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Abstract. A numerical, magnetostatic model of the internal magnetic field of a

rectangular prism is extended to the case of a stack of rectangular prisms. The

model enables the calculation of the spatially resolved, three-dimensional internal field

in such a stack given any magnetic state function, stack configuration, temperature

distribution and applied magnetic field. In this paper the model is applied to the case

of a stack of parallel, ferromagnetic rectangular prisms and the resulting internal field

is found as a function of the orientation of the applied field, the number of prisms in

the stack, the spacing between the prisms and the packing density of the stack. The

results show that the resulting internal field is far from being equal to the applied field

and that the various stack configurations investigated affect the resulting internal field

significantly and non-linearly. The results have a direct impact on the design of, e.g.,

active magnetic regenerators made of stacked rectangular prisms in terms of optimizing

the internal field.

PACS numbers: 75.30.Sg,75.30.-m,75.60.Ej,41.20.Gz
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1. Introduction

The total magnetic field, H, in the vicinity of one or several magnetized bodies is

of general interest. In particular, when concerned with, e.g., magnetic refrigeration

the local magnetic field of the magnetic material is of great importance [1, 2]. The

magnetostatic calculation of H is in principle straightforward and can in certain

cases, e.g. ellipsoids, be found analytically [3, 4, 5]. However, this is only true for

homogeneously magnetized bodies. When the magnetization of the body is varying

spatially, numerical methods are usually required [1, 6, 7, 8].

In the presence of magnetized bodies the total magnetic field at a certain point in

space, r, can be found as the superposition of the applied magnetic field, Happl, and

the magnetic field created by the magnetized bodies. The magnetic field from a single,

magnetic body is typically called the demagnetizing field inside the body and the stray

or interaction field outside. Since the source of these fields is the same, the remainder

of this paper will adopt the concept of the magnetic field of the body, Hbody(r), at any

given point in space. The resulting total magnetic field may thus be written as

H(r) = Happl(r) +
N∑
i=1

Hbody,i(r), (1)

where the index i represents the ith body out of a total ofN bodies. Usually, the solution

to the magnetic field from a single, homogeneously magnetized body with magnetization

M is written as

Hbody(r) = −N(r) ·M, (2)

where the demagnetizing tensor field, N(r), only depends on the geometry of the body.

Under inhomogeneous conditions iterative methods are typically required to

determine the internal magnetic field of a magnetized body [4, 6]. Furthermore, even

in a homogeneous applied magnetic field, the field of a magnetized body is generally

inhomogeneous. In non-saturated conditions the magnetization thus becomes a non-

trivial function of position thereby making evaluation of the magnetic field due to the

magnetization of the body possible only using numerical methods.

Here, the numerical solution to the total magnetic field of a configuration of

multiple bodies with inhomogeneous and field-dependent magnetization is reported.

The numerical model is applied to a stack of rectangular prisms as this configuration is

important in, e.g., magnetic refrigeration [9]. However, the discretization underpinning

the model can in principle be applied to any shape. The implementation is described

in Sec. 2 and the results of different stack configurations are presented and discussed in

Sec. 3. In Sec. 4 the implications of the model are considered. Finally, in Sec. 5, the

conclusions are provided.
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2. Magnetostatic model of stacked rectangular prisms

In the following a numerical model capable of calculating the total magnetic field in a

configuration of N stacked rectangular prisms, as depicted in Fig. 1, is presented. The

model is an extension of the single prism solution, which was presented in Ref. [8] and

experimentally verified in Ref. [10]. The single prism model uses iteration to solve the

two coupled equations

M(r) =

 f(T (r), H(r))
H(r)

H(r)
inside the prism

0 outside the prism

(3)

and

H(r) = Happl(r) +Hbody(r). (4)

Here f gives the magnitude of the local magnetization of the prism as a function of the

(spatially dependent) temperature, T , and internal field strength, H; f is determined by

the magnetic equation of state. Note that the magnetization is taken to be along the

direction of the internal magnetic field thereby assuming the material to be isotropic.

