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Abstract

The thesis describes the theoretical study of optical plasmons mediated light-matter
interaction, with an emphasis on developing efficient single photon sources by en-
gineering the spontaneous emission of a single emitter coupled to plasmonic nanos-

tructures.

Firstly, we develop a self-consistent finite element method to quantitatively study
spontaneous emission from emitters in nanoscale proximity of plasmonic waveguides.
It is assumed that only one guided mode is dominatingly excited, while the cross
section of the plasmonic waveguide can be arbitrary. The fraction of the energy
coupled to the plasmonic mode can be calculated exactly, which can be used to
determine the efficiency with which single optical plasmons are generated. The
numerical method is applied to calculate the coupling of a emitter coupled to a

cylindrical nanowire and a square metallic nanowire.

Secondly, we numerically investigate the coupling efficiency of a single self-
assembled quantum dot coupled to a metallic slot waveguide embedded in inho-
mogenous dielectric environment. Due to the inhomogeneity, leaky plasmonic modes
referring to radiation modes with plasmonic features will be excited. Compared with
the ideal case of the homogenous dielectric environment, the coupling efficiency is
significantly reduced due to the excitation of the leaky plasmonic modes. By in-
creasing the refractive index of the coating layer to minimize the impacts from the
leaky plasmonic modes, we find that the coupling efficiency can be enhanced by
more than a factor 2.

Last, we examine a quantum emitter coupled to free photons, mediated by op-
tical nanoantennas. We mimic the conventional Yagi-Uda to realize its optical
analogy based on an array consisting of several metallic rods. We also propose
a plasmon-based reconfigurable antenna to controllably distribute emission from a
single emitter in spatially separated channels. Our calculations show that crossed
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particle arrays can split the stream of photons from the emitter into multiple nar-
row beams. We predict that beams can be switched on and off by switching host

refractive index.



Resumeé

Denne afhandling beskriver teoretiske underspgelser af lys-stof vekselvirkning me-
dieret af optiske plasmoner. Hovedvaegten er pa udviklingen af effektive enkelt-
fotonkilder der virker ved at kontrollere den spontane lysudsendelse af en enkelt
lysudsender ved at koble denne til plasmoniske nanostrukturer.

Vi udvikler en selvkonsistent finite-element metode til kvantitativt at studere
den spontane lysudsendelse fra lyskilder i nanometer-naerhed af plasmoniske bgl-
geledere. Det er antaget at kun en enkelt bolgeledertilstand primeert er anslaet,
mens tveersnittet af den plasmoniske bglgeleder kan veere arbitreert. Brgkdelen af
energien der bliver overfgrt til den plasmoniske tilstand kan udregnes eksakt, hvilket
kan bruges til at bestemme genereringenseffektiviteten af enkelte optiske plasmoner.
Den numeriske metode er anvendt til at udregne koblingen af en lysudsender til en
cylindrisk-og en kvadratisk metallisk bglgeleder.

Vi undersgger numerisk koblingseffektiviteten af et enkelt selv-samlet kvan-
tepunkt til en metallisk mellemrumsbglgeleder der er indkapslet i ikke-homogene
dielektriske omgivelser. Pa grund af de ikke-homogene omgivelser vil ikke-bundne
plasmoniske tilstande, der er udstralings tilstande, blive exciteret. Sammenlignet
med det optimale tilfeelde, som er homogene omgivelser, vil koblingseffektiviteten
veere betragteligt nedsat pa grund af exciteringen af disse ikke-bundne plasmoniske
tilstande. Ved at forgge brydningsindekset af det overdsekkende lag, for at min-
imerer effekten af de ikke-bundne plasmoniske tilstande, finder vi at koblingseffek-
tiviteten kan blive forgget med mere end en faktor 2.

Til slut undersgger vi koblingen af kvantelyskilder til frie fotoner medieret af
optiske nano-antenner. Vi efterligner det konventionelle Yagi-Uda design og realis-
erer dets optiske analogi baseret pa et array bestaende af adskillige metalstaenger.
Derudover, foreslar vi en plasmon-baseret rekonfigurable antenne til kontrolleret at
distribuere lysudsendelse fra en enkelt lyskilde til rumligt adskilte kanaler. Vores
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udregninger viser at krydsede partikelarrays kan opdele strgmmen af fotoner fra en
emitter ind i adskillige tynde straler. Vi forudser at stralerne kan blive teendt og
slukket ved at skifte vaertsbrydningsindekset.

vi



Ph.D. Publications

The following publications have resulted from this Ph.D. project.

1. Y. Chen, P. Lodahl, and A. F. Koenderink, Dynamically reconfigurable direc-
tionality of plasmon-based single photon sources, Phys. Rev. B, 82, 081402
(2010)

2. Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mgrk, Finite-element
modeling of spontaneous emission of a quantum emitter at nanoscale proxim-
ity to plasmonic waveguides, Phys. Rev. B, 81, 125431 (2010)

3. Y. Chen, N. Gregersen, T. R. Nielsen, J. Mgrk, and P. Lodahl , Spontaneous
decay of a single quantum dot coupled to a metallic slot waveguide in the
presence of leaky plasmonic modes, Optics Express, 18, 12489 (2010)

Conference contributions

1. Y. Chen, T. R. Nielsen, N. Gregersen, P. Lodahl, and J. Mgrk, Optimizing the
spontaneous-emission [ factor for single optical plasmon generation, CLEO
Europe, Munich, Germany 2009.

2. Y. Chen, S. S. Xiao, T. R. Nielsen, Guided plasmon polaritons for trian-
gular metallic waveguides, Asia-Pacific Optical Communications (APOC),
Hangzhou, China 2008.

Some other work,

1. Y. Chen, G. Bjork, Generation and detection of the photonic qutrit by linear
optics, QUANTUM INFORM. COMPU. 8, 0386, 2008

2. Y. Chen, Y. Cai, Halil T. Eyyuboglu and Y. Baykal, Scintillation properties
of dark hollow beams in a weak turbulent atmosphere, Applied Physics B:
Lasers and Optics, 90, 87, 2008

vii



Chapter 0. Ph.D. Publications

3. Y. Cai, Y. Chen, H. T. Eyyuboglu and Y. Baykal, Propagation of laser array
beams in a turbulent atmosphere, Applied Physics B: Lasers and optics, , 467,
2007

4. Y. Cai, Y. Chen, H. T. Eyyuboglu and Y. Baykal, Scintillation index of el-
liptical Gaussian beam in turbulent atmosphere, Optical Letter. 32, 2405,
2007

viii



Contents




CONTENTS

2.4.5 Dispersion relation of metallic wires and square plasmonic

waveguides . . . . ... Lo 21

3_Modeling techniqued 27

3.2 FEM modeling of spontaneous emission enhanced by a plasmonic

waveguide . . ..o e 29

4 Single optical plasmon generation based on single quantum dot coupled

to metallic slot waveguide 53

4.1 Single photon sources and optical properties of self-assembled quan-

4.1.3 Electronic structure and optical properties of InAs/GaAS

self-assembled quantum dots . . . . . . . ... ... ... .. 60

4.2 Single optical plasmon generation based on quantum dot coupled

metallic slot waveguide . . . . .. ... L oL 62




CONTENTS

511 Radio wave antenna . . . . . . . oo 76
5.1.2 Antenna basicd . . . . . .. . . 77

5.2.3 Effective wavelength and metallic rods based optical Yagi-

Uda antenna . . . . ... ... ... oo 83
Reconfigurable directionality for multiple-branch antenna . . . . . . 86
Mechanism of the reconfigurable directionalityl . . . . . . . . 86
inear array: re and di 10 0 [ 88

5.3.3  Qutlook of the reconfigurable plasmon-based single photon
SOULCES . v v v v v e e v e e e e e e e 93

xi






Chapter 1

Introduction

Controllably and efficiently extracting photons from single quantum emitters into
a well-defined set of modes, or viceversa, is a holy grail for quantum optics, op-
tical quantum computation, as well as single molecule spectroscopy. The conven-
tional approach is to place the emitter inside a high finesse ultrasmall cavity, such
as a micropillar [I, 2], microsphere or toroid [3], or photonic crystal cavity [4].
Such ultimate control over single light quanta is of core interest in cavity quan-
tum electrodynamics, and increasingly important in nanophotonics. By virtue of
the tremendous interaction strength of free electrons in noble metals with pho-
tons, plasmon polaritons offer very tight field confinement over very large frequency
bandwidths. Especially plasmonic nanoparticles and nanowires promise the ability
to manipulate light at nano-meter scale. In addition to applications in subwave-
length optoelectronics and near-field sensors [3] [6] [7], plasmonics hence offers rich
perspectives for quantum optics with single plasmons [8], and for designing novel
broadband single photon sources based on plasmonic waveguide and plasmon based
antennas. Several groups have started to pursue plasmonic systems for quantum
optics [9, [8 10, 11I]. Plasmonic systems can provide strong interaction with single
quantum dots and single molecules without resorting to ultra narrow-band high-
Q structures. For instance, several researchers recently proposed that broadband
highly directional single-photon sources can be made using plasmon particle array
antennas that mimic directional radio frequency antennas [12} 13} 14} [15].

The thesis concerns the theoretical study of optical plasmons mediated light-
matter interaction [II 16l [I7]. Two types of plasmonic effects on spontaneous
emission, i.e., freely propagating surface plasmon polaritons (SPPs) and localized

1



Chapter 1. Introduction

plasmonic resonance are addressed. We study the coupling between a quantum
emitter and the freely propagating SPPs in the context of developing efficient and
coherent single-photon sources. A 3-dimensional (3D) finite element method (FEM)
model is developed. We also study the emitter coupled to free space photons,
mediated by plasmon nanoantennas.

This thesis is organized as follows. Chapter 2 outlines the basic concepts that
are necessary to discuss the physics and modeling techniques. In Chapter 3, several
numerical techniques are presented. A FEM model of calculating the total decay
rate and coupling efficiency of a quantum emitter coupled to plasmonic waveg-
uides is detailed. Also the point dipole approximation and a multipoles expansion
based multiple scattering approach are briefly discussed. In Chapter 4, we numer-
ically investigate the coupling efficiency of a single self-assembled quantum dot to
a metallic slot waveguide in the presence of leaky plasmonic modes. We show that
the inhomogeneity of the dielectric environment has serious impact on the coupling
efficiency, we further show that by decreasing the index contrast within experimen-
tal bounds, we can gain a factor of 2 in the coupling efficiency of the single optical
plasmon generation. In Chapter 5, we briefly discuss the basic concepts used for
radio wave antenna. We construct an optical Yagi-Uda nanoantenna that yields
direction emission, based on the recipe of a radio wave antenna. We also propose
a plasmon-based reconfigurable antenna to controllably distribute emission from a
single quantum emitter in spatially separated channels. Based on engineering the
dispersion relations of plasmon chains, we predict that beam can be switched on
and off by switching the host refractive index. A short summary of the conclusions
and an outlook are given in Chapter 6.



Chapter 2

Spontaneous emission, local
density of states and

dispersion relation

2.1 Introduction: ultimate control over light quanta

The concept of light quanta was introduced by Planck to explain the black-body
radiation spectrum in the beginning of the 20s century, which initiates the era of
quantum mechanics. This pioneering work led Einstein to introduce the photon con-
cept to explain the photoelectric effect. Throughout the 20s century, the quantum
nature of light was extensively and thoroughly studied in a variety of quantum op-
tical systems, including resonance florescence, lasers, micromasers, squeezed states
and atom optics. On one hand, quantum optics provides a powerful probe for
addressing fundamental issues. On the other hand, it also holds promise for new
devices and new technologies, i.e., quantum computers and quantum cryptography.

At the turn of the 21st century, exploration of quantum computers and quantum
networks is in fashion. All the fantastic technologies rely on the ultimate control
over light quanta. The interaction of a single two-level atom and a single quantized
radiation mode is a central concept in the textbook of quantum optics in the last
century. Due to the advance of ion-trap and fabrication of high-finesse optical
cavities, there has been tremendous progresses on cavity quantum electrodynamic
(CQED) in the past decade, which pushes the light-matter interaction to the limits

3



Chapter 2. Spontaneous emission, local density of states and dispersion relation

of the single-photon-single-atom level [18[19,[20]. The ultimate control over a single
light quantum is core of CQED, which has been extensively studied both in theory
and experiment based on different photonic systems recently, and will continue to
attract attention in the future.

In the framework of single-photon-single-atom interaction, there are two physi-
cally distinct regimes, namely the strong and weak coupling regimes. In the strong
coupling regimes, the single-photon-single-atom coupling is stronger than the dis-
sipation of atomic exciton and photon leakage, so that the excitation between the
single atom and photonic mode becomes reversible (Rabi oscillations) [19]. In the
weak coupling regime, the spontaneous emission (SE) rate of the atom is modified,
as compared to vacuum. This phenomenon is referred to as the Purcell effect [21].
The strong coupling of single-photon-single-emitter constitutes an essential ingredi-
ent of a number of quantum computation operations, i.e., quantum state transfer,
entanglement distribution, controlled phase gates and so on. At the same time, the
physical insights of the single-photon-single-emitter system in the weak coupling
regime can lead to new possibilities to boost the efficiency of optoelectronic devices,
i.e., single-photon sources, low threshold lasers, and LED-lightening.

Meanwhile, the rapid progress in photonics in the past decades provides many
options to manipulate light at very advanced levels, such as photonic crystals [22] 23]
[24], 23], plasmonics [26] 27, [5] [6], [7], and metamaterials|28] 29 30]. The major part
of the work aforementioned above in the field focuses on the properties described by
electromagnetic theory, still some pioneering work on manipulation of light-matter
at single-photon-single-atom level were achieved. In particular, it has recently been
proposed and experimentally demonstrated that a single quantum emitter can be
efficiently coupled to surface plasmon polaritons [8 [0]. Inspired by this idea, we
explore how surface plasmon polaritons can be used to enhance the light-matter
interaction. Specially, we model the plasmonic effects to control the single photon
emission for developing single photon devices.

2.2 Spontaneous emission

2.2.1 Purcell effect and some history

Spontaneous emission is the process of an initial quantum mechanical state spon-
taneously decaying into a continuum of final states, which can be applicable for
many quantum mechanical systems. Throughout the thesis, we concentrate on the

4
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interaction between light and matter. Spontaneous emission is one of the most
prominent effects in the interaction of atoms with radiation, and its explanation
has to resort to the fully quantized theory for both the atom and the light. In prac-
tice, the spontaneous emission has been interpreted as stimulated emission induced
by virtual photons due to vacuum fluctuations. However, the explanation may also
lead to “spontaneous absorption” if one is aware that the stimulated emission and
absorption have equal Einstein B coefficients [3I]. Such dilemma has been resolved
by the prescription provided by Dalibard and his coworkers [32], B3]. They argued
that radiation reaction and vacuum fluctuations contribute to the spontaneous emis-
sion equally for an excited atom at rest, while for an atom in the ground state, the
two contributions cancel precisely. It is the balance between vacuum fluctuations
and radiation reaction that inhibits transitions from the ground state and ensures
its stability.

It has long been realized that the spontaneous emission rate is not an intrinsic
property of a quantum emitter itself [21]. The general explanation is that the spon-
taneous emission rate depends on the transition strength between the upper and
lower level of the quantum emitter as well as the local density of optical states. The
local density of states (LDOS) measures the available number of electromagnetic
modes into which the photons can be emitted at a specific location of the emitter,
and can be manipulated by tailoring the photonic environment of the emitter. A
number of structures such as interfaces [34], [35], cavities [36] 1], photonic crystals
[23], 37] and waveguides [38] [39] have already been used to modify the spontaneous
emission rate. Apart from fundamental studies, engineering the spontaneous emis-
sion rate of a quantum emitter may improve the efficiency of optoelectronic devices,
i.e., single-photon sources, low threshold lasers, and LED-lightening.

As an alternative to dielectric materials, the spontaneous emission rate can be
manipulated by subwavelength metallic systems, which support surface plasmon
polaritons. Surface plasmon polaritons are electromagnetic excitations associated
with charge density waves on the surface of a conducting object. The tight con-
finement of the electromagnetic field to the metal-dielectric interface due to the
boundary condition constraints gives the possibility of inventing new ways to en-
hance light-matter interaction, such as efficient single optical plasmon generation
[8, @], single molecule detection with surface-enhanced Raman scattering [40] [41],
enhanced photoluminescence from quantum wells [42], and nanoantenna modified

spontaneous emission [43 [44] [45].
Although limited by the intrinsic losses of the metals in the optical frequency
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range, different metallic structures have been extensively studied in the last few
years due to the possibilities of integration and miniaturization. The dramatic en-
hancement of the field intensity due to the field concentration and geometric slowing
down of the mode propagation provides an excellent platform to study single photon
nonlinear optics [46] and light matter interaction at the single-emitter-single-photon
level. There are also considerable interests in surface plasmons for sub-wavelength
optics and applications in sensing, near field imaging, waveguiding and switching
below the diffraction limit [26, 27, 5] [6], [7]. The study of plasmonic effects to en-
hance light-matter interaction and the preferential spontaneous emission from, e.g.,
a quantum dot into a desired mode is currently a hot research topic. It is im-
portant for solid-state quantum information devices as well as for improving our
understanding of light-matter interaction at the nanoscale. There are also theoret-
ical investigations on this topic [9) [47], with simplified assumptions that limit their
applicability for analyzing realistic structures, e.g. by assuming geometrical shapes
that are not readily achievable using current fabrication technology and making
assumptions that are only valid at some length scales. The realistic description of
all competing, radiative and non-radiative, decay channels for an emitter placed in
close proximity to a plasmonic waveguide of general geometry is important in order
to understand the physics and the fundamental limitations.

2.2.2 Fermi’'s Golden rule

Spontaneous emission is a purely quantum mechanical phenomenon, which stems
from the vacuum fluctuation of the electromagnetic field as well as the radiation
reaction. In the semi-classical picture, vacuum fluctuations are phenomenologically
added as a harmonic perturbation, which accounts for the transition of the quantum
emitter from the excited state to a continuum of final states, as sketched in Fig. 211
We consider a combined “atom-+field” states, and calculate the transitions from the
excite state |¢) with the energy of E; to a set of final states | f) with identical energy
of E¢. The final states differ only by the mode wavevector k, which is used as a
model label to uniquely characterize a specific mode together with the polarization
vector of the radiation field. By employing first order perturbation theory, one can

use Fermi’s Golden Rule [48] to calculate the decay rate of a quantum emitter,

3= 2SI i) P — o), (21)
!
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| e,0 >
e,lw’k > e,mk el >
Figure 2.1: Transition from an initial state |i) = |e,0) to a set of final states

|f) = |9, 1w k). The states are products of atomic states (|e) or |g)) and single-
photon states (]0) or |1, k)).

where H; = — - E is the interaction Hamiltonian in the dipole approximation. One

can represent the single photon electric field operator E atr=rg as,

E =) [Epake “*' + Egaje™*"], (2.2)

k
where Ey, (E}) is the spatially dependent complex field at positive (negative) fre-
quencies, and ag (&L) is the annihilation (creation) operator. Assuming all the
different mode k occupy the same mode volume V', the normalization factor takes

the following form [48],
/ E()Ek . E;;dv = 1/27%}0 (23)
v

The factor 1/2 in Eq. (Z3) is due to the fact that the magnetic field also stores half
of the electromagnetic energy. Substituting the explicit form of the electric field

(Eq. 22)) into Eq. (21)), one can obtain,

2
7= 52 2l (ErE) - pld(wie — wo) (2.4)
k
To factorize the transition rate in an ‘atom part’ and a position dependent ‘field
part’, we rewrite the expression of the spatially dependent complex field Ej, for the
single photon in terms of normal modes uy defined as,

E = ﬁwkuk, E; = _’;‘::u;; (2.5)
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Plasmonic
channel

Nonradiativeé
channel

Radiation
channel

Figure 2.2: Different emission channels involved in the decay process of a quantum
emitter (red dot) coupled to a plasmonic waveguide. In the radiation channel the
emitted photons are traveling in free space. In the plasmonic channel the plas-
monic modes are excited and guided by the metallic nanowire. In the non-radiative
channel, electron-hole pairs are generated.

