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Modeling of spatial dependence in wind power
forecast uncertainty

George Papaefthymiou, Member, IEEE, and Pierre Pinson

Abstract— It is recognized today that short-term (up to 2-
3 days ahead) probabilistic forecasts of wind power provide
forecast users with a paramount information on the uncertainty
of expected wind generation. When considering different areas
covering a region, they are produced independently, and thus
neglect the interdependence structure of prediction errors, in-
duced by movement of meteorological fronts, or more generally
by inertia of meteorological systems. This issue is addressed here
by describing a method that permits to generate interdependent
scenarios of wind generation for spatially distributed wind power
production for specific look-ahead times. The approach is applied
to the case of western Denmark split in 5 zones, for a total
capacity of more than 2.1GW. The interest of the methodology
for improving the resolution of probabilistic forecasts, for a range
of decision-making problems, or simply for better understanding
the characteristics of forecast uncertainty, is discussed.

Index Terms— wind power, uncertainty, probabilistic forecast-
ing, Monte-Carlo simulation, stochastic dependence, multivariate
Normal, transformation, scenarios.

I. INTRODUCTION

INCREASING the value of wind generation through the
improvement of prediction systems’ performance is one of

the priorities in wind energy research needs for the coming
years [1]. Even though today, most of the existing wind power
prediction methods provide end-users with point forecasts [2],
a large part of the research efforts is concentrated on devel-
oping methods for giving the complete information on ex-
pected generation, most commonly in the form of probabilistic
forecasts of wind generation. Probabilistic predictions can be
either derived from meteorological ensembles [3], based on
physical considerations [4], or finally produced from one of the
numerous statistical methods that have appeared in the litera-
ture, see [5]–[8] among others. If appropriately incorporated in
decision-making methods, they permit to significantly increase
the value of wind generation. Recent developments in that
direction concentrate on e.g. dynamic reserve quantification [9]
or on the design of optimal trading strategies [10].

Probabilistic forecasts are generated on a per look-ahead
time basis and for a specific location. They provide informa-
tion on the marginal uncertainty, in terms of approximation
of the probability distribution of the prediction errors for each
location and look-ahead time. They do not inform however on
the stochastic relationship between these distributions, corre-
sponding either to the temporal development of the prediction
errors for a specific location or to the spatial dependence of
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prediction errors between different locations. This stochastic
relationship relates to the interdependence structure between
the prediction errors and may be significant for both prediction
series at single locations as well as prediction errors between
different locations. Information on the interdependence struc-
ture of prediction errors may be of particular importance
for many decision-making processes. The case of temporal
interdependence, which is crucial for operation of energy
storage for instance, is dealt by the authors in [11].

The present paper concentrates on the case of spatial
interdependence, which is paramount e.g. for the optimal
management of power flows in the transmission/distribution
networks. Spatial dependence of prediction errors may be
induced by the inertia of meteorological systems. For instance,
if local effects in a given area are not well predicted, it is
unlikely that resulting forecasting error is correlated with that
committed in another area located on the other side of a region
considered. But, if the prediction error concerns the timing
of a large front coming over the whole region, a significant
correlation between prediction errors in the various areas
would then to be expected. For the spatial modeling of forecast
uncertainty, the methodology proposed here is inspired by the
works on probabilistic forecasting in [8], those on modeling
of stochastic generation in [12], and the method for scenario
generation from probabilistic forecasts described in [11].

The interest and potential impact of spatial dependence are
discussed in Section II. Then, the methodology for spatial
modeling of forecast uncertainty is developed in Section III,
with emphasis on the principles of Monte-Carlo simulation,
nonparametric techniques in probabilistic forecasting and fi-
nally on the modeling of interdependence structures. In Sec-
tion IV, the methodology is applied to the case of forecasting
wind generation for western Denmark, split in 5 different
zones, over a period of almost 2 years. A static analysis
permits to discuss the spatial interdependence structure of
prediction errors, and potential explanatory variables or influ-
encing meteorological regimes. In parallel, the methodology
for scenario generation of spatially distributed wind capacities
is applied to the whole western Denmark. The interest of this
approach for improving probabilistic forecasting and its use
as input to decision-making methods is discussed. Concluding
remarks in Section V end the paper with perspectives on
applications and future developments.

