
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Mesoscopic quantum emitters coupled to plasmonic nanostructures

Andersen, Mads Lykke; Lodahl, Peter

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Andersen, M. L., & Lodahl, P. (2010). Mesoscopic quantum emitters coupled to plasmonic nanostructures. Kgs.
Lyngby, Denmark: Technical University of Denmark (DTU).

http://orbit.dtu.dk/en/publications/mesoscopic-quantum-emitters-coupled-to-plasmonic-nanostructures(324bc76c-b3fc-4d54-b33d-3c27b1763817).html


Mesoscopic Quantum Emitters

Coupled to

Plasmonic Nanostructures

A dissertation

submitted to the Department of Photonics Engineering

at the Technical University of Denmark

in partial ful�llment of the requirements

for the degree of

philosophiae doctor

Mads Lykke Andersen

September 6, 2010





Mesoscopic Quantum Emitters

Coupled to

Plasmonic Nanostructures





Preface

This thesis describes research carried out from March 2007 to September 2010
at DTU Fotonik - The Department of Photonics Engineering at the Technical
University of Denmark. The work was conducted in the course of my Ph.D.
studies in the Quantum Photonics group within the Nanophotonics cluster un-
der supervision of associate professor Peter Lodahl and professor Jesper Mørk.

The subject of this thesis falls within the �eld of solid state quantum op-
tics, which as the name implies, is a multi-disciplinary �eld that incorporates
elements of theoretical solid state physics, quantum mechanics, and optics.
Traditionally, research within this �eld is divided into nano-structure fabrica-
tion, optical characterization, and theoretical modeling - with Ph.D. projects
normally centered around one of these. That was, however, not the case with
this project. This thesis covers all three subdisciplines and, as a consequence, a
number of people have contributed to the results, which I intend to acknowledge
with the following:

When I started my Ph.D. studies in the Quantum Photonics group I was
introduced to the cleanroom facilities at DanChip by Søren Stobbe. We fabri-
cated interface structures in GaAs, which are studied in Chapter 4. Søren had,
prior to my arrival, developed the epitaxial lift-o� procedure and also developed
the procedure for turning the wafer upside-down. I began the fabrication of
plasmonic nanowires guided by Rasmus Bundgaard Nielsen, who also provided
helpful comments over the course of the development process of the waveguide
fabrication recipe presented in Chapter 5. The optical measurements on single
quantum dots coupled to plasmonic waveguides, presented in Chapter 5, were
performed by Serkan Ates, who also participated in the waveguide fabrication.
Throughout my studies Søren Stobbe also engaged with me in many theoreti-
cal discussion on the nature of decay dynamics of extended quantum emitters.
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These discussion greatly helped to form the theoretical model presented in this
thesis. For the calculation of decay dynamics near plasmonic waveguides, I used
a �nite-element code developed by Yuntian Chen, to calculate the �eld of the
guided modes. The fabrication of plasmonic wedge waveguides was initiated
by Søren Stobbe and performed by Jin Liu.

I would like to thank a number of people who have contributed to this
project in various ways. Firstly, I would like to thank my supervisor Peter
Lodahl, under whose supervision it has been a privilege to work, for teaching
me the skills of excellent scienti�c practice and for guiding me into the �eld of
solid state quantum optics. I would also like to show my gratitude towards An-
ders Søndberg Sørensen, who has been a collaborator throughout the project,
for providing a seemingly newer-ending string of ideas for new structures to
investigate, and Claus Birger Sørensen for providing the quantum dot wafers
used in this thesis. I am also thankful towards Jørn Märcher Hvam and Jesper
Mørk who have build-up and sustained a well-functioning scienti�c working
environment and a pleasant atmosphere in the Nanophotonics cluster at DTU
Fotonik.

I am thankful for the help I have received in the cleanroom from those
mentioned above but also from Peixiong Shi, Kresten Yvind, David Larsson,
and Luisa Ottaviano who have been helpful in various ways. Furthermore, I
am glad for the collaborative atmosphere in the quantum photonics cluster
and would like to express my appreciation towards: Toke Lund-Hansen, Henri
Thyrrestrup Nielsen, Jin Liu, Kristian Høgh Madsen, David Garcia-Fernández,
Luca Sapienza, and Qin Wang. Early in my Ph.D. studies I was introduced
to the optical setup by Jeppe Johansen - whose skillful approach to optical
alignment is a source of inspiration. Furthermore, I have during the course of
my Ph.D.-studies consulted Philip Trøst Kristensen many times on theoretical
questions of varying complexity and never walked away more puzzled than
I came. I would like to thank Yuntian Chen, who provided the modeling
framework for studying the coupling to plasmonic waveguides, and Serkan Ates
who helped on their fabrication and who did measurements on these. I am
indebted to Søren Stobbe for his involvement in my project, which would have
turned out very di�erently without him.

During the last three years I have been working alongside many colleagues
who have have grown to be my friends, especially I have appreciated the delight-
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ful daily company of Philip Trøst Kristensen, Stephan Smolka, Per Lunnemann
Hansen, Toke Lund-Hansen, and Søren Stobbe, with whom I have shared many
good times both on and o� campus.

Finally, I am grateful to my wife Signe for sharing all the highs and lows of
scienti�c practice that I encountered throughout this project, and my daughter
Frida for being such a beautiful little person who during my thesis-writing cared
a great deal more about the sounds of various animals than about physics.

Mads Lykke Andersen
September 6th, 2010
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Abstract

This thesis reports research on quantum dots coupled to dielectric and plas-
monic nano-structures by way of nano-structure fabrication, optical measure-
ments, and theoretical modeling.

To study light-matter interaction, plasmonic gap waveguides with nanome-
ter dimensions as well as samples for studies of quantum dots in proximity to
semiconductor/air and semiconductor/metal interfaces, were fabricated.

We measured the decay dynamics of quantum dots near plasmonic gap
waveguides and observed modi�ed decay rates. The obtainable modi�cations
with the fabricated structures are calculated to be too small to allow for e�-
cient plasmon-based single-photon sources. Theoretical studies of coupling and
propagation properties of plasmonic waveguides reveal that a high-refractive
index of the medium surrounding the emitter, e.g. nGaAs = 3.5, limits the real-
izability of e�cient plasmon-based single-photon sources using self-assembled
quantum dots.

The measured decay dynamics of quantum dots in proximity to semicon-
ductor/metal interfaces reveal that the dipole approximation generally does
not hold for quantum dots due to their mesoscopic size. In order to explain
the observations, a theoretical model for the spontaneous emission of meso-
scopic quantum emitters is developed. The light-matter interaction is in this
model modi�ed beyond the dipole expectancy and found to both suppress and
enhance the coupling to plasmonic modes in excellent agreement with our mea-
surements.

We demonstrate that this mesoscopic e�ect can be utilized to strongly mod-
ify the coupling to plasmonic modes on metal nanowires and gap waveguides
and we propose its use for spontaneous-emission control beyond the dipole
approximation in nano-structured environments in general.
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Resumé

Denne afhandling beskriver forskning i koblingen af kvantepunkter til dielek-
triske og plasmoniske nano-strukturer ved hjælp af nano-fabrikation, optiske
målinger og teoretisk modellering.

For at undersøge vekselvirkningen mellem lys og stof, er plasmoniske mellem-
rumsbølgeledere samt prøver til at studere kvantepunkter nær et halvleder-luft
og et halvleder-metal grænselag blevet fremstillet.

Vi har målt henfaldsdynamikken af kvantepunkter nær de plasmoniske
mellemrumsbølgeledere hvorved vi observerede modi�cerede henfaldsrater. Vi
udregner at den opnåelige modi�kation med de fremstillede strukturer er for
lille til at tillade e�ektive plasmonbaserede enkeltfotonkilder. Teoretiske studier
af koblings- og propageringsegenskaberne af plasmoniske bølgeledere afslører
at det høje brydningsindeks af materialet der omgiver lyskilden, for eksempel
nGaAs = 3.5, begrænser mulighederne for realiseringen af e�ektive plasmon-
baserede enkeltfotonkilder som inkorporerer selvsamlede kvantepunkter.

Den målte henfaldsdynamik af kvantepunkter i nærhed af halvleder-metal
grænselag viser at dipol-approksimationen generelt ikke er opfyldt for kvan-
tepunkter grundet deres mesoskopiske størrelse. For at beskrive disse obser-
vationer, udvikler vi en teoretisk model for den spontane lysudsendelsen af
mesoskopiske kvante lyskilder. Vekselvirkningen mellem lys og stof er i denne
model modi�ceret udover forventningen for en dipol-lysudsender og resulterer
i både undertrykkelse og forstærkning af koblingen til plasmoniske tilstande i
god overensstemmelse med vores målinger.

Vi påviser at den mesoskopiske e�ekt kan blive brugt til at modi�cere koplin-
gen til plasmoniske tilstande på metal- nanotråde og mellemrumsbølgeledere
kraftigt, og foreslår at denne e�ekt generelt bruges til at kontrollere spontant
henfald udover dipol-approksimationen i nano-strukturerede omgivelser.
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Chapter 1

Introduction

During the twentieth century, quantum optics of atoms have been a tremen-
dously successful �eld of research. Early breakthroughs include the formulation
of the wave-particle duality and the quantization of the light �eld [1, 2]. A con-
sequence of this quantization is that the vacuum light-�eld exhibits �uctuations
around its mean zero amplitude. These �uctuations are essential to explain the
Lamb shift [3], spontaneous emission [4], and the Casimir e�ect [5], to name
only a few experimentally veri�ed, important physical phenomenons. On the
other hand, quantum optics provide a powerful tool to experimentally investi-
gate fundamental issues such as hidden variables and non-locality that are of
interest to physicist and philosopher alike [6, 7, 8]. Presently, the seemingly
non-local interactions are well-understood as entangled states, which have been
experimentally realized, and even used for teleportation of quantum informa-
tion between light and matter in numerous ways [9, 10, 11, 12].

The quantum theory of solids was well-established when the invention of
the electronic transistor and integrated circuits paved the way for modern com-
puter technology. The invention of techniques for crystal growth made the
fabrication of epitaxial semiconductor hetero-structures possible. These new
techniques, combined with the planar technology of integrated circuits made
new structures and devices that combine optics and electronics realizable, no-
tably: Lasers, photo-diodes, and solar cells. Recently, the merging of the two
research �elds of quantum optics and solid state physics has grown to such size
and importance that it deserves a name of its own: Solid state quantum optics.
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Chapter 1. Introduction

This �eld is receiving considerable attention due to the prospects of engineering
optical systems at the nanometer length scale. Solid state quantum optics is a
sub�eld of the broader �eld photonics, whose name emphasizes the expectancy
that photonic circuits will overtake many of the roles of present day electronic
circuits.

With the invention of quantum computing [13] and quantum cryptography
[14] the need for the controlled interaction between single quantum emitters
and single quanta of light arose [15]. For this, self-assembled semiconductor
quantum dots provide an essential link as they possess an atom-like discrete
electronic transition spectrum while, at the same time, their hosting wafers
bene�t directly from semiconductor fabrication techniques. Thus, the building
blocks for investigating light-matter interaction are available in an environ-
ment that may be integrated monolithically into existing photonic devices.
The light-matter interaction with a quantum dot can be strongly enhanced by
de�ning an optical cavity around it [4]. Over the past decades there has been
tremendous progress in manipulating single quantum dot excitation and single
photons in such cavity systems. However, despite spectacular theoretical and
experimental progress in cavity quantum-electro-dynamics [16], these systems
remain technically challenging and di�cult to scale.

It is thus tempting to ask whether alternative physical systems and phe-
nomena can be realized to procure strong and coherent light-matter coupling.
Fortunately, many promising candidate systems exist: Plasmonic systems [17]
and photonic crystals [18] are among those that are being actively studied for
their potential to manipulate the light-matter interaction.

In this work, the coupling of quantum emitters to plasmonic waveguides is
investigated. The plasmonic modes of cylindrical nanowires can very e�ciently
harvest the decay of a nearby excited emitter [19] and even realize a single-
photon transistor [20]. Thus the potential of coupling quantum emitters to
guided plasmonic modes seems promising. We investigate the potential for
developing plasmon-based single-photon sources in an all-solid-state system
employing quantum dots as the light source. To this end, we fabricate nano-
scale plasmonic waveguides, measure the coupling to these of single quantum
dots, compare the results to theory, and theoretically investigate the feasibility
of utilizing these systems to realize very e�cient light-matter coupling.

Traditionally, the decay rate of an emitter is proportional to its intrinsic
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dipole moment and to the local density of optical states, as expressed in Fermi's
golden rule [21]. This formalism is utilized in optical cavities, plasmonic sys-
tems, and photonic crystals, that provide strongly modi�ed local densities of
optical states, to enhance or suppress the light-matter interaction. However,
it is to this end equally important to investigate the intrinsic properties of the
emitters that also determine the interaction. In this work, we realize that one
of the most commonly used approximations in atomic and solid state quantum
optics, namely the dipole approximation, does not hold for quantum dots in
general. This relies simply on the fact that the optical �elds change over the
spatial extension of the quantum dots. Consequently, we develop a theory for
the decay rates of quantum emitters beyond the dipole approximation. In this
theory the decay rate is also determined by the light-�eld gradients and an
additional intrinsic property of the emitters: their mesoscopic moment.

Detailed comparisons between theory and experiments become increasingly
rare as both disciplines grow more and more complex. A strong spatial de-
pendence of the local density of optical states combined with an uncontrolled
in-plane position of the self-assembled quantum dots, make it impossible to
conclude whether a change in the decay rate is due to the emitter or its en-
vironment. We therefore employ the simplest nano-structure imaginable, an
interface between the host medium for the quantum dots and silver, to unam-
biguously disprove the validity of the dipole approximation for self-assembled
quantum dots and compare the measurements directly to the theory for meso-
scopic emitters discussed above. In the interface structure the local density of
optical states is only dependent on the distance to the interface which is well-
controlled, wherefore it becomes possible to separate e�ect of the environment
from those of the emitter.

These investigations are of great interest for both fundamental science and
technology. The e�ciency of photo-diodes, semiconductor lasers, solar cells,
and single-photon sources rely on strong light-matter interaction and conse-
quently novel decay mechanisms that enhance the interaction would be bene-
�cial to these systems.

The outline of this thesis is as follows:

In Chapter 2 the foundation of this thesis is introduced: quantum dots,
light-matter interaction, and surface plasmon polaritons. The chapter aims at
introducing fundamental concepts and relations that will be used throughout

3



Chapter 1. Introduction

this thesis.
Quantum dots are spatially extended entities but are rarely treated as any-

thing but point-sources of light. In Chapter 3 we develop a model for the decay
dynamics of extended emitters through a Taylor expansion of the light-�eld
modes. The inclusion of the light-�eld gradients gives rise to a mesoscopic mo-
ment of the quantum dots. We �nd that the mesoscopic moment contributes to
the decay dynamics on the ground state transition due to the broken symmetry
of the quantum dots along the growth direction. The mesoscopic moment pro-
vides a convenient parameter to describe the complicated interaction between
extended emitters and spatially varying light �elds.

In Chapter 4 we experimentally investigate the decay dynamics of quantum
dots near a silver mirror, i.e., near a semiconductor/metal interface. Our exper-
imental investigations allow us to demonstrate that the dipole approximation
breaks down for quantum dots, and we can extract the value of the mesoscopic
moment in correspondence with the theory introduced in Chapter 3. We �nd
that especially the coupling to the plasmonic modes at the silver mirror is de-
viating from a point-dipole description. Furthermore, we calculate the decay
dynamics near a nanowire and �nd that mesoscopic moments strongly modify
the coupling to plasmonic modes on the wire.

Chapter 5 presents the fabrication of nano-scale plasmonic waveguides. In
this chapter a discussion of the coupling mechanism between an emitter and
plasmonic waveguides reveals that plasmonic gap waveguides are well-suited
structures for coupling to quantum dots. We present our fabrication recipe
for such plasmonic gap waveguides, and show our fabricated structures. The
chapter also features an experimental investigation of the coupling of single
quantum dots to these plasmonic gap waveguides and a comparison to theory.

The properties of surface plasmons on nano-structures are determined by
both the material parameters and the size and shape of the metallic struc-
tures. The scaling of various relevant parameters with material composition
and waveguide geometry is investigated in Chapter 6, with the aim of deter-
mining good candidate structures for plasmon-based single-photon sources.

Finally, our conclusions are presented in Chapter 7.
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Chapter 2

Quantum dots and their

interaction with light

In this chapter, the foundations upon which the rest of this thesis builds are
presented. First, we will discuss the electronic and optical properties of quan-
tum dots, which are the central light-sources of this thesis. As we will see in
Chapter 3 and Chapter 4, we can use the controlled interaction of quantum
dots with a light �eld to probe the internal properties of quantum dots and
viceversa.

After introducing quantum dots, we discuss the rich dynamics that arise
when emitters are interacting with a light �eld. A fully quantum mechanical
treatment is a necessity to understand and describe the light-matter interaction
of the systems considered in this thesis. Despite these very academic roots,
light-matter interaction lies at the heart of one of the most successful new
technologies of the last century, namely the laser. In a laser, excited states
are stimulated to emit photons that are co-propagating and in-phase with the
stimulating photons. Here we will be concerned with the spontaneous emission
of photons, where there are no stimulating photons, but rather a �eld of virtual
photonic states. Light-matter interaction is very interesting, both due to the
fundamental physical insights obtainable as well as due to the technological
possibilities it enables. Speci�cally, controlling the light-matter interaction,
which determines the spontaneous emission of an emitter, is the essence of a
range of scienti�c �elds and also of this thesis.
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Chapter 2. Quantum dots and their interaction with light

In the last part of this chapter, we will discuss the polariton modes that
can exist when metals and dielectric materials are brought together. These, so-
called, surface plasmon polaritons can be con�ned below the di�raction limit of
light in bulk materials, and have been used to achieve sub-wavelength guiding
of light [22], to enhance the light-matter interaction with an emitter [19], as
well as in a range of sensing applications [23]. Thus, this chapter will introduce
the three major themes of this thesis: quantum dots, light-matter interaction
and surface plasmon polaritons.

2.1 Electronic- and optical properties

of self-assembled InAs quantum dots

Throughout this thesis we will study the interaction of nanoscale clusters of
InAs embedded in GaAs, which are fabricated by self-assembly. We will denote
these structures simply quantum dots even though there is some ambiguity as
to which material system the term quantum dot refers.

The notation quantum dots has been used to refer to core-shell structures of
CdSe and ZnS [24], to monolayer �uctuations in quantum well thicknesses [25],
to electrically induced con�ning potentials [26], and to self-assembled clusters
of di�erent material combinations from the third and �fth group of elements,
or from the second and sixth group [27]. In this thesis we investigate quantum
dots made up of InAs in GaAs which are composed of elements from the third
and �fth group.

Indium-arsenide quantum dots, which are the subject of this thesis, have
been demonstrated to exhibit excellent single-photon emission [28] and to have
a high quantum-e�ciency [29]. Quantum dots o�er atom-like quantized states
with emission energies that can be engineered. Furthermore, they are nanoscale
sized and can be positioned in three dimensions [30] within a host semicon-
ductor material. The quantum dot containing wafers can be processed using
mature semiconductor processing methods, which enables the realization of
advanced structures around the quantum dots.
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Figure 2.1: Inhomogeneous distributions of quantum dots. a, Atomic force mi-

crograph of an uncapped surface of quantum dots. b, Histogram of the height

distribution of the uncapped quantum dots. c, Spontaneous emission spectrum

from a wafer containing quantum dots, the inhomogenously broadened spec-

trum is due to the size-distribution of the quantum dots. a, b are from Ref.

[31], c is from the experiment described in Chapter 4.

2.1.1 Formation of self-assembled quantum dots

The quantum dots are grown by molecular beam epitaxy using the Stranski-
Krastanov process [32]. First, a GaAs substrate is grown, crystal layer by
crystal layer. Hereafter, a few monolayers of InAs are deposited onto the GaAs
crystal. InAs and GaAs have the same zincblende crystal structure but slightly
di�erent lattice constants, 0.606 nm and 0.565 nm, respectively [33]. The energy
associated with the strain induced by the lattice mismatch, will grow for each
deposited InAs layer, until it becomes energetically favorable to release the
strain through the formation of InAs islands. Under proper growth conditions
the resulting structure contains islands of InAs (quantum dots) on top of a few
monolayers of strained InAs (wetting layer). After this step, the structure is
overgrown with GaAs to complete the three-dimensional con�nement potential.

7
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The self-assembly process results in quantum dots with slightly varying spatial
dimensions, and thus di�erent quantization energies. A layer of quantum dots
can be left uncapped at the top of the wafer, which allows a direct measurement
of their sizes by atomic force microscopy, see Fig. 2.1a. We note that the
distribution of quantum dot heights obtained in this way, see Fig. 2.1b, is
di�erent to those of the capped quantum dots, as the material redistributes
itself during overgrowth. The spectrum of an ensemble of quantum dots is
inhomogenously broadened due to the size distribution of the quantum dots,
see Fig. 2.1c. We note that material redistribution during growth and the
presence of strain throughout the quantum dot makes detailed calculation of
quantum dot properties a big challenge, since it essentially requires knowledge
of the nano-structured composition as well as modeling the interaction between
the tens of thousands of constituting particles. In Chapter 4 we extract e�ective
quantum dot properties (dipole and mesoscopic moment) that account for some
of these microscopic interactions.

2.1.2 Energy states and excitons in quantum dots

Quantum dots are made up of semiconductor crystals. We therefore begin this
section with a discussion of the electronic properties of such crystals. This
electronic structure is determined by the electrostatic potential de�ned by the
atomic crystal lattice. The periodicity and symmetry of the lattice, give rise
to a band structure that describes the dispersion for electrons propagating in
the crystal. Semiconductors are de�ned by a gap between the highest occupied
electron band (the valence band) and the lowest unoccupied electron band (the
conduction band) at a temperature of 0 K - this gap is known as the bandgap,
as shown in Fig. 2.2.

In a direct bandgap semiconductor, e.g. InAs or GaAs, the state of lowest
energy in the conduction band and highest energy in the valence band are
both found at the Γ-point in the reciprocal lattice corresponding to an electron
wavevector of zero (k = 0). The shape of the two bands can be approximated
as parabolic around these extrema [34], which results in a electron-dispersion
that is similar to a free-space electron except for a di�erent e�ective mass as
determined by the curvature of the parabola, see Fig. 2.2. This is known as
the e�ective mass approximation [35]. When an electron is excited from the
valence band to the conduction band it leaves a hole which can be interpreted
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Figure 2.2: Bandstructure of InAs in a quantum dot, sketched as energy versus

crystal momentum. The split-o� (SO) and light-hole (LH) band are not de-

generate with the heavy-hole (HH) band at zero electron momentum (band ex-

tremas, Γ-point), due to spin-orbit coupling and strain, respectively. A bandgap

exist between the least energetic conduction band state and the most energetic

valence band state. An electron undergoing a transition from the conduction

to the heavy-hole band must compensate for the resulting photon momentum,

here exaggerated for clarity (slanted dotted line).

as a positively charged particle with a di�erent e�ective mass. In contrast to
electrons in the conduction band, the �nite angular momentum of electrons in
the valence band leads to three bands that are degenerate at k = 0, three bands
termed split-o�, light-hole, and heavy-hole are present as shown in Fig. 2.2.
The degeneracy is, however, lifted in quantum dots due to interactions with
the crystal. The split-o� band is permanently shifted towards lower energies
(also in bulk) due to spin-orbit coupling and is therefore not considered in
the present work, see Fig. 2.2. The light- and heavy-hole occupy states with
di�erent angular momentums and di�erent e�ective electron masses. Strain,
induced by the quantum dot growth, lifts the degeneracy and results in the
heavy-hole band being the valence band with the highest energy, and thus the
only band relevant for this study. The momentum of a photon is much smaller
than the momentum of an electron. The direct bandgap, therefore, allows the
semiconductor to be optically active, as momentum conservation can easily
be ful�lled when an electron and a hole recombine by emitting a photon, see
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Figure 2.3: Quantum dots as emitters of single photons. a, Sketch of a single

quantum dot sitting on top of a wetting layer. Illustration from Ref. [36]. b,

Electronic structure of a quantum dot. Sketch of the energy of the valence and

conduction band as function of position along the growth direction (solid lines).

The quantized energy levels of a quantum dot are shown as dotted lines. A

laser is tuned to the energy di�erence between the bands in the wetting layer

(WL), which promotes an electron to the conduction band thereby creating a

hole. Electron and hole relax to the lowest energy quantum dot state, from

where they recombine through the emission of a photon.

Fig. 2.2.
The bandgap of InAs is smaller than of GaAs, see Fig. 2.3. This results in a

con�ning potential for electrons and holes in quantum dots. Furthermore, due
to the nanoscale dimensions of the quantum dots (∼ 20 nm× 20 nm× 6 nm),
the con�nement leads to quantized energy levels for the trapped electrons and
holes. An excited quantum dot consists of an electron promoted to the conduc-
tion band and a hole in the valence band, that together constitute an exciton.
Thus, excited quantum dots can emit photons with well-de�ned energies. Ex-
citons in bulk semiconductors are bound together by Coulomb interaction, but
these binding energies are negligible compared to the quantization energies in
quantum dots. The quantum dots are therefore referred to as being in the
strong con�nement regime, where exciton binding energies are neglected.

Depending on the size of the quantum dots, the energy and number of con-
�ned exciton states can vary. For weakly excited quantum dots, i.e. ∼ 0.1

exciton per quantum dot per excitation pulse, only emission from the ground
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state transition is typically observed. If electrons and holes occupy more ener-
getic states, they decay to the empty ground state faster than they can decay
through a radiative process, as shown in Fig. 2.3. The ground state exciton
consists of an electron in the conduction band and a hole in the heavy-hole
valence band. These single particle states have angular momentum J = 1/2

and J = 3/2 [37], respectively, both with a two-fold degeneracy due to spin.
By considering the four possible combinations of electrons and holes, we see
that the total angular momentum of the exciton is either ±1 or ±2. Photons
posses an angular momentum of ±1, thus only excitons with unity angular
momentum can couple to photons. Consequently, the excitons with angular
momentum ±1 are called bright excitons and have the spin of electron and
hole pointing in opposite directions. Excitons with angular momentum ±2 are
called dark excitons and have the electron and hole spin pointing in the same
direction. Dark excitons only decay non-radiatively or through a spin-�ip to a
bright state [38].

2.1.3 Decay dynamics of quantum dots

Excited quantum dots will decay to their ground state after some characteristic
lifetime. In this section we describe this decay dynamics of quantum dots
modeled as a multi-level system. Quantum dots are often modeled as ideal
two-level systems coupled to the electromagnetic �eld vacuum state, for which
the decay dynamics is a simple single-exponential decay. Real quantum dots,
however, are more complex, and resultantly so are their decay dynamics as
shown in Fig. 2.4. The measured non-single-exponential decay dynamics stem
from the �ne-structure of the exciton ground state. Both dark and bright
excitons ground states are populated when quantum dots are excited non-
resonantly.

The two excited states (dark and bright) are split in energy by exchange
interaction [32], leading to the bright state being displaced∼ 150 µeV [32] above
the dark exciton level. Furthermore, the dark and bright state themselves are
split due to the broken rotational symmetry around the growth axis of the
quantum dot [39]. However, the essential decay dynamics of the quantum
dot can be captured by assuming a three-level system of exciton-states: dark
|d⟩, bright |b⟩, and ground |g⟩ as shown in Fig. 2.4b. The populations of
the dark and bright energy levels are coupled via spin-�ip rates, as a single
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Figure 2.4: Decay of an excited quantum dot. a, Decay curve from an sub-

ensemble of quantum dots emitting at 1030 nm constructed as a histogram
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parameters are given within the �gure. b, Three-level model of a quantum dot,

the presence of a coupling rate between the dark and bright state leads to the

bi-exponential decay shown in a.

spin-�ip of either electron or hole transforms a dark exciton to a bright, γdb,
or viceversa, γbd. Furthermore, a non-radiative decay of both dark, γd

nrad, and
bright, γd

nrad, excitons take place, and the bright exciton can additionally decay
with a radiative rate γrad to the ground state whereas the dark exciton cannot.

The intensity of emitted photons as function of time from the initial excita-
tion of a quantum dot is proportional to the constant rate of radiative coupling
γrad and to the time-varying population of the bright state ρb(t),

I(t) ∝ γradρb(t). (2.1)

The time-evolution of the bright state can be understood by the three-level
model presented above, and with this model we can �t the measured decay
dynamics. Assuming that the spin-�ip rates are slow compared to both the
radiative and non-radiative decay rates, the population of the bright state
decays as a bi-exponential function over time with two decay rates given as
[38]

γf = γrad + γb
nrad + γbd ≈ γrad + γb

nrad (2.2)

γs = γd
nrad + γdb ≈ γd

nrad. (2.3)
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where γf and γs is the fast and slow decay rate respectively. The form of the
measured decay curve given as intensity over time is bi-exponential

I(t) ∝ Afe
−γf t +Ase

−γst +BG, (2.4)

with Af and As as the amplitude of the fast and slow component, respectively,
and BG denotes the experimentally unavoidable background which is indepen-
dent of time. In Fig. 2.4a the decay curve is �tted to a bi-exponential model
which is in very good agreement with the measured data.

In this thesis we will focus on the ground-state bright-exciton, and treat the
quantum dot as a two-level system with the excited state being the ground-
state bright-exciton and the ground state being the unoccupied quantum dot.
The decay rate of the excited state is given by γf and is extracted from decay
data as the fast rate of a bi-exponential �t as discussed above.

