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ABSTRACT
In this paper we propose a novel anisotropic smoothing scheme based on Markov Random Fields (MRF). Our
scheme is formulated as two coupled processes. A vertex process is used to smooth the mesh by displacing the
vertices according to a MRF smoothness prior, while an independent edge process labels mesh edges according
to a feature detecting prior. Since we should not smooth across a sharp feature, we use edge labels to control the
vertex process. In a Bayesian framework, MRF priors are combined with the likelihood function related to the
mesh formation method. The output of our algorithm is a piecewise smooth mesh with explicit labelling of edges
belonging to the sharp features.

Keywords: Mesh, smoothing, Markov Random Fields.

1 INTRODUCTION
Markov Random Fields (MRF) have been used ex-
tensively for solving Image Analysis problems at all
levels. The local property of MRF makes them very
convenient for modeling dependencies of image pix-
els, and the MRF-Gibbs equivalence theorem provides
a joint probability in a simple form, making MRF the-
ory useful for statistical Image Analysis. While some
examples are mentioned below, MRF have rarely been
used for mesh processing. One reason could be that
MRF are usually defined on regular grids, but this is
by no means required.

In this paper we demonstrate that feature preserving
mesh smoothing may conveniently be cast in terms
of MRF theory. Using this theory we can explic-
itly model our knowledge of properties of the surface
(prior knowledge, e.g. how smooth the surface should
be, which sharp features should it contain) and our
knowledge of the noise (likelihood, e.g. how far do we
believe the measured position of a vertex is likely to
be from the true position). The central element of the
MRF formulation is that we use Bayes rule to express
the probability of any mesh configuration by defining
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its of prior and likelihood independently. This division
of responsibilities often turns out to be a benefit.

For instance, a big advantage of the MRF formulation
is that we can use the likelihood to keep the mesh fairly
close to the input, avoiding the shrinkage associated
with many other schemes. Unlike [Hildebrandt and
Polthier, 2007] we do not obtain a hard constraint, but
meshes far from the input can be made arbitrarily un-
likely by choosing an appropriate likelihood function.

We investigate the use of MRF for formulating pri-
ors on 3D surfaces in a number of different ways.
The smoothness prior encodes the belief that a smooth
surface (according to some fairness criterion) is more
probable than a noisy surface. In particular, we show
how we can use one MRF to perform explicit labelling
of edges according to how sharp they are, and another
MRF to find optimal vertex positions according to the
smoothness prior. Using our edge labelling from the
first MRF to control the vertex smoothing, we are able
to recapture very subtle sharp features on the noisy
mesh.

2 RELATED WORK

Mesh-smoothing algorithms have a long history in the
field of geometry processing since the early work of
[Taubin, 1995], which demonstrated the connection
between various explicit linear methods using the so
called umbrella operator and low pass filtering. In
[Desbrun et al., 1999] a discrete Laplace Beltrami
operator was introduced and the connection between
smoothing and mean curvature flow was explained.
Both techniques are efficient, but fail to distinguish



between the noise and the features of the underlying
object.

To address this problem, anisotropic diffusion [Des-
brun et al., 2000] and diffusion smoothing of the nor-
mal field [Tasdizen et al., 2002] were proposed. The
results are impressive, but the computation complex-
ity puts a limit on the size of the model. More ef-
ficient methods were also developed, such as non-
iterative feature-preserving smoothing [Jones et al.,
2003] based on robust statistics, and an adaptation of
bilateral filtering to surface meshes [Fleishman et al.,
2003].

Another feature preserving smoothing method, fuzzy
vector median smoothing [Shen and Barner, 2004], is
a two-step smoothing procedure. In the first step face
normals are smoothed using a robust method which
employs distance to median normal as smoothing
weight. In the next step vertex positions are updated
accordingly. More recently, in [Diebel et al., 2006]
a Bayesian approach was proposed. This method
uses a smoothness prior and the conjugate gradient
method for optimization. It is feature-preserving, but
without an explicit feature detection scheme. Similar
to [Diebel et al., 2006], we use a Bayesian approach,
but unlike that method we obtain feature preservation
by explicitly detecting the set of chosen features. Our
method is also more flexible, allowing us to use a
variety of priors and likelihood potentials.