To solve Eqs. 3–4 iteratively, expressions for f and the magnetic field produced by the

magnetic body, Hbody, need to be established.

The magnetic equation of state is chosen to be the mean field equation of state [11]

with parameters appropriate for the rare earth metal gadolinium (see Ref. [8]) frequently

used in magnetic refrigeration. The temperature is chosen to be 293K, which is also

the Curie temperature of gadolinium. The model may straightforwardly be extended to

handle temperature and material variations across the prisms, however, for simplicity

this is not done in the present study; see Ref. [8] for further details.

The magnetic field of a single magnetized rectangular prism is found by dividing

the prism into k cells each shaped as a rectangular prism small enough to be

approximately homogeneously magnetized, whereas both the magnitude and direction of

the magnetization may vary from cell to cell. The magnetic field of each homogeneously

magnetized cell can be expressed analytically [4] and hence the total magnetic field due

to the magnetization can be obtained by superimposing the contributions from each cell

Hbody(r) ≈ −
k∑

j=1

N(r− rj) ·Mj (5)

where rj denotes the center of the jth cell, Mj is the magnetization of the jth cell and

N is the symmetric 3× 3 tensor field with components given in Ref. [8]. Note that the

expression given in Eq. 5 is an approximation that relies on the discretization of the

rectangular prism into small cells; see Ref. [8] for details on sufficient grid size and the

numerical implementation.

The extension to a configuration of multiple prisms is done by extending the sum

in Eq. 5 to include each individual prism, i.e. by combining Eqs. 1 and 5. The total
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Figure 1. The coordinate system of a stack composed of rectangular prisms each

with dimensions 2a × 2b × 2c. The stacking of the prisms is in the z-direction where

the prisms are thinnest. The total height of the stack is denoted L and the distance

between two adjacent prisms is d.

magnetic field therefore becomes

H(r) ≈ Happl(r)−
N∑
i=1

k∑
j=1

N(r− ri,j) ·Mi,j, (6)

whereN is the number of prisms and i is used to index the prisms. Thus, the extension to

multiple prisms is obtained by dividing each prism into a set of cells and superimposing

the contributions from all cells. Note that each step of the iteration ranges over the

entire array, not just over a single prism. The present approach can readily be extended

to cover the case of a two- or three-dimensional array of rectangular prisms. In addition,

any other collection of arbitrarily shaped bodies can be divided into cells and solved

using the method described here.

3. Results and discussion

The model is applied to the case of N prisms equally spaced with a distance d between

adjacent prisms resulting in a spatial extent L = N2c + (N − 1)d of the stack in the

z-direction as seen in Fig. 1. Following Ref. [8] the dimensions of each prism have

been chosen to be 2a × 2b × 2c = 20 × 20 × 1mm3 and an applied magnetic field of 1

T is oriented along either the x- or the z-direction. Three sets of parameter variations

are considered. Firstly, the number of prisms in the stack is varied while the distance

between two adjacent prisms is kept constant. Secondly, a stack of a fixed number of

prisms is considered in which the distance between the prisms is varied. Thirdly, the

overall spatial extent of the stack in the direction of the stacking is kept constant (i.e.

L is kept fixed). The number of prisms, the distance and the thickness of the prisms

are then varied within this space in order to probe the effect of the packing density of

the stack on the internal magnetic field of the stack.
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Figure 2. The average internal magnetic field strength in stacks composed of N

prisms. The prisms are stacked with a distance of d = c or d = 4c and subjected

to two orientations of the applied magnetic field. The shaded areas cover the area

between the lowest and highest values of the average internal field in the individual

prisms.