II. INTEREST AND POTENTIAL IMPACT OF SPATIAL
DEPENDENCE

Positive spatial dependence between prediction errors from
different locations in a specific area will have a major impact
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Fig. 1: Probabilistic forecasts for two zones for lead time t+ k.

(a) Independence (b) ρr = 0.3 (c) ρr = 0.5

(d) ρr = 0.7 (e) ρr = 0.9 (f) ρr = 1

Fig. 2: Scatter plots for the wind power output uncertainty between zones A and B for different dependence structures.

on the aggregate prediction uncertainty for the whole area.
We will illustrate this through a simple example concerning
the prediction errors from 2 distinct zones in an area for a
specific hour ahead. In particular, in Fig. 1 the probabilistic
forecasts issued at time t for lead time t + k are presented.
The predictive distributions are given by 19 quantile forecasts
with exponential tails, as discussed in Section IV-A.

Probabilistic forecasts are limited to the information pre-
sented in Fig. 1. In order to estimate the aggregate prediction
uncertainty from the two zones, information on the interdepen-
dence structure between the prediction errors is necessary. An
infinite number of interdependence structures may correspond
to the same predictive distributions; although the shape of
the predictive distributions will not change, different inter-

dependence structures will lead to different distributions for
the aggregate forecast error. To illustrate this, in Fig. 2, the
scatter plots for the two predictive distributions for different
correlations are presented. We can see that by increasing
the positive dependence from 0 (case of independence) to 1
(perfect dependence), the scatter plots are changed, although
they are still consistent to the shape of the marginal predictive
distributions. The higher the correlation, the more concentrated
the scatter plots are. The case of perfect dependence corre-
sponds to a perfect monotonic relationship, which results from
the non-normality of the marginal distributions; if the predic-
tive distributions were normals, this monotonic relationship
would deteriorate to a linearity. For a thorough analysis on
these issues, one should refer to [12].
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Fig. 3: Aggregate wind power output uncertainty.

Although the predictive distributions are kept unchanged,
the different interdependence structures result in different
aggregate forecast error distributions. In particular, as can
be seen from the respective scatter plots, for the case of
independence the occurrence of a specific prediction error
in the one zone has no impact on the amplitude of the
error observed in the other. In parallel, positive dependence
induces a functional relationship between the errors in the
two zones, meaning that when a large error is observed in
the one zone, it is most probable that a large error will
occur on the other also. Positive dependence will therefore
lead to more extreme aggregate error distributions for the
whole area, as a result of the concentration observed in the
scatter plots towards monotonicity. In Fig. 3, the aggregate
forecast error distribution for the cases of independence and
ρ = 0.9 is presented. Although the predictive distributions
for each zone are kept constant, the different interdependence
structures yield different aggregate forecast error distributions.
As discussed in [12], these distributions have the same mean
value but different dispersion, which increases with increasing
positive dependence.

Therefore, in order to evaluate the aggregate error from
local uncertainty estimates, it is necessary to assess both
the marginal distributions (in terms of probabilistic forecasts)
and spatial interdependencies. For real-time applications one
should be able to collect information separately for both
these factors and employ suitable algorithms for modeling the
aggregate forecast uncertainty. This forms the kernel of the
approach proposed in this contribution.

III. METHODOLOGY FOR SPATIAL MODELING OF
FORECAST UNCERTAINTY

A. Basic theory on Monte-Carlo sampling

The modeling of forecast uncertainty between different loca-
tions leads to a multivariate uncertainty analysis problem. For
the modeling of such problems, one should estimate the joint
distribution over a number of dependent, non-normal random

variables, each corresponding to a probabilistic forecast for
a specific location and look-ahead time. The modeling of
stochastic dependence has been a cornerstone in the research
on multivariate uncertainty analysis in recent years [13], [14],
[15]. The related research leads to a main approach, namely
the splitting of the modeling effort in two separate tasks:
• Marginals: model the one-dimensional marginal distribu-

