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NOTATION
Consider the set of monic centered polynomials of degreePd d ≥ 2

P (z) = zd + ad−2z
d−2 + · · · + a0 a = (a0, . . . , ad−2) ∈ Cd−1parametrized by

The associated vector field in C is

ξP (z) = P (z)
d
dz z

P (z)

We study the maximal trajectories t !→ γ(t, z0) ξP t ∈ R

γ′(t, z0) = P (γ(t, z0)) and γ(0, z0) = z0

of with i.e. maximal solutions to

The space of polynomial vector fields of fixed degree d

Ξd = {ξP }P∈Pd ! Cd−1

is

•



EQUILIBRIUM POINTS of ξP – ROOTS of P

PROPOSITION If  with mulitiplier thenis a simple root of
is holomorphically conjugate in a neighborhood of to the linear vector field

ζ
ζ

P λ = P ′(ζ)
ξP

λz
d
dz

.

THREE CASES:
!λ < 0 !λ = 0 !λ > 0

!λ > 0

!λ < 0

sink center source

PROPOSITION If ζ is a multiple root of P of multiplicity m > 1 ξPthen

then

has

m− 1 attracting directions and m− 1 repelling directions.



THREE QUADRATIC EXAMPLES

P (z) = z2 − 1 P (z) = z2 + 1 P (z) = z2

ζ = 1ζ = −1 ζ = ± i ζ = 0

Two simple equilibrium points Two simple equilibrium points One double equilibrium point

centersa sourcea sink



THREE QUADRATIC EXAMPLES

P (z) = z2 + 1 P (z) = z2

ζ = ± i ζ = 0

Two simple equilibrium points Two simple equilibrium points One double equilibrium point

centersa sourcea sink

sink and source
with non-real multipliers

typical:



a singleton

decomposed into disjoint classes: P (z) = z2 + a

THE SPACE of QUADRATIC VECTOR FIELDS Ξ2 ! C

a = 0

a > 0

real-analytic 
one-dim 
submanifold

complex  
submanifold

a ∈ C \ [0,+∞[



GOAL

such thatThe goal is to decompose into disjoint classes

each

have the same qualitative dynamicsall

is connected

A class

is maximal

A class is either or part of the

Within

is characterized by a

is associated two integersTo each class

a vector field is uniquely determined by an

C

C

C

C

ξP ∈ C

structurally stable bifurcation locus

combinatorial invariant I(C)

analytic invariant

C .

C ξP

Ξd

AP = (A1
P , . . . , As

P , T 1
P , . . . , Th

P ) ∈ Hs × Rh
+.

•

•
•

s = s(C) ≥ 0 and h = h(C) ≥ 0 satisfying s + 1
2h ≤ d− 1



THE STRUCTURE THEOREM

Given a combinatorial data set with associated integers and

 and a tuple

Then there exists a unique such that the vector field has combinatorial invariant 

and analytic invariant 

Each isomorphic to

hence of real-dimension

Any pair of vector fields are dynamically equivalent:

mapping trajectories of 

mapping trajectories of 

trajectories of preserving orientation but not necessarily the parametrization by time.

MOREOVER

d ≥ 2 , I s = s(I)

h = h(I)

A = (A1, . . . , As, T 1, . . . , Th) ∈ Hs × Rh
+

P ∈ Pd ξP

I(C) = I AP = A

,

.

.

C Cd−1 Hs × Rh
+

2s + h .

ξ1, ξ2 in

there exists a quasi-conformal mapping

 is a real-analytic submanifold of

C

Ψ : Ĉ→ Ĉ ξ1

ξ2 ,

,

onto



DUAL DESCRIPTION
Meromorphic vector fields Meromorphic abelian differentials

ξf (z) = f(z)
d
dz

ωf =
1

f(z)
dz

obey similar transformation laws: 
If ϕ : U → V is a holomorphic coordinate change and w = ϕ(z) then

ϕ∗(ξf ) = ξg and ϕ∗(ωg) = ωf where

g(ϕ(z)) = ϕ′(z)f(z)

The singularities of ξf and ωf are the zeros and the poles of f

RECTIFYING COORDINATES

The two descriptions complement each other. The advantage of the differentials are that 
they can be integrated.

In any simply connected domain avoiding zeros of f  the differential ωf has an antiderivative, 

unique up to addition by a constant,

.

Note that

Note that

where

The coordinates are called  rectifying coordinates

φ∗(ξf ) = ξg g(φ(z)) = φ′(z)f(z) =
1

f(z)
f(z) = 1

w = φ(z) of ξf .

