
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Principles of fuel ion ratio measurements in fusion plasmas by collective Thomson
scattering

Pedersen, Morten Stejner; Nielsen, Stefan Kragh; Bindslev, Henrik; Korsholm, Søren Bang; Salewski,
Mirko
Published in:
Plasma Physics and Controlled Fusion

Link to article, DOI:
10.1088/0741-3335/53/6/065020

Publication date:
2011

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Stejner Pedersen, M., Nielsen, S. K., Bindslev, H., Korsholm, S. B., & Salewski, M. (2011). Principles of fuel ion
ratio measurements in fusion plasmas by collective Thomson scattering. Plasma Physics and Controlled Fusion,
53(6), 065020. DOI: 10.1088/0741-3335/53/6/065020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13747436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1088/0741-3335/53/6/065020
http://orbit.dtu.dk/en/publications/principles-of-fuel-ion-ratio-measurements-in-fusion-plasmas-by-collective-thomson-scattering(65618a1c-d26d-43e5-870a-9c604e931190).html


Principles of fuel ion ratio measurements in fusion

plasmas by collective Thomson scattering

M. Stejner, S. K. Nielsen, H. Bindslev, S. B. Korsholm,

M. Salewski

Association EURATOM-Risø DTU, DK-4000 Roskilde, Denmark

E-mail: mspe@risoe.dtu.dk

Abstract. For certain scattering geometries collective Thomson scattering (CTS)

measurements are sensitive to the composition of magnetically confined fusion plasmas.

CTS therefore holds the potential to become a new diagnostic for measurements of the

fuel ion ratio – i.e., the tritium to deuterium density ratio. Measurements of the fuel ion

ratio will be important for plasma control and machine protection in future experiments

with burning fusion plasmas. Here we examine the theoretical basis for fuel ion ratio

measurements by CTS. We show that the sensitivity to plasma composition is enhanced

by the signatures of ion cyclotron motion and ion Bernstein waves which appear for

scattering geometries with resolved wave vectors near perpendicular to the magnetic

field. We investigate the origin and properties of these features in CTS spectra and

give estimates of their relative importance for fuel ion ratio measurements.
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1. Introduction

In this paper we examine the theoretical basis for the use of collective Thomson

scattering (CTS) to diagnose the density ratio between the fuel ion species in a

magnetically confined fusion plasma. This so-called fuel ion ratio is of general scientific

interest for fusion plasma experiments. The fuel ion ratio will further be a key parameter

for machine protection and basic plasma control on next-step devices such as ITER

where plasmas with significant fusion power are expected [1]. However, it is not clear if

the fuel ion ratio can be determined in the plasma center (ρ < 0.3) with the diagnostic

set currently included in the ITER baseline design. Therefore additional approaches are

desired [1,2]. Microwave-based CTS diagnostics are well suited for reactor environments

and provide access to the dynamics of confined ion populations by measuring the

spectrum of probe radiation scattered by plasma fluctuations. The scattered radiation

is picked up by a receiving antenna and the measurement is localized at the intersection

of the probe and receiver beams. CTS diagnostics were originally developed to diagnose

bulk plasma parameters such as ion temperatures [3–6], and they have since been applied

to measurements of the velocity distributions of non-thermal energetic ion populations

at JET, TEXTOR and ASDEX Upgrade [7–13]. For certain scattering geometries, CTS

spectra also contain features which are highly sensitive to plasma composition [14]. It

has been suggested [15,16] that measurements of these features could form the basis for

a new fuel ion ratio diagnostic.
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Figure 1. (a) Numerically calculated spectral power densities for different scattering

geometries and plasma compositions. (b) Numerically calculated derivatives of the

spectral power density with respect to the density ratio RH = nH/(nH + nD). Plasma

parameters and frequencies correspond to the plasma scenario defined in Appendix

A. νδ is the frequency shift of the scattered radiation, and the frequency scale is

normalized by the hydrogen ion cyclotron frequency. For φ near 90◦ the spectra show

cyclotron structure which is highly sensitive to plasma composition. When φ is not

close to 90◦ (i.e., more than a few degrees away from 90◦) the structure disappears

and the spectrum is less sensitive to plasma composition.
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Figure 1 illustrates the basic idea. Figure 1a shows numerically calculated spectral

power densities for frequencies and plasma parameters relevant to CTS experiments at

TEXTOR. The model used to calculate these spectra will be discussed in detail in the

following sections. The shape of the curves changes considerably if either the fuel ion

ratio or the angle φ = ∠(kδ,B(0)) resolved by the measurement is varied, keeping all

other parameters constant. Here kδ is the plasma fluctuation wave vector resolved by the

measurement, and B(0) is the local magnetic field. When φ is close to 90◦, the received

radiation results from scattering of incident radiation off plasma fluctuations traveling

almost perpendicularly to the magnetic field. For such scattering geometries peaks

appear in the spectrum at intervals corresponding roughly to the cyclotron frequencies

of the most common ions in the plasma – which were here taken to be hydrogen and

deuterium. Thus, we note two sets of peaks in the spectra: one set which appears near

hydrogen cyclotron harmonics and another set which appears near deuterium cyclotron

harmonics for high deuterium density. When φ is more than a few degrees away from

90◦ the peaks disappear, and the spectrum is less sensitive to plasma composition.

In CTS the incident probe radiation scatters off plasma fluctuations which are

driven mainly by the thermal motion of ions in the plasma (externally driven fluctuations

will not be considered here). In the following sections we shall see that the driving

terms for these fluctuations contain an underlying cyclotron structure with contributions

from each harmonic of the cyclotron motion of charged particles in the plasma. For

fluctuations with wave vectors nearly perpendicular to the magnetic field, φ ∼ 90◦,

the ion cyclotron motion dominates the driving terms which are strongly enhanced at

frequencies coinciding with harmonics of the ion cyclotron frequency (or frequencies,

in plasmas with multiple ion species). Plasma fluctuations result from the dielectric

response of the plasma to the effects of the ion motion described by the driving terms.

This response is particularly strong at frequencies and wave vectors corresponding

to weakly damped plasma waves. In particular, weakly damped ion Bernstein waves

strongly affect the spectrum of fluctuations with wave vectors nearly perpendicular to

the magnetic field. The ion Bernstein waves have frequencies which lie between and

often close to harmonics of the ion cyclotron frequencies, and the waves cause peaks in

the fluctuation spectrum at these frequencies. The combined effect of the enhanced drive

and plasma response at specific – but different – frequencies can be seen in the spectra

in figure 1 for which φ is close to 90◦. As noted above, these spectra contain peaks at

frequencies close to the ion cyclotron harmonics. We refer to the peaks originating from

this combined effect as ion cyclotron structure in the CTS spectrum.

Figure 1b shows the numerically calculated derivative of the spectral power density

with respect to the density ratio RH = nH/(nH + nD). The large-scale shapes of the

spectra are determined mainly by the velocity distribution of the plasma ions. For

increasing RH the spectrum will broaden due to the higher thermal velocity of hydrogen

ions relative to deuterium ions (assuming thermal equilibrium between the two ion

species). The derivative with respect to RH is therefore negative for small frequency

shift and positive for large frequency shift as figure 1 illustrates. When φ is close to 90◦
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the ion cyclotron structure creates additional detailed structures in the derivative. In

particular, the amplitude of the cyclotron structures – the peak amplitude accounting

for the general slope of the spectrum – is highly sensitive to plasma composition. The

widths and center frequencies of the peaks are also sensitive to RH, and in general the

presence of the cyclotron structure strongly enhances the sensitivity of the spectrum to

plasma composition. In addition, the higher level of detail in the derivative with respect

to RH has the effect that degeneracies of the functional dependence of the spectrum on

plasma composition with the functional dependence on other plasma parameters can

be resolved when φ is near 90◦. It is this strong and detailed sensitivity which allows

inference of the fuel ion ratio from a measured spectrum.

