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Global Transient Stability and Voltage Regulation
for Multimachine Power Systems

Mark Gordon,Member, IEEE, David J. Hill, Fellow, IEEE

Abstract— This paper addresses simultaneously the major
fundamental and difficult issues of nonlinearity, uncertainty,
dimensionality and globality to derive performance enhancing
power system stability control. The main focus is on simultaneous
enhancement of transient stability and voltage regulationof
power systems. This problem arises from the practical concern
that both frequency and voltage control are important indices
of power system control and operation but they are ascribed to
different stages of system operation, i.e. the transient and post
transient period respectively. The Direct Feedback Linearization
(DFL) technique together with the robust control theory has
been further developed and applied to design nonlinear excitation
compensators which selectively eliminate system nonlinearities
and deal with plant uncertainties and interconnections between
generators. Then the so called global control law is implemented
to coordinate transient stabilizer and voltage regulator for each
machine. Digital simulation studies show that global control
scheme achieves unified transient stability and voltage regulation
in the presence of parametric uncertainties and significantsudden
changes in the network topology.

I. I NTRODUCTION

SYSTEM stability is the most important issue for power
systems; if stability is lost, network collapse may occur

with devastating economical losses and power grid damages,
see [1], [2]. Traditionally, transient (angle) instability has been
the dominant stability problem. With the continuing growthof
power system interconnections and the increased operationin
highly stressed conditions, different forms of system instability
have emerged. For example frequency stability, inter-area
modes of oscillations and voltage stability have become great
concerns [3]. A clear understanding of different types of
instability and how they are interrelated is most importantfor
the satisfactory control design and operation of power systems.

The work presented in this paper is motivated by the
occurrence of system instability and blackouts which may be
preventable by use of advanced control techniques. Lack of
properly automated and coordinated power system controllers
to take immediate performance enhancing actions against
system events has been recognized as one of the contributing
factors for recent power system blackouts [1], [2], [4].

Power systems are modeled as complex, nonlinear and
highly structured systems. It is well known that the gener-
ator excitation control system can provide one of the most
cost effective ways to stabilize power systems. Conventional
power system controls primarily deal with small disturbances
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about an operating point. This type of control can suffer
performance degeneracy and in fact linear controllers may
even destabilize the system if the operating point of the
power system is changed away from the equilibrium point
at which the approximate linearization is realized [5]. Control
methods for handling system-wide large disturbance problems
need to be developed, particularly ones which concern power
system nonlinearity and unforeseen circumstances leadingto a
large sudden operating point deviations. To address this issue,
this paper applies DFL as a flexible and structure preserving
nonlinear control technique, see [6]–[8]. This technique simply
uses the Implicit Function Theorem to selectively eliminate
system nonlinearities and the well known nonlinear control
approach based on the geometric coordinate transformation
is not needed. Considering the effect of plant parametric
uncertainties and power system interconnections, the robust
control technique is further developed in this paper and applied
to ensure the stability of the DFL compensated system. Only
the bounds of uncertain parameters need to be specified and the
exact time varying network parameters need not to be known.

Much effort has gone over the years into the mathematical
modeling and market restructuring of large power systems
and, to a lesser extent, systematic stability control design.
Development of stability control from both control theory
and practical point of view continues to be an interesting
subject. The major areas of concern are transient stability,
oscillations and voltage stability/regulation. Particular features
which motivate the work in this paper are:

• power system nonlinearity, uncertainty and dimensional-
ity in the design of stability controllers;

• the interplay between angle and voltage behavior;
• problems of control coordination;