We hence reformulate the spontaneous emission as follows,

W

v= 3h€0|u‘|2pﬂ(r0aw0)a (26)

where p,, (1o, wo) =3 [N, - (upuy,) - n,)0(wk —wo) is referred to the projected local
k

density states [48], which measures the available number of electromagnetic modes
for a dipole located at ro with orientation of n,. One also notes that uuj, denotes
the outer product, which produces a dyad.

2.2.3 Multiple decay channels and spontaneous emission 5 fac-
tor

As shown in Fig. 22 we consider an ideal quantum emitter coupled to a plas-
monic waveguide. The excitation energy of the quantum emitter can be dissipated
either radiatively or non-radiatively. Radiative relaxation is associated with the
emission of a photon, whereas non-radiative relaxation can be various pathways
such as coupling to vibrations, resistive heating of the environment, or quenching
by other quantum emitters. The resistive heating of the metallic waveguide is the

8
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only mechanism of non-radiative relaxation considered in our model. The quantum
emitter is positioned in the vicinity of the metallic nanowire, thus there are three
channels for the quantum emitter to decay into, i.e., the radiative channel, the plas-
monic channel, and the non-radiative channel. The corresponding decay rates are
denoted by Yrad, Vpi, and Ynonrad, respectively. The radiative channel accounts for
the spontaneous emission in the form of far field radiation. The plasmonic channel
is the excitation of the plasmonic mode, which is guided by the plasmonic waveg-
uide. The non-radiative channel is associated with the resistive heating of the lossy

metals, which is due to electron-hole generation inside the metals. The spontaneous
Vpl
Ytotal

VYtotal = Vrad + Ynonrad + Ypi- The B factor gives the probability that the quantum

emission 3 factor is defined by § =

, where 7V;o1q; is the sum of the three rates,

emitter excites a single plasmonic mode.

In order to achieve a larger 3 factor, one needs to be aware that the local
plasmon resonances in the transverse plane of the plasmonic waveguides may be ex-
cited according to Mie’s theory, which could substantially contribute to spontaneous
emission of the quantum emitter and subsequently scatter the emission out of the
structure. Hence, in our case such localized plasmonic resonances in the transverse
plane need to be suppressed. In chapter 2 and 3, we will concentrate on the regime
where the geometric sizes in the transverse plane are far away from the localized
resonance conditions, in order to achieve an efficient coupling between the emitter

and the freely propagating plasmonic modes.

2.3 Light scattering and dyadic Green’s function

2.3.1 Electromagnetic theory of light

Light lies at the special range in the spectrum of electromagnetic radiation, coin-
cided with the atomic transitions in matter. Complete description of light has to
incorporate the wave-particle duality of its nature, in which light manifests itself
in the form of waves or particles. Nevertheless, the electromagnetic theory forms
the necessary basis of interpreting light, which is also the foundation to explore the

9
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quantum nature of light. Hence, we start with Maxwell’s equations

_9B(r,t)

V x E(r,t) = o (2.7a)
Vx H(r,t)= % +7(r,t), (2.7b)
V-D(r,t) = p(r,t), (2.7¢)
V-B(r,t) =0, (2.7d)

where E denotes the electric field, D the electric displacement, H the magnetic
field, B the magnetic inductions, 7 the current density, and p the charge density.
The constitutive relations for a non-magnetic, non-dispersive linear and isotropic

dielectric composite are

D = epe(r)E, (2.8a)
B = uwH, (2.8D)

It it well known that Eq. (Z7) combined with Eq. (2:8)) will yield a wave equation
for, e.g., the electric field £

V x V x E(r) — ke(r)E(r) = iwpoj(r), (2.9)

assuming harmonic time dependence which, be specific with frequency w, with ky =
w/c denoting the vacuum wavenumber. Throughout the thesis, e(r) is the complex

dielectric constant at frequency w.

2.3.2 Dyadic Green's function and local density of states

The solutions to many problems in electromagnetics can be obtained by solving the
second-order uncoupled partial differential equation, i.e., the wave equation defined
by Eq. [Z9), with appropriate boundary conditions. Alternatively, one can calculate
the solution to Eq. (Z9) for a driving source constituting a point source (impulse,
Dirac delta function). Using the principle of linear superposition implied by the
linearity of wave equation, one hence can obtain the solution to a general source by
convoluting the point source solution with a real source. The point source solution
is called the Green’s function, and the method is denoted the Green’s function
method. In engineering terminology, the Green’s function is the impulse response
of a system, which is also called the transfer function in system theory. Due to the
fact that the electric field is a vector, the Green’s function for the wave equation is

10
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a dyad, and is called as dyadic Green’s function throughout the thesis. The electric
dyadic Green’s function G(r,r’,w) is defined by

[V XV x —k2e(r)|G(r,r",w) = I5(r — '), (2.10)

where I is the unit dyad. The electric field induced by a current source j(r) is

equal to the convolution of the dyadic Green’s function with j(r),

E(r)= iw,uo/v(_}(r,r’,w)j(r’)dr'. (2.11)

Apart from the field excitation due to a current source, scattering of light from
inhomogeneities can also be presented as an integral equation where the kernel is
the dyadic Green’s function [49]. Considering a number of scattering sites embedded
in a background medius described by ep(7), the variation in permittivity compared
with the background is Ae(r) = e(r) — ep(r). Subsequently, the wave equation in
the absence of any source currents and charges can be reformulated as,

V x V x E(r) — kZep(r)E(r) = iwpoje(r), (2.12)

where j. = —iwegAe(r)E(r) is the volume distribution of the induced electric cur-
rent density. In the presence of an incident field of Eq(7), the total field consisting

of the incident field and the scattered field can be presented as
E(r) = Eo(r) + &2 / G, v, w) De(r') E(r")dr, (2.13)
1%

where G(r, 7', w) denotes the dyadic Green’s function for the background medium.
The electric field E(r) in Eq. ZI3) is implicit, the Eq. (ZI3) is conventionally
referred as Lippmann-Schwinger equation [49]. Several variants of scattering theory
based on Eq. (Z12)) were successfully applied to model near-field optical phenomena
and nanophotonic devices [50, (I, 52} 53] [54]. The purpose of such models is to
predict the fundamental state of the electromagnetic waves called local density of
states (LDOS). The imaginary part of the dyadic Green’s function evaluated at
its origin (Im{G}) is proportional to LDOS [48], the computation of which is an
underlying theme in modeling nano-photonic devices. The aforementioned normal
modes bridge the gap between the dyadic Green’s function and LDOS, and the

norm modes are defined as follows,
V x V x u(r, wi) — kde(r)ug(r,ws) = 0, (2.14)

11
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with the orthogonality relation and the completeness relation satisfying

/ (7o) - (7 o)AV = S (2.15a)
1%
Zuk(r,wk) cup(r wk) = I6(r — 1'). (2.15b)
k

Resting on the orthogonality relation and completeness relation, one could construct
the dyadic Green’s function accordingly [48],

A o Ul (1, wi)uk (7, W)
G(r,r'\w)=> ¢ - . (2.16)
k

To proceed with the help from complex contour integration one can further prove
Im{G} as follows,

2
- me "
In[G(r,r',w)] = o Ek: ug(r, wi) - uf(r’, we)d(wo — wk) (2.17)
Then the projected LDOS can be calculated from the dyadic Green’s function ac-
cordingly,

6w, —
pu(ro,wo) = W—Cg[nu Im{G(ro,ro;wo)} -1yl (2.18)

2.3.3 Quantization of light: a multiple modes scheme

The essence of the quantum theory of light is to associate a quantized simple har-
monic oscillator to each mode of the radiation field, labeled by o = {k, A}, which
consists of indices for wave vector k and polarization vector A [55]. The destruc-
tion and creation operator, initially defined for a quantum mechanical harmonic
oscillator, can be applied for mode « and takes the following forms,

o |na) = nk/?ng — 1), (2.19a)
al [na) = (na + 1)V ng +1). (2.19b)

Different modes are independent, and their associated operators commute, so the

basic commutation relation is generalized as

The physical electric field is real, and a monochromatic field can be written as
1

E(r,t) = 3[B(r)e™™" + E*(r)e™"), (2.21)

12
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Due to its measurable properties, the electric field is reformulated as a Hermitian
operator, with positive and negative frequency part corresponding to the destruction
and creation operator, respectively. Following the Loudon [31], the complete electric

field operator is

E(r,t) = eq(hwa/2e0V)"/*[ane” X0 4 4 e (1)) (2.22)

where e,, denotes the unit polarization vectors, V' the mode volume, and x,(r,t) =
(wq — k-7 —m/2) is defined as the phase angle for the mode «. The Hamiltonian
of the radiation field is obtained by summation of the harmonic-oscillator (modes)

contributions,
N 1
H=Y hwa(al,in +2). 2.2
> hea(aya + 3) (2.23)

2.3.4 Rate of energy dissipation of a classical dipole

“Weak coupling regime" is a terminology used in quantum electrodynamics, whose
counterpart in classic electrodynamics is the oscillating dipole with negligible damp-
ing introduced by the radiation reaction force. The classical theory will not give
the right result for the spontaneous decay rate , nevertheless, the transition rate
is well modeled by the damping dipole when it is correctly normalized [48].

According to Eq. ([Z7), we can obtain the following for a non-magnetic material
with some simple algebra,

/(ExH)-nda—klg/ (D-E+ B-H)dV
ov ov

20t
N 1 oP OE

where OV denotes the surface that encloses the volume V', and n denotes the out-

(2.24)

ward unit normal vector to the surface OV. P = gpx.FE is the macroscopic polariza-
tion with the electric susceptibility of x.. The left hand sides are the total change
of electromagnetic energy, including the net energy flow in or out of the volume V'
(first term on the left side) and the time rate of change of electromagnetic energy
inside V (second term on the left side). The sum of all the terms on the right side
are equal to the rate of the energy dissipation and can be considered to be the
energy source or energy sink. If the medium is linear, the last term on the right

side equals zero, and the only term accounting for the energy dissipation is j* - E.

!The classical decay rate gives half the quantum decay rate.
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Chapter 2. Spontaneous emission, local density of states and dispersion relation

Eventually the current term j can be formulated in terms of an oscillating dipole,
as explained in the following.

For a harmonic time dependent field in the linear medium, Eq. (Z24) can be
simplified to,

1
/ <8 > -nda= ——/ Re(5* - E)dV, (2.25)
ov 2J)v

where the term on the right hand side defines the mean energy dissipation with
volume V. (S) represents the time average of the Poynting vector: (S) = 1Re(E x
H*). Replacing the current term j by a dipole current current density j(r) =
—iwpd(r—rg), one obtains the relationship between the power flux and the emission
or absorption rate for a dipole source,

O — Yty B()), (2.26)
where p is the dipole moment of the point source, which can be any two level system
that emits and absorbs light, such quantum dots, molecules.

Using Eq. (Z26)), one can calculate the decay rate of an emitting dipole in an
inhomogeneous environment, such as a quantum dot in a photonic crystal cavity.
The field can be decomposed into two components, one is the field without the
influence of the inhomogeneous environment, the other one is the reflected field

induced by the inhomogeneity of the environment:
E(ro) = Eo(ro) + Es(ro). (2.27)

Here Ey(ro) and E,(ro) are the primary dipole field and the scattered field, respec-
tively. Accordingly, we can split the energy dissipation rate P = dW/dt into two
parts. The contribution of Ey(r) is the decay rate of the dipole in the homogeneous
medium [48], and is given as follows,

P w o

Py = k2, 2.28
0 127 eeg ( )

which can be used to normalize the total rate of the energy dissipation,
P 6meeg 1
— =14+ ———=In{u" E; . 2.29
By =1 e Ea(ro)) (2:29)
The same result can also be derived by considering both the undriven harmon-
ically oscillating dipole and the driven harmonically oscillating dipole in classical
picture [48] 56]. An important relationship collects the classical picture and the

quantum picture is the following,

a_ £ (2.30)
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where v is the decay rate in the photonic environment, and vy are the decay rate
in vacuum. Finally we have the correct expression for the decay rate of the dipole

in an inhomogeneous environment,

ol :1+67T€E()1

% 2 ﬁIm{,u,* “E(ro)}. (2.31)

2.4 Surface plasmon polaritons

2.4.1 Overview of surface plasmon polaritons

Surface plasmon polaritons (SPPs) are electromagnetic excitations in association
with charge density waves on the surface of metals, the existence of which is charac-
teristic of the interaction of metallic structures with light. The interaction of metals
with electromagnetic fields is primarily determined by the free conduction electrons
in the metals, and essentially governed by the macroscopic Maxwell equations.

Due to the free electron behavior inside the metals, SPPs possess two main fea-
tures, i.e., the tight confinement of electromagnetic waves, even below the diffraction
limit, and the pronounced field enhancement [57]. The theoretical foundations of
SPPs, a particular type of surface wave, was established around 1900 in the context
of radio waves propagating along the surface of a conductor with finite conductivity
[58, [59]. Throughout the 20th century, SPPs have been rediscovered in different
contexts. However, the unique properties of SPPs and the possible applications
were far from appreciated until the end of 20th century, in accordance with the ad-
vance of nano-technology as well as the approaching to fundamental physical limits
of some crucial technological areas, such as optical lithography, optical data storage,
high electronics manufacturing and so on.

Especially in recent years, a flurry of activity in fundamental research and de-
velopment of surface plasmon based structures and devices is going on, ranging
from the freely propagating SPPs to localized SPPs [60]. The tight confinement
of the electromagnetic field of SPPs enables to manipulate and route “light” on
the nano meter scale which is far below the diffraction limit, such as light guiding
[7], enhanced optical transmission [6I] and high resolution optical image [60] [48].
Meanwhile, the field enhancement due to the small mode volume opens new ways
to enhance light-matter interactions, which might have potential applications in
energy harvesting [62] or biosensing [63]. Different metallic structures have been
extensively studied in the last few years due to the possibilities of integration and
miniaturization, though limited by the intrinsic losses of the metals in the opti-
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Chapter 2. Spontaneous emission, local density of states and dispersion relation

cal frequency range. The dramatic enhancement of the field intensity due to the
field concentration and geometric slowing down of the mode propagation provides
an excellent platform to study single photon nonlinear optics [46] and light mat-
ter interaction at the single-emitter-single-photon level. The thesis will be solely
concentred on the single photon emission by a single quantum emitter, which is
mediated by optical plasmons.

2.4.2 Drude model

The basic optical properties of metals can be obtained by a complex dielectric
function from so-called Drude model theory [64]. The Drude model developed in
1900 is based on the kinetic gas theory, which assumes a gas of non-interacting free
electrons that have an effective mass m, and a damping term . The equation of

motion for the free electrons gas subjected to external electric field Ege™ ™! is

0%r

me% + me'yg—; = eEye™ ™t (2.32)
where m, and e are the effective mass and the charge of the free electrons. A typical
solution to Eq. ([232) can be formulated as » = roe~**. The accumulation of the
induced dipole moment p of the free electrons gives a macroscopic polarization per
unit volume P = nu, where n is the number of the electrons per unit volume. The
constitutive relation [65] also gives P = go(e(w) — 1) Ege~!. With simple algebra,
one obtains the following results,

LUQ

rude =1- p' —, 2.33
eDruae(w) = 1= e (2.3

where w, = /ne?/(meep) is the volume plasmon frequency. Equation (233)) can
be split into the real part and imaginary part,
B
1-— +1 .
w2 +92 ww?++?)

€Drude (w) = (234)

As a classical model, the Drude model captures the main features of interaction
between metals and light, with a remarkable accuracy of the optical properties of
metals in the infrared regime. For high frequencies in the visible range, the response
of the bound electrons, i.e., the interband transitions, might need to be included.
Nonetheless, for many metals at optical frequencies the Drude model generally
gives quite accurate results for the optical properties, as compared with experi-
ments. Similar behavior is not reproducible in other spectral ranges using the scale
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Figure 2.3: (a) The dispersion relation of SPPs at a metallic-dielectric interface. (b)
The field profiles of the E, component of the SPP in the metals and dielectric. Z,,
(Z4) is the penetration length (field amplitude 1/e length) in the metals (dielectrics).

invariance of Maxwell’s equations, since material parameters change considerably

with frequency.

2.4.3 SPPs on a flat metal-dielectric interface

The simplest plasmon based device is a flat metallic-dielectric interface, at which
the evanescent electromagnetic waves coupled to coherent oscillations of free charges
at the metal surface can be supported. Assuming that the interface is normal to
z and the SPPs propagate along the x direction, the dispersion relation of such
surface bound SPP waves, which relates the real part of wave vector k, and the
optical frequency w, is given by [64],

EdEm
ke =k , 2.35
v =hoy | T (2.35)

where €4 and €, are the dielectric constants for the dielectric and metal respectively,

and ko is the free space wave vector. The requirement for surface waves propagating
along the surface is that kjf should be real, i.e, €4 + &, < 0 and |e,,| > 4. Such
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Figure 2.4: Magnitude of electric field |E| = /EZ + E2 + E2 in the transverse
plane of (a) the standard single mode optical fiber, (b) 100 nm radius metal-
lic nanowire and (c) the metallic slot waveguide. (d) Sketch of tapered metallic

nanowire.

condition can be fulfilled for metals or highly doped semiconductor in the visible
and infrared region.

Under the aforementioned condition, the SPP wavevector is larger than the light
line ko+/24, as shown in Fig. 23] (a). Hence, the wave vectors along the Z direction
both in metals and dielectric are purely imaginary, which indicates that the field
amplitude of the SPPs decreases exponentially, cf. Fig. 23] (b). Such exponential
decaying behavior of the field reveal the relevance of the interface and the “trapped”,
non-radiative nature of SPPs. One distinctive feature is the tight confinement along
the z direction, which provides the possibilities of manipulating, i.e., guiding light
below the diffraction limit. Due to the large momentum associated with SPPs,
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light cannot be coupled to SPP waves directly. To compensate the momentum
mismatch between the optical plasmons and photons, several techniques, such as
prism coupling, grating coupling and defects scattering coupling have been proposed
and experimentally realized [64] [66].

2.4.4 Evanescent waves, field concentration and field enhance-
ment

Evanescent waves can be induced by the inhomogeneities of the photonic environ-
ment. The simplest case of an inhomogeneity is a plane interface, i.e, the air-glass
interface. The presence of such air-glass interface will give rise to reflection and
refraction due to the boundary condition constraints, the ratio and phase shift of
which with respect to the incident light are described by Snell’s law. When a plane
wave of light is incident from the denser medium (i.e., glass) and has an angle of
incidence beyond a critical angle, the light can be totally reflected. Meanwhile, an
evanescent wave is created from such plane wave incidence, which is usually referred
to as total internal reflection. Since the evanescent waves do not transport energy
along the direction perpendicular to the interface, there will be no power flux de-
tected for the refracted part of the light, especially when the observation point is far
away from the interface, saying larger than several hundred optical cycles. However,
the evanescent waves in the total internal reflection phenomena transport energy
along the surface, similar to the SPPs supported by a metallic-dielectric interface.
In the photonic environments, the corresponding eigenmodes can be decomposed
into the plane waves characterized by the wave vector k. In a cartesian coordinate
system, the three components of the wave vector k = [k, k, k.] satisfy the

following relation,
e(r)kg = kI + Kk + k2, (2.36)

where (7) is the spatially dependent dielectric constant with spatial dependence.
Depending on various optical systems, k;, k, and k. can be real or imaginary, as
long as the condition defined by Eq. (236)) is fulfilled. For an imaginary value of
ki, i € (x,y,2), the field along the i-axis has an evanescent feature and decays
exponentially. Usually, the field for evanescent waves decays exponentially along
the direction which is perpendicular to the interface between two different media.
In optical imaging systems, evanescent waves induced by a conventional lens can
not reach the image plane and functions as an obstacle, which fundamentally limits
the minimum size of the image spot. The essence of near-field optical microscopy
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is to convert such evanescent waves into the measurable form of far-field radiation
before it becomes really evanescent. On the other side, from waveguiding point of
view, the evanescent waves in the transverse plane induced by the inhomogeneity
in the index contrast waveguides, i.e., optical fibers and plasmonic waveguides, are
essential for guiding light and avoiding the leakage in the transverse plane.

