decisions has been presented
by Lee and Kruchten [LK08b]. It shows all made decisions as a graph with the
nodes being decisions and edges being relations. This work also points out the
difficulty to capture relations between design decisions which is tedious work,
even if decisions are already captured. Possible sources may be developers’
experiences, finished projects, pattern languages, etc. However, to the best of
our knowledge, neither of these nor any other approach exploits such relations
to propose subsequent design decisions or to filter possible choices during the
decision making process.

6.7.2 Towards Decision Guidance

In this section, we present ideas for a decision guidance tool. The two types of
relations are defined as follows. When using the term decision, it might be the
issue or any of its alternatives.

6.7 Proposing Subsequent Design Decisions 135

1. Inducing relations are all relations from one decision to another which
specify that the other decision may or must be made eventually.

2. Restricting relations are all relations from one decision to another which
specify that the other decision must not be made.

Examples for both types of relations are shown in Tab. 6.2. Most relations are
inducing relations, each with a particular meaning that can be derived from
their names. Only one of them (forces) requires the induced decision to be
made, all others are optional. These two types of relations can be exploited
to either (1) propose upcoming design issues or (2) hide issues or alternatives
that are not allowed. The motivation is that this step saves time and effort for
identifying design issues and considering alternatives.

propose_decision_process propose_decision_processactivity []

Hide issues / alternatives
for all restricting relations

Present list of all induced
issues to the developer
(identify new decisions)

Create open
outcomes for
all selected

issues

Analyze
relationsMake

design
decision

......

...

Figure 6.20: After a decision was made, inducing and restricting relations can
be used to support the decision identification task (extension of the activity in
Fig. 6.5 on page 106).

We propose the steps in Fig. 6.20 as an extension to the decision making activity
that has been sketched in Fig. 6.5 on page 106. Whenever a decision was made,
i.e. the outcome status was set to decided, the tool analyzes all relations of
this decision. For all restricting relations, the respective issues and alternatives
are hidden or marked, e.g. as limitedly applicable, in the decision management
system. Further, a list of all induced design issues are shown to the developer
in order to identify new design issues – new open outcomes will be created for
the selected subset of these issues.

This shall, however, only be a guideline and not strict rules as the following
scenario motivates. The same decision may be made multiple times in a project
but for different and maybe independent components. Then, an excluding rela-
tion forbids a particular issue, but only on one component. If the decision on
the other component is different, the issue that is forbidden in the first compo-
nent, may very well be relevant for this other component. Hence, restricting the
decision space must consider the scope of decisions in the design.

136 Design Decisions in Model-based Software Development

6.7.3 Conclusion and Discussion

This section explained how relations between design decisions can be exploited
to ease and partly automate the decision identification step. Decisions might
either be proposed via inducing relations or limited by restricting relations.
Based on this information, developers can easily create new open outcomes for
related issues.

As mentioned before, tools for proposing decisions can only support developers
in performing their tasks, but it does not substitute thinking. This is why the
proposal of issues as well as filtering alternatives should be an optional feature
for developers. Then one can take advantage of that feature but still all options
are possible.

6.8 Related Work

There are several approaches in the literature that are similar to the concepts
presented in this chapter. All of them have already been presented and briefly
explained in Sect. 3.1. In this section, we compare our solution to the most
similar approaches grouped by the three goals.

Design decision documentation. Most decision management systems’ main
feature is the documentation of architectural knowledge including, but not lim-
ited to, design decisions. ADDSS [CND07] and PAKME [BWG05], for instance,
are web-based tools; the Knowledge Architect [LJA10] is a tool suite that in-
tegrates with several office tools; Archium [JvdVAH07] and SEURAT [BB04]
integrate with source code, AREL [TJH07] stores design decisions as profiled
UML models; the ADK Web Tool [Zim09] and SEI wiki [BM05] are wiki-based
tools for documenting and maintaining design decisions.

Although some of the approaches link design decisions to design artifacts like
source code, only AREL is capable of linking them to individual design model el-
ements. However, AREL does not allow developers to capture and reuse changes
in design models, and to synchronize this information with decision decisions;
these two artifacts merely coexist. None of these approaches provides a fine-
grained link to individual design model elements as our solution does. Since the
ADK Web Tool supports recurring design decisions with a distinction of generic
and project-specific parts of decisions, we adopted its metamodel and use cases
for capturing and making decisions.

6.8 Related Work 137

Automating design decision realizations. In the past, the design deci-
sion rationale and architectural knowledge communities focused on document-
ing decisions that have already been made (following a retrospective captur-
ing approach). In his architectural decision modeling framework, Zimmermann
[Zim09] shows that model transformations can automatically be triggered in a
model-driven development process. However, the transformations only support
business processes so far and they must be specified manually. Archium, in
contrast, is a framework with a notation and code generator for design decisions
and source code. It can be used to compose the architecture of architectural
decisions which contain realizations as source code templates.

The conceptual extension of design decisions with realization specifications and
a fine-grained binding to design artifacts are novel features that none of the
discussed approaches support. However, the idea of Archium to automatically
create large parts of the system’s design is similar to our solution which auto-
mates the realizations of design decisions in design models in a generic way.

Consistency. The consistency goal is only met for manual design constraints
(decision-level constraints) so far: Tibermacine et al. [TDSF10] provide a con-
straint language similar to OCL that allows architects to manually attach con-
straints to architectural components. Generic constraints as presented for the
element and change level, however, are not available.

In practice, informal, human-centric techniques such as coaching, architectural
templates, and code reviews dominate. For instance, software engineering pro-
cesses like the RUP (Rational Unified Process [Kru03]) advise architects to
enforce decisions by refining the design in small and actionable increments. The
agile community emphasizes the importance of face-to-face communication and
team empowerment [Bec99]. Maturity models such as CMMI [Tea10] recom-
mend rigid approaches to ensure that decision outcome are realized, for instance,
formal reviews. Applying these techniques takes time and their success depends
on the architects’ coding and leadership skills.

We are not aware of model-based software development tools that respect de-
sign decisions. Modeling tools like the IBM Rational Software Architect8 and
Borland Together9 provide pattern authoring capabilities which are similar to
the intention of the realizations of design decisions. However, a metamodel for
expressing relations between them as well as decision identification and decision
making supported are missing.

8Available at: http://www.ibm.com/developerworks/rational/products/rsa/
9Available at: http://www.borland.com/us/products/together/

http://www.ibm.com/developerworks/rational/products/rsa/
http://www.borland.com/us/products/together/

138 Design Decisions in Model-based Software Development

6.9 Summary

This chapter presented a new way of handling design decisions that comple-
ments existing approaches in the literature. Design decisions are a key artifact
for expressing and reasoning about the design and design knowledge, and deci-
sion management systems can be used to document and maintain them. Made
design decisions imply changes in the design of a system, which are in case
of model-based software development, changes in the design models. The pre-
sented concepts use model-independent differences to automate recurring work
on the models and to keep design models consistent with made design decisions.

Design decisions must first be identified in a particular project, captured (doc-
umented), and finally made. These tasks are widely discussed in the literature
and often neglected in practice, because they take a lot of time and they rarely
appear beneficial to developers. Moreover, decisions are typically maintained in
separate tools or documents than the design artifacts like code or models. We
close this gap by integrating the decision identification and capturing tasks into
the modeling environment in model-based software development. One benefit is
improved documentation, because the documentation is directly annotated to
the design artifacts. After a decision has been made, its chosen solution must
be realized in the design of the system.

Up to now, solutions of design decisions are typically described informally as
text, with literature references, or with examples. This means that each time
a decision is realized in a project’s design, this task is tedious and error-prone
work. We use model-independent differences to automatically specify decision
realizations from examples which are then applicable to arbitrary models when-
ever the particular decision is made. This automates large parts of the tedious
and error-prone manual realization tasks and, as a by-product, creates a binding
between the made decisions and affected design model elements.

Keeping the evolving design consistent with its documentation including design
decisions, is a challenging task in practice. Literature provides solutions only
for special cases, not including design decisions. Since we have a binding be-
tween both artifacts and with the help of a set of predefined constraints on the
binding, we can easily validate whether the design conforms to made decisions.
If inconsistencies are found, we propose several ways to restore consistency.

Several existing decision management systems define relations between design
decisions. These relations could be exploited for guiding developers through
the decision space by proposing potentially relevant subsequent decisions and
hiding others that are incompatible with already made decisions. However, this
is matter of future work.

Chapter 7

Tool Support

The solutions presented in the previous two chapters are conceptual. This chap-
ter outlines a prototypic tool implementation of the concepts to show their tech-
nical feasibility. The tool consists of two parts, the implementation of model-
independent differences, called MPatch, and design decision support for model-
based software development. We present the GUI (Graphical User Interface)
and architecture of both parts including information about their API, that is,
how they can be used and extended. Afterwards, we discuss a set of test cases
and their results to show the technical feasibility. Moreover, the tool is used for
the validation in Chapter 8.

The project website contains download information, technical details, and tuto-
rials for MPatch as well as the design decision support for model-based software
development: http://modeldiff.imm.dtu.dk. It also contains installation in-
structions for the DTU Decision Server, a headless decision management system.

This chapter is organized as follows. Sect. 7.1 gives an overview of the GUI.
Sect. 7.2 lists requirements and early design decisions concerning the design of
the prototype. Sect. 7.3 outlines the architectural design. Sect. 7.4 and 7.5
present technical details about and APIs of the two parts of the prototype, the
implementation of model-independent differences and the decision support in
model-based software development. Sect. 7.6 discusses the tests on the prototype
along with their results. Sect. 7.7 concludes this chapter.

http://modeldiff.imm.dtu.dk

140 Tool Support

7.1 The Graphical User Interface

This section covers important parts of the GUI of both parts, MPatch and the
design decision support. This is not supposed to be a user guide – tutorials
are available integrated in the tool itself as well as on the website. It should
rather give the reader an impression of the tool and its functionality without
the necessity to install it.

First, the dialogs for creating and applying mpatches1 are shown. Then, the
design decision view is shown, integrated into the modeling environment of an
Eclipse-based modeling tool, including a visualization of inconsistencies between
a design model and made design decisions.

7.1.1 The GUI for Mpatch Creation

The creation of mpatches is currently implemented with a model-to-model trans-
formation from model-dependent differences of EMF Compare to mpatches. The
crucial part is, as stated in Sect. 5.7, the selection and configuration of symbolic
references and additional transformations. Figure 7.1 shows the configuration
dialog with all available modules loaded, triggered from the EMF Compare GUI
that shows the differences between two versions of a model. Finishing this dialog
starts the transformations explained in Sect. 5.6 and stores the created mpatch
in a file.

The configuration includes the selection of a symbolic reference creator which
specifies the matching strategy that will be used when applying the mpatch
to another model; id- and condition-based symbolic references are available as
explained in Sect. 5.4. The model descriptor creator must also be selected; only
one is available at the moment, as explained in Sect. 5.5. The upper part of
the dialog shows a selection and the order of additional transformations that
are executed after the mpatch has been created. The center part shows detailed
information about the currently selected transformation so that developers can
see and understand what the respective transformations do.

1The term MPatch (upper case) refers to the implementation of model-independent differ-
ences whereas the term mpatch (lower case) refers to an artifact containing model changes.

7.1 The Graphical User Interface 141

Figure 7.1: The dialog for configuring the creation of an mpatch from model-
dependent differences, triggered from the GUI of EMF Compare.

7.1.2 The GUI for Mpatch Application

After an mpatch was created from the comparison of a model, it can be applied
to another model. The interesting and most complex part during the application
of mpatches is the matching and resolution of symbolic references. The tool
supports a user-interactive as well as an automatic way of resolving and refining
invalid symbolic reference mappings. Figure 7.2 shows the dialog for the user-
interactive resolution of symbolic references.

The tree in the center of the dialog is a representation of an mpatch contain-
ing all changes from Tab. 5.12 on page 80 that shall be applied to model MB ,
shown in Fig. 5.2 on page 37. Via checkboxes, changes can be excluded from the
application; if other changes depend on a deselected change, the other changes
will also be deselected (cf. dependency graph in Sect. 5.3.3). The center column
shows the number of mapped model elements and the validation result (cf. val-
idation in Sect. 5.8.2). The right-most column lists the set of matched model
elements; developers may change that set by clicking on the respective cell.

142 Tool Support

Figure 7.2: The dialog for applying mpatches to a model includes a matching
and refinement of symbolic reference mappings.

The first change cannot be mapped to any model element because the attribute
Title : String does not exist in model MB . This is why it is not selected for
application. All other changes can be applied. However, not all of them are
mapped to model elements as intended by the refactoring. The third change
describing the addition of a generalization to IdElement is currently set to be
applied to three model elements, but they are intended to be applied only to
Invoice and Contract (cf. Sect. 5.8.5 on page 87). Clicking on the cell allows
developers to refine the set of mapped model elements, for instance, to remove
the class Customer from this set. The fourth change is matched to the attributes
id : String of two classes, as intended. So the effort for applying these changes
to model MB is to deselect the first change and to remove one model element
from the initial matching.

The button Resolve all conflicts triggers the algorithm to automatically resolve
all invalid symbolic reference mappings as explained in Sect. 5.8.3. It may also
happen that all changes are deselected, if none of them is applicable. The

7.1 The Graphical User Interface 143

Figure 7.3: The design decision view connected to the ADK Web Tool shows
the decisions from the example; some of their bindings are violated.

resulting mapping will be updated in the table and developers may review and
refine it.

Moreover, instead of modifying the existing model, the mpatch can be applied
to a copy of the model (Store intermediate differences and model). Also, a
binding between the mpatch and the changed model can be stored in a separate
file. More details about the implementation and tutorials are available on the
project’s website.

7.1.3 The Design Decision View

All tool extensions for supporting design decisions are available in the design
decision view. The view is shown at the bottom of Fig. 7.3 and lists all design
decisions that are available on the server to which the tool is connected. The

144 Tool Support

Figure 7.4: A view on the binding shows a detailed list of all causes of the
violations and provides opportunities to fix them.

toolbar provides actions for connecting to a decision management system, to
make, realize, search for, and validate design decisions. The table below the
toolbar visualizes the design decisions as defined in the metamodel in Fig. 6.3,
page 103. The decisions are taken from the example in Sect. 2.

Some bindings in this example are violated. These are the same violations
as in Sect. 6.6.3 on page 131: an association between ContractController and
ContractSession has been deleted and ContractSession has been moved to the
package data. The violations are visible in several places: the validation dialog
provides a compact list; related design model elements are highlighted in the
graphical model editor (red and yellow light bulbs); violated bindings are marked
directly in the design decision view. The next step is to fix the violated binding.

7.1.4 Fixing a Violated Binding

There are three ways of how a binding can be fixed (cf. Sect. 6.6.2 on page 128):
the invalid bindings may be ignored, adjusted, or the model may be corrected.
We follow the example from Sect. 6.6.3 and correct the model, adjust the bind-
ing, and also ignore parts of the binding.

Figure 7.4 shows a detailed view of the violated binding. All changes that are
applied to the model are listed in the view together with corresponding binding
notes, validation results, and bound model elements. The following parts are
violated and have partially been fixed so far.

7.2 Requirements for the Tool Design 145

1. The package presentation is not the current parent anymore for the class
ContractSession (warnings).
Fix: This can be fixed by changing the bound package to data.

2. Two UML properties cannot be found anymore (errors) – they were part
of the associations that has been deleted.
Fix: This can be fixed by ignoring both bindings (one is already ignored).

3. The deleted association is replaced with a class ContractData and corre-
sponding associations (shown in Fig. 6.17 on page 130).
Fix: The association in this binding has been re-assigned.

4. A custom element binding has been added to also bind the newly added
class ContractData.
Fix: This custom constraint was added manually to the binding.

After these four adjustments are done, the binding is updated to suit the model,
a subsequent validation succeeds, and the design model is again consistent with
all made design decisions.

7.2 Requirements for the Tool Design

This section outlines the requirements for the prototypic implementation. The
goal is an academic prototype that shows the technical feasibility of the proposed
concepts. We discuss the requirements in the form of early design decisions we
made during the development of the prototype.

The first decision concerns the base platform and modeling language, which
must conform to MOF. Eclipse2 is a development platform used by many mod-
eling tools such as the IBM Rational Software Architect and Borland Together
but also by open source modeling tools like MoDisco3 and Papyrus4; all of them
are based on the same metamodeling language Ecore5 which is a partial im-
plementation of MOF. EMF also comes with a model differencing technology
called EMF Compare including a generic and extendable difference calculation
algorithm. We decided to use that platform and EMF because of free avail-
ability, an active community behind it, and also because of personal expertise
knowledge with these technologies. Another requirement was to make the pro-
totype available for others, and the EPL (Eclipse Public License [Ecl04]) is an
adequate license for that.

2Available at: http://www.eclipse.org
3Available at: http://www.eclipse.org/MoDisco/
4Available at: http://www.eclipse.org/modeling/mdt/?project=papyrus
5Part of the Eclipse Modeling Framework: http://www.eclipse.org/emf/

http://www.eclipse.org
http://www.eclipse.org/MoDisco/
http://www.eclipse.org/modeling/mdt/?project=papyrus
http://www.eclipse.org/emf/

146 Tool Support

The second decision concerns the decision management system for maintain-
ing design decisions. Instead of reimplementing the functionality for managing
design decisions, the plan is to use existing solutions (cf. Sect. 3.1). The one
closest to our decision metamodel (Fig. 6.3 on page 103) is the ADK Web Tool6.
We decided to specify an interface between our design decision prototype and
decision management systems in order to be tool independent and to support
more than one decision management systems – this idea was already sketched
in Fig. 6.6 on page 107. In fact, our prototype works with two decision man-
agement systems at the time being, the ADK Web Tool and the DTU Decision
Server.

7.3 Tool Architecture

This section shows the architectural design of our tool and lists all neighboring
and our own components. Our tool comprises five components for handling
design decisions and the binding between them and design models, and one
component (MPatch) for specifying and using realizations. Figure 7.5 gives an
overview of the architecture. A list and description of all components is given
below.

EMF (the Eclipse Modeling Framework) provides the metamodeling language
Ecore; thus, all EMF-based modeling languages are supported, including
UML7.

EMF Compare8 is a technology for comparing and merging models, used by
MPatch for the calculation and visualization of model differences.

OCL is used for the specification and its query engine for the evaluation of
constraints for consistency checking; the EMF Validation framework9 is
used as an adapter to validate these constraints against design models.

Webtools10 is used for the communication with a decision management system
via a web service; the interface is defined later in Sect. 7.5. It provides
basic functionality to create, access, and maintain design decisions.

MPatch is used for the creation, representation, and application of model dif-
ferences as realizations of design decisions.

Decision Manager defines a web service for the communication with a de-
cision management system and maintains the connection. It is also re-

6Available at: http://www.alphaworks.ibm.com/tech/adkwik
7Provided by UML2 project: http://www.eclipse.org/modeling/mdt/?project=uml2
8Available at: http://www.eclipse.org/modeling/emf/?project=compare
9Available at: http://www.eclipse.org/modeling/emf/?project=validation

10Available at: http://www.eclipse.org/webtools/

http://www.alphaworks.ibm.com/tech/adkwik
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/modeling/emf/?project=compare
http://www.eclipse.org/modeling/emf/?project=validation
http://www.eclipse.org/webtools/

7.3 Tool Architecture 147

EMF

EMF Compare

Binding Validator

Decision Binder

Webtools

Decision Manager
(incl. decision metamodel)

Design
Models

Design
Decisions

Decision
Management

System

via web service

MPatch

Modeling Tools

Difference Binder

EMF ValidationOCL

Decision
Realization

Specifications

reused
components

new
components

external toolEclipse platform

data access
dependency

Decision
Bindings

GUI

architecture

MPatch

Figure 7.5: The architecture of our tool based on the Eclipse platform; the blue
parts are reused components of the Eclipse framework, the yellow parts are our
extensions, and the green parts belong to a decision management system.

sponsible for wrapping access to design decisions which are technically
located and maintained in the decision management system, and it stores
realization specifications of design decisions along with their solutions.

Difference Binder defines the binding between realization specifications of
design decisions and the design models to which the changes were applied.

Decision Binder connects bindings to the outcomes of design decisions.

Binding Validator contains logic and constraints for consistency checks.

GUI contains the design decision view and provides dialogs and other user-
interactive actions.

Decision Management System stores and maintains all design decisions.

This design is a refinement of the tool setup that was sketched in Fig. 6.6 on
page 107. We decided to keep the Difference Binder and the Decision Binder
separate because the former is independent of any design decision – difference
bindings can be stored after applying model differences to a model and could also
be exploited for activities not related to decision making, for instance, model
synchronization.

The API of MPatch and the interface for decision management systems are
presented in the two following sections.

148 Tool Support

7.4 MPatch API

The MPatch API allows tool developers to programmatically use and extend the
functionality of MPatch. The provided API comprises operations for all steps
listed in the process of creating and applying model-independent differences
(Sect. 5.2). MPatch has also five extension points for extending its functionality,
for instance, to optimize it for a particular type of models. These extensions are
listed in Fig. 7.6. The MPatch ExtensionManager maintains them. The prefix
getSelected means that the extension manager returns the extension which is
specified in the MPatch configuration settings.extension_managerpackage mpatch[]

+getSelectedSymbolicReferenceCreator() : ISymbolicReferenceCreator
+getSelectedModelDescriptorCreator() : IModelDescriptorCreator
+getTransformations() : IMPatchTransformation [*]
+getSelectedMPatchResolution() : IMPatchResolution
+getSelectedMPatchApplication() : IMPatchApplication

mpatch::extensions::ExtensionManager

Figure 7.6: The MPatch Extension Manager loads and maintains all extensions.

