
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Equal-potential interpretation of electrically induced resonances in metamaterials

Peng, Liang; Mortensen, N. Asger

Published in:
New Journal of Physics

Link to article, DOI:
10.1088/1367-2630/13/5/053012

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Peng, L., & Mortensen, N. A. (2011). Equal-potential interpretation of electrically induced resonances in
metamaterials. New Journal of Physics, 13(5), 053012. DOI: 10.1088/1367-2630/13/5/053012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13747572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1088/1367-2630/13/5/053012
http://orbit.dtu.dk/en/publications/equalpotential-interpretation-of-electrically-induced-resonances-in-metamaterials(33e02bb8-c803-44a5-992e-a31b23395db8).html


Equal-potential interpretation of electrically induced resonances in metamaterials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 New J. Phys. 13 053012

(http://iopscience.iop.org/1367-2630/13/5/053012)

Download details:

IP Address: 192.38.67.112

The article was downloaded on 11/05/2011 at 09:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/13/5
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Equal-potential interpretation of electrically induced
resonances in metamaterials

L Peng and N A Mortensen
Department of Photonics Engineering, Technical University of Denmark,
DTU-Building 345 West, DK-2800 Kongens Lyngby, Denmark
E-mail: plia@fotonik.dtu.dk

New Journal of Physics 13 (2011) 053012 (9pp)
Received 15 December 2010
Published 9 May 2011
Online at http://www.njp.org/
doi:10.1088/1367-2630/13/5/053012

Abstract. We propose a general description of electrically induced resonances
(EIR) in metamaterials (MMs) comprising subwavelength unit cells. Based on
classical electrodynamics, we found that EIR is governed by an equal-potential
effect. Our theory accounts for the EIR phenomena and can give a renewed
definition of the effective electric field and hence effective permittivity for
MMs made of either dielectrics or metals as well as combinations thereof.
The EIR, inherent to the periodic structures, may be the unifying origin of
recently observed anomalous electromagnetic phenomena, e.g. the enhanced
transmission, the suppressed transmission and the enhanced absorption by a
variety of metal film structures in the terahertz range.
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1. Introduction

The scalar potential is a key concept that has allowed physicists and engineers to understand
and interpret a variety of electromagnetic (EM) phenomena [1], yet its strength in the context
of metamaterials (MMs) remains unrevealed. In the design and fabrication of MMs, metallic
structures are successfully being applied in the microwave range [2]–[4]. At the same time, rod-
type structures made of dielectrics with a large permittivity have also been suggested as another
route potentially applied in the terahertz and optical range [5]–[7], although some metallic
structures are still being applied in the terahertz range [8, 9]. Although these two classes of MMs
can realize similar macroscopic EM responses such as anomalous effective permittivity, they do
not seem connected due to the apparent different theory bases and design methodologies, which
indicates that the common physics behind the MMs still needs to be revealed. In order to clearly
advance our fundamental understanding of those EM phenomena in MMs, a unifying theoretical
description is essential. The scalar potential offers an attractive solution to this challenge.

To appreciate the common physics of the two classes of MMs, consider first the quasi-
static EM response of mixtures of sub-wavelength dielectric particles. An external electric field
Es will polarize the particles, see figure 1(a). The effective permittivity is normally accounted
for by the classical Maxwell Garnett (MG) or Clausius–Mossotti (CM) theory [10, 11], with the
inherent assumption of only a weakly localized electric field and the absence of resonances [12].
However, in MMs, resonances in the unit-cell structure are critical in making the whole
composite possess peculiar EM responses, such as negative ε and µ [2]–[4], [13]. In the presence
of resonances, a strongly localized field is excited inside the single unit-cell, thus potentially
challenging the use of MG or CM theory. As an alternative, more elaborate field-averaging
techniques have been used widely to extract effective material parameters [3, 5], [14]–[18], but
methods of this kind may lack a solid foundation beyond the static limit and in particular in
resonances, i.e. the fields vary rapidly on the scale of the MM unit-cell.

In this paper, we employ an electrical potential approach and propose the electrically
induced resonances (EIR) as the unifying concept of MMs made of either dielectrics
or metals.

2. Theory

Metallic and dielectric particles may seem to have quite different EM properties, yet their
polarizations are similar. In general, for an isolated particle much smaller than the wavelength of
light, its polarization is dipole like. The macroscopic dipole moment of particles with positive
or negative permittivity (εp) is similar if [1]: (i) the operation frequency is far away from the
inclusions’ plasma frequency, i.e. ε ′

p � −1 or ε ′

p � 1, or (ii) no magnetic resonance occurs, see
figure 1(b).