The field concentration by the metallic-dielectric interface is qualitatively mea-
sured by the penetration length Z; of the evanescent wave in medium j, j € (m,d),
which can be obtained from Eq. (Z33) and Eq. (230)),

1 o
Zi= ——nt 2.37
7 ko vEd Tt Em (237)

For example, for a silver-air interface at a wavelength of 1 ym with ¢,, = —48,
g4 = 1, the penetration lengths are on the order of 650 nm in air and 14 nm in silver.
The confinement of the field can be substantially improved by introducing another
dimensional confinement, i.e., one additional imaginary component of k by changing
the waveguide geometry, like metallic nanowire and metallic slot waveguide, as
shown in Fig.[Z4]l For such 3 dimensional waveguides with translation invariance
along propagation direction, the effective mode area in the transverse plane (X — Y
plane) is usually defined as the region, on the border of which the field amplitude
is 1/e of the maximum. For a 100 nm radii metallic nanowire, one can estimate the
effective area is around 300 x 300 nm?, shown in Fig.[Z4(b). For the standard single
mode optical fiber, the effective mode area approximately equals to 16 x 16 (um)?,
cf. Fig. 24 (a). With the same power flux, the field on average is enhanced by a
factor of 50. The effective mode area can further be squeezed in the metallic slot
waveguide, shown in Fig. 24 (c), and approximately equals to 50 x 50 nm?, which
indicates an enhancement of the averaged field by a factor of 160. It was reported
that using a tapered metallic nanowire, the propagating SPP can be adiabatically
transformed into localized surface plasmons without major losses [67], as sketched
in Fig. 241 (d). Apart from the tight confinement of optical field in the transverse
plane, the geometric slowing effect gives rise to the accumulation of the SPP energy
at the very end of the tip and the corresponding enhancement of local field by
more than 3 order of magnitude. Such significant increase of local field is valuable
for nonlinear optics, and can also potentially merit the efficiency of many optical
devices.
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Figure 2.5: Dispersion relation versus radius for the cylindrical gold nanowire with
the background medium of PMMA (n=1.414) at the wavelength of 1 pm. Inset
(a) shows the waveguide structure. Inset (b-g) show electric field orientation of the
possible eigenmodes supported by the waveguide.

2.4.5 Dispersion relation of metallic wires and square plasmonic
waveguides

One of the major purposes of the thesis is to study the coupling between an quantum
emitter and the freely propagating SPPs, hence it is essential to study the dispersion
relations of the propagating plasmonic modes for an efficient coupling. The starting
point of the numerical analysis of the plasmonic waveguide is the wave equation for
the electric field with j=0 in Eq. (23],

V x(VxE) -k} E=0, (2.38)

where ko = w,/Zofi0 is the vacuum wave number, €, denotes the dielectric function
relative to vacuum and pu, represents the relative permeability constant, which is
assumed to be 1 throughout the thesis. Due to the invariance along the z-axis, the
Z-dependence of the solution to the wave equation must be that of a plane wave
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Figure 2.6: Propagation length versus radius for the cylindrical gold nanowire at
the wavelength of 1 pm.

(complex exponential),
E(z,y,2) = Eqo(z,y)e I@t=02), (2.39)

For the guided plasmonic modes, at a specific frequency w, two quantization
indices are needed to specify a complete set of orthogonal modes, i.e., & = {p, 5}.
B denotes the propagation constant (the component of the wave vector along the
z-axis), and the index p represents the polarization of the mode. The waveguide
structure examined consists of two regions 2 and A. €2 is the lossy metal core, which
is surrounded by an infinite lossless dielectric medium A. The transverse compo-
nent of the wave vector, defined as k;; = jk;1, fulfills jr;1 = \/ﬁ—jei — (3% with
i € [, A], where ¢; is the relative permittivity. FEM is utilized as a numerical tool
to calculate the guided plasmonic modes. The infinite dielectric medium is trun-
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Figure 2.7: Dispersion relation versus side length of square plasmonic waveguides
with background medium of PMMA (n=1.414) at a wavelength of 1 ym. The metal
core is gold. Inset (a) shows the waveguide structure. Inset (b-e) show electric field

orientation of the possible eigenmodes supported by square plasmonic waveguides.

cated to perform the finite element analysis of the waveguide structure by placing
the structure inside a computational window, which is large enough to guarantee
the field vanishing at the boundary. Here, we consider an optical wavelength of 1
pm and the relative optical permittivities of the waveguide are eq = —50 + 3.85j
and 5 = 2, corresponding to gold [68] and an ordinary polymer, i.e., polymethyl-
methacrylate (PMMA). The dispersion and the field orientation of the possible
modes for cylindrical [47] and square waveguides [69] are presented in Fig. and
Fig. 2 respectively. As shown in the inset of Fig. 23] these modes can be repre-
sented by two indices, where the first index corresponds to the mode with angular
moment of m, and the second index describes the polarization degenerate mode with
the same m. For example, if E™° denotes a mode related with angular moment of
m, then E™? denotes the corresponding degenerated mode, the field distribution
of which is rotated by 6 along the Z axis compared with E™, where 0 = 7/2m.
As pointed out by Takahara et al. [6], the fundamental mode E% does not have
a cutoff size of the radius, which is confirmed by the dispersion relation in Fig.
The modes supported by the metallic nanowire preserve the cylindrical symmetry
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of the waveguide. Due to the constraints from the boundary condition, only TM
modes exist.

The propagation length L = [Im(3)]~! with the radius of the gold wire is shown
in Fig. The two modes E9 and E(*9) are long range propagating modes, with
propagating lengths around few hundred pm. The fundamental mode E(©9 has the
shortest propagation length, compared with other higher modes. The shorter prop-
agation length indicates larger losses of E(°:*) mode, which is due to the stronger
confinement and larger fraction of SPP energy penetrating into the lossy metals.
For a specific SPP based application, one has to take into account the tradeoff the
between the confinement and propagation to achieve the best the performance.

For the square surface plasmon polariton waveguides, the fundamental modes,
which were studied by Jung et al.[69], can be labeled in terms of two indices, which
denote the number of sign changes in the dominant component of the electric field
along the x and y axes, respectively. Both plasmonic waveguides support one funda-
mental mode (E°°) without any cutoff size of the metal core, and the corresponding
propagation constants increase when the size of the metal core is further shrunk,
which slows down the propagating plasmonic mode. Such geometric slowing down
enhances the LDOS and the coupling efficiency to a nearby quantum emitter. We
note that plasmonic modes supported by the metallic strips attracted considerable
interest recently, due to the tight confinement of the field as well as the long range
propagation [70} [71} [72] [73]. In the following calculations, the size of the metal core
is restricted to be below the cutoff size of higher order modes so that only a single
mode is supported. We note that apart from the highly localized mode, a weakly
localized mode also exists. However, since the contribution to the total decay rate
from such a weakly guided mode is small, we simply treat this mode as one of the

radiation modes in our model.

2.4.6 Infinite long plasmon chains

Apart from the propagating SPPs, localized surface plasmons can also be excited in
many cases. Such localized modes can be excited from the scattering problem of a
small, sub-wavelength conductive particles in the presence of an oscillating electro-
magnetic waves. For frequencies close to the localized plasmon resonance of a single
particle, the periodic nano-particle chains can also give rise to coherent transport
of electromagnetic excitation below the diffraction limit. The nano-particle chain
is sketched in Fig. 28] (a). Such effect is well modeled by dipole-dipole coupling
between resonant particles on the chain for frequencies near the dipolar resonance,
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Figure 2.8: Black curves: real part of dispersion relation for the transverse modes
of the infinite long plasmon particle array waveguide (pitch between two particle
equals 160 nm, radius 50 nm )in glass with index of 1.5. The red line denotes the

“light line” in glass.

as long as the sphere separation d is more than about three times the radius [74], [75].
Due to the dipolar interactions with the near-field term which is proportional to
d~3, the nanoparticle chain supports longitudinal and transverse propagating po-
larization waves. The dispersion relation for the transverse modes supported by the
infinite long plasmon chain is relevant for the reconfigurable plasmon based single
photon sources which is explored in chapter 5. Hence we will briefly discuss the dis-
persion relation for the transverse plasmonic mode on an infinite array of plasmon
particles, calculated from a point dipole approximation. The method of the point
dipole approximation and its validation will be explained in Chapter 3.

It is shown that the radiation damping, retardation effects can dramatically
affect the loss and dispersion of the plasmon particle chain [75,[76]. It is also reported
that retardation causes the dispersion to split into two anticrossing branches for
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transverse modes [77]. As shown in Fig. (b), the real part of the corresponding
infinite chain dispersion relation for the traverse mode calculated from point dipole
model, which includes the radiation damping as well as the retardation effects, is
split into two branches by the “light line”. The anticrossing of the two branches
with the “light line” in glass is due to the coupling between the plasmons and the
free photons. The upper branch corresponds to highly leaky modes due to the
huge radiation losses, while the lower branch is essentially dark plasmons subjected
only to ohmic damping [(7]. Such polariton behavior is generic for the resonant

nano-particle arrays.
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Modeling techniques

3.1 Overview of numerical techniques

Substantial efforts have been made to solve a more general form of the wave equation
defined by Eq. ([Z9), namely with arbitrary time dependence, which is also a central
task in modeling nano-photonic devices. However, only for a few geometries such as
spheres and cylinders, one is able to obtain analytical solutions, by the assistance of,
e.g., Mie’s theory [78] and other modal descriptions [79]. For many other geometries,
one has to resort to numerical methods, like finite-difference time-domain (FDTD)
method, FEM, or other methods. These numerical methods are indispensable in
modern photonics, especially in modeling complex photonic devices. The advance
in the electronic computers enable us to design, analyze and optimize photonic
devices in a much cheaper way, with respect to that of constructing a prototype
physically and measuring it in reality. More importantly, numerical simulations
provide enormous amount of physical insight.

Among various types of numerical simulation tools, many are based on the
method of moments (MOM) [80], the FDTD method [81], and the FEM method
[82, [83]. Other methods, such as the point dipole method and finite integrate
techniques, can be identified as either a variation or an equivalent of one of the
first three [48]. The MOM has its origin in electromagnetic practice with special
emphasis on antenna theory. The method casts the solution for the induced current
in the form of an surface or volume integral equation where the unknown induced
current density is part of the integrand. Once the induced current is known, the
field at arbitrary position can be calculated with assistance of the Green’s function.
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Hence the MOM is very useful in solving radiation and scattering problem, typically
when the electromagnetic sources are the quantities of interests [80]. However,
the capability of MOM is challenged when the photonic environment is complex,
i.e., anisotropic and inhomogeneous, where the Green’s function is hard to obtain.
Moreover, the MOM generates a fully populated matrix whose computation and
solution are associated with a high degree of computational complexity. In spite of
these drawbacks, the MOM is a powerful tool and a preferential choice for analyzing

antennas.

The FDTD method, invented in the mid-1960s, is a popular computational elec-
tromagnetic modeling technique [81]. In FDTD, the space and time partial deriva-
tives in Maxwell’s equations are approximated by finite differences. The resulting
finite-difference equations are solved in a leaping frog manner. The method can
easily handle material anisotropy and inhomogeneity and has become very powerful
and increasingly popular due to its simplicity in formulation, implementation, and
grid generation. It is also a highly efficient method due to the fact that it yields a
broadband solution with one time-domain simulation through Fourier transforma-

tion.

Though FDTD can model dielectric structures reasonably well, i.e., photonic
crystals, it has severe drawbacks for modeling plasmonic structures [84]. Firstly, the
rectangular grids typically used in FDTD are not suitable for complex plasmonic
structures due to the high localization of the field at the metal-dielectric interfaces,
which requires much finer grid resolution than modeling of dielectric structures.
The piecewise constant approximation of the fields within grids in FDTD poses
difficulties in applying boundary condition at the metal-dielectric interfaces, which
is crucial for modeling the plasmonic structures. Secondly, in FDTD and other time
domain methods the dielectric functions of the material need to be approximated
by proper analytical expressions which give rise to considerable error in broadband
calculations. Apart from these general drawbacks, the LDOS calculations present
additional challenges for FDTD, due to difficulties in accurately transforming j - E
from the time to frequency domain, as explained in Koenderink et al [85], [86] [87].

However, FEM does not have such challenges due to the more advanced dis-
cretization strategy for complex geometric structures by using a variety of elements
of different shapes, and FEM is a frequency method which can handle arbitrary
material dispersion. One might consider other options, i.e., the Green dyadic func-
tion method [49] or point dipole method [88], however, the Green dyadic function

method encounters difficulties in constructing Green’s functions for complex geome-
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tries, and the point dipole model is limited to homogenous dielectric environments
in which the metals are embedded. Since we want to develop a generally applica-
ble quantitative method of modeling spontaneous emission for complex plasmonic
structures, FEM is chosen as the numerical tool to attack the problem. Therefore in
the chapter we will concentrate on the implementation of finite element modeling to
calculate the decay rates of quantum emitters coupled to plasmonic waveguides. In
the end of this chapter, the point dipole approximation and a multipole expansion
multiple scattering approach called MESME are briefly discussed. The point dipole
approximation is employed to calculate the dispersion of the infinite long plasmon
particle embedded in homogenous medium in Chapter 2, and MESME is used to
calculate the far field emission pattern and the quantum efficiency of a finite long
plasmon chain in Chapter 5.

3.2 FEM modeling of spontaneous emission enhanced

by a plasmonic waveguide

We focus on the modeling of the spontaneous emission of a quantum emitter at
nanoscale proximity to realistic plasmonic waveguides by using a FEM approach,
with special emphasis on calculating the spontaneous emission § factor. The
factor describes the fraction of the emitted energy that is coupled to the plas-
monic mode. Subwavelength waveguiding of plasmons in metallic structures has
been studied theoretically [6] [89] and has also been observed in a number of recent
experiments [7]. Enhanced spontaneous emission of an emitter coupled to plas-
monic waveguides has been proposed [9, [10] and experimentally demonstrated [§]
recently. Chang et al. [47] studied the spontaneous emission of an emitter coupled
to a metallic nanowire by exploiting, except for a single example, the quasistatic
approximation. In the quasistatic approximation, it is assumed that the magnetic
field vanishes. Hence the wave equation defined by Eq. (23] can be reduced to a
poisson equation by using the scale potential. Their model qualitatively shows that,
for small nanowire radii, it is possible to obtain efficient coupling without taking
into account the wave properties of the plasmonic mode. Jun et al. [I0] employed an
FDTD numerical method to study the different spontaneous emission decay rates of
an emitter coupled to a metallic slot waveguide, but using simplifying assumptions
for the LDOS calculations of the plasmonic mode. A self-consistent model with a
rigorous treatment of all the spontaneous decay rates involved, i.e. radiative as well
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as non-radiative is desirable for modeling realistic nano-photonic devices. The aim
of this section is to provide such a detailed modeling and to extend earlier results to
realistic structures. Before we go to the details of modeling plasmonic waveguides
coupled to a quantum emitter, we will study a simple FEM example to illustrate
the basic procedures to solve a differential equation by using FEM.

3.2.1 A simple FEM example based on variational formulation

The finite element method is a numerical technique for finding approximate solutions
to boundary-value problems of mathematical physics with assistance of an electronic

computer. Given a boundary-value problem defined by the differential equation

Lo = f, (3.1)
if the differential operator L is self-adjoint,
(Lo, 1) = (LY, 9), (3.2)

and positive definite,

>0 ¢#0,
Lo, ) = 3.3
(£6,0) {:0 I (33)
then its solution can be obtained by minimizing the functional given by [82],
1 1 1
F(fb):§<£¢,¢>—§<¢7f>—§<f¢>7 (3.4)

where f denotes an arbitrary function satisfying the same boundary functions as ¢
does. The angular brackets denote the inner product defined by

(6,9) = /Q g+ dQ, (3.5)

where 2 and asterisk denote the modeling domain and complex conjugate operation,
respectively. Equation ([34) is one of the two methods usually employed to formulate
the finite element solutions, the so-called variational form. Because of its several
advantages, such as the well-established mathematical foundations, convenience of
description, and elegance of formulation, the variational form was usually preferred
over Galerkin’s method to construct the finite element solution in the past, which
is also the reason that the variational form is adopted in the thesis.

To outline the basic procedures, let us consider a simple problem defined by a

second-order differential equation
Co—p41, O<z<l, (3.6)
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Figure 3.1: Discretization of the modeling domain z € [0, 1].

in conjunction with the boundary condition given by

¢f1::0 = 07

R (3.7)

The exact solution to the problem is

14 145 1
= - —x. 3.8
Bx) = o+ 50t + < (338)
Here we approximate the finite element solution to Eq. (3:6]) to outline the basic
procedures of implementing FEM modeling based on the variational formulation.

Firstly, the functional corresponding to Eq. ([B.6]) can be constructed as follows,

-1t de, ! .
F(@)== | (=)dz+ | (z+1)pdz, (3.9)
2 0 dx 0
The solution to Eq. (8:6]) can be obtained by minimizing the functional Eq. (39
with respect to q~5 , where é is the trial function. Secondly, the solution domain
(0,1) is divided into three subdomains, as sketched in Fig. Bl
The subdomains defined by (z1, z2), (x2,x3), (x3,x4) are equally spaced, which
3

is not essential. For instance, the values of x5 = i, r3 = £ can also be used.

Subsequently, we could assume a linear variation of ¢~5 over each subdomain defined
by
(3.10)

for x; < < ;41 and i = 1,2, 3, where ¢; are the unknown coefficients to be deter-
mined. The approximation of the unknown solution with each segment (element)
is called selection of interpolation function. Normally the interpolation is chosen to
be a polynomial of first, second and higher order. Higher order polynomials give
more accurate results, and also require more a complicated formulation. The simple
linear interpolation hence is used here, and still widely used in practice.

We can obtain the finite element formulation by substituting Eq. (3I0) into
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Figure 3.2: Numerical results compared with the exact values.
Eq. (39) as follows,

3 Tit1 T _ — .
Feyl [ e [ e 0 B g )
=1 B

. xz+1 — Iy i
A close examination will reveal that ¢; denotes the value of ¢(z) at x;. From the

boundary condition we find ¢; = 0, ¢4 = 1. Evaluating the integrals yields

= 3(¢3+ 03) — 30205 + 502 — s+ 5

= (3.12)

By minimizing F' we can calculate ¢o = 515_4117 O3 = ‘81—(1). Once we obtain the solution at
x;, the solution at the other points is obtained from the linear interpolation based in
Eq. (B3I0). The finite element solution is plotted in Fig. with comparison with
the exact solution. As can be seen, the exact values were obtained at x;, there is a
small discrepancy at other points between the exact solution and the finite element
approximated values. The discrepancy can be decreased by using more segments or
employing higher order polynomials.

The simple example above reveals the essential ingredients of the finite element
modeling, including discretization of the modeling domain, construction of the in-
terpolation function, formulation of the system of equations combined with the
boundary conditions, and solving the system of equations. Conventionally, the trial
function in the classic variational method is formulated as a combination of a set
of basis functions defined over the entire domain, while in FEM, the trial function
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is a combination of a set of basis functions defined over subdomains that comprise
the entire domain.

3.2.2 Modeling of plasmonic decay rate: 2D

Initially we calculate the electric field for a plasmonic waveguide numerically using
FEM, subsequently we construct the dyadic Green’s function based on the numerical
data. Then the imaginary part of electric-field dyadic Green’s function for a specific
guided plasmonic mode can be used to extract the spontaneous emission decay rate
of the emitter into that mode. In the following part we will explain how to construct
the electric-field dyadic Green’s function as defined in Eq. (2I0) for one guided
plasmonic mode [90}, [IT].