2.2 Light-matter interaction

The light-matter interaction of a dipole emitter with an optical environment
describes the working mechanism in light-emitting diodes, solar cells, and lasers
as well as the exciting regime of strong coupling where the light and matter
degrees of freedom are intertwined. Here, we will introduce the interaction
of a dipole emitter with a vacuum �eld. A detailed calculation of the light-
matter interaction beyond the dipole-approximation is presented in Chapter 3,
in which the interaction of a simple dipole emitter occurs as a special case.
Therefore, we will only give a phenomenological discussion of the light-matter
interaction here. We also introduce in detail the dyadic Green's function for-
malism and several characterization methods of decay dynamics in structured
and homogeneous media.

2.2.1 Spontaneous emission

Spontaneous emission is the process in which an emitter in an excited state
spontaneously decays to a state of lower energy by emitting a photon that car-
ries the surplus energy. With a semi-classical model of light-matter interaction,
where only the emitter is quantized, spontaneous emission cannot be explained
and must be introduced phenomenologically [21]. Thus, a full quantum me-
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chanical model where both emitter and light �eld are quantized is needed to
give the correct description of spontaneous emission.

The quantization of the light �eld leads to a non-zero variance of the elec-
tromagnetic �eld, even for the vacuum �eld, which is in contrast to the classical
description where the vacuum �eld is identically zero. The vacuum �uctuations
of the quantum mechanical electromagnetic �eld have been depicted as virtual
photons. Virtual photons can exist in brief moments of time as allowed by
the uncertainty relations in quantum mechanics. In this picture, the virtual
photons stimulate the excited emitter to 'spontaneously' emit a real photon.

The rate of spontaneous emission was believed to be an intrinsic property
of the emitter, until the work of Purcell in 1946 [4]. E. M. Purcell found that
the rate of emission from an emitter in a cavity was enhanced, when the cavity
was in resonance with the emitter. The emission rate was enhanced with a
factor FP = 3Qλ2

4π2Vc
, where Q is the quality factor of the cavity and Vc the mode

volume - today FP is known as the Purcell factor. In 1970, K. H. Drexhage
[40] found that the rate of spontaneous emission could be both enhanced and
suppressed when the distance to a re�ecting surface was varied. The observed
modi�cations in the decay rate were more moderate than in a cavity in this
case, but revealed that the e�ect does not rely on a resonance. Since then,
emitters have been placed in cavities which have very small mode volumes and
very high quality factors, leading to the strong-coupling regime [41], where the
atomic and �eld population are intertwined. Strong suppression of the decay
rate has been predicted in three-dimensional photonic crystals which can be
made to have an optical bandgap. Emitters with an emission-frequency in the
optical band-gap, placed within such a structure, have been experimentally
con�rmed to reveal a suppressed decay rate [42]. Generally, the emission rate
of a dipole emitter in a dielectric environment can be written as (derived in
Chapter 3)

Γ(r0, ω) =
2q2

m2c2ϵ0~
µif
j′ µ

fi
j Im(Gj,j′(r0, r0;ω)), (2.5)

where q and m are the charge and mass of the particle undergoing a transition.
µfi
j = ⟨f |p̂j |i⟩ is the naturally occurring dipole moment in the p̂ ·A Hamilto-

nian formalism, which describes the transition from the initial, |i⟩, to the �nal,
|f⟩, electronic state, with p̂j being the momentum operator along the jth axis
(j, j′ ∈ {x, y, z}) (we do not explicitly write the sum over repeated coordi-
nates indices). This moment is related to the usual transition dipole moment
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dfij = q⟨f |rj |i⟩ through µfi
j = imω0

q dfij , by using p = −m i
~ [r,H0] [43], where

H0 is the unperturbed Hamiltonian of the system and the brackets [, ] denote
a commutator. We will in this thesis use both µj and dj to describe a point-
dipole. We will use µj predominantly, but also use dj when discussing equations
that are often expressed in this way in the literature. The electromagnetic envi-
ronment is described by the dyadic Green's function tensor Gj,j′(r0, r0;ω), the
de�nition of which we will give below. In terms of the dyadic Green's tensor
the projected local density of optical states is given by

ρ(r0, ω, eµ) =
2ω

πc2
[eµ,j · Im(Gj,j′(r0, r0;ω)) · eµ,j′ ] , (2.6)

which de�nes the density of states seen by a dipole emitter that is positioned
at r0, oscillating at the frequency ω, and where eµ,j is the j'th component of
its dipole moment unit vector. Comparing Eq. (2.5) and Eq. (2.6), we �nd
that the decay rate is proportional to the local density of optical states and
the size of the dipole moment, in agreement with Fermi's golden rule [21].
The local density of optical states provides the framework to understand the
position dependent decay dynamics of emitters in structured media. ρ(r0, ω, eµ)
is explicitly dependent on position, in contrast to the density of optical states
used to describe homogeneous media. The position dependence of the local
density of states implies that the environment of an emitter can be engineered
to control its decay dynamics.

2.2.2 Electromagnetism in structured media

Maxwell's equations lie at the starting point of any study involving electro-
magnetic �elds. These are, for the case of a non-magnetic and charge- and
current-free environment, given by [44]:

∇·D = 0, (2.7a)

∇·B = 0, (2.7b)

∇×E = −∂B

∂t
, (2.7c)

∇×H = +
∂D

∂t
. (2.7d)

B and E are the magnetic induction and electric �eld, respectively, while H

and D are the magnetic �eld and electric displacement. The �elds are further
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bound together through the relations

D = ϵ0E+P = ϵ0ϵrE, (2.8)

B = µ0H, (2.9)

where ϵ0 and µ0 are the vacuum permittivity and permeability, respectively,
and ϵr is the relative permittivity. In a non-magnetic medium the relative
permittivity and refractive index, n, are related through n2 = ϵr. In Eq. (2.8),
P is the intrinsic polarization of the medium which occur in response to the
electric �eld.

Combining the Maxwell's equations Eq. (2.7c) and Eq. (2.7d) with the �eld
relations Eq. (2.8) and Eq. (2.9), we can write up the wave equation for the
electric �eld:

∇×∇×E(r, t) +
ϵr(r)

c2
∂2

∂t2
E(r, t) = 0, (2.10)

where we have used that ϵ0µ0 = c−2. This equation gives rise to the harmonic
time dependence of the electrical �eld

E(r, t) = E(r)e−iωt. (2.11)

Furthermore, the spatial dependence of the electric �eld must satisfy the Helmholtz
equation

∇×∇×E(r)− ϵr(r)
ω2

c2
E(r) = 0, (2.12)

in the inhomogeneous dielectric environment given by ϵr(r). Equation (2.12)
constitutes an eigenvalue equation with eigenmodes fl(r), corresponding to an
angular frequency ω = ωl, that satisfy the normalization condition∫

drϵr(r)f
∗
l (r)f

∗
m(r) = δl,m, (2.13)

onto which any solution E(r) to the Helmholtz equation, i.e. Eq. (2.12), can
be expanded.

2.2.3 Dyadic Green's function formalism

We wish to calculate the resulting electric �eld in a structured media resulting
from an extrinsic polarization Pex(r, t). In this case we can write the wave
equation as

∇×∇×E(r, t) = − ∂2

∂t2
µ0 (ϵ0ϵr(r)E(r, t) +Pex(r, t)) . (2.14)
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The corresponding result in the frequency domain is

∇×∇×E(r, ω)− ϵr(r)
ω2

c2
E(r, ω) =

ω2

ϵ0c2
Pex(r, ω), (2.15)

where the extrinsic polarization �eld is driving the electric �eld. In this case
the electrical �eld can be calculated as [45]

E(r, ω) =
ω2

ϵ0c2

∫
dr′G(r, r′;ω)Pex(r

′, ω), (2.16)

where G(r, r′;ω) is the dyadic Green's function for the system. The dyadic
Green's function is the solution to the equation

∇×∇×G(r, r′;ω)− ϵr(r)
ω2

c2
G(r, r′;ω) = Iδ(r, r′), (2.17)

where I is the identity tensor. The strength of the dyadic Green's function
approach is that for a given environment, determined by ϵr(r), it is straight-
forward to calculate the electric �eld originating from an arbitrary driving
extrinsic polarization once the dyadic Green's function is known.

In the special case of a dipole emitter situated at r0, Pex(r
′, ω) = µ(ω)δ(r0−

r′), we �nd

E(r, ω) =
ω2

ϵ0c2
G(r, r0;ω)d(ω), (2.18)

from which it becomes clear that we can interpret the dyadic Green's function
as a propagator for the electric �eld in an environment ϵr(r), i.e. it gives the
electric �eld at r resulting from a point-dipole at r0.

Closed expressions for the Green's function exists for a few speci�c envi-
ronments, provided that these environment are su�ciently simple. This will
be utilized in Chapter 3 and Chapter 4, where the decay dynamics in a slab
structure of three di�erent materials are investigated. The Green's function for
the slab structure is presented in Appendix A.

2.2.4 Decay rates in homogeneous media

The decay rate of an emitter in a homogeneous medium can be evaluated by
calculating the dyadic Green's function and using Eq. (2.5). The dyadic Green's
function for a homogeneous medium is de�ned as [45],

G0(r, r0;ω) =
exp(ikR)

4πR

[(
1 +

ikR− 1

k2R2

)
I+

3− 3ikR− k2R2

k2R2

RR

R2

]
, (2.19)
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where R is the length of R = r− r0, RR is the outer product of R with itself
and k = 2πn/λ0 is the wavenumber with n being the refractive index of the
medium. We can expand exp(ikR) = 1+ ikR− (1/2)k2R2 + . . . and let R → 0

which is the relevant limit for the decay rate of a point-dipole. The imaginary
part of the dyadic Green's function is then given as Im(G0(r, r0;ω)) = k/(6π)I,
which results in a decay rate in a homogeneous environment using Eq. (2.5)
and relating µ to d

Γ0 =
nω3|d|2

3πϵ0~c3
. (2.20)

The decay rate of an emitter in a homogeneous environment thus scales with
the cube of the frequency ω and with the refractive index n. Enhancement and
suppression of the decay rate of an emitter, refers to deviations from the decay
in a homogeneous medium, which as seen above is not a �xed quantity.

2.2.5 Decay rates in structured media

The decay rate of an emitter in a structured dielectric is determined by the
dyadic Green's function for this. Generally, the dyadic Green's function can be
split into a part for the homogeneous medium G0(r, r0;ω) as given above, and
a part resulting from the scattering on the environment Gs(r, r0;ω).

G(r, r0;ω) = G0(r, r0;ω) +Gs(r, r0;ω) (2.21)

The scattering Green's function Gs(r, r0;ω) describes the e�ect of the scat-
tering medium and is generally very di�cult to obtain in complex structures.
The normalized decay rate, i.e., the decay rate of an emitter in a structured
medium divided by the decay rate in a suitable homogeneous medium is given
by

Γ(r0, ω)

Γ0(ω)
= 1 +

6πc

ωn
Im(eµ ·Gs(r0, r0;ω) · eµ), (2.22)

where eµ denotes a unit vector pointing in the direction of the dipole moment.
We note that the relative decay rate as given by the scattering part of the dyadic
Green's function, is purely a property of the classical Maxwell's equations. An
equivalent expression exists for the classical problem of the normalized rate
for energy dissipation of a dipole-current [45]. Thus, a classical expression
seemingly governs the decay dynamics of a quantum dipole emitter, but one
should remember that the classical picture does not provide any explanation
for the mechanism of spontaneous decay.
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2.2.6 Characterization of decay dynamics

The decay of an emitter in a structured medium, can be split into a number
of decay channels Γ =

∑
i γi, that characterize the emission. As an example

we consider the case of an emitter in a cavity. Here, there are three relevant
decay mechanisms: decay to the cavity mode γcav, decay to radiation modes
that leak out of the cavity γleak, and an intrinsic non-radiative recombination
rate of the emitter γnr. To describe the rate of the decay into a speci�c channel
γj we introduce the Purcell factor [4]

FP
j =

γj
Γ0

, (2.23)

where Γ0 is the decay rate in a homogeneous medium. The Purcell factor char-
acterizes the rate at which a speci�c decay process occur, and is as such a very
important characteristic for applications where it is essential that the decay
occurs before the system is destroyed, e.g. photon emission before decoherence
for quantum communication.

Another important characteristic is the e�ciency with which a speci�c decay
process occurs as given by the β-factor,

βj =
γj∑
i γi

=
FP
j Γ0

FP
j Γ0 +

∑
i ̸=j γi

(2.24)

which is also related to the Purcell factor. The β-factor gives the probability
that the decay goes into the speci�c channel j, and is the most important factor
for single-photon on-demand applications. High β-factors can be achieved by
either enhancing the rate of decay into the preferred channel j as given by
FP
j , by suppressing the rate of decay into all other channels

∑
i ̸=j γi, or by

a combination of the two. We will use both the Purcell and the β-factor
throughout this thesis to characterize di�erent decay mechanisms.

2.3 Surface plasmons

The optical properties of metals are very di�erent from those of dielectrics and
are characterized by a complex-valued permittivity ϵr(ω). In the frequency
range of interest to this study it exhibits a negative real part and a small
imaginary part. The di�erence in the optical properties between dielectrics
and metals can be understood from their microscopic electron con�gurations.
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The electrons are bound to their host atoms in a dielectric, while there exists
a gas of free electrons in a metal.

We begin this section with a short derivation of the optical properties of
metals, since most of the physics of the interaction of light with metals is hidden
in the frequency dependence of the metal's complex permittivity. We hereafter
turn to the solution of Maxwell's equations for a bound mode propagating at
the interface between a metal and a dielectric. For these, so-called surface
plasmon polaritons, we give expressions for important physical quantities, such
as dispersion, con�nement-, and propagation length.

2.3.1 Optical properties of metals

The optical properties of metals, have been successfully described by Drude
in 1900 [46]. This classical approach is su�cient in the present context. The
Drude model (which is also known as the free-electron model) assumes a gas
of free electrons that moves against a �xed background of positive ions. The
electrons are accelerated by a driving electric �eld and damped by collisions, as
given by the rate γ. The displacement of an electron x with an e�ective mass
m (resulting from the background potential) is then determined by

mẍ+mγẋ = −eE, (2.25)

where e is the elementary charge. Assuming a harmonic time-dependence of
the electric �eld (E(t) = E0e

−iωt) we can calculate the resulting displacement
of the electron. This gives rise to a macroscopic polarization of the medium
through P = −nex, where n is the density of electrons, that is proportional to
the electric �eld

P = − ne2

m(ω2 + iγω)
E. (2.26)

Comparing the last expression to Eq. (2.8) we �nd that the relative permittivity
of a metal is given by

ϵr(ω) = 1−
ω2
p

ω2 + iγω
. (2.27)

We will work in the regime of ω < ωp, with ωp = ne2/ϵ0m being the plasma
frequency. We will use gold and silver, which have γ ≪ ωp. We note that the
real part of ϵr(ω) scales inversely with ω2 and furthermore that the imaginary
part scales in the same way but is smaller by a factor γ/ω. In Chapter 6 we
will return to the e�ect of this scaling on the plasmonic mode properties.
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2.3.2 Surface plasmon polaritons

Surface plasmon polaritons are found as the bound solutions of Helmholtz
equation, i.e. Eq. (2.12), at the interface between a metal and a dielectric.
We consider the geometry of two semi-in�nite media that are connected at the
z = 0 plane. We use the convention that ϵr(z > 0) = ϵ1 and ϵr(z < 0) = ϵ2.
Due to the symmetry of the system we write up the following equations in terms
of only the z-axis and a general in-plane ρ-axis. No s-polarized mode that is
bound to the interface exists due to electromagnetic boundary conditions [17],
we therefore only consider a general p-polarized mode, where the electric �eld
only exists in the propagation direction and perpendicular to the interface

Ej =

(
Ej,∥

Ej,z

)
ei(k∥ρ−ωt)eikj,zz, j = 1, 2. (2.28)

The wavevectors in the two half-spaces satisfy

k2∥ + k2j,z = ϵjk
2, j = 1, 2, (2.29)

where k = ω/c. Using Eq. (2.7a) in both half-spaces, and requiring continu-
ity [44] of the parallel component of the electric �eld and the perpendicular
component of the displacement �eld we arrive at

k∥Ej,∥ + kj,zEj,z = 0, j = 1, 2, (2.30a)

E1,∥ − E2,∥ = 0, (2.30b)

ϵ1E1,z − ϵ2E2,z = 0, (2.30c)

which only have a common solution if (k∥ = 0) or if (ϵ2k1,z − ϵ1k2,z = 0). The
�rst of these solutions is obviously not a mode propagation on the interface.
From the second solution we then �nd that

k2∥ =
ϵ1ϵ2

ϵ1 + ϵ2

ω2

c2
, (2.31)

k2j,z =
ϵ2j

ϵ1 + ϵ2

ω2

c2
, j = 1, 2 , (2.32)

Ej = E∥

(
1

−
√
ϵ1ϵ2/ϵ2j

)
ei(k∥ρ−ωt)eikj,zz, j = 1, 2. (2.33)
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Figure 2.5: The plasmonic �eld. For a plasmonic mode propagating from left

to right, the electric �eld is in the plane of the page while the magnetic �eld

H is perpendicular to the page. The electromagnetic �eld is interacting with

charge displacement-oscillations in the metal indicated by the + and − signs.

The used coordinate system is de�ned.

Using Eq. (2.31)-Eq. (2.33) we can discuss the requirements for the existence
of a bound surface mode.

For simplicity we will assume that the imaginary part of the permittivities
are negligible. We are looking for a mode that propagate in the plane, which
requires that k∥ is real. The dispersion for k∥, i.e. Eq. (2.31), can be seen to
be ful�lled when either, both the product and sum of ϵ1 and ϵ2, is negative or
positive. Furthermore, we are looking for a bound solution, by which we mean
that it should not propagate away from the interface. This is realized when kz

is purely imaginary, which is only achieved when the sum ϵ1 + ϵ2 is negative.
We must therefore ful�l both ϵ1 · ϵ2 < 0 and ϵ1+ϵ2 < 0, which requires that one
of the permittivities is negative with an absolute value exceeding that of the
other. As we have discussed in the previous section, metals exhibit negative
permittivities with small imaginary parts, wherefore surface plasmon polaritons
can exist at the interface of a metal and a dielectric as sketched in Fig. 2.5.

2.3.3 Properties of surface plasmon polaritons

We will now set the permittivity for the dielectric ϵ1 = ϵd > 0 to be purely
real, and set ϵ2 = ϵm = ϵ′m + iϵ′′m as the complex-valued permittivity for the
metal with ϵ′m < −ϵd and |ϵ′m| ≫ |ϵ′′m|. This leads to a complex wavevector

22



Surface plasmons

In-plane wavevector, k||

F
re

q
u

e
n

c
y,

w w ep d/(1+ )
1/2

Light

Surface plasmon polariton

kd
kpl

Figure 2.6: Dispersion of surface plasmon polaritons. The surface plasmon

polariton in-plane wavevector (black line) diverges as the frequency approach

the resonance condition determined by the plasma frequency of the metal and

the permittivity of the dielectric. For low frequencies the surface plasmon

polariton approaches the light-line. For a frequency below the resonance, the

surface plasmon polariton has a bigger momentum kpl than a photon with the

same frequency.

k∥ = k′∥ + ik′′∥ that can be expressed in terms of

k′∥ ≈ ω

c

√
ϵdϵ′m

ϵd + ϵ′m
, (2.34)

k′′∥ ≈ ω

c

(
ϵdϵ

′
m

ϵd + ϵ′m

)3/2
ϵ′′m
2ϵ′2m

, (2.35)

where k′′∥ determines the absorption that damps the surface plasmon polariton
while it propagates along the interface. The corresponding propagation length,
after which the intensity of the surface plasmon polariton �eld has decayed by
a factor 1/e, is de�ned as

Lprop. =
1

2k′′∥
. (2.36)

A propagating photon in the dielectric ϵd has a purely real wavevector
kd =

√
ϵdω/c which is smaller than the wavevector at the same frequency for

the surface plasmon polariton kpl = k∥, as given in Eq. (2.34) and shown in
Fig. 2.6. We interpret the larger momentum of the surface plasmon polaritons
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Chapter 2. Quantum dots and their interaction with light

as being caused by the extra momentum from the co-oscillating electron wave
in the metal. In Fig. 2.6 the full dispersion relation in a lossless metal (with
the damping rate γ = 0) is shown compared to the light-cone for the dielectric.
We see that the wavevector diverges as ω → ωp/

√
1 + ϵd, where ωp is the bulk

plasma frequency discussed above. The divergence is not present in real metals
where the damping rate γ ̸= 0.

The wavelength of the plasmonic mode is given by λpl = 2π/k′∥, and is
therefore shorter than that of a free photon. The surface plasmon polariton
is con�ned to propagate along ρ in the z = 0 plane, but the electric �eld
is decaying exponentially away from the interface giving rise to a penetration
depth into the metal and dielectric, as shown in Fig. 2.5. The penetration depth
determines the extension of the surface plasmon polariton. Here, we de�ne the
depth where the intensity of the surface plasmon polariton is reduced with a
factor 1/e, which is di�erent for the two materials

Lext. =
1

2|kj,z|
, j = 1, 2. (2.37)

The extension of the surface plasmon polaritons is very interesting both due to
the associated possibility of subwavelength guiding, and imaging of light but
also due to the associated �eld enhancement. There is, however, a trade-o�
to be considered: The propagation distance decreases when the extension gets
smaller. This trade-o� is an intrinsic problem of the �eld of surface plasmon
polaritons and will also pose challenges for the work presented later in this
thesis.

2.3.4 Scalability of Maxwell's equations

Maxwell's equations describe the behavior of electromagnetic modes that span
�fteen decades of wavelengths. Thus, an often exploited feature of Maxwell's
equations is that a speci�c physical phenomenon can be studied at di�erent
wavelengths. However, the divergence of the surface plasmon polariton is tied
to the plasma frequency of the metal, wherefore phenomena that rely on the
plasma frequency do not scale with wavelength. In Chapter 5 and Chapter 6
the properties of plasmonic modes in complex geometries are considered, where
we study emitters that operate at a frequency well below the plasma resonance
condition. The scaling of important physical parameters in this frequency range
will be the subject of Chapter 6.
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2.4 Summary

In this chapter we have introduced the basic electronic and optical properties
of quantum dots. In Chapter 3 we will return to these, where quantum dots are
treated in great detail as extended asymmetric emitters, with special optical
properties as a result. In the brief treatment of the light-matter interaction in
this chapter we introduced the Helmholtz equation, dyadic Green's functions,
and the general concepts of spontaneous emission and its change in structured
environments. Lastly, we introduced surface plasmon polaritons in some detail
as these will be a recurring subject throughout this thesis. For the ease of
readability, we will use the less stringent notion of plasmons interchangeably
with surface plasmon polaritons in the rest of this thesis.
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Chapter 3

Quantum dot

decay dynamics beyond

the dipole approximation

It is the essence of the modern research disciplines plasmonics, photonic crys-
tals, and light harvesting to control the interaction between light and matter
in an all-solid-state environment. In contrast to atomic and molecular emit-
ters, solid-state emitters can be positioned deterministically within nanopho-
tonic structures where they remain stationary. The interaction between these
stationary emitters and a light �eld has been sought improved by means of an
altered optical environment, treating the emitters as point-sources of light. The
exception to this rule is the recent studies of very large quantum dot emitters
that are investigated for their prospective large oscillator strength [47].

Solid-state emitters are de�ned by a charge-con�ning potential that extends
over many crystal lattice sites, while being small enough to yield quantized
energy levels of the con�ned charges. We introduce the notion of mesoscopic
emitters to describe this regime where the con�ning potential is spatially much
larger than the usual atomic potentials but still small enough to yield quantized
energy levels. The emission energies from quantum dots is determined by their
size and constituent materials and can thus be engineered by controlling their
growth. Consequently, the term arti�cial atoms has been coined to describe
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Chapter 3. Quantum dot decay dynamics beyond the dipole approximation

quantum dots. Perhaps, this nomenclature was part of the inspiration that led
solid-state physicist to adapt the interaction formalism from atomic physics
which has also proven itself widely successful.

The classical problem of an atom interacting with a plane-wave light �eld,
A0e

i(k · r−ωt), where k is the wavevector, can be simpli�ed by evoking the dipole
approximation, i.e., that the optical �eld does not change over the extent of
the emitter a, so that the vector potential can be simpli�ed as A(r, t) → A(t).
This is equivalent to requiring that

|k|a =
2πn

λ0
a ≪ 1, (3.1)

where n is the refractive index of the surrounding medium and λ0 is the free-
space wavelength of the emission. We �nd that this relation is easily satis�ed for
atomic emitters where: n ∼ 1, a ∼ 0.5 nm, and λ0 ∼ 500 nm. For mesoscopic
emitters, e.g., quantum dots where: n ∼ 3.5, a ∼ 20 nm, and λ0 ∼ 1000 nm

the equality evaluates to ∼ 0.4 ≪ 1, which is no longer satis�ed. Note that the
high index of refraction of the surrounding medium enhances the breakdown of
the dipole approximation. Furthermore, in nanophotonic structures (e.g. near
metals as in Fig. 3.1) there exists �eld modes which have components of the
wavevector much larger than 2πn

λ0
leading to even kiai > 1, where ai is the size

of the emitter in the i'th direction. This is clearly a violation of the condition
for the dipole approximation.

In this chapter we describe the interaction of mesoscopic quantum emitters
with a light �eld beyond the dipole approximation, i.e., including the e�ect of
variations in the optical �eld over the spatial extent of the emitter, as shown in
Fig. 3.1. To this end we expand the interaction Hamiltonian to �rst order of a
Taylor series, which leads to the mesoscopic moment Λ that is determined by
the spatial properties (size, symmetries) of the emitter. Importantly, we �nd
that for quantum dots the contribution to the interaction from the mesoscopic
moment Λ and the dipole moment µ can interfere on the ground state transition,
which gives rise to a modi�cation of the decay rate that is sensitively dependent
on the size and orientation of the emitter.

This chapter is organized as follows. In Section 3.1 we derive the general
formalism for decay from a mesoscopic emitter and the expression for the decay
rate is calculated. In Section 3.2 we speci�cally extract the form of the dipole
and mesoscopic moment for a self-assembled quantum dot using symmetry
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Figure 3.1: Sketch of a mesoscopic quantum dot in an optical environment

where the �elds change over the spatial extent of the quantum dot. A quantum

dot (green trapezoid) is placed a distance z below a metal mirror. The lateral

extension of a quantum dot emitting at 1030 nm is typically a = 20 nm. The

plasmon wavelength is λpl = 262 nm (�gure is not to scale). The arrow over µ

indicates the orientation of the point-dipole moment and the arrows at Λ the

orientation of the �rst order mesoscopic moment, which is introduced in this

chapter.

considerations. In Section 3.3 the resulting decay rate for an emitter with only
a dipole moment or only a mesoscopic moment placed near a silver mirror is
calculated, which serves as a basis for understanding the decay dynamics where
both moments contribute, which is the case for mesoscopic quantum dots. The
resulting decay dynamics for such mesoscopic quantum dots is also shown in
Section 3.3. In Section 3.4 the gauge-dependence of interaction Hamiltonians
is discussed, and related to the formalism employed in this chapter. We relate
the mesoscopic moments to the familiar multipolar moments of the multipolar
interaction Hamiltonian in Section 3.4. Finally, the conclusions of the chapter
are presented in Section 3.5.

3.1 Light-matter interaction

beyond the dipole approximation

The interaction between light characterized by the vector and scalar potentials
A and ϕ, respectively, and a particle characterized by a mass m and a charge
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Chapter 3. Quantum dot decay dynamics beyond the dipole approximation

q is described by the minimal coupling Hamiltonian [48]

Hmin =
1

2m
(p− qA)2 + V (r) + qϕ+

1

2

∫ (
ϵ0ϵr(r)E

2 +
1

µ0
B2

)
, (3.2)

where p is the momentum operator, V (r) is the potential felt by the particle,
and the integral gives the energy of the unperturbed electromagnetic �eld. In
the generalized Coulomb gauge, i.e., ϕ = 0 and ∇ · [ϵr(r)A(r)] = 0 as discussed
in Appendix B, we can simplify the Hamiltonian to

Hmin = Hparticle +Hfield − q

2m
(p ·A+A ·p− qA ·A)︸ ︷︷ ︸

Hmin
I

. (3.3)

The term proportional to A ·A in the interaction part of the Hamiltonian is
negligible for small �elds and we will therefore neglect it in the following as
we will study the interaction with vacuum �elds. In the generalized Coulomb
gauge, i.e. ∇· [ϵr(r)A(r)] = 0, the commutator [A,p] = ∇·A(r) is not in
general equal to zero. However, throughout this thesis we consider structured
dielectrics that have piecewise constant ϵr(r), ensuring that [A,p] = 0 when
the commutator is not evaluated across the boundary between two materials.
The resulting interaction Hamiltonian is then given by

Hmin
I = − q

m
A ·p. (3.4)

The quantized vector potential, represented in the interaction picture, is given
by [49]:

A(r, t) =
∑
l

√
~

2ϵ0ωl

[
âle

−iωltfl(r) + â†l e
iωltf∗l (r)

]
, (3.5)

where âl and â†l are the annihilation and the creation operators, respectively,
for the optical �eld mode fl(r), that oscillates with an angular frequency ωl

and ful�lls the equations discussed in Appendix B.
We will describe the quantum dot as a two-level system as discussed in

Chapter 2. We note that the solid-state nature of the quantum dot implies
that these two levels are in reality many-particle states with the ground state
being equal to an empty conduction band and a �lled valence band, and the
excited state de�ned from this but with a single electron from the valence band
promoted to the conduction band, leaving a hole behind. We will here employ
a single particle formalism where an electron can be either in the conduction
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|c⟩ or the valence band |v⟩, corresponding to the excited and ground state
respectively. In our experimental investigations, which will be presented in
Chapter 4, we take care not to create multiple excitations in the quantum
dot, which ensures that the two-level model is a good approximation to our
experimental condition. We denote the energy di�erence between the excited
and ground state ∆E = ~ω0 and expand the interaction Hamiltonian on the
complete set of electronic states I = |v⟩⟨v|+ |c⟩⟨c|. We introduce the electronic
raising and lowering operators σ̂+e

+iω0t and σ̂−e
−iω0t, respectively, as given

in the interaction picture. The e�ect of the raising operator σ̂+ = |c⟩⟨v| is to
promote the electron from the valence band to the conduction band and the
e�ect of the lowering operator σ̂− = |v⟩⟨c| is the opposite.