7.4.1 Accessing MPatch Functionality

All functions of MPatch can be called programmatically, for instance, to inte-
grate it with other model operations. The second part of our tool, the design
decision integration in modeling environments, is an example for using this pro-
vided functionality. The remainder of this section explains each of them in detail
along with a reference to the section describing the respective concepts.

MPatch Creation (Sect. 5.6)

api_transformpackage mpatch[]

+transform(emfdiff : ComparisonSnapshot, srCr : ISymbolicReferenceCreator, mdCr : IModelDescriptorCreator) : MPatchModel
mpatch::emfdiff2mpatch::TransformationLauncher

The TransformationLauncher creates an mpatch, is located in the emfdiff2mpatch
package and requires an emfdiff as parameter11. The compared models are
not required as explicit parameters because they are available via the emfdiff
(cf. EMF Compare metamodel in Fig. 5.18 on page 68). A symbolic reference
creator and a model descriptor creator are required to perform the transforma-
tion and can be retrieved from the extension manager (cf. Fig. 7.6).

11EMF Compare also provides an API for comparing two models; for convenience, we
wrapped it in an additional operation:
createEmfdiff(leftModel : EObject, rightModel : EObject) : ComparisonSnapshot

7.4 MPatch API 149

MPatch Transformations (Sect. 5.7)

api_generalizepackage mpatch[]

+expandScope(mpatch : MPatchModel) : IndepChange [*]
+unboundingSymbolicReferences(mpatch : MPatchModel) : IndepChange [*]
+mergeChanges(mpatch : MPatchModel) : IndepChange [*]

mpatch::transform::GeneralizeTransformations (Sect. 5.7.1)
(Sect. 5.7.2)
(Sect. 5.7.3)

package api_groupmpatch[]

+group(mpatch : MPatchModel) : IndepChange [*]
mpatch::transform::GroupingTransformation

(Sect. 5.7.4)
api_reversepackage mpatch[]

+reverse(mpatch : MPatchModel) : IndepChange [*]
mpatch::transform::ReverseTransformation

(Sect. 5.7.5)

Each of the five provided transformations modifies an mpatch and returns refer-
ences to the modified model changes. They are also registered at the extension
manager and can be retrieved via getTransformations(). They are explained in
the corresponding sections listed next to the transformation signatures.

MPatch Resolver (Sect. 5.8)

api_resolverpackage mpatch[]

+matchSymbolicReferences(mpatch : MPatchModel, model : ModelElement) : Mapping
+validateMapping(mapping : Mapping) : IndepChange [*]
+resolve(mapping : Mapping)

mpatch::apply::MPatchResolver (Sect. 5.8.1)
(Sect. 5.8.2)
(Sect. 5.8.3)

The MPatchResolver provides operations for matching all symbolic references
in a model (matchSymbolicReferences), and to validate mappings (validate-
Mapping). The mapping is the one defined in Fig. 5.22 on page 83. Then
one can either manipulate the mapping to refine or resolve invalid mappings,
or resolve can be used to automatically resolve all conflicts. However, the au-
tomatic resolution ignores all invalid mappings, in the worst case it ignores all
changes.

MPatch Applier (Sect. 5.8.4)

api_applierpackage mpatch[]

+applyMPatch(mapping : Mapping, storeBinding : boolean) : MPatchApplicationResult
mpatch::apply::MPatchApplier

Lastly, if the mapping is valid and not empty, applyMPatch applies all changes
to the target model. If the binding is created (storeBinding is set to true),
it can be retrieved via MPatchApplicationResult. A validation of the binding
(required for the validation of design decisions, Sect. 6.5) is possible via the EMF
Validation component, because all constraints are registered in that framework:
Diagnostician.INSTANCE.validate(EObject eObject): Diagnostic

150 Tool Support

7.4.2 Extending MPatch Functionality

One of the requirements for model-independent differences is extendability. The
extension manager in Fig. 7.6 already gave a list of all extension points in the
framework. Here we briefly explain the role and responsibilities of each of them.

Symbolic Reference Creators (Sect. 5.6.4)

ext_symrefpackage mpatch[]

+toSymbolicReference(element : ModelElement) : IElementReference
mpatch::extensions::ISymbolicReferenceCreator

A symbolic reference creator is used during the creation of model-independent
differences to replace direct references to model elements with symbolic refer-
ences in order to make the resulting model changes applicable to other models.
The parameter element specifies the model element for which a symbolic ref-
erence will be created. Exemplary algorithms have already been discussed in
Sect. 5.6.4. When a new matching strategy in form of a new type of symbolic
references is added to the framework, an appropriate symbolic reference creator
must be provided that implements the interface ISymbolicReferenceCreator.

Model Descriptor Creators (Sect. 5.6.4)

ext_descriptorpackage mpatch[]

+toModelDescriptor(element : ModelElement) : IModelDescriptor
mpatch::extensions::IModelDescriptorCreator

A model descriptor creator is used during the creation of model-independent
differences to replace direct references to added and removed elements in the
model with model descriptors in order to make the resulting model changes
independent of the compared models. The parameter element specifies the
model element that will be described. The default algorithm has already been
discussed in Sect. 5.6.4. When a new type of model descriptor is added to
the framework, an appropriate model descriptor creator must be provided that
implements the interface IModelDescriptorCreator.

Transformations (Sect. 5.7)

ext_transformationpackage mpatch[]

+transform(mpatch : MPatchModel) : IndepChange [*]
mpatch::extensions::IMPatchTransformation

A transformation on an mpatch may perform any in-place modification. We
have seen examples for generalizing model changes, grouping or reversing them.
A transformation must return the set of changes which have been modified.

7.5 Interface to Decision Management Systems 151

MPatch Application (Sect. 5.8.4)

package ext_applympatch[]

+applyMPatch(mapping : Mapping) : MPatchApplicationResult
mpatch::extensions::IMPatchApplication

This extension provides the algorithm for applying model-independent differ-
ences to a model. The framework checks beforehand that the mapping is valid
(cf. MPatch Resolver in Sect. 7.4.1). When a new change type is added to the
framework or model-specific applications of changes are required, an adequate
application algorithm must be provided, for instance, by extending the default
one.

MPatch Resolution (Sect. 5.8.3)

ext_resolvepackage mpatch[]

+refineResolution(mapping : Mapping)
+refineResolution(mapping : Mapping, host : IMPatchResolutionHost)
+buildResolutionGUI(container : Composite)

mpatch::extensions::IMPatchResolution
+resolved(mapping : Mapping)
mpatch::extensions::IMPatchResolutionHost

This extension for resolving invalid mappings during the application of model-
independent differences must provide two strategies: an automated, non-inter-
active strategy (refineResolution(mapping)), and a user-interactive strategy (re-
fineResolution(mapping, host)). When a new resolution strategy only realizes
either of the refineResolution operations, then it should delegate the other to the
default implementation. Our default implementation of this extension provides
already both strategies (cf. GUI explanations in Sect. 7.1.2). The interactive
resolution works as follows. First, the framework calls buildResolutionGUI(..)
so that the GUI for the interactive resolution can be set up. Second, refine-
Resolution(mapping, host) is called by the framework and gives control to the
resolution implementation. Third, whenever the implementation modified the
mapping, it must call resolved(mapping) on the host. Other strategies are pos-
sible as well, for instance, providing a smarter way of automatically resolving
invalid mappings.

This section presented the API and extension points of the MPatch technology
including the information for tool developers to integrate MPatch in other tools
or to extend it. For instance, to optimize it for other types of models.

7.5 Interface to Decision Management Systems

Our tool uses decision management systems for storing and maintaining design
decisions. This section specifies and explains an interface which decision man-
agement systems must implement before they can be used with our tool. The
first purpose of the interface is the management of all design decisions from

152 Tool Support
decisionmanagerwsdl_interfacepackage []

+getServerInfo() : String
+getProjects() : Project [*]
+getGroups(proId : String) : Group [*]
+getSubGroups(proId : String, groId : String) : Group [*]
+getIssue(proId : String, issId : String) : Issue
+getIssues(proId : String, groId : String) : Issue [*]
+getIssuesWithEnforceableOutcomes(proId : String) : Issue [*]
+getAlternative(proId : String, issId : String, altId : String) : Alternative
+getAlternatives(proId : String, issId : String) : Alternative [*]
+getOutcome(proId : String, issId : String, outId : String) : Outcome
+getOutcomes(proId : String, issId : String) : Outcome [*]
+searchIssues(proId : String, keyw : String) : Issue [*]
+createProject(proName : String) : String
+createGroup(proId : String, supGroId : String, name : String) : String
+createIssue(proId : String, groId : String, name : String, probStmt : String, decDrv : String) : String
+createAlternative(proId : String, issId : String, name : String, desc : String, pros : String, cons : String) : String
+createOpenOutcome(proId : String, issId : String, name : String) : String
+createDecidedOutcome(proId : String, issId : String, choAltId : String, name : String, assu : String, just : String) : String
+updateIssue(proId : String, issId : String, probStmt : String, decDrv : String)
+updateAlternative(proId : String, issId : String, altId : String, desc : String, pros : String, cons : String)
+updateOutcome(proId : String, issId : String, outId : String, choAltId : String, assu : String, just : String, cons : String, status : OutcomeStatus)
+deleteProject(proId : String)
+deleteGroup(proId : String, grId : String)
+deleteIssue(proId : String, issId : String)
+deleteAlternative(proId : String, issId : String, altId : String)
+deleteOutcome(proId : String, issId : String, outId : String)
+notifyOutcomeRealization(proId : String, issId : String, outId : String)

DecisionManager

decided
open

realized

«enumeration»
OutcomeStatus

Figure 7.7: The interface for decision management systems.

within the modeling tool; switching back and forth between the two tools can
be avoided this way. The second purpose is to maintain the life-cycle of a de-
cision, that is, to update its status properly. The functionality is motivated by
the scenarios that were discussed earlier in Sect. 6.2.2, page 105.

The Decision Manager interface in Fig. 7.7 makes all decision handling activities
specified in Sect. 6.2.2 available in our tool. The UML interface shows all oper-
ations of the web service interface and is available as a WSDL file12. All getters,
updates, creates, and deletes operate on the decision model that was explained
earlier in Fig. 6.3 on page 103. The return values of all create-operations are
unique identifiers of the respective created entities.

Making a design decision (activity 2a in the decision handling scenario, Fig. 6.5
on page 106) for the example in Sect. 2, for instance, could be performed by
calling createDecidedOutcome: proId and issId identify the current project and
issue, respectively, while choAltId specifies which alternative was chosen. The
remaining parameters specify a name for the outcome, assumptions, and a
just ification. After the outcome has been realized in the design model, notify-
OutcomeRealization updates the status of the decision from decided to realized.

Except for updateOutcome and notifyOutcomeRealization, all operations are
stateless, that is, their semantics is only scoped to single operation calls. The

12The WSDL (Web Service Description Language) file contains a specification of the inter-
face and is available online at: http://modeldiff.imm.dtu.dk/wsdl

http://modeldiff.imm.dtu.dk/wsdl

7.6 Testing the Prototype 153
state machine outcome_status outcome_status[]

open decided realized

Chosen alternative
must be set.
Chosen alternative
must be set.

Chosen
alternative
must NOT
be set.

updateOutcome

updateOutcome

notifyOutcomeRealization

updateOutcome

updateOutcome

createDecidedOutcomecreateOpenOutcome

Figure 7.8: Valid status transitions for design decision outcomes at our interface;
the status may also be updated by decision management systems.

status of an outcome defines the life-cycle of a decision, as depicted in Fig. 7.8:
status transitions must follow the given automaton. UpdateOutcome may be
used at any time, also to manually correct a status. However, tool implemen-
tations should rather update the status by invoking the operations createOpen-
Outcome, createDecidedOutcome, and notifyOutcomeRealization; an example is
the sequence createDecidedOutcome and notifyOutcomeRealization as discussed
in the previous paragraph.

Different decision management systems may, of course, have their internal strat-
egy of handling the life-cycle of an outcome. In these cases, their realization of
this interface must include a mapping to the internal strategy. The ADK Web
Tool, for instance, has a one-to-one mapping of the similarly named states ex-
cept for its additional state rejected, which does not exist in our interface. That
status, however, is mapped to open, because a rejected decision in this particular
decision management system can be decided again, just like open outcomes.

For the time being, we know two decision management systems which implement
this interface: the ADK Web Tool [ZGK+07] as well as the DTU Decision Server,
a headless decision management server. This shows that the WSDL interface
enables interoperability and multi platform support without much development
effort.

7.6 Testing the Prototype

The GUI and the architectural design of the tool do not yet give any evidence
whether the concepts work. This section presents a set of test cases that prove
for a number of test models that the implementation of model-independent
differences works as expected. Another set of test cases validates the correct
behavior of the decision management system which implements the interface
specified in Sect. 7.5.

154 Tool Support

Test case Tests / U
M

L

E
M

F

E
a
ch

o
n
c
e
1
3

C
o
m

p
le

te

Transformation emfdiff to mpatch 5 5/0 7 7 4 7

Correctness of OCL expressions 5 5/0 4 4 4 7

Matching 3 3/0 7 7 4 7

Individual change types 9 9/0 7 7 4 4

Dependencies 2 2/0 7 7 4 7

Generalizations (only cond.-based sym. ref.) 11 11/0 7 4 4 7

Grouping 3 3/0 7 7 4 7

Reversal 7 7/0 4 4 4 4

Detection of already applied changes 14 14/0 4 4 4 4

UML specifics and complex test 3 3/0 4 7 7 4

EMF specifics and complex test 2 2/0 7 4 7 4

Eachonce specifics 2 2/0 7 7 4 4

Performance test 1 1/0 7 4 7 4

Table 7.1: Test cases and results for MPatch; Complete denotes a complete run
through the testing process in Fig. 7.9.

7.6.1 MPatch Tests

The development of model-independent differences was tested with 67 regression
tests covering all non user-interactive features. Table 7.1 gives an overview of all
test cases, their results, and the types of models which they cover. The column
Complete denotes a test specification that involves all steps in our testing process
which is shown in Fig. 7.9 and explained below.

More than half of the tests run through a sophisticated testing process that is
shown in Fig. 7.9. It consists of six steps and after each step, several assertions
test whether the step was finished successfully. The input of this process are
an unchanged version MA and a changed version M ′A of a model from which
an mpatch will be created. Optionally, another model MA2 may be specified to
which the mpatch will be applied and the resulting model M ′′A2 will be compared
against another M ′A2 (otherwise, MA and M ′A are used). Moreover, the config-
uration must be specified, that is, the type of symbolic references (default: all
types are tested), and a set of transformations θ2 that shall be executed. The
following list explains each step in detail. Trivial assertions are ignored below,
for example, whether a return value is null.

13Eachonce is a modeling language designed for the tests that covers all features that the
meta modeling language provides, including multi-valued attributes.

7.6 Testing the Prototype 155

Model M’A
(changed)

Model MA
(original)

Model M’A2
(expected)

Model MA2

emfdiff

1. calculate
differences (δ)

2. transform (θ1)

4. match model
references (φ1) 5. apply changes (π)

3. additional trans-
formations (θ2)

mpatch mpatch'

6. calculate differencesoptional

Input Symbolic reference creator Transformations

Mapping Model M”A2

= Ø
?

(width – to match the other process figure!)

test_process

Model descriptor creator

emfdiff’

Figure 7.9: The complete testing process comprises six steps and several as-
sertions after each step; if MA2 and M ′A2 are not set, MA and M ′A are used
instead.

1. EMF Compare calculates all differences between the two input models MA

and M ′A and returns an emfdiff.
Assertion: the emfdiff must contain at least one change.

2. Transform emfdiff to mpatch with the specified symbolic reference creator.
Assertion: mpatch must be valid (tested with EMF Validation).
Assertion: mpatch must contain the same number of changes as emfdiff.

3. Execute transformations θ2 as specified; this always includes the creation
of the dependency graph and grouping.
Assertion: at least one group must be created.
Concrete test cases may add further assertions for other transformations.

4. Match mpatch’ in model MA2 (or MA).
Assertion: the mapping must be valid (all changes must be applicable).

5. Apply mpatch’ according to the initial mapping (also create binding).
Assertion: the application result must not contain incomplete or failed
changes.
Assertion: the binding must be valid (tested with EMF Validation).

6. EMF Compare calculates all differences between the actual result M ′′A2

and the expected result M ′A2 (or M ′A).
Assertion: the actual and expected models must not differ, thus, the com-
puted emfdiff’ must be empty.

156 Tool Support

0

500

1000

1500

2000

2500

3000

3500

4000

4500

60 120 180 240 300 360 420 480 540 600

1. emfdiff 2. mpatch 3. group 3. dependency graph 4. match 5. apply 6. diff 6. check

0

500

1000

1500

2000

2500

60 120 180 240 300 360 420 480 540 600
#changes#changes

tim
e
(in

 m
s)

The 10 Ecore models are generated.
The models contain (5 x #changes) model elements.
6 change types are equally distributed:
(add/remove/move element, add/update reference, update attribute)

id‐based symbolic references

condition‐based symbolic references

Test machine: Intel Core2 Duo, 2.2GHz, 4GB RAM, Win XP

Figure 7.10: Results of the performance test on generated models comprising
between 60 and 600 model changes; the numbers are average values of ten test
runs.

This automated testing process is used for most test cases and covers all func-
tionality of model-independent differences except for the user-interactive parts.
There are fine-grained test cases for each change type (individual change types
in Tab. 7.1) and functionality so that failing tests are clear indicators of which
part is broken. The complex tests include up to 18 changes that also interfere
with each other. As a side effect, the tests also ensure that the third-party tool
EMF Compare works as expected.

The performance test automatically creates a set of Ecore models, that is the
modeling language of EMF, with increasing size and increasing number of model
changes. Then, the entire testing process is run for each of these models. This
has been done for both, id-based and condition-based symbolic references, the
results are shown in Fig. 7.10. The time is separated for the individual steps of
the testing process; the total time for 600 changes with condition-based symbolic
references, for instance, takes slightly more than four seconds whereof the largest
part is the matching step with approximately two seconds. The condition-
based and id-based performance results mainly differ in the times for symbolic
reference matching.

We can learn several aspects from these results. First of all, the creation of
an mpatch (steps 2–3) is very fast, much faster than the creation of an emfdiff
(step 1). Further, the matching strategy has a major influence on the perfor-
mance. Id-based matching is extremely fast; condition-based matching, on the
other hand, uses an OCL engine to perform the matching. Parsing the OCL

7.6 Testing the Prototype 157

expressions, creating the query, and executing it on the model are the most
time-consuming operations.

Overall, the measured times are acceptable in practice. We do not expect design
decision realizations to consists of more than 100 changes, from our experience
most realizations were around 5–20 changes. Another important factor is the
model size – the bigger the model, the longer the matching. We tested the
matching of 10 changes with condition-based symbolic references on a UML
model with more than 5.000 elements and it took only 2–3 seconds, which is
again fast enough in practice. However, the complexity can be reduced by per-
forming the matching not on the entire model but on a submodel, for instance,
on only one of the packages in a UML model.

7.6.2 Decision Interface Tests

The interface introduced in Sect. 7.5 allows the use of different decision manage-
ment systems. In order to validate that a decision management system works as
expected, we defined a test suite containing automated test cases that test the
communication. They also validate all the functionality that our tool requires
from a decision management system.

Test case Tests14 / ADK W. T. / DTU D. S.

Connectivity and server info 1 1/0 1/0
Manage projects 1 (2) 0/1 1/0
Retrieve decisions 2 (10) 2/0 2/0
Create decisions 1 (5) 1/0 1/0
Update decisions 1 (4) 0/1 1/0
Delete decisions 1 (5) 0/1 1/0
Outcome status updates 1 (4) 1/0 1/0
Search for decisions 4 4/0 4/0

Table 7.2: Test cases for the decision interface and results for the ADK Web
Tool and the DTU Decision Server.

Table 7.2 gives an overview of all test cases; they systematically test the opera-
tions of the interface in Fig. 7.7 on page 152. With one exception, all test cases
operate on a dedicated test project on the decision management system in order
to not interfere with existing projects. The exception is the test case Retrieve
decisions, because it retrieves all decisions from all projects on the server to cope
with more data than just the data specified in the test cases. All test cases are
self-checking; for instance, after creating a new decision, the created decision is

14The values in parentheses denote the number of different interface operations involved in
the respective test case.

158 Tool Support

again retrieved to verify its creation. The test case Outcome status updates is
important because it verifies that the decision management system’s behavior
matches the behavior we specified in Fig. 7.8 on page 153.

Both tools, the ADK Web Tool as well as the DTU Decision Server, support
all required operations for capturing, making, and realizing design decisions.
However, the ADK Web Tool does not support maintenance operations for
design decisions. The reason is that maintenance should rather be performed
inside the ADK Web Tool, not in the modeling tool.

7.7 Conclusion and Discussion

The purpose of this chapter is to show the technical feasibility of the concep-
tual contributions from Chapters 5 and 6 by presenting a tool that implements
these concepts. MPatch is the name under which the implementation of model-
independent differences are contributed to the open source project EMF Com-
pare which is part of the Eclipse project. The decision support tool is published
on the project websites. Both tools are freely available as open source projects.

We presented parts of the graphical user interface showing important dialogs
of both implementation parts. Then we explained the tool architecture and
some of the rationale behind it. Since one of the requirements is extendability,
we summarized the API and extension points of model-independent differences
and explained the interface for decision management systems. The latter allows
using different decision management systems with our tool.

In order to provide evidence that the implementation works as expected, we
defined a sophisticated testing process for our tool. A set of in total 67 test cases
covers non user-interactive functionality of MPatch, and 12 test cases validate
whether decision management systems implement the interface as expected.