Indeed, previous feasibility studies [16] have found that such a diagnostic could

fulfill the measurement requirements for ITER and that it could be combined with

the CTS system foreseen to measure fast ion velocity distributions on ITER [17–19].

In preparation for proof-of-principle experiments the CTS receiver at TEXTOR was

recently modified for measurements with frequency resolution better than 1 MHz [20] –

as would be required to demonstrate the ability to resolve cyclotron structure in CTS

spectra. The first measurements with the modified receiver demonstrating the ability

to resolve ion cyclotron structure in the CTS spectrum were reported in [14]. The same

series of experiments further demonstrated the sensitivity of the ion cyclotron structure

to plasma composition with measurements taken in plasmas dominated by hydrogen,

deuterium and 3He, respectively.

In this paper we examine the origin of cyclotron structure in CTS spectra

theoretically. We illustrate our results with numerical examples, and to ensure the

relevance of our numerical work to experiments possible on present machines, the

examples are based on plasma parameters relevant to the CTS experiments at TEXTOR.

For use in this paper we therefore define a standard plasma scenario relevant to CTS

experiments at TEXTOR. The parameters for this scenario are given in Appendix A,

and we use these parameters in all numerical calculations except where changes are

explicitly noted in the text or in figure captions. In this scenario we consider plasmas

consisting of fully ionized hydrogen and deuterium, and we investigate the sensitivity

of the spectrum to the hydrogen to deuterium density ratio RH = nH/(nD + nH). The

sensitivity of the spectrum to RH is entirely analogous to the sensitivity to the fuel ion

ratio in a DT-plasma and we can use RH as a proxy for the fuel ion ratio with no loss

of generality.

Section 2 gives an outline of the model used in the numerical calculations. In

Sections. 3 and 4 we show that the ion cyclotron structure results partly from the

direct influence of ion cyclotron motion on the driving terms for the plasma fluctuations

and partly from the influence of weakly damped ion Bernstein waves on the thermal

fluctuation spectrum. In section 5 we examine the relative importance of the two effects

in the total spectrum for the purpose of fuel ion ratio diagnostics. Here we find that

both effects are generally present in CTS spectra with φ ∼ 90◦ and that for certain

parameter ranges both effects are required for accurate determination of the fuel ion
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ratio.

2. Kinetic model of collective Thomson Scattering

In CTS measurements an incident macroscopic probing wave with wave vector and

angular frequency (ki, ωi) interacts with microscopic thermal fluctuations in the plasma

with wave vector and frequency (kδ, ωδ). The interaction sets up a current which

in turn drives a third wave, the scattered wave with wave vector and frequency

(ks = ki + kδ, ωs = ωi + ωδ). When detected, the scattered wave allows inference of

plasma properties which affect the thermal fluctuations that caused the scattering. In

this paper the scattering process will be described using the model developed in [21–24].

The scattering process is treated in a fully electromagnetic approach assuming that

the plasma response can be considered cold at the frequencies and wave vectors of the

incident and scattered waves and that effects of collisions are negligible. The treatment

of the fluctuations assumes a homogeneous plasma, but no further assumptions are made

about the nature of the fluctuations which are described in a fully kinetic approach. The

model is therefore not limited to cold collective fluctuations, and it will include the effects

of warm plasma fluctuations such as ion Bernstein waves which enter the spectrum when

the resolved fluctuation wave vector is near perpendicular to the main magnetic field

in the plasma. In [23] it is demonstrated that for φ ∼ 90◦ scattering from fluctuations

in quantities other than the electron density, as well as the relative phase of these

components, may play a significant role. For such geometries a fully electromagnetic

approach is therefore generally required to describe the scattering process.

Using the compact formulation given in [23] the received spectral power density is

given by‡
∂P s

∂ωs

= P iOb(λ
i
0)

2r2e
1

2π

∑

a

Σ(a), with a = electrons, ion species (1)

Σ(a) =
∑

αβ

Σ
(a)
αβ , with α, β = E,B, j, n. (2)

Here Σ
(a)
αβ is the scattering function for plasma fluctuations in the field and fluid variables

(α, β) driven by the thermal motion of particle species a. The indices α and β represent

the fluctuating quantities which are relevant to the scattering process, namely, the

electron density, n, and the electron current, j, as well as the electric and magnetic fields.

For simplicity n and j do not carry a superscript indicating particle species when used

in this capacity. P i is the power in the incident probing beam, Ob is the beam overlap,

λi
0 = ωi/c is the vacuum wavelength of the probing radiation, and re = q2e/4πǫ0mec

2 is

the classical electron radius. The beam overlap is defined as the volume integral over

the product of the normalized probe and receiver beam intensities. The beam intensities

‡ Note that these expressions are different from those in [23] in two respects: The front factor in

equation (1) is not proportional to the unperturbed density (which is contained in Σ(a)) and the

summation over particle species is made explicit.
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will usually be Gaussian, but some insight can be gained by noting that for uniform

beam intensities and perfect intersection the beam overlap is given by the ratio of the

scattering volume to the product of the beam cross-sectional areas, Ob ≃ V/AiAs. Due

to refraction Ob will have some minor frequency dependence which is ignored here. The

spectral variation of the received scattered power is contained in the scattering functions

which are given by

Σ
(a)
αβ =

(ωiωs)2

ω4
pe

1

LiLs
Ĝ

(α)
i 〈α̃(a)

i β̃
(a)
j 〉Ĝ(β)∗

j (3)

Here ωpe is the electron plasma frequency, and Li and Ls are the normalized fluxes

of the incident and scattered radiation, respectively. Summation of repeated lower

indices is implied. An overhead tilde indicates thermal fluctuation levels, so for

instance B̃ = BM − B where BM is the magnetic field of the microscopic plasma

state and B = 〈BM〉 is the macroscopic magnetic field given by the ensemble average

of microscopic states. The coordinate system is defined such that B = Bẑ and

kδ = kδ
‖ẑ+ kδ

⊥x̂.

The dielectric coupling operators, Ĝ
(α)
i , describe interaction of the incident wave

with fluctuations in the set of field and fluid variables {Ei, Bi, ji, n} and the coupling to

the scattered wave. Explicit expressions for the normalized fluxes and dielectric coupling

operators are derived in [21, 22] and given in a compact notation in [23], and they will

not be reproduced here. While these factors are of great importance for the scattering

theory, they impart little spectral variation, and therefore little sensitivity to plasma

composition, to the received scattered power. Rather, our attention shall be focused on

the Fourier transform of the correlation of fluctuations in the field and fluid quantities,

〈α̃(a)
i β̃

(a)
j 〉, which contains most of the sensitivity to plasma composition. We shall give

expressions for these terms below, but for details of their derivation we refer to [23,24].