The main concern is the operation of the generator in var
control mode while the power system stabilizer (PSS) is in
operation. In [6], [9] we have discussed detrimental stabilizing
effects through classical root locus analysis of the linearized
power system model. A concern for coordination is a practical
problem, which has become a theoretical problem in control
theory. How to achieve satisfactory stability performanceis
an important issue and this motivates the topic of global
control [10]. Transient stability and voltage regulation are
both important properties of power system stability control,
but they relate to different stages of system operation, i.e. the
transient period and the post fault period. Different behavior of
nonlinear power systems in different operating regions requires
different control objectives and therefore different controllers
need to be activated or switched to under varying operating
conditions. One method to implement such control utilizes
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membership functions pioneered in the well known Takagi-
Sugeno design which effectively provides smooth switching,
see [11]. Global control is the weighted average of the local
controllers, where the weights are provided by the operating
region membership functions [12]. In this paper we design and
investigate the impact of different sensitivity indicators needed
to quantify the switching sequence between transient stability
controller and voltage regulator in the transient period based
on the global control framework.

A three machine example system is used to employ the
effectiveness of the proposed scheme. Simulation results show
that the proposed nonlinear global control framework can
simultaneously enhance the transient stability and voltage
regulation of the power system regardless of the network
parameters and sudden large operating point changes.

II. POWER SYSTEM MODEL

The one line diagram of the example power system model
is given in Fig.1. In this model, the generator is modeled as
a voltage behind the direct axis transient reactance where the
angle of the voltage coincides with the mechanical angle of the
synchronously rotating reference frame. The network, includ-
ing loads, has been reduced to an internal bus representation.
The electromechanical dynamical model of theith machine
can be written as follows, [13]:

δ̇i = ωi(t) − ωi0 (1)

ω̇i = −
Di

2Hi

(ωi(t) − ωi0) −
ωi0

2Hi

(Pei − Pmi) (2)

ė
,
qi =

1

T
,
doi

(Efi − ∆xdiidi − e
,
qi) (3)

with the following electrical equations:

Pei = e
,2
qigii +

n
∑

j=1

(

e
,
qie

,
qjbij sin δij + e

,
qie

,
qjgij cos δij

)

= e
,
qiiqi (4)

idi = e
,
qibii +

n
∑

j=1

(

e
,
qjgij sin δij − e

,
qjbij cos δij

)

(5)

iqi = e
,
qigii +

n
∑

j=1

(

e
,
qjgij cos δij + e

,
qjbij sin δij

)

(6)

Vti(t) =
√

e
,
qi

2 − 2e
,
qix

,
diidi + x

,
di

2(i2di + i2qi) (7)

Elementsgij + jbij represent the admittance between busesi

and j, gii + jbii is the self admittance of busi in p.u.. The
notation used is standard. For description of variables, readers
are referred to [13], [14]. The system parameters used in the
simulation are [15]:

xd1 = 1.863; x,
d1 = 0.257; xd2 = 2.36; x,

d2 = 0.319;

xt1 = 0.129; xt2 = 0.11; xL1−2 = 0.275;

xL1−3 = 0.53; xL2−3 = 0.6; D1 = 5;

H1 = 4; T ,
do1 = 6.9; ω0 = 100π; D2 = 3;

H2 = 5.1; T ,
do2 = 7.96; Pload = 0.4, Qload = 0.4;

and the physical limit of the generator field voltage is taken
asmax|Ef(1,2)| ≤ 6. The fault we consider in the simulation

G 1 G 2 

G 3 

Xt 1 Xt 2 
X 12 X 12

X 13 X 23

P, Q Load 

Fig. 1. Three machine example power system

is a symmetrical 3-phase short circuit fault that occurs on one
of the transmission circuits between generator 1 and 2. The
fault sequence is given as follows:
Stage 1: The system is in a pre fault steady state;
Stage 2: A fault occurs att = t0;
Stage 3: The fault is removed by opening circuit breakers of
the faulted line att = t1;
Stage 4: The system is in a post fault state;
The fault location is indexed by a positive constantλ which is
the fraction of the line to the left of the fault. For the purpose
of simulation the fault location is taken asλ = 0.25.

