Technical University of Denmark

Biochar soil application to mitigate climate change

Bruun, Esben; Hauggaard-Nielsen, Henrik; Ambus, Per; Egsgaard, Helge; Jensen, Peter Arendt

Published in:

Energy solutions for CO2 emission peak and subsequent decline

Publication date: 2009

Link back to DTU Orbit

Citation (APA).

Bruun, E., Hauggaard-Nielsen, H., Ambus, P., Egsgaard, H., & Jensen, P. A. (2009). Biochar soil application to mitigate climate change. In Energy solutions for CO2 emission peak and subsequent decline: Proceedings (pp. 86-96). Roskilde: Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi. (Denmark. Forskningscenter Risoe. Risoe-R; No. 1712(EN)).

DTU Library

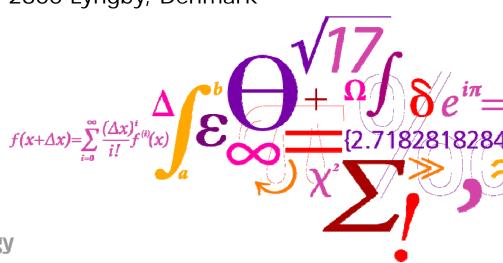
Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.



Biochar soil application to mitigate global change

Esben Bruun, PhD candidate RISØ DTU

¹Bruun, E.W. (esbr@risoe.dtu.dk); ¹Hauggaard-Nielsen, H.; ¹Ambus P.; ¹Egsgaard, H.; ²Jensen P. A.

¹Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde, Denmark; ²Division of Chemical Engineering Competences. Technical University of Denmark, DK-2800 Lyngby, Denmark

Risø DTU

National Laboratory for Sustainable Energy

Introduction to biochar

What is biochar?

Biochar is just another word for charcoal

How is biochar made?

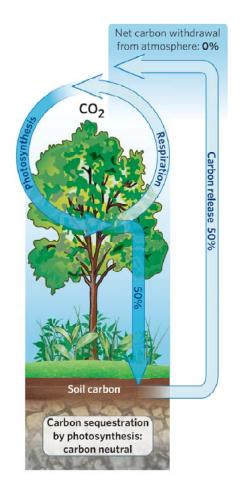
 Biochar is produced through the heating of biomass under air-deprived conditions. A process called pyrolysis.

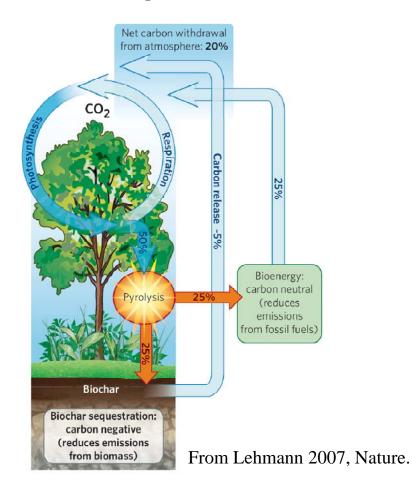
 In the pyrolysis process bio-oil and gas are produced as well

What are the benefits of biochar?

 Biochar can be used for carbon (C) sequestration (storage) and GHG inhibition in soil. Bio-oil can subsidize fossil fuels

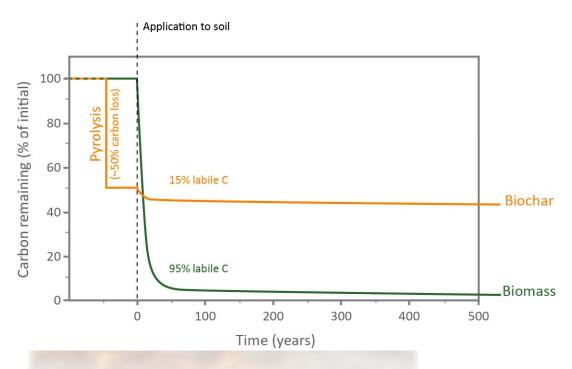
 Biochar enhances soil fertility and crop yields


Soils are very important sinks for carbon!



The application of biochar to agricultural lands is one way to increase soil C

The mechanism behind C sequestration



The stability of biochar in soil

- The stability of biochar is of fundamental importance as it determines how long biochar-C applied to soil will remain sequestered
- Biochar typically has the greatest average age of any C fraction
- Biochar from wildfires is frequently found to be more than 10,000 years old

Is biochar to be taken seriously?