.

φ(z) =
∫

1
f(z)

dz

ξg(w) = g(w)
d

dw
ωg =

1
g(w)

dw



One sink and one source Two centers One double equilibrium point

RECTIFYING COORDINATES for THE QUADRATIC EXAMPLES

a horizontal strip a vertical strip

φφ φ

S0S0S1 S1
S10

a plane

C \ {S0 ∪ S1} C \ { i ]−∞,−1] ∪ i[+1,+∞[ } Ĉ \ { 0}



THE SINGULARITY at ∞

(C∗, ξP ) is holomorphically conjugate to 
(

C∗, f(z)
d
dz

)
by z !→ 1

z

where
f(z) = − 1

zd−2

(
1 + ad−2z

2 + · · · + a0z
d
)

.

Hence, ξP has a pole of order d− 2 at ∞ .

IN PARTICULAR

ξ0(z) = zd d
dz

is holomorphically conjugate to f0(z)
d
dz

= − 1
zd−2

d
dz

φ0 : Ĉ \ {0}→ C, φ0(z) = − 1
d− 1

1
zd−1

is a branched covering, mapping∞ to 0 .



RECTIFYING COORDINATES for ξ0(z) = zd d
dz

EXAMPLE d = 3

φ0

φ0

H

H-

S0S2

S1

S3



THE SPECIAL ROLE of ∞ – SEPARATRICES

PROPOSITION Every ξP is holomorphically conjugate to ξ0 in neighborhoods of infinity,

 by a conjugating map tangent to the identity at ∞ .

CONSEQUENCES

There are

Note, that for any point

incoming trajectories to and outgoing trajectories from

Their asymptotes are the half lines in directions where 

d− 1 ∞ ∞

∞

d− 1 .

δ! = exp
(

2πi
#

2(d− 1)

)

! ∈ L = { 0, 1, . . . , 2d− 3 } or ! ∈ Z/2(d− 1) .

on such a trajectory it takes a finite amount of time to get toz0

if incoming and to come from  if outgoing.∞

SEPARTRICES
The separatrices are the maximal trajectories of ξP incoming to and outgoing from∞ .
A separatrix is homoclinic  if both outgoing from and incoming to ∞ .

∞ is a saddle point for ξP .



LIMITING BEHAVIOUR of trajectories γ(t, z0), t ∈] t−, t+ [

PROPOSITION Each sink or source is the landing point of at least one separatrix.
Each multiple equilibrium point is the landing point of at least one separatrix

any of the attracting or repelling directions.

tangent to 

lim
t→t+

γ(t, z0) =

lim
t→t−

γ(t, z0) =

 sink or multiple equilibrium point if

 source or multiple equilibrium point if

t+ = +∞

t− = −∞

∞

∞

t+ ∈ R+

t− ∈ R−



LABELING the SEPARATRICES and THE SEPARATRIX GRAPH

A separatrix is labeled according to its asymptote,

! even corresponds to a separatrix incoming to

! odd corresponds to a separatrix outgoing from

∞

∞

THE SEPARATRIX GRAPH ΓP is the closure in Ĉ of the separatrices. Hence

S! ! ∈ {0.1, . . . , 2d− 3}

.

..

.

ΓP =
⋃

!=1,...,2d−3

S! ∪
⋃

sink, source, mult.

ζ ∪ {∞}

SYMBOLICALLY

d = 2 d = 3 d = 4

Mark δ! ∈ S1 .



THE COMBINATORIAL INVARIANT of ξP ∈ Ξd

DEFINITION of the COMBINATORIAL INVARIANT IP of ξP :

IP  is an equivalence relation with a specified subset
satisfying:

 on∼P L = {0, 1, . . . , 2d− 3}
HP ⊂ L

HP consists of the labels for which  is a homoclinic separatrix.
For !1, !2 ∈ HP :

!1 ∼P !2 ⇐⇒ S!1 = S!2

HP is saturated by ∼P

L \ HP consists of the labels for which lands at , a sink, a source, or a multiple 

equilibrium point. !1, !2 ∈ L \ HPFor :

!1 ∼P !2 ⇐⇒ S!1 and S!2 lands in C at the same

that there are three possible kinds of equivalence classes inNOTE L \ HP :

For mixed the multiplicity of is iff    the ordered cyclic sequence of labels in
changes parity times.

!

!

.
.

S!

S!