III. N ONLINEAR COMPENSATORDESIGN

From the model given in Section II, it can be seen that
the power system model is highly nonlinear. To eliminate
nonlinearities we use DFL technique to design a nonlinear
compensator through the excitation loop of the generator to
achieve transient stability and voltage regulation. The DFL
technique has been shown to offer considerable flexibility in
deriving nonlinear compensating controls for power systems,
for example see [6]–[8] and the references therein. The pro-
cedure presented here follows the idea by Wang et al. [15]
in deriving nonlinear compensating control for multimachine
power systems but we consider different input in the control
structure. The nonlinear control design presented derivescon-
trol structures for transient stability and voltage regulation in
the presence of electrical loads where the interconnections and
coordination of generators is taken into account.

A. Nonlinear Transient Stability Controller

To eliminate nonlinearities in (1)- (3),e,
qi in the generator

electrical dynamics can be eliminated by selecting

vfi = T
,
doiė

,
qi (8)

and similarly for thejth machine:

vfj = T
,
doj ė

,
qj (9)

= Kjxj = Kj[∆δj ∆ωj ∆Pej ]
T (10)



Differentiating the active power equation (4) we obtain:

Ṗei = 2e
,
qigiiė

,
qi +

n
∑

j=1

(

e
,
qjbij sin δij + e

,
qjgij cos δij

)

ė
,
qi

+

n
∑

j=1

(

e
,
qibij sin δij + e

,
qigij cos δij

)

ė
,
qj

+

n
∑

j=1

(

e
,
qie

,
qjbij cos δij − e

,
qie

,
qjgij sin δij

)

∆ωij (11)

and substituting (8) and (10) into (11) we obtain

Ṗei =
1

T
,
doi

f1(t)vfi + f2(t)∆ωi

+ q1(t)∆δj + q2(t)∆ωj + q3(t)∆Pej (12)

wherevfi is the new nonlinear input of the excitation loop
of the ith machine,f1(t) and f2(t) are dependent on oper-
ating conditions, and similarlyq1(t)∆δj , q2(t)∆ωj , q3∆Pej

represent the effects of remote dynamics of thejth generator
on the ith generator. Therefore, the nonlinear power system
model (1)- (3) has been compensated into:

δ̇i = ∆ωi (13)

ω̇i = −
Di

2Hi

∆ωi −
ωi0

2Hi

∆Pei (14)

Ṗei =
1

T
,
doi

f1(t)vfi + f2(t)∆ωi

+ q1(t)∆δj + q2(t)∆ωj + q3(t)∆Pej (15)

From (8) we obtain the DFL nonlinear compensating excita-
tion control law for machinei as

Efi = vfi + ∆xdiidi +
Pei

iqi

(16)

Designing a controller forEfi to stabilize the original model
is equivalent to designing a controllervfi to stabilize the
DFL compensated plant. Since (13)-(15) contains time varying
parameters and interconnections which are not canceled by
the DFL compensating law (8), robust control technique is
presented and applied in Section IV to design the robust
transient stability controller for the DFL compensated system.

B. Nonlinear Voltage Regulator Design

The drawback of the transient stability control is that the
feedback of rotor angleδi is involved, whereas the generator
terminal voltageVti is not included in the feedback control
law. It is important to make nonlinear excitation control
practical by preventingVti from excessive variations. It has
been recognized [7], [10], [16], [17] that voltage regulation
can be expected by the feedback ofωi, Pei andVti. Therefore
if a DFL compensated model can be represented by

xi = [∆ωi ∆Pei ∆Vti]
T (17)

an effective feedback control law

vfi = T
,
doiė

,
qi (18)

= Kixi = [kωi
∆ωi kPei

∆Pei kVti
∆Vti]

T (19)

can be developed to enhance system stability and achieve
voltage regulation. Similarly, for thejth machine we have

vfj = T
,
doj ė

,
qj (20)

= Kjxj = [kωj
∆ωj kPej

∆Pej kVtj
∆Vti]

T (21)

To develop a new DFL compensated voltage controller, we
differentiate (7):

V̇ti(t) =
1

Vti

(

(e,
qi − x

,
diidi) + (x,2

diidi − e
,
qix

,
di)bii

+ x
,2
diiqi

)