tions.
• Stochastic dependence: model the stochastic dependence

structure between the inputs.
This splitting is performed by transforming the marginal
distributions into ranks, corresponding to uniform distribu-
tions. The transition between the rank-uniform domain and
the actual domain is performed by applying the cumulative
distribution function (cdf) transformation separately to each
random variable (r.v.). In particular, by definition for a r.v.
X with an invertible cdf FX(x) = P (X ≤ x), the r.v.
FX(X) follows a uniform distribution on the interval [0, 1].
This relationship forms the basis for the sampling of any r.v.
in Monte-Carlo simulation studies. For the sampling of a r.v.
X with invertible cdf FX , first a random realization u from a
uniform r.v. U in [0, 1] is generated and then the transformation
x = F−1

X (u) is applied. In this case, the samples x follow the
distribution FX .

FX(X) = U ⇔ F−1
X (U) = X (1)

Thus, by applying the cdf-transformation FX(X) we achieve
the transition from the actual domain of each r.v. to the
rank-uniform domain. The inverse-cdf transformation further
ensures the transition back to the initial domain of the r.v. To
ensure the validity of this double transition, the function FX
should be invertible, which is true, since by definition the cdf
and therefore the inverse-cdf are increasing functions.

The significance of these increasing transformations lies
in the property that their application does not affect the
dependence structure. The reason for this is that for de-
pendence modeling we are mainly interested in the relative
ranking between the consequent samples of the random vari-
ables. By applying increasing transformations as the ones
in equation (1), this ranking is not changed, therefore the
interdependence structure remains unchanged. By applying
these transformations we aim in getting all random variables
in the same domain (rank-uniform domain or normal domain)
The dependence modeling takes place in that common domain
and then the random variables can be transformed back to their
original marginals by the inverse-cdf transformation without
any loss of information.

The approach presented in this paper uses proposes a tran-
sition to the Normal domain for dependence modeling. There,
one can take advantage of the properties of the multivariate
Normal distribution in order to generate a set of normal
random variables correlated according to specific covariance
matrix. The inverse-normal cdf transformation is further used
for the transition back to the rank-uniform domain. This set
of transformations can be summarized as follows:

FX(X) = U ⇔ Φ−1(U) = N ⇔ Φ(N) = U ⇔ F−1
X (U) = X

(2)
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where Φ(·) is the standard Normal cdf and N a standard
Normal r.v. For the case of modeling of spatial dependence
in prediction uncertainty, three parts may be identified in the
modeling process: (i) the retrieval of marginal distributions
from probabilistic forecasts, (ii) the adaptive estimation of
the covariance matrix and (iii) the Monte-Carlo sampling
algorithm for the generation of scenarios of spatially correlated
wind power production.

B. Marginals from probabilistic forecasts

Consider being at time t and aiming at having complete
information on wind generation for lead time t + k. For that
purpose, nonparametric probabilistic predictions, i.e. for which
no restrictive assumption is made on the shape of predictive
densities, may take the form of quantile, interval or density
forecasts. If denoting by pt+k the measured power value at
time t + k, pt+k can be seen as a realization of the r.v.
Pt+k. Write ft+k the probability density function of Pt+k,
and let Ft+k be the related cdf. Provided that Ft+k is a
strictly increasing function, the quantile q(α)

t+k with proportion
α ∈ [0, 1] of the r.v. Pt+k is uniquely defined as the value x
such that

P(Pt+k < x) = α, or q
(α)
t+k = F−1

t+k(α) (3)

A quantile forecast q̂(α)
t+k|t with nominal proportion α is an

estimate of q(α)
t+k produced at time t for lead time t+ k, given

the information set Ωt at time t. Note that the commonly
provided point forecast p̂t+k|t (issued at time t for lead time
t + k) corresponds to the conditional expectation of Pt+k,
provided that the parameters of the model employed have been
estimated with Least Squares (LS) estimation techniques.