The time dependence of the light-�eld creation and annihilation operators,
e±iωlt, combined with the time dependence of the electronic raising and lower-
ing operators, e±iω0t, give rise to four di�erent time dependencies, e±i(ωl+ω0)t

and e±i(ωl−ω0)t. In the rotating wave approximation, i.e., neglecting all terms
oscillating as e±i(ωl+ω0)t as these contributions average to zero over the much
slower oscillating e±i(ωl−ω0)t when ωl ≈ ω0, we get

HI(r, t) = − q

m

∑
l

√
~

2ϵ0ωl

[
ei∆ltσ̂−â

†
l ⟨v|f

∗
l (r) ·p|c⟩

+ e−i∆ltσ̂+âl⟨c|fl(r) ·p|v⟩
]
, (3.6)

where ∆l = ωl − ω0.

The wavefunctions that represent the electron in the conduction and va-
lence band respectively are spatially extended with their extent determined by
the size of the quantum dot. The usual next simplifying step is the dipole
approximation, i.e., to assume that the �eld modes (fl(r)) do not change over
the extent of the quantum dot whereby they can be pulled out of the matrix
elements ⟨v|fl(r) ·p|c⟩ → ⟨v|p|c⟩ · fl(r) and likewise for f∗l (r). Here we wish to
address the decay dynamics of mesoscopic quantum dots for which this approx-
imation is not valid a priori.

Calculations of decay dynamics beyond the dipole approximation can be
performed in two distinctively di�erent ways:

Firstly, one could set out to calculate the matrix elements above taking the
full spatial dependence of the wavefunctions and electromagnetic �elds into
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consideration
⟨v|fl(r) ·p|c⟩ =

∫
Ψ∗

v(r)fl(r) ·pΨc(r), (3.7)

where Ψv(r) and Ψc(r) are the wavefunctions for the electron in the valence
and conduction band, respectively. The wavefunctions are very complicated
as they contain both the dependence of the crystal lattice as well as the con-
�nement determined by the InAs distribution, both of which are very di�cult
to obtain for real quantum dots. Only a few theoretical works have been con-
ducted where the dipole approximation has not been made [50, 51, 52, 53].
In these, the quantum dot is modeled with an uniform lattice structure and a
highly symmetric con�nement potential. While these approaches are interest-
ing in their own right, they fail to capture some of the very exciting physics of
mesoscopic emitters that we will discuss here.

Secondly, the matrix element can be calculated by Taylor expanding the
�eld modes around the center of the quantum dot (r = r0)

fl,j(r) ≈ fl,j(r0) +
∑
n

(r− r0)n [∇nfl,j(r)]r=r0
+ . . . , (3.8)

where we have changed to a coordinate description with j and n both running
over {x, y, z}, resulting in a set of matrix elements for each order of the Taylor
expansion. Here we will perform the Taylor expansion to �rst order and intro-
duce two moments that we will associate with point-dipole µj = ⟨v|pj |c⟩ and
�rst order terms (Λj,n = ⟨v|(r− r0)npj |c⟩). We will in the following, not write
the sum explicitly for repeated coordinate indices, which will help to simplify
notation

HI(r0, t) = − q

m

∑
l

√
~

2ϵ0ωl

[
ei∆ltσ̂−â

†
l (µj + Λn,j∇n)f

∗
l,j(r)

+ e−i∆ltσ̂+âl(µ
∗
j + Λ∗

n,j∇n)fl,j(r)
]
r=r0

. (3.9)

This resulting Hamiltonian for a two-level system beyond the dipole approxi-
mation, contains the mesoscopic nature of the quantum dots through the meso-
scopic moments Λn,j . The calculation of Λn,j for a real quantum dot is not
much easier than the full calculation of the matrix elements Eq. (3.7). The
calculation of Λn,j also relies on detailed knowledge of the quantum dot wave-
functions, but it allow us to attribute an intrinsic property to the emitter that
contains its mesoscopic nature, whereas the approach of Eq. (3.7) intertwine
the spatial dependence of the speci�c �eld and the emitter.
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3.1.1 Time-evolution of a two-level quantum dot

beyond the dipole approximation

The Schrödinger equation in the interaction picture

i~∂Ψ(t)/∂t = HI(r0, t)Ψ(t) (3.10)

governs the time evolution of the general state of the system under investigation

|Ψ(t)⟩ = ce(t)|i⟩+
∑
l′

cl′(t)|fl′⟩. (3.11)

Here, |i⟩ and |fl′⟩ are the initial- and �nal states, and ce(t) and cl′(t) are the
expansion coe�cients for these. Only a single initial state |i⟩ = |0⟩ ⊗ |c⟩ exists
by construction, corresponding to an empty light �eld |0⟩ and a single electron
promoted to the conduction band |c⟩. There is, on the other hand, a multitude
of �nal states |fl′⟩ = |1l′⟩⊗|v⟩ with an electron in the valence band and a single
photon in the �eld mode fl′(r). We can now apply Eq. (3.10) with Eq. (3.9) to
work on Eq. (3.11), and project the resulting expression onto |i⟩ and |f⟩, which
gives

i~
∂ce(t)

∂t
= − q

m

∑
l

√
~

2ϵ0ωl
e−i∆lt(µ∗

j + Λ∗
n,j∇n)fl,j(r)cl(t)

∣∣∣
r=r0

, (3.12)

i~
∂cl(t)

∂t
= − q

m

√
~

2ϵ0ωl
ei∆lt(µj′ + Λn′,j′∇′

n)f
∗
l,j′(r

′)ce(t)
∣∣∣
r′=r0

, (3.13)

respectively. Formally integrating Eq. (3.13) with respect to time and substi-
tuting the result into Eq. (3.12) we get

∂ce(t)

∂t
= − q2

2m2ϵ0~

( [
µ∗
j + Λ∗

n,j∇n

]
[µj′ + Λn′,j′∇′

n′ ]

×
∑
l

1

ωl
fl,j(r)f

∗
l,j′(r

′)

∫ t

0

dt′ce(t
′)e−i∆l(t−t′)

)∣∣∣
r=r′=r0

, (3.14)

which we can rewrite as an integral over ω when we introduce a δ-function

∂ce(t)

∂t
= − q2

2m2ϵ0~

( [
µ∗
j + Λ∗

n,j∇n

]
[µj′ + Λn′,j′∇′

n′ ]

×
∫ ∞

−∞
dω
∑
l

1

ωl
fl,j(r)f

∗
l,j′(r

′)δ(ω − ωl)

×
∫ t

0

dt′ce(t
′)e−i(ω−ω0)(t−t′)

)∣∣∣
r=r′=r0

. (3.15)
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The sum over the �eld modes can be related to the expression for the imaginary
part of the dyadic Green's function calculated in Appendix B

Im [G(r, r′;ω)] =
π

2

∑
l

1

ωl
f∗l (r

′;ωl)fl(r;ωl)δ(ω − ωl), (3.16)

which allows us to rewrite the expression in terms of the dyadic Green's func-
tion. In the Wigner-Weisskopf approximation [54], i.e., assuming the dyadic
Green's function is slowly varying over the linewidth of the emitter, we can
evaluate the dyadic Green's function at the emission frequency ω = ω0 and
pull it outside the integral over time, resulting in

∂ce(t)

∂t
= − q2

πm2ϵ0~

( [
µ∗
j + Λ∗

n,j∇n

]
[µj′ + Λn′,j′∇′

n′ ]

× Im(Gj,j′(r, r
′;ω0))

∫ ∞

−∞
dω

∫ t

0

dt′ce(t
′)e−i(ω−ω0)(t−t′)

)∣∣∣
r=r′=r0

. (3.17)

The integral over frequency evaluates as
∫∞
−∞ dωe−i(ω−ω0)(t−t′) = 2πδ(t − t′),

and the integral over time can subsequently be carried out to yield

∂ce(t)

∂t
= − q2

m2ϵ0~

( [
µ∗
j + Λ∗

n,j∇n

]
[µj′ + Λn′,j′∇′

n′ ]

× Im(Gj,j′(r, r
′;ω0))ce(t)

)∣∣∣
r=r′=r0

, (3.18)

which is an easily solvable di�erential equation in ce(t). The �nal expression for
the experimentally relevant population decay rate Γ(r0, ω0), de�ned through
|ce(t)|2 = exp[−Γ(r0, ω0)t] is

Γ(r0, ω0) =
2q2

m2ϵ0~

( [
µ∗
j + Λ∗

n,j∇n

]
[µj′ + Λn′,j′∇′

n′ ]

× Im(Gj,j′(r, r
′;ω0))

)∣∣∣
r=r′=r0

. (3.19)

We note that the familiar expression within the dipole approximation is ob-
tained for Λn,j = Λn′,j′ = 0 which is the expression introduced in Chapter 2.
The �rst order moments Λn,j in Eq. (3.19) describe the mesoscopic nature of
the quantum dot, and together with the dipole moment µj determine, the decay
rate of the excited quantum dot. There are three entries in the dipole moment,
one for each coordinate axis, while the mesoscopic moment Λn,j has nine en-
tries; one for each gradient of each coordinate axis. As seen in Eq. (3.19), the
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Quantum dot transition moments

decay rate mediated by the mesoscopic moment is determined by the gradient
of the imaginary part of the dyadic Green's function, while the contribution
mediated by the dipole moment is determined by the value of the Green's func-
tion itself. Both µj and Λn,j are intrinsic properties of the quantum dots and
as such independent of the electromagnetic environment. This implies that
once these moments are known it is straightforward to calculate the compli-
cated interaction of an extended quantum dot and an arbitrary electromagnetic
environment.

3.2 Quantum dot transition moments

The transition moments µj and Λn,j for the quantum dot determine the de-
cay dynamics. Here we investigate the form of these for a real quantum dot.
Speci�cally, we consider the symmetry properties of the quantum dot wave-
functions, which lead to certain restrictions on which entries µj and Λn,j that
are non-zero. For this purpose we make the ansatz that the wavefunctions can
be decomposed into a part that contains the dynamics on the length scale of
a crystal unit cell, and a part that contains the dynamics on the length scale
of the quantum dot con�ning potential, termed Bloch and envelope functions,
respectively [37]. The wavefunctions can then be written as

Ψc(r) = Fc(r)uc,0(r), (3.20)

Ψv(r) = Fv(r)uhh,0(r), (3.21)

where we have used that the degeneracy of the valence band is lifted, resulting
in the dominating Bloch function being the heavy hole Bloch function uhh,0(r),
as discussed in Chapter 2. The subscript 0 denotes that the Bloch functions
are evaluated at the Γ-point in the direct bandgap semiconductor where the
electron momentum k = 0. We will adapt the growth direction as the z-axis in
our quantum dots, as we note that the dispersion for the Bloch states is non-
uniform in real materials. The conduction band and heavy hole Bloch functions
can be written as linear superpositions of functions with s- and p-orbital-like
symmetries, known from atomic physics [33, 55]. We introduce us, which has
even symmetry in all three spatial directions and ux,y,z where, e.g., ux has odd
symmetry along x and even symmetry in the two other directions, similar to a
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Chapter 3. Quantum dot decay dynamics beyond the dipole approximation

p-like symmetry. Thus, the bulk Bloch functions are given as [37]:

uc,0(r) = us, (3.22)

u±
hh,0(r) =

1√
2
(ux ± iuy), (3.23)

where the heavy-hole Bloch function is a superposition state. Real quantum
dots are not in-plane rotationally symmetric as their in-plane shape is normally
slightly elliptic, implying that the heavy-hole functions above are no longer
good eigenstates. Two new hole eigenstates result in slightly di�erent energies
and have the Bloch part of one as ux-like and the Bloch part of the other
as uy-like. Here, however, we describe the quantum dots as being in-plane
rotationally symmetric.

The envelope functions, Fc and Fv, are determined by the con�ning po-
tential given by the shape of the quantum dot and its material distribution.
We describe the quantum dots as rotationally symmetric, which implies that
both envelope functions have even parity in the x-direction and the y-direction.
The quantum dot is grown on top of a wetting layer and its shape has been de-
scribed as resembling a truncated pyramid or lens. Common for both geometry
descriptions is that these do not infer any symmetry to the con�ning potential
along the z-direction and therefore not to the envelope functions along the z-
direction. The wavefunctions for the electron and hole have a resulting overall
symmetry determined by its constituent parts, i.e. the Bloch and envelope
functions. The resulting symmetry for the part of the heavy-hole superposition
that has ux character is summarized in Table 3.1. Where 1, −1, and 0 indicate
even symmetry, odd symmetry, and asymmetry respectively, for each of the
three cartesian directions. The results are shown for both envelope, Bloch, and
complete wavefunctions for conduction and valence band states, independently.

The transition matrix elements are given as
∫
Ψ∗

vÔΨc where Ô = p̂j and
Ô = r̂np̂j for µj and Λn,j , respectively. The symmetry properties of a wave-
function that has been acted upon by operators, e.g., p̂jΨ or r̂nΨ, are changed
from those of the bare wavefunction Ψ. The result for either operator is that of
reversing the symmetry so that an even symmetry becomes odd and viceversa.
Such operator symmetry considerations on the wavefunction symmetries listed
above, yields that only p̂x gives a non-zero µ-matrix element, which we will call
µx, furthermore, µy = ±iµx, and µz = 0. The two signs stem from the two
di�erent degenerate eigenstates of the quantum dot.
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Decay dynamics near a silver mirror

Fc uc Ψc Fv uhh Ψv

x 1 1 1 1 -1 -1
y 1 1 1 1 1 1
z 0 1 0 0 1 0

Table 3.1: Symmetries of the quantum dot wavefunctions. The symmetry is

categorized as either even (1), odd (-1), or asymmetric (0) along each of the

three coordinate axis x, y, z. The results are shown for both envelope-, Bloch-,

and wave-function. For the heavy hole part we show the result for a Bloch

state with ux-like symmetry.

When we make the same considerations for the mesoscopic moment Λ we
�nd that either r̂ or p̂ has to be along x or y, while the other has to be along
z in order to yield non-zero matrix elements. Thus, the resulting Λ is Λxx =

Λyy = Λxy = Λyx = Λzz = 0, Λxz = ±iΛyz = Λ1, and Λzx = ±iΛzy = Λ2.
Where the plus or the minus sign should be chosen in accordance with the
choice for µ. With these considerations the amount of free parameters that
go into describing the decay dynamics of mesoscopic quantum dots are greatly
reduced.

We note that had we assumed the envelope function to have even symmetry
also along the z-direction then Λn,j = 0. The non-zero mesoscopic moments
is an important result that di�ers markedly from the atom-like picture often
employed in the description of quantum dots. The asymmetry of the quantum
dot wavefunctions is possible due to the extended size of these emitter. The
inclusion of the mesoscopic moment alters the decay rate on the ground state
transition through the gradient of the electromagnetic surroundings. In the
next section the e�ect on the decay rate of the mesoscopic character of quantum
dots will be studied in a simple electromagnetic environment.

3.3 Decay dynamics near a silver mirror

We will calculate the rate of decay for an emitter near a silver mirror character-
ized by the refractive index n = 0.2+7i. The medium surrounding the emitter
is GaAs for which n = 3.42 and the emitter emits light at a free-space wave-
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p
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Figure 3.2: Normalized decay rates for a dipole emitter near a silver mirror.

The calculated normalized decay rates as function of distance to a silver mirror

are shown for two di�erent dipole orientations (see insets), parallel to the mirror

(solid line) and perpendicular (dashed line).

length of λ0 = 1000 nm. The decay rate can be calculated with Eq. (3.19) using
the corresponding dyadic Green's function that is presented in Appendix A.

The decay rate normalized to the decay rate in an homogeneous medium is
given by Γmirror(z0, ω0)/Γ0(ω0) where both the decay rate in the homogeneous
medium and near the mirror include the contribution of µj and Λn,j . For a
dipole emitter Λn,j = 0 the decay rates for µx and µy are equal, due to the
symmetry of the environment. We will therefore only consider one excited
state, i.e. along x, without any loss of generality. The decay rates of dipoles
oriented along x and z is shown in Fig. 3.2. The resultant oscillations are due
to interference between the direct and re�ected �eld from the dipole emitter.
Note that the two oscillations are out of phase, which provides an experimental
method to easily distinguish the two dipole orientations. Close to the interface
(∼ 100 nm) the decay rate is enhanced due to coupling to plasmons, and very
close to the interface (∼ 20 nm) the decay rate is strongly enhanced as the
dipole is coupling to ohmic losses in the metal. The plasmonic �eld is polarized
such that a dipole along z couples more e�ciently to the plasmonic �eld, which
is the reason for the observed di�erence in decay rate for z < 100 nm.
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Figure 3.3: Normalized decay rates for a purely mesoscopic emitter (µ = 0)

near a silver mirror. The calculated normalized decay rates as function of

distance to the silver mirror are shown for four di�erent mesoscopic moments,

⟨v|xpx|c⟩ (solid line), ⟨v|zpz|c⟩ (dotted line), ⟨v|xpz|c⟩ (dash-dotted line), and

⟨v|zpx|c⟩ (dashed line).

Similarly we set µ = 0 and study the e�ect of the four independent entries
to Λ in this geometry, namely xpx, zpz, xpz, and zpx, where the last two
are important for quantum dots as discussed above. The results are shown
in Fig. 3.3. The decay dynamics resemble those of a pure electric quadrupole
or magnetic dipole where the interaction with light is given by the gradients
of the optical �eld only. The relationship between the formalism presented
here to a multipolar description of light-matter interaction will be addressed in
Section 3.4. Importantly, the normalized decay dynamics for an emitter with
purely dipolar or mesoscopic moments is not dependent on the size and sign of
these moments but only on their orientation. The decay rates shown in Fig. 3.2
and Fig. 3.3 are thus limiting cases for those of a real quantum dot described
by a combination of both moments as expressed in Eq. (3.19).

When both moments contribute to the decay dynamics the two di�erent
decay mechanisms can interfere, as shown in Fig. 3.4. The decay dynamics is
now dependent on both the relative sign and size of the two moments. When
either µ or Λ are dominating the decay dynamics, the results shown in Fig. 3.2
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a

b

L/m = -10 nm
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Figure 3.4: Normalized decay rates of mesoscopic quantum dots near a silver

mirror. The decay rates are determined by both µ and Λ, the result for Λ/µ =

±10 nm and Λ/µ = ±100 nm are shown as dashed and dotted lines respectively,

with the (+) sign shown in blue and (-) in red. The black and grey lines are

for a pure dipole and pure mesoscopic moment transitions, respectively. In a

and b µ = µx. a Λ = Λz,x. b Λ = Λx,z. Note di�erent distance scales in the

two plots.
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and Fig. 3.3 are recovered, but when they are balanced in size they interfere
di�erently depending on their relative sign. The physical quantity of the ratio
Λ/µ, e.g

Λz,x

µx
=

⟨v|xpz|c⟩
⟨v|px|c⟩

, (3.24)

is a length. In Fig. 3.4 we state the size of Λ/µ in nanometer, which is a
convenient measure as the deviations from dipole theory start to occur for
Λ/µ ∼ 1 nm. In Fig. 3.4 we show the resulting decay rates for the intermixing
of µx with the two di�erent mesoscopic moment relevant to quantum dots Λz,x

(Fig. 3.4a) and Λx,z (Fig. 3.4b) for Λ/µ = ±10 nm and Λ/µ = ±100 nm as well
as the two limiting cases Λ = 0 and µ = 0. The sign of the moments only make
sense in relation to a coordinate system, which is �xed by the environment
in which the emitter is embedded. This has the consequence that the sign
of the Λz,x can be changed by mirroring the emitter along the z-axis. The
same mirroring does not a�ect µx, and thus the sign of the ratio Λz,x/µx is
also changed. The resulting decay rates in these two cases are very di�erent,
cf. Fig. 3.4, which we will utilize in Chapter 4, to provide the proof for the
mesoscopic nature of quantum dots. Note that the interference leads to both
enhancement and suppression of the decay rate and that the e�ect is determined
by the sign of Λ/µ.

3.3.1 Decomposition of decay mechanisms

Near metals there exist bound modes that can be divided into plasmonic modes
and, very near metals, lossy modes. The expression for the decay rate in
structured dielectrics (Eq. (3.19)) can be decomposed into the di�erent decay
mechanisms by intervals of the in-plane wavevector k∥ in the dyadic Green's
function [56].

For k∥ ∈ [0, kd], the emitter couples to freely propagating photons, as the

out of plane wavevector kz =
√
k2d − k2∥ is real-valued, where kd = 2πn/λ0 with

n being the refractive index of the dielectric. The interval k∥ ∈]kd,∞[ contains
the plasmon resonance kpl = k0

√
ϵdϵm/(ϵd + ϵm), and describes all modes that

are bound to the interface, where k0 is the wavevector in vacuum and ϵd and
ϵm is the permittivity of the dielectric and the metal, respectively. We asso-
ciate k∥ ∈]kd, 2kpl − kd[ with coupling to plasmons and larger k∥ ≥ 2kpl − kd

with coupling to lossy modes [56]. The dyadic Green's function for a simple
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Figure 3.5: Decomposition of decay rates for an emitter at a distance of 20 nm

from a silver mirror. The normalized decay rate is constructed as an integral

over the in-plane wavevector k∥ and thus corresponds to the area under the inte-

grand in this plot. The integrand is shown divided into photons, plasmons, and

lossy modes (losses) by two vertical dotted lines. The result is shown for an in-

plane dipole µx and a mesoscopic moment given by Λz,x/µx = +10, 0,−10 nm

with white, light grey, and dark grey �ll, respectively. The inset, shows the

coupling to plasmons on a linear scale.

slab structure can be expressed as an integral over the in-plane wavevector, as
shown in Appendix A, which makes the subdivision into di�erent decay mech-
anisms straightforward to implement. Figure 3.5 shows the decomposition for
a distance z = 20 nm to a silver mirror, for an in-plane dipole µx and a meso-
scopic moment given by Λz,x/µx = 0,+10 nm, and -10 nm. The deviations
from the result obtained within the dipole approximation, i.e. Λz,x/µx = 0, is
larger for coupling to modes with large k∥. This is consistent with the simple
notion that the dipole approximation is justi�ed when ka ≪ 1. The coupling
to the plasmonic mode is strongly a�ected by the inclusion of the mesoscopic
moment and can be either enhanced or suppressed from its dipole value, as
shown in inset of Fig. 3.5.

42



Gauge transformations

3.4 Gauge transformations

In Section 3.1 we used the generalized Coulomb gauge to �x the electromagnetic
potentials. The physical electric and magnetic �elds are invariant under a
gauge transformation of the potentials and therefore it is an often used and
well-advised practice to choose the gauge that simpli�es calculations, as we did
in Section 3.1. In quantum-electro-dynamics the Schrödinger equation is not
form invariant under a gauge transformation of the electromagnetic potentials
unless also the wavefunctions are transformed. In this way quantum-electro-
dynamics is a gauge invariant formalism under the following transformation
determined by the arbitrary scalar function λ(r, t)

A → A+∇λ(r, t) (3.25)

ϕ → ϕ− ∂λ(r, t)

∂t
(3.26)

Ψ → eiqλ(r,t)/~Ψ. (3.27)

It is easy to verify that the Schrödinger equation(
(p− qA)2

2m
+ qϕ+ V

)
Ψ = i~

∂

∂t
Ψ, (3.28)

is form invariant under such a transformation. Thus, these equations tell us
how we should transform the wavefunctions, when we shift from one gauge to
another.

In perturbation theory, the interaction part of the Hamiltonian, HI , is de-
scribed as a perturbing term, and the wavefunctions are eigenfunctions of the
unperturbed and gauge-independent Hamiltonian, H0. Thus, the question of
which gauge to choose for the interaction Hamiltonian to do meaningful pertur-
bation theory on the eigenfunctions of H0, arises. We will discuss this problem
of gauge-dependent perturbation theory in more detail in Appendix C. Here,
it su�ces to cite the summary of Ref. [57]: "Only for non-resonant transitions
induced by a monochromatic �eld does the hybrid procedure yield contradictory

results in di�erent gauges.", where hybrid procedure refers to transformation of
the electromagnetic potentials only while leaving the wavefunctions unaltered.
In our formalism we have explicitly invoked energy conservation through the
rotating wave and Wigner-Weiskop� approximations, which ensures that the
decay dynamics calculated in this chapter are consistent with results from a
gauge-invariant formulation.
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Chapter 3. Quantum dot decay dynamics beyond the dipole approximation

3.4.1 Relation to multipolar moments

A di�erent approach to gauge dependent formalisms is to recast the entire
Hamiltonian in a gauge-independent form. Such a form can be constructed
by Taylor expanding the scalar and vector potentials of the minimal coupling
Hamiltonian [58] or from a canonical transformation [59]. In this form the
light-matter interaction Hamiltonian is given as a multipolar series (multipolar
interaction Hamiltonian)

Hmult
I (r0, t) = qtotϕ(r0, t)− d ·E(r0, t)−m ·B(r0, t)− (Q∇) ·E(r0, t)− . . . ,

(3.29)
with

qtot =
∑
n

qn (3.30a)

d =
∑
n

qnrn (3.30b)

m =
∑
n

(qn/2mn)rn × pn (3.30c)

Q =
∑
n

(qn/2)rnrn. (3.30d)

where qtot is the total charge, d is the electric dipole moment,m is the magnetic
dipole moment, and Q is the electric quadrupole moment. The contribution
from the scalar potential, ϕ, at r0 vanish for a neutral charge con�guration.
The magnetic dipole- and electric quadrupole moment originate from the same
expansion order of the interaction and their contribution to the Hamiltonian
should be compared to the contribution from the mesoscopic moments in the
formalism presented in this chapter.

To gain some physical insight, we compare the mesoscopic moments to the
magnetic dipole and electric quadrupole moments by considering the tensor
identity [60]

UiVj =
U ·V
3

δi,j +
UiVj − UjVi

2
+

(
UiVj + UjVi

2
− U ·V

3
δi,j

)
, (3.31)

which relates a cartesian dyadic tensor to components that transform like
spherical harmonics. Along this line, we can transform a component of the
ripj-tensor that occur in our formalism, e.g., for the moment xpz we �nd

xpz =
(r× p)y

2
+

xpz + zpx
2

. (3.32)
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Where we have not isolated the part that gives rise to a scalar product as
in Eq. (3.31). The �rst of these terms give rise to a cross-product between
p and r just as for the magnetic dipole moment m. The transition moment
resulting from the second term ⟨v|xpz + zpx|c⟩, can be rewritten utilizing that
p = −m i

~ [r,H0] and [xi, pj ] = i~δi,j as

⟨v|xpz + zpx|c⟩ = −i
mω0

2
⟨v|xz + zx|c⟩, (3.33)

where ~ω0 = Ec − Ev is the energy di�erence between the conduction and
valence band states. The result is on the same form as the de�nition of the
electric quadrupole tensorQ. This shows that the mesoscopic moments contain
contributions of both magnetic dipole and electric quadrupole character. Note
that the same considerations for the moment zpx would change the sign of the
magnetic dipole term and leave the quadrupole term una�ected. From this, we
�nd that if ⟨v|xpz|c⟩ = ±⟨v|zpx|c⟩ then the e�ect of including both moments
correspond to purely electric quadrupole or magnetic dipole decay dynamics,
for the plus and minus sign respectively. In summary, we have discussed the
relation between the mesoscopic moments of the present formalism and the
multipolar moments. Speci�cally, for the mesoscopic moments of quantum
dots we �nd that these contain both magnetic dipolar and electric quadrupolar
contributions.

3.5 Conclusion

We have developed a formalism for the interaction of extended mesoscopic emit-
ters with a spatially varying optical �eld. This leads to additional moments
(besides the dipole moment) in the description of the light-matter interaction.
Simple symmetry considerations of quantum dots led to the conclusion that the
introduced mesoscopic moments give non-zero contributions to the decay rate
on the ground state transition, which is a clear departure of the description
inherited from atomic physics where the absolute parities of the wavefunctions
ensures that only operators with either even or odd parity yield non-zero re-
sults but never simultaneously. As an application of the model, we calculated
the decay dynamics of an emitter with both a dipole moment and a mesoscopic
moment near a silver mirror. When they are co-existing on the ground-state
transition, the contributions can interfere leading to exciting new decay dy-
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namics that change under a mirroring of the emitter.
The resulting decay rate of an emitter near a metallic structure can be

decomposed into contributions to photons, plasmons, and losses. The decom-
position revealed that particularly the coupling to optical modes with large
wavevectors (plasmons, lossy modes) are a�ected by the breakdown, in cor-
respondence with the notion of the dipole approximation being valid when
ka ≪ 1.