ė
,
qi +

1

Vti

[

(x,2
diidi − e

,
qix

,
di)

×
n

∑

j=1

(

e
,
qjgij cos δij + e

,
qjbij sin δij

)

+ x
,2
diiqi

n
∑

j=1

(

e
,
qjbij cos δij − e

,
qjgij sin δij

)

]

∆ωij

+
1

Vti

(

(x,2
diidi − e

,
qix

,
di)

n
∑

j=1

(

gij sin δij − bij cos δij

)

+ x
,2
diiqi

n
∑

j=1

(

gij cos δij + bij sin δij

)

)

ė
,
qj (22)

and substituting (18) and (21) into (22) we obtain

V̇ti(t) =
1

T
,
doi

f̄1(t)vfi + f̄2(t)∆ωi − f̄2(t)∆ωj

+ q̄1(t)∆ωj + q̄2(t)∆Pej + q̄3(t)∆Vtj (23)

where vfi is the nonlinear input (8),f̄1(t) and f̄2(t) are
nonlinear functions dependent on the operating point of a
power system, and̄q1(t)∆ωj , q̄2(t)∆Pej , q̄3(t)∆Vtj represent
the effects of remote dynamics of thejth generator on the
ith generator. Selecting (17) as the new state vector, the DFL
compensated model can be written as follows:

ω̇i = −
Di

2Hi

∆ωi −
ωi0

2Hi

∆Pei (24)

Ṗei =
1

T
,
doi

f1(t)vfi + f2(t)∆ωi

+ q̃1(t)∆ωj + q̃2(t)∆Pej + q̃3(t)∆Vtj (25)

V̇ti =
1

T
,
doi

f̄1(t)vfi + f̄2(t)∆ωi − f̄2(t)∆ωj

+ q̄1(t)∆ωj + q̄2(t)∆Pej + q̄3(t)∆Vtj (26)

After the uncertainty bounds of time varying parameters are
found, it is possible to design the feedback control law (19)
to stabilize the DFL compensated system (24)-(26). This will
be illustrated in Section IV.

IV. ROBUST CONTROL WITH INTERCONNECTIONS

This section further develops on concepts presented in [14],
[16], [18] to consider time varying terms in state, input and
subsystem interconnection matrices to design robust feedback
control which achieves asymptotic stability of the uncertain



state space model. Consider the following state equation which
generalizes the one presented in [14]:

ẋ =
(

A +

ξ
∑

i=1

Airi(t)
)

x +
(

B +

l
∑

i=1

Bisi(t)
)

ui

+
K

∑

k=1

N
∑

j=1

{pkij [Gkij +

ρk
∑

i=1

Gkijσki(t)]gkij(xi, xj)} (27)

where there areK sources of interconnection uncertainty,
and for theith subsystemxi(t) ∈ <ni is the state,ui(t) ∈
<mi is the control andr(t) ∈ <ξ, s(t) ∈ <l, σk(t) ∈ <ρk

represent uncertainty inputs,gkij ∈ <l
kj are vector functions

that represent nonlinearities in theith subsystem and in the
interactions with other subsystems. The parameterspkij are
constants with values either 1 or 0. Note that for a power
system model whosejth machine is an infinite bus,pkij = 0.
It has been assumed that each uncertainty parameter satisfies
the same bound in the known compact setsR, S andOk:

R = {r : |ri| ≤ r̄, i = 1, 2, . . . , ξ} (28)

S = {s : |si| ≤ s̄, i = 1, 2, . . . , l} (29)

Ok = {σki : |σki| ≤ σ̄ki, i = 1, 2, . . . , ρk} (30)

and the matricesAi, Bi andGkij are assumed to be rank one
decompositions of the form similar to [18]:

Ai = die
T
i Bi = fig

T
i Gkij = ϕki$

T
ki (31)

We choose the required stabilizing control law as:

ui(t) = −
1

ε
R−1BT Pixi(t) (32)

and consider the following:

2xT
i PiΩxi = xT

i (PiΩ + ΩT Pi)xi. (33)

Assumption 1: There exist known constant matricesW1i, W1ij ,
W2i, W2ij , andW3i, W3ij such that for allxi(t) ∈ <ni , xj(t)
∈ <nj , i, j = 1, 2, . . . , N :

||gkij(xi, xj)|| ≤ ||Wkixi(t)|| + ||Wkijxj(t)|| (34)

Lemma 1, [16]: The following identity

ΣT
i Πi + ΠT

i Σi ≤ λ−1
i ΣT

i Σi + λiΠ
T
i Πi (35)

holds for any real matricesΣi andΠi of appropriate dimen-
sions, and any scalarλ > 0.

Now, consider the state equation (27), the controller (32)
and let the Lyapunov function be defined as

V (x) =

N
∑

i=1

xT
i Pixi (36)

Then, by taking into account (33), we have that along the

closed loop state trajectory

V̇ (x) =

N
∑

i=1

{

2xT
i PiAixi + 2xT

i P

ξ
∑

i=1

Airi(t)xi

−
2

ε
xT

i PiBiR
−1BT

i Pixi −
2

ε
xT

i Pi

l
∑

i=1

Bisi(t)R
−1BT

i Pixi

+ [

K
∑

k=1

N
∑

j=1

Ḡkijgkij(xi, xj)]
T Pixi

+ xT
i Pi[

K
∑

k=1

N
∑

j=1

Ḡkijgkij(xi, xj)]
}

(37)

where

Ḡkij = pkij [Gkij +

ρk
∑

i=1

Gkijσki(t)] (38)

The terms on the right hand side of (37) can be rewritten

2r̄

ξ
∑

i=1

xT
i Pidie

T
i xi ≤ r̄

ξ
∑

i=1

(xT
i Pidi)

2 + r̄

ξ
∑

i=1

(eT
i xi)

2

= r̄xT
i PiDPixi + r̄xT

i E xi (39)

and also

2

ε
s̄

l
∑

i=1

xT
i Pifig

T
i R−1BT

i Pixi

≤
1

ε
s̄

l
∑

i=1

(xT
i Pifi)

2 +
1

ε
s̄

l
∑

i=1

(gT
i R−1BT

i Pixi)
2

=
s̄

ε
xT

i PiFPixi +
s̄

ε
xT

i PiBiR
−1

G R−1BT
i Pixi (40)

where

D =
∑ξ

i=1 did
T
i E =

ξ
∑

i=1

eie
T
i (41)

F =
∑l

i=1 fif
T
i G =

l
∑

i=1

gig
T
i (42)

then defining

x̄i = [xT
i , gT

1i1 . . . gT
1iN , gT

2i1 . . . gT
2iN , gT

3i1 . . . gT
3iN ]T (43)

we have

V̇ (x) =
N

∑

i=1

{x̄T
i Λix̄i} −

K=3
∑

k=1

N
∑

i=1

N
∑

j=1

{

pkij [x
T
i WT

kiWkixi

+ xT
j WT

kijWkijxj − gT
kijgkij ]

}

(44)

such that

Λ11 = AT Pi + PiA + r̄PiDPi + r̄E −
2

ε
PiBR−1BT Pi

+
s̄

ε
PiFPi +

s̄

ε
PiBR−1

G R−1BT Pi

+

K=3
∑

k=1

N
∑

i=1

N
∑

j=1

{

pkij [W
T
kiWki + WT

kijWkij ]
}

(45)



Taking into account results of [14], and the fact that
K=3
∑

k=1

N
∑

i=1

N
∑

j=1

{

pkij [x
T
i WT

kiWkixi + xT
j WT

kijWkijxj

− gT
kijgkij ] ≥ 0 (46)

it can be shown thaṫV (x) < 0; x 6= 0 and the Lyapunov
function V (x) would be negative definite if