In the dressed particle approach 〈α̃(a)
i β̃

(a)
j 〉 can be calculated as the product between

the correlation tensor for unscreened current fluctuations in particle species a, 〈̃j(a0)j̃(a0)〉,
and the corresponding fluctuation operators,

〈α̃(a)
i β̃

(a)
j 〉 = Ŝ

(αa)
ik 〈j̃(a0)k j̃

(a0)
l 〉Ŝ(βa)∗

jl . (4)

Here the fluctuation operators, Ŝ
(αa)
ik , quantify the plasma response, α̃

(a)
i , in the quantity

α to unscreened current fluctuations in particle species a,

α̃i =
∑

a

α̃
(a)
i with α̃

(a)
i = Ŝ

(αa)
ik j̃

(a0)
k . (5)

The fluctuation operators may be derived from the plasma wave equation, and explicit

expressions for each operator will be given in section. 4. The unscreened current

correlation tensor is given by

〈j̃(a0)k j̃
(a0)
k′ 〉 = q2a

∫

vkvk′〈f̃ (a0)(p)f̃ (a0)(p′)〉dpdp′. (6)

where 〈f̃ (a0)(p)f̃ (a0)(p′)〉 is the spatial and temporal Fourier transform of the two

time correlation 〈f̃ (a0)(x, t)f̃ (a0)(x′, t′)〉 and qa is the charge of species a. Here
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f̃ (a) = f̃ (a0) + f̃ (a1), where f̃ (a0) represents the evolution of the microscopic distribution

function f̃ (a) in the absence of particle interactions and f̃ (a1) represents the dielectric

response of the plasma to the microscopic fields (Ẽ, B̃) set up by the unscreened

particle motion. Similarly, 〈α̃(a)
i β̃

(a)
j 〉 represents the plasma dielectric response to the

free streaming particle motion described by the unscreened current correlation tensor

〈̃j(a0)j̃(a0)〉. To give an example, 〈ñ(H)ñ(H)〉 describes fluctuations in the electron density

due to electron screening of hydrogen ions moving through the plasma.

The unscreened current correlation tensor, 〈̃j(a0)j̃(a0)〉, can be expressed in terms of

the unperturbed macroscopic distribution function [23,24]

〈̃j(a0)j̃(a0)〉 = (2π)2
maq

2
a

|k‖|

∫

dp⊥p⊥

∞
∑

l=−∞

clc
∗
l f

(a0)(p⊥, p‖) (7)

where

cl =











lωca

k⊥
Jl(k⊥ρa)

−iv⊥J
′
l (k⊥ρa)

v‖Jl(k⊥ρa)











, v‖ =
ω − lωca

k‖
=

p‖
ma

(8)

and Jl are Bessel functions of the first kind of order l, primes indicate derivatives,

ωca = qaB
(0)/ma is the cyclotron frequency and ρa = v⊥/ωca is the Larmor radius.

Below we shall see that for scattering geometries where the resolved fluctuation wave

vector is nearly perpendicular to the unperturbed magnetic field, φ = ∠(B(0),kδ) ∼ 90◦,

both 〈̃j(a0)j̃(a0)〉 and the fluctuation operators contain cyclotron structures which enhance

the sensitivity of the total spectrum to plasma composition – as well as to certain other

parameters such as the ion temperature. In the following sections we examine the origin

and properties of the cyclotron structure in each term and then evaluate their relative

importance for the total spectrum.

3. Signatures of ion cyclotron motion in the unscreened current correlation

tensor

Assuming the unperturbed momentum distribution for particle species a to be an

isotropic Maxwellian – the only case to be considered here – with temperature Ta and

particle density n(a0)

f (a0)(p⊥, p‖) =
n(a0)

(2πmaTa)3/2
exp

{

−
p2⊥ + p2‖
2maTa

}

(9)

the unscreened current correlation tensor, equation (7), becomes

〈̃j(a0)j̃(a0)〉(k, ω) = (2π)2q2an
(a0)ma

(2πmaTa)3/2|k‖|

∞
∑

l=−∞

exp
{

−ζ2l
}

M(l) (10)

M(l) =

∫

dp⊥ p⊥clc
∗
l exp

{

− p2⊥
2maTa

}

(11)
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Figure 2. The 〈j̃(H0)
y j̃

(H0)
y 〉 (a) and 〈j̃(D0)

y j̃
(D0)
y 〉 (b) elements of the unscreened

current correlation tensor for different values of φ = ∠(B,kδ). The frequency scale is

normalized by the hydrogen cyclotron frequency. 〈̃j(i0)j̃(i0)〉 is even in νδ for isotropic

momentum distributions, so the elements are shown only for positive νδ. For φ close

to 90◦ peaks develop at each harmonic of the ion cyclotron frequency and for φ → 90◦

these elements go to zero except at the cyclotron harmonics.

with

ζl =

√

ma

2Ta

(

ω − lωca

k‖

)

=
v‖
vta

, vta =
√

2Ta/ma . (12)

The momentum integrals in M(l) can be solved analytically, and the sums over l can

be evaluated numerically by Clenshaw’s method. Below, we shall examine numerical

results for some elements in 〈̃j(i0)j̃(i0)〉, but the explicit forms will not be listed except for

the 〈j̃(i0)x j̃
(i0)
x 〉 element. We use the superscript i to indicate any ion species, and below

we shall use I to indicate a sum over all ion species. We further note that while the

diagonal elements of 〈̃j(a0)j̃(a0)〉 are real, the off-diagonal elements are in general complex

quantities. However, Σ
(a)
αβ is Hermitian when considered as a matrix with indices (α, β),

so the sums Σ
(a)
αβ + Σ

(a)
βα are real. For simplicity we shall here restrict ourselves to

examining the diagonal elements which are usually the dominant terms. This approach

is useful to gain insight in the behavior of the unscreened current correlation tensor, but

in calculations of the total scattering spectra we use the full expressions with all terms

included.

Figure 2 shows examples of numerically calculated elements of 〈̃j(H0)j̃(H0)〉 and

〈̃j(D0)j̃(D0)〉 for different values of φ and for parameters corresponding to the standard

scenario defined in Appendix A. When the resolved fluctuation wave vector component

is nearly perpendicular to the magnetic field (i.e., in the limit where φ → 90◦, k‖ → 0 and

k⊥ → k), the argument of the exponential function in equation (10) goes to negative

infinity except at (or near) frequencies coinciding with a cyclotron harmonic where

ω = lωca so ζl = 0. Here we are interested in the ion dynamics and plasma composition,
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so we focus our attention on the ion cyclotron range of frequencies and will not consider

what happens near electron cyclotron harmonics. At each ion cyclotron harmonic,

ωci, there will be one term for which the exponential function in the sum over l in

equation (10) is unity. The elements of 〈̃j(i0)j̃(i0)〉 in which the z-element of cl is not

involved then diverge due to the |k‖|−1 dependence in the front factor of equation (10).

At other frequencies all terms in the sum over l will be suppressed by the exponential

function. Thus

lim
φ→90◦

〈j̃(i0)k j̃
(i0)
k′ 〉 =

{

∞ for ω = nωci

0 for ω 6= nωci
n ∈ Z, k, k′ = x, y (13)

This behavior is seen in figure 2 as the gradual emergence at each ion cyclotron harmonic

of peaks with increasing amplitude and decreasing width for φ → 90◦ until finally these

elements of 〈̃j(i0)j̃(i0)〉 consists of a series of delta function-like spikes (though note that

such a spectrum is not obtained experimentally because the influence of collisions will

ensure that the peaks reduce to a Lorentzian form [25]). These peaks are the signatures

of ion cyclotron motion and will be referred to as ICM signatures. As seen in figure 2

the frequency separation between ICM signatures in 〈̃j(D0)j̃(D0)〉 is half that of 〈̃j(H0)j̃(H0)〉
corresponding to the ratio between the ion cyclotron frequencies for the two ion species.