The method for recovering feature edges proposed in
[Attene et al., 2005] is based on the dual process of
sharpening and straightening feature edges. Vertex-
based feature detection using an extension of the fun-
damental quadric is utilized in a smoothing method de-
scribed by [Jiao and Alexander, 2005].

Comprehensive study on the use of MRF theory for
solving Image Analysis problems can be found in
books [Li, 2001; Winkler, 2003]. MRF theory is
convenient for addressing the problem of piecewise
smooth structures. In [Geman and Geman, 1984] a
foundation for the use of MRF in Image Analysis
problems is presented in an algorithm for restoration
of piecewise smooth images, where gray-level process
and line processes are used. Another application of
MRF for problems involving reconstruction of piece-
wise smooth structures is [Diebel and Thrun, 2005],
where high-resolution range-sensing images are re-
constructed using weights obtained from a regular im-
age.

There are some previous examples of using MRF the-
ory to 3D meshes, but the applications are somewhat
different. In [Willis et al., 2004] MRF are used in
the context of surface sculpting with the deforma-
tion of the surface controlled by MRF potentials mod-

elling elasticity and plasticity. MRF was also used for
mesh analysis and segmentation in [Lavoué and Wolf,
2008].

Our work investigates the possibility of formulating
surface priors in terms of MRF, and using those pri-
ors for reconstructing the surface from the noisy date.
Unlike most other mesh smoothing algorithms, our ap-
proach does not only preserve sharp ridge features, but
also explicitly detects the ridges.

The method described here is not automatic and re-
quires an estimation of a considerable set of param-
eters. However, this allows a great control over the
performance of the priors.

3 MESH SMOOTHING USING MRF
Markov Random Fields is a powerful framework for
expressing statistical models originating in computa-
tional physics, and it has proven highly successful in
Image Analysis [Li, 2001; Winkler, 2003]. A MRF
is, essentially, a set of sites with associated labels and
edges connecting every site to its neighbors. The la-
bels are the values which we wish to assign (e.g. pixel
color, vertex position or edge label), and it is a central
idea in MRF theory that the label at a given site must
only depend on the labels of its neighbors. This frame-
work lends itself well to mesh based surfaces, where
the neighborhood of a vertex can be naturally defined
via its connecting edges.

Apart from a well developed mathematical framework
one of the main advantages of MRF is that its Marko-
vianity (local property) makes is quite clear what the
objective function is and what a MRF based algorithm
aims at achieving. Exponential distributions are often
used, and the joint probability distribution function of
given configuration f (e.g. combined vertex location)
is given by

P( f ) ∝ e−∑U( f ) ,

where the U( f ) can be seen as energy terms or poten-
tials defined on neighborhoods. In order to find the
most likely configuration f , we need to obtain

min
f

∑U( f ) . (1)

In our proposed framework, we wish to smooth a given
mesh. Some of the U( f ) in (1) are thus data (likeli-
hood) terms penalizing the displacement of the ver-
tices in the smoothed mesh relative to the original
mesh. Other terms would be prior terms which express
how likely a surface is a priori, i.e. without making
reference to how far removed it is from the data.

3.1 Likelihood
We want the output of the smoothing to relate to the
input mesh, which has an underlying true surface cor-
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Figure 1: Left: A neighborhood structure for the
smoothness prior. The neighbors of the vertex v are
marked red. When we move vertex v, we only need
to look at its neighboring vertices to calculate the
change in the joint smoothness potential. Right:
A collection of 4 vertices, expressing two adjacent

faces.

rupted by the noise of the data-acquisition device. As-
suming isotropic and Gaussian measurement noise we
choose quadratic function for the likelihood energy

UL(v) = α‖v0−v‖2

where v0 and v denote the initial and the current po-
sition of the vertex v. The constant α is used as the
weight determining how much faith one has in the
data.

There is always a possibility of plugging in a differ-
ent likelihood function in our model, e.g. a volume
preserving likelihood function or likelihood utilizing
some specific knowledge about data acquisition pro-
cess.

3.2 Smoothing Potential
Alongside the data term we also have some a pri-
ori terms expressing our assumptions about how
a smoothed mesh should look. Firstly, we have a
smoothing potential, which is basically a penalty
function, ρ , based on the difference between the
normals of adjacent faces, see Figure 1

Us (v1,v2,v3,v4) = ρ(n123−n243) , (2)

where n123 and n243 are the normals of the two adja-
cent faces. The suitable MRF neighborhood for above
formulation is defined as follows: two different ver-
tices are neighbors if they belong to the adjacent faces.
In this smoothing scheme the label of each mesh ver-
tex is its spatial position, which is adjusted to mini-
mize the chosen energy function.