For most decision-making processes, such as power system
operation, a single quantile forecast is not sufficient for obtain-
ing an optimal decision. Instead, it is necessary to have the
whole information about the r.v. Pt+k for horizons ranging
from few hours to several days ahead [10]. A nonparametric
forecast f̂t+k|t of the density function of the variable of
interest at lead time t + k can be produced by gathering a
set of m quantile forecasts

f̂t+k|t = {q̂(αi)
t+k|t | 0 ≤ α1 < . . . < αi < . . . < αm ≤ 1} (4)

that is, with chosen nominal proportions spread on the unit
interval. Let F̂t+k|t denote the cdf related to f̂t+k|t.

A requirement for nonparametric probabilistic forecasts is
that the nominal probabilities, i.e. the nominal proportions
of quantile forecasts, are respected in practice. That required
property is commonly referred to as reliability. Consider for
instance predictive distributions defined by quantiles whose
nominal proportions are uniformly spread between 0 and 1.
This property intuitively translates to saying that there is the
same probability the measured power value at time t+ k falls
in any of the interval defined by two neighboring quantile fore-
casts. Besides this requirement, it is highly desirable that prob-
abilistic predictions provide forecast users with a situation-
dependent assessment of the prediction uncertainty. The shape
of predictive distributions should then vary depending on

various external conditions. For the example of wind power
forecasting, it is intuitively expected that predictive densities
would have a different shape when predicted wind speed
equals zero and when it is near cut-off speed. This desirable
property of probabilistic forecasts is commonly referred to as
their sharpness of resolution. For a more thorough discussion
on these various aspects, see [16], [17].

1) Transformation through marginals: Consider a number
of l zones over a region. Let us focus on a single look-
ahead time k, and on the jth of the l zones. As explained
above, the predictive distributions {f̂j,t+k|t}t for that look-
ahead time and for that zone are defined as reliable if the
observed proportions for each of the quantiles correspond to
the nominal ones [16]. In such a case and according to the
transformations given by Eq. (1), the r.v. Yj,k whose realization
Yj,k(t) at time t is defined by

Yj,k(t) = F̂j,t+k|t(pj,t+k), ∀t (5)

where pj,t+k is the measured power production in zone j at
time t + k, is distributed uniform on the unit interval, i.e.
Yj,k ∼ U[0, 1]. Thus, the r.v. Yj,k(t) will correspond to the
distribution on the ranks of the forecast errors if and only if
the forecasts are reliable. Note that in practice, a continuous
cdf for each look-ahead time is obtained by fitting a smooth
curve through the set of m predictive quantiles, as presented
in Fig. 1a. Also, the predictive distributions {f̂j,t+k|t}t are
different based on the prediction horizon considered, i.e. 6-,
24- or 43-hour ahead.

As discussed in Section III-A, the cdf-transformation en-
ables the separation of the impact of the marginal distributions
from the dependence structure, by dealing with ranks of the re-
spective r.v. In order to measure the spatial correlation between
the prediction errors, one should apply the transformation in
Eq. (5) to the predictive distributions {f̂j,t+k|t}t for all look-
ahead times and zones. By this, the transition to a common
rank-uniform domain is achieved, where the effect of the
shape of different marginals is diminished and the correlation
can be measured. Based on this information, one can further
estimate the covariance matrix adaptively, to use for scenario
generation.

C. Adaptive estimation of the spatial covariance matrix

Given the uniform r.v. Yj,k for look-ahead time k, and for
zone j = 1, . . . , l, a straightforward way to obtain a standard
Normal r.v. Xj,k ∼ N (0, 1) is to apply the inverse standard
normal cdf Φ−1(·) transformation to every realization Yj,k(t),
according to Eq. (2):

Xj,k(t) = Φ−1(Yj,k(t)), ∀t (6)

Considering the transformed random variables Xj,k it is as-
sumed that the random vector Xk = (X1,k X2,k . . . Xl,k)
follows a multivariate standard Normal distribution, Xk ∼
N (µ0,Σk), with the vector µ0 of mean values being a vector
of zeros. In addition, Σk is the spatial covariance matrix that
contains the whole information about the covariances of the
r.v. Xj,k, j = 1, . . . , l. It has 1-values on its diagonal, since
the diagonal elements give the variance of each of the random
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variables. Hereafter X(t)
k denotes the realization of Xk at time

t.
In the context of wind power forecasting applications,

measurements are regularly collected and consequently used
for updating the parameters of the prediction methods. A
similar adaptive approach based on a recursive formulation
can be applied for the adaptive estimation of the spatial
covariance matrix Σt. This approach has the advantage of
accomodating the long-term variations in the characteristics of
the interdependence structure of forecast uncertainty between
the various zones considered.