Λ11 + Pi

(

K=3
∑

k=1

N
∑

j=1

ḠkijḠ
T
kij

)

Pi < 0 (47)

It follows immediately that there exists positive definite matrix
Qi andε > 0 such that

Λ11 + Pi

(

K=3
∑

k=1

N
∑

j=1

ḠkijḠ
T
kij

)

Pi + εQi = 0 (48)

and using (35) it can be shown that
N

∑

j=1

ḠkijḠ
T
kij =

N
∑

j=1

{

(1 +
σ̄2

ki
∑ρk

i=1 λi

)GkijG
T
kij

+

ρk
∑

i=1

λiϕki$
T
ki$kiϕ

T
ki + σ̄2

ki

ρk
∑

i=1

ϕki$
T
ki

ρk
∑

i=1

$kiϕ
T
ki

}

(49)

Combining (45), (48) and (49) we can state that for the
system with uncertainties in state, input and subsystem in-
terconnection matrices described by (27), robust control law
(32) achieves global asymptotic stability around the origin for
resulting closed loop system, for all admissible uncertainties,
if there exists positive definite solutionPi of the following
algebraic Riccati equation:

AT
i Pi + PiAi

− Pi

{

2

ε
BiR

−1BT
i −

s̄

ε
BiR

−1
G R−1BT

i −
s̄

ε
F − r̄D

−
K

∑

k=1

N
∑

j=1

[

(1 +
σ̄2

ki
∑ρk

i=1 λi

)GkijG
T
kij +

ρk
∑

i=1

λiϕki$
T
ki$kiϕ

T
ki

+ σ̄2
ki

ρk
∑

i=1

ϕki$
T
ki

ρk
∑

i=1

$kiϕ
T
1i

]}

Pi +

K
∑

k=1

N
∑

j=1

[WT
kiWki

+ WT
kijWkij ] + r̄E + εQi = 0 (50)

where R > 0, Qi > 0, λi > 0, r̄i, s̄i, σ̄ki, ε > 0 are user
defined design parameters.

A. Robust Transient Stabiliser

In the view of state equation (27), the DFL compensated
power system model (13)-(15) can be written as follows

A =





0 1 0
0 − D

2H
− ω0

2H

0 f2(t) 0



 B =





0
0

1
T

,

doi

f1(t)



(51)

G112 =





0
0

q1(t)



 ; G212 =





0
0

q2(t)



 ; G312 =





0
0

q3(t)





(52)

where

g112 = ∆δj ; g212 = ∆ωj ; g312 = ∆Pej (53)

Considering the system parameters given in Section II, we
have

A =





0 1 0
0 −0.625 −39.26
0 1.36 0



 B =





0
0

0.12



(54)

G112 =





0
0

0.017



 ; G212 =





0
0

−0.6



 ; G313 =





0
0

−0.06





(55)

and define the associated matrices that describe the uncertainty
structure:

d1 = [0, 0, 1]T ; e1 = [0, 1, 0]T ; f1 = 0.1; g1 = [0, 0, 10]

ϕ11 = 1 = ϕ21 = ϕ31; $11 = [0, 0, 1] = $21 = $31

W11 = W112 = [1, 0, 0]; W21 = W212 = [0, 1, 0]

W31 = W312 = [0, 0, 1]; (56)

with the following user defined design parameters

r̄ = 0.9; s̄ = 0.01; ε = 0.001; σ̄11 = 0.03; σ̄21 = 0.3;

σ̄31 = 0.03; λ1 = 0.01; λ2 = 0.1; λ3 = 0.0001

R = 5; Q1 = diag([2800, 100, 30000]) (57)

Solving the algebraic Riccati equation (50), robust control law
for achieving transient stability of power systems is obtained

vfts = 35.78∆δi + 17.68∆ωi − 125.28∆Pei (58)

and the nonlinear excitation compensating loop is given by

Efi = vfts + ∆xdiidi +
Pei

iqi

(59)