We have seen that the decay dynamics depend sensitively on the amount
of intermixing of the dipolar and the mesoscopic moment. The decay dy-
namics are also very dependent on the sign of the ratio Λ/µ, which can be
used to control the coupling, especially to optical modes with large wavevec-
tors. A calculation of the decay dynamics of a mesoscopic quantum dot near
a silver mirror con�rmed these e�ects in a simple structure. The e�ects are
suspected to be much more pronounced in optical environments that are more
complicated, where the inclusion of the mesoscopic moment could dominate the
result. These results suggest that the engineering of nanophotonic structures
for increased light-matter interaction should incorporate a model for extended
emitters. Rephrased more generally: the co-engineering of the emitter and the
structure could be adopted as a new design principle for pursuing enhanced
light-matter interaction. The important experimental task of determining the
mesoscopic moments for real quantum dots will be the subject of Chapter 4.
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Chapter 4

Strongly modi�ed

plasmon-matter interaction

with mesoscopic quantum

emitters

In this chapter we present time-resolved spectroscopic measurements on quan-
tum dots in three di�erent but intricately related nanophotonic structures.
Firstly, a study of quantum dots placed at controlled distances to a GaAs/air
interface allows us to extract the intrinsic radiative and non-radiative rate of
the quantum dots. Secondly and thirdly, we study the quantum dots at con-
trolled distances to a GaAs/silver interfaces for two di�erent orientations of the
quantum dot. Near these silver mirrors, the resulting decay rates deviate from
dipole theory in a manner that unambiguously provide the experimental proof
of the mesoscopic nature of the quantum dot. The experimental data are com-
pared to the model presented in Chapter 3 for decay dynamics of mesoscopic
emitters and the mesoscopic moment, Λj,n, of the quantum dots is extracted.

The chapter is organized as follows. First, we motivate the experiments
in Section 4.1, before we outline the sample fabrication in Section 4.2 and
present the experimental method in Section 4.3. Then, in Section 4.4 the
central results on the GaAs/silver interfaces are presented. In Section 4.5, they
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emitters

are compared to the theoretical model introduced in Chapter 3, which allow us
to extract the intrinsic mesoscopic moment of the quantum dots. In Section 4.6
we theoretically investigate the e�ect of the extracted mesoscopic moment on
the coupling to plasmonic modes on a silver nanowire which have much larger
�eld gradients resulting in strongly modi�ed decay dynamics. Finally, we rule
out a number of alternative mechanisms for the observed e�ects in Section 4.7
and present microscopic models for the mesoscopic moments in Section 4.8,
before we present our conclusions in Section 4.9.

4.1 Motivation

Semiconductor quantum dots provide an essential link between light and mat-
ter in emerging �elds such as light-harvesting [61, 62], all-solid-state quantum
communication [63], and quantum computing [13]. Quantum dots are excellent
single-photon sources [28] and can store quantum bits for extended periods
[64] making them promising interconnects between light and matter in inte-
grated quantum information networks [65]. To this end the light-matter inter-
action strength must be strongly enhanced using nanophotonic structures such
as photonic crystal cavities [41] and waveguides [66] or plasmonic nanowires
[20, 67, 68, 69]. So far it has been assumed that quantum dots can be treated
just like atomic light emitters, where the spatial properties of the wavefunction
can be safely ignored.

An essential advantage of all-solid-state emitters compared to, e.g., atomic
emitters or molecules, is that they can be positioned deterministically and re-
main stationary [30]. This makes quantum-dot-based nanophotonic devices
a promising technology for scalable many-qubit systems [70]. Presently, it be-
comes clear that quantum dots in nano-structures lead to a number of surprises
distinguishing them from atomic systems, including the recent observations of
very broadband radiative coupling in cavity quantum-electro-dynamics [41] and
self-tuning of quantum dot nanolasers [71]. In this chapter we present the �rst
experimental observation of a novel mechanism to enhance the interaction be-
tween light and matter induced by the mesoscopic size of quantum dots. It
gives rise to a strongly modi�ed radiative decay, that is tailored by the size
and shape of the quantum dot electron-hole wavefunctions, and can be used
as a resource to dramatically enhance the coupling of quantum dots to plas-
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monic nano-structures. The e�cient coupling of single emitters to plasmonic
nano-structures is currently being investigated intensely for various applica-
tions within nanophotonics and quantum optics [72, 73] enabling highly ef-
�cient single-photon sources [19, 68, 74], single-photon transistors [20], and
subwavelength plasmon lasers [75, 76]. In all these applications it is essential
to understand and enhance the interaction between light and matter, which is
the essence of the work presented in this chapter.

4.2 Sample fabrication

We have fabricated two samples which we name the direct structure, and the

inverted structure. The nomenclature will be explained in the following. The
inverted structure was also subjected to optical experiments before the �nal
step of silver deposition (to be explained) was performed, hereby functioning
as a third sample. The fabrication procedure described in this paragraph is
outlined in Fig. 4.1 which can serve as a visual aid to the following text.

We use the same quantum-dot containing semiconductor wafer for both the
direct and the inverted samples thus ensuring that there is no di�erence in the
quantum-dot properties between the two samples. The semiconductor wafer
was grown by molecular-beam epitaxy with the following layers from bottom
to top: A GaAs substrate, a 50 nm AlAs sacri�cial layer, a 623 nm GaAs
bu�er, 2.13 monolayers of InAs, and a 302 nm capping layer of GaAs. The
InAs quantum dots are grown using the Stranski-Krastranov method on the
(001) GaAs substrate, resulting in a quantum dot density of 250 µm−2. Before
evaporation of an optically thick (200 nm) silver mirror onto the sample we
de�ne a series of 32 terraces with a nominal spacing of 10 nm so that the
distance to the silver mirror is varied from 0-310 nm.

For the direct sample the terraces are etched into the 302 nm GaAs cap-
ping layer, through a series of UV-lithography and wet-etching steps, using
the method of Ref. [31]. For details see Appendix D. Optical access to the
quantum dots is achieved by selective etching of the sacri�cial AlAs layer and
subsequential epitaxial lift-o� of the layers above, which are then bonded to a
transparent sapphire substrate.

The inverted sample is fabricated by �rst performing the epitaxial lift-o�
moving the top layers onto an intermediate PMMA-coated silicon substrate.
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d ecba

SapphireSilicon Sapphire SapphireGaAs

Inverted Direct

Figure 4.1: Outline of the sample fabrication. The quantum dots are indicated

with triangles, and the surrounding GaAs is indicated by the green color. a,

The unprocessed wafer with a sacri�cial AlAs layer (blue). b, The result of

the epitaxial lift-o� onto a intermediate silicon substrate. c, The wafer has

been �ipped upside down and transferred to a transparent sapphire substrate.

d, The �nished inverted sample with terraces and thick silver mirror. e, The

�nished direct sample for comparison.

Hereafter, the top layers are transferred to a SU-8 coated sapphire substrate and
bonded upside down, see Fig. 4.1 for a schematic presentation of the fabrication.
After removal of the PMMA layer by oxygen plasma ashering, the terrace
fabrication and silver evaporation continues as for the direct structure. The
resulting distances to the quantum dots are measured using a combination of
secondary ion mass spectroscopy of the initial wafer and surface pro�ling after
terrace fabrication.

4.3 Experimental method

The decay dynamics of quantum dots are investigated by performing time-
resolved single photon counting experiments on sub-ensembles of quantum dots
emitting at the same wavelength. To this end the samples were placed in a
closed-cycle cryostat and kept at a temperature of 16 K. The quantum dots
were excited with a Ti:sapphire laser that emits picosecond pulses at a repeti-
tion rate of 76 MHz. The laser was tuned to 1.45 eV, which corresponds to ab-
sorption in the wetting layer. The power was adjusted so as to only populate the
ground states of the quantum dots (∼ 0.1 excitons/quantum dot/pulse). The
spontaneously emitted light was collected with a lens and afterwards imaged
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Figure 4.2: Typical normalized decay curves. Both curves are for quantum dots

positioned ∼ 25 nm from a silver mirror, but with two opposite orientations

relative to the silver mirror as resulting from the direct and inverted structures.

onto a monochromator in which the inhomogeneously broadened spontaneous-
emission spectrum from the quantum dots was spatially dispersed. A narrow
slit was used to select a narrow band (2.6 meV) of the spectrum centered at
1.204 eV (1030 nm). This corresponds to a low energy in the inhomogeneously
broadened quantum dot spectrum (A typical spectrum is shown in Fig. 2.1),
which together with the weak pumping conditions (∼ 0.1 excitons/quantum
dot/pulse) ensures that excited states from quantum dots with a lower ground-
state energy do not contribute to the selected emission. The collected and
spectrally seperated emission was then measured with a fast avalanche photo
diode for time-resolved measurements. An outline of the experimental setup is
shown in Appendix E.

Examples of the resulting decay curves are shown in Fig. 4.2. They can be
�tted with a bi-exponential model and the fast decay rate can be extracted as
discussed in Chapter 2. Note that we probe an ensemble of quantum dots, which
are placed in the same optical environment and all emit photons at the same
energy. This method averages out properties stemming from irregular single
quantum dots, making it well-suited for investigations of general quantum dot
properties.

The decay rates of quantum dots near a GaAs/air interface are well-described
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Figure 4.3: Measured decay rates near a GaAs/air interface. The measured

decay rates are plotted versus the distance to the interface (a) and versus the

normalized density of optical states (b) for easy comparison with theory. In

both plots the dashed line indicate the same �t to the data, the data points

shown as solid squares (z < 33 nm) have been excluded from the �tting proce-

dure.

by dipole theory [29, 31]. In dipole theory the rate of decay is directly pro-
portional to the density of optical states as described in Chapter 2. The decay
rates of quantum dots was measured for a series of controlled distances to the
GaAs/air interface, see Fig. 4.3a. The local density of optical states near the
interface can be calculated exactly, whereby we can extract the intrinsic ra-
diative Γrad and non-radiative Γnr decay rates of the quantum dots through a
linear �t

γQD(z) =
ρGaAs/air(z)

ρGaAs
Γrad + Γnr. (4.1)
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Here, ρGaAs/air(z)/ρGaAs is the normalized density of optical states as intro-
duced in Chapter 2, and γQD is the measured decay rate of the quantum
dot. The experimental results are shown in Fig. 4.3 including the linear �t
to the data. The resulting �tting parameters are Γrad = (0.88 ± 0.06) ns−1

and Γnr = (0.19 ± 0.05) ns−1. This corresponds to a quantum-dot quantum
e�ciency QE = Γrad/(Γrad + Γnr) = (82± 8)%.

Very close to the interface, i.e. for distances closer than 33 nm, we observe
a faster decay rate than expected from dipole theory, see Fig. 4.3a. A similar
deviation was also observed in Ref. [29] were it was described as being caused by
a lossy layer at the surface. Like in Ref. [29] we have excluded these deviating
data points in our �tting procedure.

From the �tted Γrad we can calculate the value of the dipole moment µx

(de�ned in Chapter 3) using the method presented in Ref. [29] resulting in
µx = 9.0 × 10−25 kg m s−1. With this knowledge of Γrad and Γnr we can
calculate the expected dipole decay dynamics in other structures without any
additional free parameters (see Eq. (4.1)), provided we can calculate the local
density of optical states. This is crucial for the unambiguous interpretation of
the following experiments.

4.4 Experimental proof for the breakdown of the

dipole approximation

The breakdown of the dipole approximation is here demonstrated as deviations
from dipole theory in the quantum dot decay rates when the quantum dots are
placed near a silver mirror. Studying two samples with opposite quantum dot
orientations lets us test the prediction from Chapter 3, which states that the
decay dynamics depend on the quantum dot growth direction relative to the
silver mirror.

Figure 4.4a illustrates the physical system under consideration: quantum
dots are placed at a distance z below a silver mirror and the electromagnetic
�eld associated with the surface-plasmon polariton resonance at the metal sur-
face is varying over the extension of the quantum dots. The quantum dots are
standard-sized (∼ 20 × 20 × 6 nm3) extended emitters. After excitation, the
quantum dots trap single electrons and holes, see Fig. 4.4b, which recombine
through di�erent channels with the following rates: excitation of plasmons γpl,
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Figure 4.4: Mesoscopic quantum dots in plasmonic nano-structures. a, Sketch

of the studied systems (not to scale). Quantum dots (green trapezoids) are

placed a distance z below a silver mirror. The orientation of the in-plane

dipole moment, indicated by the white double-arrow, is the same in the direct

and inverted sample. The plasmon polariton mode is indicated by �eld arrows

and surface charges (+ and −) as discussed in Chapter 2. The �eld amplitude

of the plasmon decays exponentially away from the interface with a change in

the electric �eld over the extension of the quantum dot. b, Boundaries of a

quantum dot (green frame) with the spatially extended electron- (blue) and

hole- (red) wavefunctions indicated inside. c, Sketch of a quantum dot placed

near a metallic structure. The quantum dot can decay by emitting a photon

(γph), by exciting a propagating plasmon (γpl), by coupling to lossy modes in

the metal (γls), or by intrinsic non-radiative recombination (Γnr) (not shown).

spontaneous emission of photons γph, non-radiative losses in the metal γls, or
intrinsic non-radiative recombination in the quantum dots Γnr, see Fig. 4.4c.
The impact of the mesoscopic quantum dot size on the radiative coupling to
plasmonic nano-structures can be precisely assessed by employing a nanopho-
tonic structure with well-understood optical properties. Here we employ a sil-
ver mirror with quantum dots positioned at precise distances from the surface,
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whereby the e�ects of emitter and environment can be unambiguously sepa-
rated. This approach is, presently, not possible in more complex structures like
photonic crystals [42] or near plasmonic nanowires [68].

The optical environment at the quantum dot positions can be precisely
assessed near the silver mirror, as it does not depend on the in-plane position
of the quantum dots but only on the distance to the interface. Quantum dots
have been described as having a truncated pyramid shape [77] with the apex
pointing in the growth direction, see Fig. 4.4b. Our �rst sample (the direct
structure) is fabricated such that the quantum dot apices are pointing towards
the silver mirror, and the second sample (the inverted structure) is fabricated
such that the quantum dot apecis are pointing away from the silver mirror, as
shown in Fig. 4.4a. Investigating the two di�erent orientations of the quantum
dots relative to the silver mirror, allows us to prove the breakdown of the
point-emitter description.

For each orientation of the quantum dots we have measured the decay rates,
γQD, versus distance to the silver mirror, see Fig. 4.5. We are thus repeating
the famous Drexhage experiment from 1970 [40], with the addition of the two
di�erent orientations of the emitter and the modi�cation that here we are
studying quantum dots. A point-dipole source would radiate identically in the
direct and inverted structures, as indicated in Fig. 4.4a, and the expected decay
rate for such an emitter is shown in Fig. 4.5 utilizing our �ndings from above,
i.e., Γrad and Γnr.

We observe that for short distances (z < 100 nm) to the silver mirror the
measured decay rates deviate signi�cantly from the point-dipole theory, i.e.,
signi�cantly slower and faster quantum dot decay dynamics are observed for the
direct and inverted structures, respectively, compared to the expectations for
a dipole emitter. We will in the following argue that these deviations originate
from the mesoscopic nature of quantum dots as discussed in Chapter 3.

The deviations from dipole theory are observed only for quantum dots posi-
tioned closer than ∼ 100 nm to the silver mirror, which equals the length scale
of the plasmonic penetration depth into the GaAs substrate. The observed
variations in decay rate directly illustrate that the mesoscopic character of the
quantum dots strongly in�uences the coupling to plasmons and can be em-
ployed as a resource to either suppress (direct structure) or promote (inverted
structure) the excitation of plasmons.
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Figure 4.5: Observation of the breakdown of the dipole approximation. Mea-

sured decay rates of quantum dots as a function of distance to the silver mirror

for the direct (a) and inverted (b) structure at a wavelength of λ = 1030 nm.

The dashed curves are the predicted variation for a point-dipole emitter. The

solid curves show the theory for a mesoscopic emitter, which are found to match

the experimental data very well. The insets show the orientation of the quan-

tum dots relative to the silver mirrors for the two structures. The error bars

on both rates and positions represent one standard deviation and are deduced

from repeated measurements.
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4.5 Comparison to theory beyond the dipole

approximation

The measured decay dynamics can be understood by comparing them to the
theory developed in Chapter 3 for the decay of mesoscopic emitters. As we will
see the comparison allows us to extract the mesoscopic moment of the quantum
dots, and to identify the coupling to the plasmonic modes as the cause for the
breakdown of the dipole approximation.

The model developed in Chapter 3 states that the decay rate of a mesoscopic
emitter can be put on the simple form

γQD(z) = γpd(z) + γme(z), (4.2)

where γpd(z) is the familiar point-dipole contribution which depends on the
transition dipole moment proportional to µx = ⟨Ψh|p̂x|Ψe⟩, and γme(z) is the
�rst-order mesoscopic contribution, which is also characterized by the meso-
scopic moment Λz,x = ⟨Ψh|p̂zx̂|Ψe⟩, in the following denoted µ and Λ, respec-
tively.

In Chapter 3 we argued that both Λz,x and Λx,z gave non-zero results for
quantum dots, wherefore both should be used in describing the measured decay
dynamics. In the studied geometry of quantum dots near a silver mirror, we �nd
that the coupling to plasmonic modes is the main reason for the breakdown
of the dipole approximation. This leads to Λz,x = Λ giving the dominating
contribution to the modi�cation of dipole decay dynamics, wherefore only this
term is considered in the following. This argument is presented in detail in
Appendix G.

The mesoscopic decay rate γme(z) depends not only on Λ but also on the
optical �eld gradient, which is large for plasmonic modes (in Appendix G we
elaborate on the e�ect of the gradient on the breakdown of the dipole ap-
proximation). The two contributions to the decay rate in Eq. (4.2) combine
coherently and can therefore either add or subtract depending on the speci�c
nanophotonic structure surrounding the quantum dot, as was observed for the
direct and inverted mirror structures in the data of Fig. 4.5. This novel e�ect
has no counterpart in atomic systems, where the higher-order interactions be-
tween light and atoms are restricted by selection rules, i.e., co-existence of the
�rst higher-order- and dipole transitions is prohibited by the symmetry of the
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atomic potential. Here, we experimentally observe that for quantum dot emit-
ters the higher-order processes can modify the ground state transition due to
the mesoscopic nature of the wavefunctions thereby enhancing the light-matter
interaction strength signi�cantly.

The theory developed in Chapter 3 models the experimental data of Fig. 4.5
very well for both the direct and inverted structure. From our comparison
with theory we can extract the intrinsic values Λ/µ = (10.9 ± 1.6) nm for
the direct structure and Λ/µ = (-7.2 ± 0.9) nm for the inverted structure
through a �t where the ratio Λ/µ is the only free parameter. From these we
can extract the experimental values Λ = (9.8 ± 1.4) × 10−33 kg m2 s−1 and
Λ = (-6.5 ± 0.8) × 10−33 kg m2 s−1 for the direct and inverted structures,
respectively, from the experimental value of µx obtained in Section 4.3. The
extracted values do not grow for quantum dots closer to the interface, where
the plasmonic �eld is larger, but is an intrinsic property of the emitter. The
result of excluding the innermost points in the �tting procedure is shown in
Appendix G. The observed change of the sign of the �tted Λ's, stems from the
opposite orientation of the quantum dots relative to the plasmonic �eld and
constitutes the tell-tale of the mesoscopic e�ects.

From our comparison with theory, we can also extract the rate of decay
into the speci�c decay channels allowing us to precisely dissect the cause for
the breakdown of the dipole approximation. We use the measured decay rates
γQD(z), Γrad, and Γnr, and the calculated decay rates γpl(z), γph(z), and γls(z),
as found by the decomposition explained in Chapter 3, for a mesoscopic quan-
tum dot with Λ/µ as given by our �tting values. The rate of decay into a
speci�c channel, e.g. into plasmons, is then extracted as

γex
pl (z) = γQD(z)− Γrad × (γph(z) + γls(z))− Γnr. (4.3)

That is, by subtracting from the measured total decay rate, the intrinsic non-
radiative recombination rate and the calculated normalized decay into photons
and lossy modes multiplied by the intrinsic radiative recombination rate.

In Fig. 4.6a, the extracted γex
pl (z) is plotted versus distance to the mirror for

both the direct and inverted structures. A pronounced di�erence in the plasmon
excitation rate by a factor of eight is observed between the two structures. In
contrast, the spontaneous-emission rate of photons γex

ph(z) (Fig. 4.6b) is similar
for the two structures. These observations can be explained from the fact
that plasmon modes give rise to strong electric �eld gradients near the silver
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Figure 4.6: In�uence of mesoscopic e�ects on di�erent decay mechanisms.

The decay rate of quantum dots to plasmons γex
pl (a) and photons γex
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equivalent for the direct structure. The error bars on both rates and positions

represent one standard deviation, as deduced from repeated measurements.
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mirror, thereby enhancing the in�uence of the mesoscopic quantum dot e�ects.
We note that the extracted mesoscopic and point-dipole contributions to the
plasmon excitation rate are of equal magnitude. As a result the mesoscopic
contribution is so pronounced that the applied �rst-order perturbation theory
is pushed to the limit of validity, which could account for the slight di�erence in
the magnitudes of the �tted Λ's between the two datasets. The �gure-of-merit
of a quantum plasmonic device is the β-factor expressing the probability that a
quantum dot excites a single plasmon: βpl(z) = γex

pl (z)/γQD(z), which is plotted
in Fig. 4.6c. The β-factor is strongly enhanced due to the mesoscopic e�ects
reaching 40 % for the inverted sample as opposed to 13 % for the direct sample
where it is suppressed. The result for a pure dipole is 34 %. We emphasize
that the modi�ed decay rates discussed here are obtained in a very simple
nano-photonic structure. These observations, thus, illustrate the potential of
using the intrinsic mesoscopic properties of quantum dots in combination with
careful engineering of the electromagnetic environment to strongly enhance the
coupling to plasmons.

Due to the di�erent thicknesses of the bu�er and capping layers, the result-
ing distances to the sapphire substrate are di�erent for the direct and inverted
samples, see Fig. 4.1(d,e). This gives rise to a small di�erence between the
decay rates as a function of distance to the silver mirror in the two samples,
which can be seen by comparing the dashed curves in Fig. 4.5, or more easily
in Fig. 4.6b. The result of the distance to the backside sapphire on the decay
dynamic is shown in detail in Appendix F.

4.6 Mesoscopic quantum dots

coupled to a metallic nanowire

The plasmonic modes on metallic nanowires are tightly bound to the structure,
which results in plasmonic modes with very large �eld gradients. The coupling
of dipole emitters to these have been proposed as an e�cient method to harvest
the decay of a quantum emitter for use in single-photon sources and transistors
[19, 20, 68, 69]. Here we theoretically investigate the potential of mesoscopic
quantum dots for improving plasmon-nanowire-based single-photon sources, as
we study the decay dynamics of mesoscopic quantum dots placed close to a
nanowire as shown in Fig. 4.7b.
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Figure 4.7: Calculated e�ciency of a nano-plasmonic single-photon source

employing mesoscopic emitters. a, Plasmon generation e�ciency βpl for a

quantum dot in GaAs near a silver nanowire with radius r = 12.5 nm for varying

distance d and Λ/µ. We have used a constant γph and included γls for a point

dipole. The dotted lines indicate Λ/µ = ±10 nm, corresponding roughly to the

values extracted for real quantum dots in this chapter. b, Sketch of a nanowire

with r = 12.5 nm and mesoscopic quantum dots positioned a distance d from

the surface. The dipole moment of the modeled quantum dot is oriented at

45◦ to both the parallel (r̂∥) and azimuthal (ϕ̂) directions. Negative or positive

Λ/µ corresponds to a quantum dot positioned above or below the nanowire,

respectively.

For a small wire radius (here r = 12.5 nm) only a single strongly con�ned
plasmon exists inducing very strong �eld gradients, i.e., mesoscopic quantum
dot e�ects are expected to be very pronounced. We note that structures of this
size can be fabricated by electron beam lithography [78] or chemical synthesis
[79]. We calculate γpl(z) versus distance to the nanowire for varying ratios
of Λ/µ, corresponding to quantum dots with various amount of mesoscopic
character, and for two di�erent orientations of the quantum dot relative to the
nanowire.

The coupling e�ciency of the quantum dot to the plasmonic mode is cal-
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culated for an emitter with a quantum e�ciency of unity, i.e., Γnr = 0. The
decay rate into photons γph is assumed to be constant and equal to the value
in homogenous GaAs. The plasmon mode was calculated by a �nite-element
method [80] implemented in COMSOL, and the corresponding Green's function
constructed, according to the relation developed in Appendix B as used in Ap-
pendix G. This is a feasible approach since only a single plasmon mode exists
for the studied wire of radius r = 12.5 nm. Based on these simulations, γpl is
extracted including the e�ect of a spatially extended quantum dot with Λ ̸= 0.
The decay rate into lossy modes γls is calculated from an analytical expression
for a point dipole near a nanowire [67, 81]. We note that we have multiplied
the expression stated in these works with a factor of two, as there is an error in
the calculations. This is con�rmed through comparison to calculations using
dyadic Green's functions and work by Barnett and Loudon [82].

The decay dynamics is di�erent for the in-plane dipole moment oriented par-
allel to the wire and along the azimuthal direction. In an experimental setting
where a superposition state of the two linear dipole orientations is created in
the quantum dot, multi-exponential decay would result. Here we have modeled
a single dipole-moment that is oriented at 45 degrees to both the azimuthal
and parallel direction of the wire, and a corresponding mesoscopic moment,
(see Fig. 4.7b), to give an average e�ect on the modi�ed decay e�ciencies.

The resulting plasmonic coupling e�ciency βpl is shown in Fig. 4.7a. Very
strong dependencies on both distance and Λ/µ are observed. For a �xed dis-
tance of d = 10 nm we �nd that the e�ciency for a point-dipole source (i.e.
Λ = 0) is βpl = 75%. This number can be enhanced substantially to βpl = 92%

assuming the experimentally extracted value of Λ/µ ≈ -10 nm for a quantum
dot placed near the nanowire, see Fig. 4.7b. On the other hand the same quan-
tum dot oriented upside-down relative to the nanowire (Λ/µ ≈ +10 nm) would
only couple weakly to the nanowire with βpl < 1%. Even stronger (weaker)
modi�cations of the decay rate result for quantum dot dipole moments ori-
ented parallelly (azimuthally) to the nanowire, these results are presented in
Appendix H. For the case presented here, i.e., with the quantum dot posi-
tioned directly underneath or above the wire, the azimuthal component of the
excited state do not couple to the nanowire, but as soon as the quantum dot
is shifted to the side, coupling becomes possible, the result is shown in Ap-
pendix H. All the calculations are performed at λ0 = 1030 nm similar to the
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wavelength studied in the experiments presented in this chapter. These results
demonstrate the very pronounced e�ects of including the naturally occurring
mesoscopic contribution to the quantum dot decay and that it can be employed
for improving the e�ciency of plasmonic nanophotonic devices.

4.7 Ruling out alternative mechanisms for the

observed e�ect

When observing a new physical e�ect it is essential to be able to rule out
that the observations could be dominated by alternative mechanisms. The
key tell-tale for the mesoscopic e�ects signifying the breakdown of the dipole
approximation on a dipole allowed transition, is the change from enhancement
to suppression of the rate when reversing the quantum dot orientation. In the
following we explicitly explain why alternative mechanisms can be ruled out.

The excitation in a quantum dot can be lost by tunneling of either the
trapped electron or hole out of the quantum dot. Such non-radiative processes
may be enhanced near surfaces [29], but can only increase the measured total
decay rate. Therefore, non-radiative processes cannot explain the measured
suppression of the decay rate observed for the direct sample and can be ruled
out.

It has been predicted that the hole wavefunction partly resides in the light
hole band [83], which results in an out-of-plane component of the dipole-
moment. However, also a dipole oriented out-of-plane would radiate identically
in the direct and inverted structure, and thus would not explain our observa-
tions.

The decay rate of a quantum dot treated in the dipole approximation is
proportional to the square of the overlap of the envelope functions for the
con�ned electron and hole. By applying an electric �eld over the quantum
dot along the growth direction, it is possible to change the aforementioned
overlap and thereby the decay rate of the quantum dot, which is a direct con-
sequence of the quantum-con�ned Stark shift [84]. An unavoidable impurity
background doping of the semiconductor along with the silver mirror forms a
Schottky barrier with such a build-in electrical �eld. The background ion im-
purity density of the used wafer has been measured to be N = 4.3× 1021 m−3

from mobility measurements on a two-dimensional electron gas grown in the
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molecular beam epitaxy chamber. From this number we can calculate the
typical length scale of the surface-induced electric �eld into the GaAs as [85]
d =

√
2Vbϵ0ϵd/(e2N) = 462−580 nm , where Vb = 0.71−1.12 eV is the barrier

height [86], e is the elementary charge, and ϵd is the permittivity of GaAs.
Thus any resulting surface electric �eld would extend 5-6 times further than
the length over which we observe deviations from dipole theory, and we can
therefore rule out the Stark e�ect as explanation of our data. The conclusion
is con�rmed by calculating the resultant electric �eld (0 − 24 kV/cm) in our
structure [85]. Previous experiments with applied electric �elds have shown
that no signi�cant change in the decay rate occurs in this range [87]. Notably
no enhancement of the decay rate is observed, which is the case for the inverted
structure in our experiment. Finally, the typical dominant impurities in GaAs
are carbon defects giving rise to a p-doped GaAs. From measurements of the
static dipole moment of quantum dots [84] it is found that the hole is situated
above the electron for zero applied electric �eld, which together with a Schot-
tky barrier with p-doped GaAs results in a reduction of the decay rate in the
inverted structure in con�ict with our measurements.