In this limit the shape of 〈̃j(i0)j̃(i0)〉 therefore depends strongly on the cyclotron frequency

for the ion species in question. Figure 2 shows the yy-elements of 〈̃j(i0)j̃(i0)〉. Qualitatively

similar behaviors are found for the xx-element, which will be examined in detail below,

and for the off-diagonal elements, which will not be examined in detail.

In the opposite case, at values of φ far from 90◦, each term in the sum over cyclotron

harmonics contributes to the sum over a wide range of frequencies roughly centered

around the cyclotron harmonic. The structure created in 〈̃j(i0)j̃(i0)〉 by the individual

terms is then smeared out by contributions from other terms leaving the total spectrum

with no noticeable signatures of ion cyclotron motion. The shape of 〈̃j(i0)j̃(i0)〉 then

depends mainly on the thermal velocity of the ion species.

The behavior of elements in 〈̃j(i0)j̃(i0)〉 which involve the z-element of cl is somewhat

different because the z-element of cl is proportional to v‖ and v‖ = 0 at the ion cyclotron

harmonics (see equation (8)). In the limit φ → 90◦ these elements therefore go to zero

even at the cyclotron harmonics. This behavior is illustrated in figure 3 which shows

〈j̃(H0)
z j̃

(H0)
z 〉 for φ close to 90◦ and the total 〈j̃(I0)z j̃

(I0)
z 〉 element in a narrow frequency range

around an ion cyclotron harmonic. When φ is very close to 90◦ we find a double peaked

structure in the vicinity of the ion cyclotron harmonic. This double peaked structure

can be understood as a single peak centered on each cyclotron frequency, but with a

hollow center due to the z-element of cl. At intermediate values of φ the structures

broaden and eventually merge to form a single peak between the cyclotron harmonics.

For diagnostic purposes it is noteworthy that the ion cyclotron features in 〈̃j(i0)j̃(i0)〉
are highly sensitive to the strength and direction of the magnetic field as well as the ion

thermal velocity. They also provide increased sensitivity to the plasma composition for

scattering geometries where the cyclotron features are noticeable. Figure 4 illustrates
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Figure 3. The 〈j̃(H0)
z j̃

(H0)
z 〉 element (a) and the total 〈j̃(I0)z j̃

(I0)
z 〉 = 〈j̃(H0)

z j̃
(H0)
z 〉 +

〈j̃(D0)
z j̃

(D0)
z 〉 element (b) of the unscreened current correlation tensor for different

values of φ = ∠(B,kδ). The frequency scale is normalized by the hydrogen cyclotron

frequency, and (b) is focused around a single hydrogen cyclotron harmonic. A double

peaked structures is found for φ very close to 90◦. The structure broadens for angles

further from perpendicular and at φ = 92◦ the peaks have merged to form a single

peak between cyclotron harmonics.

this sensitivity with elements of 〈̃j(I0)j̃(I0)〉 calculated at different compositions and

geometries and with contributions to 〈̃j(I0)j̃(I0)〉 from different ion species. We shall

discuss the origins and properties of this sensitivity as well as some limitations to its

usefulness for diagnostics purposes.

Contributions to 〈̃j(I0)j̃(I0)〉 are linearly proportional to the density of each ion species

through the front factor in equation (10), but their shapes do not depend directly on the

ion densities. For given wave vectors and magnetic field strength, the shape of 〈̃j(i0)j̃(i0)〉
depends on the ion cyclotron frequency (i.e., the charge to mass ratio) and the ion

thermal velocity (i.e., the mass and temperature of each ion species). If two ion species

have the same density, thermal velocity and cyclotron frequency (i.e., T1/m1 = T2/m2

and q1/m1 = q2/m2) their contributions to 〈̃j(I0)j̃(I0)〉 will differ only by a constant factor

q21/q
2
2. In this case, variations in the density ratio result only in scaling of 〈̃j(I0)j̃(I0)〉.

This is not useful for diagnostic purposes since such a scaling will be degenerate with a

number of other experimental parameters (most notably the power in the probing beam

and the quality of the beam overlap). However, in the more common situation that the

ion thermal velocities are unequal this degeneracy is broken and the shape of 〈̃j(I0)j̃(I0)〉
will be sensitive to plasma composition. If the ions are in thermal equilibrium the

shapes of contributions from ions with different masses will differ because the thermal

velocities of heavier ions are lower resulting in more narrow contributions to 〈̃j(I0)j̃(I0)〉
and vice versa for lighter ions. This type of sensitivity to plasma composition does not

depend on the presence of ICM signatures, and it provides the CTS spectrum with a

weak sensitivity to the fuel ion ratio even for φ far from 90◦.
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Figure 4. (a) Total 〈j̃(I0)y j̃
(I0)
y 〉 elements for the standard plasma scenario, but with

different density ratios for hydrogen and deuterium and at different values of φ. (b) The

〈j̃(i0)x j̃
(i0)
x 〉 elements for helium, hydrogen, deuterium and tritium. Plasma parameters

as in the standard scenario but with ne = 5 × 10−19 m−3, nHe = nH = nD = nT =

1× 10−19 m−3 and assuming thermal equilibrium.

The ICM signatures provide additional sensitivity to the plasma composition

through their amplitude and the frequencies at which they occur. For ion species with

equal cyclotron frequencies the center frequencies of the ICM signatures coincide, and

it is not possible to distinguish ions by the frequencies at which they create cyclotron

features. However, the amplitudes and widths of the peaks are sensitive to the ion

thermal velocity. In thermal equilibrium ions with different masses will therefore –

in addition to the different underlying widths of their contributions to 〈̃j(I0)j̃(I0)〉 –

create ICM signatures with different amplitudes. When the ions have different cyclotron

frequencies the ICM signatures increase the sensitivity to plasma composition even more.

The ions then create ICM signatures in 〈̃j(I0)j̃(I0)〉 at their individual cyclotron harmonics,

and the relative height of these features provides information on the relative densities.

For example, in a plasma consisting of hydrogen and deuterium (ωcD = ωcH/2) there

will be two sets of ICM signatures: one set with contributions from both hydrogen

and deuterium at the frequencies where their harmonics coincide and one set resulting

only from deuterium contributions. Thus, in figure 4a, ICM signatures resulting from

deuterium alone can be seen between the features resulting from both hydrogen and

deuterium – but only for low hydrogen ion density. At higher hydrogen densities

〈̃j(I0)j̃(I0)〉 is dominated by the hydrogen contribution, and this decreases the sensitivity

to plasma composition.