B. Robust Voltage Regulator

The DFL compensated model 24)-(26) can be written in the
state equation form (27) where

A =





− D
2H

− ω0

2H
0

f2(t) 0 0
f̄2(t) 0 0



 B =







0
1

T
,

doi

f1(t)
1

T
,

doi

f̄1(t)






(60)

G112 =





0
q̃1t

q̄1(t) − f̄2(t)



 ; G212 =





0
q̃2t

q̄2(t)



 ;

G312 =





0
q̃3t

q̄3(t)



 ; (61)

and

g112 = ∆ωj ; g212 = ∆Pej ; g312 = ∆Vtj (62)

Considering the data given in Section II we have

A =





−0.625 −39.26 0
1.36 0 0
−0.13 0 0



 B =





0
0.12
0.08



(63)



G112 =





0
−0.61
0.045



 ; G212 =





0
−0.008
−0.15



 ;

G312 =





0
−0.01
−0.22



 ; (64)

and define the uncertainty structure as follows

d1 = [0, 1, 0]T ; d2 = [0, 0, 1]T ; d2 = [0, 0, 1]T

e1 = e2 = [1, 0, 0]T ; f1 = f2 = 0.1; g1 = [0, 10, 0];

g2 = [0, 0, 10]; ϕ11 = ϕ12 = ϕ21 = ϕ22 = ϕ31 = ϕ32 = 1;

$11 = $21 = $31 = [0, 0, 1]; W11 = W112 = [1, 0, 0];

$12 = $22 = $32 = [0, 1, 0]; W21 = W212 = [0, 1, 0];

W31 = W312 = [0, 0, 1]; (65)

Selecting the following user defined variables

r̄ = 0.1; s̄ = 0.004; ε = 0.001; σ̄11 = 0.01; σ̄21 = 0.01;

σ̄31 = 0.01; λ1 = 0.001 = λ2 = λ3

R = 10; Q1 = diag([1, 1, 1]) (66)

and solving (50) we obtain the follwoing robust control law:

vfvr = 15.5∆ωi − 20.93∆Pei − 85.46∆Vti (67)

The DFL compensating excitation control loop is given by

Efi = vfvr + ∆xdiidi +
Pei

iqi

(68)

V. GLOBAL CONTROL

This section presents global control as a way to harness
generators control elements optimally and schedule a control
response to dynamical problems as they arise. Global control
was first employed for control of bifurcating power systems
[19], i.e. systems undergoing qualitative changes of behav-
ior as operating conditions change. More recently, attention
turned to procedures for stabilizing more general systems,
for example see [10], [20]. From a power system stability
control perspective, transient stability and voltage regulation
are both important properties to guarantee, but they are studied
via different model descriptions and related to different stages
of system operation, i.e. the transient period, post transient
period, mid-term and long-term behavior [21]. In this sec-
tion we consider a global control to coordinate the transient
stabilizer and voltage regulator in the transient period. The
general control structure weights controllers for each domain,
i.e. transient and post fault period, into a single nonlinear
control law. The weighting functions can be derived from
membership functions used in fuzzy control, for an example
see [12].

Assuming the state parameter space is partitioned into two
domains, the global control law can be represented by the
average of the individual control laws weighted by smooth
membership functionsµδi

andµVti
, see Fig.2:

vfi(t) = µδi
(z)vfts + µVti

(z)vfvr (69)

where µδi
and µVti

are functions of a sensitivity indicator
variablez expressing the closeness to a particular region of
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Fig. 2. Membership Functions: - - -µδi
and —µVti

control concern; andvfts, vfvr are the local controllers. This
idea has been studied for a simple single machine infinite bus
example in [10]. Here we extend this idea by considering a
multimachine power system to design and compare the impact
of different sensitivity indicators on the performance of global
control law (69).

Sensitivity Indicator 1: In [10], a simple sensitivity indica-
tor based on frequency and voltage measurements has been
proposed:

z1 =
√

ω2
i + ∆V 2

ti (70)

This simple choice of measurements has been shown to work
quite well on a single machine infinite bus power system
model. The challenge now is to determine whether more so-
phisticated measurements would yield performance enhancing
stability control.