4.8 Microscopic models

for the mesoscopic moments

In Chapter 3 we argued for the existence of the mesoscopic moments through
symmetry considerations, and in Section 4.5 we found that we could extract
the size of the mesoscopic moment through comparison to the experimental
data. Until now, a discussion on a microscopic model that can explain the size
and origin of the mesoscopic moments have been lacking. In this section we
will outline our e�orts in constructing two microscopic models for µ and Λ to
account for the quantum dot properties that we extracted through the �tting
procedure detailed above. A full account is given in Appendix I.

We are investigating the properties of the mesoscopic moment

Λz,x = ⟨Ψh|x̂p̂z|Ψe⟩ = −i~⟨Ψh|x∇z|Ψe⟩, (4.4)

which is dependent on the gradient of the electron and hole wavefunctions in
the z-direction (growth direction). The wavefunctions can be decomposed in
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envelope and Bloch functions |Ψ⟩ = |F (r)⟩|u(r)⟩ which contain the structure
on the length scale of the quantum dots and crystal unit-cell, respectively [37].

The �rst microscopic approach studies the e�ect of gradients in the enve-
lope functions ⟨Fh|∇z|Fe⟩, where the envelope functions are given as solutions
to an e�ective mass equation [31]. The material composition throughout the
quantum dot is assumed uniform in the model, which results in electron and
hole wavefunctions that are not o�set relative to each other, and are fairly
symmetric along the growth axis. Such envelope functions are not representa-
tive of real quantum dots [84] and do not yield large mesoscopic moments. We
therefore arti�cially introduce an o�set to increase the e�ect on ⟨Fh|∇z|Fe⟩.
Even so, the resulting mesoscopic moments are found to be multiple orders
of magnitude smaller than the values extracted from the comparison to the
experimental data in this chapter.

The second microscopic approach studies the e�ect of a sharp transition in
the periodicity of the Bloch functions. Such transitions are occurring in real
quantum dots as the two constituting semiconductors, InAs and GaAs, have
di�erent lattice constants. The resulting mesoscopic moment is in this case
much larger than found in the �rst approach, and is found to scale with the
height and width of the quantum dots such that �at and wide quantum dots
have large mesoscopic moments. Numerically, the resulting moments are within
one order of magnitude from the extracted mesoscopic moments.

The simple microscopic models suggest that the mesoscopic moment is
linked to the size and shape of the quantum dots, and that it is dependent
on the crystalline structure - i.e., not just determined by the envelope func-
tions. More modeling should be done, incorporating the material composition
and crystalline structure throughout the quantum dots, before a microscopic
understanding of the measured mesoscopic moments can be fully realized.

4.9 Conclusion

We have experimentally demonstrated that the interaction between quantum
dots and plasmonic nano-structures can be understood only by taking the meso-
scopic size of the quantum dots into account. Furthermore, we demonstrated
an excellent agreement with the theory presented in Chapter 3 allowing us
to extract the mesoscopic moment and in turn make predictions of strongly
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emitters

modi�ed decay dynamics of quantum dots near metallic nanowires.
From our comparison with theory we observed that the quantum dots can

excite plasmons eight times more e�ciently depending on their orientation due
to their mesoscopic character. Either enhancement or suppression of the rate
of plasmon excitation is observed depending on the geometry of the plasmonic
nano-structure in full agreement with the theory presented in Chapter 3. This
discovery has no equivalence in atomic systems and paves the way for novel
nano-plasmonic devices that exploit the extended size of quantum dots as a
resource for increasing the plasmon-matter interaction strength.

Our �ndings are expected to be of relevance also for dielectric nano-strucures,
where mesoscopic quantum dot e�ects are anticipated to be of importance
for spontaneous-emission control in photonic crystals [42], dielectric-waveguide
single-photon sources [66], and in cavity quantum-electro-dynamics [41] in par-
ticular when employing large quantum dot emitters that currently are investi-
gated for their prospective large oscillator strength [47, 88]. Our conclusions are
surprising since the point-dipole approximation has been uncritically adopted
in the literature to describe light-matter interaction between quantum dots
and nano-photonic structures. Importantly, the mesoscopic e�ects are very
pronounced, and may be employed as a resource to enhance light-matter in-
teraction, which is required in a diverse range of scienti�c �elds ranging from
quantum information science and quantum computing to energy harvesting
devices.
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Chapter 5

Fabrication and

characterization of

plasmonic gap waveguides

Plasmonic waveguides combine the data speed and bandwidth available with
light and the miniaturization possible with electronic circuits, to form a new
regime where light signals are guided below the di�raction limit. Thus the
potential of plasmonic waveguiding is enormous and the unfolding of the im-
plications will be exciting to watch. Recently new light has been shed on
plasmonic waveguiding, illuminating their potential for coupling to quantum
emitters. The �eld enhancement and dispersion of plasmonic modes on metallic
nanowires allow for strong plasmon-matter interaction [19, 81], which can be
used to make e�cient single-photon sources [19] and single-photon transistors
[20]. Thus, plasmonic waveguides provide a novel route towards quantum com-
puting, and importantly, a route that does not rely on the tuning of emitters
and structures to sharp resonance conditions.

The coupling of a quantum emitter to a plasmonic nanowire was demon-
strated by Akimov et al. in 2007 [68]. In this work colloidal quantum dots
were coupled to chemically synthesized nanowires. Plasmonics modes on single
crystalline chemically synthesized nanowires have longer propagation distances
than those on nanowires produced by electron-beam lithography and metal
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evaporation, which are polycrystalline. This was shown in a study were short
nanowires of both types were employed as plasmon resonators [89]. Chemi-
cally synthesized nanowires are easy to fabricate [90], but they are suspended
in liquid and spun onto the substrate of use, with no control over position
and orientation as a result. The synthesization process result in a distribution
of radii and lengths of the nanowires. At the present stage of synthesization
technique it is therefore unfeasible to scale such a technology towards more
complicated networks of emitters and waveguides, and it is therefore, to this
end, required to use a more well-controlled fabrication method.

In this chapter we will present our progress on producing nano-scale plas-
monic waveguides by electron-beam lithography on top of a wafer containing
stationary quantum dots. There have been substantial progress in position-
controlled growth of self-assembled quantum dots [30], which after growth
remain stationary within their host semiconductor wafer. Furthermore, the
resolution of modern electron-beam-lithography systems is constantly increas-
ing, extending the validity of Moore's "law". Thus, a technology combining
position controlled growth of stationary quantum emitters with electron-beam-
de�ned metallic structures is therefore readily scalable to complex emitter and
waveguide networks. The smoothness of metallic structures de�ned by metal-
evaporation, which is the common method used in connection with electron-
beam lithography, is not presently as good as that of synthesized metallic struc-
tures. However, recent progress with template stripping, reactive ion etching
and focussed ion beams [91] have improved the smoothness of controllably fab-
ricated metal structures tremendously. Another approach is to synthesize large
single crystalline �akes of silver [92] or gold [93], and then subsequently de�ne
structures in these by using focussed ion-beam writing. With these methods
the smoothness of fabricated metallic structures is approaching the theoret-
ical limit for a perfectly �at surface, thereby closing the propagation length
gap to chemically synthesized metallic structures. The obstacles for coupling
emitters to lithographically produced nanowires therefore seems surmountable.
The control over size, shape, and position of plasmonic waveguides combined
with the scalability of waveguide-networks and position-control of solid-state
emitters makes it feasible to pursue strongly coupled plasmon-matter systems
as a scalable technology.

The chapter is organized as follows: First the physical principle enabling a

68



One-dimensional plasmonic structures for increased plasmon-matter interaction

strong coupling of an emitter to one-dimensional metallic wires is discussed in
Section 5.1. For e�cient coupling to quantum dots utilizing a planar fabrica-
tion technology, the polarization of the guided mode must match the orienta-
tion of the quantum dot dipole moment. This point leads to the proposal of
a plasmonic gap waveguides as a favorable plasmonic waveguide geometry. In
Section 5.2 we present the fabrication procedure for plasmonic gap waveguides,
along with the challenges encountered in the development of this. Finally, in
Section 5.3, measurements of single quantum dots coupled to the fabricated
plasmonic gap-waveguides are presented, before we in Section 5.4 give our con-
clusions for this chapter.

5.1 One-dimensional plasmonic structures

for increased plasmon-matter interaction

The available coupling strength of a dipole emitter to a guided mode on an
one-dimensional structure can be described by Fermi's golden rule [21], which
originates from �rst order perturbation theory. The rule states that the decay
rate of an emitter can be given as

γ = 2πg2(r, ω)D(ω), (5.1)

where g is the light-matter interaction strength which depends on position
g = d · ξ(r)/~ with d = ⟨e|er|g⟩ being the transition dipole moment between
the ground state |g⟩ and the excited state |e⟩. Furthermore, the normalized
�eld strength ξ(r) =

√
~ω/(ϵ0Veff)E(r)/Emax describes the �eld enhancement

through the e�ective mode volume Veff , and the electric �eld vector E(r) which
is normalized to the maximum value Emax = max(E(r)). Finally, D(ω) is
the density of states. In the following we will describe a subsets of states
associated with the guided modes in one-dimensional systems, as this describes
the physical systems that we will investigate.

5.1.1 One-dimensional density of states

For one-dimensional systems the density of states is given byD(ω) ∝ (L/(2π))v−1
g

[34], i.e, it is proportional to the inverse of the group velocity vg, where L is a
quantization length. This is a general property of coupling to one-dimensional

69



Chapter 5. Fabrication and characterization of plasmonic gap waveguides

structures. To achieve strong interaction, the dispersion of the guided mode
should, thus, be tailored to yield a slow group velocity. This would result in a
large density of states, and with this, strong interaction with an emitter.

We brie�y discuss the dispersion relations of guided modes in two other
one-dimensional systems, before exclusively concentrating on the plasmonic
systems:

1. Dielectric cylinder: The wavenumber k of the fundamental guided mode
of a dielectric cylinder drop towards zero as the radius of the cylinder
shrinks [81]. Dielectric cylinders therefore do not support modes which
allow for e�cient coupling to an emitter, as the group velocity is related
to the wavenumber through v−1

g = ∂k/∂ω.

2. Linedefects in photonic crystals. Waveguides de�ned as linedefects in
a photonic crystal can be engineered to support a propagating mode
with very low group velocity [94] by careful control over hole pitch and
radii. Photonic crystal waveguides are thus promising candidates for the
e�cient coupling of a single emitter to a propagating mode [66, 95].

As we shall see the advantage of the plasmonic structures is a very broad-
band working range, and an ampli�cation of the coupling mechanism by the
subwavelength con�nement of light, a property unique to metallic structures.

5.1.2 Group velocity of plasmonic modes on

metallic nanowires

For a small nanowire radius only a single mode exists. The group index of this
fundamental plasmonic mode scales inversely with the radius of the nanowire,
diverging for very small wire radii [19, 81]. The resulting group velocity can
thus be very low with a strong interaction to a single quantum emitter as a
consequence.

The group-velocity scaling with wire radius can be described in simple terms
by considering the inductance of a thin wire [96]. A current running through a
wire results in a certain energy per unit length induced by the magnetic �eld,
this is given by umag = lI2/2, where I is the current and l is the inductance
per unit length. On the other hand, the kinetic energy of the electrons per unit
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length is

ukin = (
1

2
mv2)nπR2 =

1

2

m

e2nπR2
I2 =

1

2
lkinI

2, (5.2)

where m is the electron mass, n the electron density per unit length πR2

the cross-section area with R the radius of the wire and v the velocity of the
electrons. We have introduced lkin = m/(e2nπR2) to relate the associated
energy to the current I = (πR2n)ev. For su�ciently small wires R → 0 the
kinetic inductance lkin will dominate the e�ective inductance leff = l + lkin.
This means that the energy in a very thin wire no longer is determined by
the magnetic �eld, but by the kinetic energy associated with movement of
electrons. The group velocity of the mode on a wire can be calculated from the
inductance by using the theory of transmission lines. Here the group velocity is
given by vg ∝ (leffC)−1/2, where C is the capacitance per unit length which only
depends weakly on the wire radius [96]. In the limit of small wires, the kinetic
inductance dominates the total inductance and we can therefore conclude that
the group velocity is proportional to the radius of the wire (vg ∝ R).

5.1.3 Coupling rate to plasmonic nano-structures

The rate of decay to a guided one-dimensional mode is determined by both
the group velocity and the �eld enhancement, as given by Eq. (5.1). The
�eld con�nement in dielectrics is in general limited by di�raction, therefore the
associated enhancement of the decay rate is small. In contrast to modes on
dielectric waveguides, the plasmonic modes are bound to the metal interface
and the mode-size shrinks along with the supporting structure. This yields a
scaling of the modevolume given by Veff ∝ R2, where R is the radius of the
wire.

The scaling of the decay rate into the plasmonic mode on a cylindrical
nanowire is, as consequence of the above arguments, given by γpl ∝ R−2 ×
R−1 = R−3 per insertion in Eq. (5.1). The arguments presented here also show
that the group velocity and mode-size scaling is largely determined by the size
of the waveguide, and thus give similar result for a small cylinder or a small
rectangle [97].

We note that the associated coupling to plasmonic modes diverges for R →
0. This scaling does not break down for small wires, but there are competing
e�ects that constrain real devices. The scaling of the mode-con�nement with
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the wire radius implies that the emitter needs to be placed close to the nanowire
in order to harvest the e�ect of the smaller wire size. The �nite size of real
emitters thus de�nes a practical limit on the coupling obtainable by reducing
the wire radius [51]. Furthermore, the emitter can also couple to lossy modes
that do not propagate. The coupling to lossy modes, in the limit of the emitter
being very close to the wire, scales inversely with the distance to the wire surface
cubed γls ∝ (ρ− R)−3 [82], where ρ is the radial distance to the emitter from
the center of the wire. This implies that the plasmon generation e�ciency is
optimal for a certain distance to the wire. Furthermore, the presence of metals
and material interfaces provide additional routes for non-radiative loss of the
excited state in the emitter, which could inhibit the practical implementations
of strongly coupled emitter nanowire systems.

From Eq. (5.1) we see that the available decay rate also depends on the
orientation of the dipole moment of the emitter, d. A nanowire has cylindrical
symmetry, therefore we consider the orientation of the dipole along the three
fundamental directions, (ρ̂, ẑ, and ϕ̂). For a dipole moment oriented along
the azimuthal direction (ϕ̂) there is no coupling to the plasmonic mode, as
determined by the symmetry of the wire. While there is a contribution from a
dipole moment oriented parallel to the wire (ẑ), the dominant contribution is
from a radially oriented (ρ̂) dipole moment. The quantum dot electric-dipole
moments are parallel to the surface of their host wafer. Deposition of nanowires
on top of such a wafer therefore results in dipole moment orientation along ϕ̂

and ẑ in the nanowire coordinate system. This orientation is not ideal for
strong interaction, we will therefore pursue a di�erent route towards achieving
an e�cient coupling by considering a di�erent plasmonic waveguide design.
We will here name these structures plasmonic gap waveguides, but they are
also referred to as slot waveguides [98] in the literature. In these structures two
thin slab waveguides are placed close to each other, thus de�ning a gap between
these that supports a plasmonic mode, see Fig. 5.1. The polarization of this
mode is such that it couples well to the available dipole moment orientation in
quantum dots given the restrictions of planar fabrication technology, i.e. that
the quantum dots are positioned below the waveguiding structures that are at
the surface of the wafer. The modes on plasmonic gap waveguides have the
added bene�t, that they are con�ned more in the dielectric gap rather than in
the metal, which improves the plasmon propagation length [99].
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Figure 5.1: The two fundamental �eld modes of a gap waveguide. a, Gold

waveguides on GaAs with air as the top medium. The arrows in (b, c, d)

indicate the strength and direction of the electric �eld. b, The separated mode,

where the �eld predominantly is at the outer edges of the structure. c, The

center mode where the �eld is predominantly in the center. d, Enlarged plot of

the central region of c where the electric �eld is seen to be oriented horizontally

under the center of the gap. The black triangles show the position of the

quantum dots, which have their dipole moment in the wafer plane.

For a cylindrical nanowire only a single mode exist for a small wire radius.
However, for plasmon gap waveguides the number of guided modes is at least
two and depends on the width of the two slabs of metal de�ning the gap. For
small slabs the two supported modes are either localized in the gap or on the
outer edge of the structure, see Fig. 5.1. In this chapter, we concentrate on the
fundamental mode that is localized in the gap, as the coupling to this mode can
be enhanced by reducing the mode volume. The mode volume scales with the
area de�ned by the height of the metal slabs and the width of the gap, which
means that small gaps allow for a very e�cient coupling to nearby emitters. In
Chapter 6 we will study the e�ect of varying di�erent geometry parameters on
the achievable coupling to a quantum emitter.
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5.2 Fabrication of plasmonic gap waveguides

The subject of this section is the fabrication of plasmonic gap waveguides,
emphasis is on producing gap waveguides with narrow gaps as these can provide
the strongest coupling to emitters. Furthermore, consistency of the fabricated
structures is important, as the ultimate goal is to be able to scale the procedure
towards larger networks of photonic and plasmonic components.

The fabrication procedure consists of the following basic steps, see Fig. 5.2:
growing the quantum dot wafer (a), spinning a thin layer of electron-beam
resist (b), exposing a pattern in the resist with electron-beam (c), developing
the exposed pattern (d), evaporating gold (e), and lift-o� of unexposed resist
and residual gold (f). This leaves a pattern of gold de�ned by the electron beam
on the quantum dot containing GaAs wafer. In this section we will outline
the process carried out to fabricate plasmon gap waveguides, and emphasize
surprises and solutions along the way. A detailed fabrication recipe is given in
Appendix D.

We aim at measuring the coupling of quantum dots to plasmonic gap waveg-
uides for a range of emitter to wire distances, as well as for a range of wire
geometries. To this end we prepared a quantum dot wafer with a series of ter-
races de�ning di�erent distances to the underlying quantum dots. The terraces
were formed by etching holes of controlled depths (tens of nanometers) into the
wafer. The holes have the size 200× 500 µm2. The deepest of the 32 holes was
∼ 310 nm with the underlying quantum dots residing 302 nm under the surface
before the etch. We will denote this �rst sample S1. Series of waveguides are
fabricated on each of the terraces. The �rst step in the waveguide process is
to spin a thin layer of resist (∼ 100 nm) on the wafer. The thickness of the
resist is critical as the success of the electron beam writing relies on a balance
between resist thickness and electron beam current. Additionally, we need the
resist to be thin to facilitate the de�nition of small structures. We had therefore
carefully calibrated the electron beam and resist spinning parameters.

5.2.1 Resist thickness on structured surfaces

When we measured the thickness of the spin coated resist on the terrace struc-
tured quantum dot wafer, we found that the resist had not formed an evenly
thick layer. The resist was found to be too thick over the terraces, and had the
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GaAs GaAs GaAs

GaAsGaAsGaAs

ZEP

a b c

d e f

Figure 5.2: Sketch of the basic process for de�ning nanoscale gold structures

on a wafer containing quantum dots. Dark gray denotes GaAs and black tri-

angles the embedded InAs quantum dots. The light grey is the electron beam

resist (here we used ZEP), and patterned light grey indicates resist that has

been exposed. Finally, white rectangles with black outlines are used for the

evaporated gold.

correct thickness over the rest of the wafer. To circumvent this problem, we
etched away the wafer everywhere around the terrace structures. The result of
which was that the holes de�ning the terraces were turned into terrace-pillars.
The procedure was successful as the resulting thickness of a new layer of spin
coated resist on top of the terraces now had the correct height for electron beam
exposure. The exposure was then performed and the exposed resist developed.

The next step of the process is that metal is evaporated onto the entire
structure in a low pressure evaporation chamber. Structures formed by metal-
lic vapor deposition with a resulting height below ten nanometer, have been
found to form connected clusters of gold, rather than a uniform surface. We
therefore deposited 15 nm of gold which de�nes the height of the structures.
This height was chosen as the smallest height that would yield nicely connected
gold structures. We choose to form our structures with gold (as opposed to
silver) as gold does not react fast with air, the trade-o� with this choice is
worse propagation properties due to the larger absorption in gold, as will be
discussed in Chapter 6.
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5.2.2 Wafer surface degradation

After gold deposition, we prepared a bath of solvent (AZ1165) which dissolves
the resist allowing for a lift-o� of unwanted gold from the sample. The e�ciency
of the solvent grows when it is placed in a heat bath. Thus we placed our sam-
ple in a heated bath of AZ1165 and found to our surprise that the solvent also
attacked GaAs. The root-mean-square roughness of the GaAs after lift-o� was
found to be 5 nm, which should be compared to the roughness of the deposited
metal which was 0.5 nm. The roughness of the deposited metal inherits the
roughness of the underlying substrate, which shows that the roughness must
have been introduced after metal deposition and therefore by the solvent. To
further test this claim, we performed a test with two identical samples left
overnight in heated and unheated baths of AZ1165. The results con�rmed
that, indeed, AZ1165 does attack GaAs. Consequently, all subsequent fabrica-
tion runs avoided heated AZ1165 completely and minimized exposure time to
AZ1165 in general.

During our initial test of the electron beam dose, we found that the resulting
exposure was very dependent on the dose. Backscattering from the substrate of
the electron beam makes it di�cult to fully expose two structures placed very
close to each other without exposing the region in between. In order to have a
higher yield of the process we therefore used four closely spaced electron beam
doses for our samples. The resulting structures are shown in Fig. 5.3, excluding
the lowest dose (Dose 1) which was so low that no metal was evaporated onto
the substrate. The shown structures are all designed to have a gap width of
50 nm and the two sides should be 200 nm wide each. For Dose 2 the gap is
117 nm and the sides are 140 nm which is a result of the dose being too small.
For Dose 3, which is the optimal dose in this study in terms of reproducing the
design, we �nd the sides to be 188 nm and the gap to be 61 nm. Dose 4 results
in 180 nm sides with a 70 nm gap. Note the small tapering of the gap near
the end of the wire for Dose 4, see Fig. 5.3. Here, the gap shrinks to 20 nm,
the tapering is found in most structures made with dose 4, and is most likely
a proximity artifact of the electron beam writing.

The roughness of the �rst sample (S1) which is clearly visible in Fig. 5.3,
unfortunately made the measurement of photoluminescence from the quantum
dots unfeasible. We suspect that increased scattering from the surface is so
pronounced that it is di�cult to pump the underlying quantum dots, and fur-
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a b c

Figure 5.3: Scanning electron beam micrograph of typical structures for 3

di�erent doses of electron beam writer current. The surrounding GaAs is very

rough as a result of leaving the sample in heated AZ1165. The structures are

all designed to have a gap of 50 nm and wire width of 200 nm. a, Dose 2. b,

Dose 3. c, Dose 4.

thermore, that the emitted photons from the underlying quantum dots are
scattered before they can reach our detector systems.

5.2.3 Sample with fewer and larger terraces

We decided to proceed with a simpler terrace design which incorporated 8 large
2× 2 mm2 terraces where the distance to the quantum dots is only varied over
the interesting region for plasmonic coupling 0−80 nm. Using a combination of
UV-lithography and wet etching, two of these terrace samples were produced.
We will denote these samples (S2). All process steps were thoroughly tested
on dummy GaAs pieces before implementation on the �nal samples. Unfortu-
nately, the metal deposition and subsequent lift-o� was still found to vary from
sample to sample resulting in unusable structures (S2).

5.2.4 Final sample design

We made a new sample design (S3), which had a lot of redundancy, allowing us
to try the metal deposition and lift-o� eight times. In this sample the distance
to the quantum dots was kept at a single �xed distance of 25 nm.

The critical electron-beam writing can be assessed by atomic force mi-
croscopy and the resulting pattern written in the electron beam resist on S3 is
shown in Fig. 5.4. We �nd that due to proximity e�ects the resist de�ning the
gap degrades when the designed gap becomes small. In this sample there is still
57% of the resist height in the gap left for a designed gapwidth of 25 nm. The
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g=95 nm
g=75 nm
g=55 nm
g=35 nm
g=25 nm
g=15 nm

g

200 nm200 nm

AFM tip
a b

Figure 5.4: a, Sketch of the designed resist pro�le and an AFM tip used to

measure the pro�le. Gap structures with a gap-width of g are examined, and the

side stripes are 200 nm wide. b, Measured resist pro�les for a series of designed

gapwidths, g. The height measurements are convoluted with the shape of the

AFM tip which make the interpretation di�cult. The height of the resist in the

gap can, however, readily be obtained. Furthermore, the total resist thickness

can be measured from g = 15 nm where the tip reaches a bottom plateau,

which is the wafer surface.

full resist thickness is 133 nm, as seen where the tip of the atomic force micro-
scope reach the bottom plateau de�ned by the wafer for a designed gap width
of 15 nm. After establishing that the resist had been properly exposed and
developed, the sample was cleaved into eight pieces each containing four doses
and a range of structural parameters. In this way we could attempt the metal
deposition and lift-o� eight times without changing any sample parameters.

To obtain consistent results for the metal deposition and subsequent lift-o�,
we prepared the surface of the sample immediately before metal evaporation.
The surface was subjected to a short ashering and a deoxidation. The ashering
removes any residue resist from the development, and as a biproduct forms an
oxide layer which is afterwards removed by a deoxidation process. We have
done tests with di�erent rates of metal deposition and chose to work with
0.5 nm/s as this provided reasonable control over the deposition thickness and
produced a good quality surface. The time that the sample is in the resist-
solvent AZ1165, has been reduced to two hours, which give good results for our
structures.
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5.2.5 Fabrication results

The resulting sample (S3) was characterized with an atomic force microscope
and a scanning electron microscope. Firstly, the roughness of the gold and
GaAs was measured, resulting in root-mean-square roughness of 3.0 nm and
1.3 nm, respectively. The roughness of the metal can be seen in Fig. 5.6c. We
note that these numbers are larger than the best values we have seen, which
are around 0.7 nm for both metal and GaAs. Then we measured the actual
height of the deposited gold which was found to be 16 nm - consistent with the
designed height of 15 nm. We hereafter carefully investigated the structures
using a scanning electron microscope, and found that we are able to successfully
fabricate structures with a designed gap width of 35 nm, and that we obtain
consistent results for designed gap widths of > 65 nm, e.g. as shown in Fig. 5.5.

The presented fabrication procedure (detailed in Appendix D), successfully
yields plasmonic gap waveguides. The length of the waveguides can be con-
trolled: We have fabricated waveguides of 2, 5, 10, 20, 30 µm lengths with-
out changing any fabrication parameters to compensate for di�erences in the
lengths. In Fig. 5.3 there is a tapering of the gap ∼ 300 nm from the end of the
waveguide. We believe that this is a proximity e�ect of the electron beam writ-
ing, suggesting that for structures of this length or shorter, the recipe should be
altered. We note that this observed tapering also suggest a potential for using
proximity e�ects to produce structures with very narrow gaps. In our work we
have realized plasmonic gap waveguides with the following parameters:

Height Gap width Strip widths Roughness Lengths

16 nm 50− 100 nm 150− 250 nm 3 nm 2− 30 µm

Table 5.1: Parameters of successfully fabricated plasmonic gap waveguides.

We have also tried to produce plasmonic gap waveguides with very wide
side widths (few µm), as such structures would form an aperture only letting
luminescence from quantum dots sitting below the gap emit photons into the
detection path. For these structures the resist de�ning the gap was degraded
too much to allow for a successful lift-o�. We suspect that proximity correc-
tions need to be employed to successfully expose such structures. For the slab
waveguide widths of 150, 200, 250 nm we have achieved good results, as shown
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2 µm
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Figure 5.5: Scanning electron micrographs of three gap structures that all have

a designed gapwidth of 65 nm. We can consistently fabricate waveguides with

such gap dimensions, and here we vary the width of the metal strips, which

in�uences the number of guided modes as well as their properties. The shown

structures have the width of the strips set to 150, 200, and 250 nm, in a, b,

and c, respectively.

in Fig. 5.5.

The width of the gap is found to be di�cult to control as it is very sensitive
to the proximity e�ects of the electron beam. Here we typically found the gap to
be ∼ 10 nm wider than the designed width. The structures with the smallest
gap that we have successfully fabricated have a designed width of 35 nm as
shown in Fig. 5.6b. When the gap becomes too small it is impossible to lift-o�
the metal over the gap. Such a partial lift-o� is shown in Fig. 5.6a.

The height of the plasmonic structures is limited by the height of the resist
which, in turn, needs to be low for producing narrow gaps, thus there is a
trade-o� between height and gap width. For our purposes we need a small
waveguide height to increase the coupling, so we need not worry about this
relation. With the presented fabrication procedure, a large variety of metallic
structures can be made, allowing for a multitude of research studies. Here
we focused on plasmonic gap waveguides, but the same fabrication procedure
could readily produce grating structures, plasmonic waveguide taperings, or
plasmonic antennas.
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a

b

c

Figure 5.6: Scanning electron micrographs of plasmonic gap waveguides. a, A

partially successful metal lift-o�. b, Very narrow plasmonic gap width mea-

sured to be 50 nm. c, Zoom in on the end of a plasmonic waveguide where the

roughness of the metallic structures is clearly visible.

5.3 Optical characterization of single quantum

dots coupled to plasmonic gap waveguides

The aim of the fabrication was to produce waveguides for controlling the de-
cay dynamics of quantum dots. In this section we present our results from
the experimental investigations of single quantum dots coupled to a fabricated
plasmonic gap waveguide.