The choice of the smoothness potential can greatly
influence the feature preserving property of the
smoothing. On the one side, there is a over-smoothing
quadratic potential developed by [Szeliski and
Tonnesen, 1992]

ρ(x) = ‖x‖2 ,

e e1 e2
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Figure 2: Left: A neighborhood structure for the
edge support prior. The neighbors of the edge e are
marked red. The neighboring edges support each
other if they lie along the same line. Right: A pair of
edges. The support for the edges e1 and e2 depends

on the size of the angle θ12.

on the other side, there is a feature preserving square
root potential developed by [Diebel et al., 2006]

ρ(x) = ‖x‖ .

In our case, feature preservation will be handled by the
explicit edge labelling, which allows us to use the ag-
gressive quadratic potential for smooth regions, with-
out thinking about its feature preservation properties.

3.3 Edge Labelling
In many mesh smoothing tasks the presence of clear
ridge features in the result is part of our a priori ex-
pectation. This is included in our MRF model where
we, as an integral part of the smoothing process, label
mesh edges as being ridge edges or not. Edge label
ε is a number from the interval [0,1] which indicates
how probable it is that the given edge is a part of a
sharp ridge feature. Those labels will later be used to
introduce discontinuities in the smoothing process.

Edge labelling is in itself based on a MRF model con-
sisting of two terms, edge sharpness term UE1, and the
neighborhood support term UE2.

The larger the dihedral angle φe, of a mesh edge is, the
more probable it is that the edge lies along the surface
ridge. The first term is thus given by

UE1(e) = (φ0−φe)ε , (3)

where φ0 is a ridge sharpness threshold, and ε is the
label assigned to the edge e.

The second term of the edge labelling is the neighbor-
hood support, i.e. the presence of other ridge edges
along the same ridge line. We assign a support energy
to all pairs of edges, see Figure 2. A measure of paral-
lelism between the edges is used in the formulation of
the support potential

UE2(e1,e2) =−cos(θ12)ε1ε2 , (4)

where θ12 is the angle between the edges e1 and e2,
and ε1 and ε2 are the labels assigned to e1 and e2. Fea-



ture edges lying on a straight line will have a max-
imum support, the orthogonal edges do not support
each other, and feature edges meeting at a sharp an-
gle are discouraged.

There are additional constrains one can use to define
ridge edges, like e.g. dihedral angle changing slowly
along the ridge line, or the expectation that the ridge
edge itself is smooth.

3.4 The Coupled Model
The smoothing potential and the edge labelling
are coupled in a feature preserving scheme, which
smoothes the mesh, but not over the edges labelled
as sharp. This is obtained by using edge labels as
weights for the smoothing potential, which is now, for
the setting as in Figure 1

Us (v1,v2,v3,v4) = (1− ε23)ρ(n123−n243) .

The edges labelled as sharp with will not contribute
to the smoothness potential, and the smoothed surface
will be allowed to form a ridge along those edges.

In total, we are minimizing the sum of three terms:
the likelihood term, (weighted) smoothing potential,
and the edge labelling potential, which in turn consists
of the edge sharpness term and neighborhood support
term.

3.5 Optimization
At present we use the Metropolis sampler [Winkler,
2003] with simulated annealing for the optimization,
i.e. computing a solution to (1). This is a some-
what cumbersome but flexible method, allowing for
widespread experimentation with different objective
functions. The clear advantage of this approach is that
we do not make any assumptions about the potentials.

The Metropolis sampler is a random sampling algo-
rithm, which generates a sequence of configurations
from a probability distribution using a Monte Carlo
procedure. The sampling scheme consists of randomly
choosing a new label for a single site, and replacing
the old label with the probability which is controlled
by the current temperature. For an initially high tem-
perature, the new configuration can be accepted even
if it has a smaller probability that the old one. This al-
lows the algorithm to leave local energy minima. The
temperature then gradually decreases and the system
converges.