Write Σt,k the spatial covariance matrix estimated from
observations up to time t for the case of look-ahead time k.
An unbiased estimate of Σt,k is commonly given by

Σt,k =
1

t− 1

t∑
i=1

Xk(i)Xk(i)> (7)

with .> the transposition operator and Xk(t) the vector of
observation of Xk at time t.

By applying an exponential forgetting scheme, one obtains
the following formula permitting to update Σt−1,k when new
observations become available at time t:

Σt,k = λΣt−1,k + (1− λ) Xk(t)Xk(t)> (8)

where λ is the forgetting factor, λ ∈ [0, 1]. The spatial
covariance matrix is initialized by setting all its off-diagonal
elements to 0 and its diagonal elements to 1. For more
information on recursive estimation and exponential forgetting,
one may refer to [18].

D. Scenario generation
Based on the estimate of the spatial covariance matrix

Σt,k at time t for spatially correlated prediction errors for a
look-ahead time k and the predictive distributions f̂j,t+k|t for
each zone j, j = 1, . . . , l consistent wind power production
scenarios may be generated. The procedure for obtaining a
number d of scenarios for the l zones is as following:
• (i) one uses a multivariate Normal random number

generator with zero mean and covariance matrix Σt,k
in order to have d realizations of the r.v. Xk, with
Xk ∼ N (µ0,Σt,k). Denote by X(i)

k the ith of these d
realizations;

• (ii) d realizations Y (i)
j,k of the uniform variable Y (i)

j,k are
obtained by applying the standard normal cdf transforma-
tion Φ to each component of X(i)

k , according to Eq. (2):

Y
(i)
j,k = Φ(X(i)

j,k), ∀j, k, i (9)

• (iii) the scenarios of wind power production finally result
from the application, for each look-ahead time k and for
each zone j, of the inverse cdf F̂−1

t+k|t to the d realizations

Y
(i)
k,t of Yk,t for that look-ahead time:

p̂
(i)
j,t+k|t = F̂−1

j,t+k|t

(
Y

(i)
j,k

)
, ∀j, k, i (10)

As discussed in Section III-A, the interdependence structure
is preserved through these increasing transformations, there-
fore the generated wind power scenarios will have the same
interdependence structure as the multivariate Normal Xk.

IV. APPLICATION AND RESULTS

A. Case-study: western Denmark

Western Denmark is one of the regions with the highest
wind power penetration in the world (> 20%). Energinet.dk,
who is the Transmission System Operator (TSO) in Denmark,
is responsible for the optimal planning of power flows and
balancing for the whole Danish grid. Denmark is actually
split in two, western Denmark being connected to the UCTE
system and eastern Denmark to the Nordel one, without any
potential energy exchange between these 2 areas. Wind power
measurements from western Denmark were used for this case-
study. Western Denmark concentrates most of the Danish wind
power, with a total installed capacity of more than 2.1GW
at the end of 2007. For management purposes, Energinet.dk
has split western Denmark into 17 areas. For confidentiality
reasons, the area corresponding to the Horns Rev wind farm
is omitted. Another area, which consists of a small island in
the North East of Jutland, is also disregarded due to the very
limited amount of generation and suspicious quality of data.
The power measurements for the remaining 15 areas cover
a period of almost 2 years, from beginning of January 2006
until mid-November 2007. In order to reduce the size of the
case-study, the areas have been grouped as illustrated in Fig. 4,
yielding a total number of 5 zones.

Fig. 4: Test case: western Denmark split into 5 zones.

The point predictions used result from the application of
the WPPT method [19], which uses meteorological predictions
of wind speed and direction as input, as well as historical
measurements of power production. These point predictions
have an hourly resolution up to 43-hour ahead, and are updated
every hour. All predictions and measures are normalized by the
installed capacity of the zone considered. The dataset includes
in total 15888 point prediction series.