Rigorously speaking, the operator defined by L = [V x V x —kgs(r)] does not,
have a set of complete and orthogonal eigenmodes due to its non Hermitian char-
acter if e(r) is complex. Without loss of generality, we adopt biorthogonality to
form a complete set of “orthogonal” modes of the waveguides initially, and then we
will end up with an approximation from the power orthogonality for the plasmonic
waveguides. Suppose that E, is a set of eigensolutions defined by L, the biorthog-
onal modes E, are defined as the eigensolutions of the adjoint operator denoted
by L', which is obtained from the operator L by replacing (r) with its complex
conjugate. The biorthogonality condition is then given by

/5(1°)En(1°) [EL (7)) d®r = 8 Ny, (3.13)

™ T‘ t ™
with the completeness relation » %

n
onal completeness relation, the dyadic Green’s function G(r,r’,w) can be con-

I5(r—7'). From the biorthog-

structed from the eigenfunction expansion as follows [90],

G(r,r",w) = Ggr(r,v,w) + Gar(r,r",w)
_ ¥ En([EL ()] Vo (1) [Vl (+)]* (3.14)
= Zn: an)\n"' + Z #,

where the generalized transverse part of the dyadic Green’s function, Ggr, is con-
structed from the complete set of transverse eigenfunction E,,(7) given by,

~V XV x E,(r) + kke(r)E,(r) = \e(r)E,(7),

V-le(r)E,(r)] = 0. (3.15)

with the eigenvalue \,. The longitudinal or quasistatic part Gy is constructed
from longitudinal eigenfunctions that can be found from a complete set of scalar
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eigenmodes ¢, (7) satisfying

V- [E(T)v¢n(T)] = 0n¢n(r)a (316)

with the biorthogonality relation, [ &(r)Vo,(r)- [V} (7)]*d*r = 6,mM,,. Since we
are studying the guided plasmonic mode, which describes the field solution in the
absence of electric charges (V- [e(r)E,(r)] = 0), the longitudinal component will
vanish in the following calculations.

By applying the principle of constructing the electric-field dyadic Green’s func-
tion to the case of a plasmonic waveguide, we find the contribution to the dyadic

Green’s function from the plasmonic modes as

eaEo(r)El(r /)]*ejﬁ(zfz’)
(r,7") Z/ kggA_ R g, (3.17)

where the normalization factor is given by
5(6 = )3 No = [ =(r) Bur) - [EL (r)"d*r

(3.18)
= 28(6 — )5 / &z, y)Ea(,y) - [EL (2, 4)]" ddy,

which can be further simplified as N, = 27 [e(z,y)Eq(z,y) - [El(z,y)]*dzdy, if
one realizes that o and o’ are required to denote the same mode in Eq. (£3]). For
one plasmonic mode, the Eq. ([{3) is evaluated in closed form by the method of
contour integration as the integrand decays to zero at infinity in the upper and the
lower (3 plane,

5[\an (33 y)[an (33 y)]
d(k2ez)
~ieN

_ jchEag(x,y)[Ego(%y)]*
wNw,

Gfpl (r,7) =j27
(3.19)

)

where v, is the group velocity, defined by v, = dw/dB. The corresponding pro-
jected LDOS for one plasmonic mode can be calculated from the dyadic Green’s
function according to Novotny [48], cf. Eq. ZI8). If the dipole emitter is ori-
ented along the X axis, the projected LDOS for the plasmonic mode is given by
ppi(r,w) = 6|Eq .(r)|>/(Nvy). The spontaneous emission decay rate into the plas-

TTWO

3h€0
taneous emission decay rate in the vacuum, the emission enhancement due to the

monic mode can be calculated by 7, = |12 ppi (7, w). Normalized by the spon-
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plasmonic excitation is

st 07 Bag x (@, y)[E], x (2,y)]
"0 wiNvg

*

. (3.20)
Eq. (320) gives a general expression for the spontaneous emission decay rate into
a guided mode, supported by a lossy or lossless waveguide. In dielectric waveg-
uides, losses are generally small, and the biorthogonal modes E] can to a good
approximation be replaced by the orthogonal mode E,,. Such an approximation is

also valid for our plasmonic waveguide, where the imaginary part of the propaga-

tion constant for the fundamental mode is around 1% of the real part. According
Ja. (ExH"):zdA

. cos(@,y)| E(w,y)[?dA”
where A, denotes integration over the transverse plane. By applying the power

to Snyder[91], the group velocity can be calculated by v, = T
A

orthogonality approximation and plugging the explicit form of the group velocity
into Eq. (320)), we obtain the following expression for the plasmonic decay rate of
the fundamental mode,

Yol 3meeqEag, x (T, Y) By x(,9)

w kg [y (ExH%)-zdA (3.21)

3.2.3 Modeling of total decay rate: 3D

As described in the previous subsection, the well defined field components in the
transverse plane of the waveguide give the possibility of constructing the plasmonic
part of the dyadic Green’s function numerically. The reason is that the field is
concentrated around the metallic core and decays to zero on the borders when the
modeling domain is reasonably large. Hence, the perfect electric conductor bound-
ary condition is implemented to truncate the 2D modeling domain. However, for the
radiation modes, the field components in the transverse plane of the waveguide do
not vanish no matter how large the modeling domain is. Hence, it is extremely dif-
ficult to construct the dyadic Green’s function numerically for the radiation modes
in a similar way as for the guided mode. Therefore, we implement a 3D model to
include the radiation modes, as well as the nonradiative contributions, by solving

the wave equation with a harmonic (time dependent) source term,

[V x iv x —kie(r)]|E(r,w) — jwued (w) = 0. (3.22)

In this section, we introduce the FEM method to calculate the LDOS in a
2D model and solve an equivalent problem in a 3D model. We found that the
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LDOS can be efficiently extracted from the FEM numerical calculations, without
the numerical difficulties encountered in FDTD, when the boundary condition of
the modeling domain is properly handled. Concerning implementation of a FEM
calculation, Eq. (8:22) needs to be reformulated. If we introduce a test function
F(7,w), we can construct the functional corresponding to the wave equation in the
following way[92],

L :/ [V x -V x —k2e(r)E(r,w) - F* (r, w)dV —/ o () - F*(r,w)dV
1% \%4

i
_ / Miv < E(r.w)-V x F*(r,w)dV —/ k22 (r)E(r,w) - F*(r,w)dV
VvV Hr 1%
—/ o () - F* (r,w)dV + #F* (r,w)- [Min <V x E(r,w)]ds.
\%4 T
ov

(3.23)
where OV denotes the surface that encloses the volume V', and 7 denotes the out-
ward unit normal vector to the surface of the modeling domain. This is the vari-
ational formulation of the wave equation, which is required to hold for all test
functions. Eq. ([:23) enables us to formulate the finite element solution for such
a boundary-value problem by employing the standard finite element solution pro-
cedures, including discretization and factorization of a sparse matrix [92]. The
boundary-value problem defined by Eq. (823) was solved by utilizing a commercial
software package, COMSOL Multiphysics .

It is crucial to truncate the computational domain properly. As shown in
Fig. B3l we use two techniques for truncating the modeling domain: I) In the
X-Y plane, the computation domain is truncated by the perfectly matched layers
with thickness of half a wavelength in vacuum. II) Along the Z-axis, the compu-
tation domain is terminated by a mode matching boundary condition, which will
induce a certain amount of reflection from the radiation modes and the higher or-
der plasmonic modes if they exist. Essentially, the mode matching boundary is an
absorbing wall, which behaves as a sink of electromagnetic waves. There are dif-
ferent options for realizing the mode matching boundary to absorb a single mode,

depending on whether the absorbed mode is TE, TM or a hybrid mode. For a pure

Thttp://www.comsol.com
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Perfectly matched layers

a Metals
- Dielectrics
== Quantum emitter

Figure 3.3: A single quantum emitter coupled to a metallic nanowire. The grey
transparent region represents the perfectly matched layers, the mode matching
boundary condition is applied on the top and the bottom of the structure. The

quantum emitter is implemented by an electric line current.

TM or TE mode, it can be matched by simply applying the conditions,

1 kie,.E

LV x B, w) = _FosrBlr @) TM; (3.24a)
Hr Jb

1 1

—nx VX E(r,w)=—jnx —n x E(r,w), TE; (3.24b)
For Hr

on the boundary, where /3 is the propagation constant, and E;(r,w) is the tan-
gential components of the dependent variable E(r,w) on the boundaries in the
numerical model. The mode matching boundary condition for the hybrid mode can

be implemented as

1
—n x V x E(r,w) = jwuen x Hy, (3.25)
n

where E(r,w) is the dependent variable solved in the 3D model, and Hj denotes the
matched mode that is applied. In our model, Hy corresponds to the fundamental
hybrid mode supported by the plasmonic waveguide. It is calculated from the 2D

eigenvalue problem, and is given by

PYplPO

H, =
0 Psq

szejﬂLO = (HOZ’HOvaOZ)' (326)
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Table 3.1: The relations between the 6 field components for the fundamental hybrid

mode
Description Relation
Tangential electric field, 5Dt = —“%(n x Hopt)s — W%(Vt x nHY,)s
s € [, y]
Normal electric field EY, = —ﬁn- (Vi x Hop )
Tangential magnetic H3p, = H3,,
field, s € [z, y]
Normal magnetic field Hip = jH3,,,

Here, P54, Hoy and ( are the time averaged power flow, the magnetic field, and
the propagation constant, respectively calculated from the 2D model, while Py de-
notes the normalization factor of the power emission in the 3D model, and Lo
represents the half length of the 3D model. Due to the losses of the metals, the
magnitude of the magnetic field is a complex number. In order to guarantee that
the phase of F, at the position of the emitter is zero when the emitter is oriented

horizontally, the extra phase ¢ = arctan(%) needs to be compensated, i.e.,
- 2D

H, = 7;‘:0 Hy e/ (PLot9) In the 2D eigenvalue calculations, there are 6 compo-
nents involved for the hybrid fundamental model, the relations of which are tabu-
lated in Table Bl The magnitudes of the magnetic field, (szd’m, HY, .. szd’m),

are the dependent variables, which are calculated directly from the 2D numerical

model.

The total decay rate, Viotai, is extracted from the total power dissipation of
the current source coupled to the nearby metallic waveguide, Viotai/vo = Piotal/Po,
where Piotar = 1/2 fv Re(J* - Eyprq1)dV is the power dissipation of the current
source coupled to the metallic waveguide, and Py = 1/2 [;, Re(J* - Eq)dV is the
emitted power by the same current source in vacuum. Py is a normalization factor,
which is also used to normalize the power flow on the boundaries in Eq. (320]). As
demonstrated in Fig. [£4] the field is generated by the current source, namely, the
dipole emitter, which is implemented by a small electric line current. In our model,
the dipole is oriented horizontally. For an electric current source with finite size of
I (I < X\o), and linear distribution of current Iy, the dipole moment of the source
[65] is, p = jIpl/w. In order to avoid higher order multipole moments, the size of
the current source should be restricted below a certain value. Our numerical tests
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show that the variation of the total power dissipation from the size dependence of
the emitter is negligible when the size of the emitter is smaller than 2 nm.
Basically, the accuracy of Yiotai/70 depends on the length of the plasmonic
waveguide, which is studied in APPENDIX A (APPENDIX B) for the metallic
nanowire (square plasmonic waveguide). Accordingly we estimate the relative er-
ror on the computed data of Yiotar/70 for the metallic nanowire (square plasmonic
waveguide) to be £2.5% (+2.0%) in the following calculations for Ly larger than 1

pm.

3.2.4 Validation check of 3D FEM modeling

In order to check the validity of the mode matching boundary condition we studied
the length dependence of the total decay rate for two different plasmonic waveguides.
The length dependence of the total decay rate 7ot for the metallic nanowire is
shown in Fig. B4 The fundamental mode supported by the metallic nanowire
is TM, hence the mode matching boundary condition defined by Eq. ([3:24a) is
implemented. As can be seen from Fig.[3:4] the variation in the total decay rate is
reduced by increasing Lg, and the damped oscillation of the total decay rate with Lg
indicates a certain amount of reflection from radiation modes, which is confirmed
by the period of the oscillation (equal to the wavelength in a media with e = 2). We
also see that the variation of the total decay rate due to the length dependence is
below +2.5% due to the dominating excitation of the plasmonic mode for Ly larger
than 1.0 um. The relative error on the computed data is even smaller, less than
+1.0% for Lo larger than 1.75 um.

Regarding the square plasmonic waveguide, the condition defined by Eq. (3:23)
is applied on the boundary to absorb the hybrid mode supported by the waveguide,
where Hj is the magnetic field for the matched field. As shown in Fig. B3] there
is also a damped oscillation of the total decay rate with the length of the compu-
tation domain, and the tendency of achieving higher accuracy for yiotq; when Ly
is lengthened, which is similar to the length dependence study of the total decay
rate for the nanowire. Nevertheless, there are two distinctions between the two
plots: I) The variation of the total decay rate for the square plasmonic waveguide
is much larger than that for the metallic nanowire; II) The variation of the total
decay rate for the square plasmonic waveguide with L primarily stems from the
reflection of two different modes, which are indicated by two different periods in the
damped oscillation. The reflection of the fundamental mode, which is supposed to
be absorbed at the boundaries, is responsible for the oscillation with the period of
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Figure 3.4: Length dependence study of the total decay rate for the metallic
nanowire. The radius of the metallic nanowire is 20 nm, the distance of emitter

to the wire edge is 30 nm.

400 nm, the other oscillation with the period of 740 nm results from the reflection
of a quasi guided mode, denoted by E,,. The explanation is the following: The
boundary condition defined by Eq. (8:224al) can completely absorb the matched pure
TM mode, while it is not true for the boundary condition defined by Eq. ([8:23) for
the hybrid mode, and a significant reflection from a quasi guided mode also exists
for the square plasmonic waveguide. For the hybrid mode the last term in Eq. (8:23))
relies not only on the tangential components of the electric (magnetic) field, but
also on the normal component of the electric (magnetic) field, which is intrinsically
lost on the boundary in the vector element formulation of the 3D numerical model
[92]. Our interpretation is that even though the normal component of the electric
field can be included on the boundaries by Eq. (8:23]), the normal component of the
magnetic field is essentially missing in our 3D FEM model that employs a vector
finite element formulation [93][94], resulting in the reflections in the total decay cal-
culations for the square plasmonic waveguide. However, in Fig. B5la), it appears
that the points for which real (e’ (8 L0+¢)) = 0 holds approximately converge quickly
with minimum impact of the reflection from the fundamental hybrid mode. The
mode Fgyq, with effective wavelength of 740.07 nm, is characterized by the material
properties of the waveguide and is rather insensitive to the size of the metallic core.
Compared with other quasi guided modes or radiation modes, the mode Ey, has
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Figure 3.5: (a)Length dependence of the total decay rate for the square plasmonic
waveguide. The side length is 30nm, the distance of the emitter to the edge of the

square metal core is 20 nm. (b) Length dependence for the points from (a) (marked
by ellipses) where real(e?(3Lo+®)) = 0 holds approximately. (c) Illustration of the
reflection of the normal magnetic field of the fundamental hybrid in the 3D model,
with r and 0 being the reflection coefficient and phase shift respectively.
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a relatively significant contribution to v4,tq;, the normalized spontaneous emission
rate is 0.107. Since no extra effort is made to prevent the reflections of other com-
ponents of the mode E, it is understandable that the induced reflections give rise
to several peaks in Fig. B(a).

The normal component of the magnetic field of the fundamental mode in the 3D
model can be obtained by a 2D eigenvalue calculation, H, ; = 7;;l—joH;Ulej(ﬁ“rqb),
where [ is the distance from the observation plane to the emitter. Similarly, the
reflected normal component of the magnetic field at the position of the emitter
can be obtained by taking into account the phase shift due to propagation and
reflection, Hy o =r Vj’j—j)Hgdej(2’3L0+¢+9), as shown in Fig. (c). The reflected
normal component of the magnetic field will “generate” a perturbation term E to
the original E, component, the real part of which is integrated to calculate the
total power dissipation. According to Table Bl the reflected term E? from the
fundamental hybrid mode is given by

1 — Yo o i _
El=———— (P HE e BALo= o0y 3.27
T wE()E-:(F) (Vt X TL(T' ’YOPQd 2d,m¢€ )) ( )

The real part of E7 can be zero when L is appropriately chosen, therefore, the
obtained total decay rates are expected to approach the true values more closely
due to the vanishing contribution of EJ to the total decay rate. In Fig. B3la),
at the points with marked ellipses, the half model length L, fits the requirement
(real(EL) = 0), and we also found that the phase shift  is required approximately to
be 7 /2. Further investigation of the phase shift 6 involves technical details regarding
the implementation of the vector element formulation of the finite element method,
which is beyond the scope of the thesis, we refer to the references [92] (93] [95] [04].

3.2.5 Comparison with quasi-static approximation for metallic
nanowire

Due to the tight confinement of the plasmonic mode as well as the geometric slow-
ing down of the mode propagation [47], one can achieve very efficient coupling of
a single quantum emitter to metallic nanowires [47], which was previously stud-
ied mainly by employing a quasistatic approximation [56]. Here, we quantitatively
study the spontaneous emission of an emitter in nanoscale proximity to a plasmonic
waveguide beyond the quasistatic approximation, which is necessary when one is
concerned with realistic plasmonic waveguides that are compatible with current
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—15 + 3.85¢. The vacuum wavelength is 1 pm.

nanofabrication technology. Normally it is claimed that the quasistatic approxi-
mation is valid when the size of the structure and the distance of the emitter to
the surface are substantially less than the radiation wavelength. To resolve this
ambiguous criterion, we compare our numerics with the results obtained within the
quasistatic approximation and give a qualitative assessment regarding the validity
of the quasistatic approximation.

We calculate the full electrodynamic solutions by using the rigid full-vectorial
three-dimensional finite element method, as detailed previously. Our numerical val-
ues and the quasistatic values of the plasmonic decay rate and spontaneous emission
0 factor of the gold nanowire with different radius are plotted in Fig. The radius
of the gold nanowire varies from 5 nm to 100 nm. Fig. shows the transition of
the quasistatic approximation from approximate to inadequate, depending on the
size of the radius, with a cross indicating R = 20 nm. According to the deviations
between the numerical values and the quasistatic approximated values, the ten sub-
plots associated with different radius in Fig. are grouped into three different
regimes, namely, the quasistatic approximation regime, the skin depth regime, and
the full wave regime in which the quasistatic approximation breaks down. The qua-
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emission (3 factors for the square plasmonic waveguide.

sistatic approximation regime is limited to radii of the nanowire less than 10 nm, as
shown in Fig. (a, b, ¢, d), where we observe a good agreement between our nu-
merical values and the quasistatic approximated values. In this regime, the radius
of the wire is 100 times smaller than the vacuum wavelength, meanwhile the field is
strongly localized to an area on the order of the cross section of the gold nanowire,
which results in the vanishing of the wave properties in the transverse plane and
the applicability of the quasistatic approximation. We also note that in Fig. (b)
there is a few percent deviation between the FEM simulated spontaneous emission
( factor and the quasistatic approximated values due to numerical artifacts, since
it is not easy to obtain a good convergence when both the radius of the wire and
the distance of the emitter to the wire are very small. For large wires, as indicated
in Fig. (g, h, 1, j), we find significantly larger values of v,;/~o and the § factor
compared to those obtained in the quasistatic approximation. The break down of
the quasistatic approximation is due to the incapability of describing the coupling
between the electric field and the magnetic field that form the propagating waves,
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since the quasistatic approximation assumes that the magnetic field vanishes. One
may suspect that one can still obtain reasonable results from the quasistatic approx-
imation if the radius of the nanowire is % of the vacuum wavelength, namely 50
nm in our case, since 20 sampling points in one period normally is good enough to
resolve the wave properties. However, our numerical calculations, shown in Fig.
(g, h), indicate that this assumption is incorrect. Even for wires as small as 50 nm,
the quasistatic approximation breaks down, consistent with Akimov’s experimental
work [8]. The full electrodynamic solutions predict significantly larger values, up to
5-10 times, compared with the quasistatic approximation, even though the radius

of the nanowire is % or % of the vacuum wavelength.