- Growing scientific and public awareness: Nature², Science³ as well as BBC, Times and CNN have all published papers/information about biochar
- Dr. Johannes Lehmann has given testimony about biochar before the House of representatives (US) Select Committee on Energy Independence and Global Warming
- Companies already with pyrolysis production facilities are rising in numbers (e.g. Best Energies, Eprida, Dynamotive)



¹⁾ http://news.bbc.co.uk/2/hi/science/nature/7924373.stm; 2) Lehmann J. (2007) 3) Wardle et al (2008). 4) Gaunt and Lehmann 2008

My research

 Incubation studies with focus on short term degradation of different types of biochars in a temperate loam soil

Mineralization of fast and slow pyrolysis biochar compared to straw

40g soil REF

+2g fast pyrolysis biochar

+2g slow pyrolysis biochar

+2g straw (feedstock for biochar)

Mineralization of biochars made at different pyrolysis temperatures

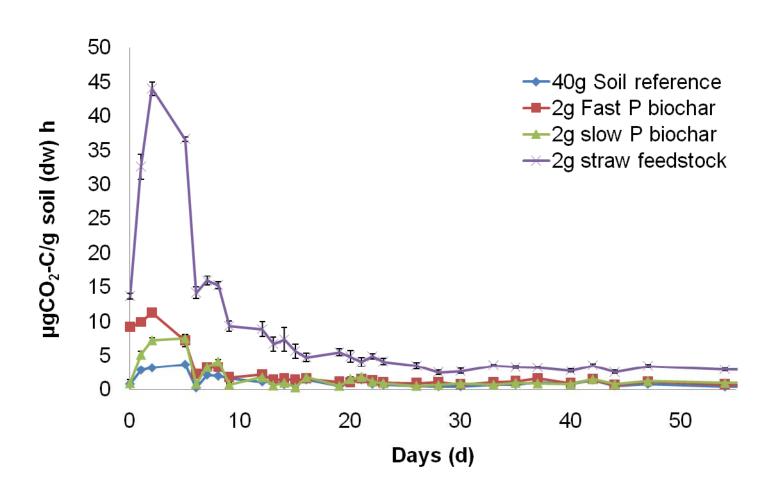
40g soil REF

+2g fast pyrolysis biochar 475°C

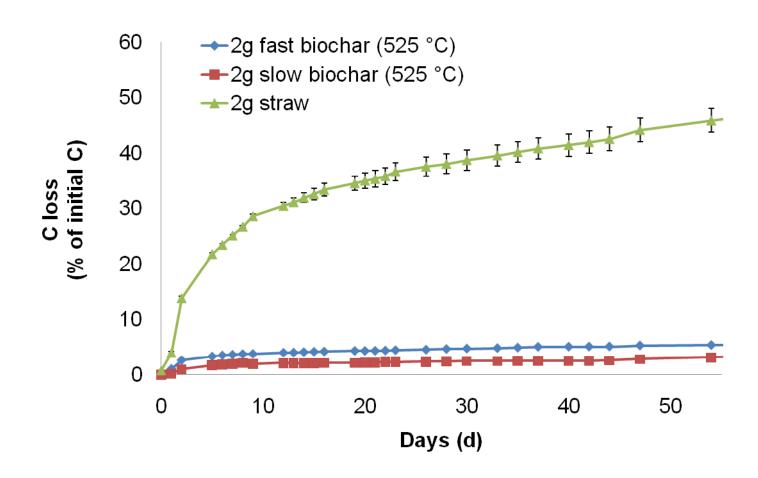
500°C

525°C

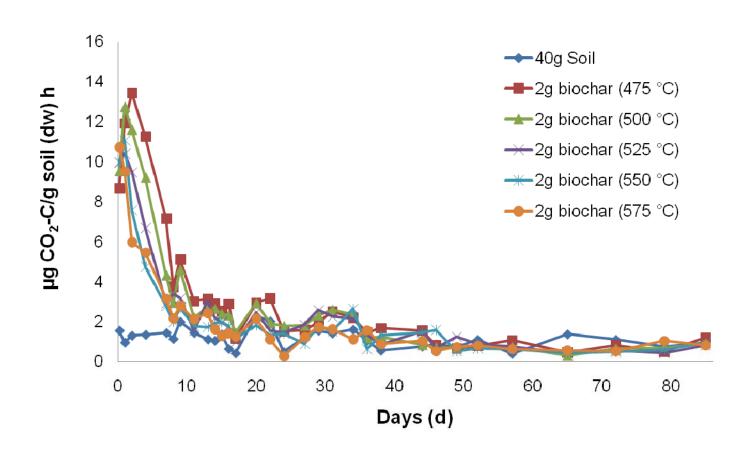
550°C


575°C

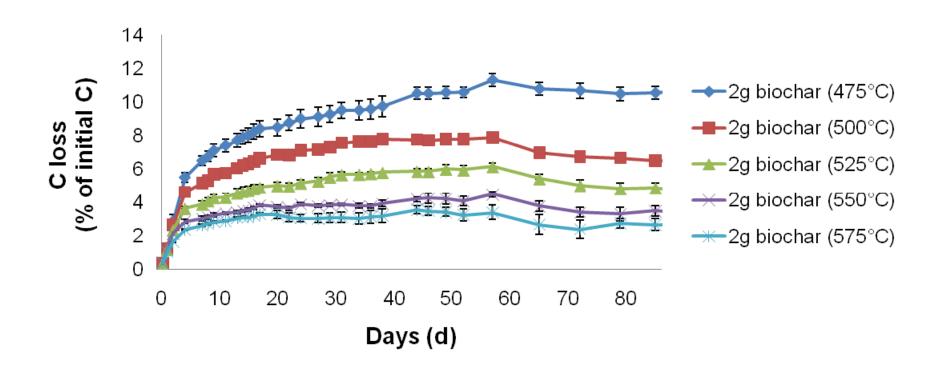
feedstock straw



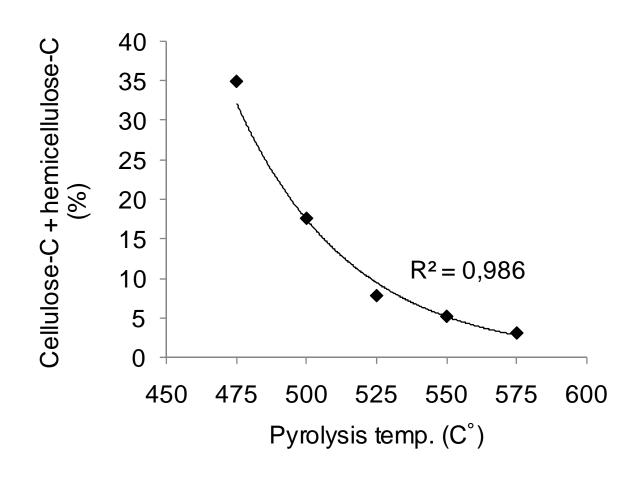
Mineralization of fast and slow pyrolysis biochar compared to straw



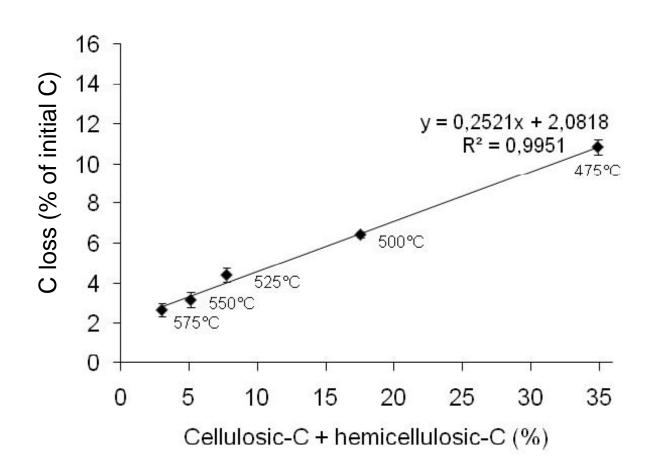
Cumulated C-loss



Mineralization of biochars made at different pyrolysis temperatures



Cumulated biochar C loss (%)