To conclude, the implementation serves as a proof of concepts. MPatch became
a generic tool for patching models and transferring arbitrary changes between
models.

Chapter 8

Validation

The tool presented in Chapter 7 implements the concepts from Chapters 5 and 6
and also includes a set of test cases to ensure that the functionality works as
expected for all test models (cf. Sect. 7.6). Although these tests are a proof of
the technical feasibility, they do not give any evidence whether the approach is
useful and applicable to other than the presented examples and in real projects
with non-artificial models. Because of this, we tested our approach with more
realistic examples, design patterns and refactorings as design decisions, and we
performed domain level tests in which we applied our approach to a real project.
This way, we show that the goals from Chapter 4 are met to a large extent. In
addition, we interviewed six architects and modelers and got valuable feedback,
especially concerning practical usability and success factors.

A proper evaluation would include an analysis of documenting, capturing, mak-
ing, and validating design decisions during the development of a running project.
Only then, it would show whether the additional effort for capturing decisions
and their realizations pays off and automated realization and validation really
support developers. However, there was not enough time for applying our con-
cepts in such a running project. Therefore, this section is only a validation of
our concepts by demonstrating the applicability to realistic examples and in a
replay of a real project. An evaluation in a running project is future work.

160 Validation

8.1 Applicability

Design patterns are frequently used fragments in the design of software systems,
and could, consequently, be the result of design decisions [HAZ07]. We used
model-independent differences to capture realizations for all 23 design patterns
from the Gang of Four [GHJV95], ran the generalization transformations, and
evaluated their applicability to at least two other models. Refactorings are mod-
ifications of design artifacts to improve their overall structure without changing
the behavior or functionality of the system. We also captured 251 refactorings
[Fow99] as solutions for design decisions, and evaluated their applicability to at
least two other models.

Although there are specialized approaches for applying design patterns and
refactorings, they typically require a big specification effort, for instance, in
a special modeling language or by programming the respective modifications
[RSA10, KPRP07]. Our approach should rather be used to extract such mod-
ifications as easy and fast as possible from an example and, at the same time,
being able to also apply it to other models.

The results of the two following subsections are that already half of the examples
(design patterns and refactorings) could be captured as reusable design decisions
including their realization specifications without additional manual effort. The
other half requires manual adjustments either of model differences or of the
model after realizations have been applied; however, the manual adjustments
are still less effort than modeling the realization manually. Only a small number
of cases could not be expressed in our tool. This validates goal 2: automation
of recurring design decision realizations.

8.1.1 Design Patterns as Design Decisions

A design pattern shall have a meaningful name, explains a solution for a specific
problem, and discusses the context and consequences [GHJV95]. We used the
generic examples (which are part of the described solutions of design pattern
descriptions) as a basis for example models from which we captured realization
specifications for design decisions. Then we tried to apply each of the captured
patterns to at least two models which comprise the problem that the pattern
addresses. For example, one of the models for applying the Observer design
pattern contains a class TextField and a class Label – the latter is the observer
and reacts on changes of the text field, which is the subject of observation. The

1The other refactorings are only applicable code, not to models.

8.1 Applicability 161

Design pattern name #changes Status
1. Abstract Factory 9 E
2. Builder 5 E
3. Factory Method 2 E
4. Prototype 4 G
5. Singleton 5 G
6. Adapter 2 E
7. Bridge 5 E
8. Composite 5 G
9. Decorator 4 E

10. Façade 4 E
11. Flyweight 12 E
12. Proxy 2 E
13. Chain of Responsibility 4 G
14. Command 5 E
15. Interpreter 5 G
16. Iterator 7 G
17. Mediator 6 L
18. Memento 6 G
19. Observer 6 G
20. State 5 E
21. Strategy 5 E
22. Template Method 3 E
23. Visitor 7 E

Status Cases Meaning
G 8 Pattern is (G)enerically applicable.
E 14 Pattern is applicable but produces (E)xample pattern in the model.
L 1 Pattern is not generically applicable; (L)imitation.

Table 8.1: Using design patterns as design decisions.

design decision realization was captured from an example model with differently
named classes though.

The results of this experiment are listed in Tab. 8.1. Eight of the 23 design
patterns could be captured and applied to other models right away without
adjusting anything; they are marked with a G in the table.

14 design patterns could be captured and applied to other models, but the
resulting models did only reflect the concrete examples from which the patterns
were captured. Hence, the resulting models had to be adjusted to fit the context;
these cases are marked with an E in the table.

One case, the mediator pattern, could not be captured properly, marked with an
L in the table. The reason is that our tool is currently not capable of adding an
association multiple times to the same model element but with different targets.
At the moment, a change can only be applied multiple times to different model
elements.

162 Validation

Refactoring name #changes Status
1. Move Method 1 G
2. Move Field 1 G
3. Extract Class 5 C
4. Inline Class 5 C
5. Introduce Local Extension 2 G
6. Replace Data Value with Object 4 G
7. Change Value to Reference 3 G
8. Change Reference to Value 3 G
9. Duplicate Observed Data 8 C

10. Change Unidirectional Association to Bidirectional 2 G
11. Change Bidirectional Association to Unidirectional 2 G
12. Replace Type Code with Class 8 L
13. Replace Type Code with Subclass 5 L
14. Replace Type Code with State/Strategy 10 L
15. Add Parameter 1 G
16. Remove Parameter 1 G
17. Introduce Parameter Object 4 G
18. Hide Method 1 G
19. Pull up Field 2 L
19. Pull up Method 2 L
21. Push down Field 1 G
22. Push down Method 1 G
23. Extract Subclass 2 C
24. Extract Superclass 4 C
25. Extract Interface 4 C

Status Cases Meaning
G 14 Refactoring is (G)enerically applicable.
C 6 Movement was not (C)aptured by EMF Compare.
L 5 String transfer between changes does not work; (L)imitation.

Table 8.2: Using refactorings as design decisions.

To conclude, a third of the tested design patterns could be reused without
any additional effort. With one exception, all others are at least beneficial
in the sense that they support developers by automatically creating example
realizations. This is also helpful for unexperienced developers because they
already see an example of the solution in their models.

8.1.2 Refactorings as Design Decisions

Similar to design patterns, refactorings address a particular problem but this
problem is typically a bad or unclear design. Bad smells and anti patterns
[BMMM98] indicate the necessity for refactoring a design; that is, existing design
artifacts are restructured to improve the design. The aforementioned literature
recommends frequent refactorings during the design process to keep the design
comprehensible and extendable. Hence, whenever developers decide to restruc-

8.1 Applicability 163

ture the design, capturing these refactorings as design decisions documents the
task and provide conformance checks without additional effort.

We captured 25 refactorings [Fow99] (those that are applicable to models) as
realization specifications for design decisions and applied each of them to at least
two other models which comprise the problem that the refactoring addresses.
The results of this experiment are listed in Tab. 8.2. 14 of the 25 refactorings
could be captured and applied to the other models right away without adjusting
anything; they are again marked with a G in the table.

Eight of the captured refactorings did not properly represent the changes that
were made; for instance, EMF Compare could not detect the movement of
existing attributes to a new class in the refactoring Inline Class. Instead, it
detected deletions and additions of the respective attributes. After adjusting
the realization manually, however, the refactoring could properly be applied to
other models; such cases are marked with a C in the table.

Again, three of the tested refactorings could not be expressed with our tool. An
example is the replacement of an attribute with an equally named class, which
requires the transfer of a string value of a deleted element (attribute’s name) to
a newly added element (class’s name). Such cases are marked with an L in the
table.

To conclude, most (22/25) of the refactorings could be expressed with model-
independent differences. However, the difference calculation algorithm of EMF
Compare was not precise enough to properly detect all changes. Using other
techniques like an operation recorder as discussed in Sect. 5.6 could overcome
this problem. Although some of the realizations seem to be trivially simple with
just one to three changes, they might, nevertheless, result in effective changes
in design models, especially because changes are applicable to multiple model
elements. However, we also encountered cases in which the expressiveness of
model-independent differences was not sufficient. An extension for expressing
relations between changes would tackle that issue and is future work.

All goals from Chapter 4 could partialy be validated with these tests: the doc-
umentation of design decisions is directly linked to design models, slightly more
than half of the design decision realizations could be automated right away, and
consistency checks are available without additional effort.

164 Validation

8.2 Domain Level Test

The example in Sect. 2 is artificial and its purpose is the concise and compact
illustration of the conceptual solution throughout the thesis. Design patterns
and refactorings are also just small examples. The question is whether and how
the solution works with bigger models in real projects and with related design
decisions? We investigated an experience report dealing with the design of an
SOA (Service Oriented Architecture) application [ZDGH05] and replayed several
design decisions. One of the authors answered questions about the rationale
behind the design so we could model eleven significant design decisions based
on that information. The decisions may not necessarily be made as presented
here; this is a controlled experiment to validate the applicability of our tool
to an architectural model with a more realistic size than the aforementioned
examples. Hence, all three goals are validated in respect of making, realizing,
and validating a sequence of realistic design decisions.

The project deals with an architectural design of a server application for a big
telecommunication wholesaler. The application must provide two fundamental
business processes to two types of clients, web browsers and other systems via
web services. The bigger of the two is the move of an existing customer to a new
address and consists of nine complex activities that are available to the clients.
These activities are again composed of more than 100 subactivities.

The architectural design of the system comprises seven layers [ZDGH05]. We
modeled it as a UML component diagram in Fig. 8.1 in which we placed the
second and third lowest layers on the same level. The business process layer
contains a business process execution engine including a specification of all nine
activities. Subactivities are realized in three further layers below the business
process layer because they are partitioned into application-specific (for applica-
tion services) and application-generic (for business services) layers. The lowest
layer represents existing systems for data storage and additional core systems.
The upper two layers comprise the communication with clients. We modeled
several further diagrams which refine the internal structure of components or
entire packages – some of them are depicted and refined below. The realizations
of all discussed decisions are stepwise applied to that design model.

We modeled eleven design decisions and the aforementioned author confirmed
them to be relevant architectural decisions. In addition, we captured their
realizations in the design. All decisions concern the interaction of the business
process layer with its neighbor layers, including the selection of a reference
architecture which is responsible for executing business processes, and the data
structure that is used for the activities. Table 8.3 summarizes all decisions and
states their outcomes without justifications. For each of the decisions marked

8.2 Domain Level Test 165

Figure 8.1: The system’s architecture shown as a UML component diagram;
this is an abstracted view from the report [ZDGH05].

166 Validation

with (*), the realization in the design is presented below. The first decision is
explained in detail and all other decisions are only briefly described because we
focus on their realization in the design model.

8.2.1 Decision 1: Provided Activities

Problem Statement. Business processes consist of several activities that are
typically executed in a specific order. These activities may be automatically
executed, they may depend on other internal events, and/or they are triggered
by a client. This decision deals with how the latter type of activities, that are
provided to the clients, shall be realized in the architectural design.
Decision Drivers: Reusability, extendibility, loose coupling.

Alternative: Common Interface. A common UML interface defines generic
operations for all activities to provide their respective functionality to the clients.
Each of the activities that offers some functionality to the clients must imple-
ment that interface; this results in a uniform way of delegating client requests
to the activities of a business process. Example operations for such an interface
are:

callSync(data : Array of Object): boolean

callASync(data : Array of Object): int

getResult(requestId : int): Array of Object

Pros/Cons: The advantage is that each activity can be treated the same by the
presentation layer, no matter what the activity’s functionality is. The downside
is that the activity’s functionality must be mapped to the interface, which may
not always easily be possible.

Another alternative is, for instance, the façade design pattern for provided ac-
tivities.

Outcome: Common Interface. Since the activities are designed from scratch,
it is easily possible to incorporate a specific interface for providing their func-
tionality to clients. Both, synchronous and asynchronous calls are required with
arbitrary parameters, so the realization will exactly be the interface explained
in the alternative.

8.2 Domain Level Test 167

Brief description of the design decision

1 ∗

(R)
Provided Activities: Several activities in the business process layer shall be
provided and visible to clients, others shall not. If an activity is visible, there
shall be a uniform way of accessing it.
Outcome: Provided activities must implement a specific interface

2
(R)

Activity Delegation: Several activities in the business process layer are realized
in lower layers, others are not. The former delegate the operation to a lower
level, which shall be realized in a uniform way.
Outcome: Delegated activities must implement a specific interface

3 ∗

(R)
Business Process Engine (BPE): The business process layer requires a busi-
ness process execution engine to interpret and run business processes.
Outcome: Reference architecture by Leymann and Roller [LR99]

4
(P)

Component Structure in Business Process Layer: The reference architecture
comprises 18 components; these components can either be organized as sub-
components of the BPE or as high-level components in the layer.
Outcome: Subcomponents of the BPE

5 ∗

(N)
Database for BPE: The BPE requires a database for storing the business
processes and states of their instances.
Outcome: (since other layers also require databases, this decision is postponed
because the same database may be used in several places)

6 ∗

(P)
Queues in BPE: Queues are used to buffer messages in a service oriented
architecture; sometimes they are not relevant on a particular level of abstrac-
tion.
Outcome: Removal of queues from the current design

7
(N)

Authentication and Security: Only authorized persons shall have access to
the data, and communication must be secure, for instance, encrypted.
Outcome: (out of scope in the current design phase)

8 ∗

(R)
Data Modeling: Most activities in the business process require data as input
and produce data as output. A uniform way of data definition shall be im-
plemented.
Outcome: Input and output data containers

9
(R)

Data Maps: The output data from one activity may be the input of another
activity. This mapping must be realized in the design.
Outcome: Function for input data containers

10
(R)

Session Management in BPE: The state of business process instances (appli-
cation state) must be stored. This includes active activities and the values of
data containers.
Outcome: Database session state in business process layer

11
(R)

Session Management in Web Channel: The communication between the
browser client and the presentation layer includes several forms. A session
could store the data to allow multi-page forms.
Outcome: Client session state

Table 8.3: An overview of all eleven design decisions we modeled for this system;
R – realization specification captured, P – project-specific realization captured,
N – no realization captured; ∗ – realization is explained in the text.

168 Validation

Realization. There is no existing realization specification from previous projects
or other example models. Because of that, we recorded2 the model changes for
three activities to specify a new realization:

First, we recorded the changes shown in the simplified model in Fig. 8.2: a
new interface IActivityStub has been added to three existing activities that are
provided to clients.

Second, we automatically extracted the design model changes with the help
of MPatch. The configuration includes Scope Expansion, Merge Changes, and
Unbounding References (cf. Sect. 5.7). The result are four changes as shown in
the upper part of Fig. 8.3:
(1) new interface IProvidedActivity,
(2) new class ProvidedActivityStub,
(3) new interface realization IProvidedActivity between these two elements,
(4) a reference change (generalization) from ActivityStub to ProvidedActivity-
Stub applicable to classes called similarly to ActivityStub.

Third, we applied these changes to the unchanged design and in the dialog
for resolving symbolic references (see also Fig. 7.2 on page 142), we select all
activities that should be provided to the clients. In the end, a new realization
specification has been added to the chosen alternative, and a binding connects
these two artifacts to enable traceability and validation, indicated in the lower
part of Fig. 8.3.

Next, we compare the effort for realizing the decision with and without our
tool. Without the tool, we had to realize the decision manually in the design
and there is no link between the documented decision and the design. With the
tool, we also had to realize the decision manually (because there was no suitable
realization specification available for the chosen alternative), and in addition we
had two additional dialogs: one for specifying a new realization (creating an
mpatch) and one for applying it to the design. However, the binding between
the outcome of the decision and the affected design model elements can be used
to automatically validate the consistency between both artifact with respect to
the decision, instead of doing that manually. Moreover, the realization that we
captured for the chosen solution is now reusable, for instance, in other projects.

2The recording feature is part of our tool and works as follows: when a user starts the
recording, a copy of the parts of the model the user is working on is stored in memory; when
the user finishes the modifications, another copy is made of the changed version and the
process in Sect. 5.2 is started.

8.2 Domain Level Test 169

ActivityStub3 ActivityStub3

ActivityStub3

BusinessProcessLayer

Activities

Bu s in e s s Proce s s

Act iv it y S t u b

NewAddressActivity FindNumberActivity ...

BusinessProcessLayer

Bu s in e s s Proce s s

Activities

Act iv it y S t u b

NewAddressActivity FindNumberActivity ...

«interface»
IProvidedActivity

callSync ()
callASync ()
getResult ()

Prov id e d Act iv it y S t u b

...

All activities provided
to the client must
inherit from
ProvidedActivityStub

(unchanged version)
(changed version)

Figure 8.2: An excerpt of the design model before (left) and after (right) the
realization of decision 1: Provided Activities.

Figure 8.3: The realization specification of decision 1 includes a UML interface
IActivityStub, a new class ProvidedActivityStub, and some updated inheritance
relations.

170 Validation

BusinessProcessLayer

«component»
AdminServer

«component»
CleanupServer

«component»
DBMSClient

«component»
GatewayServer

«component»
MessageLayerServer

«component»
MQManager

«component»
ProgramExecutionServer

«component»
SchedulingServer

«component»
WorkflowExecutionServer

«component»
BusinessProcessEngine

calls BSFs

ASQueueCLQueue CSQueueGSQueuePEAQueue PESQueueSSQueueWESQueue

Connects to a
DBMS Server

Figure 8.4: The chosen reference architecture for a business process engine ap-
plied to the design model (decision 3); the containment relations were added in
decision 4.

8.2.2 Decision 2: Activity Delegation

This decision concerns activities that are realized in the layers below the business
process layer. The issue is how to model the delegation from activities to busi-
ness service façades (BSF). We have chosen a similar solution as in decision 1,
namely to introduce an abstract class that handles the delegation. Therefore,
we skip the detailed description of this decision.

8.2.3 Decision 3: Business Process Engine

This decision concerns the choice of a business process engine (BPE) for exe-
cuting all business processes in the business process layer. The choice is the
workflow reference architecture by Leymann and Roller [LR99] that describes
a server-client architecture for business workflow execution. The server compo-
nent comprises 18 components which we would like to realize in the design.

Realization. For this decision, we prepared a realization in a dedicated ex-
ample model based on the specification of the BPE. Then we used MPatch to
specify a realization for the chosen solution by extracting 18 changes, one for
each component of the BPE. This realization specification can now be used
every time this particular BPE is chosen.

8.2 Domain Level Test 171

We applied that realization to the business process layer package of the design
model, the result is shown in Fig. 8.4 (excluding the containment relations which
are part of decision 4). No violations occurred. The effort was very low because
the MPatch technology created all components automatically. We only had
to choose the package to which the realization should be applied. And again,
the binding between the decision outcome and the newly created design model
elements can be used to validate consistency.

8.2.4 Decision 4: Component Structure in Business Pro-
cess Layer

This decision is a refinement of the previous one. The chosen BPE comprises
several components but it does not specify how they are organized. Instead of
having high-level components in the package, we decided to add containment
relations to the main component BusinessProcessEngine as modeled in Fig. 8.4.
The rationale behind this decision is a clear design and that the BPE component
is responsible for organizing all subcomponents.

Realization. The realization is straightforward and consists of nine changes
describing the addition of a composition association from BusinessProcessEngine
to each subcomponent. No violations occurred. In this special case, we could
not create a single generalized model change because MPatch does not allow
a single change to be applied multiple times to the same model element (here:
adding nine associations to the package BusinessProcessLayer). Therefore, this
realization is project-specific and not suitable for reuse in other projects. How-
ever, the binding between the decision outcome and the associations can still be
used for consistency validation.

8.2.5 Decision 5: Database for BPE

A consequent issue after decision 4 is the choice of a database for the BPE to
store business processes and their instances. This is required for the compo-
nent DBMS Client (cf. Fig. 8.4). However, we postpone this decision because
there are other places in the design which might require a database. It would
be cheaper to share one database between several components of the server ap-
plication instead of setting up several individual databases for each component
that needs one.

172 Validation

8.2.6 Decision 6: Queues in BPE

The chosen BPE includes eight queues for the communication with BPE clients
(shown in Fig. 8.4). These technical details are not relevant in the design on the
current level of abstraction. So we decided to delete the message queues from
the design.

BusinessProcessLayer

«component»
AdminServer

«component»
CleanupServer

«component»
DBMSClient

«component»
GatewayServer

«component»
MessageLayerServer

«component»
MQManager

«component»
ProgramExecutionServer

«component»
SchedulingServer

«component»
WorkflowExecutionServer

«component»
BusinessProcessEngine

(deleted) (deleted)(deleted)(deleted) (deleted)(deleted) (deleted)(deleted)

calls BSFs

Connects to a
DBMS Server

Figure 8.5: The message queues (cf. Fig. 8.4) have been removed by decision 6
and decision 3 is now violated, visible as a marker in the lower-right corner of
the package BusinessProcessLayer.

Realization. The realization of this decision comprises the deletion of eight
components from the business process layer. This can be expressed with an
mpatch containing a single generalized model change that describes the deletion
of a component. The corresponding element is expressed as a condition-based
symbolic reference with the following manually adjusted condition:

self .name.endsWith(’Queue’) and self.isAbstract=false (type: Class)
Applied to the business process layer, this change deletes all eight queues as
expected and shown in Fig. 8.5.

However, this modification violates decision 3: Business Process Engine, also
shown by the violation marker in the design model in Fig. 8.5. The violation
is obvious because eight of the added model elements in decision 3 are missing
now. Since the deletions are intended, the bindings of the queues can simply be
ignored. Figure 8.6 shows a detailed view of the binding, also which and where
Model Elements are missing. We fix the violation by ignoring all bindings of
the deleted queues and adding adequate notes (“The queue has been removed
due to decision. . . ”).