In our case, a new label is either a new vertex posi-
tion (randomly sampled in the vicinity of the present
position), or a new edge label for the ridge detection.
Instead of optimizing simultaneously over all defined
potentials, we have in each iteration of the optimiza-
tion process first detected the feature edges (consider-

Figure 3: Smoothing fandisk model using our fea-
ture preserving method with explicit edge labelling.
Left: Fandisk model corrupted with the Gaussian
noise. Edges are initially labelled based only on the
sharpness of the dihedral angle. Right: The result-
ing smooth mesh and the resulting edge labelling.

ing vertex positions to be fixed), and than displaced the
vertices (considering edge labels to be fixed).

More specialized and efficient algorithms have been
developed for many kind of MRF problems e.g. via
filtering, belief propagation and graph cuts (in case of
discrete labels). After showing that MRF is a good for-
mulation of the mesh smoothing problem, the search
for faster optimization method is part of our ongoing
work. A conjugate gradient method would probably
provide sufficiently good results in a more efficient
way.

4 RESULTS
The results of our experiments prove the feasibility
and versatility of using MRF on triangular meshes.
Explicit edge labelling when smoothing models with
sharp ridge features is shown it the Figure 3. In an ini-
tial noisy mesh it is impossible to detect feature edges
based only on the local information. However, our
algorithm converges to a configuration where all the
ridges get correctly labelled and even the subtle fea-
ture edges get detected. Correct edge labelling allows
us to choose aggressive smoothing prior and obtain re-
sults superior to using only a single feature preserving
prior, as demonstrated in the Figure 4. Note that, un-
like the fuzzy vector median smoothing (which is gen-
erally very successful in preserving edges and smooth
regions), our method detects and preserves a subtle
ridge in the front of the model, and is partly preserving
a disappearing ridge close to models back. The most
other smoothing methods will either miss those subtle
ridges, or will not remove the low frequency noise.

5 DISCUSSION
There are many alternative ways of using MRF on tri-
angle meshes. Instead of labelling vertices with spa-



Figure 4: Smoothing fandisk model using the dif-
ferent feature preserving methods. Top row: Origi-
nal model and the model corrupted with the Gaus-
sian noise. The two subtle ridges are circled in the
original model. Middle row: Results of fuzzy vec-
tor median smoothing and MRF smoothing using
only the feature preserving square root potential.
Bottom row: Results of MRF smoothing using the
quadratic potential and the explicit edge labelling.

Note the preserved subtle ridges.

tial positions, vertex labels can also be used to classify
vertices into smooth segments. Furthermore, vertex
labels could be used to detect features, classifying the
vertices into those that are a part of the smooth surface,
those that are on the ridge and vertices that are a cor-
ner, in a manner similar to [Lavoué and Wolf, 2008].
MRF can also be defined on mesh faces, either for seg-
mentation or aligning face normals.

Having enough prior knowledge of the problem at
hand, one can tailor the surface potentials to obtain the
desired result. By including the curvature information

Figure 5: Obtaining curvature clamping by pro-
viding curvature information to edge detection pro-
cess. Left: Initial mesh. Right: The result of clamp-
ing the curvature to discourage the concave sharp

ridges.

in the edge labelling process we can detect only certain
ridges, while skipping the others, obtaining curvature
clamping behavior mentioned in [Botsch et al., 2008]
and being the focus of the recent article [Eigensatz et
al., 2008], see Figure 5. Extending the size of the ver-
tex neighborhood it is possible to formulate the prior
for piecewise quadratic surfaces and also model the
ridge behavior more precisely.

To demonstrate the great flexibility and versatility of
the MRF formulation we include another example of
mesh smoothing. Inspired by a two-step smoothing
method [Shen and Barner, 2004], we used MRF to
obtain the smooth normal field, which is then used
for reconstructing vertex positions. Now we have the
mesh faces as the sites of the MRF, with the MRF
labels being the normal direction of the faces. The
vertex update step is taken directly from [Shen and
Barner, 2004], which in turn uses a method developed
by [Taubin, 2001] where the system of equations gets
solved in a least squares sense to obtain the vertex po-
sitions update.

One of the important differences between the vertex
based smoothing and face based smoothing is the pos-
sibility to preform smoothing of the normals without
changing the geometry of the mesh, which makes this
approach more effective. The disadvantage is that it is
not so straightforward to include displacement-based
likelihood function. The results of using this method
can be seen on the Figure 6.
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