3.1. Varying the number of prisms

The number of prisms in the stack, N , is varied from 1 to 99 and the spacing between

two adjacent prisms is kept fixed at d = c or d = 4c. In the former case the spacing

between two adjacent prisms is equal to half the thickness of a single prism whereas in

the latter it is equal to the thickness of two prisms. These two cases result in packing

densities of 2/3 and 1/3, respectively, where the packing density, α, is given by

α =
2c

d+ 2c
. (7)

The volume average of the internal magnetic field strength in all the prisms is given

in Fig. 2 for an applied magnetic field oriented along either the x- or z-direction. For

a single prism the volume average of the internal magnetic field strength attains its

lowest value when the applied field is along the z-direction as the demagnetizing field

is maximized for this orientation. The opposite is true when the applied field is in the

x-direction. These results follow from the well-known single prism solution that may be

found in, e.g., Ref. [5].

Increasing the number of prisms when the applied magnetic field is perpendicular

to the direction of the stacking (i.e. Happl ∥ x) reduces the total average internal field

of the stack. Conversely, the total average internal field increases when the applied field

is along the stacking direction (Happl ∥ z). This is to be expected and simply explained

by considering Fig. 3. When the stacking direction is parallel with the applied field the

stray field due to the magnetization of each individual magnetized body will tend to

enhance the applied field in neighboring prisms, whereas the stray field tends to reduce

it when the stacking is perpendicular to the applied field. Note that this entails that the

largest internal field is experienced by the center prism for Happl ∥ z and the outermost
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(a) (b)

Figure 3. Schematic illustration of the magnetic field from a single rectangular

prism positioned in a stack. The prism is magnetized either perpendicular to

the stacking direction (a) or parallel (b). In both cases the magnetic field from

the prism opposes the applied field inside the prism as seen by the white field

lines. Stacking the prisms perpendicular to the magnetization direction results in

a decrease in the internal magnetic field, whereas parallel stacking enhances the

internal field. The trends are similar for both a homogeneously magnetized prism

and the inhomogeneously magnetized prism considered here. Note that the internal

magnetic field is discontinuous across the surfaces containing effective magnetic charges

as expected from the boundary conditions of the H-field.

prisms for Happl ∥ x, whereas the minimum internal field is found at the outer prisms

and the center prism for Happl ∥ z and Happl ∥ x, respectively. The minimum and

maximum values for the individual prisms are represented by the shaded areas in Fig.

2.

As the number of magnetized bodies increases, the field enhancing or reducing effect

is enlarged steadily, reaching a level where the stack of prisms behaves as an infinite

stack. In this case the outer boundaries become virtually negligible. This is clearly

apparent from Fig. 2 for d = 4c where increasing the number of prisms from N = 49 to

99 only changes the average internal field by 0.3% and 0.6% when the applied field is

along the x- and z-direction, respectively. In addition the average internal field of the

whole stack almost coincides with the average internal field of the center prism thereby

indicating that the boundaries are indeed of minor importance. In the case where d = c

the average of the total internal field in the stack is also seen to behave asymptotically,

however, the convergence is less pronounced. A better description of the infinite stack is

found by only considering the center prism instead as convergence is essentially reached

at N = 99 and consequently the influence of the boundaries are negligible. In the

remainder of this paper the internal field of the center prism in a stack of 99 prisms

will therefore be used when referring to an infinite stack. Note that this assumption

improves with increasing distance between the prisms.
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Figure 4. The internal magnetic field strength of a single rectangular prism (top)

and a configuration of 5 prisms displaced with d = 4c (bottom; not drawn to scale)

for two different orientations of the applied magnetic field. The internal magnetic field

strength is averaged in the y-direction.

Figure 4 shows an example of the spatial variations in the magnitude of the internal

field in a single prism and a stack of five prisms spaced with d = 4c. It is observed that

the internal field is significantly affected when the number of prisms in the stack is

greater than one. The difference between a single prism and the stack of five prisms is

most pronounced in the case where the applied field is along the z-direction. In addition,

the internal field in the middle prism is seen to differ from that of the surrounding prisms.

This implies that the magnetization also differs and consequently all prisms must be

included in the iteration performed in Eqs. 3–4 rather than using a sum of single-prism

solutions.