Fig. (e, f) and others with the size of the radius close to the skin depth
are grouped into the skin depth regime. In this regime, the deviation between the
full electrodynamic solutions and the quasistatic approximation is somewhere in-
between, compared with Fig. (a, b, ¢, d) and Fig. (g, h, i, j). To further
study the influence of the skin depth and the limitations of the quasistatic approx-
imation, we investigate the radius dependence of W, which denotes the ratio
of the plasmonic decay rate obtained from our numerical method and that of the
quasistatic approximation, for metals with different skin depth, cf. Fig. BZl In
Fig. B the distance of the emitter to the surface of the metals, i.e., d, is a fixed
value for each curve. As can be seen from Fig. 3.7, the deviation between the two
results strongly depends on the size of the radius as well as the optical properties
of the metals, namely the skin depth. Coincidentally, the ratio of the plasmonic
decay rate obtained from our numerical method and the quasistatic approximation
for the four different metals is around 1.5 when the radius of the nanowire equals
the skin depth. In other words, one can qualitatively assess the validity of the qua-
sistatic approximation by considering the ratio between the radius of the metallic
nanowire and the skin depth. The electric field is severely depleted in the center
of the metallic nanowire when the radius is larger than the skin depth, and for the
fundamental mode the electric field is mediated by the magnetic field, which reaches
its maximum in the depletion area of the electric field. However, in the quasistatic
approximation there is no magnetic field to couple with the electric field, which
significantly impacts the field distribution and reduces the plasmonic decay rate
and the spontaneous emission 3 factor. Based on our numerical calculations, we
conclude that the quasistatic approximation is valid only when the radius is smaller
than the skin depth of the metals.
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3.2.6 Square plasmonic waveguide

To extend the cylindrical wire to other structures, i.e., rectangular metallic waveg-
uide or slot waveguides which are more compatible with current lithographic fab-
rication technology, we studied the coupling of the quantum emitter with a square
plasmonic waveguide as an example. As shown in the inset in Fig. B8 the quantum
emitter is oriented along the X axis, and the distance dependence of the plasmonic
decay rates and spontaneous emission 3 factors is calculated as function of distance
from the emitter to the metal surface along the X axis. For the square plasmonic
waveguide, though the electric field of the fundamental mode is concentrated around
the four corners, one can achieve an efficient coupling between the plasmonic mode
and a horizontally oriented quantum emitter. With optimized side length of the
waveguide and distance of the emitter to the edge of the waveguide, the g3 factor

can reach 80%.

3.3 Point dipole model and MESME

The point dipole model is a general method to compute scattering and absorption
of electromagnetic waves by point dipole scatterers, which in reality can be particles
with arbitrary geometry and composition [88],[96]. The point dipole model is also
called the discrete dipole method or coupled dipole method in the literature [48]. In
the framework of point dipole approximation, the field inside the discrete scatterers
is assumed to be constant so that the excitation of higher-order multiple components
in the scattering field can be neglected, which requires that the physical size of each
scatter or the discrete volume element inside the scatter should be sufficiently small
in comparison both with the light wavelength and distance between the center of the
scatterers. For a single particle, the local field corresponds to the incident field. For
an ensemble of particles, the local field is a superposition of the incident field and
all the scattered field from the rest of particles. To solve such problem, a formalism
is needed for solving self-consistently the fields of an arbitrary number of coherently
interacting dipoles.

The particles are not necessarily separated. They can also be joint together
to form a macroscopic object. Hence, the response of matter to the incident field
can be formulated as a collective response of individual point dipoles, each of them
occupying a volume element. To illustrate the basic concepts of the point dipole
approximation, we consider a chain of separated metallic particles driven by the
field E,,.e” ™!, as sketched in Fig. We consider a chain of point dipoles spaced
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E gy

Figure 3.9: Sketch of the point dipole model. The induced field from the polariz-
ability of one point dipole due to the external illumination of light will contribute

to the polarizability of other point dipoles.

by a distance d. The electric field generated by a single dipole pe~**, oscillating

with frequency w can be determined as follows [73],

; 2
E(p,r,w) = 4%6[(1 - %)3(””;# + ‘:—Qw]eiwr/”*iwt, (3.28)
where 7 is the unit vector from the dipole to the field point at distance r, e = eyn?
is the permittivity of the homogenous medium in which the dipole is embedded,
and v = ¢/n is the corresponding speed of light. The polarization induced on nth
dipole localized at a position of 7, equals the polarizability «(w) times the local
field (omitting the frequency factors e~%?)

Pn = an(w) - Eloc(rn)- (329)

Ejoc(ry,) is the sum of the incident field and a contribution from all the other dipoles,

described as follows,

Eloc("'n) = Eloc,n - Eext,n + Z Edip("'n - Tm) (330)

m#n

where Eg;p,(r, — 7y,) is the electric field on site n scattered by dipole scatter m,
i.e., pm. Explicitly the coupled linear equations for the dipole moments p,, for N
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dipoles [75] can be written as

Pn = (W{Eeatn + = dla- M)

4me v
m#n (3.31)
S(TO 'pm)ro — Pm w_me - (TO 'pm)ro]eiw|n—m|d/v}
|n —m|3d3 v2 |n —m|d '

Within the Drude model, the polarizability of a metallic particle in the quasistatic

approximation is

2
“o

QADrude = ATR3e (3.32)

wi —w? —iwy’
where R is the radius of particle, wg = wp/ V3 is the resonant frequency for the
metallic particle, with the bulk plasmon frequency of wp and damping term -~
defined as in Eq. (233). In such dipole limit, i.e., the particle being described by
the polarizability «, and the particle is polarized by the external field and in turn is
radiates a scattered field. Usually the effective polarizability aeys(w) is introduced
to account for the radiation reaction to maintain the energy conservation between
extinction, scattering and absorption. Hence the radiation damping of itself is

included in the polarizability of each nanosphere by [75]

1 1 i w3
- a3 3.33
Qeff (w) X Drude (w) 6me 3 ( )

The second term in Eq. (3:33]) describes the radiation reaction. It arises from
spontaneous emission of radiation by the induced dipole. Equation (B3] can be

reformulated in a compact form as follows
M p=E.. (3.34)

For n dipole scatters, p and F is a 3n-rowed column vector of the dipole moments
and M is a 3n x 3n matrix. By solving these 3n complex linear equations, the
polarization p is obtained, and with this, the extinction cross-sections and other
properties may be calculated.

Compared with other volume integral methods calculating light scattering, the
distinctive feature of the point dipole method is that the solution for the “physically
meaningful” internal field, i.e., without the self term for each volume element, is the
polarization, which plays an integral role. In other words, any scatters in the frame-
work of point dipole approximation can be replaced by a set of interacting dipoles.
However, for larger particles or smaller separation between two neighboring parti-
cles, the dipole approximation is not accurate. The accuracy can be substantially
improved by employing multipoles expansion for each scatterer.
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In the thesis, a multipoles expansion multiple scattering code called “MESME” is
also used to calculate light scattering for optical nano-antenna structures [97, 98], [15].
MESME allows to obtain accurate solution to Maxwell’s equation for a cluster of
objects, including the near field and far field calculations of the scattered field. In
MESME, the incident field is first decomposed into multipoles around each object of
the cluster, meanwhile the scattered field of and in each object is also expanded in
multipoles. Subsequently, the multiple scattering between the objects can be carried
out based on the multipoles expansion, which yields a self-consistent solution to
scattered field. The self-consistent field can be solved by using a recursion method
or an iteration procedure. In the thesis the details of implementing MESME are not
explored, since the principle is similar to the point dipole approximation except that
a multipoles field other than a dipole field for each scatterer is used. In Chapter 5
MESME is applied directly to calculate the far field emission pattern and the local
field at the position of the emitter for predicting the quantum efficiency.

3.4 Conclusion

In this chapter, we have studied several modeling techniques to model single pho-
ton devices. First, we have developed a self-consistent model to quantitatively
study the spontaneous emission of a quantum emitter at nanoscale proximity to a
plasmonic waveguide using the finite element method, which is more precise than
the quasistatic approximation. The dyadic Green’s function of the guided modes
supported by the plasmonic waveguide can be constructed numerically from the
eigenmode analysis, and subsequently the normalized decay rate into the plasmonic
channel can be extracted. The 3D FEM model has been implemented to calculate
the total decay rate, including the radiative decay rate, nonradiative decay rate,
and the plasmonic decay rate. In the 3D model, it is assumed that only one guided
plasmonic mode is dominatingly excited, which is normally true when the size of the
cross section of the plasmonic waveguide is below 100 nm. Under such condition,
the spontaneous emission (§ factor was calculated.

We have discussed the effect of different skin depth on the plasmonic coupling.
The skin depth is used as a physical basis for the discussion on comparison between
our numerical approach with the quasistatic approximation for the gold nanowire.
For the cylindrical metallic nanowire we have observed good agreement with the
quasistatic approximation for radii below 10 nm, but for increasing radius the spon-
taneous emission § factor and the plasmonic decay rate deviate substantially, by
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factors of up to 5-10 for a radius of ~ 100 nm, from the values obtained in the
quasistatic approximation. We have shown that the quasistatic approximation is
typically valid when the radius is less than the skin depth of the metals at optical
frequencies. For the square metallic waveguide we have estimated an optimized
value for the spontaneous emission (3 factor up to 80%. In second part, we have
briefly discussed the point dipole approximation and MESME.
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Chapter 4

Single optical plasmon
generation based on single
quantum dot coupled to

metallic slot waveguide

In this chapter, first we give an overview of the single photon sources, including
the special properties of such non-classical light, different light sources (emitters)
for generating single photons. In particular, we give a special emphasis on one
type of emitter, i.e., the self assembled quantum dot. The electronic structures and
the optical properties of the InAs/GaAs quantum dots are briefly discussed. In
the second part, we study the spontaneous decay and waveguide mode coupling of
a self-assembled quantum dot coupled to a metallic slot waveguide for the single
optical plasmons generations, which can be coupled out as efficient single photon
sources. We focus on the coupling efficiency, i.e., the SE (-factor, of the quantum
dot coupled to the single plasmonic mode with special emphasis on analyzing the
impact of the inhomogeneity of the surrounding material. We numerically calculate
both the plasmonic decay rate and the total decay rate of the QD using the full 3D
FEM model as detailed in Chapter 3. Our results show that the presence of leaky
modes due to the inhomogeneity fairly affects the plasmonic decay rate, while the
SE p-factor is substantially reduced. We find that by decreasing the index contrast
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Figure 4.1: Comparison between the photon streams for (a) coherent light sources,
(b) chaotic light sources and (c) the single photon light sources.

within realistic experimental bounds, the SE g-factor can be increased by more
than a factor of 2.

4.1 Single photon sources and optical properties of

self-assembled quantum dots

4.1.1 Properties of single photon states

In order to better grasp the original features of single photon sources with respect
to standard light sources, it is necessary to compare the statistic properties of
the light produced by a lamp (chaotic light) or by a laser (coherent light). The
“grainy” nature of light yields some quantum effects which have to resort to the
full quantization theory of light. In the quantum picture of light, a light beam is
considered as a stream of photons. A light beam will nevertheless have random
photon number fluctuations at short time intervals, though the beam may have
a well defined power-flux, which is essentially due to the discrete nature of the
photons. Such fluctuations in photon number is dubbed photon statistics of the
light [99]. The first serious attempt to measure the fluctuations in the light intensity
on short time scales was made by Brown and Twiss [I00]. Their experiments on
correlations between the star-light intensities recorded on two separated detectors
opened the door to more advanced experiments that would utterly lead to genuine
quantum phenomenons, e.g., single photon states [10I], and other squeezed light
[102]. Depending on the distinctions among the different light sources, the photon
statistics of the corresponding emitted light presents a clear different behavior [103],
as shown in Fig. @1l

A perfectly coherent light beam emitted by an ideal single-mode laser can be
represented as an electromagnetic wave with a fixed amplitude, frequency and phase,
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which is defined as follows,
E(t) = Ey(r)sin(k-r — wt + ¢). (4.1)

The average photon flux, i.e., the intensity of such beam is perfectly constant.
However, the photon statistics of such beam has a Poissonian distribution, which
is uniquely characterized by the mean value n. The fluctuations of a statistical
distribution from the mean value are quantified in terms of the variance. It is well-
known that for Poissonian distribution that the variance is equal to the mean value
[31]. Based on Poissonian properties, Glauber constructed the quantum represen-
tation of such a wave called a coherent state |«), which is expanded in the basis
of number-states, i.e., |a) = e=lol*/2 Zn: % [n) [53]. Coherent states are also called

quasi-classical states, since its quantum-mechanical average approaches that of the
classical wave with stable amplitude and fixed phase defined by Eq. (1)) in the
limit of strong excitation. While for a thermal light from a black-body sources or
the chaotic light from discharge lamps, the fluctuation in photon number is larger
than its mean value, which is normally referred as super-Poissonian distribution.
Number-states, single-photon states in particular are non-classical states. More
specifically, they are special cases of squeezed light, the quantum fluctuation of
which on the photon number component has been squeezed. An ideal amplitude-
squeezed source would be one delivering a regular stream of photons at regular time
intervals, and a single-photon source is a good example of it, cf. Fig.[41](c). Thus
the fluctuations of the number of the photon emitted from a squeezed light sources
are weaker than those of a coherent light sources.

A rigorous treatment of classifying a light beam in terms of photon statistics is
called ¢g2(7) function, which measures the probability of detecting a second photon
at time ¢ = 7 given the occurrence of detecting one photon at t = 0 [311, [99].
The ¢?(7) function is also called the intensity correlation function, or conditional
photon probabilities in quantum picture. Neglecting spatial coherence aspects, one
can simplify the g?(7) function as follows [99],

IWIt+7) (E*OE*(t+7)Et)E(l+T))

=T s meeer @Y

where I is the long-time average intensity, and (I(t)I(t+7)) is defined as (I(t)I(t+
7)) = % [pdtI(t)I(t + 7). For a chaotic light, the value g?(7 = 0) = 2 indicates
that thermal light has larger intensity fluctuations, and the total field strongly

fluctuates around zero, its most likely vale [31]. Such statistical tendency of photons
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Figure 4.2: Comparison of probability distribution of the number of photons with
a mean photon number (n) = 1 for (a) coherent light sources, (b) chaotic light
sources and (c) the single photon light sources.

to accumulate in photon stream of chaotic light beam is called photon bunching.
For a coherent light, there is non intensity fluctuations in classical picture, and thus
no photon bunches in the quantum pictures either. The complete randomness of the
timing between the photons, cf. Fig. [Tl (a), follows from the random nature of the
Poissonian statistics. The fact that g?(7) = 1 for coherent light can be interpreted
as a manifestation of the randomness of the Poissonian photon statistics. For the
perfect single photon states, shown in Fig. 1] (¢), the spacing of photons in the
flow is completely regular and thus ¢g?(7) = 0. Figure shows the probability
distribution of photons for three sources with an average photon number (n) = 1.
The chaotic light sources indicates large number fluctuations. The coherent light
source presents a Poissonian distribution, narrower than the chaotic light. A single
photon source can match this distribution by delivering single photons at regular
time intervals.

There are a broad ranges of applications that substantially relies on the single
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photon sources [I04]. In quantum cryptography, two partners can exchange an en-
cryption key as a stream of quantum bits (photons) and detect eavesdropping on
their communication line via the perturbation caused by the spy’s measurements
[105], [106]. Single-photon sources improve the degree of security of the quantum
transmission by making it more difficult for the spy to hide her measurement ac-
tions. Another potential use for single photons exploits entanglement, a key feature
of quantum mechanics [I07]. In the last 15 years, a more and more precise roadmap
for all-optical quantum computing has been traced by a series of pioneering theoreti-
cal papers [108,[109]. The schemes they propose are based on linear optics, the only
nonlinearity required for computing being contained in the measurement process
itself. Single-photon states play a central part in these linear optical quantum com-
puters. Bright and reliable sources of single photons would greatly help to explore
and demonstrate their working principles and, more generally, those of quantum
teleportation, quantum networks and other fascinating quantum phenomena. FEf-
ficient single photon sources also have significant impacts on the single molecule
spectroscopy and weak absorption measurements.

The potential ability of quantum computing relies on interference between two
single photons. In order to give rise to a fully destructive interference, the two
photons must be completely undistinguishable. For two identical photons described
by the same wavepacket, and with the same the arrival time on the beam splitter,
the two photons will emerge together at the output port of the beam splitter due
to the quantum interference [I10} I11], which are rather essential for quantum com-
puting and is ultimately determined by the indistinguishability of the two photons.
Therefore, it is desirable to develop efficient and coherent single photon sources for

quantum information technology.

4.1.2 Light sources for single photon generation

There are two major categories of generating single photon states, i.e., using macro-
scopic sources or using microscopic sources [103]. Strongly attenuated light beams
generated from a single mode laser and spontaneous parametric down-conversion
sources in nonlinear crystals fall into the first category. The photon statistics from
such faint lasers obeys Poissonian distribution, hence the two-photon rate grows as
the single-photon rate squared. To reduce the multi-photon rate, the single-photon
rate must be kept small, which fundamentally limits the repetition rate and the
efficiency of the single-photon emission [106]. Liitkenhaus also pointed out there is

also an optimal mean value when the transmission loss is included [I12]. Another
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type of pseudo single photon states called heralded single photon sources is the pho-
ton pairs generated from spontaneous parametric down conversion in a non-linear
crystal. Since the photons are created in pairs, the detection of one photon can be

used to announce of the existence of the other photon [I13].

The second category of generating single photon states is to use various mi-
croscopic single emitters, such as atoms, ions, organic molecules, polymers, color
centers and semiconductor nanocrystals. By collecting the fluorescence photons
from such single quantum emitter, one can ensure that one single photon is gener-
ated. In the following, we will briefly study their photophysical properties, as well
as their advantages and weaknesses of these different emitters. There are two crite-
ria for evaluating the figure of merit of the single photon sources: (I) The quantum
yield of the emitters needs to be as high as possible for an efficient single photon
sources; (II) In order to produce identical temporal profiles of the single photon
wavepackets, the exciton of the emitter should be solely radiatively broadened and
there is no jitter in the emission time [114].

Atoms and ions, e.g., the cold atoms and the trapped ions, are characterized by
purely electronic eigenstates with hyperfine structure, the transitions of which are
narrow and life-time limited [I15] [ITI6]. Besides, the emission on the vibrational
sidebands can be negligible. Hence, the emitted single photon wavepackets are
transformed-limited, and can be perfectly indistinguishable. However, producing
single photon sources from such type of emitter requires advanced and expensive
setup to isolate, manipulate and trap single atoms. The operation time of such
atom-based single photon sources is also challenged by the dwell time of the atom

in the cavity mode.

Organic molecules can also provide a high quantum yield in the fluorescence and
were the first condensed-matter system for the antibunching demonstration [117].
Compared with atoms, the eigenstates of molecules in condensed matter involve
vibrations and phonons, in addition to electronic states. Consequently, a transition
to an excited electronic state is distributed over a broad range of frequencies with
the creation of additional vibrations and phonons [48]. Under low-temperature con-
ditions, the fluorescence of single molecules shows deep antibunching and damped
Rabi oscillation [I18]. Aromatic molecules were used for an early demonstration of
a single-photon source in condensed matter [I17]. At room temperature, the ther-
mal motions cause fast dephasing, which gives rise to very broad absorption and
emission bands. Meanwhile, the thermal effect at room temperature also induces

the instability of photophysical properties of the molecules. Nevertheless, it was
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observed that the fluorescence of single molecules at room temperature also shows
very strong antibunching [119,[120]. It was shown that single molecules can operate

as single-photon sources [121], [122].

Color centers are defects of insulating crystals. A perfect diamond free from
such defects is colorless, it is the defects that give the diamond different colors. It
is well known that color centers present strong absorption and fluorescence bands
or lines, which stem from localized electronic states around interstitial or substi-
tutional impurities, vacancies, inserted charge carriers or combination thereof. In
particular, the nitrogen-vacancy (NV) color centers in diamond show excellent pho-
tonstability in their fluorescence emission spectrum, even at room temperature, due
to their mechanical stiffness and stability [123]. When optically pumped, an iso-
lated nitrogen-vacancy center emits single photons of visible light, making diamond
a promising solid-state room temperature light source for application in quantum
information processing. The efficiency of the single photon emission from an isolated
nitrogen-vacancy center in bulk diamond is normally limited in the high refractive
index, nevertheless, it was shown recently that an efficient single photon source

based on an array of nanopillars in diamond can be achieved [124].