Thus, figure 4 also shows an example of how ions which create strong currents and

strong cyclotron features will tend to dominate the total 〈̃j(I0)j̃(I0)〉 even at relatively

low densities. This affects the sensitivity to plasma composition: ions which create

strong currents and cyclotron features can be detected even at low concentrations, but
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conversely they may also dominate the spectrum at high concentrations and render it

less sensitive to the plasma composition. Figure 4b shows contributions to 〈j̃(I0)x j̃
(I0)
x 〉

from hydrogen, deuterium, tritium and helium. Hydrogen contributions are larger and

have stronger cyclotron features than deuterium contributions which are in turn larger

and have stronger cyclotron features than tritium contributions. However, the three

hydrogen isotopes all give smaller contributions and weaker cyclotron features than

helium. We can understand these properties from the explicit expressions for 〈̃j(i0)j̃(i0)〉,
and since 〈j̃(i0)x j̃

(i0)
x 〉 has the simplest analytic expression we shall consider this element

in some detail. Carrying out the momentum integral in equation (11) and inserting in

equation (10) we find

〈j̃(i0)x j̃(i0)x 〉(k, ω) =2
√
πq2i n

(i0)

vti|k‖|

(

ωci

k⊥

)2

×
∞
∑

l=−∞

l2 exp (−ζ2l − k2
⊥ρ

2
i )Il(k

2
⊥ρ

2
i )

(14)

For the parameter ranges considered here k2
⊥ρ

2
i > 20 in the ion terms. In this case

we can, to good accuracy, approximate the modified Bessel functions by Iν(x) →
ex/

√

(2πx), x ≫ 1, ν for the lower values of l. At low frequency shifts the higher

harmonics contribute very little since the modified Bessel functions decay rapidly with

increasing l. For low frequency shifts and using ρ2i = v2ti/2ω
2
ci we then get

〈j̃(i0)x j̃(i0)x 〉(k, ω) ∼= 2q2i n
(i0)

v2ti|k‖|

(

ωci

|k⊥|

)3

×
∞
∑

l=−∞

l2 exp (−ζ2l )

=
q5i (B

(0))3n(i0)

m2
i Ti|k‖| |k⊥|3

×
∞
∑

l=−∞

l2 exp (−ζ2l )

(15)

We can recognize some of the trends seen in figure 4 in the front factor of equation (15).

Assuming thermal equilibrium, isotopes with larger mass will generally give lower

contributions to 〈̃j(I0)j̃(I0)〉 and ions with higher charge will give larger contributions.

The precise relations depend on the ions involved. The front factor for deuterium will

be four times smaller than that for hydrogen. On the other hand, the front factor for

helium will be two times greater than that for hydrogen due to the greater charge.

In the limit φ → 90◦ the exponential function in the sum over l will vary between

unity at the cyclotron harmonics and zero everywhere else – as was discussed previously.

The amplitude of the ICM signatures, which arise for φ ∼ 90◦, depends on how small

the exponential function can be between the cyclotron harmonics (the maximum value,

attained at the cyclotron harmonics, is always unity regardless of plasma parameters).

The minima of 〈j̃(i0)x j̃
(i0)
x 〉 are found at frequencies roughly halfway between cyclotron

harmonics. At each of these minima the argument of the exponential function in the

two leading terms in the sum over l will be approximately

ζ2l =
mi

2Ti

(

ωci

2k‖

)2

=
q2i B

2

8miTik2
‖

. (16)



Principles of fuel ion ratio measurements by CTS 13

The greater ζ2l is at the minima, the deeper the minima will be, and the greater the

amplitude of the ICM signatures. So – as is also seen in figure 4 – assuming thermal

equilibrium, isotopes with higher mass give cyclotron features with lower amplitudes.

For constant charge to mass ratio the amplitude increases with increasing charge as is

seen in figure 4 when comparing helium and deuterium.

4. Signatures of ion Bernstein waves in the fluctuation operators

The fluctuation operators quantify the plasmas dielectric response to current

fluctuations driven by unscreened test particles moving along characteristics, α̃
(a)
i =

Ŝ
(αa)
ik j̃

(a0)
k . To give an example, Ŝ

(Ee)
xz gives the electric field fluctuation in the x-direction

resulting from an electron current density fluctuation in the z-direction. The fluctuation

operators are derived in [23] and are given by

Ŝ
(Ea)
ik =

−i

ωǫ0
Λ−1

ik , Ŝ
(Ba)
ik =

−ik

ω2ǫ0
ǫijlk̂jΛ

−1
lk

Ŝ
(ji)
ik = −χ

(e)
ij Λ

−1
jk , Ŝ

(je)
ik = Ŝ

(ji)
ik + δik

Ŝ
(na)
k =

ki
ωqe

Ŝ
(ja)
ik

(17)

where

Λij = ǫij +N2[k̂ik̂j − δij] , ǫij = δij +
∑

a

χ
(a)
ij (18)

is the plasma wave tensor and χ
(a)
ij is the plasma susceptibility. The plasma susceptibility

can show behaviors which are in some respects analogous to those studied for 〈̃j(i0)j̃(i0)〉
in section. 3. We will not give explicit expressions for every element in the plasma

susceptibility, but to give an example it is instructive to examine the expression for χ
(a)
xx

which, using results from [26], can be written

χ(a)
xx =

2
√
πq2an

(a0)

k2
⊥ρ

2
i vta|k‖|

×
[

∞
∑

l=−∞

l2D(ζl)Il(k
2
⊥ρ

2
i ) exp (−k2

⊥ρ
2
i )

+ i
√
π
k‖
|k‖|

∞
∑

l=−∞

l2 exp (−ζ2l − k2
⊥ρ

2
i )Il(k

2
⊥ρ

2
i )
]

,

(19)

where D(x) is the Dawson integral, which we note gives zero for x = 0 and in the

limits x → ±∞. For φ ∼ 90◦ the sums appearing in equation (19) give the same type of

oscillatory behavior near ion cyclotron harmonics as was found for 〈̃j(i0)j̃(i0)〉 in section. 3

– indeed, the sum in the imaginary part of χ
(a)
xx is identical to the sum in equation (14)

for 〈j̃(a0)x j̃
(a0)
x 〉. However, the fluctuation operators depend on all elements of the plasma

susceptibility through the inverse wave tensor. For φ ∼ 90◦ we may therefore expect the

fluctuation operators to show an oscillatory behavior analogous, but not identical, to

the behavior found for 〈̃j(i0)j̃(i0)〉. This behavior can be identified with the influence of

weakly damped ion Bernstein waves on the plasma dielectric response to the unscreened

current fluctuations, and its influence on the spectrum will be examined below.
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Figure 5. (a) Re(|Λ|) in the standard plasma scenario, but for different values of φ.

For φ ∼ 90◦ weakly damped IBWs cause oscillations and eventually sign inversions

in Re(|Λ|) at frequencies |ν|/νcH . 20. The fast magnetosonic wave causes a sign

inversion at higher frequencies (not shown in the left graph, but the effects are seen

on the right). (b) Ŝ
(ne)
x for φ = 93◦ in the standard plasma scenario. The fast

magnetosonic wave and IBWs cause enhanced dielectric response in their respective

frequency ranges. The IBW signatures are poorly resolved on the frequency scale used

here; they will be examined in greater detail below.

Plasma waves satisfy the dispersion relation |Λ| = 0 where |Λ| is the determinant

of the wave tensor. At frequencies and wave vectors in the vicinity of such waves we

expect the plasma dielectric response to unscreened thermal fluctuations to be strongly

enhanced – with damped waves giving rise to weaker signatures covering broader

frequency ranges than undamped waves. Each element in the fluctuation operators,

equations (17), contains terms proportional to an element of the inverse wave tensor

and thereby§ to |Λ|−1 which will be nearly singular in the vicinity of a weakly damped

wave. For scattering geometries with kδ close to or equal to the real part of the wave

vector for a weakly damped wave, a peak will therefore occur in the spectrum near the

wave frequency. This is illustrated in figure 5 which shows Ŝ
(ne)
x and the real part of the

determinant of the wave tensor for three different values of φ and with other parameters

as in the plasma standard scenario.