3.2. Varying the distance between the prisms

For an infinite stack and a stack containing 19 prisms the average internal magnetic

field strength is plotted in Fig. 5 as a function of the distance between the prisms given

in units of the prism thickness, d/2c. As in the previous section the shaded areas in

Fig. 5 mark the maximum and minimum values of the average internal field strength

in the individual prisms for a given stack configuration. An increase in the distance is

observed to result in an asymptotical approach towards a value of 0.96 and 0.57 T for an

applied field along the x- and z-direction, respectively. This behavior is almost identical

for the two stacks considered. When the distance between adjacent prisms increases

the stray field from each magnetized prism has less influence on neighboring prisms and

the number of prisms in the individual stacks becomes less important. The asymptotic

values are therefore equal to the single prism solutions seen in Fig. 2.

Interestingly, the results from the two stack configurations differ considerably at low

values of the ratio d/2c. Here, the stray fields from the magnetized prisms have a much

larger influence on neighboring prisms, as expected, which is also clearly manifested in

a great response of the internal magnetic field strength when varying the distance. In
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Figure 5. The average internal field strength in stacks composed of rectangular prisms

as a function of the distance between two adjacent prisms normalized to the thickness

of a single prism. Two orientations of the applied field are provided (along the x- and

the z-direction). Furthermore, an infinite stack and a stack composed of 19 prisms are

considered. As in Fig. 2 the shaded areas mark the maximum and minimum average

internal field strengths of the individual prisms in the given configuration.

addition, when the applied magnetic field is along the z-axis and d/2c is close to zero

the average internal field strength is actually significantly larger than in the case where

the applied field is along the x-direction. This is not surprising considering the limit

where d/2c is zero since the stack is then effectively a single prism with dimensions

2a × 2b × 2cN ; here, the single prism solution dictates that the average internal field

should be greater when applying the external magnetic field along the direction where

the prism is thickest [5]. In particular for the infinite stack the magnetic field from the

magnetization vanishes if d/2c = 0 and the applied field is oriented along the direction

of stacking. This is observed in Fig. 2 by the strength of the internal magnetic field

almost being equal to the applied field (1 T). The small discrepancy is solely due to the

fact that the infinite stack is represented by a prism surrounded by a large, albeit finite

number of prisms.

3.3. Varying the packing density

Recalling the definition of the packing density, Eq. 7, maintaining a constant total

stack height, L, and adding prisms such that the distance between adjacent prisms for

a given number of prisms is constant, the packing density of the stack may be varied

consistently. In addition the packing density can be varied by changing the thickness of

the prisms along the direction of stacking.

In Fig. 6a the average internal field strength of the stack is given as a function of the

packing density for four different prism thicknesses. For all thicknesses it is observed

that values of the packing density greater than about 90% yield the largest average

internal field when the applied field is along the z-direction, whereas applying the field
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Figure 6. The average internal field strength in stacks composed of rectangular prisms

as a function of the packing density. a) The packing density is varied by changing the

number of equally spaced prisms while keeping the total height of the stack fixed

at L = 3.2a = 32mm. Furthermore, four different prism thicknesses are provided,

c = 0.05a, c = 0.1a, c = 0.2a and c = 0.4a, and the applied field is oriented along

either the x- or the z-direction. b) The thickness of the prisms is kept fixed at c = 0.05a

whereas the total height of the stack is varied from L = a to L = 7a. Note that for a

packing density of one the stack becomes a single prism; in particular, when L = 2a

the stack is a cube.

in the x-direction results in the maximum average internal field of the stack for packing

densities less than 90%. As the packing density increases the stack approaches a single

prism with dimensions 2a × 2b × L = 20 × 20 × 32mm3. Applying the field along the

z-direction thus yields the strongest internal magnetic field in agreement with the single

prism solution from Ref. [5]. On the other hand thin prisms located in a stack with a

low packing density are almost isolated and the strongest internal field is therefore found

when applying the external field along the x-direction in agreement with the results of,

e.g., Fig. 2.

By comparing the results from different prism thicknesses the same trends are seen.