Consider next an MM made of sub-wavelength structures, generically shown in figure 1(c).
All the unit-cell structures are assumed identical and periodically arranged, with incident field
(Ei) along one axis of the unit cell (z-direction). In resonances, strongly localized electric and
magnetic fields are excited inside the unit cell. Although the polarized charges and currents may
occupy the entire unit cell and make the problem complex, ∇ · B = 0 holds everywhere in space.
The Maxwell equations may thus conveniently be rewritten in terms of the scalar potential φ

and the vector potential A [1], i.e. B = ∇ × A and E = −∇φ + iωA. We emphasize that the
distribution of electric and magnetic fields is identical inside each unit cell of an ordered MM,
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Figure 1. (a) Dilute mixture of sub-wavelength particles. The red arrows indicate
the direction of polarization. (b) Schematics of polarization, contrasting different
signs of permittivity. The black arrows represent the E-field direction. εp =

ε ′

p + iεp
′′ is the relative dielectric constant of the particle. (c) Schematic diagram of

rod-type MM and the corresponding equivalent circuit model. (d) Top and side
views of a single unit-cell.

which follows from the Bloch theorem in the k0a � 1 limit. Conceptually, this allows us to
focus attention on a single unit-cell [2].

Suppose that a fictitious electron moves from point X (on the bottom surface of the unit
cell) to point Y (on the top surface) along path s, see figure 1(c). From energy conservation, the
work done by the EM force equals the change in the electron’s potential energy and

−

∫ Y

X
∇φ · ds = φX − φY =

∫ Y

X
[E(s) − iωA(s)] · ds. (1)

Because the E term is of capacitive nature while the A term (determined by the magnetic
field) has an inductive origin, we may phenomenologically consider a simplified L–C series
equivalent circuit for the MMs, see figure 1(c). To account for MMs made of lossy material,
an extra series resistor may be included in the circuit. Note that for a given MM, different
polarizations of the incident wave may make the L and C different; thus the resonant frequency
shifts.

2.1. The electrostatic case

In solving (1), we first address the electrostatic limit before discussing the general case. For ω →

0, the gradient of the scalar potential clearly relates only to the electric field. The integration
path s could be arbitrary, but the effective electric field on s defined as Eeff = ŝ(φX − φY )/S
with S being the total length from X to Y will depend on the choice of s. For the given
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polarization shown in figure 1(c), the MM’s macroscopic electric response is then determined
by the potential difference between X and Y . In particular, if φX = φY , the unit cell will behave
as an equal-potential body, hence supporting no effective electric field in total. Of course, this is
strictly possible only inside a perfect electric conductor (PEC). However, for sufficiently good
conductors we may still have φX ≈ φY , which turns out to be a central requirement for the
existence of the equal-potential effect.

2.2. The general electromagnetic case

Now, we proceed to the more general case of a non-zero frequency. Since the change in energy
can be accounted for by considering the potential difference experienced by the fictitious charge,
the macroscopic effective electric field should still be expressed as Eeff = ŝ(φX − φY )/S. For
the common MMs, although the integration path in (1) could be arbitrary, the Eeff can help in
reflecting the MM’s macroscopic EM effect only when S = L , with L being the height of the
unit cell, see figure 1(c). For the regularly shaped resonant structures with rotational symmetry,
see figure 1(c), the scalar potential is uniformly distributed on the periodically arranged unit-
cells’ bottom and top surfaces. Thus, from a macroscopic point of view, the effective electric
field of the entire unit cell would be evaluated by the potential difference between the top
and bottom surfaces, i.e. Eeff = ẑ(φX − φY )/L . Meanwhile, the effective electric displacement
in a single unit-cell can also be found by taking the polarization into account, i.e. Deff =

ε0 Eeff + P eff. We emphasize that zero value of 1φ = φX − φY (and consequently Eeff) may also
arise in the presence of a finite vector potential’s contribution, which often occurs in MMs. The
strong dispersion of effective permittivity of MMs occurs close to those frequencies at which the
equal-potential condition is satisfied, which we show below. Basically, the macroscopic property
of a bulk sample made of the MM specified above can be equivalently described through an
effective permittivity

εeff,z =
Deff,z

Eeff,z
= ε0 +

L

V

∫
V ẑ · P dv

1φ
= ε0 +

〈ẑ · P〉

〈1φ〉
, (2)

with V being the volume of the unit cell, 〈ẑ · P〉 =
1
V

∫
V ẑ · P dv being the z-component of

average polarization and 〈1φ〉 =
1φ

L being the average scalar potential difference across the
whole unit cell. Again, a strongly dispersive permittivity is apparent when φX ≈ φY , and
hence anomalous EM responses occur, e.g. in the form of anomalous reflection (R = |S11|

2),
transmission (T = |S21|

2) and enhanced absorption (A = 1 − R − T ). Here, Si j are the usual
components of the scattering matrix.