The effort for this realization (creating a generalized model change and applying
it to the design) was higher than a manual realization (selecting all queues and
deleting them). Fixing the violated binding also took some time. However, this
way we already documented right at the binding which model elements were

8.2 Domain Level Test 173

Figure 8.6: We fix the violations from Fig. 8.5 by ignoring all bindings that refer
to the eight deleted model elements; the first two have already been ignored and
documented in this snapshot, six are still missing.

deleted and, in particular, why. Hence, there is no tool and context switch
required for properly documenting why they made particular changes.

8.2.7 Decision 7: Authentication and Security

The two non-functional requirements authentication and security are important
for the software system, but they are out of scope in the current state of the
design. Moreover, these decisions cannot easily be bound to particular design
model elements. Nevertheless, we must keep these issues in mind and, hence,
created two open outcomes in order to deal with them later.

8.2.8 Decision 8: Data Modeling

Activities in a business process need data input and also produce data as output
for subsequent activities. The input and output data must be specified per
activity. We decided to model a uniform way of data input and output with data
containers. This is also a proven solution for the chosen reference architecture.

Realization. An abstract class DataContainer provides the basic functional-
ity for organizing data in the container, and two concrete data containers are

174 Validation

Act iv it y S t u b

Bu s in e s s Proce s s InputContainer

OutputContainer

Dat aCon t ain e r

setData ()
getData ()

DataMap

De cis ion 8 De cis ion 9

1

* - activities

1

0..1

- inputContainer

1 0..1

- outputContainer *

*
- targets

1
- inputcontainer

0..1- dataMap
1

*- active

Figure 8.7: The realization of decisions 8 and 9 in the design model.

added to activities. Figure 8.7 shows the newly added elements for this deci-
sion (three classes and two composition associations). Like in decision 1, we
recorded the model changes and used MPatch to specify a reusable realization
specification for that decision. No violations occurred. Again, the effort was
the manual modeling plus the MPatch dialogs for the creation and application
of the realization.

8.2.9 Decision 9: Data Maps

The data link from the output container of an activity to the input container
of other activities must be specified. Available alternatives are data maps as
described along with the reference architecture, or direct references between
data containers. Our choice are data maps. The rationale behind this decision
is to get a clear design and because it is recommended for the chosen reference
architecture. The realization went exactly like the one in decision 8.

8.2.10 Decisions 10 and 11: Session Management

The last two decisions concern session management at two different locations
in the design model. We skip the detailed description of these two decisions
because a similar case has already been presented in the example in Sect. 2.2.
Instead, we would like to discuss the scope of decisions.

The BPE requires session management for running business processes, which is
also the state of the application (decision 10). This includes the information
which activities are active, and what the values of their data containers are.
The choice was Database Session State applied to the business process layer;
the same database as in decision 5 can be used here.

8.2 Domain Level Test 175

The clients also require session management (decision 11) because several activ-
ities acquire data from the web clients that shall be split to multi-page forms.
Since the presentation layer shall be as clean as possible and the session han-
dling can easily be handled by clients, our choice is the Client Session State
alternative.

The point we make here is that the same issue may occur at several places in
the design which are independent of each other. Because of this, the outcomes
do not relate to each other. Hence, the proposal of subsequent design decisions
as discussed in Sect. 6.7 is not globally applicable but it should consider the
scope of decisions in the design.

The realizations for both decisions are similar to the one in Sect. 2.2 and com-
prise several new components, just like decisions 1, 2, 8, and 9. So there is no
new insight and we skip a detailed description of these realizations.

8.2.11 Conclusion and Discussion

The domain level test comprises a replay of design decisions of an application
for a big telecommunication wholesaler and involves several significant design
decisions. We remodeled the architectural design and replayed eleven design
decisions based on an experience report [ZDGH05] and the questioning of one of
its authors; the real project, however, involved more than 100 decisions. Two of
the remodeled design decisions were project-specific, two could not yet be made,
the remaining seven could be captured as reusable decisions. The realizations
of seven design decisions have been presented in detail, covering different types
of decisions and also the violation of previously made decisions in the design
model.

The two decisions that could not be captured did not have impact on the design
during the investigated period of development. As discussed in the individual de-
cision descriptions, capturing realization specifications was only little overhead
because most of them were semi-automatically extracted from the project’s de-
sign model. Gained benefit is additional documentation that is available via the
binding as well as automated validation (goal 1). The latter did, in fact, detect
inconsistencies between realizations of decisions; because of a description of the
causes, consistency could quickly be restored (goal 3).

This test validated that our tool is applicable to realistic and bigger models
than the example in Sect. 2. To be more specific, all but one decision were
existence decisions (cf. decision ontology in Sect. 3.1.1 on page 18) that added
new elements to the design. Their realizations did not violate previous decisions,

176 Validation

in contrast to the decision that modified existing model elements. We learn
from the test that our tool supports existence decisions very well with only
little extra effort and that inconsistencies produced by evolutional changes in
the design (either manual changes or induced by decisions like decision 4) could
automatically be identified and easily be fixed.

8.3 Interviews

The intention of the following informal expert interviews is to get feedback from
experts about our approach – this is, however, not meant to be an evaluation
of our solution. All interviewees are either experts in model-based software
development, in making design decisions, or in both. The idea is to let the
interviewees compare their current way of documenting, making, and realizing
design decisions with the opportunities provided by our tool. The interviews
follow the scheme from Appendix D.1, in short:

1. We create a profile of the interviewee.

2. We gather information about the interviewee’s current way of document-
ing, making, realizing design decisions, and keeping the design consistent
with made decisions.

3. We present our tool to the interviewee and ask for opinions and feedback
(the tool presentation was as neutral as possible to avoid influence on the
interviewee’s opinion).

4. We ask the interviewee about future directions.

The length of the interviews was between 60 and 95 minutes. A summary of
each interview is given in Appendix D.2, here we present and discuss a summary
of all interviews and the results. Afterwards we comment on and discuss the
results.

8.3.1 The Interviewees

The interviewees are experienced software architects or modelers, both from
industry and academia, to get feedback from the research as well as the industrial
perspective. Table 8.4 aggregates the profiles of the interviewees in terms of
educational degree and experience in UML modeling and decision making. All
of them are familiar with UML modeling and have been working in projects

8.3 Interviews 177

before in which UML was used. Three of the interviewees have ten or more
years of practical experience in model-based software development and decision
making, whereas the other three do not have experience in explicit decision
making.

Experience in UML 4− 15 years

Experience in decision making 5− 12 years (and 3 without any experience)

Highest degree in software M.Sc.: 4 Ph.D. or higher: 2
engineering

Working in Industry: 3 Academia: 3

Table 8.4: Profile aggregation of all interviewees.

8.3.2 The old Way of Decision Making

We asked the interviewees to describe their current strategy of making, docu-
menting, and realizing design decisions. The idea behind these questions is, on
the one hand, to confirm the state of the art in decision making from practition-
ers and researchers. On the other hand, we can evaluate the feedback concerning
our tool: do unexperienced decision makers understand and get along with the
proposed tool support for making and realizing design decisions? And are ex-
perienced decision makers satisfied with the opportunities offered by the tool?

With one exception, decisions are made ad-hoc, and with two more exceptions,
the actual decisions and the rationale behind them are not documented at all.
Only the outcomes of the decisions are incorporated into the design and its
documentation, but without any traces to the actual decisions. In all interviews,
the consistency checks between the design decisions or design documentation
and the design artifacts, including design models, was manual work, typically
conducted in the form of peer reviews of the design.

8.3.3 Tool Presentation and Feedback

The next part in the interviews was the presentation of our tool. First, we
explained the concepts of design decisions including the concepts of issues, al-
ternatives, outcomes, and the idea of automating realizations, too. Second,
we demonstrated how to make and realize a design decision (second decision
from Sect. 2.2). Third, we modified the design, validated made decisions, and
explained how a violated binding can be fixed.

178 Validation

All interviewees understood the idea behind design decisions and their real-
izations based on model differencing. The tool presentation provoked two-fold
reactions.
On the on hand, the automated realization of design decisions as well as the con-
sistency check of the binding were considered useful; “this is a great evolution in
software development”, said one of the interviewees. The consistency check was
further appreciated as a cross-domain validation (decision making and modeling
domains).
On the other hand, all interviewees were sceptical and mentioned several success
factors for the tool to be usable in practice. The most critical factors are stated
below and discussed afterwards.

(1) Most interviewees were concerned about the developers’ skills and discipline.
Adding automated reuse of design model changes to the tool chain would re-
quire proper understanding of the abstract representation of models and model
changes, at least for the current GUI (cf. Fig. 7.2 on page 142). Others stated,
however, that a concrete syntax or some pretty printer would be a feature that
could easily be added on top to provide practical usability. A preview of the
changes in the models was suggested to circumvent the complex presentation of
model changes. In UML models, for instance, collaborations could be used for
visualizing decisions.

(2) Another concern was the support of and flexibility in individual specifications
of realizations; generic patterns are of course important, but a higher value was
seen in the specification of known uses, that are individual, maybe company-
specific realizations. Three interviewees said there would be a lot of potential
in domains with lots of similar projects, like software product lines3.

(3) Moreover, it would never be possible to cover the complete design space with
such design decisions and their realizations. Some decisions, in fact, influence
the design implicitly, for example, by defining coding and modeling guidelines
or by prohibiting some design constructs – but this cannot be expressed with
the presented concepts for specifying realizations as design model changes.

(4) The last concern we discuss here is tool interoperability. Other tools like
bug tracking tools4, task management systems5, or requirement management
tools6 are important neighbor systems for assigning tasks, setting priorities, or
the like. This is also not supported by the tool at the moment.

3See Gomaa [Gom04] for more information about software product lines.
4E.g., Bugzilla: http://www.bugzilla.org/
5E.g., Mylyn: http://www.eclipse.org/mylyn/
6E.g., IBM Rational DOORS [IBM10]

http://www.bugzilla.org/
http://www.eclipse.org/mylyn/

8.3 Interviews 179

8.3.4 Discussion

All interviewees appreciate the usefulness of automating design decision real-
izations (goal 2) and consistency checks (goal 3). However, models are not
always used and maintained in the projects the interviewees work with, so the
approach is not properly applicable in all cases but only if design models are
used. Also, the current level of modeling skills is rather low among most de-
velopers the interviewees work with; this inhibits chances of a wide adoption of
our approach for the time being. We further comment on the four arguments
mentioned before.

(1) Developer’s skills and discipline: we could address the educational skills of
our tool’s end-users via coaching and tutorials, and complement the detailed
technical view with a concrete syntax and previews of applied model changes
directly in the models. This is, however, beyond the scope of an academic
prototype.

(2) Individual realizations of decisions: model-independent differences are, in
fact, designed to support individual realizations of design decisions and not
only predefined patterns and refactorings. The support for several types of
design decisions, in particular the distinction between decisions that do or do
not explicitly alter the design, is also supported by our tool. However, it is the
responsibility of the developers to use it properly and to define and use design
decisions adequately.

(3) Design and decision space: our design decision support does not claim to
cover the entire design and decision space. It rather supports developers in
performing their tasks but it does not substitute thinking. There are many
decisions that cannot be expressed as model changes and there is also work on
design models that cannot be covered by design decision realizations.

(4) Tool interoperability: the interoperability with other tools is definitely im-
portant in practice. However, except for the interaction between a modeling
tool and a decision management system, the interoperability with other tools
was out of scope for the prototypic implementation of the concepts but should
be addressed for productive projects.

180 Validation

8.3.5 Conclusion

To wrap up, the interviewees consider the topic as very important and see a lot
of potential in the concepts, especially in goals 2 and 3. But most of them do
not see practical relevance for the time being – either because the approach is
not applicable to their projects or because of lacking usability. However, the
interviewees not knowing about decisions before the interview recognized that
they have made numerous unconscious design decision in the past. With one
exception, the interviewees said that the presented tool is only usable for experts
who know about metamodels and not to the average software developer.

The great benefit was seen in projects within particular domains like product
lines. The work by Zimmermann [Zim09] is an example for a domain-specific
use of design decisions, namely projects with service oriented architectures.

8.4 Summary

The validation of our approach consists of applicability case studies on refactor-
ings, design patterns, and a replay on the architecture of a real system. This
validates the usefulness of our solution for the considered examples. In addition,
we interviewed six experts in the UML modeling or software architecting field.

The applicability validation on refactorings has shown that our tool can be used
to quickly specify frequently made modifications in design models as design deci-
sions such that they are also applicable to other models – that worked generically
for 56% of the tested refactorings. In 24% of the cases, EMF Compare did not
detect the modifications properly, and the remaining 20% were not expressible
with our tool.

We have similar results with the specification and automated application of
design patterns – 34% of them were generically applicable, the application of
60% of them resulted in example elaborations of the patterns in the models and
manual work was required afterwards to adjust the patterns to the contexts of
the actual models. However, 4% of the patterns could not be expressed with
our tool.

All design decisions in the domain level test which altered the design model were
expressible with our tool, half of them are potentially reusable, the other half
are project-specific. Documented decisions were linked to the design and, hence,
were easily accessible (goal 1). Consistency checks were useful for keeping real-

8.4 Summary 181

ized design decisions consistent with the actual design models and the binding
(goal 3). Some decisions, however, did not immediately affect the design models,
hence, they could only be documented but not bound to the design model.

To conclude, most refactorings and design patterns can be expressed as design
decisions and the automated application saves manual modeling work. This
validates the usefulness of our solution concerning the automation of decision
realizations (goal 2). However, in some cases, manual adjustments were required
afterwards. The few cases that were not expressible with our tool gave us valu-
able information about the limitations of our approach. It is worth mentioning
that the tool does not necessarily need to be applied to all decisions and their
realizations; even if only a subset of the documented decisions is bound to the
affected design model elements, they can be validated. This is still a benefit in
contrast to making, realizing, and validating all design decisions manually.

Furthermore, we got valuable feedback from six software architects and model-
ers. We asked them to report on their habitual way of documenting, realizing,
and validating design decisions and to compare it to the features that our tool
offers. Most of the interviewees neither document design decisions at all or they
document only their outcomes, mostly without its rationale. All interviewees
said that the documentation of design decisions (goal 1) and the consistency
checks (goal 3) of the prototype are very useful. The automation of realizations
(goal 2) and fixing an inconsistent binding (goal 3), however, require a lot of fac-
tors of which most are not given at the moment: lacking developer’s education
and skills, lacking use of formal models in industry, and a proper integration
into the project’s tool chain.

182 Validation

Chapter 9

Summary and Conclusion

This thesis presented concepts and tool support for a novel integration of de-
sign decision management with the development of model-based software. This
chapter summarizes its contents, recapitulates the thesis contributions, and an-
swers the research questions from Chapter 4. Lastly, the outlook on future work
lists remaining open issues.

9.1 Summary

This thesis deals with two domains, the decision making domain which originates
from the architectural knowledge community, and the domain of model-based
software development. There is already sophisticated design decision support
for software development in the literature, but only for knowledge management
or for decisions linked to source code. There are not many research results yet
for design decisions in model-based software development.

An example has been presented to introduce both domains to the reader, deci-
sion making and model-based software development, in order to illustrate the
basic problems of lacking decision support for design models. Design decisions
and design models are created and maintained separately although use cases

184 Summary and Conclusion

like documentation and design decision realization involve both artifacts. This
research project aims at integrating both domains by improving design decision
support in model-based software development in terms of the following three
research questions. The proposed solutions follow afterwards.

1. The first question concerns the documentation of design decisions. When-
ever design decisions are made, their rationale is important information
for the understandability of the design. How can design decisions be inte-
grated with design models to improve their documentation?

2. The second question concerns the reusability of design decisions and their
realizations in design models. If a design decision relates to a recurring
design issue, the decision’s realization in design models may also recur.
Existing tools support recurring design decisions, but how could develop-
ers be supported with recurring realizations in design models? How can
recurring realizations be automated?

3. The third question concerns the consistency between realized decisions
and the design models in which they have been realized. Since the design
of a software system evolves over time, realizations of made decisions may
be modified and violated. How can consistency between realized decisions
and design models be defined, validated, and preserved?

Ad 1: Improving design decision documentation in model-based software de-
velopment.
In the state of the art, the documentation of design decisions is created and
maintained separately from design models in model-based software develop-
ment. An integration only exists in few approaches with code, but not with
design models. Consequently, producing and consuming design documentation
is a tedious manual task. The proposed metamodel of design decisions com-
prises a fine-grained integration with design models. A binding links decision
outcomes to design model elements that are affected by the decision. This way,
individual model elements can be traced to design decisions and vice versa.

Ad 2: Automating recurring decision realizations in design models.
Some design decisions are frequently made and, thus, their realization in design
models is manual, recurring, and error-prone work. Existing approaches for
specifying such realizations are either not capable of applying them to arbitrary
models, or they require that developers have to learn a new language for the
specification of realizations. The proposed model differencing concepts are ca-
pable of specifying arbitrary design model changes and support all MOF-based

9.1 Summary 185

modeling languages, including UML. Specifications for design decision realiza-
tions can be created from example models and generalization algorithms make
them applicable to other models.

Ad 3: Validating consistency between realized decisions and design models.
A design evolves over time, also when design decisions are made and realized.
If there are changes made to model elements that realize a particular decision,
the design may become inconsistent with that decision. Ensuring consistency
between realized design decisions and the actual design is a tedious and time-
consuming manual task that is often done in peer reviews. The automated
realization of design decisions produces as a by-product a binding between design
decision outcomes and affected design model elements. The proposed constraints
validate that model changes that were applied as part of decisions’ realizations,
prevail in the design models. This way, inconsistencies can automatically be
detected. Developers can fix such inconsistencies by ignoring inconsistent parts
of the binding, by correcting the design model, or by adjusting the binding to
the modified design model.

The contributions below realize and validate the aforestated solutions. Contrary
to the solutions, the contributions are logically combined to independent parts:
concepts for model differences, concepts for design decision support, and the
validation results via the prototypic implementation.

Model-independent Differences. The conceptual solution for specifying
and automating realizations of design decisions is called model-independent dif-
ferences. It allows to distill model differences from two versions of a model such
that changes made to that model are also applicable to other models. The term
model independence refers, on the one hand, to the property that calculated
differences are self-contained and do not need the compared models in order to
be applicable to other models. On the other hand, it refers to the fact that
calculated changes are applicable to arbitrary models, also models that were
created independently of the compared models. These concepts are used in the
other two contributions.

Design Decision Support. This project complements existing concepts for
capturing, identifying, making, realizing, and validating design decisions with a
conceptual solution for design decision support in model-based software devel-
opment. It uses model-independent differences for realization specifications of
reusable design decisions which can be created by developers from exemplary
models or from models of other projects. They can then be used to interac-

186 Summary and Conclusion

tively apply realizations of design decisions to design models. This provides an
easy way for developers to document design decisions and to automate recur-
ring work. Moreover, a binding links decision outcomes to affected design model
elements. This binding can be validated to ensure consistency between realized
design decisions and design models.

This contribution meets the goals of all three research questions. Links be-
tween design decisions and affected design model elements allow a navigation
between both artifacts; this meets the first goal concerning decision documenta-
tion. Using model-independent differences for the specification and application
of realization specifications of reusable design decisions meets the second goal
concerning automation of decision realizations. The validation mechanism meets
the third goal concerning consistency.

Tool Support and Validation. A prototypic tool has been developed that
implements the aforementioned concepts. The implementation of model-inde-
pendent differences is named MPatch and is contributed to the open source
project Eclipse as a generic tool for creating and applying model differences. The
implementation of design decision support is flexible and works with different
decision management systems. An interface has been presented that allows
any decision management system to be used with the proposed solution which
implements that interface. The ADK Web Tool [Zim09] and the DTU Decision
Server (cf. Sect. 7.5) are supported so far.

The tool has been used to validate the technical feasibility and applicability of
the proposed solution with design patterns and refactorings as design decisions.
Moreover, a replay of several design decisions of a real project based on an expe-
rience report validates the applicability on realistic models. Lastly, interviews
of six experts in model-based software development, in making design decisions,
or in both provided valuable feedback about the tool, its concepts, and success
factors for its use in practice.

This contribution shows the technical feasibility of all three goals and validated
the solution’s usefulness and applicability to realistic examples.

9.2 Conclusion

The conclusion of this thesis discusses which claims of the solution are met and
which are not supported but future work.

9.3 Future Work 187

Design Decisions Documentation. The documentation of design decisions
in model-based software development is improved by this solution because de-
velopers do not have to switch tools anymore when working on design models
and documenting design decisions. The basic functionality for documenting and
maintaining design decisions can now be done from within the modeling tool
because of a link between design decisions and affected design model elements.
Tool supported navigation between both artifacts is also possible now. The
usefulness of such an improved navigation of documented decisions is not yet
evaluated in realistic settings, e.g. in a running project; this is future work.

Automation of Design Decision Realizations. The technical feasibility of
model-independent differences has been proven with test cases for three differ-
ent types of models. The capability of generalizing model differences has been
validated with practical examples, namely design patterns and refactorings: ap-
prox. half of the captured realizations were generically applicable without addi-
tional effort. Another 40% are generically applicable with manual adjustments
after the realizations have been applied. The remaining 10% of the cases could
not be expressed with model-independent differences, but realizing them man-
ually is still compatible with the proposed solution. Furthermore, replaying the
design of a realistic example has shown that the solution is also applicable to
bigger models with realistic properties. However, an evaluation in a running
project could not be performed due to the limited time frame of this project.
In the long term, an evaluation in a running project should include conditions
like time pressure, distributed development, and coordination and collaboration
within the development team.