Chemical synthesized core-shell nanocrystals, also called colloidal quantum dots,
are composed of an inorganic core surrounded by an organic outer layer of surfactant
molecules. In such core/shell nanocrystals, the shell provides a physical barrier
between the optically active core and the surrounding medium, thus making the
nanocrystals less sensitive to environmental changes, surface chemistry, and photo-
oxidation [I03]. The shell further provides an efficient passivation of the surface trap
states, giving rise to a strongly enhanced fluorescence quantum yield. It was shown
under certain condition that the emission quantum yield can be very close to unity.
At room temperature, the emission spectrum of the zero phonon line is broadened
to 50 meV by dephasing and spectrum diffusion and thus far from the lifetime-
limited [103]. At low temperature, the emission line narrows significantly, but has
challenges of producing indistinguishable single photons. Besides, the composition
of thousands of atoms in such semiconductor nanocrystals can also support multiple
excitations. Therefore, the elimination of multi-excitations is crucial in the strong
antibunching observed in nanocrystals and enables their use as single photon sources
[125, 126].

Apart from the self-assembled quantum dots (QDs) which will be described
later, the main features of single quantum system in view of applications as single

photon sources are briefly discussed. The choice of a quantum emitter substantially
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Figure 4.3: (a) Bands in InAs/GaAS semiconductor bulk material formed from
hybridization of atomic orbitals. (b) Sketch of energy levels in a QD with two shells
for the carriers in the conduction and valence band respectively. The shaded areas

indicate the wetting layer.

depends upon the intended application of the single photon sources.

4.1.3 Electronic structure and optical properties of InAs/GaAS
self-assembled quantum dots

Self-assembled QDs are islands of a low-band-gap semiconductor embedded in a
high-band-gap semiconductor, for example InAs in GaAs [127]. Due to a conse-
quence of lattice-mismatch between the deposited material and the underlying sub-
strate, such self-assembled QDs can be formed spontaneously under certain growth
conditions, resulting with three-dimensional islands standing on a two-dimensional
wetting layer, which can be subsequently buried to realize quantum confinement.
Self-assembled QDs give the possibilities of tailor their size, shape, composition and
location to a larger extent, compared with others, e.g., chemically synthesized QDs.
In addition, they can be embedded naturally during growth into more complex
structures for advanced optoelectronic devices.

The energy levels of electrons in the semiconductor crystal InAs/GaAS prede-
termine part of the electrons’ behavior in the InAs/GaAS self-assembled QDs. As
shown in Fig. (a), the isolated energy level of the electron is split into two levels
when two atoms are in close proximity and have to be treated as a coupled system.
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When N atoms are bound and coupled together, then each atomic energy level of
the constituent atoms splits into a band of IV discrete energy levels. One also notes
the conduction band minimum is built from atomic orbitals with s-like symmetry,
while the valence band maximum is built from atom orbitals with p-like symmetry
[128]. Due to the nanometer scale potential confinement of the electrons inside
InAs/GaAS self-assembled QDs, the energy levels become discrete [129]. A sketch
of energy levels of conduction and valence band states in the vicinity of the optical
band gap is shown in Fig. (b).

The electronic properties of InAs/GaAS self-assembled QDs are determined by
the confined electrons’ wave functions. The crystal potential of the electrons inside
of the QDs can be approximately split into (I) a complex atomic-scale potential
which is periodic with the crystal lattice of InAs and (II) a macroscopic potential
imposed by the heterostructure between InAs and GaAs. Hence, the electron (hole)
wave function can be written as the the product of two functions [12§],

Yeyn (1) = Feyp(r) - then(r), (4.3)

where F.(7) (Fp(r)) is the envelope function of the electron (hole) and wu.(r) (up (7))
is the Bloch function of the conduction band electron (valence band hole). The prop-
erties of Bloch function u.,,(r) are primarily determined by the crystal structures
as sketched in Fig. (a), while the envelop function F, /() is determined by the
nanometer scale potential confinement, cf., Fig. (b). Thus wu.(r) for the con-
duction band electron has the s-like symmetry, while uy(r) valence band hole has
the p-like symmetry. The overlap of the electron wave function with the hole wave
function determines the intrinsic coupling strength of the QDs coupled to light.
The optical properties of InAs/GaAS self-assembled QDs can be understood by
considering the electronic shell structure, the spin structure, and the many-body
interaction between the electrons and the holes [I30]. For neutral QDs, the exciton
(one electron and one hole), biexciton (two electrons and two holes) and multi-
exciton can be observed [I31]. For charged QDs, the transition presents different
features due to the Coulomb correlations between the carriers [I32]. In principle,
optical emission from the such a nanoscale object can be used as single photon
sources by spectral filtering. The properties of the emitted single photons from
such nanocrystals, e.g., internal quantum efficiency, jitter, coherence time, criti-
cally depend on the excitation process. As sketched in Fig. (b), the QDs are
optically pumped by generated electron-hole pairs in the wetting layer, which sub-

sequently are captured by the QDs and relax to the lowest energy level within a
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short time scale (1-100 ps) [129]. The pumping technique sketched Fig. (b)
is called non-resonant excitation. Besides, the QDs can also be excited by pump-
ing p-shell or s-shell directly, which are referred as quasiresonant excitation and
resonant excitation. Each excitation technique has its own advantages and draw-
backs [129], regarding development of a perfect single photon source. Recently,
self-assembled QDs based single photon sources coupled to various photonic struc-

tures have been demonstrated [133] [134] [I35] 2, @, [136], indicating a promising
future of self-assembled QD based devices for quantum information technology.

4.2 Single optical plasmon generation based on quan-

tum dot coupled metallic slot waveguide

4.2.1 Overview of QDs coupled to metallic slot waveguides

Due to their strong carrier confinement, small size, and long coherence time, semi-
conductor QDs are expected to have significant impact on scalable quantum com-
puting systems [I37] and non-classical light sources employed in quantum commu-
nication technology. It is thus important to develop solid-state solutions, and the
semiconductor technology benefits from an existing industry and possibility of in-
tegration with other functionalities. Whatever kind of quantum mechanical degree
of freedom is used, it is always desirable to achieve a very efficient coupling be-
tween a flying photonic qubit and a stationary qubit, which might function as an
interface between the quantum communication system and the quantum computa-
tion system. Recently it has been proposed and experimentally demonstrated that
a single quantum emitter can be efficiently coupled to surface plasmon polaritons
[8 @]. The plasmonic enhancement of light-matter interaction provides new pos-
sibilities for developing efficient single-photon sources and for mapping a quantum
dot based qubit to a photonic qubit, or vice versa. We investigate such plasmonic in-
duced enhancement of light-matter interaction, especially the preferential emission
from semiconductor QDs into a desired mode supported by a realistic plasmonic
waveguide, for developing efficient single-photon sources. The structure under ex-
amination is illustrated in Fig. 4] (a), showing a single self-assembled QD coupled
to lithographically fabricated metallic slot waveguides [89]. Compared with other
chemically grown metallic nanowires with a distribution of length and radius, the
lithographic wires mainly have two advantages: (1) the self-assembled QDs can be
positioned in the plane (X-Z plane) [I38], as well as along the vertical direction
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Figure 4.4: (a) Sketch of QDs coupled to a metallic slot waveguide. The inserted
AFM image illustrates self-assembled InAs/GaAs QDs. (b) Cross section of the
metallic slot waveguide with width, height, and gap width denoted by W, H, and
D, respectively.

(Y-axis); (2) the metallic slot waveguide can be fabricated lithographically [139]
with controllable sizes W, H, D, as illustrated in Fig. 4] (b). Meanwhile, such
structures also lead to challenges since the QD emission can be quenched at in-
terfaces [140] thus limiting how close to the plasmonic waveguide the QDs can be
positioned, and in addition any inhomogeneity due to different refractive indices of
the substrate and coating material is found to reduce the coupling.

In general, QDs placed near a plasmonic waveguide are subjected to multiple de-
cay channels, namely the radiative decay channel, the non-radiative decay channel,
and the plasmonic decay channel. The corresponding decay rates are denoted by
Yrads Ynonrad, and Yp, respectively. One notes that due to the interference between
forward and backward traveling guided plasmonic modes, the localized plasmonic
resonant modes in either X or Y directions can also be excited, which could substan-
tially contribute to SE of the QD and subsequently scatter the emission out of the

structure. However, the parameters of gap structure used in the section are away

63



Chapter 4. Single optical plasmon generation based on single quantum dot coupled to
metallic slot waveguide

from localized plasmonic resonance conditions. In addition, the measured internal
quantum efficiency for the typical QDs that we are considering are 90% accord-
ing to reference [I140], which can be further increased by tuning the sizes. In this
section the internal quantum efficiency of the self-assembled QD is assumed to be
100%. Hence the resistive heating of the metallic waveguide is the only mechanism
of non-radiative relaxation considered. Therefore, in our case the plasmonic decay
channel is dominating over SE from the QDs, and a larger plasmonic decay rate
can be used to extract coherent single photons with less influence from dephasing
process of the QDs. The SE (-factor, given as the SE decay rate for coupling to the
gap mode divided by the total decay rate, i.e., 5 = Vpi/(Vrad + Ynonrad + Vpi), is the
figure of merit of the single-photon source efficiency, which describes the fraction of
the emitted energy that is coupled to the single plasmonic mode. Therefore, it is
desirable to achieve, simultaneously a high plasmonic excitation rate and a high SE

[B-factor in the context of developing efficient and coherent single-photon sources.

4.2.2 Geometry and mode properties of the metallic slot waveg-
uide

We study the metallic slot waveguide shown in Fig. 4] consisting of two gold
strips (£401¢ = —50 + 3.85j), a layer of quantum dots and a GaAs substrate, at
the wavelength of 1000 nm. The electrodes are covered by a coating material with
refractive index n.. The geometric parameters of the waveguide and position of
the single QD are illustrated in Fig. [@4] (b). Throughout this section, the origin of
the coordinate system for the QDs, e.g., (Xqps,Ygps), is at the very middle of the
gap. The calculated effective index of the guided modes versus the width of the
metallic strip (W) is shown in Fig. (a) with fixed values of the other parameters
(n. = 1.5, H = 40 nm, D = 30 nm), and indicates a cutoff value of W for the
higher order modes. Hence, with the typical width and height illustrated in Fig.
(b,c), such a structure can support only two guided plasmonic modes, one with
E-field concentrated in the gap (gap mode) and one with E-field concentrated at
the corners outside the gap (separated mode). As shown in the inset of Fig. (a),
the propagation length of the gap mode is around 1 pum, which only allows to use
as short plasmon waveguides. More specifically, the plasmons need to be coupled
to dielectric waveguides within a few hundred nano meters (4 ~ 5 optical cycles),

to avoid excessive propagation damping due to the losses of the metals.
Zia et al. [I47] studied a thin Au film mounted on a fused silica substrate with
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Figure 4.5: (a) Effective mode index (ness) versus width of the gold strip (W)
positioned on top of the GaAs substrate, with the material indices of n. = 1.5, and
ns = 3.5. (b,c ) Magnitude and orientation of the electric field in the X-Y plane
for the gap mode and the separated mode for metallic waveguide with dimensions
W =100 nm, D = 30nm, H = 40nm. The field orientations are given by the red
arrows, the length of which give the amplitude of the electric field. Inset in (a):
Propagation length (field amplitude 1/e lengths) of the guided plasmonic modes
versus W.
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air on top, which is a typical plasmonic waveguide with inhomogeneous environment
examined extensively in both theory and experiment. In [141] it was found that the
bounded modes are localized at the glass-Au interface, while the leaky plasmonic
modes are localized at the air-Au interface. Similarly, the complete modal descrip-
tion of the metallic slot waveguide studied in this section consists of leaky modes
that are characterized by effective mode indices below ng, in addition to the gap
mode and the separated mode. Depending on whether the effective mode index of
these leaky modes is smaller or large than n., the leaky modes are entitled either
radiation modes or leaky plasmonic modes in this section. The radiation modes can
penetrate through both the substrate and the coating area and leak away, while the
leaky plasmonic modes are still confined in the coating area, and can only leak away
through the substrate. Due to the plasmonic features, i.e., the tight confinement of
the field in the coating area as well as large field enhancement close to metals, the
leaky plasmonic modes are expected to have a larger impact on the SE §-factor than
the radiation modes, since the QDs are localized in the area close to the metals.

4.2.3 Theory

In this section we briefly outline the theoretical foundation, for further details see
Refs [11, 90]. By employing first order perturbation theory, one can use Fermi’s

Golden Rule [48] to calculate the decay rate of a quantum emitter,

TWo

= —— |ul? 4.4
S (0. w0). (14)

v
where p is the transition dipole moment of the quantum emitter, p,, is the projected
local density of states, wg is the atomic transition frequency, and g¢ is the vacuum
permittivity. The projected local density of states p, predicts the available number
of optical modes for a dipole located at ro with orientation of n,. The dyadic Green’s
function G(r,7’,wo)}, defined by [V x V x —k2e(r)|G(r, 7' ,wo)} — Iod(r — ') =
0, contains all the classical information of the electromagnetic waves and can be
expanded in a set of eigenmodes. The dyadic Green’s function can be split into
a traverse part and a longitudinal part. Since we are studying the propagating
modes, which describe the field solution in the absence of free electric charges, the
longitudinal component will vanish in the following calculations. For a typical index
contrast waveguide with the cladding material of €2, the modal description of the

dyadic Green’s function, more specifically the transverse part, can be formulated as
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Figure 4.6: Illustration of evaluating the integral representation of the dyadic
Green’s function. The discrete poles yield the contribution to the decay rates into
the guided modes, while the gray and the yellow regions represent the continuum
contributions to the radiation modes and the leaky plasmonic modes, respectively.
The blue line C' denotes the full integration path.

follows,
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where Ea(x,y)e*j(‘”ot*’&) is the waveguide eigenmode labeled by «, found from
the wave equation V x V x E(r) — k3e(r)E(r) = 0. Here, 3 is the longitudinal
wave vector, ko, is the transverse wave vector in the cladding materials, and N,, is
normalization factor defined by N, = 27 [ e(z,y)Ea(z,y) - [El(z,y)]*dzdy. Equa-
tion (LH) gives the complete description of the modes, including guided modes as
well as leaky modes, supported by the wave guides. For the leaky modes, 5 and
ko1 can be chosen independently, while for the guided modes 5 and ks, are not
independent.

As can be seen from Fig. L6l there are three types of contributions to the full
integration range, i.e., the gray region, the yellow region, and the poles, which
represent the radiation modes, leaky plasmonic modes and the guided modes, re-
spectively. For a homogenous environment, the region with leaky plasmonic modes

(ne < B < ng) vanishes since n. = n,. By picking up the pole contributions from
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Figure 4.7: Gap-width dependence of the plasmonic decay rates, SE B-factors, and
the propagation length of the gap mode for an inhomogeneous dielectric environment
(a, b, ¢) and for a homogenous dielectric environment (d, e, f). In the subplot (a, b,
c), n. = 1.5, W = 100 nm and ns = 3.5, while for homogenous case in the subplot
(d, e, f), the surrounding material is air (ng, = 1.0), and W = 100 nm.
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the full integration range C, as illustrated in Fig. .6 one can extract the single
guided mode contribution. The normalized rate describing decay to a specific guided
plasmonic mode denoted by «q for a QD with horizontal dipole moment is given
by,
i _ 672 Eag o (@, y)[BL, 2 (2,)]"
Yo wWaNavgy

: (4.6)

where vy is the group velocity, E,, . denotes the x component of the electric field of
the guided plasmonic mode, and g is the SE decay rate in vacuum. The plasmonic
decay rate is proportional to the field strength divided by the group velocity, which
means that the emitter can release the energy to the plasmonic mode faster and more
efficiently if the plasmonic mode concentrates and slows down. The total decay rate,
Yiotal, 18 extracted from the total power dissipation of the current source coupled to
the nearby metallic waveguide from a 3D finite element model, Vtota1 /70 = Piotat/ Fo,
where Pyoiar = 1/2 [\, Re(J* - Ejota1)dV is the power dissipation of the current
source coupled to the metallic waveguide, and Py = 1/2 [, Re(J* - Eg)dV is the
emitted power by the same current source in vacuum. Using a similar strategy, we
study the length dependence of the total decay rate for the 3D finite element model
to check the validity of the mode matching boundary condition that is used to ab-
sorb the gap mode, as well as the accuracy of our numerical model. We also observe
the oscillations of the total decay rate due to the reflections of the radiation modes
and the guided mode, as expected. Accordingly, we estimate the relative error in
the calculations to be 2.5%. We refer to Chapter 3 for details on the implementation
of the 3D finite element model.

4.2.4 Single optical plasmon generation and influence of inho-
mogeneity

From Fig. (b,c), we see that the gap mode is primarily polarized along the X
axis, while the separated mode is primarily polarized along the Y axis. Therefore,
for a horizontally (vertically) oriented quantum emitter, only the gap (separated)
mode will be excited, while emission into the separated (gap) mode will be sup-
pressed. Self-assembled QDs have dominating in-plane transition dipole moments.
In particular, the orientation of the QD considered in the this section is taken along
X axis to achieve approximately the most efficient coupling between the QD and
the gap mode . Hence, light is preferentially emitted to the gap mode. We study

LFor the guided plasmonic mode, E, and E. are in the plane in which the the dipole moment
of QDs dominates. However the field strength of the longitudinal component (E.) is less than 1%
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Figure 4.8: Position dependence of the plasmonic decay rates and SE (-factors for
the metallic slot waveguide with inhomogenous environment(n, = 1.5, ny = 3.5)
and the homogenous case (n. = ns = 1.0) with Xgps = 0, H = 40 nm, W = 100

nin.

the influence of the width of the gap, the height of the metallic strips, and the
inhomogeneity on the SE -factor for the gap mode. To avoid the field singularities
induced by sharp metallic corners, the corners are smoothed by an arc with radius
of 2 nm, and the substrate is etched 5 nm around the metal.

In the following calculations, the width of the metallic strip is fixed to be 100
nm to ensure operation in the regime of a single (gap) mode. First, we study gap-
width dependence of the plasmonic decay rate and SE [-factor for an ideal QD
positioned in the middle of the gap (Xgs = Ygos = 0) in Fig. 7] for both the in-
homogeneous and the homogenous environment. The plasmonic decay rate for the
inhomogeneous case, shown in Fig.[f7)(a), is comparable to that of the homogenous
case, which indicates that the electric field in the middle of the gap is not much
influenced by inhomogeneity, though the overall field distribution for the inhomo-
geneous case contracts to the substrate-coating interface. However, the SE §-factor
for metallic slot waveguide embedded in an inhomogeneous dielectric environment
is severely impacted by inhomogeneity. We observe three distinct features: I) The

of the transverse components (E;), therefore, we only consider the X component of the electric
field and the exciton dipole moment for the plasmonic emission enhancement
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SE (-factor shown in Fig.[7(b) for the inhomogeneous case is significantly reduced
compared with the homogenous case shown in Fig. @7|e); II) In Fig. [@7(b), the
SE (-factor decreases monotonically with the gap-width, while for the homogenous
case Fig.[L7(d) indicates a maximum value of the SE S-factor for an optimized gap
width when H = 40nm and H = 60nm. We attribute such a significant reduction
of the SE p-factor in Fig. L7(b) to the leaky plasmonic modes, arising from the
inhomogeneity of the dielectric environment. It is well known that the interaction
of light with inhomogeneities induces evanescent waves. When the metallic slot
waveguide is embedded in an inhomogeneous dielectric environment, apart from
the aforementioned three channels, the evanescent waves induced by inhomogene-
ity of the dielectric environment will present additional competing channels for the
QD, which dissipate a considerable fraction of the emitted power from the source.
Secondly, the optimum gap width in Fig. L7 e) stems from the compromise of com-
petition between the plasmonic decay channel and the non-radiative decay channel,
both of which depend on the distance from the emitter to the edge of the metals.
For the optimized gap width, we observe an SE fS-factor larger than 90%, which in-
dicates that with 90% success probability a single optical plasmon will be generated,

and consequently can be employed as an efficient single-photon source.