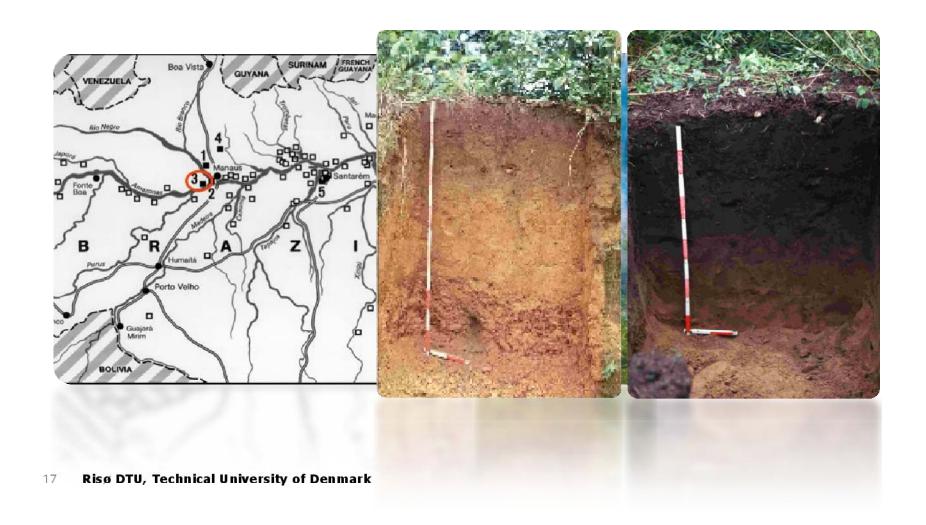


Biochar cellulosic and hemicellulosic C fractions

Cellulosic and hemicellulosic fraction correlated with biochar-C decay

Conclusions

- biochar soil application can be used to store carbon in soil
- biochar carbon loss is correlated with the specific pyrolysis technology and production temperature
- short-term degradation of fast pyrolysis biochar is proportional to the content of cellulosic and hemicellulosic carbon in the biochar
- A holistic approach is recommended when managing the pyrolysis process, so both the produced bio-oil (and hence avoided use of fossil fuel) and biochar C-sequestration is optimized to give the overall largest net avoidance of CO₂ emissions



Thank you for your attention

- More information about biochar on: www.biochar-international.org/
- Special thank to Henrik Hauggaard-Nielsen, Per Ambus, Helge Egsgaard and Hanne Wojtaszewski and Tobias Thomsen

Appendix Biochar has been used before: Dark soils of Amazonas

Biochar increases crop yields

Table 1 Relation between charcoal amendments to soil and crop response

	Amendment (Mg ha1)	Piomass produc i (%)		Root biomass (%)	Shoot biomass (%)	Plant type	Soil type	Reference
Control	-	100	100	_	_	Bauhinia wood	Alfisol/Ultisol	Chidumayo (1994)
Charcoal	Unknown	113	124	_	-	Bauhinia wood	Alfisol/Ultisol	77:1:
Control	-	100	_	_	-	Soybean	Volcanic ash soil, loam	Kishimoto and Sugiura (1985)
Charcoal	0.5	151	_	_	_	Soybean	Volcanic ash soil.	Iswaran et al. (1980)
Charcoar	0.5	131				Боуссин	loam	13waran et al. (1700)
Charcoal	5.0	63	_	_	_	Soybean	Volcanic ash soil,	Kishimoto and
						•	loam	Sugiura (1985)
Charcoal	15.0	29	_	_	_	Soybean	Volcanic ash soil,	
						_	loam	
Control		100	_	_	_	Pea	Dehli soil	Iswaran et al. (1980)
Charcoal	0.5	160	_	_	_	Pea	Dehli soil	
Control		100	_	_	_	Moong	Dehli soil	
Charcoal	0.5	122	_	-	_	Moong	Dehli soil	G1 . 1
Control	-	100	-	100	_	Cowpea	Xanthic Ferralsol	Glaser et al. (2002a, 2002b)
Charcoal	33.6	127	_	_	_	Oats	Sand	(=====, ====)
Charcoal	67.2	120	_	_	_	Rice	Xanthic Ferralsol	
Charcoal	67.2	150	_	140	_	Cowpea	Xanthic Ferralsol	
Charcoal	135.2	200	_	190	_	Cowpea	Xanthic Ferralsol	
Control	-	100	100	100	100	Maize	Alfisol	Mbagwu and
								Piccolo (1997)
Coal humic acid	0.2	118	114	122	114	Maize	Alfisol	
Coal humic acid	2.0	176	145	186	166	Maize	Alfisol	
Coal humic acid	20.0	132	125	144	120	Maize	Alfisol	
Control	-	100	100	100	100	Maize	Inceptisol	
Coal humic acid	0.2	125	119	122	127	Maize	Inceptisol	
Coal humic acid	2.0	186	148	198	173	Maize	Inceptisol	
Coal humic acid	20.0	139	131	147	130	Maize	Inceptisol	
Control	-	100	100	100	_	Sugi trees	Clay loam	Kishimoto and
7771-11	0.5	240	126	120		C	C11	Sugiura (1985)
Wood charcoal Bark charcoal	0.5 0.5	249 324	126 132	130 115	_	Sugi trees	Clay loam	
Activated charcoal		244	132	136	_	Sugi trees Sugi trees	Clay loam Clay loam	