Consistency between Design Decisions and Design Models. With the
proposed solution, automated consistency validation is finally possible. Different
ways of visualizing violations and three opportunities of fixing inconsistencies
are sufficient for all presented examples. A technical limitation is currently the
validation of deletions in a model – non-existence of model elements cannot
easily be checked. Moreover, manually fixing a violated binding is tedious and
could further be improved by tool support. An evaluation of the consistency
validation under realistic conditions is again future work.

9.3 Future Work

The concepts and tools developed in this project have successfully been applied
to the investigated examples. However, several interesting aspects have not yet

188 Summary and Conclusion

been considered and are worth further investigation and research. The remaining
open issues are listed below concerning conceptual work and tool support.

Conceptual Future Work. Using model-independent differences for captur-
ing and describing design patterns and refactorings raised the need for a yet more
flexible representation of model changes. In particular, a dynamic specification
of parameters during application-time of model changes is missing for the time
being; now it is only possible to apply example elaborations and these examples
must be customized afterwards.

An evolving design may violate bindings which must be corrected manually
by the developer. Existing approaches for traceability management could be
integrated to update and adjust the binding automatically in some cases where
possible. The difficulty is here to preserve the semantics of the bindings.

The evaluation of the solution must still be complemented with a case study
in which the tool is applied in a running software development project and not
only after the project has been finished. Only such an experiment can answer
the questions whether the concepts work for documenting, capturing, realizing,
and validating design decisions under time pressure and with coordination and
collaboration among the team members.

Future Work on Tool Support. A practical application of the tool requires
a proper integration into the development process and possibly the interoper-
ability with other tools like requirement management tools. Moreover, a missing
and remaining component in the tool is the implementation of decision guid-
ance support by proposing subsequent decisions. Conceptual ideas have been
presented but without a supporting tool to validate the ideas.

Usability is very important for using the tool in practice but the visualization
of model-independent differences is probably too technical for most developers.
A pretty printer or previews of the models to which the differences shall be
applied could solve that issue. Also, the format and style of violation messages
was considered too technical and complicated for most developers.

In the end, we have to convince developers to think about the decisions they
make and that they realize the importance and benefits of properly documented
design decisions and rationale. The advantage of capturing design decisions and
their realizations is not only an improvement of the design documentation, but
now it also provides a method for automating recurring work and improving
software quality by validating made design decisions.

Appendix A

Transformation Specification
from emfdiff to indepdiff

This section contains the complete transformation specification from model-
dependent differences of EMF Compare to model-independent differences as
explained in Sect. 5.6.3. The complete metamodel of EMF Compare, the source
metamodel of the transformation, is shown in Fig. A.1, the complete metamodel
of model-independent differences, the target metamodel of the transformation,
is shown in Fig. A.2.

In QVT Operational Mappings, a transformation operates on in-, out-, and in-
out-models, which means they are treated as input, output, or both. Listing A.1
shows the signature of the transformation. EmfDiff (short form for instances
of the EMF Compare metamodel) is used as input, MPatch as output (line 6).
The main mapping (line 8) retrieves all instances of DiffModel and explicitly
calls the mapping toMPatchModel. log-commands (lines 9 and 11) are used for
debugging purposes.

1 import org . e c l i p s e . emf . compare . mpatch . emfdif f2mpatch . l i b . mpatchl ibrary ;
2
3 modeltype EmfDiff
4 uses d i f f (’ http ://www. e c l i p s e . org /emf/compare/ d i f f /1 .1 ’) ;
5 modeltype MPatch
6 uses mpatch (’ http ://www. e c l i p s e . org /emf/compare/mpatch /1 .0 ’) ;
7
8 transformation emfdif f2mpatch (in e m f d i f f : EmfDiff , out mpatch : MPatch) ;
9

190 Transformation Specification from emfdiff to indepdiff

10 main () {
11 log (’ s t a r t i n g t rans fo rmat ion . . . ’ , e m f d i f f) ;
12 e m f d i f f . objectsOfType (Dif fModel)−>map toMPatchModel () ;
13 log (’ t rans fo rmat ion f i n i s h e d ! ’ , this) ;
14 }

Listing A.1: Signature and entry point of the transformation

Root Mapping. Each transformation starts with the mapping toMPatch-
Model which maps the DiffModel of the source metamodel to MPatchModel of
the target metamodel (line 1 in Listing A.2). This rule is in particular responsi-
ble for setting up the target model; it also stores the URI of the original models
(lines 6–10).

1 mapping EmfDiff : : Dif fModel : : toMPatchModel () : IndepDi f f : : MPatchModel {
2 in i t {
3 −− l e t s check whether we got a d i f f from two models
4 assert fata l (s e l f . l e f tRoot s−>notEmpty () and
5 s e l f . r ightRoots−>notEmpty ())
6 with log (’ l e f t R o o t s or r ightRoots i s empty ! ’ , s e l f) ;
7 assert error (s e l f . ancestorRoots−>isEmpty ())
8 with log (’ ancestorRoots must be empty ! ’ , s e l f) ;
9

10 −− a bag containing a l l r e l evan t DiffElements :
11 var e lements := s e l f . ownedElements . allInstances (Dif fElement) .
12 oclAsType (Dif fElement)−>reject (oclIsTypeOf (DiffGroup))
13 }
14 oldModel := s e l f . r ightRoots−>i terate (eobj ; u r i s : String = ’ ’ |
15 u r i s . concat (eobj . eResource () . t oUr iS t r ing ()) . concat (’ ’)) ;
16 newModel := s e l f . l e f tRoot s−>i terate (eobj ; u r i s : String = ’ ’ |
17 u r i s . concat (eobj . eResource () . t oUr iS t r ing ()) . concat (’ ’)) ;
18 result . source := s e l f . oclAsType (EObject) . eResource () . t oUr iS t r ing () ;
19
20 changes := elements−>map toIndepChange()−>asOrderedSet ()
21 }

Listing A.2: Root mapping: toMPatchModel.

This mapping iterates over all concrete changes of the input model and calls
another rule for each of them. More precisely, all instances of DiffElement
(only subclasses of it because DiffElement is abstract) are collected, regardless
where they are contained in the source model, using the OCL construct all-
Instances (lines 3–4). Groups are, however, filtered because they do not describe
any change in the model (line 4). Then the mapping toIndepChange is called
(line 12). The result is finally transformed into an ordered set and assigned to
the property changes of an implicitly created object of type MPatchModel ; the
signature in line 1 specifies that an object of that type will be created during
the initialization of this mapping.

191

em
fc

om
pa

re
_m

et
am

od
el

E
M

F
C

om
pa

re
pa

ck
ag

e
[

]

EO
bj

ec
t

R
es

ou
rc

eD
ep

en
de

nc
yC

ha
ng

eR
ig

ht
Ta

rg
et

R
es

ou
rc

eD
ep

en
de

nc
yC

ha
ng

eL
ef

tT
ar

ge
t

C
om

pa
ris

on
R

es
ou

rc
eS

et
Sn

ap
sh

ot

M
od

el
El

em
en

tC
ha

ng
eR

ig
ht

Ta
rg

et

M
od

el
El

em
en

tC
ha

ng
eL

ef
tT

ar
ge

t

C
om

pa
ris

on
R

es
ou

rc
eS

na
ps

ho
t

R
ef

er
en

ce
C

ha
ng

eR
ig

ht
Ta

rg
et

R
es

ou
rc

eD
ep

en
de

nc
yC

ha
ng

e
R

ef
er

en
ce

C
ha

ng
eL

ef
tT

ar
ge

t

-r
ig

ht
Ta

rg
et

 :
E

Ja
va

O
bj

ec
t

A
ttr

ib
ut

eC
ha

ng
eR

ig
ht

Ta
rg

et

U
pd

at
eC

on
ta

in
m

en
tF

ea
tu

re

-le
ftT

ar
ge

t :
 E

Ja
va

O
bj

ec
t

A
ttr

ib
ut

eC
ha

ng
eL

ef
tT

ar
ge

t
U

pd
at

eR
ef

er
en

ce
C

ha
ng

e

R
ef

er
en

ce
O

rd
er

C
ha

ng
e

-d
at

e
: E

D
at

e
C
om
pa
ris
on
Sn
ap
sh
ot

-is
C

ol
la

ps
ed

 :
E

B
oo

le
an

...

A
bs
tr
ac
tD
iff
Ex
te
ns
io
n

C
on

fli
ct

in
gD

iff
El

em
en

t
M

od
el

El
em

en
tC

ha
ng

e

U
pd

at
eM

od
el

El
em

en
t

M
ov

eM
od

el
El

em
en

t

-c
on

fli
ct

in
g

: E
B

oo
le

an
-k

in
d

: D
iff

er
en

ce
K

in
d

-r
em

ot
e

: E
B

oo
le

an

D
iff
El
em
en
t

R
ef

er
en

ce
C

ha
ng

e
A

ttr
ib

ut
eC

ha
ng

e
-s

ub
ch

an
ge

s
: E

In
t

D
iff

G
ro

up

D
iff

R
es

ou
rc

eS
et

U
pd

at
eA

ttr
ib

ut
e

A
dd

iti
on

D
el

et
io

n
C

ha
ng

e
M

ov
e

«e
nu

m
er

at
io

n»
D

iff
er

en
ce

K
in

d

R
es

ou
rc

eD
iff

ER
ef

er
en

ce
EA

ttr
ib

ut
e

D
iff

M
od

el

-le
ftR

oo
ts

-r
ig

ht
R

oo
ts

-a
nc

es
to

rR
oo

ts
-le

ftE
le

m
en

t
-r

ig
ht

E
le

m
en

t
-le

ftE
le

m
en

t
-r

ig
ht

E
le

m
en

t
-r

ig
ht

P
ar

en
t

-r
ig

ht
Ta

rg
et

-le
ftE

le
m

en
t

-le
ftE

le
m

en
t

-le
ftT

ar
ge

t
-r

ig
tT

ar
ge

t
-r

ig
ht

P
ar

en
t

-r
oo

ts
0.

.*
-le

ftT
ar

ge
t

-r
ig

ht
E

le
m

en
t

-d
iff

M
od

el
s

0.
.*

-o
w

ne
dE

le
m

en
ts

0.
.*

-le
ftT

ar
ge

t

-r
ig

ht
Ta

rg
et

-le
ftP

ar
en

t
-r

ig
ht

Ta
rg

et
-le

ftT
ar

ge
t

-r
ig

ht
Ta

rg
et

-r
ig

ht
E

le
m

en
t

-le
ftT

ar
ge

t-s
ub

D
iff

E
le

m
en

ts
0.

.*

-r
ef

er
en

ce
0.

.1
-a

ttr
ib

ut
e

0.
.1

-r
es

ou
rc

eD
iff

s
0.

.*

-h
id

eE
le

m
en

ts
0.

.*

-is
H

id
de

nB
y

0.
.*

-d
iff

0.
.1

-d
iff

R
es

ou
rc

eS
et

1

Figure A.1: The complete metamodel of EMF Compare.

192 Transformation Specification from emfdiff to indepdiff

diff_m
etam

odel
diff_m

etam
odel

package
[

]

+applyS
tructure(parent : M

odelE
lem

ent, containm
ent : R

eference) : M
odelE

lem
ent [*]

+applyC
rossR

eferences(elem
ent : M

odelE
lem

ent) : IE
lem

entR
eference [*]

+isD
escriptorFor(elem

ent : M
odelE

lem
ent) : B

oolean

IM
odelD

escriptor
+m

atch(m
odel : M

odelE
lem

ent) : M
odelE

lem
ent [0..*]

+m
atchesE

qual(other : IE
lem

entR
eference) : boolean

+getLow
erB

ound() : integer
+getU

pperB
ound() : integer

IElem
entR

eference

IndepR
em

oveR
eferenceC

hange

IndepA
ddR

em
R
eferenceC

hange

IndepR
em

oveA
ttributeC

hange
IndepR

em
oveElem

entC
hange

IndepA
ddR

em
A
ttributeC

hange

IndepU
pdateR

eferenceC
hange

IndepA
ddR

em
Elem

entC
hange

IndepU
pdateA

ttributeC
hange

IndepA
ddR

eferenceC
hange

IndepM
oveElem

entC
hange

IndepA
ddA

ttributeC
hange

IndepA
ddElem

entC
hange

IndepR
eferenceC

hange
IndepA

ttributeC
hange

IndepElem
entC

hange

IndepC
hange

-details : S
tring

U
nknow

nC
hange

-oldM
odel : S

tring
-new

M
odel : S

tring
-source : S

tring

M
PatchM

odel

C
hangeG

roup

-low
er : integer

-upper : integer

R
eference

C
lassifier

A
ttribute

O
bject

-correspondingE
lem

ent
0..1

-resultingE
lem

ent
0..1

-/subM
odelR

eference
1

-subM
odel

1

-changedR
eference

1

+/crossR
eferences

0..*

-reference
1

-containm
ent

1

+type
0..1

-dependsO
n

*

-dependants
*

-changes
0..*

-subC
hanges

*

-value
1

-attribute
1

-oldV
alue

1
-new

V
alue

1

+type
1

-oldC
ontainm

ent
1

-new
C

ontainm
ent

1

Figure A.2: The complete metamodel of model-independent differences.

193

Overloaded Mapping. The mapping toIndepChange, that is called in line 12
of Listing A.2, is an overloaded mapping. The type of the source element for
which the mapping is called, specifies during execution time of the transforma-
tion which overloaded mapping is called (cf. Tab. 5.10 on page 71). toIndep-
Change is also defined for the abstract source type DiffElement for two reasons
(cf. Listing A.3). First, all other overloaded mappings inherit from the former;
this way, additional code might be added here that is executed for all change
types (lines 9–10). Second, if there is no mapping defined for a particular change
type (lines 5–7), the variable result has not been initialized yet; the mapping
toUnknownChange is called in that case to process the unknown change type.

1 −− mapping for abs t rac t DiffElement :
2 −− I f DiffElement i s of a known type , a concrete mapping created the
3 −− ’ r e s u l t ’ o b j e c t . Otherwise , the unknown mapping w i l l be c a l l e d .
4 mapping EmfDiff : : Di f fElement : : toIndepChange () : IndepDi f f : : IndepChange {
5 in i t {
6 −− check whether the r e s u l t i s a lready i n i t i a l i z e d , i . e . the
7 −− mapping operates on a known sub type ;
8 −− i f not , i t i s an unknown change type .
9 i f result = null or result . o c l I sUnde f ined () then

10 result := s e l f .map toUnknownChange ()
11 endif
12 }
13 −− the code below i s executed for a l l change types .
14 log (’ source d i f f e lement proces sed ’ , this)
15 }

Listing A.3: Overloaded mapping: toIndepChange.

Mapping Unknown Changes. Changes are transformed into unknown changes
whenever there is no suitable concrete mapping. Listing A.4 lists that mapping;
it stores some information (via the operation repr()) about the unsupported
change such that the user gets an idea of which change is not supported.

1 −− mapping for a l l unknown change types
2 mapping Dif fElement : : toUnknownChange () : mpatch : : UnknownChange {
3 i n f o := ’ (’ + s e l f . metaClassName () + ’) : ” ’ + s e l f . r epr () + ’ ” ’ ;
4 }

Listing A.4: Mapping for unsupported changes: toUnknownChange.

Concrete Mappings. The concrete mappings for the individual change types
are very similar to each other. As an example, we explain the mapping for
added elements in Listing A.5, because it covers all relevant concepts. The
keyword inherits indicates the overridden mapping, defined for the concrete
type ModelElementChangeLeftTarget. It explicitly initializes the resulting ob-
ject of type IndepAddElementChange in line 4 and sets all relevant properties.
The corresponding element is set to the left parent in line 5; we have seen

194 Transformation Specification from emfdiff to indepdiff

both references (correspondingElement and leftParent) already in the meta-
model excerpts. However, the operation toSymbolicReference is not defined in
this transformation specification but in a separate library; the same applies to
toModelDescriptor in line 7. Both operations require access to reflective opera-
tions of the models and perform complex String operations. The former is not
possible within the transformation language, the latter is much easier in other
programming languages like Java. Therefore, a blackbox library providing these
operations is presented in the following section. The import statement for the
library is stated in line 1 in Listing A.1.

1 mapping ModelElementChangeRightTarget : : toIndepChange () : IndepChange
2 inherits Dif fElement : : toIndepChange {
3 in i t {
4 result := object IndepAddElementChange {
5 correspondingElement :=
6 s e l f . l e f t P a r e n t . toSymbol icReference () ;
7 r e su l t ingElement := s e l f . r i ghtParent . toSymbol icReference () ;
8 containment := s e l f . r ightElement . eContainmentFeature () ;
9 subModel := s e l f . r ightElement . toModelDescr iptor ()

10 }
11 }
12 }

Listing A.5: Mapping toIndepChange for the change type describing added ele-
ments.

All remaining mappings are printed in Listing A.6.

1 −− mapping for moved elements
2 mapping MoveModelElement : : toIndepChange () : IndepChange
3 inherits Dif fElement : : toIndepChange {
4 in i t {
5 result := object IndepMoveElementChange {
6 correspondingElement :=
7 s e l f . r ightElement . toSymbol icReference () ;
8 r e su l t ingElement := s e l f . l e f tE l ement . toSymbol icReference () ;
9 oldContainment := s e l f . r ightElement . eContainmentFeature () ;

10 newContainment := s e l f . l e f tE l ement . eContainmentFeature () ;
11
12 −− get o ld and new parents from both models
13 oldParent := s e l f . r ightElement . eContainer () .
14 toSymbol icReference () ;
15 newParent := s e l f . l e f tE l ement . eContainer () .
16 toSymbol icReference () ;
17 }
18 }
19 }
20
21 −− mapping for removed elements
22 mapping ModelElementChangeRightTarget : : toIndepChange () : IndepChange
23 inherits Dif fElement : : toIndepChange {
24 in i t {
25 result := object IndepRemoveElementChange {
26 correspondingElement :=
27 s e l f . r ightElement . eContainer () . toSymbol icReference () ;
28 re su l t ingElement := s e l f . l e f t P a r e n t . toSymbol icReference () ;
29 containment := s e l f . r ightElement . eContainmentFeature () ;
30
31 −− t h i s model descr ip tor i s intended to s tore a sub−model

195

32 −− which can be re−bu i l d l a t e r on .
33 subModel := s e l f . r ightElement . toModelDescr iptor (true) ;
34 }
35 }
36 }
37
38 −− mapping for changed a t t r i b u t e s (ca rd ina l i t y of t h i s a t t r i b u t e i s 1)
39 mapping UpdateAttribute : : toIndepChange () : IndepChange
40 inherits Dif fElement : : toIndepChange {
41 in i t {
42 result := object IndepUpdateAttributeChange {
43 changedAttr ibute := s e l f . a t t r i b u t e ;
44 correspondingElement :=
45 s e l f . r ightElement . toSymbol icReference () ;
46 re su l t ingElement := s e l f . l e f tE l ement . toSymbol icReference () ;
47 oldValue := s e l f . r ightElement . eGet (s e l f . a t t r i b u t e) ;
48 newValue := s e l f . l e f tE l ement . eGet (s e l f . a t t r i b u t e) ;
49 }
50 }
51 }
52
53 −− mapping for removed a t t r i b u t s (ca rd ina l i t y of t h i s a t t r i b u t e i s >1)
54 mapping AttributeChangeRightTarget : : toIndepChange () : IndepChange
55 inherits Dif fElement : : toIndepChange {
56 in i t {
57 result := object IndepRemoveAttributeChange {
58 changedAttr ibute := s e l f . a t t r i b u t e ;
59 correspondingElement :=
60 s e l f . r ightElement . toSymbol icReference () ;
61 re su l t ingElement := s e l f . l e f tE l ement . toSymbol icReference () ;
62 value := s e l f . r i ghtTarget ;
63 }
64 }
65 }
66
67 −− mapping for added a t t r i b u t e s (ca rd ina l i t y of t h i s a t t r i b u t e i s >1)
68 mapping Attr ibuteChangeLeftTarget : : toIndepChange () : IndepChange
69 inherits Dif fElement : : toIndepChange {
70 in i t {
71 result := object IndepAddAttributeChange {
72 changedAttr ibute := s e l f . a t t r i b u t e ;
73 correspondingElement :=
74 s e l f . r ightElement . toSymbol icReference () ;
75 re su l t ingElement := s e l f . l e f tE l ement . toSymbol icReference () ;
76 value := s e l f . l e f t T a r g e t ;
77 }
78 }
79 }
80
81 −− mapping for a changed re ference (ca rd ina l i t y of t h i s re ference i s 1)
82 mapping UpdateReference : : toIndepChange () : IndepChange
83 inherits Dif fElement : : toIndepChange {
84 in i t {
85 result := object IndepUpdateReferenceChange {
86 r e f e r e n c e := s e l f . r e f e r e n c e ;
87 correspondingElement :=
88 s e l f . r ightElement . toSymbol icReference () ;
89 re su l t ingElement := s e l f . l e f tE l ement . toSymbol icReference () ;
90
91 −− check the model whether the re ference i s nu l l
92 var r i ghtTarget := s e l f . r ightElement . eGet (r e f e r e n c e) ;
93 var l e f t T a r g e t := s e l f . l e f tE l ement . eGet (r e f e r e n c e) ;
94 o ldRe fe rence :=
95 i f not (r i ghtTarget . oc l I sUnde f ined ()) then
96 r ightTarget . oclAsType (EObject) . toSymbol icReference ()

196 Transformation Specification from emfdiff to indepdiff

97 else null endif ;
98 newReference :=
99 i f not (l e f t T a r g e t . oc l I sUnde f ined ()) then

100 l e f t T a r g e t . oclAsType (EObject) . toSymbol icReference ()
101 else null endif
102 }
103 }
104 }
105
106 −− mapping for removed re ferences (ca rd ina l i t y of t h i s re ference i s >1)
107 mapping ReferenceChangeRightTarget : : toIndepChange () : IndepChange
108 inherits Dif fElement : : toIndepChange {
109 in i t {
110 result := object IndepRemoveReferenceChange {
111 r e f e r e n c e := s e l f . r e f e r e n c e ;
112 correspondingElement :=
113 s e l f . r ightElement . toSymbol icReference () ;
114 re su l t ingElement := s e l f . l e f tE l ement . toSymbol icReference () ;
115 changedReference := s e l f . r i ghtTarget . toSymbol icReference () ;
116 }
117 }
118 }
119
120 −− mapping for added re ferences (ca rd ina l i t y of t h i s re ference i s >1)
121 mapping ReferenceChangeLeftTarget : : toIndepChange () : IndepChange
122 inherits Dif fElement : : toIndepChange {
123 in i t {
124 result := object IndepAddReferenceChange {
125 r e f e r e n c e := s e l f . r e f e r e n c e ;
126 correspondingElement :=
127 s e l f . r ightElement . toSymbol icReference () ;
128 re su l t ingElement := s e l f . l e f tE l ement . toSymbol icReference () ;
129 changedReference := s e l f . l e f t T a r g e t . toSymbol icReference () ;
130 }
131 }
132 }

Listing A.6: The mappings toIndepChange for all remaingin change types.