For φ far from 90◦, the real part of |Λ| is smooth and uniformly positive as a

function of frequency. For φ approaching 90◦ it starts to oscillate at low frequencies,

and eventually changes sign (thus crossing zero) at frequencies close to the hydrogen

cyclotron harmonics. For φ even closer to 90◦ it crosses zero at the deuterium cyclotron

harmonics as well. The imaginary part behaves in a qualitatively similar manner and is

not shown – but we note that it does not cross zero at the same frequencies as the real

part, which indicates that these are damped waves. For φ = 90◦ the real part of |Λ| has
a singular behavior as it changes sign, and for high frequency shifts the sign inversions

§ From Cramer’s rule for matrix inversion.
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take place very close to the cyclotron harmonics. Meanwhile the imaginary part goes to

zero for φ = 90◦ and the waves are now undamped – except for collisional damping which

is not included in the model used here. These waves are the pure ion Bernstein waves

while the damped waves for φ ∼ 90◦ are neutralized ion Bernstein waves – neutralized

because the electrons are able to stream along the magnetic field to neutralize the wave

space charge. For fuel ion ratio diagnostics the neutralized ion Bernstein waves are the

more relevant of the two, and they will be our main focus below. As expected we see

in figure 5b that the waves strongly enhance the fluctuation operator in the frequency

range |ν|/νcH . 20. Outside this range we note that the fast magnetosonic wave appears

at frequencies around |ν|/νcH ≃ 53 (for the standard scenario used here; the precise

frequency depends on φ). The wave tensor determinant, Re(|Λ|), then changes sign

again, and the wave causes a strong response in the fluctuation operators.

IBWs propagate at frequencies between harmonics of the cyclotron frequencies of

each ion species in the plasma. Thus, in a pure hydrogen plasma the IBWs propagate

between the hydrogen cyclotron harmonics. In a plasma with hydrogen and deuterium

the dispersion relation changes to produce waves between each hydrogen harmonic and

the neighboring deuterium harmonics. In plasmas with a larger number of ion species

the picture becomes progressively more complicated, with each new species altering

the dispersion relation for existing waves and giving rise to new waves if its cyclotron

frequency does not coincide with those of the other ions. For the wave vectors considered

here the frequencies will in practice be close to the ion cyclotron harmonics. Therefore

each wave can, in a rough sense, be associated with a particular ion species, and the

strength of its signature in the spectrum will increase with the density of that ion.

It is not possible to examine every element of the fluctuation operators in detail

here. For simplicity we focus on the real part of Ŝ
(Ea)
xx , and figure 6 illustrates some

key properties of its dependence on RH = nH/(nH + nD). Ŝ
(Ea)
xx was chosen only for

ease in plotting as it is well behaved at νδ = 0. The points discussed below apply to

the fluctuation operators in general. Figure 6a shows Ŝ
(Ea)
xx for the standard plasma

scenario and for plasmas dominated by respectively hydrogen and deuterium with the

other parameters kept fixed. As expected the IBWs cause enhanced dielectric response

at certain frequencies and at these frequencies peaks – or IBW signatures – appear in

Ŝ
(Ea)
xx . Several properties of the IBW signatures are worth discussing. First, although

the peaks appear at frequency intervals corresponding roughly to the ion cyclotron

frequencies, they do not always appear at or even near the cyclotron harmonics. The

IBW signatures originate from a dispersive wave, so in this respect their behavior can

be very different from that of the ICM signatures which are always centered on the

ion cyclotron harmonics. We also note in figure 6 that signatures of IBWs related

to the presence of hydrogen tend to dominate. Clear signatures of IBWs related to

deuterium are seen only in plasmas dominated by deuterium, and even then they are

mainly seen near the lower cyclotron harmonics. This trend results from cyclotron

damping of the IBWs. IBWs are affected by cyclotron damping when their frequencies

fall in intervals roughly given by |ω/ωci − n| . |k‖ρi| where n is any positive integer.
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Figure 6. (a) The fluctuation operator Ŝ
(E)
xx for the standard plasma scenario and

for plasmas dominated by respectively hydrogen and deuterium with other parameters

kept fixed. IBW signatures related to hydrogen dominate the operator except at low

hydrogen density where signatures related to deuterium appear. (b) Derivatives of

Ŝ
(E)
xx and 〈j̃(I0)x j̃

(I0)
x 〉 with respect to RH. Note that in the legend Sxx,E = Ŝ

(E)
xx .

To facilitate comparison of the two the figure shows the logarithmic derivative

dln(y)/dRH = y−1d(y)/dRH. The very different functional dependence of the two

quantities on RH helps break degeneracies with other parameters.

For conditions relevant to the CTS measurements at TEXTOR we have k‖ρH ∼ 5 cosφ.

Cyclotron damping is therefore significant unless the resolved wave vector is nearly

perpendicular to the magnetic field, and for practical purposes all the IBWs considered

here are subject to some degree of cyclotron damping. Corresponding to the trend seen

in figure 6, cyclotron damping will affect IBWs related to deuterium more strongly and

over wider frequency ranges than it will affect IBWs related to hydrogen (assuming

thermal equilibrium).

Although the wave damping decreases the strength of IBW signatures, we should

note that it has certain useful features as well. Whereas the ICM signatures depend on

ion charge and mass only in the combinations Ti/mi through the thermal velocity and

qi/mi through the cyclotron frequency, the cyclotron damping is fundamentally a finite

Larmor radius effect which depends on the ratio
√
Timi/qi. Thus, degeneracies in the

functional dependence of the spectrum on the mass, charge and temperature of each ion

can be resolved through the influence of wave damping.

The graph in figure 6b shows the derivatives of 〈j̃(I0)x j̃
(I0)
x 〉 and Ŝ

(Ea)
xx with respect

to RH. For easy comparison of these rather different quantities the figure shows the

derivative normalized by the quantity itself, dln(y)/dRH = y−1d(y)/dRH. Here it is

worth noting the signs, relative size and different shapes of the two derivatives.

In thermal equilibrium the velocity distribution for hydrogen is wider than that

for deuterium. The derivative of any component in 〈̃j(I0)j̃(I0)〉 with respect to RH will

therefore be negative at low |νδ| and positive at high |νδ|. Similarly, increases in the
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ion temperature have the general effect of increasing the average thermal velocity, so

in the absence of ICM signatures the functional dependence of 〈̃j(I0)j̃(I0)〉 on Ti and RH

can be very similar. However, all ICM signatures decrease in amplitude for increasing

Ti (see the discussion of equation (16)) while some ICM signatures will increase and

some will decrease in amplitude when RH changes. This ability to break degeneracies in

the functional dependence on different parameters significantly increases the diagnostic

potential of spectra with ICM and IBW signatures.

In comparison with 〈̃j(I0)j̃(I0)〉 we see that the derivative of Ŝ
(Ea)
xx stays negative at

all frequencies. There are also differences with respect to the influence of ICM and IBW

signatures on the two derivatives. Peaks in the derivatives do not occur at the same

frequencies and they have different widths and amplitudes. The details are different

for derivatives of other operators, but none of them closely reproduce derivatives of

〈̃j(I0)j̃(I0)〉. These differences in the functional dependencies on RH further decrease the

possibility that the functional dependence of the total spectrum on RH will be degenerate

with the dependence on other parameters. Therefore, while 〈̃j(I0)j̃(I0)〉 is in general more

sensitive than the fluctuation operators to RH and the amplitude of ICM signatures are

in general greater than IBW signatures, it is not implied that 〈̃j(I0)j̃(I0)〉 dominates the

diagnostic potential. Indeed, we shall see below that for certain parameter ranges both

effects are required to diagnose RH.