Sensitivity Indicator 2: The energy function method has
been widely used in transient stability analysis to estimate
the domain of attraction of a stable equilibrium point. Here,
a structure preserving energy function method based on the
development in [22]–[24] is used for power system transient
stability assessment. The following sensitivity indicator is
proposed:

z2 =
√

ω2
i + V2

i (71)

whereVi is the structure preserving energy function for the
multimachine power system model.

VI. A N APPLICATION EXAMPLE

To evaluate global control schemes presented in Section
V, a three machine example system presented in Section
II is utilized in the simulation study. Following the design
procedure in Section IV, complete robust excitation controllers
are obtained:
Robust Transient Stabiliser

vfts = 35.78∆δi + 17.68∆ωi − 125.28∆Pei (72)

Robust Voltage Regulator

vfvr = 15.5∆ωi − 20.93∆Pei − 85.46∆Vti (73)
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Fig. 3. Power system responses of generator 1

and following the discussion in Section V, we propose the
following global excitation control:

Efi = µδi
(z)vfts + µVti

(z)vfvr + ∆xdiidi +
Pei

iqi

(74)

where each global control law is distinctively implementedby
sensitivity indicators given in (70) and (71).

The power system responses with excitation system con-
trollers subjected to a severe short circuit fault are shownin
Fig.3. From the simulation results it can be seen that tran-
sient stability controller stabilizes the disturbed multimachine
system but the post fault voltage differs from the prefault
value. Excessive voltage deviation in the post fault period
is not acceptable in practice. To maintain good post fault
performance, voltage controller has been shown to achieve
required voltage regulation.

The performance of global control scheme are illustrated
in Fig.4 and Fig.5. From the simulations, it can be seen that
transient stability and voltage regulation can be simultaneously
enhanced with the proposed global control law.

A. Discussion on Global Control

Simulation studies have shown that simple choice of fre-
quency and voltage measurements can be sufficient enough to
interpolate different stages of system operation. While the sen-
sitivity indicator based on the energy function method provides
more detailed description of system stabilizing conditions, it
can however offer considerable measuring and computational
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Fig. 4. Global Control: Power system responses of generator1

burden in the evaluation of system stability. In general, several
important aspects need to be considered in the design of
global control for power systems during the transient period
such as: the network structure, nonlinearity and uncertainty,
contingency screening, nature of faults or operating point
changes, stabilizing priorities, number of controllers and stabi-
lizing characteristics of each, available (decentralizedor wide
area) measurements to indicate system transients or changes
in operating conditions, formulation of membership functions
and partitioning of transient and post transient regions etc.
It still remains to develop global control methods to address
highly complex structure of power systems, considering the
dynamic coupling and coordination of all associated control
actions. In practice, a general method is needed for designing
controllers of global kind which are valid across the whole
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power system operating region, for all states, and robust as
parameters and conditions vary.

VII. C ONCLUSIONS

This paper addresses simultaneously the major fundamental
and difficult issues of nonlinearity, uncertainty and globality to
derive performance enhancing power system stability control.
Firstly, the DFL is presented as a simple nonlinear control tool
to design nonlinear generator excitation controllers to achieve
transient stability and voltage regulation of power systems.
Considering the effects of plant parametric uncertaintiesand
nonlinear coupled interconnections between generators, robust
control method is applied to stabilize the class of DFL
compensated systems. The global control law is then proposed
to achieve simultaneous coordination of multiobjective control
requirements of power systems. The global control is of
smooth switching kind constructed by membership functions.
Different sensitivity indicators are proposed and compared
to assess stability requirements of a power system based
on operating point variations. The design methodology is
illustrated by application to the three machine power system
model. The simulation results show that system stability and
voltage regulation can be simultaneously preserved with the
global control frwamework over a wide range of operating
regions as a result of sudden changes in network topology.
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