The measurement system consists of a �ow cryostat and a confocal micro-
scope. An outline of the measurement system is given in Appendix E while we
describe the basic experimental method here. A di�raction limited spot on the
sample wafer is excited through a microscope objective by a pulsed Ti:sapphire
laser. The density of quantum dots is high, ∼ 250 µm−2, resulting in the exci-
tation of a number of dots with each pulse. We can not control our detection
position better than the excitation spot size, but we can study a single quan-
tum dot by spectrally selecting the emission stemming from individual dots as
shown in Fig. 5.7a. To this end, the spontaneous emission is collected with the
same microscope objective and guided onto a monochromater, which is used
to isolate the emission of single quantum dots. The spectrally �ltered light
is recorded with an avalanche photo diode to perform time-resolved measure-
ments. In the experimental investigation presented in this section we measure
on quantum dots that emit light near 920 nm.

Time-correlated single-photon counting experiments are �rstly performed

81



Chapter 5. Fabrication and characterization of plasmonic gap waveguides

on four di�erent quantum dots positioned far away from the plasmonic gap
waveguides. The quantum dots are thus positioned near a GaAs/air interface
roughly 25 nm under the surface. The four resulting, and very similar, decay
curves are shown in Fig. 5.7b. From these we extract a reference decay rate
of γref = (1.76 ± 0.02) ns−1. We note that the intrinsic Γrad and Γnr of these
quantum dots are unknown. Instead we can assume the quantum e�ciency
to be similar to our �nding from Chapter 4, i.e. QE = 82%, and from the
reference measurement, where the optical environment is well-known, extract
the absolute rates. This approach is, however, compromised as the quantum
dots are placed so close to the surface that we would expect coupling to lossy
surface modes, as seen in Chapter 4.

After this initial characterization of the quantum dots, we turn our attention
towards the coupled system. We have measured decay curves from a number
of quantum dots near a plasmonic gap waveguide, i.e., the excitation spot is
placed directly across the waveguide to measure on quantum dots placed either
directly below the gap or near the waveguides. In Fig. 5.7c four representative
decay curves are shown, two fast and two slow. The resulting decay rates are
found to be 3.0, 2.8, 1.1 and 1.2 ns−1 which is faster, faster, slower, and slower,
than the reference decay rate, respectively.

Naively, we would expect the presence of the plasmonic gap waveguide to
result only in faster decay rates. This is reasoned by the consideration that the
plasmonic structures give rise to additional decay rates, i.e. coupling to guided
modes and coupling to lossy modes. However, the presence of metals also give
rise to a modi�cation of the coupling to photons, which consequently could
be weaker near a metal than near the GaAs/air interface thereby resulting
in slower decay rates. Comparing the measured reference decay rates to our
�ndings in Chapter 4, we observe that these are similar to the results for the
studied GaAs/air interface at 25 nm from the interface, corresponding to the
quantum dot to wafer surface distance. Furthermore, the slow decay rates
observed near the waveguides correspond well to the slow decay rates near
the silver mirror in the direct structure, where there is very weak coupling to
plasmons.

In order to analyze the faster decay rates, we have calculated the coupling
to the guided plasmonic modes for the speci�c structure. The results are shown
in Fig. 5.8.
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Figure 5.7: Experimental results on the coupling of single quantum dots to

plasmonic gap waveguides. a, Spectrum with clearly visible single quantum

dot peaks, which can be investigated individually. b, Decay curves from four

quantum dots far away from the waveguide. The curves are found to be very

similar and serve as reference for the study of quantum dots coupled to the plas-

monic structure. c, Decay curves from four quantum dots near the plasmonic

waveguide. Quantum dots with faster and slower decay rates than observed in

a are measured.

The studied plasmonic gap waveguide consists of gold and has a height of
∼ 15 nm and a gap width of ∼ 95 nm as well as the width of the two strips
being ∼ 250 nm, see Fig. 5.8a. The quantum dots are situated 25 nm below the
surface, and the two principal excited states are oriented along either x or y.
We have calculated the rate of decay into the guided plasmonic modes divided
by the decay rate in a homogeneous medium for both dipole orientations and
for di�erent positions along the x-axis, from the center of the gap to underneath
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one of the two sides. There are six di�erent guided plasmonic modes in this
structure. The result for a dipole emitter oriented along either axis is shown in
Fig. 5.8(b,d), explicitly for the coupling to each of the six modes as function of
position across the waveguide. We see that especially if the emitter is placed
nearer the metallic strips then the coupling is substantially enhanced. For an
excited state oriented along either axis, we also show the result for the coupling
to the fundamental mode including the e�ect of a mesoscopic moment. The de-
cay rate into the guided mode is substantially modi�ed due to the mesoscopic
moment, as shown in Fig. 5.8(c,e). Assuming a similar mesoscopic moment
as extracted in Chapter 4 (Λ/µ ≈ +10 nm) we see that the e�ect is that of
a diminished coupling to the fundamental plasmonic mode. In summary, the
uncontrolled in-plane position of the quantum dots combined with their meso-
scopic moments, and many di�erent guided modes, make a range of measured
decay rates consistent with theoretical predictions.

Furthermore, the coupling to lossy modes can be estimated by considering
two limiting cases. Firstly, for an emitter 25 nm from a gold nanowire with
a diameter of 15 nm, corresponding to the thickness of the waveguide, the
coupling is calculated to be γls/Γrad = 0.35. Secondly, for an emitter 25 nm
from a gold mirror the coupling is found to be γls/Γrad = 0.15. We therefore
estimate that the coupling to lossy modes is responsible for no more than
0.35 Γrad.

The fast decay can thus easily be explained by associating the coupling to
the guided and/or lossy modes with it. Thus, we conclude that the presented
measurements are consistent with our understanding of the system. These �nd-
ings illustrate the problem of performing detailed experiments near complicated
nano-structures. It is very di�cult to separate the di�erent decay mechanisms,
as they are sensitively dependent on the in-plane position of the quantum dot,
which is di�cult to control. The modi�cations of the decay rate are small in
the experimentally studied structure, which has a gap width of ∼ 95 nm. In
Appendix H we show the e�ect of including the mesoscopic moment and vary-
ing the position of a quantum dot near a gap waveguide with a gap width of
25 nm, resulting in much larger decay rate modi�cations.

An unambiguous proof of the coupling to plasmons would rely on the de-
tection of light after it has propagated as a plasmon, and performing cross-
correlation measurements between this and the direct emission from the cou-
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pled emitter, as was done in Ref. [68, 74]. Such an approach is not feasible in
the present system as the propagation length of the plasmons is on the order of
the excitation spot size, which makes the spatial distinction between the direct
and propagated light impossible. We will in Chapter 6 calculate, among other
parameters, the propagation length for various plasmonic gap guide geometries
and materials.

5.4 Conclusion

The e�cient coupling of single quantum emitters to plasmonic waveguides relies
on the scaling of the group velocity and modesize with the size of the structure.
It is therefore a necessity to fabricate plasmonic waveguides with very small
dimensions, to realize e�cient coupling. In this chapter we have presented
the fabrication process developed to this end. We found that we are able to
fabricate plasmonic gap waveguides on GaAs with gap widths down to 50 nm.

We also presented experimental data on the coupling of single quantum
dots to a plasmonic gap waveguide with a gap width of ∼ 95 nm. The decay
rates of nearby quantum dots were found to be modi�ed by the presence of
the waveguide. A comparison with theory revealed that the measured results
are within the expected range of decay rates. In order to conclude further on
the coupling dynamics of single quantum dots to plasmonic waveguides, either
statistically analysis of a large ensemble of single dot measurements should be
performed or the direct demonstration of a single coupled quantum dot, e.g. by
means of cross-correlation measurements between direct and propagated emis-
sion must be demonstrated. The comparison thus highlighted the di�culty in
interpreting the decay dynamics of nano-structured systems where the position
of the emitter is unknown.
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Chapter 6

Plasmonic modes in

low-dimensional systems

Plasmonic modes are bound to their supporting metallic structures which en-
ables the shaping of the optical mode directly by the dielectric and metallic
structures. Thus, the plasmonic mode is de�ned not only by optical prop-
erties of the supporting materials, but also by the geometry of these. The
study of plasmonic modes in low-dimensional systems and emitters coupled to
these involves interesting physical phenomena as well as engineering challenges.
Importantly, the coupling to one-dimensional systems provides a novel route
towards single-photon sources [19]. An excitation of an emitter is converted to
a plasmon mode that propagates in a prede�ned direction through a fast and
e�cient coupling. In this way the challenging task of harvesting the excitation
of an emitter is overcome in a e�cient and fast way. After the capture of the
excitation by a propagating plasmon, the plasmon can be converted to a single
photon. The coupling to plasmon polariton modes does not rely on tuning
to resonance conditions like in cavity quantum-electro-dynamics [41], and to a
lesser extent in photonic crystal waveguides [66]. Due to the losses in the plas-
monic modes it is, however, required that the propagating plasmon is quickly
transformed to a mode that does not decay as fast. There are many di�erent
ways to transfer the propagating plasmon to a lossless mode, e.g., evanescent
transformation of the mode, evanescent transfer to a dielectric waveguide, or
coupling via periodic gratings. All of these mechanisms present challenges of
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their own, that need to be met in order to realize a plasmon-based single-photon
source. Here we will mainly address the initial coupling to the plasmonic mode
of various structures, and only brie�y discuss the transformation of this to a
photon in the outlook of this chapter.

The rate of coupling of a single emitter to round [81], rectangular [97], and
gap [69] plasmonic waveguides have previously been discussed in the literature.
In these studies there has been very little focus on the e�ect of the surrounding
dielectric (ϵGaAs ≈ 12), which changes the propagation of-, and coupling to-
the plasmonic mode signi�cantly. In this chapter we therefore study the scal-
ing of these essential parameters (coupling rate, propagation length) with the
geometry of the waveguides, and the permittivity of the surrounding dielectric.
The aim is both to make general observations regarding material systems as
well as to study the speci�c structure discussed in Chapter 5.

This chapter is organized as follows. First we discuss the material prop-
erties of gold and silver, which are the metals relevant for this thesis. Then
we introduce the model framework for this chapter, and discuss the e�ect of
high-index dielectric materials on the properties of plasmonic modes at a sim-
ple dielectric-metal interface in Section 6.1. Then in Section 6.2, we discuss
the e�ect of con�nement of the plasmonic mode to a two dimensional metal-
dielectric-metal slab structure, which serve as an intermediate platform for
studying plasmonic modes in metallic gap waveguides in Section 6.3. Lastly, we
discuss the outlook for plasmon-assisted single-photon sources, in Section 6.4,
both using gap waveguides and also using alternative plasmonic structures.
Finally, the conclusions are presented in Section 6.5.

Material properties

Plasmonic modes are dependent on both the properties of the supporting
metal and the surrounding dielectric. Here, we will brie�y discuss the opti-
cal properties of the two metals important to this work, namely silver and
gold. We will use the optical constants of noble metals measured by John-
son and Christy [100] in 1972. Their measurements cover a broad range of
wavelengths (λ = 400 − 2000 nm), and their results are shown in Fig. 6.1.
The region relevant for the quantum dots discussed throughout this thesis is
λ = 900 − 1100 nm. There is strong drive towards producing quantum dots
that emit at longer wavelengths, hereunder the telecommunication wavelength

88



Im
[

]
e

R
e

[
]

e

Wavelength (nm)Wavelength (nm)

a b
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λ = 1550 nm, and recently substantial progress has been made to meet this goal
[101]. We will therefore in this chapter discuss a wider range of wavelengths
than that being emitted by an inhomogenously broadened InAs quantum dot
ensemble.

In Fig. 6.1 the permittivities of silver and gold are decomposed into their
real and imaginary parts. We note that the real part of the permittivities of
silver and gold are very similar. As we will see later, this implies that a range of
properties are similar for plasmonic modes on gold and silver structures. Fur-
thermore, the imaginary part of the permittivities of silver and gold are quite
di�erent, which implies that particularly the propagation distance of plasmonic
modes on silver and gold di�er. The imaginary part of the permittivity deter-
mines the absorbtion in the metal, which means that plasmons on silver will
propagate further than their gold counterparts. Thus, silver has better opti-
cal properties than gold, but the fast rate of oxidation of silver surfaces [102]
imposes challenges to the fabrication. There is therefore a trade-o� to be con-
sidered when fabricating plasmonic structures of silver or gold, between short
propagation distances and degradation of the structures due to oxidation.

In this chapter we will include the optical properties of the metals for dif-
ferent wavelength as given in Fig. 6.1. We will, however, use the permittivity
of the dielectric as a model parameter, without considering the dispersion of
these, even though this can be considerable, e.g., for GaAs [103, 104].
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6.1 Surface plasmon polariton properties in high-

index dielectrics

In this section we will calculate the properties (dispersion, con�nement and
propagation length) of surface plasmon polaritons on a metal-dielectric inter-
face. We will use gold and silver as the metal, and calculate the properties of
the plasmonic mode as function of the permittivity of the dielectric.

We extract the properties of the plasmonic modes by constructing the
Green's function for the metal-dielectric interface as an integral over in-plane
wavevector k∥, see Appendix A and Appendix B. The integrand in the Green's
function has a singularity associated with the plasmonic mode in the region
k∥ > kd where the subscript d denotes that this is the wavevector in a homoge-
nous dielectric with permittivity ϵd. The plasmonic-mode pole in the integrand
is proportional to (k∥ − kpl)

−1 where kpl is a complex-valued number with a
relatively small imaginary part, as given by

Gpl(r0, r0;ω) ∝
∫
k∥≈kpl

dk∥
1

k∥ − kpl
. (6.1)

By �tting a pole of this form to the integrand of the Green's function (see
Appendix A), we can extract the plasmonic wavevector, kpl, and with this the
properties of the plasmonic mode. We will use the same method to extract the
plasmonic mode in more complex structures later in this chapter.

For a plasmon on a metal-dielectric interface the plasmonic wavevector can
also be given by a simple analytical expression kpl = ω/c

√
ϵmϵd/(ϵm + ϵd),

with ϵm being the permittivity of the metal, as discussed in Chapter 2. We will
use this to verify that the resulting plasmonic properties obtained with both
this analytical expression and the numerical model presented above give similar
results. The results in Fig. 6.2 and Fig. 6.3 stems from both, the numerical
model (squares) and the analytical model (lines) is shown for comparison.

The real part of the plasmonic wavevector Re[kpl] gives the propagation
constant for the plasmonic mode. We plot the propagation constant for var-
ious frequencies resulting in the dispersion relation shown in Fig. 6.2. The
dispersion of the plasmonic mode is plotted for gold and silver for two di�er-
ent permittivities of the dielectric ϵd = 4.3 (left plot) and ϵd = 12.7 (right
plot). For low frequencies we see that the plasmonic dispersion approaches the
light-line, indicating that the polariton is light-like. On the other hand, for fre-
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Figure 6.2: Dispersion of surface plasmon polariton. The grey lines in the two

plots indicate the light cone for the dielectrics, which are ϵd = 4.3 (left plot)

and ϵd = 12.7 (right plot). The plasmonic mode is obtained for both gold (�lled

squares and solid line) and silver (open squares and dashed line), either by the

numerical method (squares) or by the analytical expression (lines). Note that

the wavevector scales are di�erent.

quencies near the plasmonic resonance the plasmonic wavevector increases, and
the polariton becomes electron-plasma-like. We generally see that the group
velocity, de�ned as the slope vg = ∂ωpl/∂k [44], for the plasmonic mode at a
given frequency is lower for gold than silver. As the interaction of a plasmonic
mode with an emitter scales inversely with the group velocity, this suggest that
the interaction with gold structures are stronger. We note that this di�erence
is very small around ω = 1.9 × 1015 rad/s which corresponds to the emission
frequency of the quantum dots described throughout this thesis.

While the real part of kpl gives the propagation wavevector, the imaginary
part determines the propagation length, which we now discuss for various ma-
terial combinations. Here we calculate the propagation length as the distance
traveled before the intensity of the �eld has fallen o� with 1/e as discussed in
Chapter 2. We also calculate the extension of the plasmonic mode into the
dielectric, also given in Chapter 2, as this determines the distances between
metal and emitter, where plasmon-matter interaction can take place.

The extension of the plasmonic modes, shown in Fig. 6.3a, spans more than
a decade as the dielectric permittivity is changed from ϵd = 1− 16 but is very
similar for gold and silver. The propagation distance also spans two decades
for both gold and silver, cf. Fig. 6.3b, but we note that the modes on the silver
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Figure 6.3: Extension- (a) and propagation length (b) of surface plasmon po-

laritons at λ0 = 1030 nm. The properties are obtained for both gold (�lled

squares and solid line) and silver (open squares and dashed line), either by the

described numerical method (squares) or by the analytical expression (lines).

interface propagate a factor ∼ 10 longer than those on the gold interface. For a
low-index material (ϵd = 2.7), this yields propagation distances of 22 µm (gold)
and 175 µm (silver), respectively. For GaAs (ϵd = 12.25), the corresponding
propagation length is 1.5 µm (gold) and 13.7 µm (silver), respectively.

In Fig. 6.2 and Fig. 6.3 we �nd a good agreement between the two ap-
proaches used to extract the plasmonic properties, thus validating the numer-
ical model. We �nd that plasmons on silver and gold are very similar in re-
gard to dispersion and con�nement, but di�er by approximately a decade in
their propagation length. Furthermore, we �nd that the high-index dielectrics,
e.g. GaAs, yield plasmonic modes with very di�erent characteristics than plas-
monic modes in low-index systems. The calculations presented in this section
will serve as a reference to the next sections, where we will impose geometrical
constraints on the plasmonic mode con�ning it to two dimensions, and later to
one dimension.

6.2 Con�nement to two dimensions

As an intermediate step towards one-dimensional plasmonic structures, we
study the e�ect of con�ning the �eld to two dimensions. We study a slab
of dielectric sandwiched between two semi-in�nite metallic substrates. We will
in the remainder of this chapter only use silver as the metal, and remember
that the optical properties are very similar for gold, except for the resulting
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Figure 6.4: Properties of plasmonic modes in metal-dielectric-metal slabs. a,

Purcell factor for a dipole emitter oriented perpendicular to the interfaces at a

distance of 25 nm. The dielectric has a permittivity of ϵd = 1 and the Purcell

factor is calculated for an interface (open squares) and a slab structure (stars).

b, Purcell factor as a function of the permittivity of a dielectric slab between

two silver half-spaces. The wavelength of the emitter is λ0 = 1030 nm and

it is placed in the middle of the dielectric slab. The Purcell factor is plotted

for three di�erent thicknesses, see inset of c. c, Propagation distance for three

di�erent thicknesses of the dielectric slab and for a simple interface. The inset

explains the symbol convention. d, Sketch of the enhancement e�ect: When

the metal half-spaces are brought closer to each other than the extend of the

plasmonic modes at a simple interface, then geometrical enhancement of the

plasmonic �eld is possible.

propagation lengths. The plasmonic modes now also depend on the geometry
of the structure (thickness of dielectric) and not only on the material param-
eters as for the metal-dielectric interface. We expect the plasmonic mode to
be in�uenced by the con�nement when the gap between the mirrors becomes
smaller than the extension of the plasmonic mode at the bare interface, see.
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Fig. 6.3 and Fig. 6.4d. We calculate the plasmonic mode in the same manner
as above using the Green's function for a metal-dielectric-metal slab, as given
in Appendix A.

Firstly, we note that the propagation distance, c.f. Fig. 6.4c, reveals that,
as the plasmons become con�ned due to the second mirror, a larger part of the
mode is forced into the metal whereby bigger losses are induced. Thus resulting
in shorter propagation lengths with stronger con�nement.

Furthermore, as for the simple interface, the propagation distance becomes
shorter as the permittivity of the dielectric rises. In Fig. 6.4 we also see that,
as the dielectric index increases, the di�erence between modes at the interface
and in the slab decreases. This is a consequence of the shortening of the mode
extension, whereby the e�ect of the con�nement becomes less severe.

We calculate the interaction of the plasmonic modes with a simple dipole
emitter, which we place in the center of the dielectric slab. The plasmonic
modes are polarized such that a dipole oriented perpendicular to the metallic
surfaces couples most e�ectively to the plasmonic modes. There is a pronounced
di�erence in the Purcell factor between an emitter placed 25 nm above a simple
interface and in the middle of a 50 nm slab structure, c.f. Fig. 6.4a. An emitter
in air near a simple interface couples most e�ciently close to the bulk plasmon
resonance, which for silver is at λ0 ≈ 400 nm. For an emitter in a metal-
dielectric-metal slab the Purcell factor, given as the ratio of decay into the
plasmonic mode, γpl, over the decay in homogeneous dielectric, γd, scales as in
Ref. [69]:

FP
pl =

γpl
γd

=
3

4

c/n

vg

c/n

vp

λ0/n

Leff
, (6.2)

where n =
√
ϵd is the refractive index of the dielectric, vg (vp) is the group

(phase) velocity, and Leff is the e�ective mode-length as described in Ref. [69].
Figure 6.4a shows that the Purcell factor increases linearly with wavelength,
in agreement with Eq. (6.2), reaching FP = 35 at λ0 = 1800 nm for an emit-
ter placed in the middle of a dielectric slab (ϵd = 1) with a thickness of 50 nm

surrounded by silver. The scaling of the Purcell factor as function of the dielec-
tric permittivity for three di�erent thicknesses of the dielectric slab in shown
in Fig. 6.4b for a �xed wavelength. We �nd that as the permittivity of the
dielectric increases the Purcell enhancement is diminished. The non-resonant
enhancement of the Purcell factor scales roughly as γpl/γd ∝ n-1, as given by
Eq. (6.2).
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We �nd that con�ning the plasmonic mode to two dimensions enables strong
non-resonant coupling to the plasmonic modes, where the rate of coupling scales
as γpl/γd ∝ λ0n

-1
d . The physical reason for this scaling behavior stems from the

fact that the sub-wavelength geometry of the structure, rather than the wave-
length of the light in the media, de�nes the extension of the mode. Futhermore,
the con�nement results in plasmonic modes that are less light-like and thus have
shorter propagation distances than the modes at a simple interface. Finally,
we �nd that raising the permittivity of the dielectric yields shorter propaga-
tion distances of the plasmonic modes, as well as weaker coupling to quantum
emitters.

6.3 Modes of plasmonic gap waveguides

After having investigated interface- and slab structures in the previous sections,
we now turn to gap waveguides. The structures discussed in this section are
analyzed using a �nite-element method [80]. The model assumes translational
invariant structures, and computes the guided modes along the invariant direc-
tion. The model returns the electromagnetic �eld associated with the modes
as well as the wavevectors of these. Here, we model the properties of plasmonic
gap waveguides, which were also discussed in Chapter 5. We will study the
e�ect of the geometry of the structures keeping the permittivity of the sur-
rounding media �xed at ϵ = 12 for guided modes corresponding to a free-space
wavelength λ0 = 1030 nm.

We calculate the Purcell enhancement of the decay rate for a quantum dot
placed in the center of the gap with the dipole moment oriented in the x-
direction for optimal coupling to the fundamental gap waveguide mode. See
inset of Fig. 6.5b for coordinate axis convention. For the dipole moment ori-
ented in the y-direction the coupling to the mode is approximately two orders
of magnitude weaker, thus we will restrict this study to a dipole oriented along
x. Throughout this section we keep the width of the the two metal stripes con-
stant (200 nm comparable to fabricated widths) and note that the properties
of the mode guided in the gap is also in�uenced by this width. The number
of guided modes is determined by this width, but the two fundamental modes
(gap-mode and side-mode introduced in Chapter 5) are always present. In this
section we only study the coupling to the fundamental gap mode.
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Figure 6.5: The Purcell enhancement for the decay into- and propagation dis-

tance of the fundamental gap-mode for various plasmonic gap waveguides. We

study modes corresponding to a free-space wavelength of λ0 = 1030 nm. The

metal is silver and the surrounding dielectric has ϵ = 12. The width and height

of the gap is varied linearly from 10−100 nm where the numbers in parentheses

denote these in nanometer, (W,H). a, The Purcell factor is calculated for a

dipole emitter placed in the middle of the gap with dipole moment along x, see

inset in b. b, Propagation distance for the fundamental gap-mode for varying

waveguide geometries (same convention as in a).
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Modes of plasmonic gap waveguides

The plasmonic modes in the slab structure, studied in the previous section,
were shown to strongly alter the decay dynamics of a nearby emitter. Now, we
con�ne the plasmonic mode further, restricting it to propagate in one dimen-
sion. This results in additional modi�cations of the properties of the modes as
well as to the decay of a nearby emitter. In Fig. 6.5a the Purcell factor is shown
for an emitter in the center of the gap waveguide mode when the waveguide
gap dimensions are varied from 10× 10 nm2 to 100× 100 nm2. We change the
geometry of the gap along two di�erent routes: by �rst letting the width grow
and then the height, or oppositely, �rst the height and then the width. We
see that the dependence of the Purcell factor on the width of the gap is much
stronger than on the height of the gap: the Purcell factor decreases four orders
of magnitude with increasing width in comparison to a bit more than one order
of magnitude for increasing height. We also see that the e�ect of increasing the
height of the gap depends on how wide the gap is: the Purcell factor rises for
a 100 nm wide gap when the height is increased from 10 nm and all the way
to 50 nm whereafter is starts to fall o� again. In contrast to a 10 nm wide gap
were the Purcell factor monotonically falls with increasing height.

In Fig. 6.5b the propagation distance for the plasmonic mode guided in the
gap is shown for the same series of plasmonic gap waveguides. For a gap width
of 10 nm the resulting propagation distance is below 1 µm and only weakly
dependent on the height. The same is true for a height of 10 nm where the
propagation distance is only weakly dependent on the width. Generally for
these two plots we note that in the limit of H → ∞ we recover the results
from the slab section. As expected [17], we �nd that generally the propagation
length is longer for less con�ned modes, though there is a strong in�uence from
the speci�c geometry of the gap.

Plasmonic gap waveguides fabricated by lithography and metal evaporation,
have a build in asymmetry of the surrounding dielectric. This asymmetry can
be removed if the structure is coated with a dielectric matching the substrate
material. When the substrate is GaAs no simple index matching coating ma-
terial exists, which makes a study of asymmetric surroundings relevant. Such
structures with asymmetric dielectric surroundings are the subject of Fig. 6.6,
where the bottom material is kept �xed at ϵ = 12, and the index of the top
material is varied. The Purcell factor is given as the decay rate into the plas-
monic mode normalized to the decay rate in a homogeneous dielectric. We
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Figure 6.6: In�uence of position and dielectric coating index on the Purcell

factor. A plasmonic gap-waveguide with a gap width of W = 50 nm and a

metal height of H = 15 nm, is placed atop a high-index dielectric with ϵ = 12.

The Purcell factor is calculated for an emitter placed along the z-axis passing

through the center of the gap, for three di�erent coating dielectrics. The dark

gray shading shows the position of the waveguide, and the light gray denotes

the high-index dielectric. The inset shows the propagation distance for various

coating dielectrics.

study the e�ect for an emitter placed along a vertical line passing through the
center of the waveguide and into the substrate, see illustration in Fig. 6.6. The
dielectric medium is di�erent on top and bottom of the structure giving rise
to two di�erent decay rate normalizations, thus causing the discontinuity in
the Purcell factors across the interface between the two media. The achievable
Purcell enhancement outside the substrate dielectric scales with the top index,
with stronger enhancement for lower permittivities.

Inside the substrate the behavior is more complex as there are two compet-
ing e�ects:

1. The rate of decay into plasmons γpl is proportional to the square of the
in-plane electric �eld which is continuous across the dielectric interface,
thus, the discontinuity at the interface is solely determined by the normal-
ization di�erence set by the decay rates in the homogeneous media. The
result is that the Purcell factor is reduced with a factor

√
ϵbottom/ϵtop
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Outlook on plasmon-based single-photon sources

when the emitter enters the substrate.

2. The extend of the mode scales inversely with the top-index ϵtop, thus
extending further into the bottom material for a lower top-index.

The result of these two e�ects is that there, for a given emitter position in
the substrate, is an optimal top-index for the Purcell enhancement, as seen in
Fig. 6.6. The resulting propagation distances are longer for lower top-indexes,
as shown in the inset in Fig. 6.6. We therefore conclude that the asymmetry is
bene�cial for coupling emitters situated within the bottom substrate, which is
the case for quantum dots to the plasmonic gap mode.

The coupling to plasmonic gap waveguides can be enhanced substantially
from the values achievable in a metal-dielectric-metal slab, due to the extra
con�nement de�ned by the �nite height of the gap waveguide. The fundamental
mode supported by the gap is polarized such that the in-plane dipole-moment of
quantum dots couple e�ciently to this, thus providing a feasible way to couple
quantum dots and one-dimensional plasmonic waveguides. The asymmetry
introduced around plasmonic gap waveguides by the fabrication procedure can
be employed as a resource, i.e., by engineering the top-dielectric index for
optimal coupling and propagation length for the guided plasmonic mode. All
of these scaling behaviors can be employed to optimize the coupling.

We also �nd that if we restrict ourselves to the experimental condition
of Chapter 5, i.e., emitters in high-index materials (ϵGaAs ≈ 12) placed ∼
25 nm into the material, then the resulting Purcell factors are of the order
of unity for readily fabricatable plasmonic gap-waveguide geometries (gap size
= 50 nm). Furthermore, the propagation lengths are of the order of 3 µm for
silver structures which imposes severe challenges for outcoupling mechanisms.
Note, that we in Chapter 5 used gold, for which the propagation length is even
shorter.