Appendix B

Similarity Algorithm for
Strings

The Scope Expansion transformation explained in Sect. 5.7.1 uses the algorithm
in Listing B.1 to calculate the similarity between two strings. It is based on two
rules:

Rule 1: string containment is of high importance.
Rule 2: case sensitivity is not important but should neither be neglected.

The algorithm takes the two strings and a threshold as parameters. In practice,
a threshold below 0.5 is rarely useful. Because of this, we added the condition in
line 18 to optimize the algorithm and avoid the expensive call to the Levenshtein
distance.

198 Similarity Algorithm for Strings

1 i s S i m i l a r (s t r1 , s t r2 , th r e sho ld) : boolean
2
3 // l e t s t r2 be the longer s t r i n g
4 i f (s t r 1 . length > s t r 2 . length)
5 swap (str1 , s t r 2)
6
7 // equa l i t y and containment are important for us
8 i f (s t r 2 equals s t r 1)
9 s i m i l a r i t y = 1

10 else i f (s t r 2 contains s t r 1)
11 s i m i l a r i t y = 0 .5 + 1.25 ∗ s t r 1 . length /
12 (s t r 2 . length + 2 ∗ s t r 1 . length)
13 else i f (s t r 2 . lowerCase equals s t r 1 . lowerCase)
14 s i m i l a r i t y = 0 .9
15 else i f (s t r 2 . lowerCase contains s t r 1 . lowerCase)
16 s i m i l a r i t y = 0 .4 + 1.25 ∗ s t r 1 . length /
17 (s t r 2 . length + 2 ∗ s t r 1 . length)
18 else i f (th r e sho ld > 0 . 5)
19 s i m i l a r i t y = 0
20 else
21 // use the l evensh te in dis tance in a l l other cases
22 d i s t ance = LevenshteinDistance (s t r1 , s t r 2)
23 s i m i l a r i t y = (1 − d i s t ance / s t r 2 . length) / 2
24
25 return s i m i l a r i t y >= thre sho ld

Listing B.1: A similarity algorithm for strings in pseudo code.

Appendix C

Binding Metamodel and
Constraints

The binding metamodel has been partially explained in Sect. 5.9. The en-
tire metamodel is given in Fig. C.1. Except for attribute changes, which are all
bound by the same change binding in the metamodel (AttributeChangeBinding),
each concrete change binding corresponds to exactly one of the concrete change
types. Each concrete change binding refers to all model elements that are af-
fected by a change. Table C.1 lists an overview of all affected model elements
for each change type.

A special case is the AddElementChangeBinding, because it requires a specific
binding for added model elements described by model descriptors: a SubModel-
Binding has references to two model elements and contains further element
bindings. The two references are the parent and the actually added element.
Further element bindings are bindings for sub-elements and cross references.

Section 6.5 listed only three examples for constraints, one for the element level,
one for the change level, and one for the decision level. The following is a
complete list of all element and change level constraints; table C.2 gives an
overview grouped by change type. If the constraints are valid, the respective
change prevails in the model. However, there are no constraints for changes
describing deleted elements or reference, because there is no information in the
binding possible which specifies which element was deleted (because it does not

200 Binding Metamodel and Constraints

binding_m
etam

odel2
binding_conceptual

package
[

]

R
em

oveR
eferenceC

hangeB
inding

U
pdateR

eferenceC
hangeB

inding
R
em

oveElem
entC

hangeB
inding

C
hangeElem

entB
inding

A
ddR

eferenceC
hangeB

inding

IElem
entR

eference

M
oveElem

entC
hangeB

inding

m
odel-independent differences

A
ddElem

entC
hangeB

inding

A
ttributeC

hangeB
inding

-severity : S
everity

C
ustom

Elem
entB

inding

-notes : S
tring

+apply(M
odel)

R
ealizationSpecification

M
PatchM

odelB
inding

IM
odelD

escriptor

Issue

-nam
e : S

tring
C
ustom

C
onstraint

-notes : S
tring

+validate() : boolean

D
ecisionB

inding

SubM
odelB

inding

-expression : S
tring

O
C
LC
onstraint

-ignore : boolean
Elem

entB
inding

O
utcom

e

-ignore : boolean
C
hangeB

inding

difference binding

A
lternative

M
odelElem

ent

design decisions

decision binding
m

eta m
etam

odel

IndepC
hange

M
PatchM

odel

-text : S
tring

-user : S
tring

-date : D
ate

N
ote

-m
odel*

-decisionB
inding

0..1

-decisionFor
1

-/addedE
lem

ents
*

-correspondingE
lem

ents
* -subM

odelR
eference

1
-m

odelD
escriptor

1

-realizationS
pec

*
-changes

0..*

-chosenA
lternative

0..1

-m
P

atch
1

-elem
entR

eference
1

*

-alternatives

-changeB
indings

*

-m
P

atch*
-change

1

-m
patchB

inding
0..1

-subE
lem

entB
indings

*

-parent
1

-m
odelE

lem
ent

1

-new
P

arent

1 -changedR
eference

1..*
-new

R
eference

0..1

+realizationS
pec

0..1

-custom
C

onstraints
*

-custom
B

indings
*

Figure C.1: The complete metamodel of the binding between design decisions
and design models.

201

Change Model Reference Meaning

Add element change • correspondingElement parent
• subModelReference added element
• crossReferences cross references

Remove element change • correspondingElement parent
• subModelReference deleted element

Move element change • correspondingElement moved element
• oldParent old container
• newParent new container

Add reference change • correspondingElement reference owner
• changedReference reference target

Delete element change • correspondingElement reference owner
• changedReference reference target

Update reference change • correspondingElement reference owner
• oldReference old target
• newReference new target

Add attribute change • correspondingElement attribute owner
Remove attribute change
Update attribute change

Table C.1: An overview of all affected model elements for each change type.

exist anymore) or which element is not referenced anymore (it may also not
exist anymore).

This list is actually independent of any decision but applies to the decision
binding only. The constraints are stated as invariants in the Object Constraint
Language (OCL).

1 context ElementBinding
2 −−−−−−−−−−−−−−−−−−−−−−
3 −− check tha t the referenced elements e x i s t s
4 inv Mode l e l ement s ex i s t :
5 s e l f . i gno re or (not s e l f . modelElement . oc l I sUnde f ined ())
6
7 context ChangeBinding
8 −−−−−−−−−−−−−−−−−−−−−
9 −− check bounds of corresponding elements

10 inv Lower bound corresponding e lements :
11 s e l f . i gnore or s e l f . correspondingElements−>s i z e () >=
12 change . correspondingElement . getLowerBound ()
13 inv Upper bound corresponding e lements :
14 s e l f . i gnore or s e l f . change . correspondingElement . upperBound < 0 or
15 s e l f . correspondingElements−>s i z e () <=
16 s e l f . change . correspondingElement . getUpperBound ()
17
18 context MPatchModelBinding
19 −− check tha t the referenced model e x i s t s and i t i s not a proxy
20 inv Model exist ERROR :
21 not model . o c l I sUnde f ined () and not model . eIsProxy ()

Listing C.1: Model Exists Constraint

202 Binding Metamodel and Constraints

Change Constraint name Severity Listing

— Model exists error C.1

Independent of any type Model elements exist error C.2

Applies to all types Bounds of corresponding ele-
ments

error C.3

Add Element Change Added Element Exists error C.4

Add Element Change Added Element is Child of ex-
pected parent

warning C.4

Move Element Change Moved Element is Child of ex-
pected parent

error C.5

Add Reference Change Added Reference prevails error C.6

Add Reference Change Cardinality of Added Refer-
ence is correct

warning C.6

Update Reference Change Updated Reference prevails error C.7

Update Attribute Change Updated Attribute prevails error C.8

Add Attribute Change Added Attribute exists error C.8

Remove Attribute Change Removed Attribute does not
exist

error C.8

Table C.2: List of all constraints grouped by changes types.

1 context ElementBinding
2 −− check tha t the referenced elements e x i s t and they are not prox ies
3 inv Model elements exist ERROR :
4 ignore or (not modelElement . oc l I sUnde f ined () and
5 not modelElement . eIsProxy ())

Listing C.2: Model Element Exists Constraint

1 context ChangeBinding
2 −− check tha t the ca rd ina l i t y of the corresponding elements matches the
3 −− actua l number of bound model elements
4 inv Lower bound corresponding elements ERROR :
5 correspondingElements−>s i z e () >=
6 change . correspondingElement . lowerBound
7 inv Upper bound corresponding elements ERROR :
8 change . correspondingElement . upperBound < 0 or
9 correspondingElements−>s i z e () <=

10 change . correspondingElement . upperBound

Listing C.3: Bounds of Corresponding Elements Constraints

1 context SubModelBinding
2 −− check tha t the referenced element e x i s t s and i t i s not a proxy
3 inv Sel f e lement exist ERROR :
4 ignore or (not s e l fE l ement . oc l I sUnde f ined () and
5 not s e l fE l ement . eIsProxy ())
6 −− added model element e x i s t s at the expected parent
7 inv Added model e lement is chi ld of correct e lement WARNING :
8 ignore or (modelElement = se l fE l ement . eContainer ())

Listing C.4: Added Element Constraints

203

1 context MoveElementChangeBinding
2 −− make sure tha t the moved element i s r e a l l y at the new place
3 inv Moved model elements are chi ld of new parent ERROR :
4 correspondingElements−>f o r A l l (
5 i gnore or (modelElement . eContainer () = newParent . modelElement))

Listing C.5: Moved Element Constraint

1 context AddReferenceChangeBinding
2 −− the added re ference must p r e va i l
3 inv Added reference prevai ls ERROR :
4 correspondingElements−>f o r A l l (i gnore or (modelElement .
5 eGetAsSequence (change . oclAsType (mpatch : : IndepReferenceChange) .
6 r e f e r e n c e)−>asSet ()−> c o l l e c t (oclAsType (ecore : : EObject))−>
7 i n c l u d e s A l l (changedReference−>c o l l e c t (modelElement))))
8 −− check tha t the ca rd ina l i t y of the added re ferences matches the ac tua l
9 −− number of bound model elements

10 inv Lower bound Add References ERROR :
11 changedReference−>s i z e () >= change .
12 oclAsType (mpatch : : IndepReferenceChange) . r e f e r e n c e . lowerBound
13 inv Upper bound Add References ERROR :
14 change . oclAsType (mpatch : : IndepReferenceChange) . r e f e r e n c e .
15 upperBound >= changedReference−>s i z e () or
16 change . oclAsType (mpatch : : IndepReferenceChange) . r e f e r e n c e .
17 upperBound < 0

Listing C.6: Added Reference Constraints

1 context UpdateReferenceChangeBinding
2 −− the new reference must p r e va i l
3 inv NewReference must prevail ERROR :
4 (not newReference−>isEmpty ()) implies
5 correspondingElements−>f o r A l l (i gnore or
6 (modelElement . eGet (change . oclAsType (
7 mpatch : : IndepReferenceChange) . r e f e r e n c e) =
8 newReference . modelElement))

Listing C.7: Update Reference Constraint

1 context AttributeChangeBinding
2 −− he lper va r i a b l e
3 l e t c : IndepAttributeChange =
4 i f change . oclIsTypeOf (mpatch : : IndepAttributeChange) then
5 change . oclAsType (mpatch : : IndepAttributeChange)
6 else n u l l endif
7 −− changed a t t r i b u t e must p r e va i l
8 inv ChangedAttribute must prevail ERROR :
9 change . oclIsTypeOf (mpatch : : IndepUpdateAttributeChange) implies

10 correspondingElements−>f o r A l l (i gnore or
11 (modelElement . eGet (c . changedAttr ibute) =
12 change . oclAsType (mpatch : : IndepUpdateAttributeChange) .
13 newValue))
14 −− added a t t r i b u t e must p r e va i l
15 inv AddedAttribute must prevail ERROR :
16 change . oclIsTypeOf (mpatch : : IndepAddAttributeChange) implies
17 correspondingElements−>f o r A l l (i gnore or
18 (modelElement . eGetAsSequence (c . changedAttr ibute)−> i n c l u d e s (
19 change . oclAsType (mpatch : : IndepAddRemAttributeChange) .
20 value)))
21 −− removed a t t r i b u t e must not p r e va i l
22 inv RemovedAttribute must not prevail ERROR :

204 Binding Metamodel and Constraints

23 change . oclIsTypeOf (mpatch : : IndepRemoveAttributeChange) implies
24 correspondingElements−>f o r A l l (i gnore or
25 (modelElement . eGetAsSequence (c . changedAttr ibute)−>exc ludes (
26 change . oclAsType (mpatch : : IndepAddRemAttributeChange) .
27 value)))

Listing C.8: Attribute Constraints

Appendix D

Interviews

Section 8.3 discusses interviews in which our tool was presented to experts.
All interviews followed the scheme shown in Sect. D.1. Statements in italics
give additional information to particular parts of the interview. The individual
interview results are listed in Sect. D.2.

D.1 Interview Scheme

Title:
’Design Decision Support in Model-based Software Development’

This interview is part of the Ph.D. project of Patrick Könemann.
Its purpose is to get feedback for the prototypic tool.

[] I, the interviewee, agree that the interview is anonymous and that it is
recorded (audio); the recorded data will only be used for evaluating the
interview and will be deleted after the evaluation is complete but latest 3
months after the interview.

206 Interviews

Part 1: Assessment of the Interviewee

a) Educational degree (e.g. M.Sc., Ph.D., . . .)
b) Role in project (e.g. software architect, modeler, programmer, . . .)
c) Self-assessment: please rate your experience in the following fields

• UML modeling experience in years
• UML modeling skills
• ’Decision making’ experience in years

Part 2: The old Way

The interviewee should freely talk about her/his best practices, experiences and
good and bad examples and projects.

What is your typical way of. . .
a) making design decisions? (general procedure, process)
b) looking up made decisions / documentation?
c) realizing decisions in the design (model)?
d) keeping your design (model) consistent with decisions / documentation /

requirements?

Part 3: Intention of this Research Project

a) Integrated documentation
Tool demo: Design decisions in the modeling tool – Issues, Alternatives, Out-
comes, and Realizations (showing decision 2 from Sect. 2.2).
What is the interviewee’s opinion? How important is that information in prac-
tice?

b) Automation of recurring work
Tool demo: Recurring changes in the design model are captured as best practices
and can be reused (applying decision 2 from Sect. 2.2).
What is the interviewee’s opinion? How useful is that in practice?

c) Consistency
Tool demo: Automatic consistency checks between design models and made de-
sign decisions; Model evolution, violations, and correcting the binding (following
the example in Sect. 6.6.3).
What is the interviewee’s opinion? How useful is that, how could that be used
in practice?

D.2 Interview Summaries 207

d) Overall Feedback
What is the interviewee’s general opinion?
How could design decision support be integrated into your development projects?
Could you comment on the applicability to your development projects?
Could you comment on other potential problems (technical problems, tool chain
integration, education of employees)?

Part 4: Opinions about Design Decisions in the Future

a) How important is the visualization of decisions, their relations, and their
integration with design models?

b) How do you see the impact of decisions in software development and
software understandability?

c) How important is the degree of automation?
d) How important is automated validation of decisions and models?

E.g. during software maintenance?

Thank you very much for the interview.

D.2 Interview Summaries

D.2.1 Interview 1

Part 1: Assessment of the Interviewee

Education Ph.D.
Roles IT-Architect
UML experience 12 years
UML skills 9/10
Decision making experience 12 years

Before 2005, the interviewee was an IT architect in industry for 16 years. Since
2005, the interviewee is active in the research community for architectural design
and architectural decisions.

208 Interviews

Part 2: The old Way

a) What is your typical way of making design decisions? (general procedure,
process)
Until 2005:

• Architectural decisions are rather cross-cutting concerns

• Successful story of making decisions in meetings and workshops (2002–
2005):

– Decisions and potential solutions prepared before meetings

– Explicit documentation of decision, rationale, and alternatives after
meetings

• Template in IT Architect community, e.g. wiki or MS World/Excel

• Explicit section or appendix in architectural design documentation, e.g.
as bullet point list

• Interviewee learned retrospective decision documentation (after they have
been made)

• Proactive preparation of decisions in a particular domain that are about
to be made turned out to be very practical

After 2005:

• Preparation of decisions with reusable assets / guidance models per do-
main (e.g. architectural style) has been proven to be very useful.

b) What is your typical way of looking up made decisions / documentation?

• Experiences in case of extending legacy designs

• Documents possibly have a bad quality and might not reflect the current
design.

• First step: study of existing documents, e.g. requirement and design doc-
uments.

• Second step: identification of specific architectural artifacts, depending on
the software process.

• Third step: prepare questionnaire for knowledge carriers.
Get at least 2–3 opinions.

D.2 Interview Summaries 209

c) What is your typical way of realizing decisions in the design (model)?
(the same before and after 2005)

• Depends on decision type!
Out of scope here: business or logistic decisions.

• Examples of made decisions: which architectural styles and patters are
used, which pattern languages, but also which coding guidelines shall be
used and what is the package structure for the code.

• Examples of realizing a decision or delegating it to developers:

– architect writes sample code/project that shows the developers how
the decision shall be realized (also called ’architectural template’)

– Informal text describing the realization or link to reference imple-
mentation

– Coaching developers and reviewers

d) What is your typical way of keeping your design (model) consistent with
decisions / documentation / requirements?
Until 2005:

• Good point, projects may fail because of that.

• Code review! Ask developers and do not believe everything what they say
in the first place.

• Compare code and running system with design specification.

• This is all manual work!

Part 3: Intention of this Research Project

a) Integrated documentation
Tool demo: Design decisions in the modeling tool – Issues, Alternatives, Out-
comes, and Realizations.
What is the interviewee’s opinion? How important is that information in prac-
tice?

• Concepts are known: Problem, potential solutions, chosen solution.

• Reuse of realizations sounds promising, with some remarks:

– It must be possible to specify different realizations for the same al-
ternative / pattern.

210 Interviews

– A particular solution may occur several times in a project. A partic-
ular solution may also contain sub-patterns down to atomic blocks.
There might be an n:m dependency between realizations and these
atomic block.
Example: a UML package might be affected in multiple decisions and
a decision might affect multiple model elements like a package and
containing classes.

– Not all decisions may be represented like that in the design, some de-
cisions may affect the design but cannot be linked to concrete design
element.
For example the choice of a reference architecture.

– It is not possible to cover the complete decision space with such
realizations.

• Important is the consideration of both tracks, the design space and the
decision space, and not neglecting either of them.

b) Automation of recurring work
Tool demo: Recurring changes in the design model are captured as best practices
and can be reused.
What is the interviewee’s opinion? How useful is that in practice?

• Each context switch is mental work, even tough it is just two mouse click
to switch between two programs.

• Every approach is welcome that moves these two domains (decision making
and working on the design) closer together.

• Typical quality attributes apply to such tools, such as scalability.

• Naming is very important and probably not easy to handle:
Different people in the team may use different terms for the same concepts.

• Patterns might change!
Design templates, the realizations, might change, for examples, when it
did not work properly in one place.

• Concerning the tradeoff ’manually realizing the solution in the design’
vs. ’refining the mapping during automatic application of predefined real-
izations’:
Tool analogy is nice (the look and feel equals the modeling tool), especially
when filtering a large number of elements in huge models.

• That is a big advantage in big projects and product lines where several
patterns are applied multiple times.
An example might be a SOA project realizing 100 times the same trans-
action management - then such a tool pays off.

D.2 Interview Summaries 211

c) Consistency
Tool demo: Automatic consistency checks between design models and made de-
sign decisions; Model evolution, violations, and correcting the binding.
What is the interviewee’s opinion? How useful is that, how could that be used
in practice?

• Consistency checks and similar analyses are one of the main reasons for
using modeling tools instead of drawing tools.
Everything in this area is most welcome.

• Cross-subdomain validation is good! (knowledge models and architectural
design models)

• Three ways of fixing a binding look good, also the GUI and the integrated
markers (icons).

• Ownership and controlling might be a problem in big teams.

• However, the devil is in the details!

• Error messages must be simple and constructive and must show the source
of the error.
Bad examples: ’Design is inconsistent.’ or too long and complex error
messages.

• Potential problem in practice concerning scalability:
Developers might get overwhelmed by too much data, e.g. too many pro-
posals of how an error could be resolved.

• Could be potential future research topic:

– Classification of binding errors

– Proposal of how a binding error could get fixed properly

– Danger: developers always ignore binding errors

d) Overall Feedback

• Opinion about tool integration vs. separated tools:
Instead of aiming at a single tool that incorporates the functionality of
multiple domains, specialized and well integrated tools might be better
suited.