5. Relative importance of ICM and IBW signatures for fuel ion ratio

diagnostics

Since both the fluctuation operators and the unscreened current correlation tensor

display peaks for φ ∼ 90◦, it is relevant to consider the origin of peaks in the final

spectrum – i.e., whether peaks in the spectrum are ICM or IBW signatures. However,

with the exception of certain extreme cases it is not possible to give an unambiguous

answer to this question, and in general the origin of the peaks will be mixed with

contributions from both ICM and IBWs. Figure 7 seeks to illustrate this issue. Figure 7a

shows the total scattering function and some of the more important elements in Σ(e)

and Σ(I). The total scattering function is dominated by Σ
(I)
nn, which describes scattering

off density fluctuations. Figure 7b compares Σ
(I)
nn to a few of the elements multiplied to

calculate Σ
(I)
nn. Although the relative amplitudes of the ICM signatures in 〈̃j(I0)j̃(I0)〉 are

typically greater than the amplitudes of the IBW signatures in the fluctuation operators,

it would be misleading to suggest that the ion cyclotron features dominate entirely. The

combined peaks have a different shape and are often not centered on an ion cyclotron

harmonic. Further, we should note from figure 7a that Σ(e) contributes significantly

to the total scattering function. Since 〈̃j(e0)j̃(e0)〉 does not contain ICM signatures, any

peaks in Σ(e) result purely from IBW signatures in the fluctuation operators. For φ ∼ 90◦

the contribution of Σ(e) to the total scattering function is typically comparable to the

ion terms, and it may even dominate for Te > Ti. Therefore, even if the ICM signatures

were the dominant cause of peaks in Σ(I), peaks in the total scattering function would
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Figure 7. (a) Total scattering function for the standard scenario compared with Σ
(e)
nn

and the diagonal elements of Σ(I). The scattering function is strongly dominated by

the Σ
(I)
nn and Σ

(e)
nn elements. (b) The Σ

(I)
nn compared with 〈j̃(I0)y j̃

(I0)
y 〉 and Ŝ

(ni)
y – i.e., to

some of the factors multiplied when calculating Σ
(I)
nn. For comparison the quantities are

scaled to fit on the same graph. Both the ICM and IBW signatures have a significant

influence, and except in special cases it is in general not possible to say that peaks

in the scattering function are dominated by a single effect. Note that in the legend

Sij,α = Ŝ
(α)
ij and Σa,αβ = Σ

(a)
αβ .

contain contributions from both effects.

To give an estimate of the relative importance of IBW and ICM signatures for

fuel ion ratio measurements by CTS, we can perform a sensitivity analysis and thereby

give theoretical estimates of the uncertainties of such measurements under different

assumptions about ion magnetization. By calculating either 〈̃j(I0)j̃(I0)〉 or the fluctuation
operators with unmagnetized ions we find the theoretical uncertainty of the inferred

values of RH when the effects of the magnetic field are suppressed in either of the two

terms. When the magnetic field is omitted in 〈̃j(I0)j̃(I0)〉 the spectrum will contain no

ICM signatures. When ion magnetization is suppressed in the fluctuation operators the

spectrum contains no signatures of IBWs (or other waves dependent on the magnetic

field). By comparison of the resulting uncertainties we can then estimate the relative

importance of each effect for the diagnostic potential.

We estimate the uncertainty of the inferred value of RH within the framework

of a Bayesian least squares method of inference [27] frequently used to interpret

CTS measurements [7–12]. As we have seen above, the CTS spectrum depends –

in a non-trivial way – on a number of parameters besides the fuel ion ratio. The

functional dependence on these parameters is taken into account in the analysis, and

the Bayesian approach further allows prior knowledge from other diagnostics about all

model parameters to be taken into account. The resulting posterior uncertainty on a

given parameter (i.e., the state of knowledge after the measurement) therefore includes

uncertainties in the prior information and further depends on the uncertainties in the
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CTS spectrum, and the Jacobian for the spectrum [28, 29]. Within this framework

and for given assumptions about the uncertainties in the prior information and the

measured spectrum (i.e., the signal to noise ratio of the CTS receiver), the uncertainty

of the inferred fuel ion ratio can therefore be estimated theoretically for a given set of

plasma and system parameters.

Before discussing the results of these calculations we stress again that the outcome

of the Bayesian analysis is an uncertainty which takes into account the assumed level

of prior uncertainty for each parameter. Therefore the diagnostic potential of the

measurement is expressed by the ratio between the prior and posterior uncertainties

rather than by the posterior uncertainty alone. We shall assume a prior uncertainty

(one standard deviation) of 0.5 for RH, and any posterior uncertainty below this value

expresses a potential to increase knowledge about RH through CTS measurements. We

also stress that the uncertainties found with the approach taken here are basically an

expression of the sensitivity of the spectrum to RH. They assume uncorrelated normally

distributed noise levels in the data, and they assume that it is numerically possible to

find the optimal fit to any measured spectrum (optimal in the least squares sense).

Systematic errors resulting from inaccuracies in e.g. receiver calibration, background

subtraction or the numerical optimization method are therefore not included. However,

within these limits the analysis does provide some insight in the sensitivity of the

spectrum to plasma composition, and here we use it to illustrate the effects of the

different assumptions about ion magnetization.

Figure 8 shows results of such a sensitivity analysis for a scan of φ and RH. All

calculations were done for the standard plasma parameters and the assumed prior

uncertainties given in table A1 in Appendix A. The frequency resolution and bandwidth

of the spectrum were taken to be those of the modified CTS receiver at TEXTOR.

Similarly, the uncertainties in the measured spectra are assumed to be 2% of the signal

strength as was found in initial experiments with the modified receiver and as is expected

from theory [20].

When including effects of the magnetic field in all terms – i.e., with no simplifying

assumptions – the posterior uncertainty is significantly reduced from the prior value

when φ is close to 90◦. As may be expected from the analysis in the preceding sections

the uncertainty is lowest for low RH, but the ability to diagnose plasma compositions is

by no means lost at high RH.

Comparing the result with unmagnetized 〈̃j(I0)j̃(I0)〉 to results with unmagnetized

fluctuation operators, we generally find slightly greater uncertainties with unmagnetized

〈̃j(I0)j̃(I0)〉 (i.e., without ICM signatures). This shows that, at least in this special case,

the ICM signatures are slightly more important for determination of RH than the IBW

signatures (and any other effect of the magnetic field in the fluctuation operators).

However, to say that one of the two effects clearly dominates the diagnostic potential

would be misleading. Especially at high RH we see that in fact both effects are needed to

diagnose plasma composition. This could indicate a degeneracy between the functional

dependence of the spectrum on RH and another parameter or set of parameters, which
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Figure 8. Theoretically estimated uncertainties (one standard deviation) in RH for

scans of φ and RH with different assumptions when calculating 〈̃j(i0)j̃(i0)〉 and the

fluctuation operators. All parameters correspond to the standard plasma scenario

with prior uncertainties as given in table A1. We caution that the uncertainties express

the sensitivity of the spectrum to RH and assume uncorrelated normally distributed

prior uncertainties, and also that results would differ quantitatively for different plasma

scenarios. Clockwise from the top left (a), normal calculation including all effects. Top

right (b), results with unmagnetized ions when calculating 〈̃j(I0)j̃(I0)〉 - i.e., with IBW

signatures, but no ICM signatures. Lower right (c), results with unmagnetized ions

when calculating the fluctuation operators - i.e., with no IBW signatures, but with

ion cyclotron features. Lower left (d), the ratio between the uncertainties with no

cyclotron features and with no IBW signatures. The greatest uncertainties are found

without ion cyclotron features, but in general both effects are seen to be important –

especially at high RH.

is resolved when both effects are included.
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6. Conclusion

We have presented a detailed study of the effects of ion cyclotron motion and ion