From a waveguiding point of view, there is a tradeoff between the confinement of
the optical field and the propagation length [142], since the more confined the field of
the mode is, the shorter the mode propagates due to the intrinsic losses of the metals.
In order to couple the optical plasmons out as single photons, the optical plasmons
are required to propagate with a reasonable distance, i.e., a few micro meters. From
Fig. @L7(f), we can see clearly the tradeoff between the plasmonic excitation rate
and the propagation lengths, since the plasmonic excitation rate is proportional to
the confinement of the field. In the inhomogeneous dielectric environment, shown in
Fig.[@7(c), the tradeoff between the plasmonic excitation rates and the propagation
lengths can also be observed for small gap widths, while for larger gaps, the field
distribution depends more and more on the dielectric inhomogeneity, which means
that the propagation length does not increase any further, although the field is less
confined. Apart from the reduction of the plasmonic decay rates and SE [-factor,
the dielectric inhomogeneity also decreases the propagation lengths by a factor of
5 compared with the homogenous case, which might make the out coupling of the

optical plasmons challenging.

Moreover, as can be seen from Fig. 7 the plasmonic decay rate and SE (-factor
are rather sensitive to the gap width (D), but not to the height of the metals (H).
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Figure 4.9: Role of inhomogeneous environment, quantified by variation of plas-
monic decay rate and SE (-factor with n. for fixed ng = 3.5, Xgps = 0, H = 40 nm,
W =100 nm, D = 40 nm. The black line shows the propagation length of the gap
mode.

The interpretation is that the transverse mode profile of the gap mode is mainly
determined by the gap-width, rather than the height of the metal. Therefore we
take the height H as a fixed value (H = 40 nm), and examine the position as
well as the gap width dependence of the plasmonic decay rate and SE p-factor, cf.
Fig. As can be seen from Fig.[£8] the plasmonic decay rate and the SE S-factor
increase when the gap width becomes smaller, which originates from the stronger
confinement of the field for the waveguide with smaller gap width. Regarding the
position dependence, the plasmonic decay rate drops when the emitter is moved
away from the metals, while the SE (-factor remains almost the same when Ygps
is smaller than 50 nm. We also observe that the maximum SE S-factor (close to
60%) is achieved at a position outside the gap for D = 20 nm. Another striking
difference between the homogenous dielectric environment [10] and the inhomoge-
nous dielectric environment with the same geometric sizes is that the SE g-factor
is reduced significantly. The leaky modes that appear due to the inhomogeneity of
the waveguide [141], and are confined in the coating region and leak away through
the substrate region, thus seriously impact the achievable SE g-factor.
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Our interpretation in terms of the significant role played by the leaky plas-
monic modes is confirmed by the inhomogeneity dependence study in Fig. An
increased value of n., has three consequences: (I) The field will distribute more ho-
mogenously, which results in an increase of the plasmonic decay rate, especially for
the emitter positioned in the middle of the gap; (IT) The leaky plasmonic modes will
contribute less, and we also observe that the SE S-factor is increased to above 50%.
As can be seen from Fig. 6] decreasing the index contrast of the dielectric envi-
ronment will narrow the spectral range of leaky plasmonic modes, and consequently
their contributions will be suppressed; (IIT) The propagation length becomes shorter
since the increased value of n. will give rise to a larger value of the effective mode
index, consequently the mode will become more confined. When increasing n. be-
yond the value of 2, higher order modes will be excited for the particular waveguide
in Fig. 490 the study of which is outside the scope of the thesis.

4.3 Conclusion

In this chapter, firstly we have briefly discussed the properties of the single photon
sources as well as different types of emitters. Secondly we have studied the efficiency
with which emission from a single self-assembled quantum dot can be coupled to a
realistic metallic slot waveguide. With typical structure sizes, the emitted radiation
can be efficiently coupled to a single guided mode supported by the metallic slot
waveguides. We have found that the SE (-factor for the excited mode depends
strongly on the parameters of the waveguide, especially on the homogeneity of the
surrounding structure. Compared to the case of coupling to a metallic slot waveg-
uide with symmetric dielectric environment, the SE p-factor is strongly reduced.
We have attributed the significant reduction to the leaky modes induced by the
inhomogeneity. By increasing the refractive index of the coating layer to minimize
the impact of the leaky plasmonic modes, we have found that the coupling efficiency
of the quantum dot to the single mode supported by the metallic slot waveguide can
be above 50%. We also found that there is a balance between the coupling efficiency
and the propagation length of the optical plasmons, which indicates that in addition
to the competition between the three channels of SE decay, the propagation loss
of the optical plasmons needs to be taken into account, to achieve a high overall

efficiency of a plasmon-based single-photon source.

73






Chapter 5

Optical nano-antenna based

single photon sources

5.1 Introduction

Nano-scales devices that funnel all the light emitted from light sources into a single
guided mode of a nanocircuit, or preferential directions are highly desired in a wide
range of nanosciences, spanning from quantum optics, single molecules spectroscopy
to plasmonics. A practical implementation of such functional devices is the optical
analogue of a famous radio wave antenna knows as Yagi-Uda antenna, recently
proposed by several group [12] [I3] 14} 15]. Such nanoantenna can produce very
narrow beam over a broad bandwidth. Independently of the directionality, the
optical nanoantennas also provide an excellent platform to control the spontaneous
emission of a quantum emitter for efficient single photon sources [I43]. Due to
the phase matching between the eigenmodes supported by the metallic arrays and
the free photons, the emitter can be efficiently coupled to the far field radiation
in a very narrow beam, which can be collected simply by an objective lens and
further forwarded into an optical fiber. Importantly, the emitter can decay much
faster due to excitation of local plasmon resonances. Meanwhile, the emitter can
maintain a high quantum efficiency when it is appropriately placed, even though
the metals are lossy. In this chapter, we explore the possibilities of using optical
nanoantenna to control the spontaneous emission with the target of efficient single
photons sources. Firstly, we briefly study basic concepts of antennas. Secondly, we
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Figure 5.1: Sketch of radio wave Yagi-Uda antenna, consisting of a reflector, a

driven element and several directors.

mimic the conventional Yagi-Uda antenna to realize its optical analogy based on
an array consisting of several metallic rods. Our calculations show that such an
antenna can produce a very narrow beam as well as a pronounced Purcell effect
on the emitter. In the end, we propose a plasmon-based reconfigurable antenna to
controllably distribute emission from single quantum emitters in spatially separated
channels. Our calculations show that crossed particle arrays can split the stream of
photons from a single emitter into multiple narrow beams. We predict that beams
can be switched on and off by switching the host refractive index.

5.1.1 Radio wave antenna

An antenna is a transducer that receives or transmits electromagnetic waves, par-
ticularly for the radio and micro wave radiation [I44]. In other words, antennas
convert the far field radiation into electric current, or vice versa [144]. Due to the
pioneering work carried by Hertz, antennas have been known for more than one
century. In the first experiment, Hertz used an end loaded dipole as the transmit-
ting antenna and a resonant square loop antenna as receiver for a complete radio

system that operates on meter scale [83]. Nowadays, antennas are the indispensable
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components in the communication link for aircraft and ships, cellular phones and
various types of wireless devices [145].

Among many different configurations, the Yagi-Uda antenna is very simple and
practical, and has been widely used as a home TV antenna due to the cheap cost,
robustness, and ease to make [I44]. As sketched in Fig. Bl a Yagi-Uda antenna
consists of a number of linear dipole elements, one of which is energized directly by
a feed transmission line while the rest acts as parasitic radiators whose currents are
induced by mutual coupling [144]. The Yagi-Uda antenna is a directional antenna
designed to maximize reception or delivery of electromagnetic energy along z axis,
which is perpendicular to the dipole in the plane of the elements. Due to the
dipolar resonance, the lengths of the metallic rods are usually around \/2, and all
the elements are spaced about /4 apart. All the elements usually lie in the same
plane, supported on a single boom or crossbar.

The Yagi-Uda antenna is designed to function as an end-fire antenna, which is
realized by having the parasitic elements in the forward beam acting as directors,
while the one in the rear as a reflector [I44]. The end-fire beam formation is realized
by shortening the director elements, compared with the corresponding resonant
length. According to the equivalent circuit theory, the impedance of each director
is capacitive and its current gives rise to the induced electromagnetic field, while
the impedance of the reflector is capacitive and the phases of its current lag the
induced electromagnetic field [I44]. The Yagi-Uda antenna can be considered as a
traveling wave structure, the supported traveling waves finally detach themselves
from the last director element. The performance, i.e., directivity, is determined by
the current distribution in each element and also the phase velocity of the traveling

wave.

5.1.2 Antenna basics

Since the concept of the optical antenna is transplanted from the radio wave an-
tenna, it is necessary to introduce the basic concepts from the radio wave antennas
that are going to be applied for the optical antenna in the following sections.

A radiation pattern is a graphical representation of the radiation properties
determined in the far field region and is represented as a function of the directional
coordinates [144], as shown in Fig. Radiation properties can be the power
flux density, radiation intensity, field strength, directivity, and so on. The power
radiated from an antenna per unit solid angle is called radiation intensity U. The

normalized power pattern can be expressed in terms of radiation intensity U (0, ¢),
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as a function of angle, to its maximum value [I44]. Thus
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P(6,¢) = (5.1)
whereas the Poynting vector S depends on the distance from the antenna (varying
inversely as the square of the distance), and the radiation intensity U is independent
of distance, assuming in both cases that we are in the far field of the antenna.

In the radio wave antenna theory, another two basic concepts are the input
impedance and radiation resistance of the antenna, which is explored in the frame-
work of equivalent circuit theory. Figure shows the antenna in the transmitting
mode and the corresponding equivalent circuit model [I44]. The input impedance
presented by an antenna at its terminals is defined as the ratio of the voltage to cur-
rent at a pair of terminals or the ratio of the approximate components of the electric
to magnetic fields at a point. For instance, shown in Fig. (b), the impedance is

equal to ratio of the voltage to the current at the terminals a, b without loading.
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Figure 5.3: Transmission-line Thevenin equivalent of antenna in transmitting mode.
(a) antenna in the transmitting mode, (b) the equivalent circuit.

The impedance of the antenna is described as
Za=Ra+jXa, (5.2)

where R4 is the antenna resistance at terminals a — b consisting of radiation re-

sistance R, and loss Ry, i.e., R4 = R, + Ry, and X4 is the antenna reactance
at terminals a — b. In Figure (b), the current induced by the generator within
the loop is I, = V,/(Zy + Z4), then the power delivered to R, for the far field
radiation is 7R, /2, and the amount dissipated in Ry, as heat is IZ Ry /2. Hence,
by combining the two one can calculate the antenna radiation efficiency as

R,

= LR (5.3)

nA
The maximum power transported to the antenna occurs when we have conjugate
matching [144], namely, Z, = Z%. The input impedance of an antenna is normally
frequency dependent. Thus the antenna is only matched to the interconnecting
transmission line within a certain bandwidth. Moreover, the input impedance of the
antenna dependents on many factors, such as its geometry, the method of driving,
and surrounding materials. Only for some simple geometry, the input impedance
can be investigated analytically, many others need to be determined experimentally

or numerically.
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Figure 5.4: The role of optical antenna in the interaction between the local light
sources and the far field radiation.

5.2 Optical nanoantenna

5.2.1 General considerations

Usually an antenna is defined as a metallic device, i.e., rod or wire, for radiating
or receiving radio waves and microwaves. The radio wavelength is in the range
of several centimeter to several hundred meters. Antennas own the characteristic
dimension on the order of wavelength, thus the smaller scale and more demand-
ing accuracies make the optical nanoantenna challenging. However, the remarkable
advancements in nano-science and nano-technology provide such possibilities. The
optical analogue of the radio wave antennas has attracted considerable interests
recently [12] 3] 14} 15} [146], due to the ability of surpassing the diffraction limit
and manipulating light at the real nanometer scale. In practice, optical antennas
can be considered as a bridge between the source/sink of radiation, i.e., molecule or
quantum dot, and the far field radiation [146]. Importantly, an optical antenna can
make the transfer of energy between the two more efficient. Hence, such nanome-
ter antennas promise broad potential applications such as light-emitting diodes,
photovoltaics [62].
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Light lies in the frequencies where the electronic transitions of the material take
place, the optical antenna is normally driven by an atom, a molecule, or a quan-
tum dot, rather than a transmission line that is used for radio waves antennas. As
sketched in Fig. 54l the interaction between the local light sources, i.e., different
type of emitters, and free space electromagnetic waves is mediated by the optical
antenna. Three distinctive features arise due to the presence of optical nanoan-
tenna: (I) the LDOS can be enhanced tremendously. It has been reported that the
spontaneous emission decay rate of a quantum emitter embedded in the middle of
a bowtie antenna can be enhanced by a factor of 1340 experimentally [147]. (II)
The intrinsic properties of the emitter may also be modified, i.e., the polarizabil-
ity a. It essentially means that the high order moments of the quantum emitter
that normally are neglected, apart from the dipole moment, can also contribute to
the transition matrix element due to the highly localized field [146]. (III) The far
field emission pattern is primarily determined by the optical nanoantenna, which
is also the main functionality in the conventional radio and micro wave antennas
[12], [13] 141 15]. The first two features indicate that the pronounced enhancement of
the interaction between the emitter and the light can be achieved by using optical

antenna at single quanta level.

5.2.2 Optical circuit concept for nanoantenna

Though optical antennas are strongly analogous to their radio and microwave coun-
terpart, they have clear differences from each other, e.g., the different response of
metals in the two frequency regimes, which makes a direct downscaling of the con-
ventional antenna design impossible. Nonetheless it is still possible to construct
equivalent circuit theory for the optical antenna. Engheta et al, showed that it is
possible to transplant the design strategies and concepts into nanoantennas which
operate in optical frequency range, such as input impedance, nanocircuit loading,
and radiation tuning for optical antennas [I48] [I49] [I50]. Engheta and his group
reported that the half-wavelength optical dipole antenna with a finite feed gap in
the center, as illustrated in Fig. (a), bears a remarkable resemblance to the ra-
dio wave dipole antenna in terms of dipole resonance, input impedance and antenna
loading [148| [T49]. The starting point is to assign the optical “lumped impedance”
to nano-antenna by taking the ratio between the averaged optical potential to the
displacement current. The impedance of the nano-object depends on its shape, size
and also the material property. Depending on the response of material three dif-

ferent types of lumped impedance may exit. If the material is dielectrics (metals)
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Figure 5.5: (a) the optical dipole antenna with a finite feed gap, (b) the sketch of a
circuit model, and (c) Scattering of light by the metallic rod illuminated by a plane
wave with incident field parallel with the rod. Red dot denotes observation point.
The color scale indicates the field amplitude |E|.

with Re(e) > 0 (Re(e) < 0), the nano-object will behave as a capacitive (inductive)
impedance [I50]. For the lossy material Im(e) # 0, the nano-object can be consider
as a resistor [I50]. As shown the Fig. (b), the impedance equals to the paral-
lel combination of the impedance of the dipole itself and the impedance from the
contribution of the dielectric in the gap. For a fixed [, it is found that the antenna
hits several resonances. At the first resonance where Im(Z4) = 0, it is essentially
the dipole resonance with [ = Acsr/2, which can be seen as a “short-circuit” res-
onance in which the radio wave dipole antenna operates [I48] [I49]. On the blue
side, the second order resonance | = Ay emerges and Z4 yields an “open-circuit”
resonance with large impedance, which is also qualitatively analogous to an radio
wave antenna [148] [149]. One remark in terms of the resonances is the effective
wavelength, which is shorter than the vacuum wavelength due to the large momen-
tum of optical plasmons. The utilization of effective wavelength also underlies the
differences between the optical antenna and the radio wave antenna, which will be
further discussed in the following. Moreover, by loading the antenna gap with dif-
ferent materials, one can tune the optical response of the nanodipole antennas with
large flexibility [I49]. These basic concepts may pave the roadmaps towards future
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innovations in nanoscale optical antenna based devices.

5.2.3 Effective wavelength and metallic rods based optical Yagi-
Uda antenna

For the radio and micro wave antenna, it is the high conductivity of the metals that
gives rise to the currents, which convert the localized energy in the form of far field
radiation, or vice versa. While for the optical antenna, it is the plasmonic resonant
features that assist the translation of the local electromagnetic energy from the light
sources into the propagating waves. Due to the frequency dependence of the optical
response of the metals, penetration length of electromagnetic wave into the metals
called skin depth for radio waves is negligible, while for light the skin depth is on
the order of tens of nanometers. Consequently, such plasmonic effect prevents the
prescription of determining the antenna parameters in terms of vacuum wavelength
[146], which gives rise to a shorter effective wavelength seen by the antenna. Novotny
showed that the effective wavelength for a finite metallic rod with a smoothing in
both ends by rod radii R shown in Fig. (c) can be approximately given by [I51],

Ao
Neff

Aeff = — 4R, (5.4)
where )\ is the vacuum wavelength, and n.s; is the effective mode index of the
fundamental mode, which is implicitly assumed to be the only guided plasmonic for
the infinite long rod due to the comparable size of rod radii R with the skin depth.
The substraction of 4R is an approximated value and originates from the apparent
increase of the antenna length due to the reactant response of the rod ends [151].
Once the effective wavelength is known, the dipolar resonant length [; for the
finite metallic segment can hence be obtained by halving Acyy. Another option of
obtaining the dipolar resonance length is to monitor the length dependence of the
field amplitude at a point with fixed distance to one rod end in the presence of a
plane wave illumination [152], shown in Fig. (c). For a silver rod embedded in
polymer (n—+/2) with radius of 20 nm at the operation wavelength of 1 um, one can
calculate the dipolar resonance length [; = 178 nm from scaled wavelength defined
by Eq. (&4). Asshown in Fig.[5.6] the monitored field amplitude calculated by using
COMSOL reaches its maximum when the metallic rod is in the dipolar resonance,
indicating a value of 171 nm for dipolar resonance length [; from our numerical
calculations. The small difference might arise from the large value of radius ( 20

nm) used here. Higher order resonances can also be calculated from Fig. by
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Figure 5.6: Rod length dependence of scattering field amplitude (relative to the
magnitude of the incident field). The distance of the observation point is 5 nm away

from the rod end.

Table 5.1: Rods lengths and pitches for a radio wave antenna normalized by the

operation wavelength

Rod labels Lr Ld1 Ld2 Ld3 Ld4 Ld5 Ld6
Rod length 0.4869 0.4367 0.4312 0.4258 0.4203 0.4161 0.412
Spacing labels | Sr Sdi1 Sd2 Sd3 Sd4 Sd5 Sd6
Spacing 0.12 0.1775 0.1992 0.2209 0.2414 0.2579 0.2779

extending the metallic rod longer. The higher order resonances are seldom used in
antenna designs, hence we limit ourself to employ the dipolar resonance to construct
the optical type of Yagi-Uda antenna.