• Concerning number of decisions:
Although there are projects with hundreds or thousands of decisions, not
all of them have to be documented in such a tool and also not bound to
the design.

212 Interviews

Part 4: Opinions about Design Decisions in the Future

• Visualization of decision is current research topic and often requested.

• Knowledge is power!
Everyone can program, but being smarter and having a way to manage
and quickly acquire knowledge is important to be competitive.

• CMMI (Capability Maturity Model Integration), for instance, requires
software compliance; the consistency checks in this tool could support
that.

D.2.2 Interview 2

Part 1: Assessment of the Interviewee

Education M.Sc. equivalent
Roles (Lead) Architect, Developer
UML experience 10 years
UML skills 7/10
Decision making experience 5 years

Part 2: The old Way

a) What is your typical way of making design decisions? (general procedure,
process)

• Workshops with peer architects for important decisions which have a lot
of impact.

• Peer-Reviews and meetings with colleagues, especially with other archi-
tects;
usually in meetings, important: whiteboard.
Rule: 3 people x 3 hours is more efficient than e.g. +14h alone, because
there is already a small review.

• Design decisions are either not documented or implicitly stored in the
design document;
Rarely explicit documentation of decisions.
However, many architects in our company use a specific template for the
documentation of decisions.

• Alternative solutions and rationale is often missing in documentation.

D.2 Interview Summaries 213

b) What is your typical way of looking up made decisions / documentation?

• If the responsible person is available, asking personally is the preferred
way of retrieving the information.

• Otherwise, if detailed fine-grained decisions on code-level need to be looked
up: Javadoc and possibly supporting code comments. It is often the best
thing to keep low-level documentation ”near” to the source code, because
it is much easier to maintain and keep up-to-date.

• For higher-level artifacts, e.g. models in model-driven development, docu-
mentation is annotated as comments.

• Problem: if the documentation is only on the higher level, it might not
get updated when the corresponding code changes.

c) What is your typical way of realizing decisions in the design (model)?

• Ideally, the architect works closely together with the developers.

• After delegating the work to the developers, reviews are used to check the
realizations;
However, that is critical, e.g. because the reviews might be incomplete due
to time pressure.

• Having the architectural decisions in the model would be an improvement.

• An example for a decision is coding guidelines;
can be assured with style checkers when committing code to the repository.

• Solutions of design decisions are often communicated via example imple-
mentations to developers;
Examples are the best way to communicate particular realizations.

d) What is your typical way of keeping your design (model) consistent with
decisions / documentation / requirements?

• Typically peer-reviews by other team members but also by external people!

• If possible, add documentation and define constraints in the models

• These reviews should be at least after each phase in the project, e.g. macro
design, micro design, etc.

• In small teams up to 10 people: agile development with peer-work and
peer-reviews

214 Interviews

Part 3: Intention of this Research Project

a) Integrated documentation
Tool demo: Design decisions in the modeling tool – Issues, Alternatives, Out-
comes, and Realizations.
What is the interviewee’s opinion? How important is that information in prac-
tice?

• Realizations would be ’known uses’.

• It is important to model store your own realizations.

• It’s very good if the architects can refer to and use predefined and stan-
dardized realizations.

• The (graphical) visualization of dependencies between the issues and al-
ternatives is very important;
reason: communication of decisions is much easier and understandable if
decisions are represented graphically.

b) Automation of recurring work
Tool demo: Recurring changes in the design model are captured as best practices
and can be reused.
What is the interviewee’s opinion? How useful is that in practice?

• “I have drawn exactly the same once, but just as a design document. That
requires that the developers completely understand it. The way you have
shown it, we can enforce even more.” (41:50)

• The biggest problem I see here is the education and discipline of the de-
velopers.
This task has high requirements on the users.

• “Impressive concepts” (44:25), “a great evolution in Software Develop-
ment” (45:20).

c) Consistency
Tool demo: Automatic consistency checks between design models and made de-
sign decisions; Model evolution, violations, and correcting the binding.
What is the interviewee’s opinion? How useful is that, how could that be used
in practice?

• It is hard to keep common structures, e.g. particular patterns, in different
sub-projects consistent with each other.

D.2 Interview Summaries 215

D.2.3 Interview 3

Part 1: Assessment of the Interviewee

Education M.Sc. equivalent
Roles Developer
UML experience 4 years
UML skills 6/10
Decision making experience None.

Part 2: The old Way

a) What is your typical way of making design decisions? (general procedure,
process)

• Documents: requirements documentation, design/architecture documen-
tation

• One main design document for internal development and also discussions
with customers

• Decisions are typically documented in attached sections

• Solution architect is responsible for the project and severe decisions.

• Change request are used to decide issues together with the customer.

b) What is your typical way of looking up made decisions / documentation?

• As a developer: asking the solution architect who might delegate the ques-
tions to other responsible developers

• The documentation is rarely used because it rather describes the resulting
design.

• Conservative software development does typically not make use of models.

c) What is your typical way of realizing decisions in the design (model)?

• The solution architect typically explains design decision to the developers
who realize them in the design.

• Depending on the decision, either the solution architect or the developer
documents the design in the main document.

216 Interviews

• There are base product solutions of which a project uses a specialization
for concrete customers.
Well-proven designs or design fragments will be integrated back into the
product solution.
So the product solution contains the best practices.

d) What is your typical way of keeping your design (model) consistent with
decisions / documentation / requirements?

• Quality assurance phases

• The individual development and coding tasks are relatively simple, incon-
sistencies are unlikely.

Part 3: Intention of this Research Project

a) Integrated documentation
Tool demo: Design decisions in the modeling tool – Issues, Alternatives, Out-
comes, and Realizations.
What is the interviewee’s opinion? How important is that information in prac-
tice?

• The knowledge database and especially the realizations are similar to what
is known as domain development in model-driven development, in contrast
to application development which targets the actual application;
the required meta models of the domain (including DSLs) are specified –
that might include templates that are similar to such realizations.

b) Automation of recurring work
Tool demo: Recurring changes in the design model are captured as best practices
and can be reused.
What is the interviewee’s opinion? How useful is that in practice?

• Concerning teaching that task is plausible.

c) Consistency
Tool demo: Automatic consistency checks between design models and made de-
sign decisions; Model evolution, violations, and correcting the binding.
What is the interviewee’s opinion? How useful is that, how could that be used
in practice?

D.2 Interview Summaries 217

• Error messages must be simpler to make it usable.

d) Overall Feedback

• Education of developers is crucial:

– Many developers are not familiar with model-based development

– Many developers do not have the time to learn about new concepts

– The acquaintance of know how is not reasonable today

• Concerning the thesis:

– The concepts are extremely reasonable, this is exactly where we want
to go

– However, not plausible in this company at the moment

– The understanding of model differences is not trivial, teaching of
developers required and the biggest problem!

• Skeptical concerning scalability (number of decisions and templates)

• In case this tool is used, a stepwise migration is required;
some decisions are made and documented traditionally, some are made in
the concepts including all benefits the tool offers.

• Also a problem: political discussions, new frameworks cannot easily be
established.
As soon as a tool has any weak point, it is out of consideration.
Because of that, the tool cannot be used in practice (in our company).

D.2.4 Interview 4

Part 1: Assessment of the Interviewee

Education Ph.D. and Junior Prof
Roles Architect for academic tool
UML experience 15 years
UML skills 10/10
Decision making experience 10 years

Part 2: The old Way

a) What is your typical way of making design decisions? (general procedure,
process)

218 Interviews

• In a preparation phase, decisions and possible solutions are collected and
evaluated.

• The decisions are, depending on the severity, made in meetings or in ded-
icated groups.

• Decisions are documented in meeting minutes and a Wiki, including pros/-
cons.

• The results of metamodel related decisions are also documented directly
in the metamodel.

b) What is your typical way of looking up made decisions / documentation?

• Mostly asking other developers.

• Information should be in the wiki, and other documents, but asking is
faster and easier.

c) What is your typical way of realizing decisions in the design (model)?

• Developers (students, and PhD students) realizing decisions typically par-
ticipate in the meetings.

• Assignment and documentation of progress of realizations tasks in Bugzilla.

• The communication between architect and developers is direct.

d) What is your typical way of keeping your design (model) consistent with
decisions / documentation / requirements?

• Since parts of the code is generated from the metamodel, the generation
ensures consistency between these two artifacts.

• Several design decisions are documented but not realized!

• Consistency is checked manually by groups of 5–6 developers in a design
review, sometimes including the architect.

Part 3: Intention of this Research Project

a) Integrated documentation
Tool demo: Design decisions in the modeling tool – Issues, Alternatives, Out-
comes, and Realizations.

D.2 Interview Summaries 219

What is the interviewee’s opinion? How important is that information in prac-
tice?

• That is familiar, we prepared decisions in a similar way, based on Kruchten’s
ontology.

• We described the variability in realizations with feature diagrams.

• I hope that reuse of decisions will be important in the future.

• The tooling is important!

• Integration of decision management with other tools like DOORS, Bugzilla,
etc. is very important!

b) Automation of recurring work
Tool demo: Recurring changes in the design model are captured as best practices
and can be reused.
What is the interviewee’s opinion? How useful is that in practice?

• Would be nice to see the delta directly in the model before applying real-
izations.

• Reasonable and sensible in development of product-lines or the like.

• Looks very similar to UML collaborations!
The result of decisions might be represented in UML collaborations in the
model as an easy way of documentation within the model.

• Representation is understandable for scientists but not usable in practice.
If used in practice, the matching step must be visible on the model-level,
not on the metamodel-level.

• In the context of specific domains like product lines, this feature is highly
reasonable.

• Might not be reasonable in behavioral models because realizations in be-
havioral models might be very specific and not applicable in many other
contexts.

• Recording of changes is basic requirement – otherwise, no one will do it!

c) Consistency
Tool demo: Automatic consistency checks between design models and made de-
sign decisions; Model evolution, violations, and correcting the binding.
What is the interviewee’s opinion? How useful is that, how could that be used
in practice?

• Reasonable for small set of changes, test of practicability for bigger sets

220 Interviews

of changes required.

d) Overall Feedback

• Useful in structural diagrams like class- or component diagrams.

• Not that reasonable for other types of models, like behavioral diagrams. I
don’t see many reusable parts e.g. in sequence or activity diagrams.

• UML collaboration diagrams could be used to visualize design decisions
in UML models.

D.2.5 Interview 5

Part 1: Assessment of the Interviewee

Education M.Sc. equivalent
Roles Modeler (also other roles because of small projects)
UML experience 5 years, academic skills only
UML skills 8/10
Decision making experience None – only implicit decision making in small projects.

Part 2: The old Way

a) What is your typical way of making design decisions? (general procedure,
process)

• Decisions have only been made in small web application projects, in par-
ticular the choice of a base framework.

• The choice of the solution was made after evaluating project-specific re-
quirements (pros/cons).

• The choice was an implicit choice, no dedicated documentation exists.

• The only documentation are emails and maybe meeting minutes.

• Documentation concerning design is only made partially in form of Javadoc.

b) What is your typical way of looking up made decisions / documentation?

• Asking the responsible developer in person, e.g. by phone.

D.2 Interview Summaries 221

• Reading Javadoc.

c) What is your typical way of realizing decisions in the design (model)?

• The decision maker realizes the decisions.

d) What is your typical way of keeping your design (model) consistent with
decisions / documentation / requirements?

• Documentation did not exist in these small projects, neither requirement
nor design specification.

• Many consistency checks were performed manually.

• Automated unit tests.

Part 3: Intention of this Research Project

a) Integrated documentation
Tool demo: Design decisions in the modeling tool – Issues, Alternatives, Out-
comes, and Realizations.
What is the interviewee’s opinion? How important is that information in prac-
tice?

• The integration of both tools is great.

• Could be used for guiding the developers through design decisions, might
be similar to Mylyn.

• Dependencies between design decisions are important.

• Keeping project-specific and project-independent parts separate is impor-
tant to enable reuse.

b) Automation of recurring work
Tool demo: Recurring changes in the design model are captured as best practices
and can be reused.
What is the interviewee’s opinion? How useful is that in practice?

• That application of realizations to design models is a reasonable/sensible
thing.

222 Interviews

• That is a systematic procedure.

• The presentation might be technical, but it is not a problem because pretty
printer could take care of that.

• On-the-fly decision capturing is well thought-out.

• (If parameterization of model-independent differences would be possible:)
Ontologies may be useful in companies to automatically apply company-
specific customizations.

c) Consistency
Tool demo: Automatic consistency checks between design models and made de-
sign decisions; Model evolution, violations, and correcting the binding.
What is the interviewee’s opinion? How useful is that, how could that be used
in practice?

• The validation is super.

• But only starting at a certain size of models.

• This could be a nice tool for easing realizations and validation of decisions
and for making both tasks faster.

• Custom constraints could be very useful for variants of realizations.

• The validation would very well complement unit tests.

D.2.6 Interview 6

Part 1: Assessment of the Interviewee

Education M.Sc. equivalent
Roles Architect and Modeler in academic context
UML experience 8 years
UML skills 10/10
Decision making experience None – only few implicit decisions so far.

Part 2: The old Way

a) What is your typical way of making design decisions? (general procedure,
process)

• Severe decisions are made in meetings, usually with a whiteboard.

D.2 Interview Summaries 223

• Design issues are discussed ad-hoc, e.g. with examples and having parts
of the system running.

• Decisions and design are documented in meeting minutes, Javadoc, and
annotations directly in the model.

b) What is your typical way of looking up made decisions / documentation?

• That is an important problem!

• Mostly reading Javadoc and model annotations.

• Preferably reading and debugging the system; asking the developers (stu-
dents) was not very successful.

• There was no separate design documentation in the work by students, only
a document describing the high-level architecture.

c) What is your typical way of realizing decisions in the design (model)?

• The developer realizing a decision participates in the meetings in which
the decisions are made.

d) What is your typical way of keeping your design (model) consistent with
decisions / documentation / requirements?

• Test cases!

• Comparing the system’s behavior with the expected behavior specified in
use cases (manual testing).

Part 3: Intention of this Research Project

a) Integrated documentation
Tool demo: Design decisions in the modeling tool – Issues, Alternatives, Out-
comes, and Realizations.
What is the interviewee’s opinion? How important is that information in prac-
tice?

• Integration is nicely done!

• However, the overhead is not worth the effort in small projects with 1–2
developers.

224 Interviews

• Mylyn also integrates into Eclipse, maybe it can be integrated, too.

b) Automation of recurring work
Tool demo: Recurring changes in the design model are captured as best practices
and can be reused.
What is the interviewee’s opinion? How useful is that in practice?

• In principle a cool feature.

• But it requires that the user knows how the feature works! In particular
what the context is and how it can be defined.

• Concrete (graphical) syntax for model changes would help a lot to under-
stand realizations.

c) Consistency
Tool demo: Automatic consistency checks between design models and made de-
sign decisions; Model evolution, violations, and correcting the binding.
What is the interviewee’s opinion? How useful is that, how could that be used
in practice?

• It must be possible to overwrite or reject decisions.

• It is quite cumbersome to manually adjust the binding.

d) Overall Feedback

• Capturing decisions on-the-fly:
The capturing feature is very useful for architects who also use the role
for realizing the decisions.

• Probably problems when multiple developers are working on the same
model and binding.

• An interesting evaluation would be the following scenario:

– An architect models 10 decisions incl. their realizations

– Another developer should then apply these decisions to a model.

Bibliography

[AP03] Marcus Alanen and Ivan Porres. Difference and Union of Models.
In Perdita Stevens, Jon Whittle, and Grady Booch, editors, UML
2003 – The Unified Modeling Language, volume 2863 of Lecture
Notes in Computer Science, pages 1–17. Springer-Verlag, October
2003.

[Atl08] ATL (M2M/Atlas Transformation Language). http://www.

eclipse.org/atl/, 2010.

[BB04] Janet E. Burge and David C. Brown. An integrated Approach for
Software Design Checking Using Design Rationale. In 1st Inter-
national Conference on Design Computing and Cognition (DCC
’04), pages 557–576. Kluwer Academic Press, 2004.

[BB08] Janet Burge and David Brown. Seurat: Integrated Rationale Man-
agement. In Proceedings of the 30th International Conference on
Software Engineering, pages 835–838, Los Alamitos, CA, USA,
2008. IEEE Computer Society.

[BDLvV09] Muhammad Ali Babar, Torgeir Dingsøyr, Patricia Lago, and Hans
van Vliet. Software Architecture Knowledge Management: Theory
and Practice. Springer, 1st edition, August 2009. ISBN: 978-3-
642-02373-6.

[Bec99] Kent Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 1999.

[BGJ05] Muhammad Ali Babar, Ian Gorton, and D. Ross Jeffery. Cap-
turing and using software architecture knowledge for architecture-

http://www.eclipse.org/atl/
http://www.eclipse.org/atl/

226 BIBLIOGRAPHY

based software development. In Evolvable Hardware, pages 169–
176. IEEE Computer Society, 2005.

[BLFM05] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. RFC 3986,
Uniform Resource Identifier (URI): Generic Syntax, January 2005.

[BLS+09] Petra Brosch, Philip Langer, Martina Seidl, Konrad Wieland,
Manuel Wimmer, Gerti Kappel, Werner Retschitzegger, and
Wieland Schwinger. An Example is Worth a Thousand Words:
Composite Operation Modeling By-Example. In Andy Schürr and
Bran Selic, editors, MoDELS, volume 5795 of Lecture Notes in
Computer Science, pages 271–285. Springer, 2009.

[BM05] Felix Bachmann and Paulo Merson. Experience Using the Web-
Based Tool Wiki for Architecture Documentation. Technical Re-
port CMU/SEI-2005-TN-041, Carnegie Mellon University, Soft-
ware Engineering Institute, September 2005.

[BMMM98] William J. Brown, Raphael C. Malveau, Hays W. “Skip” Mc-
Cormick III, and Thomas J. Mowbray. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. John Wiley, 1998.

[BP08] Cédric Brun and Alfonso Pierantonio. Model Differences in the
Eclipse Modelling Framework. CEPIS Upgrade – The European
Journal for the Informatics Professional, IX(2):29–34, April 2008.

[BWG05] Muhammad Ali Babar, Xiaowen Wang, and Ian Gorton. PAKME:
A Tool for Capturing and Using Architecture Design Knowledge.
In 9th International Multitopic Conference, IEEE INMIC 2005,
pages 1–6, December 2005.

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-based Survey
of Model Transformation Approaches. IBM Systems Journal,
45(3):621–645, 2006.

[CND07] Rafael Capilla, Francisco Nava, and Juan C. Duenas. Modeling and
Documenting the Evolution of Architectural Design Decisions. In
SHARK-ADI ’07: Proceedings of the Second Workshop on SHAr-
ing and Reusing architectural Knowledge Architecture, Rationale,
and Design Intent, pages 9–15, Washington, DC, USA, 2007. IEEE
Computer Society.

[CRP07] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. A
Metamodel Independent Approach to Difference Representation.
Journal of Object Technology, 6(9):165–185, 2007.

BIBLIOGRAPHY 227

[dBFL+07] Remco C. de Boer, Rik Farenhorst, Patricia Lago, Hans van Vliet,
Viktor Clerc, and Anton Jansen. Architectural knowledge: Get-
ting to the Core. In Proceedings of the Quality of Software Archi-
tectures 3rd International Conference on Software Architectures,
Components, and Applications, QoSA ’07, pages 197–214, Berlin,
Heidelberg, 2007. Springer-Verlag.

[Dij07] Remco Dijkman. A Classification of Differences between Similar
BusinessProcesses. In Proceedings of the 11th IEEE International
Enterprise Distributed Object Computing Conference, pages 37–50,
Washington, DC, USA, 2007. IEEE Computer Society.

[DKPF08] Nikolaos Drivalos, Dimitrios S. Kolovos, Richard F. Paige, and
Kiran J. Fernandes. Engineering a DSL for Software Traceability.
In Dragan Gasevic, Ralf Lämmel, and Eric Van Wyk, editors, SLE,
volume 5452 of Lecture Notes in Computer Science, pages 151–167.
Springer, 2008.

[Ecl04] Eclipse Foundation. Eclipse Public License. http://www.

eclipse.org/legal/epl-v10.html, February 2004. v1.0.

[emf10] EMF Compare project. http://www.eclipse.org/modeling/

emf/?project=compare, 2011.

[Eys09] Moritz Eysholdt. EPatch. http://wiki.eclipse.org/EMF_

Compare/Epatch, 2010.

[FBFG07] Franck Fleurey, Benoit Baudry, Robert B. France, and Sudipto
Ghosh. A Generic Approach for Automatic Model Composition.
In Holger Giese, editor, MoDELS, volume 5002 of Lecture Notes
in Computer Science, pages 7–15. Springer, 2007.

[FCKK01] Davide Falessi, Giovanni Cantone, Rick Kazman, and Philippe
Kruchten. Decision-making techniques for software architecture
design: a comparative survey. ACM Computing Surveys, in press.

[FNTZ00] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf.
Story Diagrams: A New Graph Rewrite Language Based on the
Unified Modeling Language and Java. In Hartmut Ehrig, Gre-
gor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors,
Theory and Application of Graph Transformations, volume 1764 of
Lecture Notes in Computer Science, pages 157–167. Springer Berlin
/ Heidelberg, 2000.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing
Code. Object Technology Series. Addison-Wesley, June 1999. With
contributions by Kent Beck, John Brant, Willima Opdyke, and
Don Roberts.

http://www.eclipse.org/legal/epl-v10.html
http://www.eclipse.org/legal/epl-v10.html
http://www.eclipse.org/modeling/emf/?project=compare
http://www.eclipse.org/modeling/emf/?project=compare
http://wiki.eclipse.org/EMF_Compare/Epatch
http://wiki.eclipse.org/EMF_Compare/Epatch

228 BIBLIOGRAPHY

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison Wesley, Reading, Massachusetts, November 2002.