Physical properties

- Particle sizes in the range of 1µm to 1mm
- The porosity is large! 1g biochar typically has a surface area of 300-400m²

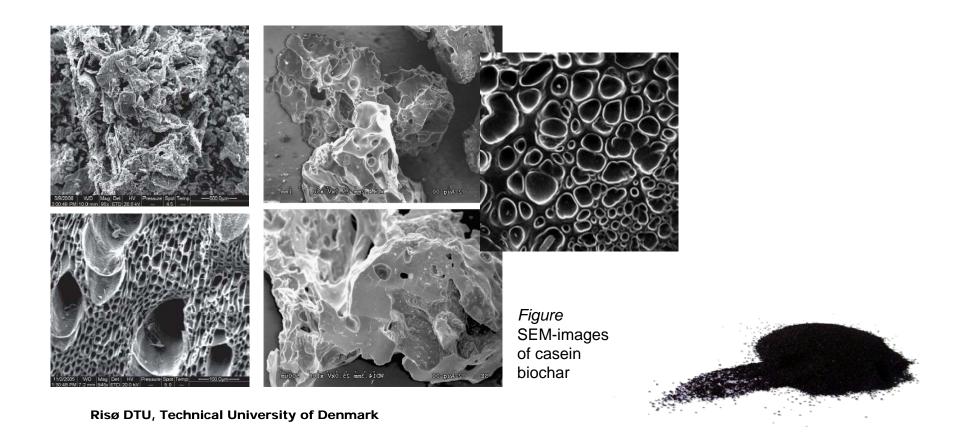
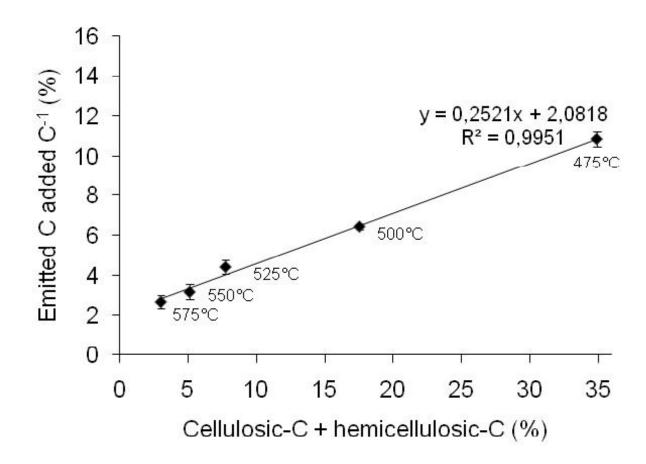
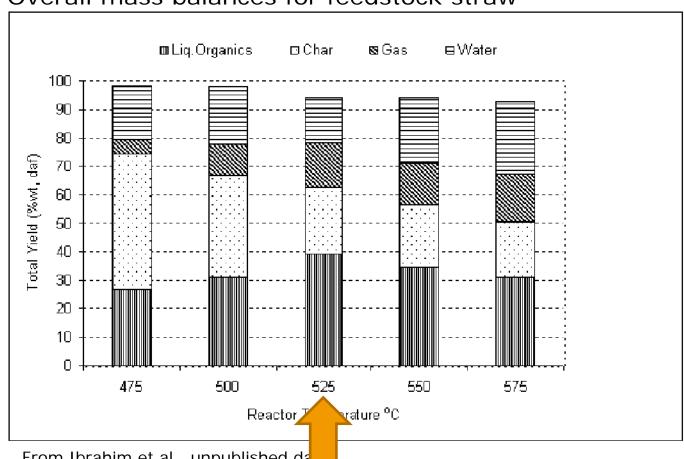



Table 1. Average particle sizes of the added biochars.

DTU	
H	


	Biochar 475°C	Biochar 500°C	Biochar 525°C	Biochar 550°C	Biochar 575°C
Average size (µm ±SE)	70.9±6	49.7±4.5	17.1±1.4	12±0.9	11.5±0.8
Min-max size	18.8-489.7	10.7-223.3	2.9-100.5	2.2-55.8	2.1-59.7

Optimal pyrolysis temperature

Overall mass balances for feedstock straw

From Ibrahim et al., unpublished da

Critical reflections

- Are there any health risk with biochar?
- how do we amend biochar with the soil?
- How do we avoid deforestation of primary forest (jungle) for biochar and biooil production?