Bernstein waves on the CTS spectrum with emphasis on the relevance of these effects

for fuel ion ratio diagnostics. We have found that both effects appear when the

underlying cyclotron structure of the CTS spectrum becomes noticeable, which happens

for scattering geometries with resolved fluctuation wave vectors near perpendicular to

the magnetic field, φ = ∠(B(0),kδ) ≃ 90◦. For scattering with kδ at an oblique angle

to the magnetic field, contributions to the spectrum from individual harmonics of the

ion motion overlap and are smeared out in the total spectrum, but when the cyclotron

motion is seen near right angles to the magnetic field, each harmonic contributes to

the spectrum only in a narrow frequency range. The unscreened current correlation

tensor, 〈̃j(I0)j̃(I0)〉, then displays ICM signatures while IBWs enter the spectrum through

the fluctuation operators which, in the dressed particle approach to fluctuation theory,

quantify the plasma dielectric response to the unscreened current fluctuations. Both

the ICM and IBW signatures are sensitive to plasma composition as well as a range

of other plasma parameters – perhaps most notably the ion temperature and impurity

concentration which for simplicity have not been discussed in detail. While we have

emphasized the diagnostic potential of the signatures for fuel ion ratio measurements,

this emphasis should therefore not be taken to imply that this is the limit of their

usefulness.

The shapes of contributions to 〈̃j(I0)j̃(I0)〉 from individual ions are not directly

sensitive to the plasma composition, but the contribution from each ion is linearly

proportional to the ion density, so the total 〈̃j(I0)j̃(I0)〉 is - under most conditions -

sensitive to the plasma composition. The ICM signatures in 〈̃j(I0)j̃(I0)〉 increase the

sensitivity to plasma composition, and they are especially useful in thermal equilibrium

and for ions with different cyclotron frequencies. Some ions (generally those with low

mass and high charge) give very strong contributions to 〈̃j(I0)j̃(I0)〉 and may therefore

be detectable in small concentrations. Conversely, these ions may dominate entirely in

high concentrations and render the spectrum less sensitive to plasma composition. The

amplitude and width of cyclotron features vary with species, and generally ions with

high charge and low mass give stronger cyclotron features.

Unlike the ICM signatures in 〈̃j(I0)j̃(I0)〉 the IBW signatures in the fluctuation

operators reflect the influence of a dispersive wave. Although each wave and the

strength of its signatures can roughly be associated with the presence of a particular

ion species, their dispersion relation and the properties of their signatures depend on

the total plasma state rather than that of a single ion population. Scattering from

plasma fluctuations driven by the thermal motion of one particle species will therefore

be affected by and carry information about all the other particle species in the plasma

through the fluctuation operators. Perhaps the clearest example of this effect is that

the electron contribution to the scattering function, Σ(e), displays IBW signatures and

carries information about the relative ion densities. It is also noteworthy that, through
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the effects of wave damping, the IBW signatures introduce a functional dependence

on the ion Larmor radius into the ion cyclotron structure. Since the ICM signatures

are sensitive only to the thermal velocity and cyclotron frequency of the ions, the

additional dependence on the ion Larmor radius can have the important effect of

breaking degeneracies in the spectral variation with ion mass, charge and temperature.

Except for special cases, it does not appear possible to clearly separate the ICM

and IBW signatures in the total spectrum. The terms producing the signatures are

multiplied, so in general both effects will be present in the spectrum. An exception

occurs when the electron temperature is much higher than the ion temperature. In

this case scattering through Σ(e) dominates and since the electrons do not show ICM

signatures the total spectrum will be dominated by IBW signatures.

We estimated the theoretical accuracy for measurements of RH with the modified

CTS receiver at TEXTOR through a sensitivity analysis within the framework of a

Bayesian method of inference. The main purpose of this analysis was to illustrate the

relative importance of ICM and IBW signatures for fuel ion ratio measurements, but

we shall briefly comment the general results for the theoretical accuracy of RH. For

the standard scenario used in this work, we find a theoretical accuracy of σH < 0.05

for all values of RH. In the preceding analysis we have found that IBW and ICM

signatures related to hydrogen tend to dominate over those related to deuterium, and

in the sensitivity analysis we find correspondingly that the highest accuracies may be

expected for high deuterium density. However, the relative accuracy, σRH
/RH stays

roughly constant as a function of RH. Results would differ quantitatively for other

plasma scenarios, but these general trends would remain. Further, the conclusion that

CTS measurements with ICM and IBW signatures may significantly increase knowledge

about plasma composition has broad applicability beyond the plasma scenario assumed

here. Initial studies [16] indicate that even in the presence of helium ash and other

impurities, similar accuracies may be expected for ITER standard scenarios – which have

very different plasma conditions from those assumed here, meaning that quantitative

results should not be immediately carried over or extrapolated. A detailed study of the

potential for fuel ion ratio diagnostics by CTS on ITER will be presented elsewhere.

By ignoring ion magnetization in the sensitivity analysis when calculating either

〈̃j(I0)j̃(I0)〉 or the fluctuation operators, the theoretical accuracy was calculated with

either ICM or IBW signatures artificially suppressed. These approximations are not

relevant for real data, but they allow an estimate of the relative importance of the

two effects for fuel ion ratio measurements. The highest uncertainties were found

without ICM signatures, but the difference between the two approximations was not

significant. While ICM signatures are therefore slightly more important than IBW

signatures for fuel ion ratio diagnostics it would be misleading to suggest that either of

the two effects dominates the diagnostic potential. In fact, we also found that for high

RH the theoretical accuracy is greatly improved when both effects are included in the

spectrum.

As final remark we note that the study presented here is relevant only to scattering
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from thermally excited plasma fluctuations with no external excitation mechanism.

Signatures of externally driven ion Bernstein waves have been measured with far-infrared

CTS in plasmas at Microtor [30,31], ACT-1 [3] and Alcator-C [32]. Cyclotron structure

was also found in mm-wave CTS measurements of ion cyclotron resonance heated

(ICRH) plasmas in the Tara Tandem Mirror axicell [33]. The structure was interpreted

as IBW signatures, but from the analysis in this work we may expect that ICM signatures

also contributed to the spectra – although we note that the effects of ICRH on the CTS

spectrum remain unexplored in the analysis presented here. Measurements in a tokamak

of thermally excited IBW and ICM signatures without external drive were demonstrated

in recent results from TEXTOR [14]. The analysis presented here provides a framework

for interpretation of such measurements, and the sensitivity analysis indicate that they

have the potential to form the basis for a new fuel ion ratio diagnostic for fusion plasmas.
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Appendix A. Parameter values used in numerical calculations

Except where otherwise explicitly noted all numerical examples assume the parameters

in table A1. These parameters are here referred to as the ”standard scenario”.

Table A1. Parameter values for the standard scenario used in numerical calculations.

Prior uncertainties used in the sensitivity analysis in Section. 5, σprior, are given in the

last column. Prior uncertainties are not given for the ion densities, but instead for RH.

Description Symbol Unit Value σprior

∠(kδ,B(0)) φ Degrees 93 3

∠(ki,ks) θ Degrees 159 3

Frequency of incident radiation νi GHz 110

Mode of incident radiation O

Mode of scattered radiation O

Magnetic field strength B T 2.6 0.1

Electron density ne 1019 m−3 2 0.3

Hydrogen ion density nH 1019 m−3 1

Deuterium ion density nD 1019 m−3 1

Ion density ratio, nH/(nH + nD) RH 0.5 0.5

Electron temperature Te keV 1 0.4

Ion temperature Ti keV 1 0.4
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