The nonparametric probabilistic forecasts are produced with
adapted resampling [8]. They are generated for each of the
5 zones, and for western Denmark as a whole. Predictive
distributions are given by 18 quantile forecasts whose nominal
proportions range from 0.05 to 0.95% by 0.05 increments
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(except for the median), as presented in Fig. 1. Following the
recommendations about the set up of the adapted resampling
method in [8], the range of power values is split in 5 zones,
the sample size set to 300, and the number of resampling
replications to 100. From a probabilistic point of view, since
it is not possible to exclude any possibility, the predictive
quantiles with nominal proportions 0 and 1 are always set to
normalized power values of 0 and 1, respectively, whatever
the look-ahead time. However, the very tails of predictive
distributions are modeled with exponential tails, in order to
reflect the fact that extreme prediction errors are unlikely to
occur. The quality of this probabilistic forecasting method is
evaluated and discussed in [16]. It has been shown to have
an acceptable level of reliability, and an acceptable overall
skill when compared with other nonparametric probabilistic
forecasting methods of the state of the art.

B. Static analysis of interdependence structure

In order to investigate the spatial interdependence structure,
a statistical analysis of the whole dataset has been performed.
By applying the transformation of Eq. (5), one gets all random
variables in a common uniform-rank domain where it is pos-
sible to investigate their interdependence structure. Different
prediction horizons will yield different predictive distributions
{f̂j,t+k|t}t and thus different dependence structures may be
expected. Three different prediction horizons are investigated
here: 6-, 24- and 43-hours ahead. We measured for all cases
the resulting rank correlation ρr, i.e. the correlation on the
ranks of the random variables1. The results from this analysis
are summarized in Fig. 5 in the form of rank correlations.

In Figs. 5a and 5b, the rank correlations between the
different zones for prediction horizons of 24- and 43- hours
ahead are presented. In general, high correlations are measured
and different trends appear between the different look-ahead
times and the different zones. First, a trend of increasing
correlation with the look-ahead time is observed. This can be
explained by the operation of forecast systems; in particular,
the further ahead one predicts, the more the forecast systems
produce similar systematic errors which are interpreted as
higher correlations. On the other hand, specific geographic
trends are also observed, related to the proximity and relative
position of the zones. Considering the map of Fig. 4, higher
correlations are observed in neighboring zones and especially
in zones that are situated in the North-South axis (for instance
zones 1-2, 1-3 and 2-4), which can be explained by the pre-
vailing North-South direction of the wind fronts in the region.
Non-neighboring zones present lower correlations, for instance
between zones 1-4 and 1-5, which can be explained by the
traveling time of the North-South fronts. Since correlations are
estimated for a temporal resolution of 1 hour, only movements
of the fronts in this time scale are detected.

1As discussed in [12], in problems involving non-normal marginals, the
rank correlation ρr should be used to measure dependence. Rank correlation
measures the degree of monotonic relationship between random variables and
is invariant to increasing transformations.

C. Results from adaptive methodology

All forecasting methodologies involved (i.e. point and prob-
abilistic forecasting and scenario generation) are adaptive.
They require a certain batch learning period before reaching
a level of performance that would be equivalent to that
witnessed in normal operational conditions. In order to ensure
that, the first 7000 prediction series are not considered in
the following evaluation, which thus relies on the remaining
8888 predictions series. Over this evaluation period, a set of
1000 production scenarios is generated at each time and for
every look-ahead time, by applying the method described in
Section III.
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Fig. 6: Point predictions, probabilistic forecasts and power
measurements for the 5 zones over western. They correspond
to the 2849th forecast series of the evaluation set, and relate
to 6-hour ahead prediction.