We should note that here we assume the incident wave to be polarized along the z-direction,
which allows us to estimate εeff,z. The MM we study here is in general anisotropic and the other
components of ε̄eff can also be estimated through the same procedure but under some other
excitation condition assumption.

3. The effective permittivity of rod-type metamaterials

3.1. Formulation

To further illustrate our points, we consider the example of a periodic cylindrical-rod array, see
figure 1(c), with rods of finite length l. In the limit where l = L , the rod is effectively infinitely
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http://www.njp.org/


5

long. The internal field of the rods Eint can conveniently be expressed by the superposition of
different-order cylindrical waves [19]. Due to the sub-wavelength scale, high-order cylindrical
waves are hardly excited inside a single unit-cell and we have Eint(ρ) ≈ ẑE0 J0(kpρ) with
kp =

√
εp(k)0 being the wavenumber inside the rod. Since the scalar potential is uniform on

both the bottom and top surfaces, the potential difference can be conveniently determined by
(1) with an integration path connecting the bottom center and the top center, i.e. O–O ′ in
figure 1(d). Four points are critical in determining the integration, i.e. O , O ′, K and K ′, and
formally we have φX − φY = VO K + VK K ′ + VK ′O ′ with VO K = φO − φK , VK K ′ = φK − φK ′ and
VK ′O ′ = φK ′ − φO ′ . The three terms can be worked out by interpreting the electrodynamics inside
the unit cell. Since the polarization current flows along the cylinder but the polarization charge
mainly distributes on the two ends, it is natural to assume that the scalar potential inside the
cylinder, i.e. close to the straight line K –K ′, is related to both the electric and magnetic fields.
However, close to the straight segments O–K and K ′–O ′, only the instantaneous electric field is
involved, since A will be completely canceled by the non-instantaneous component of E in (1)
in a source-free case. Having calculated the potential difference, we apply (2) and, after some
tedious but straightforward algebra, we finally arrive at

εeff,z = ε0

{
1 +

2πrl J1(kpr)

kpa21φ

}
= ε0

{
1 +

2 f

〈1φ〉

J1(kpr)

kpr

}
, (3)

with f =
πr2l
a2 L being the volume fraction, 〈1φ〉 =

1φ

L being the average scalar potential
difference and

1φ =

(
2εp − 1

εp − 1

)
l

εp
+

l

εp

[
kpr J1(kpr) ln

( r

R

)
− J0(kpr)

]
+8(0) − 8(l) − 8

(
L − l

2

)
+ 8

(
L + l

2

)
. (4)

Here, R = a/
√

π and 8(d) =
∫ r

0
J0(kpρ)
√

ρ2+d2
ρ dρ. Note that our theoretical analysis is general and

can equally well describe the effective permittivity of MMs made of either dielectrics (ε ′

p > 0)
or metals (ε ′

p < 0). Resonances are expected when 1φ ≈ 0.

3.2. Numerical evaluation

In the following, we numerically explore the consequences of (3). Firstly, we consider dielectric
cylinders. Figure 2(a) shows the effective permittivity calculated with the aid of (3), the
parameters of which are explained in the figure caption. As seen, the MM composed of ILR
possesses a strongly dispersive effective permittivity, in full agreement with results in [5]–[7].
When turning to rods of finite length, the EIR is shifted towards higher frequencies and the
effective permittivity exhibits almost no frequency variation in the considered frequency range,
see the dashed line in figure 2(a). Due to the absence of resonance in the close frequency vicinity,
the nearly non-dispersive εeff can here equally well be interpreted by MG or CM theory.

Secondly, we turn to cylinders made from a dispersive media whose permittivity obeys
a Lorentz model in the terahertz region, i.e. εp = 1 − ω2

p/(ω
2
− ω2

0) with plasma frequency
ωp/2π = 600 THz and binding frequency ω0/2π = 200 THz. The dimensions of the MM unit-
cell are now scaled down to nano size, as specified in the caption of figure 2(b). As seen from
the results, the MM made of infinitely long cylinders will preserve the binding frequency
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Figure 2. Effective permittivity εeff for a rod-type MM with a cubic unit-
cell. (a) Dielectric rods with εp = 600, r = 1 mm and L = 7 mm with the
results contrasting infinitely long rods (ILR) with finite-length rods (FLR)
(l = 6.95 mm). (b) Rods supporting a dispersive plasma with r = 15 nm and
L = 100 nm with the results contrasting ILR with FLR (l = 80 nm).

while having an effective plasma frequency much smaller than that of the original plasma
media, as previously predicted [2]. However, for the MM comprising cylinders of finite length,
the effective permittivity is strongly dispersive with both the effective plasma frequency and
the binding frequency are modified. Clearly, figures 2(a) and (b) display the same qualitative
Lorentz-like behavior (compare blue and green curves), thus emphasizing the common physics
of the two MM classes.