[FW07] Sabrina Förtsch and Bernhard Westfechtel. Differencing and Merg-
ing of Software Diagrams – State of the Art and Challenges. In
Joaquin Filipe, Markus Helfert, and Boris Shishkov, editors, In-
ternational Conference on Software and Data Technologies (IC-
SOFT), Setubal (Portugal), volume 2, pages 90–99. Institute for
Systems and Technologies for Information, Control and Commu-
nication, July 2007.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Massachusetts, 1st edition, January 1995.

[GKLE10] Christian Gerth, Jochen Malte Küster, Markus Luckey, and Gre-
gor Engels. Precise Detection of Conflicting Change Operations
Using Process Model Terms. In Dorina C. Petriu, Nicolas Rou-
quette, and Øystein Haugen, editors, Model Driven Engineering
Languages and Systems – 13th International Conference, MOD-
ELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part II,
volume 6395 of Lecture Notes in Computer Science, pages 93–107.
Springer, October 2010.

[Gom04] Hassan Gomaa. Designing Software Product Lines with UML:
From Use Cases to Pattern-Based Software Architectures. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
2004.

[GWO09] James R. Groff, Paul N. Weinberg, and Andrew J. Oppel. SQL:
The Complete Reference. McGraw-Hill Osborne Media, third edi-
tion, August 2009.

[HAZ07] Neil B. Harrison, Paris Avgeriou, and Uwe Zdun. Using Patterns
to Capture Architectural Decisions. IEEE Software, 24(4):38–45,
2007.

[HET08] Frank Hermann, Hartmut Ehrig, and Gabriele Taentzer. A Typed
Attributed Graph Grammar with Inheritance for the Abstract Syn-
tax of UML Class and Sequence Diagrams. Electron. Notes Theor.
Comput. Sci., Elsevier Science Publishers B. V., 211, pages 261–
269, 2008.

[HJK+09] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert,
and Christian Wende. Derivation and Refinement of Textual

BIBLIOGRAPHY 229

Syntax for Models. In Proceedings of the 5th European Confer-
ence on Model Driven Architecture - Foundations and Applications
(ECMDA-FA ’09), pages 114–129. Springer-Verlag, 2009.

[HK10] Markus Herrmannsdoerfer and Maximilian Koegel. Towards a
Generic Operation Recorder for Model Evolution. In Proceedings
of the 1st International Workshop on Model Comparison in Prac-
tice, IWMCP ’10, pages 76–81. ACM, New York, NY, USA, 2010.

[IBM10] IBM. IBM Rational DOORS. http://www.ibm.com/software/

awdtools/doors/, 2010.

[JB05] Anton Jansen and Jan Bosch. Software Architecture as a Set of
Architectural Design Decisions. In Proceedings of the 5th Working
IEEE/IFIP Conference on Software Architecture (WICSA ’05),
pages 109–120, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[JvdVAH07] Anton Jansen, Jan van der Ven, Paris Avgeriou, and Dieter K.
Hammer. Tool Support for Architectural Decisions. In Proceedings
of the Working IEEE/IFIP Conference on Software Architecture
(WICSA ’07), pages 44-53. IEEE Computer Society, 2007.

[KBAW94] Rick Kazman, Len Bass, Gregory Abowd, and Mike Webb. SAAM:
A Method for Analyzing the Properties of Software Architectures.
In Bruno Fadini, editor, Proceedings of the 16th International Con-
ference on Software Engineering (ICSE ’94), pages 81–90, Sor-
rento, Italy, May 1994. IEEE Computer Society Press.

[KGFE08] Jochen Küster, Christian Gerth, Alexander Förster, and Gregor
Engels. Detecting and Resolving Process Model Differences in the
Absence of a Change Log. In Marlon Dumas, Manfred Reichert,
and Ming-Chien Shan, editors, Business Process Management, vol-
ume 5240 of Lecture Notes in Computer Science, pages 244–260.
Springer Berlin / Heidelberg, 2008.

[KK03] Per Kroll and Philippe Kruchten. The Rational Unified Process
Made Easy: A Practitioner’s Guide to the RUP. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[KKC00] Rick Kazman, Mark H. Klein, and Paul C. Clements. ATAM:
Method for Architecture Evaluation. Technical Report CMU/SEI-
2000-TR-004, Software Engineering Institute, August 2000.

[KLvV06] Philippe Kruchten, Patricia Lago, and Hans van Vliet. Build-
ing Up and Reasoning About Architectural Knowledge. In hris-
tine Hofmeister, Ivica Crnkovic, and Ralf Reussner, editors, Sec-

http://www.ibm.com/software/awdtools/doors/
http://www.ibm.com/software/awdtools/doors/

230 BIBLIOGRAPHY

ond International Conference on Quality of Software Architectures,
QoSA 2006, volume 4214 of LNCS, pages 43–58. Springer, 2006.

[Kol09] Dimitrios S. Kolovos. Establishing Correspondences between Mod-
els with the Epsilon Comparison Language. In Richard F. Paige,
Alan Hartman, and Arend Rensink, editors, ECMDA-FA, vol-
ume 5562 of Lecture Notes in Computer Science, pages 146–157.
Springer, 2009.

[Kön09a] Patrick Könemann. Integrating a Design Decision Management
System with a UML Modeling Tool. Technical Report IMM-
Technical Report-2009-07, Technical University of Denmark, April
2009.

[Kön09b] Patrick Könemann. Integrating Decision Management with UML
Modeling Concepts and Tools. In WICSA/ECSA, pages 297–300.
IEEE Computer Society, September 2009.

[Kön09c] Patrick Könemann. Model-Independent Differences. ICSE Work-
shop on Comparison and Versioning of Software Models, 0:37–42,
May 2009.

[Kön10a] Patrick Könemann. Capturing the Intention of Model Changes.
In Dorina C. Petriu, Nicolas Rouquette, and Øystein Haugen, ed-
itors, Model Driven Engineering Languages and Systems – 13th
International Conference, MODELS 2010, Oslo, Norway, October
3-8, 2010, Proceedings, Part II, volume 6395 of Lecture Notes in
Computer Science, pages 108–122. Springer, 2010.

[Kön10b] Patrick Könemann. Semantic Grouping of Model Changes. In
Proceedings of the 1st International Workshop on Model Compari-
son in Practice (IWMCP ’10), pages 50–55, ACM, New York, NY,
USA, July 2010.

[KPP06a] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack.
Merging Models with the Epsilon Merging Language. In Oscar
Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio, edi-
tors, Model Driven Engineering Languages and Systems, 9th Inter-
national Conference, MoDELS 2006, Genova, Italy, October 1-6,
2006, volume 4199 of Lecture Notes in Computer Science, pages
215–229. Springer, October 2006.

[KPP06b] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack.
The Epsilon Object Language (EOL). In Arend Rensink and Jos
Warmer, editors, ECMDA-FA, volume 4066 of Lecture Notes in
Computer Science, pages 128–142. Springer, 2006.

BIBLIOGRAPHY 231

[KPRP07] Dimitrios S. Kolovos, Richard F. Paige, Louis M. Rose, and Fiona
A. C. Polack. Bridging the Epsilon Wizard Language and the
Eclipse Graphical Modeling Framework. In Modeling Symposium,
Eclipse Summit Europe, October 2007.

[KRPP09] Dimitrios S. Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and
Richard F. Paige. Different Models for Model Matching: An Anal-
ysis of Approaches to Support Model Differencing. ICSE Work-
shop on Comparison and Versioning of Software Models, pages
1–6, IEEE Computer Society, May 2009.

[Kru03] Philippe Kruchten. The Rational Unified Process: An Introduc-
tion. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003.

[Kru04] Philippe Kruchten. An Ontology of Architectural Design Deci-
sions in Software Intensive Systems. In 2nd Groningen Workshop
Software Variability, pages 54–61, October 2004.

[KWN05] Udo Kelter, Jürgen Wehren, and Jörg Niere. A Generic Difference
Algorithm for UML Models. In Peter Liggesmeyer, Klaus Pohl,
and Michael Goedicke, editors, Software Engineering, volume 64
of LNI, pages 105–116. GI, 2005.

[KZ10] Patrick Könemann and Olaf Zimmermann. Linking Design Deci-
sions to Design Models in Model-based Software Development. In
Muhammad Ali Babar and Ian Gorton, editors, Software Archi-
tecture, 4th European Conference, ECSA 2010, Copenhagen, Den-
mark, August 23–26, volume 6285 of Lecture Notes in Computer
Science, pages 246–262, Copenhagen, Denmark, August 2010.
Springer.

[LGJ07] Yuehua Lin, Jeff Gray, and Frédéric Jouault. DSMDiff: A Differ-
entiation Tool for Domain-Specific Models. European Journal of
Information Systems, 16(4):349–361, August 2007. Special Issue
on Model-Driven Systems Development.

[LJA09] Peng Liang, Anton Jansen, and Paris Avgeriou. Knowledge Archi-
tect: A Tool Suite for Managing Software Architecture Knowledge.
Technical Report RUG-SEARCH-09-L01, University of Groningen,
February 2009.

[LJA10] Peng Liang, Anton Jansen, and Paris Avgeriou. Collaborative Soft-
ware Architecting through Knowledge Sharing. In Ivan Mistŕık,
John Grundy, André Hoek, and Jim Whitehead, editors, Collabo-
rative Software Engineering, pages 343–367. Springer Berlin Hei-
delberg, 2010.

232 BIBLIOGRAPHY

[LK08a] Larix Lee and Philippe Kruchten. Customizing the Capture of
Software Architectural Design Decisions. In IEEE Canadian Con-
ference on Electrical and Computer Engineering, CCECE 2008,
pages 693–698. British Columbia Univ., Vancouver, BC, 2008.

[LK08b] Larix Lee and Philippe Kruchten. A Tool to Visualize Architec-
tural Design Decisions. In Steffen Becker, Frantisek Plasil, and Ralf
Reussner, editors, 4th International Conference on the Quality of
Software-Architectures, QoSA 2008, Karlsruhe, Germany, October
14-17, volume 5281 of Lecture Notes in Computer Science, pages
43–54. Springer, 2008.

[LR99] Frank Leymann and Dieter Roller. Production Workflow: Concepts
and Techniques. Prentice Hall PTR, September 1999.

[MCH10] Patrick Mäder and Jane Cleland-Huang. A Visual Traceability
Modeling Language. In Dorina C. Petriu, Nicolas Rouquette, and
Øystein Haugen, editors, MoDELS (1), volume 6394 of Lecture
Notes in Computer Science, pages 226–240. Springer, 2010.

[Men02] Tom Mens. A State-of-the-art Survey on Software Merging. IEEE
Transactions on Software Engineering, 28(5):449–462, May 2002.

[MG06] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transfor-
mation. Electr. Notes Theor. Comput. Sci., 152:125–142, 2006.

[OMG06a] Object Management Group. Meta Object Facility (MOF)
Core Specification. http://www.omg.org/cgi-bin/doc?formal/

2006-01-01, January 2006. Version 2.0.

[OMG06b] Object Management Group. Object Constraint Language Specifi-
cation, Version 2.0. http://www.omg.org/cgi-bin/doc?formal/
2006-05-01, May 2006.

[OMG07a] Object Management Group. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. http://www.omg.

org/cgi-bin/doc?ptc/2007-07-07, July 2007.

[OMG07b] Object Management Group. MOF 2.0/XMI Mapping. http://

www.omg.org/spec/XMI/2.1.1/, December 2007. Version 2.1.1.

[OMG09] Object Management Group. Business Process Model and Notation
(BPMN). http://www.omg.org/spec/BPMN/1.2, March 2009.

[OMG10] Object Management Group. OMG Unified Modeling Language
(OMG UML), Superstructure, V2.3. http://www.omg.org/

cgi-bin/doc?formal/2010-05-05, May 2010.

http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/cgi-bin/doc?ptc/2007-07-07
http://www.omg.org/cgi-bin/doc?ptc/2007-07-07
http://www.omg.org/spec/XMI/2.1.1/
http://www.omg.org/spec/XMI/2.1.1/
http://www.omg.org/spec/BPMN/1.2
http://www.omg.org/cgi-bin/doc?formal/2010-05-05
http://www.omg.org/cgi-bin/doc?formal/2010-05-05

BIBLIOGRAPHY 233

[OWK03] Dirk Ohst, Michael Welle, and Udo Kelter. Differences between
versions of UML diagrams. In ESEC/FSE-11: Proceedings of the
9th European software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on Foundations of soft-
ware engineering, pages 227–236, New York, NY, USA, 2003. ACM
Press.

[Par94] David Lorge Parnas. Software Aging. In ICSE ’94: Proceedings of
the 16th International Conference on Software Engineering, pages
279–287, Los Alamitos, CA, USA, 1994. IEEE Computer Society
Press.

[RHW+10] Louis M. Rose, Markus Herrmannsdoerfer, James R. Williams,
Dimitrios S. Kolovos, Kelly Garcés, Richard F. Paige, and Fiona
A. C. Polack. A Comparison of Model Migration Tools. In Model
Driven Engineering Languages and Systems - 13th International
Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010,
Proceedings, Part I, volume 6394 of Lecture Notes in Computer
Science, pages 61–75. Springer, 2010.

[RSA10] Jan Reimann, Mirko Seifert, and Uwe Aßmann. Role-based
Generic Model Refactoring. In Dorina C. Petriu, Nicolas Rou-
quette, and Øystein Haugen, editors, Model Driven Engineering
Languages and Systems - 13th International Conference, MOD-
ELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part I,
volume 6395 of Lecture Notes in Computer Science, pages 78–92.
Springer, 2010.

[SK08] Andy Schürr and Felix Klar. 15 Years of Triple Graph Gram-
mars. In Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and
Gabriele Taentzer, editors, Graph Transformations, volume 5214
of Lecture Notes in Computer Science, pages 411–425. Springer
Berlin / Heidelberg, 2008.

[SLK09] Mojtaba Shahin, Peng Liang, and Mohammad Reza Khayyam-
bashi. Architectural Design Decision: Existing Models and Tools.
In WICSA. IEEE Computer Society, September 2009.

[SZ05] G. Spanoudakis and A. Zisman. Software Traceability: A
Roadmap. In S. K. Chang, editor, Handbook of Software Engi-
neering and Knowledge Engineering, volume 3. World Scientific,
August 2005.

[TA05] Jeff Tyree and Art Akerman. Architecture Decisions: Demystify-
ing Architecture. IEEE Software, 22(2):19–27, 2005.

234 BIBLIOGRAPHY

[TBWK07] Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter.
Difference Computation of Large Models. In ESEC-FSE ’07:
Foundations of Software Engineering, pages 295–304, Dubrovnik,
Croatia, September 2007. ACM.

[TDSF10] Chouki Tibermacine, Christophe Dony, Salah Sadou, and Luc
Fabresse. Software Architecture Constraints as Customizable,
Reusable and Composable Entities. In Muhammad Ali Babar and
Ian Gorton, editors, Software Architecture, 4th European Confer-
ence, ECSA 2010, Copenhagen, Denmark, August 23–26, volume
6285 of Lecture Notes in Computer Science, pages 505–509, Copen-
hagen, Denmark, August 2010. Springer.

[Tea10] CMMI Product Team. CMMI for Development, version 1.3. Tech-
nical Report CMU/SEI-2010-TR-033, Software Engineering Insti-
tute, Carnegie Mellon University, November 2010.

[TAJ+10] Antony Tang, Paris Avgeriou, Anton Jansen, Rafael Capilla and
Muhammad Ali Babar. A Comparative Study of Architecture
Knowledge Management Tools. Journal of Systems and Software,
83(3):352–370, March 2010.

[TJH07] Antony Tang, Yan Jin, and Jun Han. A Rationale-based Archi-
tecture Model for Design Traceability and Reasoning. Journal of
Systems and Software, 80(6):918–934, June 2007.

[uhB09] Aman ul haq and Muhammad Ali Babar. Tool Support for Au-
tomating Architectural Knowledge Extraction. In Proceedings of
the 2009 ICSE Workshop on Sharing and Reusing Architectural
Knowledge, SHARK ’09, pages 49–56, Washington, DC, USA,
2009. IEEE Computer Society.

[UL07] Mark Utting and Bruno Legeard. Practical Model-Based Testing:
A Tools Approach. Morgan-Kaufmann, 2007.

[Var06] Dániel Varró. Model Transformation by Example. In MoDELS,
pages 410–424, 2006.

[Ven99] Bill Venners. Inside the Java Virtual Machine. McGraw-Hill, sec-
ond edition, 1999.

[Wag08] Robert Wagner. Inkrementelle Modellsynchronisation. Disserta-
tionen, University of Paderborn, 2008.

[Wah08] Michael Wahler. Using Patterns to develop Consistent Design Con-
straints. PhD thesis, Technische Hochschule ETH Zürich, 2008.

BIBLIOGRAPHY 235

[XS05] Zhenchang Xing and Eleni Stroulia. UMLDiff: An Algorithm
for Object-Oriented Design Differencing. In David F. Redmiles,
Thomas Ellman, and Andrea Zisman, editors, 20th IEEE/ACM
International Conference on Automated Software Engineering
(ASE 2005), November 7-11, 2005, Long Beach, CA, USA, pages
54–65. ACM, 2005.

[ZDGH05] Olaf Zimmermann, Vadim Doubrovski, Jonas Grundler, and Ker-
ard Hogg. Service-oriented Architecture and Business Process
Choreography in an Order Management Scenario: Rationale, Con-
cepts, Lessons Learned. In OOPSLA ’05: Companion to the 20th
annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 301–312, New
York, NY, USA, 2005. ACM.

[ZGK+07] Olaf Zimmermann, Thomas Gschwind, Jochen Malte Küster,
Frank Leymann, and Nelly Schuster. Reusable Architectural De-
cision Models for Enterprise Application Development. In Sven
Overhage, Clemens A. Szyperski, Ralf Reussner, and Judith A.
Stafford, editors, QoSA, volume 4880 of Lecture Notes in Com-
puter Science, pages 15–32. Springer, July 2007.

[Zim09] Olaf Zimmermann. An Architectural Decision Modeling Frame-
work for Service-Oriented Architecture Design. Dissertation, Uni-
versity of Stuttgart, 2009.

[Zim11] Olaf Zimmermann. Architectural Decisions as Reusable Design
Assets. IEEE Software, 28:64–69, January/February 2011.

[ZKL+09] Olaf Zimmermann, Jana Koehler, Frank Leymann, R. Polley, and
Nelly Schuster. Managing Architectural Decision Models with De-
pendency Relations, Integrity Constraints, and Production Rules.
Journal of Systems and Software, 82(8):1249–1267, 2009. SI: Ar-
chitectural Decisions and Rationale.

[ZKD+09] Steffen Zschaler, Dimitrios S. Kolovos, Nikolaos Drivalos,
Richard F. Paige, and Awais Rashid. Domain-Specific Metamod-
elling Languages for Software Language Engineering. In Mark
van den Brand, Dragan Gasevic, and Jeff Gray, editors, SLE, vol-
ume 5969 of Lecture Notes in Computer Science, pages 334–353.
Springer, 2009.

	Summary
	Resumé
	Preface
	Acknowledgements
	Glossary
	List of Figures
	List of Tables
	1 Introduction
	1.1 Model-based Software Development
	1.2 Decision Making in Software Development
	1.3 Describing Model Changes
	1.4 Research Methodology
	1.5 Scope
	1.6 Contributions

	2 Example
	2.1 Background
	2.2 Design Decisions
	2.3 Decision Characteristics
	2.4 Summary

	3 State of the Art
	3.1 Design Decisions
	3.2 Specification of Model Changes
	3.3 Traceability

	4 Research Methodology
	4.1 How to improve Design Decision Documentation?
	4.2 How to automate recurring Realizations of Design Decisions?
	4.3 How to ensure Consistency between Decisions and Design Models?

	5 Model-Independent Differences
	5.1 Requirements for describing Model Changes
	5.2 Process for Creating and Applying Model Differences
	5.3 The Metamodel for Model-Independent Differences
	5.4 Symbolic References
	5.5 Model Descriptors
	5.6 Creating Model-independent Differences
	5.7 Generalizing and Structuring Model Changes
	5.8 Applying Model-independent Differences
	5.9 The Binding
	5.10 Related Work
	5.11 Summary

	6 Design Decisions in Model-based Software Development
	6.1 Motivation and Goals
	6.2 Design Decisions in Software Development
	6.3 Capturing Design Decisions
	6.4 Identifying, Making, and Realizing Design Decisions
	6.5 Validating Design Decisions
	6.6 Design Model and Decision Evolution
	6.7 Proposing Subsequent Design Decisions
	6.8 Related Work
	6.9 Summary

	7 Tool Support
	7.1 The Graphical User Interface
	7.2 Requirements for the Tool Design
	7.3 Tool Architecture
	7.4 MPatch API
	7.5 Interface to Decision Management Systems
	7.6 Testing the Prototype
	7.7 Conclusion and Discussion

	8 Validation
	8.1 Applicability
	8.2 Domain Level Test
	8.3 Interviews
	8.4 Summary

	9 Summary and Conclusion
	9.1 Summary
	9.2 Conclusion
	9.3 Future Work

	A Transformation Specification from emfdiff to indepdiff
	B Similarity Algorithm for Strings
	C Binding Metamodel and Constraints
	D Interviews
	D.1 Interview Scheme
	D.2 Interview Summaries

	Bibliography