The dipolar resonance length is the key for construction of the optical type Yagi-
Uda antenna from the metallic rods. Following a recipe for an eight-element Yagi-
Uda RF antenna, we study its optical analogy by using aforementioned scaling, as
shown in Fig.[5.7l The spacing and the length of each rod of the optical nanoantenna
are illustrated in Fig.[5.1] (a), and the whole structure is embedded in the ordinary
polymer with refractive index of v/2. The rod lengths and spacings between two
adjoint rods of an eight-element Yagi-Uda RF antenna are tabulated in Table Bl
For the rod lengths, the effective wavelength, i.e., 2l; = 342 nm for the 20 nm
radii silver wire in our case, should be considered as the operation wavelength. For
the spacing, the effective wavelength should be scaled by refractive index of the
surrounding material to obtain the real operation wavelength, i.e., \/LE pm.
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Figure 5.7: (a) Sketch of the nano-optical Yagi-Uda antenna with 8 elements cou-
pled to a quantum emitter. (b) Emission pattern for the emission at A=1 ym. The
emission represents the radiation intensity defined as the power emitted per stera-
dian (dP/dS}) normalized to its maximum in the forward direction. (c¢) Snapshot in
the X — Z plane of the Z-component of the electric field generated by the radiating
dipole.
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With these concerns in mind, we calculate the far field emission pattern and
the near field distribution as shown in Figs. B7] (b) and [ (c), the calculation
of which is also implemented in COMSOL. We observe an enhanced directional
emission due to the presence of metallic rods, cf. Fig.[5.7 (b). The far field emission
pattern indicates a 10 times brightness enhancement over a free dipole in the forward
direction, and 90% of the emission can be collected in the forward cone by using a
objective lens with a numerical aperture of ~0.4. It is also remarkable that such
large directionality can be realized with a structure ( A\/6 wide, 1.2 A long) that is
comparable to the wavelength in vacuum. The near field in the antenna excited by
the dipole emitter shown in Fig. 5.7 (¢) provides the microscopic insight into the
predicted beaming. The radiating dipole emitter excites strong transverse dipolar
resonances on all the metallic rods, which substantially modify the far field emission
pattern of the dipole emitter by itself. Apart from the strong modification of the
far field emission pattern, optical nano-antenna can also enhance the spontaneous
emission decay rate of the dipole emitter tremendously. Our calculations show that
with optimized gap width for energized element the emission rate enhancement can
be up to 100 with relative high quantum efficiency. Hence, such Yagi-Uda type of

optical nanoantenna can function as efficient single photon sources.

5.3 Reconfigurable directionality for multiple-branch

antenna

5.3.1 Mechanism of the reconfigurable directionality

The essence of the optical type of Yagi-Uda antenna is the strong scattering of light
due to the antenna elements, which are also required to interact with each other
coherently. Such strong scatters can also be replaced by using other shapes, i.e.,
metallic spheres. It was reported recently that a finite long metallic particle chain
coupled to emitters can produce directional emission with narrow beams [14][15]. In
these optical nanoantennas, a feature that would be extremely useful for plasmon-
based quantum networks is dynamic reconfigurability. In a quantum network in
which several localized qubits interact via emission of photons, one would desire
reconfigurable coupling between nodes in the network of qubits. By analogy to radio
wave antennas, one might expect that plasmon antennas used to control emitters
can be reprogrammed with ease to arbitrarily steer beams. However, programmable
radio wave antennas use methods inaccessible to plasmonics, as they usually use
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Figure 5.8: Sketch of the reconfigurable nanoantenna concept to control single
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emitters. We consider a single emitter (red dipole) embedded in a set of linear
plasmon antennas (metal particles in yellow) that intersect at the emitter. In its
unswitched state (left), such an antenna funnels spontaneous emission into different
beams. The beams can be switched on and off (indicated by “ZAP") at will by
modifying the particle or host material dynamically.

individual phase control over many active elements. In this section we study a
different strategy to obtain control of reconfigurable plasmon antennas for single
emitters. Our method rests on controlling the dispersion relation of guided modes in
each part of a multi-arm traveling wave plasmon antenna by switching the refractive
index of the surrounding medium. Intuitively, the large bandwidth of plasmonic
antennas implies that larger index changes are needed to switch than in high Q
dielectric cavities. We show that an effective reconfigurable switch can be reached
with host index changes that are achievable with liquid crystals [I53].

We consider multi-beam antennas that split the stream of photons emitted by
a single emitter into several channels, as shown in Fig. 5.8 each corresponding to
a narrow beam of < 30° full width at half maximum [12] 13| 14} 15]. We explore
the possibility of dynamically switching on and off each beam at will, for instance
by controlling the refractive index surrounding the antenna. We envisage that such
a dynamically reconfigurable multi-beam antenna can be useful in quantum optics,
to controllably couple a local qubit to a select number of other qubits. First, let us
consider how the multi-beam antenna works in its unswitched state. Following a
proposal by Li et al. [154], we propose that a multi-beam antenna with N beams can
be made by combining NV antenna arms that each consist of a linear array of metal

particles, and essentially act like Yagi-Uda type antennas at optical frequencies.
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Recent reports have shown that such antennas can force single emitters to emit into
a narrow beam over a broad bandwidth that is demarcated on the blue edge by
an abrupt cut-off. The cut-off wavelength depends on antenna geometry [I5]. The
physics can be understood by considering a Yagi-Uda antenna as a traveling wave
antenna, the behavior of which is governed by the dispersion relation for an one
dimensional infinite plasmon chain [155]. When the emission frequency is tuned to
the lower dispersion branch, the emitter decays into a plasmonic mode bound to the
antenna, and with a wave vector beyond the light line, see Fig. (b). The finite
antenna length causes efficient out-coupling of this mode, which hardly radiates in
the case of infinite plasmon chains. For a linear plasmon particle array of length
L, momentum conservation is only defined within Ak ~ 7/L. This determines the
cut-off wavelength of efficient beaming. The wavelength at which the dispersion
relation deviates more than Ak from the light line, marked by the blue bar in
Fig. (b), corresponds to the cut-off wavelength. If the operation wavelength
denoted by A, is longer than the cut-off wavelength, the plasmon chain acts as
a directional antenna for single-photon emission. If A\, is shorter than the cut-off
wavelength, the emitter decays into dark plasmons [I5]. Importantly, the cut-off
is very sharp and occurs within a few nanometer spectral bandwidth [I5]. Such
abrupt on/off behavior is essential for optical switching of reconfigurable plasmon
antennas.

5.3.2 Linear array: results and discussion

As a first example, we study the coupling of a single emitter to an antenna with
two identical arms, consisting of silver spheres (radius R = 55 nm), arranged in a
linear array with pitch of d = 160 nm, shown in Fig. (a). We use tabulated
constants from E. D. Palik [68]. The array is embedded in glass (n = 1.5) and the
dipole emitter is transverse to the arrays. The real part of the corresponding infinite
chain dispersion relation for the transverse mode, (black curve in Fig. (b)), is
calculated from a point-dipole model [I55]. Since both arms are identical, they
have exactly the same dispersion relation, and the emitted photon is split into two
identical beams. As in the case of a single Yagi-Uda antenna, the beams have a full
width at half maximum of 30 degrees, as calculated using “MESME”. “MESME” is an
exact electrodynamic multiple scattering multipole expansion method developed by
F. J. Garcia de Abajo for rigorously solving Maxwell’s equations for finite clusters
of scatters [98], 07, [I5]. The fact that we choose a linear antenna (180° between
arms) is not essential: we obtain similar splitting into two beams for perpendicular
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Figure 5.9: (a) Sketch of the emitter-antenna geometry consisting of two identical
arms. We consider a single emitter placed in the middle of the antenna, oriented
perpendicular to the antenna axis. The emitter is embedded in the middle of the two
arms, 80 nm distance away from the front of each arm. (b) The black (red) curve
represents the dispersion relation for the transverse plasmon modes of an infinite
Ag particle chain in glass (pitch d=160 nm, particle size R=55 (58) nm). The
black horizontal line indicates the operation wavelength at 652 nm. (c/d) Emission
pattern at A = 652 nm for a single emitter embedded in a linear array antenna,
with 8 silver particles to each side. In (c) both arms are equal (R=55 nm). In (d)
the right arm has R=58 nm. (e) Radius/host index (top axis) dependence of the
beaming fraction and beam contrast. The beaming fraction assumes collection in a
cone of width sin(0) = 0.32 (20 = 36°). 89
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arms.

We consider how much perturbation is required to switch one of the two beams
off. Two facts are immediately obvious: First, since we start with a symmetric
antenna, we require an asymmetric perturbation to switch only one of the beams.
Second, we expect a dramatic change in emission pattern only if the perturbation
shifts the cut-off wavelengths through \,,. Therefore )\, is chosen close to the cut-
off wavelength. Before focusing on a specific switching mechanism, we note that the
key parameter that determines the dispersion is the polarizability « of each particle.
In the electrostatic approximation we have a = 3V (¢ — n?)/(e + 2n?), with particle
volume V = 47R3/3, host index n and metal dielectric constant . To obtain
a first estimate for the amount A« needed to shift the dispersion sufficiently, we
artificially vary Aa through AR, even though this may not be physically realizable
in a dynamical manner. We discuss realistic implementations below. We find that
at fixed pitch and fixed host index, the dispersion red shifts as particle size increases,
c.f the red curve in Fig. (b). When the particle size is increased from R = 55 nm
to R = 58 nm, the shift amounts to ~ 20 nm, which moves the cut-off wavelength
through A,,. We therefore expect a dramatic change in radiation pattern. Indeed
the calculation (Fig. (c-d)) shows a single narrow beam emanating from the

unswitched arm, and disappearance of the beam from the switched arm.

In order to quantify the quality of the switching behavior, we define two figures of
merit. The first figure of merit called the beaming fraction F', quantifies how much
of the total emitted power is emitted into the left arm and right arm, respectively
Flegt/right = fmo,len/r;gm) PdQ/f(M) PdS), where P is the power radiated per solid
angle. We define a solid angle €y, which we take to correspond to a numerical
aperture NA = sin(f), that one would use to collect the radiation of each beam
in practice. The second figure of merit called the beam contrast B = Fleg/ Frignt
quantifies the on/off contrast, and is defined as the brightness contrast between the
two arms. We plot both figures of merit in Fig.[59](e) for different magnitudes of the
perturbation of the right hand arm of the antenna. At R = 55 nm, both arms are
equal and carry equal amounts of energy (B = 1). For a fixed NA = 0.32 one would
collect a fraction of ~ 20% of emitted power in each beam. For particle size R—58
nm in the right hand beam, the right beam is strongly reduced to below ~ 3%. At
the same time the left beam gains a factor two in brightness. The contrast between
the beams hence shifts from B = 1 to several hundred. In order to translate the
required AR back to a physically realizable switch, we note that AR/R ~ 10%. We

hence conclude that a two-beam antenna with identical arms can be reconfigured
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Figure 5.10: Results for an asymmetric two beam antenna, with R=50 nm, d=140
nm in the left arm and R=55nm, d=160 nm in the right arm. (a/b) shows the
dispersion relation for transverse plasmons for each arm before (black curve) and
after the switch (red curve). (c/d) Emission pattern for a single emitter in the
antenna (both arms with 8 particles) before (c) and after (d) switching host index
from 1.5 to 1.56. (e) Host index dependence of the beaming fraction and beam
contrast at A = 662 nm. (f) Quantum efficiency versus the variation of host index
at A = 662 nm.

91



Chapter 5. Optical nano-antenna based single photon sources

provided one finds a way to change the polarizability of particles in one arm of
the antenna by 30%. Since the only feasible method to change polarizability is to
change the host index, we convert A« into a required change in host index (top axis
in Fig. (e)). An immense change from n = 1.5 to n = 1.85 would be required,
which is unachievable in any practical material. We conclude that prospects for
switching are dim when one starts out from antennas that are symmetric in the
unswitched states.

To overcome these challenges, we now consider a two-beam antenna that consists
of different arms to begin with. Due to the asymmetric geometry in which particle
size and pitch are chosen smaller (R = 50 nm, d = 140 nm) in the left arm already
at the fabrication stage, the dispersion relation for the two arms are shifted already
in the unswitched states, shown in Fig. (a). In the right hand branch, A, is
much closer to the cut-off than in the left branch. This yields the possibility of
switching just one beam off selectively by a homogenous switch in host material
index, provided that the cut-off of the right hand branch shifts beyond A,,, while
Aop remains to the red side of the cut-off in the left arm. Figure (c) shows
that in the unswitched (n = 1.5) state, the emission from the emitter is indeed
split into two beams. Due to the intrinsic asymmetry in geometry, both beams do
not have equal angular width, although they carry comparable power. As the host
index is raised from 1.5 to 1.56, the dispersion curves bend further away from the
light line, shifting the cut-off wavelength in both branches to the red (Fig. (b)).
Figure 510 (d) confirms that the left beam remains, while the right beam switches
off, in accordance with with the shift in cut-off wavelengths.

Figure (e) allows us to assess the figures of merit of the proposed switch,
assuming A, = 662 nm. We plot the dependence of the beaming fraction, and the
beam contrast as a function of host index. While the beam contrast is approximately
equal at n = 1.5, we see a marked contrast between left and right beams at n > 1.56.
Hence we conclude that beams in a multi-beam antenna can be switched at will with
a manageable index change, provided we carefully choose the dispersion relation for
each antenna branch. The role of the dispersion relation is further confirmed in
Fig. 511l which shows the beaming fraction for the two arms as a function of both
operation wavelength and host index. There is a band throughout which each arm
shows pronounced directional emission with approximately equal power. To the
blue side of the cut-off of the right hand arm, the right hand beam has very low
intensity, and the intensity of the left arm is increased by a factor of 2. To the blue

of the cut-offs of both waveguides, neither arm generates a bright and directional
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Figure 5.11: Contour plot of beaming fraction F' versus host index and wavelength.
The dashed white lines denote the cut-off wavelengths for the directional emissions.
In a 30 nm band to the red of the cutoff of the right arms, both beams have
comparable power. In between the cutoffs, the right beam becomes extinct, while
the left beam becomes brighter.

beam. This result shows that the switch can be optimized for any A, in a wide
band, by antenna geometry and host index, and that due to the sharp antenna cut-
off only modest index changes are required, which are achievable in practice. We
believe that the design philosophy presented here is generally valid in any traveling
wave antenna system in which the dispersion relation imposes a sharp and tunable
cut-off for each antenna arm. The figures of merit can hence be expected to improve
as new traveling wave antenna designs are proposed in the field of plasmonics.

5.3.3 Outlook of the reconfigurable plasmon-based single pho-
ton sources

we have proposed a method to realize reconfigurable plasmon antennas, e.g., for
controlling the coupling of single emitters with nodes in a quantum network. Es-
sential for our method is the dispersion relation underlying traveling wave antennas
that provides a sharp tuneable cut-off. The specific design for a two beam antenna
presented in this section uses host refractive index changes from n=1.5 to n=1.56.
Such changes are in the range accessible with liquid crystals and phase change ma-
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terials, [I53] [I56] but above the level accessible with, e.g., photochromic polymers
[I57] or thermal index tuning. Particularly promising is the use of a photo sensitive
liquid crystal with potentially picosecond response time to UV pulses. [153] [157]
Birefringence in the liquid crystal is generally no problem even for bent antennas,
as long as the anisotropy is perpendicular to all antenna arms. Birefringence might
even provide more versatile switching, as different arms can be switched differently
through orientation relative to the axes of the birefringent host. Alternatively, em-
bedding the Yagi-Uda antennas inside a semiconductor matrix (Si or GaAs) would
allow ultrafast switching using free carrier excitation [I58]. The operation wave-
length in that case shifts to the infrared due to the high host index. In addition to
the specific refractive index demands, we note several obstacles for reconfigurable
optical antennas. First we note that despite the high directivity evident in Figs.
2 and 3, the side lobes contain a significant fraction of the emission. Indeed, at a
36° full width collection cone considered here, the two beams contain only about
50% of the emitted power (Fig. (e)). One may note a slight variation of the
sum Fefy + Frighy with host index, due to dark plasmon excitation and emission
side lobes. Enlarging the NA, or embedding the nanoscale antennas in micron scale
dielectric waveguides will suppress the side lobes, while retaining high light matter
interaction strength. As a second obstacle, we note that turning off a beam does not
necessarily double the brightness of the remaining beam, as is evident from the drop
in quantum efficiency in Fig. BI0] (f). The quantum efficiency is reduced because
the branch that is switched off still captures emission in the form of dark plasmons.
Such losses can be avoided by using other resonant scatterers. We have calculated
that Yagi-Uda antennas also work when made from high index (Si) particles. This
configuration not only avoids loss but would also allow easier switching, since the
particles themselves can be optically switched. Thirdly we notice that Yagi-Uda
antennas are limited by the fact that the dispersion cut-off only occurs at one edge
(blue edge). In N-beam antennas (N > 2) it is hence not possible to switch arbi-
trary combinations of beams. Nonetheless, our design strategy paves the way for

plasmon quantum optics on the chip.

5.4 Conclusion

Optical nano-antenna can be used to mimic the traditional antennas to forward
optical waves into desirable directions. In this chapter, we have extended such
concept further to explore the possibilities of using optical antenna for developing
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Conclusion

efficient single photon sources. Firstly, we have constructed an optical analogy of
Yagi-Uda antenna by using the effective wavelength scaling based on the recipe
of a radio wave antenna. Our calculations have shown that such transplantation
yields directional emission with narrow beams. The spontaneous emission decay
rate can be enhanced by taking advantage of the localized plasmon resonance in
the feeding element. Secondly, a steerable plasmon-based single photon source has
been proposed. Instead of metallic rods, metallic particle arrays with finite length
can also function as Yagi-Uda antenna. We have shown that crossed particle arrays
can split the stream of photons from a single emitter into multiple narrow beams.
We predict that beams can be switched on and off by tuning the host refractive
index that are achievable with liquid crystals.

95






Chapter 6
Summary and outlook

Surface plasmon polaritons are electromagnetic excitations associated with charge
density waves. The tight confinement of the electromagnetic field gives the possibil-
ity of enhancing light-matter interaction. Understanding of such plasmon enhanced
light emission from a single emitter embedded in complex photonic environment is
crucial for developing efficient plasmon-based devices, i.e., single photon sources.
Such a single emitter model incorporating the realistic photonic structures can be
extremely useful to study the Purcell effect and emission profile of the light sources
in the presence of metallic structures. This thesis presents a detailed modeling of
plasmon mediated light matter interaction.

A FEM approach of calculating a single emitter coupled to plasmonic waveguides
has been developed. The method consists of a 2D model and a 3D model: (I)In
the 2D model, we have calculated the spontaneous emission decay rate of a single
emitter into guided plasmonic modes by taking the advantage of the translation
symmetry of the waveguides along the propagation direction; (II) In the 3D model,
we have implemented the FEM calculation to include the radiation modes and the
nonradiative contributions by solving the wave equation with a harmonic source
terms. The FEM approach developed in the thesis is a flexible method, which can
handle the plasmonic waveguides with different geometries, as long as only one
guided plasmonic mode is dominating excited.

We have applied our numerical method to calculate the coupling of a single
emitter to plasmonic waveguides embedded in a homogenous or an inhomogeneous
dielectric environment. For the homogenous dielectric environment, we have calcu-

lated the coupling efficiency of the single emitter to a metallic nanowire, a squared
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plasmonic waveguide and a metallic gap structure. We found the emission can be
efficiently coupled to the plasmonic waveguide. We further compared the cylindri-
cal metallic nanowire with previous work that employed quasistatic approximation.
We found that the quasistatic approximation is typically valid when the size is less
than the skin depth of the metals at optical frequencies. For the inhomogeneous
dielectric environment, we have found that the coupling efficiency of an emitter to
a metallic slot waveguide is significantly reduced, compared to the ideal case of a
homogenous dielectric environment. We attributed the reduction to the coupling to
leaky plasmonic modes. By increasing the refractive index of the coating layer to
minimize the impacts from the leaky plasmonic modes, we found that the coupling
efficiency of the quantum dot to the single mode supported by the metallic slot
waveguide can be enhanced by more than a factor of 2.

We have examined the light emission from a single emitter mediated optical
nanoantennas. Based the scaling of the operation wavelength, we have constructed
an optical analogy of Yaga-Uda antenna from a recipe developed in the field of radio
wave antenna. We have shown such optical nanoantennas yield strong directional
emission. By engineering the dispersion relation of plasmon particle chain, we have
proposed a steerable plasmon-based single photon sources. We have predicted the
the beams can be switched on and off by switching the host refractive index.

For the future work, there are some interesting research work to be carried out.
The first one is to examine the single photon absorption by a single emitter mediated
by optical Yagi-Uda nanoantennas. It is expected that the presence of the optical
nanoantenna can merit the single photon absorption by a single emitter, similar to
the fact that the TV antenna on the roof of our houses can improve the reception
of the radio waves. The second task is to study the fundamental limitations of the
plasmonic benefits for the light emission of an emitter embedded in a substrate with
higher refractive index, where the plasmonic structures are deposited on the top of
the substrate. Such work may have tremendous impacts on the quantum optics

which is primarily based on III-V semiconductors, as well as LEDs.
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