6.4 Outlook on plasmon-based

single-photon sources

In this section we will discuss the possibilities for plasmon-based single-photon
sources in the light of our �ndings above. We found that if we impose the re-
striction that the quantum dot is placed within the substrate z ∼ 25 nm, then
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Figure 6.7: Coupling to a plasmonic wedge waveguide. a, SEM picture of an

etched groove into the GaAs substrate before metal evaporation. b, Purcell

enhancement calculations for a dipole emitter coupled to the plasmonic wedge

waveguide. The dipole is oriented horizontally and the metallic wedge which is

surrounded by GaAs.

the achievable Purcell factors are very limited, as the metallic structures are
evaporated on top of the substrate. Here, we will brie�y discuss the possibility
of bringing the metallic structures into the substrate to allow for a stronger
coupling to the quantum dots. A sharp metallic wedge supports guided plas-
monic modes [105] at the tip of the wedge. By de�ning a groove into the GaAs
substrate and subsequently �lling this by evaporating metal such a wedge tip
can be brought very close to the quantum dots. This approach has the bene-
�t that the distance between the dots and the substrate surface is still large.
A sharp groove into the GaAs substrate can be realized by utilizing selective
etching along certain crystal planes. In resemblance to plasmonic structures
de�ned via template stripping [91], metal evaporated onto such grooves inherits
the smoothness at the interface between substrate and metal. This fabrication
method results in smooth grooves etched into GaAs, as shown in Fig. 6.7a.

Finite-element calculations has been carried out for groove structures with
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dimensions identical to a test sample. The groove supports a number of modes,
one of which is con�ned to the tip of the groove. The resulting Purcell enhance-
ment for an in-plane dipole moment coupled to this mode is shown in Fig. 6.7b.
Purcell factors on the order of ten is achievable in this geometry. Thus o�ering
coupling an order of magnitude better than what is possible with plasmonic
gap-waveguides, given the constraint that the interface is more than 25 nm

away from the dots. The mode is supported by the edge of the groove and is,
thus, very sensitive to the radius of curvature of the edge. Here, a 5 nm radius
of curvature is used. The radius of curvature also strongly a�ects the propaga-
tion length, which for this choice is ∼ 270 nm using the optical constant from
Ref. [106]. Thus the groove structure o�ers a possibility to achieve e�cient
coupling to InAs quantum dots in GaAs, but the propagation distance of the
guided mode is very short.

In the previous sections we discussed plasmonic modes in terms of their
ability to e�ciently capture and guide single excitations of quantum emitters.
Plasmonic modes do not propagate far, thus, the out-coupling to free photons
is a topic that must be adressed in any discussion of realistic plasmon-based
single-photon sources. The plasmonic modes have wavevectors that are larger
than the wavevectors for a photonic mode with the same energy in a homoge-
nous dielectric. This imposes an intrinsic problem for plasmon-based single-
photon sources, namely the conversion from a plasmonic mode to a photon.
Both phase-matching and spatial mode-matching need to be considered, de-
pending on the out-coupling scheme. Here, we will brie�y discuss the coupling
to free photons either by tapering the plasmonic mode until there is a substan-
tial overlap with a free-space photon, by evanescent coupling to a dielectric
waveguide, or by grating coupling, where a periodic structure can absorb the
additional momentum carried by the plasmonic mode.

Plasmonic waveguides can be tapered to a di�erent geometry where the �eld
mode is less con�ned and propagates further [107]. This has the additional
advantage that it moves the plasmonic mode dispersion closer to the light-
cone, making the phase-matching to free-space photons easier to accomplish.
Furthermore, due to the polarization of the fundamental gap waveguided mode,
it would couple to a normal polarized Gaussian light beam.

An e�cient tapering should rely on an adiabatic change of the mode (by
changing the supporting structure), from the tightly con�ned and strongly in-
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Chapter 6. Plasmonic modes in low-dimensional systems

teracting mode to a mode that is only weakly con�ned that can couple easily
to photons, see Fig. 6.8a. Changing the mode too fast leads to re�ections of
the propagating mode, and changing it too slow leads to decay of the mode
due to damping. Given the sub-micrometer propagation distances in the struc-
tures discussed in this chapter, the adiabatic change must be implemented over
very short distances. We note that the tapering of the in-plane dimensions of
plasmonic waveguides is straightforward to implement in the current fabrica-
tion process. However, a simple scaling of the width of the gap as shown in
Fig. 6.8a does not increase the propagation distance signi�cantly as shown in
Fig. 6.5b. Thus, detailed calculations of tapering geometries are needed in
order to characterize any speci�c structure.

The dispersion of dielectric �bers can be tailored to support a large range of
wavevectors. By phase-matching the �ber dispersion to that of the plasmonic
waveguide mode, evanescent transfer of the plasmon mode to the �ber can be
realized if the two are brought su�ciently close to each other, as shown in
Fig. 6.8b. The mode population oscillates between the �ber and the nanowire
in the interaction region, whereby e�cient transfer of the mode to the �ber
can be achieved by tailoring the length of the interaction region [19]. In or-
der to achieve phase-matching, special dielectric �bers are needed. For plas-
monic modes in low-index dielectrics, high-index �bers can be used to phase-
match and outcouple. On the other hand, we �nd that in order to match the
wavevector of the plasmonic modes in high-index dielectrics, specialized �bers,
e.g. photonic crystal �bers/waveguides, may be needed to obtain large enough
wavevectors.

An alternative outcoupling method is to terminate the waveguide in a grat-
ing structure, which can provide or absorb speci�c quantas of momentum from
the plasmonic mode. Thus, a grating can be engineered to scatter the guided
plasmon into a freely propagating photon, as shown in Fig. 6.8c. The scattering
angle is determined by the grating periodicity and the size of the interacting
grating area. Introducing a grating in a nanowire provides an e�cient way to
convert the plasmonic mode to a photon. However, due to the small transverse
extent of the nanowire - and thereby the grating structure, the emission direc-
tion (beyond the scattering angle) is not well controlled. Such an approach is
therefore not feasible for an e�cient plasmon-based single photon source.

As an alternative to having the plasmonic mode propagating in a �xed
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a b c

d e

Figure 6.8: Plasmon-based single-photon sources. Grey materials indicate

metal and the yellow spheres quantum dots. a, By tapering the shape of the

gap, the supported plasmonic mode can be brought close to phase matching

with the wavevector of a free photon at the wide end of the waveguide. b,

Evanescent coupling of the plasmon to a phase-matched dielectric �ber over

a controlled length. c, Terminating the plasmonic waveguide with a grating

can e�ciently couple the plasmon to a photon traveling perpendicular to the

waveguide, but control over the speci�c direction is not possible due to the sub-

wavelength dimensions of the waveguide. d, Plasmonic modes on a metal �lm

propagate many micrometers, which enables a large grating to be employed to

yield a collimated beam of single photons. e, Plasmonic nanoantennas can be

used to couple an excited quantum dot directly to a free-space photon propa-

gating in a prede�ned direction, thus bypassing propagation in the lossy metals.
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direction and subsequently outcoupling to photons, we will brie�y discuss two
alternative routes towards plasmon-based single-photon sources.

In Chapter 4, we studied the coupling of quantum dots to surface plasmons
at a metallic interface. These modes are much less con�ned and propagate
tens of micrometer before they are lost due to damping. By introducing a ring
grating with broken symmetry the plasmonic mode can be coupled to a freely
propagating photon, as shown in Fig. 6.8d. The ring grating is chosen as it
matches the circular symmetric plasmonic mode excited by a quantum dot,
and the asymmetry is induced to make spatial mode matching to a polarized
free-space photon. Due to the long propagation distances at a simple interface
the direction of the resulting scattering from the grating can be well controlled
[108]. This approach does not rely on a very e�cient coupling to the plasmonic
mode, but provide a way to e�ciently transfer the excitation to a directional
free-space photon.

Lastly, metallic nano-particles support non-propagating localized plasmonic
modes which can be used to form nano-antennas that can shape the emission
pro�le of a nearby emitter [109, 110, 111, 112], as shown in Fig. 6.8e. This
approach bypasses the propagation losses by directly coupling the emitter to
a freely propagating photon. Thus, nano-antenna single-photon sources could
provide a way to achieve fast, e�cient single-photon emission from quantum
dots - but detailed calculation for realistic implementations need to be per-
formed before such predictions are accepted.

6.5 Conclusion

We have studied the properties of plasmonic modes for gold and silver and,
importantly, for various dielectric materials. In order to utilize the excellent
single-photon properties of InAs quantum dots, the plasmonic waveguides must
be placed near these, and will therefore have some hybrid dielectric surrounding
made up of GaAs and other dielectrics. Generally, the extent and propagation
length of the plasmonic modes reduce with increasing permittivity of the sur-
rounding dielectric. This was found to imply, for a metal-dielectric-metal slab,
that the Purcell-enhancing e�ect of the con�nement reduces for higher dielec-
tric permittivities. This conclusion also applies to plasmonic gap waveguides,
which we have studied for various gap-geometries. We found that neither prop-
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agation length nor achievable Purcell factor scaled simply with the area of the
gap, but showed complicated dependence on the speci�c structure. We also
studied the experimentally important e�ect of an inhomogenous dielectric sur-
rounding, and found that for an emitter positioned in the high-index medium,
it is possible to choose a top dielectric to maximize the Purcell e�ect, and that
the optimal top-index does not correspond to homogeneous surroundings.

For InAs quantum dots (λ0 = 1030 nm, y ≈ 25 nm) in GaAs (n = 3.42)
with air as top material coupled to a gap waveguide with a 50 nm gap, we found
that the propagation length is ∼ 3 µm for silver, and the Purcell enhancement
is on the order of unity . This implied that the structures fabricated in Chap-
ter 5 are not good candidates for e�cient plasmon-based single-photon sources.
Lastly, we have discussed out-coupling mechanisms and two alternative plas-
monic systems (ring gratings, nano-antennas) that might be better solutions
for plasmon-based single-photon sources.
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Chapter 7

Conclusion

This thesis reported results on enhanced light-matter interaction between self-
assembled quantum dots and semiconductor-metallic nano-structures. The
quantum theory of spontaneous emission was derived, the nano-structure fab-
rication was discussed, and measurements and data analysis of spectrally- and
time-resolved photoluminescence from single- and ensembles of quantum dots
were presented.

The fabrication of simple semiconductor/air and semiconductor/metal in-
terfaces, used as spectroscopic tools to investigate the fundamental light-matter
interaction, was presented. The optical �elds can in these structures be calcu-
lated directly, and are only dependent on the interface-emitter distance which
can be well-controlled. Time-resolved measurements on quantum dots in these,
simplest imaginable nano-structures, revealed an underlying physics that is sur-
prisingly rich. By studying a set of three such structures (reference, direct,
and inverted) we were able to experimentally demonstrate that the dipole-
approximation is not ful�lled for quantum dots in general. We found from
time-resolved measurements on ensembles of quantum dots that the decay rate
di�ers markedly from the dipole-expectancy even in these simple structures.
This led us to conclude that great care should be exercised when interpreting
decay dynamics in more advanced structures, and also to suggest that this
novel mechanism is utilized as a resource to control light-matter interaction in
nano-structures in general.

A theoretical model for the spontaneous decay of extended emitters in nano-
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structured media was presented. The spatial variation of the light-�eld modes
over the extension of the emitters was included as the �elds are approximated
by their Taylor expansion, where the gradient contributions to �rst order were
retained. This naturally led to an additional intrinsic transition moment of ex-
tended emitters, namely the mesoscopic moment. Simple symmetry considera-
tions on the quantum dot wavefunctions let us impose geometrical constraints
on the mesoscopic moment for quantum dots, and particularly revealed that the
decay mechanism associated with these moments contributes on the quantum
dot ground state transition. The contributions from the dipole- and mesoscopic
moments interfere to modify the decay rate. The interference can be changed
from destructive to constructive and viceversa by turning the quantum dot
upside-down.

We compared the theoretical model to our measurements of decay dynamics
that deviate from dipole theory and found very good agreement. We extracted
the mesoscopic moment from the comparison and used this to predict strongly
modi�ed decay dynamics of mesoscopic quantum dots when placed in the vicin-
ity of a silver nanowire.

Our conclusions on the decay dynamics of mesoscopic quantum dots are
also expected to be of relevance for purely dielectric nano-strucures. Mesoscopic
quantum dot e�ects are, thus, anticipated to be of importance for spontaneous-
emission control in, e.g., photonic crystals, photonic crystal waveguide single-
photon sources, and cavity quantum-electro-dynamics. Particularly, when em-
ploying very large quantum dot emitters due to their prospective large oscillator
strength.

Our �ndings are surprising since the point-dipole approximation has been
uncritically adopted in the literature to describe light-matter interaction be-
tween quantum dots and nanophotonic structures. Importantly, the measured
mesoscopic e�ects are very pronounced, and may be employed as a resource to
enhance light-matter interaction, which is required in a diverse range of scien-
ti�c �elds ranging from quantum information science, and quantum computing
to energy harvesting devices.

A fabrication method to produce plasmonic gap waveguides was developed,
and the gap waveguides were shown to support guided modes that are suitable
for coupling to quantum dots in a planar technology. The coupling e�ciency
scales with the dimensions of the structure, and it is thus desirable to fabricate
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very small structures. We successfully fabricated plasmonic gap waveguides
with a gap width down to 50 nm and demonstrated that we can control a num-
ber of geometry parameters, which is required to scale the fabrication process
to more advanced networks.

Time-resolved measurements of single quantum dots placed 25 nm below
a plasmonic gap-waveguide were performed. We found quantum dots that
decayed both faster or slower than reference quantum dots placed away from
the waveguides. From a comparison with the position dependent theory we
conclude two things: Firstly, that a wide range of decay rates are consistent
with theory. This makes quantitative analysis of decay dynamics very di�cult
and possible only through a statistical approach. Secondly, that in order to
distinguish the coupling to lossy modes from coupling to guided modes the
propagation of guided plasmons should be observed. This was not possible
in the measured structure as the propagation length is on the order of the
excitation/detection area.

By theoretically studying the coupling mechanism of a dipole emitter to
various plasmonic structures with various material combinations, we were able
to conclude that the extent and propagation length of the plasmonic modes de-
crease rapidly with the refractive index of the surrounding material. This poses
challenges both on the part of fabrication, i.e., to place the quantum dots close
enough to the structure to achieve an e�cient coupling, and on experiments,
i.e., to distinguish the coupling to a guided mode from that to a lossy mode.
In addition, we found that neither propagation length nor achievable Purcell
factor scaled simply with the area of the gap, but showed a complicated depen-
dence on the speci�c structure. Furthermore, for the experimentally relevant
case of inhomogenous dielectric surroundings, the top-material can be chosen
to maximize the coupling to an underlying quantum dot. The optimal material
choice is determined by the waveguide-emitter distance. Finally, we concludes
that for realistic waveguide parameters, achievable Purcell enhancements are of
the order of unity, and the resultant propagation distances are on the order of
few micrometer. Thus, plasmon-based single-photon sources in high-index ma-
terial systems (nGaAs ≈ 3.5) should incorporate either a very fast out-coupling
mechanism or - preferably - not rely on the propagation in strongly con�ned
modes at all.
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Appendix A

Dyadic Green's function for

a slab structure

A closed expression for the Green's function of a multi-layer slab structure
is given in Ref. [113], but we have adapted the notation of Ref. [114] where
only three layers are considered. The dyadic Green's function is de�ned as an
integral over the in-plane wavevectors,

G(r, r′;ω) =

∫
d2k

(2π)2
eik(ρ−ρ′)G(k, z, z′;ω). (A.1)

Here k = (kx, ky) is the in-plane wavevector set and ρ = (x, y) is the in-plane
position. The geometry of the studied system is shown in Fig. A.1: An emitter
is placed in the middle material which has the relative permittivity ϵ1. The
middle material borders materials with permittivity ϵ2 above and ϵ3 below.
The height of the sandwiched material is L and the emitter is situated z0 from
the bottom material.

In Eq. (A.1) the following expression appears:

G(k, z, z′;ω) =
2πi

β1

k21
ϵ1

eiβ1L
∑
q=p,s

ξq
E>

q1(k, ω, z)E
<
q1(−k, ω, z′)

1− rq12r
q
13e

2iβ1L
, (A.2)

where βj =
√
k2j − k2 =

√
ϵjk20 − k2 is the out-of-plane wavevector, with

k0 = ω/c. Furthermore, rq12 and rq13 are the conventional Fresnel re�ection
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Figure A.1: Sketch of the studied slab-system. Two semi-in�nite media with

permittivity ϵ2 and ϵ3 are at the top and bottom, respectively, of a third sand-

wiched medium with permittivity ϵ1. The middle medium has the height L.

The emitter is situated z0 from the bottom medium.

coe�cients for s- and p-polarized modes from medium 1 to 2 and 1 to 3,

rpij =
ϵjβi − ϵiβj

ϵjβi + ϵiβj
, (A.3)

rsij =
βi − βj

βi + βj
. (A.4)

Lastly,

E>
q1(k, ω, z) = ê+q1(k)e

iβ1(z−L) + rq12ê
−
q1(k)e

−iβ1(z−L), (A.5)

E<
q1(k, ω, z

′) = ê−q1(k)e
−iβ1z

′
+ rq13ê

+
q1(k)e

iβ1z
′
, (A.6)

E<
q1(−k, ω, z′) = ê−q1(−k)e−iβ1z

′
+ rq13ê

+
q1(−k)eiβ1z

′
, (A.7)

where ê±p1(k) =
1
k1
(∓β1k̂+kẑ) = ê∓p1(−k) and ê±s1(k) = k̂× ẑ = −ê∓s1(−k) and

�nally ξp = 1 and ξs = −1.
We have in our formalism used a dyadic Green's function decomposed into

its nine cartesian tensor components. In order to bring the expression presented
here to this form, we use that

k̂ = (cos θx̂+ sin θŷ), (A.8)

k̂× ẑ = (sin θx̂− cos θŷ). (A.9)
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The resulting expressions for the products, i.e., E>
q1(k, ω, z)E

<
q1(k, ω, z

′), are
straightforward to obtain, but become very lengthy. We will therefore not
write them here.

We note that due to the simple dependence of the integrand of the dyadic
Green's function on the coordinates (x, x′, y, y′, z, z′) it is straightforward to
construct the spatial derivatives (∇j , ∇′

j , ∇j∇′
k) of the integrand of the dyadic

Green's function. After these are constructed we evaluate the expression in
x = x′ = y = y′ = 0 and z = z′ = z0, and change the integral over the in-plane
wavevectors to cylindrical coordinates∫

d2k →
∫ ∞

0

dkk

∫ 2π

0

dθ, (A.10)

where the integral over θ is carried out analytically. All that remains is then
to de�ne the z0, L, and the material parameters whereafter the integration
over the in-plane wavevector k is carried out numerically. We note that it
is straightforward to subdivide the dyadic Green's function into contributions
from di�erent physical modes that can be distinguished by the length of their
in-plane wavevector.

115





Appendix B

Maxwell's equations and

dyadic Green's functions

revisited

Maxwell's equations, i.e., Eq. (2.7), can be reformulated in terms of the vector-
(A) and scalar (ϕ) potentials, from which the electric and magnetic �eld can
be derived:

B = ∇×A, (B.1)

E = −∇ϕ− ∂A

∂t
. (B.2)

The physical electric and magnetic �eld are una�ected by a gauge transforma-
tion of the potentials A → A+∇λ and ϕ → ϕ− ∂λ/∂t, which give us freedom
to choose a gauge that is well-suited for our needs. The reformulated Maxwell's
equations take the form

∇·
[
ϵr(r)

(
∇ϕ+

∂A

∂t

)]
= 0, (B.3a)

∇·∇ ×A = 0, (B.3b)

∂

∂t
[∇×A]−∇×

[
∇ϕ+

∂A

∂t

]
= 0, (B.3c)

∇×∇×A+
1

c2
∂

∂t

[
ϵr(r)

(
∇ϕ+

∂A

∂t

)]
= 0, (B.3d)
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where Eq. (B.3b) is trivially ful�lled. We utilize our freedom of gauge to set
ϕ = 0, which ful�ls Eq. (B.3c) and results in the following constraints on A

∇·
[
ϵr(r)

∂A

∂t

]
= 0, (B.4)

∇×∇×A+ ϵr(r)
1

c2
∂2A

∂t2
= 0. (B.5)

The �rst equation (Eq. (B.4)) is ful�lled when we choose ∇ · [ϵ(r)A] = 0, which
along with ϕ = 0 is the generalized Coulomb gauge [49], which we will use in
the following. The equation of motion for the vector potential is given by
Eq. (B.5), which is an equivalent equation to the one derived for the electric
�eld in Chapter 2. A vector potential that has harmonic time-dependence,
ful�lls the generalized Coulomb gauge, and ful�lls the waveequation Eq. (B.5)
can thus, as in Chapter 2, be decomposed into a sum of eigenfunctions fl(r),
that obey

∇×∇× fl(r)− ϵr(r)
ω2
µ

c2
fl(r) = 0, (B.6)

∇· [ϵ(r)fl(r)] = 0, (B.7)∫
d3rϵr(r)fl(r) · f∗m(r) = δl,m, (B.8)

where ωl is the eigenvalue associated with the mode from Eq. (B.6). Note that
the orthonormality condition Eq. (B.8) is dependent on the environment ϵr(r),
and reduces to the well-known condition for homogeneous media. The de�ning
equation for the dyadic Green's function (Eq. (2.17) in Chapter 2) is equivalent
to the equation for the �eld modes Eq. (B.6), except for the non-zero right hand
side of Eq. (2.17). Therefore, a general solution to the dyadic Green's function
can be expressed as an expansion on the �eld modes given above as

G(r, r′;ω) =
∑
l

Ml(r
′;ω)fl(r;ωl). (B.9)

Inserting this into the de�nition of the dyadic Green's function and using
Eq. (B.6) and Eq. (B.8) we �nd that the expansion coe�cients are given by

Ml(r
′;ω) = c2

f∗l (r
′;ωl)

ω2
l − ω2

, (B.10)

which give the following form of the dyadic Green's function

G(r, r′;ω) =
∑
l

c2
f∗l (r

′;ωl)fl(r;ωl)

ω2
l − ω2

. (B.11)
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By employing the mathematical identity [45]

lim
η→0

Im

[
1

ω2
l − (ω + iη)2

]
=

π

2ωl
[δ(ω − ωl)− δ(ω + ωl)] , (B.12)

we can relate the imaginary part of the dyadic Green's function to a simple sum
over the �eld modes. We repeat that these �eld modes are the basis functions
in a inhomogeneous environment for the electric �eld, as well as for the vector
potential in the generalized Coulomb gauge. The resultant relationship is

Im [G(r, r′;ω)] =
π

2

∑
l

1

ωl
f∗l (r

′;ωl)fl(r;ωl)δ(ω − ωl), (B.13)

where we have dropped the term δ(ω+ωl) from Eq. (B.12) that only contribute
for non-physical negative frequencies. We note that we from this form also can
construct the Green's function for a speci�c mode, e.g., a plasmonic mode on
a nanowire.
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Appendix C

Gauge dependent

perturbation theory

In most practical calculations, two forms of the Hamiltonian for light-matter
interaction are used: q

mp ·A or qE · r both in the dipole approximation. In 1947
Lamb measured the spectrum of atomic hydrogen [3] and found that the results
were described by the qE · r interaction Hamiltonian only. This result has often
been misinterpreted as the two perturbations giving di�erent physical results,
and that only qE · r is the correct form of the interaction. Since then, the two
forms have been shown to be connected through a unitary transformation, but
the general attitude has been to use one form or the other with the same set
of basis vectors (the proper method would also transform the basis vectors).
For some processes this simply gives wrong results and has led to confusion
in the literature. In 1976 Jaynes commented (cited from Ref. [115]): ". . . a

whole generation of physicists has stumbled on this problem and lived, not only

under the shadow of the immediate di�culty: 'How can I ever know whether a

practical calculation has been done right?', but the deeper mystery: 'How is it

possible that a theory, for which formal gauge invariance is proved easily once

and for all, can lead to grossly non-invariant results as soon as we try to apply

it to the simplest real problem?'"

We will in the following try to answer two relevant questions for the deriva-
tion presented in Chapter 3 in this thesis; 'What is the correct form of the meso-
scopic interaction Hamiltonian, for use with the untransformed wavefunctions?'
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Chapter C. Gauge dependent perturbation theory

and 'Is it necessary to transform the wavefunctions to get correct results?'

C.1 In the dipole approximation

In the dipole approximation, theoretical, and due to Lamb, also experimental,
arguments have been made as to why qE · r is the form that can be used without
transforming wavefunctions. The argument relies on the proposal of an energy
operator which generally is di�erent from the Hamiltonian [115]. Especially it
can be shown that the expectancy of the energy operator is gauge invariant
while the expectancy of the Hamiltonian is not. In the case of the qE · r-form
of the interaction in the dipole approximation, it can be shown that the energy
operator coincides with the unperturbed Hamiltonian, which ensures that the
basis functions need not be transformed in this gauge to yield correct results,
in general.

C.2 Beyond the dipole approximation

The argument above, however, only works in the dipole approximation, so it
does not imply that the multipolar Hamiltonian, which would be the natural
generalization to the qE · r-Hamiltonian, is the correct form of the interaction
beyond the dipole approximation. In fact, it is written in Ref. [116] that "It
is the minimal coupling Hamiltonian, not the multipolar Hamiltonian, whose

validity in time-evolution equations may be taken for granted."

In the main text of the thesis we use the minimal coupling Hamiltonian in
the generalized Coulomb gauge, and make the approximation that we only need
to consider the constant term and the gradient term in the Taylor expansion
for the �eld modes. It is from the above considerations not clear that this is
the correct form of the Hamiltonian, in the sense that it would yield correct
results without transforming the wavefunctions.

Without providing an answer to the �rst of the questions posed we proceed
to the second, which is answered in the negative. For energy conserving tran-
sition processes, a hybrid approach is justi�ed [57, 116], i.e., the wavefunctions
do not need to be transformed in this case. This result applies to the dipole ap-
proximated form- as well as to the full interaction Hamiltonians. We study an
intermediate form of the interaction, where neither the dipole approximation is
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Beyond the dipole approximation

made nor the full spatial dependence is kept. As the calculations are correct for
both extremes, we expect our calculations to be correct to the approximation
order, i.e., to the �rst order in the Taylor expansion of the �eld modes.
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Appendix D

Fabrication Recipies

The purpose of this appendix is to provide the details of the fabrication pro-
cesses used to fabricate the samples described elsewhere in this thesis.

D.1 The interface process

The interface process is repeated n times to fabricate 2n terraces into the
surface of the sample. The direct and inverted sample each have 32 terraces
corresponding to 5 repetition of the following process.

1. Clean sample in acetone, ethanol and isopropanol and blow dry with N2

gun.

2. Spin-coat sample with AZ5214 photoresist using 6000 RPM for 30 s,
after an initial distribution spin of 500 RPM for 5 s.

3. Prebake at 90 degrees Celsius for 60 s.

4. UV exposure for 20 s using a suitable mask that exposes half of the 32
terraces.

5. Develop in AZ351B:H2O mixed 1:5 for 40 s. Followed by H2O and N2

gun.

6. Postbake at 120 degrees Celsius for 60 s.
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Chapter D. Fabrication Recipies

7. Ashering in O2-plasma at 40 % power setting for 60 s.

8. Prepare deoxidation solution as 10 mL of H3PO4 + 40 mL of H2O,
magnetic stirring for 5 min. at 500 RPM.

9. Prepare etching solution as 600 mL of H2O + 30 mL of H3PO4 (85%)
+ 10 mL H2O2 (30%), magnetic stirring for 30 min. at 300 RPM. Ex-
pected etch rate is ∼ 0.9 nm/s.

10. Calibrate etch rate before each etch by etching on a dummy piece and
measuring the resulting etch depth with a surface pro�ler.

11. Etching using this procedure: 30 s deoxidation, 10 s rinse in H2O, blow
dry with N2 gun, etch for a time obtainable from the etch speed calibra-
tion. Rinse in H2O and blow dry with N2 gun. It is important to replace
the acid after each etching in order to maintain a constant etch rate.

12. Clean in acetone, ethanol and isopropanol and blow dry with N2 gun.

By using 5 di�erent masks and etching depths of L, 2L, 4L, 8L, and 16L one
obtains 32 terraces equidistantly spaced L apart. The actual obtained depths
were measured using a combination of secondary ion mass spectroscopy, atomic
force microscopy, scanning electron microscopy, and surface pro�ling.

D.2 Silver mirror process

After the interface process, the sample is subjected to an epitaxial lift-o� and
transferred onto a sapphire substrate. The epitaxial lift-o� is detailed in the
dissertation of Søren Stobbe [117]. The placement on a sapphire substrate allow
us to excite and measure the quantum dots through the backside of the wafer,
as the top of the wafer will be covered with silver.

1. Epitaxial lift-o� of the top of the quantum dot wafer using a sapphire
substrate with SU-8 as the destination substrate.

2. Metal evaporation in evaporation chamber. 200 nm of silver was evap-
orated onto the sample.
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The inverted interface process

D.3 The inverted interface process

The inverted interface process uses an epitaxial lift-o� process, detailed in the
dissertation of Søren Stobbe [117], to �ip the surface of a wafer by transferring
it onto a new destination substrate with the bottom side up. This enables
processing of the semiconductor material immediately below the quantum dot
layer. SU-8 is used for bonding to the destination substrate because it has a
transmittance of 98 % for wavelengths above 560 nm and has excellent me-
chanical properties since it is epoxy-based. For that reason it is not dissolved
in acetone which is central to make this process work.