4. Extraordinary transmission, suppressed transmission and enhanced absorption

4.1. The gold rod array

As shown above, our theory can successfully be used to describe the MMs, both dielectric and
metallic. However, its application is not restricted to infinite stacks of MM unit-cells. If only a
single layer of MM unit-cells exists, equation (2) cannot immediately be applied, but the MM
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Figure 3. Full-wave simulations of the EM response of a gold-rod array with
L = 100 nm, r = 15 nm and l = 80 nm. (a) Results resolving the detailed MM
unit-cell structure. (b) Results for the homogenized MM slab with effective
permittivity derived from equation (3). Since equation (3) is basically not applied
to this one-layer composite, hence, the two curves shown cannot perfectly match.
In the simulation, the incident plan wave propagates along the x̂-direction, with
polarization along the ẑ-direction, see figure 1(c). Only a single unit-cell is
placed into the simulation site, with periodic boundary conditions being applied
in the in-plane (ŷ and ẑ) direction.

still exhibits EIR behavior, which is also plasmon like in the terahertz range, i.e. anomalous
reflection together with strong absorption. To illustrate this, we take an MM made of finite gold
rods as an example. The unit-cell is quadratic with lattice constant L = 100 nm and the gold
rods have radius r = 15 nm and length l = 80 nm. For the dielectric constant of gold, see [20].
In figure 3(a), a full-wave simulation of the one-layer MM clearly reveals a resonance around
460 THz at which strong reflection and absorption occur and consequently the transmission is
low. Figure 3(b) shows corresponding results for an effective medium slab with a permittivity
derived from (3). Note the qualitative agreement between panels (a) and (b).

New Journal of Physics 13 (2011) 053012 (http://www.njp.org/)

http://www.njp.org/


8

 0

0.2

0.4

0.6

0.8

1

 

 

0

0.2

0.4

0.6

0.8

1

Frequency (THz)
200 300 400 500 600 700

E
H

k

L

L

l

t

h

(a)

(b)

(c)

R

T

A

R
T

A

Without Holes

With Holes

Figure 4. (a) Gold thin film with t = 30 nm, l = 75 nm, h = 12 nm and L =
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holes. (c) The corresponding response in the presence of an air-hole array.
Still, in the simulation there is one unit-cell in the k̂-direction and periodic
boundary condition applied in the in-plane directions. The unit-cell length in
the k̂-direction is L .

4.2. Ultrathin gold film with a subwavelength hole array

Figures 2 and 3 present typical examples of MMs displaying resonances with our new theory
offering an equal-potential description. However, our theory applies to MMs beyond the rod-
type structures emphasized so far. In fact, the EIR discussed here occurs in most MMs
comprising periodically arranged sub-wavelength structures, including fish-net structures and
arrays of sub-wavelength holes in thin metal films. As an example, figure 4(a) considers a semi-
transparent 30 nm thick (comparable to the skin depth at 460 THz) gold film with a periodic
array of holes. The detailed parameters employed in the simulation are listed in the caption.
The film investigated resembles the inverse structure of the rod array studied in figure 3(a),
and from Barbinet’s principle, we expect it to exhibit similar EM behavior. Formally, the
film’s qualitative EIR behavior may also be addressed by our equal-potential description,
but analytical calculations resembling (3) are too complex and results are not included.
However, our full-wave simulations clearly show the appearance of the anticipated resonance
appearing around ω0/2π = 460 THz, see figure 3(c). For comparison, figure 3(b) shows the
corresponding results for a closed gold film, where the absence of holes prevents extraordinary
transmission (accompanied by suppressed reflection) below ω0 and suppressed transmission
above ω0.
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5. Conclusion

In conclusion, a new description of EIR has been established with the help of the scalar
potential. Originating from classical electrodynamics, our theory accounts well for MMs made
of either dielectrics or metals and could be expanded to describe an arbitrary composite of
subwavelength structures. The theory presented establishes the relationship between the equal-
potential effect and the EIR, which also helps in interpreting recently reported phenomena,
such as extraordinary transmission, suppressed transmission and enhanced absorption by MMs
and periodic structures [21]–[25]. Our unified potential description may stimulate more use
of dielectric structures to mimic desired properties readily achieved with more lossy metallic
counterparts.
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