When the packing density for a given prism thickness is increased the internal field

of the stack is decreased for an applied field along the x-direction and increased when

applying the field in the z-direction. The trends are due to the field reducing (Happl ∥ x)

or enhancing (Happl ∥ z) effects of both adding more prisms and decreasing the distance

between adjacent prisms. At any packing density the strongest internal field is found

when the stack is composed of thin prisms for the case of an external magnetic field

applied parallel to the x-direction, whereas thicker prisms result in the highest internal

field when the applied field is along the z-direction.

The effect of varying the total height of the stack while maintaining a fixed thickness

of the prisms is shown in Fig. 6b. Consistent with the single prism solution increasing

the height of the stack for a packing density of one increases the internal magnetic if

the applied magnetic field is along the z-direction and decreases the field for the applied
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field oriented along the x-direction. For a packing density of one and a stack height

of L = 2a, the stack is a cube in which case applying the external field along any of

the principal axes results in identical average internal fields. For smaller stack heights

the largest internal field is obtained by applying the external magnetic field along the

x-direction for all packing densities. At greater stack heights the optimal orientation

of the applied field is less trivial as it is dependent on the actual stack configuration.

For a stack height of, e.g., L = 3.2a a value of around 90% was observed at which

the applied field orientation that optimizes the internal field is changed. This value

decreases non-linearly as the stack height is increased seemingly reaching a packing

density of around 70% asymptotically. This limit can be deduced by noting that the

stack in this case effectively becomes an infinite stack with an a priori unknown distance

d′ between neighboring prisms. Varying the packing density is thus equivalent to varying

the distance between the prisms in an infinite stack. The distance d′ ≈ c can therefore

be determined by reference to Fig. 5. Recalling the definition of the packing density,

Eq. 7, the packing density at which the optimal direction of the applied field changes

is approximately 2/3.

4. Implications of the model

As we have seen, the magnetic field of the stack can differ significantly from the magnetic

field of a single prism. This makes the optimization of the internal magnetic field non-

trivial even for the simple stack configurations considered here. A direct implication

of this is seen when considering magnetic refrigeration. Typically, stacks of parallel,

ferromagnetic plates are used with the extent of the stack often determined by the

spatial extent of the applied magnetic field. To increase heat transfer between the

magnetic plates and the heat transfer fluid the plates are generally thin, whereas the

number of plates is high in order to increase the volume of the active material. An

important factor in determining the exact stack configuration and the orientation of

the applied magnetic field is optimizing the internal magnetic field in the entire stack.

However, considering Fig. 6a a large number of closely spaced, thin prisms results in

significant magnetostatic interactions between the plates, making a numerical model a

valuable tool for predicting and maximizing the internal magnetic field. In addition

Fig. 6b reveals that especially the packing density and the total height of the stack

can highly influence the optimal orientation of the applied magnetic field. Extending

the presented model to cover conditions relevant for magnetic refrigeration, such as a

temperature gradient along the plates, which may be comprised of several materials, can

readily be implemented by allowing temperature and material variations in the magnetic

equation of state. For a single prism the implementation of these conditions has been

reported previously [8], but in the light of the results presented here extending this to

a stack of plates may yield an internal magnetic field significantly different from that of

a single plate. In addition, applying the model to two- and three-dimensional arrays of

rectangular prisms is likewise of great interest.
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Application of the presented model will also be relevant when considering electronic

circuits where the local magnetic field play a significant role in certain cases [14, 15].

5. Conclusion

A numerical model capable of determining the spatially resolved, three-dimensional

internal magnetic field in a configuration of multiple bodies with inhomogeneous and

field-dependent magnetization was presented. The model was applied to a stack of

equally spaced, rectangular prisms. The number of prisms, the separation between the

prisms and the packing density were varied and the features of the resulting internal

magnetic field explained qualitatively.

Generally, it is found that the stray field created by the magnetization of each

prism can have a significant impact on the resulting internal magnetic field thus making

it important to consider the full geometry of all magnetic bodies present to accurately

describe the internal field. In particular it is concluded that the orientation of the

applied field, which optimizes the internal field in the stack, may differ considerably

from the optimal direction of the applied field for a single prism.
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