Fig. 6 gives the example of point and probabilistic forecasts
for the 5 zones considered, in the form of a fan chart. They
correspond to the 2829th forecast series of the evaluation set,
and to a 6-hour ahead horizon. In parallel, Fig. 7 depicts a
set of 4 scenarios randomly picked out of the 1000 produc-
tion scenarios generated. They show potential interdependent
deviations from forecasts for the 5 zones considered. The
related measured power values are also shown. Such alter-
native production scenarios may then be used in stochas-
tic decision-making algorithms for e.g. optimal power flow
management over the transmission system. The covariance
matrix that summarizes the interdependence structure of wind
power production among the various zones is shown in Fig. 8.
Considering also the map of Fig. 4, one clearly sees the level
of interdependence between the various zones. For instance
at this point in time, and for the 6-hour ahead horizon, the
interdependence between zones 1 and 3 (or between zones 2
and 4) is significant, while that between zones 1 and 5 is low.

Finally, a last foreseen benefit of the method for generating
scenarios of wind power production for different zones is
the possibility of increasing the resolution of probabilistic
forecasts for the whole area. Indeed, for each generated
production scenario, one may sum production over the various
zones, and obtain a production scenario over the whole area.
The set of obtained scenarios then comprises a sampling of
potential wind generation, which can be transformed into a
nonparametric predictive distribution. Predictive distributions
obtained by this method are compared here to the ones
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Fig. 5: Rank correlations between the areas for different prediction horizons.

produced by directly applying the adapted resampling method
to the whole western Denmark area. Evaluation results are
given here for the example of 24-hour ahead forecasts. Those
for other forecast horizons are qualitatively similar. Evaluation
results in terms of reliability are shown in Fig. 9, which
consists of a reliability diagram giving deviations from perfect
reliability. In parallel, skill score values are collated in Table I,
the skill score being that defined in [16]. Higher skill score
values translate to higher skill. From the Figure and the
Table, one may conclude that the scenario-based predictive
distributions are as reliable as the ones generated from adapted
resampling, and that they exhibit higher skill. This result from
a higher resolution of scenario-based predictive distributions,
coming from the use of information on spatial dependence.

V. CONCLUSIONS

Owing to the difficulty of producing accurate point forecasts
of wind generation, probabilistic predictions are recognized
as crucial for optimizing mananagement or trading decisions
to be made. However, the fact that probabilistic forecasts do
not provide any information on the interdependence structure
of prediction errors at the spatial level make them almost
useless in certain cases where it is necessary to know the
relation between wind generation in various (possibly non-
neighboring) areas, e.g. optimal power flow management. In
the present paper, a method that permits to generate scenarios
of spatially distributed wind generation has been described,
based on the modeling of spatial dependence of wind power
forecast uncertainty.

TABLE I: Skill score for 24-hour ahead probabilistic forecasts
for the whole western Denmark area.

Method Skill score value
adapted resampling -0.351

scenario-based -0.338
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Fig. 8: Covariance matrix of transformed power variable at the
end of the dataset, for the 5 zones of western Denmark and
for 6-hour ahead predictions (at the time of the 2849 forecast
series).

The method has been applied to the test case of western
Denmark over a period of more than 2 years. The possibility of
generating a number of scenarios from probabilistic forecasts
over the 5 different zones has been illustrated, as well as the
way to adaptively capture the interdependence structure of
prediction errors. In addition, the probabilistic forecasts that
can be consequently obtained for the whole Denmark have
been shown to reach an acceptable reliability, and a higher
skill than if they were directly produced from the statistical
probabilistic forecasting method considered.

The static analysis performed has shown the importance
of having a conditional view of the modeling of the inter-
dependence structure of wind generation at the spatial level.
Therefore, future plans should concentrate on capturing the
influence of e.g. wind direction or of the hour of the day on the
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Fig. 9: Reliability diagram for 24-hour ahead probabilistic
forecasts over the whole western Denmark area. They are
produced either by directly using the adapted resampling
method for the whole area, or by generating scenarios for each
areas and then deducing probabilistic forecasts for the whole.

spatial dependence of forecast uncertainty. For that purpose,
it may be envisaged to consider some regime-switching (or
conditional parametric) methods. Broader perspectives relates
to the merging of the temporal and spatial aspects when
modeling the interdependence structure of wind power forecast
uncertainty. And finally, it will be of particular importance
to demonstrate the additional value of the proposed scenario

generation methodology, via the use of such forecast products
for a large range of decision-making problems.
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