1. Spin-coat PMMA on a 10 × 10 mm2 silicon sample with polymethyl
methacrylate in anisole (PMMA) 4% and bake on hotplate at 160 degrees
Celsius for 60 s.

2. Epitaxial lift-o� of the top of the quantum dot wafer using the silicon
sample with PMMA as the destination substrate.

3. Spin-coat SU-8 on a sapphire substrate. Use SU-8 2005 resist using
500 RPM for 60 s without prebake.

4. Bond the epitaxial lift-o� �lm to the SU-8 by placing the silicon sample
with PMMA and the ELO �lm on top of the sapphire with SU-8, so that
the epitaxial lift-o� �lm is in contact with the SU-8.

5. Bake at 120 degrees Celsius for 10 min. after which the hotplate should
be turned o� and allowed to cool slowly to avoid cracking of the SU-8
�lm.

6. Remove PMMA in acetone, discard the silicon substrate and if neces-
sary remove residual PMMA using oxygen plasma.

7. Perform the interface process on the resulting sample which consists
of an inverted epitaxial lift-o� �lm bonded to sapphire by SU-8.

8. Deoxidation of surface before metal depostion, same deoxidation pro-
cedure as in the interface process.

9. Metal Deposition done in the same way as described in silver mirror
process.
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D.4 Plasmonic gap waveguide process

First the relevant steps from the interface process is employed to produce a
sample with the wanted distances to the quantum dots. The wafer piece will be
mounted in the electron beam writer, therefore care should be made to choose
a suitable sample size. We mounted the sample on an 8 mm slit, therefore the
sample was made 10 mm wide. The spin coated resist is uneven near the edges
of the sample, which should also be considered in the choice of sample size -
our sample was 10× 12 mm2.

1. Clean sample in acetone, ethanol and isopropanol and blow dry with N2

gun.

2. Spin-coat with The ZEP520A 3.7 %. First a distribution spin with an
acceleration of 100 RPM/s to 500 RPM for 10 s. Immediately followed
by an acceleration of 1500 RPM/s to 2000 RPM for 30 s.

3. Bake the sample at 180 degrees Celsius for 5 min on a silicon wafer.

4. Inspect the resulting resist. We found it to have a bluish color when
the thickness is ∼ 100 nm. We also perfom a direct check of the resist
thickness with a Filmtek machine.

5. Electron-beam exposure using a Jeol JBX-9300FS electron beam lithog-
raphy system. Exposure using 100 kV acceleration voltage, current 6 nA,
and dose 135, 145, 155, and 165 µC/cm2. The multiple exposure values
are used to counter variations in the resist thickness from sample to sam-
ple. We also fabricate plasmonic waveguides with di�erent widths. For
these structures the doses were 300, 320, 340, and 360 µC/cm2.

6. Develop in ZED N-50 for 2 min., with manual stirring. Followed by
1 min. in isopropanol with manual stirring and jet from isopropanol
squeezebottle. Hereafter thorough drying with N2 gun.

7. Inspect the sample with atomic force microscope. As discussed in the
main text, the degredation of the gap in the waveguides can be assesed
with an atomic force microscope before further processing. If the de-
gredation is found to be too severe, the sample can be cleaned and the
process repeated.
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Plasmonic gap waveguide process

8. Cleaving. We designed a sample with eigth identical subsamples and
cleaved it correspondingly at this process step. This allowed us to have
multiple tries at the rest of the process.

9. Prepare deoxidation solution as 10 mL of H3PO4 + 40 mL of H2O,
magnetic stirring for 5 min. at 500 RPM.

10. Preparation of sample surface, done immediately before metal evap-
oration. The sample is cleaned in H2O and dried with N2 gun. Then
ashering at 5% power setting for 10 s resulting in reducing the resist
thickness by ∼ 2 nm. Followed by 30 s in deoxidation solution and 10 s
in H2O and then dried with N2 gun.

11. Evaporation of gold in a Physimeca metal evaporator. We deposit
15 nm at a rate of 0.5 nm/s.

12. Lift-o� is done with a jet from an acetone squeezebottle followed by 10
min. in acetone bath. Hereafter ∼ 2 hours in R1165.

13. Clean in acetone and isopropanol and dry with N2 gun.

The ZEP520A 3.7 % was prepared as a 1:2 solution of the available ZEP 520A
11% and anisole. The solution was left in a refrigerator and when taken out for
use the bottle remained closed until temperature equilibrium with the room was
established in order to avoid moisture in the solution, which degrades adhesion
to the sample.

The spinning was showing e�ects of the small size of the sample with an
uneven distribution as a result. We found that varying the acceleration of the
spin could be used to form more uniform resist distributions.

The short ashering is done to remove any residue resist left in the exposed
areas of the sample. The parameters used are a result of a study of the resist
thickness reduction as function of power setting and time.
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Appendix E

Optical measurement

setups

Two di�erent optical setups were used to perform the optical photoluminescence
(PL) measurements presented in this thesis. The �rst (the ensemble setup),
c.f Fig. E.1, was used to measure ensembles of quantum dots on the interface
samples subject of Chapter 3 and Chapter 4 while the second setup, (the µ-
PL setup), c.f. Fig. E.2, was used to measure single quantum dots with a
micron-sized spotsize on the plasmonic gap-waveguides subject of Chapter 5.

The two optical setups are very similar in function, and di�er only in two
aspects:

1. In the µ-PL setup the excitation and collection is done confocally, whereas
in the ensemble setup excitation and collection are independent of each
other.

2. The excitation and collection area is much bigger in the ensemble setup
than in the µ-PL where it is di�raction limited.

Besides these optical di�erences, the stages are much coarser on the ensemble
setup, and the cryogenic systems are di�erent. The ensemble setup has a closed-
cycle helium cryostat where the µ-PL setup use a �ow-cryostat. Further details
on the optical setups can be found in the Ph.D. dissertation of Jeppe Johansen
[118] (The ensemble setup) and Toke Lund-Hansen [119] (The µ-PL setup).
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Laser

Cryostat

Sample

Translation stage

CCD

MonochromatorCCD

APD

Flip mirror

TCSPC

Figure E.1: The ensemble setup. The sample is kept in a closed-cycle cryostat,

mounted on an xyz-stage, and pumped near the Brewster angle with p-polarized

light to minimize re�ections. The emitted and/or scattered light can be directed

onto a CCD camera for alignment or directed through a pinhole for spatial

selection to a monochromator. The spatially dispersed light can then either

be directed to a CCD camera for acquisition of spectra or onto an avalanche

photodiode (APD) for time-resolved measurements. The arrival time of single

photons on the APD are correlated to the emission time of laser pulses with

time-correlated single-photon counting (TCSPC) hardware.
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Figure E.2: The µ-PL setup. The sample is kept in a �ow cryostat which is

mounted on an xyz-stage. The excitation and collection optics are confocal

and the emitted and/or scattered light can be directed onto a CCD camera

for alignment or directed through a single-mode �ber for spatial selection to a

monochromator. The spatially dispersed light can then either be directed to a

CCD camera for acquisition of spectra or onto an avalanche photodiode (APD)

for time-resolved measurements. The arrival time of single photons on the APD

are, as was also the case for the ensemble setup, correlated to the emission time

of laser pulses with time-correlated single-photon counting (TCSPC) hardware.
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Appendix F

E�ect of the backside

sapphire-substrate

In this appendix we show the resulting normalized decay rate for an emitter
positioned in GaAs between a silver mirror and a sapphire substrate, like in the
direct and inverted samples studied in Chapter 4. In the two samples studied in
Chapter 4, the distance to the sapphire was �xed and the distance to the silver
mirror was varied. The calculation is done using the dyadic Green's function
presented in Appendix A.

The distance-dependencies to both silver and sapphire give rise to oscilla-
tions. The silver mirror results in a stronger oscillation as this is more re�ecting
than the sapphire substrate. The decay rates shown in Fig. F.1 contain the
region relevant for the direct (623 nm) and inverted (302 nm) structures.

In Fig. F.2, we show the result for larger distances to the sapphire substrate.
The dependence on the distance to the sapphire is seen even for distances larger
than two microns as a "ringing" in the normalized decay rate.

We note that due to the fabrication procedure, the bordering material on
the backside of the wafer is actually SU-8 which has a thickness of several
micrometer (∼ 10 µm) and lies between the wafer and the sapphire substrate.
We have modeled the decay dynamics with a backside refractive index n = 1.75

corresponding to a sapphire, but should have used n = 1.56 corresponding
to SU-8 [120]. The di�erence between the two is, however, negligible in our
structures.
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Distance to saphire (nm)

Figure F.1: Normalized decay rate as function of distance to a silver mirror

and to a backside sapphire substrate. Both distance dependencies give rise to

a damped oscillation, with the stronger oscillation associated with the distance

to the silver mirror.
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Figure F.2: Normalized decay rate as function of distance to a silver mirror

and to a backside sapphire substrate. The dependence of the decay rate on the

distance to the sapphire substrate is clearly seen even for distances larger than

2 microns.
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Appendix G

Coupling to plasmonic

modes beyond the dipole

approximation

G.1 Polarization considerations

The mesoscopic moments Λx,z and Λz,x couple to two di�erent polarizations
of the plasmonic �eld. We can study the di�erent contributions by employing
a single-mode model of the plasmonic �eld:

Im(Gpl
j,j′(r, r

′;ω)) =
π

2ω
fpl
j (r)fpl∗

j′ (r′)δ(ω − ωpl). (G.1)

Here the �eld modes are given in term of the electric �eld for the surface
plasmon polaritons fpl(ρ, z) ∝ (E∥, Ez)e

i(k∥ρ+kzz−ωt). The mesoscopic moment
Λz,x couples to F1 = ∂/∂xfpl

z (r) and Λx,z couples to F2 = ∂/∂zfpl
x (r). We use

the well-known [17] polarization and dispersion of surface plasmon polaritons
introduced in Chapter 2 to �nd the ratio of the gradients that Λz,x and Λx,z

couples to: F1/F2 = |ϵm/ϵd| = 4.3. Due to this large ratio we choose to neglect
Λx,z, that couples to the weaker �eld, and de�ne the moment Λ used in the
main text as Λ = Λz,x, with the added bene�t of only having a single �tting
parameter Λ/µ in the expression for the normalized decay rate.
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G.2 Modeling of the contributions from the two

mesoscopic moments

In addition to the arguments above, we here also explicitly plot the e�ect of
the two di�erent moments of various sizes. In Fig. G.1 we plot two series of
normalized decay rates, both with the dipole moment parallel to the interface
µ = µx. In the �rst of these decay rate series we vary Λz,x and have Λx,z = 0,
and in the second we vary Λx,z and set Λz,x = 0. We plot the normalized
total, plasmon, and radiative decay rates, and �nd that the decay rate depends
strongly on the sign and size of the Λ's. Furthermore, we �nd that the result
of including each of the two Λ's is very di�erent.

We have decomposed the decay rate to its constituent components (ra-
diative, plasmon, and lossy modes), though we have not shown the behavior
of the lossy modes explicitly as it only contributes signi�cantly to the total
decay rate for the innermost ∼ 25 nm. The ratio of Λ and µ can be given
in a length unit, and here we plot the resulting normalized decay rate for
Λ/µ = (−10,−5, 0, 5, 10) nm, as this is the range of parameters needed to �t
our measurements. Note that Λ/µ = 0 nm corresponds to modeling a point-
dipole. We �nd that within the shown parameter range that the dominating
e�ect on the decay rate stems from the coupling to plasmons mediated by Λz,x

in agreement with the above considerations.

G.3 Distance independent breakdown

of the dipole approximation

We note that the �rst-order moment Λ couples to the gradient of the Green's
function while the point-dipole moment µ couples to its size, as derived in
Chapter 3. For coupling to the plasmonic modes this corresponds to a scaling
proportional to ikplΛe

ikzz for the mesoscopic contribution, and µeikzz for the
dipole contribution. The breakdown of the dipole approximation is determined
by the ratio of the zeroth and �rst-order moments, which, thus, is independent
of the distance z to the silver mirror. The breakdown does not scale with the
strength of the plasmonic �eld but with its gradient. To further investigate
this we have �tted our data sets excluding a number of the innermost points
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Figure G.1: Normalized decay rates beyond the dipole approximation. For a

dipole oriented parallel to the interface we study the e�ect of Λz,x (left plots)

and Λx,z (right plots). From top to bottom we plot: the total decay rate, the

decay rate into plasmon, and the decay rate into free photons. We set the Λ/µ

to -10 nm (solid light gray), -5 nm (dashed light gray), 0 nm (dotted black =

dipole result), 5 nm (dashed dark gray), 10 nm (solid dark gray)
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Direct

Inverted

Distance to silver mirror, z (nm)

Figure G.2: Extracted mesoscopic moment as function of the innermost in-

cluded point in the �tting procedure, i.e., by including only data points for the

speci�c- and longer distances.

in a systematic way. The resulting mesoscopic moments are shown in Fig. G.2.
The extracted mesoscopic moment is seen not to depend on the distance to the
interface. However, the e�ect of the breakdown on the total decay rate falls o�
with the plasmonic �eld strength.

142



Appendix H

Orientation and position

dependent coupling to

plasmon waveguides

H.1 Silver nanowire

The nature of the coupling of a mesoscopic quantum dot to a silver nanowire as
presented in Chapter 4 is determined by which excited state that is prepared in
the quantum dot. Real quantum dots support two excited states that are non-
degenerate due to the broken in-plane rotational symmetry. In the nanowire
coordinate system introduced in Chapter 4 these correspond to an azimuthally
and parallelly oriented dipole when the quantum dots are directly beneath or
above the nanowire.

When quantum dots are excited non-resonantly, both excited states are
populated, and hence a multi-exponential decay will result. Here, we will show
the result for each of the two excited states by themselves. Like in Chapter 4 we
show the decay dynamics for a range of quantum dots with di�erent mesoscopic
character Λ/µ and for a range of distances to the nanowire d.

The decay dynamics of these two excited states are very di�erent as we will
show in this appendix. In the case where the quantum dot is directly under-
neath or above the nanowire as shown in Chapter 4, the excitation oriented
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azimuthally do not couple to the wire. Neither the purely dipole nor mesoscopic
moment contribute to the coupling.

For the silver nanowire calculations presented here we use the same param-
eters as in Chapter 4, i.e., a quantum dot emission wavelength of 1030 nm and
a silver nanowire with a diameter of 25 nm (r = 12.5 nm) embedded in GaAs.

For the parallelly oriented excited state shown in Fig. H.1, we �nd that for
a pure dipole emitter Λ/µ = 0, there is a signi�cant coupling to the nanowire.
As a result there is interference between the dipole and mesoscopic moments,
and the resulting coupling is dependent on the sign of Λ as shown in Fig. H.1.
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Figure H.1: Coupling e�ciency of an excited state that is oriented parallelly to

the nanowire. The result is shown for a range of quantum dots with di�erent

mesoscopic character Λ/µ and for a range of distances to the nanowire d.

We �nd that for a pure dipole Λ/µ = 0 nm positioned 10 nm from the wire
that the e�ciency is β = 85%. This number can be reduced to below 1% for
Λ/µ = +10 nm and enhanced to β = 96% for Λ/µ = -10 nm.

When the quantum dot is moved away from these positions of high �eld
symmetry relative to the quantum dot states, the excited state that was orig-
inally purely along the azimuthal direction also gains a component along the
radial direction relative to the wire. In these cases the resulting decay dynamics
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become even more complex. We study the decay dynamics for the two excited
quantum dot states individually when shifting the quantum dot sideways from
an initial position 10 nm directly below/above the wire. This theoretical study
resembles the experimental condition where the exact in-plane positions of the
quantum dots are unknown.
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Figure H.2: Coupling e�ciency of an excited state that is oriented parallelly to

the nanowire. The result is shown for a range of quantum dots with di�erent

mesoscopic character Λ/µ and for a range of distances to the highly symmetric

starting point (x = 0).

In Fig. H.2 we see that the result of shifting the quantum dot with an
parallelly excited state away from the position directly underneath the wire
generally diminishes the coupling. For the dipole contribution Λ/µ = 0 nm

the e�ect is purely due to the growing distance to the wire with the in-plane
position shift.

The other excited quantum dot state is oriented parallel to the x-axis that
we shift along as shown in Fig. H.3. At the starting point, x = 0, the emitter
does not couple to the wire at all, but when the emitter is shifted along x
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di�erent mesoscopic character Λ/µ and for a range of distances to the highly

symmetric starting point (x = 0).

the exited state can couple to the radial component of the plasmonic mode
which gives rise to a signi�cant coupling. The interference with the mesoscopic
moment further alter the decay dynamics as shown in Fig. H.3. The uneven
structure of the graphs is due to the �nite mesh resulting from the �nite-element
calculation.

H.2 Gold narrow-gap waveguide

For the calculation of the coupling to a gold narrow-gap waveguide we use the
same parameters as in Chapter 5, i.e., a quantum dot emission wavelength of
920 nm and a gold gap waveguide with stripe widths of 250 nm placed atop
the quantum-dot-containing GaAs wafer and with air as the top material. In
the present calculations the width of the gap is 25 nm and we consider, like in
Chapter 5, the coupling to the fundamental guided gap mode.

The resulting coupling e�ciencies are shown, for quantum dot excitations
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Gold narrow-gap waveguide

oriented along the x-axis for a range of distances to the interface while x = 0,
in Fig. H.4. In Fig. H.5 and Fig. H.6 the coupling e�ciency is shown for a
range of position shifts along the x-axis. The distance to the interface is, in
these plots, �xed at d = 10 nm and the results are shown for both an excited
state oriented along the x- and y-axis.
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Figure H.4: Coupling e�ciency for quantum dot excitations oriented along the

x-axis, see sketch, for a range of distances to the interface while retaining x = 0.

The results shown on the coupling to a narrow-gap gold waveguide (Fig. H.4,
Fig. H.5, and Fig. H.6) illustrate again the potential of utilizing the mesoscopic
moment to enhance the coupling to guided modes. Note, that like for the
nanowire calculations and the silver mirror measurements, we here �nd that
the quantum dot should be turned upside-down to increase the coupling to
the plasmonic mode, i.e., the best coupling occur for Λ/µ < 0 nm. Upside-
down should be understood as compared to a normal monolithic process where
the waveguides are de�ned on top of the quantum dot layer. Note that we
here, i.e. for a small gap (25 nm), �nd that the dipole moment oriented along
x give rise to the most e�cient coupling to the nanowire. This was not the
case in Chapter 5 where the y-component gave comparable, and even larger,
contributions when the emitter was o�set from the x = 0 position.
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Appendix I

Microscopic theories for the

mesoscopic moments

In this appendix we will construct two microscopic models for µ and Λ in
an attempt to model the quantum dot properties that we extracted through
the �tting procedure described in Chapter 4. Both models are dependent on
gradients of the electron and hole wavefunctions in the z-direction. The �rst
approach explore e�ects stemming from the envelope functions while the second
explore the e�ect on the crystal-unit-cell length scale.

I.1 E�ect of gradients on the envelope function

overlap

We use the approximation that the envelope function does not change signi�-
cantly over the span of a crystal unit cell [37] to evaluate the dipole moment
as µx = ⟨Fe|Fh⟩⟨uc,0|px|uv,0⟩. In a similar manner the mesoscopic moment
Λ1 = Λz,x = ~/(mω0)⟨Fe|∂/∂z|Fh⟩⟨uc,0|px|uv,0⟩ and Λ2 = Λx,z = ⟨Fe|(z −
z0)|Fh⟩⟨uc,0|px|uv,0⟩ can be calculated. In this description we can calculate
the experimentally important ratios Λ1/µ and Λ2/µ solely from the envelope
functions of the electron and hole states. The electron and hole envelope func-
tions can be found as eigenstates to a Schrödinger like e�ective mass equation
[31], where a spatially varying potential de�nes the quantum dot. The mod-
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Chapter I. Microscopic theories for the mesoscopic moments

eled potential have a constant depth throughout the quantum dot, set by the
amount of In in the quantum dot, In(x)Ga(1-x)As, we used x = 0.46 which
have been used to model similar quantum dots successfully [31]. The shape of
the quantum dot is de�ned as a rotationally symmetric half-ellipsoid where the
diameter at the bottom D and height h are de�ning the shape of the quantum
dot. We employ a COMSOL code to solve the equations for electron and hole
envelope function [31], for a range of di�erent quantum dot parameters. In
Fig. I.1(a,b) we show the resulting envelope functions for the electron and the
hole in a quantum dot with a height of 7 nm and with D = 20 nm. We note
that the hole envelope functions is much stronger con�ned to the quantum dot
than the electron envelope function, due to the larger e�ective mass of holes in
the quantum dot.

The calculated envelope functions are used to numerically estimate the size
of the mesoscopic moments. We de�ne the envelope overlaps EO = ⟨Fe|Fh⟩,
EO1 = ~/(mω0)⟨Fe|∂/∂z|Fh⟩ and EO2 = ⟨Fe|(z−z0)|Fh⟩ that are proportional
to the dipole moment µcv

x = EO⟨uc,0|px|uv,0⟩ and the �rst order moments
Λ1,2 = EO1,2⟨uc,0|px|uv,0⟩, respectively.

Before proceeding further, we note that our envelope function model is
an oversimpli�ed representation of real quantum dots. The physical dipole
moment (not transition dipole moment) of quantum dots has been measured
[84]. The conclusion from these experiments is that the hole envelope function
is shifted towards the apex of the quantum dot along the z-axis. The relative
o�set of the envelope functions is caused by In redistribution in the quantum
dot under self-assembly, resulting in a higher In concentration towards the apex
of the quantum dot. Here we will mimic a more complete quantum dot model
by arti�cially introducing a shift along the z-axis of the envelope functions
relative to each other.

Including this shift we �rst calculate the simple envelope functions overlap
EO, see Fig. I.1e. Note that we have done the calculations even for very
large shifts compared to the quantum dot heights, which naturally leads to a
drop in EO for large shifts. Previous work on quantum dot envelope functions
[29, 31] extracted an overlap EO ≈ 0.8, which compared with Fig. I.1e indicates
that shifts larger than ∼ 3 nm should not be considered representative of real
quantum dots.

We �nd that the mesoscopic envelope overlapsEO1,2, plotted in Fig. I.1(c,d),
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Figure I.1: Envelope function for electron (a) and hole (b) in a quantum dot.

The results in c, d, and e are shown for a series of quantum dot heights (as

explained in f) as function of envelope function position shift, while the ratio

of diameter to height have been kept constant D/h = 2.86. c, The �rst order

overlap EO1. d, The �rst order overlap EO2. e, The overlap of electron and

hole, EO.
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Chapter I. Microscopic theories for the mesoscopic moments

are very sensitive to the relative shift of the envelope functions. The size of the
resulting �rst order overlaps |EO1| and |EO2| have a maximum for a shift of
a few nanometers, and is dependent on the quantum dot height. In order to
compare the �rst-order envelope overlap with �rst-order mesoscopic moment
that we extracted through a �t, we should compare EO1/EO to Λ1/µ and
EO2/EO to Λ2/µ. We will focus our conclusion on Λ1/µ as this is the mo-
ment important for the experiment in Chapter 4. The resulting values from
the microscopic theory are three orders of magnitude smaller than the Λ1/µ-
value that we extracted through a �t to our measured data. This microscopic
models ability to explain a large mesoscopic moment rely on the presence of
very strong gradients in the envelope function. Large gradients could occur for
changes in the wavefunction over shorter lengthscales. Thus, the numerical re-
sults presented here suggest that the reason for the large mesoscopic moments
should not be found on the length scale of the envelope function, but rather at
the nanoscopic crystal level.

I.2 E�ect of a periodicity-shift in the Bloch func-

tions

In this section we explore the outcome of gradients at the crystal-unit-cell level.
InAs and GaAs have slightly di�erent lattice constant, which is the reason
for the self-formation of quantum dots. The quantum dots, that consist of
InGaAs are embedded in GaAs which give rise to a shift of the lattice constant
throughout the quantum dot. Such an e�ect have been directly observed in
recent high resolution transmission electron microscopy studies [121]. A sharp
gradient of the in-plane crystal-lattice-constant along the z-axis (see Fig. I.2a)
could lead to a large mesoscopic moment.

We here propose a simple model for such an e�ect, with the following form
of the electron and hole wavefunctions.

|c⟩ = Fe(r)uc(r, r
′) (I.1)

|v⟩ = Fh(r)uv(r, r
′) (I.2)

where Fe and Fh are envelope functions that vary slowly over the size of a
crystal unit cell, and the Bloch functions are periodic in r with the size of the
unit cell. Furthermore, the size of the unit cell (and hereby the periodicity
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E�ect of a periodicity-shift in the Bloch functions

of the Bloch function) is dependent on position as given by r′. We make the
anzats that the Bloch functions are given in the following simple way with
r = (x, y, z),

uc(r, r
′) =

∑
n

an cos(nk0(r
′)x) (I.3)

uv(r, r
′) =

∑
n

bn sin(nk0(r
′)x). (I.4)

This anzats ensures opposite parity of the conduction and valence band Bloch-
functions, and that the quantum dot only have an in-plane dipole moment. The
model only give rise to a dipole moment along x but can easily be expanded
to include a y dipole as well. Furthermore, we implicitly assume, i.e. by disre-
garding changes in the expansion coe�cients an and bn with r′, that the shape
of the Bloch functions remain the same, and thus that only their periodicity is
e�ected. We calculate the x-dipole moment ⟨c|px|v⟩ in this model, where we
use that px = i~∂/(∂x) to get

⟨c| ∂
∂x

|v⟩ =
∫

drF ∗
e (r)Fh(r)⟨c|v⟩B, (I.5)

where

⟨c|v⟩B =
∑
n

∫
dV

dra∗n(r)bn(r)nk0(r) cos
2(nk0(r)x). (I.6)

In this derivation we made the approximation that ∂k0(r)/∂x does not take
large values, corresponding to the periodicity of the unit cells changing slowly
perpendicular to the growth axis. The expression for the x-dipole transition mo-
ment bears much resemblance to the expression derived earlier. Furthermore,
the z-transition dipole moment equals zero, consistent with measurements on
real quantum dots. With these initial tests in place we go on to construct the
higher order moments of interest to this study. We �nd that

⟨c|z ∂

∂x
|v⟩ =

∫
drF ∗

e (r)Fh(r)z⟨c|v⟩B (I.7)

and

⟨c|x ∂

∂z
|v⟩ =

∫
drF ∗

e (r)Fh(r)
x2

∆z

∆k0
k0(r)

(∆(z − ztop) − ∆(z − zbot))⟨c|v⟩B.

(I.8)
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Chapter I. Microscopic theories for the mesoscopic moments

Where Eq. (I.8) corresponds to the moment extracted in Chapter 4. We have
used that there is a sharp transition in the periodicity of the crystal lattice
∆k0/∆z along the z-axis at the top (z = ztop) and at the bottom (z = zbot)
of the quantum dot [121]. The use of ∆ is to signify that the periodicity-shift
occurs over a region with width ∆z around ztop or zbot.

The resulting expression for ⟨v|x∂/∂z|v⟩ depends quadratically on the in-
plane size of the quantum dot, and will therefore grow to be large for large
quantum dots. To numerically evaluate this model we use the same model for
the envelope function as above, and use the shift in lattice vector∆l = 0.093 nm

obtainable from Ref. [121] at the top of the quantum dot. We assume that the
bottom transition does not overlap signi�cantly with the envelope functions,
as the hole is shifted upwards in real quantum dots, and vary only the position
of the top transition. Also including the bottom transition diminishes the
resulting mesoscopic moment. The results shown here, i.e. for only the top-
transition, is therefore an ideal case.

We �nd, as shown in Fig. I.2, that our numerical results con�rm that the
overlap moment grows with the quantum dot size as shown in Fig. I.2b. Fur-
thermore, we see that for a �xed quantum dot volume, the e�ect grows for
�atter quantum dots, as shown in Fig. I.2c. Importantly, the resulting num-
bers are two orders of magnitude larger than the �ndings from the envelope
gradient approach of the previous section, and are easily within an order of
magnitude of the measured results (Λ/µ ≈ ±10 nm). This suggest that the
description for the large measured mesoscopic moments should be found at the
nanoscopic crystal length scale. The size of the e�ect is dependent on the meso-
scopic size and shape of the quantum dots. A thorough study of real quantum
dot shapes and internal crystal structure need to be performed in order to test
the validity of this simple model.

Our microscopic models indicate that the origin of the mesoscopic moment
is found at the interplay between the mesoscopic envelope function size and
changes in the crystal lattice structure. The e�ects are thus critically dependent
on detailed knowledge of the crystal lattice structure and material composition
throughout the quantum dot.
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Figure I.2: Mesoscopic moments induced by periodicity shift in quantum dot

Bloch functions. a, Sketch of the e�ect: We model the e�ect of a shift in the

crystal lattice periodicity at a certain position ztop, within the envelope function

overlap. b, The resulting �rst-order moment Λ1/µ for quantum dots of various

size. The diameter to height ratio is �xed at D/h = 4.7 and the height of the

quantum dot set to 3 nm (solid lines), 5 nm (dashed lines), 7 nm (dash-dotted

lines), and 9 nm (dotted lines). The lines indicate ⟨v|x∂/∂z|v⟩/⟨v|∂/∂x|v⟩
which can be directly compared to the measured values of Λ/µ. c, The result-

ing �rst-order moment for various geometries. Same convention as above for

linetype to quantum dot height, here the volume (V ≈ h(D/2)2 = 700 nm3) is

kept constant. We note that the envelope function overlap is larger than 80%

for all the shown calculated quantum dot realizations, and thus consistent with

experiments [29, 31].
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