[!]
odd
even
mixed

corresponding to
sink
source
multiple equilibrium point

[!]

ζ

ζ .

ζ

ζ being a

m [!]
2(m− 1)



COMBINATORIAL INVARIANTS for the QUADRATIC EXAMPLES

S0 S0S1 S1S10

EQUIVALENCE CLASSES of ∼P

[0] even

[1] odd
[0, 1] mixed

HP = {0, 1}
[0, 1]



A CUBIC EXAMPLE with HP = ∅ and its COMBINATORIAL INVARIANT

P (z) = (z + 1)2(z − 2)

ζ = −1

ζ = 2

a double equilibrium point

a source

Attracting petal of ζ = −1 := S0S2

S1

S3

C \ { }

Repelling petal of ζ = −1 :=
Half plane left of

S0 ∪ S2

S1 ∪ S3

a sepal

a sepal

EQUIVALENCE CLASSES of ∼P

[0] odd

[1, 2, 3] mixed

Two sepals := the intersection of
the attracting and the repelling petal.

an interpetal



CUBIC EXAMPLES with HP != ∅ and their COMBINATORIAL INVARIANT

one center,
one double equilibrium three centersone center,

one sink, one  source 

S12S12 S12

S0
S0

S3S3 S30

HP = {1, 2} = [1, 2] HP = {1, 2} = [1, 2]HP = {0, 1, 2, 3}

[0] odd

[3] even
[3, 0] mixed[1, 2] , [3, 0]



SUBDIVISION of LABELS if HP != ∅:

polynomial-like of

polynomial-like of
degree d1

degree d2

d2 = 2

d1 = 1



TYPES of ZONES
A zone Z is a connected component of Ĉ \ ΓP . There are three types, classified by 

the type of the holomorphic conjugacy
φ : (Z, ξP )→

(
• ,

d
dz

)

 is isomorphic to a HORIZONTAL STRIP.

 is isomorphic to an UPPER or LOWER HALF PLANE.

 is isomorphic to a horizontal strip.

two distinct equilibrium points: An
a source or a multiple equilibrium, 
a sink or a multiple equilibrium, such that

consists of one or two incoming separatrices and one or two outgoing separatrices,

αω-zone ∃

∀
γ(t, z0)

and possibly some homoclinics.
A sepal-zone
∃ a multiple equilibrium such that ∀

z0 ∈ Z

z0 ∈ Z

A

consists of one incoming separatrices and one outgoing separatrices, and possibly
some homoclinics.

is isomorphic to a HALF UPPER orcenter-zone

∀ z0 ∈ Z\ γ(t, z0) is periodic of period T =
2π

|P ′(ζ)|

∂Z

∂Z

∂Z consists of one or several homoclinics.

•

•

•

ζ the and the is ζ

contains one center ζ and ζZ\
ζLOWER CYLINDER. 

α-limit

α-limit

ω-limitthe of is

ω-limit

ζω

ζω

ζα

ζα

.

.



COMBINATORIAL CLASSES

A combinatorial class C consists of all ξP IP = I(C)with . The integers

s = s(C) and h = h(C)

are the numbers of αω-zones (numbers of strips) and the number of homoclinics 
 (half the number of labels in       ) respectively.HP



A COMBINATORIAL DATA SET

DEFINITION
Given , an equivalence relation on L = {0, 1, . . . , 2d− 3} , and a specified subset
H ⊂ L consisting of labels,

if it satisfies:

2h ≥ 0 odd and evenh h

(∼, H) is a combinatorial data set

is non-crossing.
is saturated by , and each equivalence class in and anconsists of an

label.
Zones in the disc model are of the three types: αω, sepal, center

∼
∼H H odd

even

•
•

•

∼d ≥ 2

.

.



ANALYTIC INVARIANTS for a given ξP

Each homoclinic separatrix for is assigned the positive real time it takes to travel along 

Each is assigned the complex ''time'' it takes to travel along the 
transversal in the zone closest to the

In each case the invariant can be expressed as

the oriented trajectory from to

∫

loop

1
P

= 2πi
∑

ζ left of loop

Res
(

1
P

, ζ

)
= −2πi

∑

ζ right of loop

Res
(

1
P

, ζ

)

where the loop is either the homoclinic or the transversal and the summation is over all 
equilibrium points left of the loop (or all right of the loop).

ζα ζα

ξP

ξP

ζ

TP

APαω-zone of
ζαα-limit point tofrom

∞ ∞

∞ ∞

.

.

We choose AP ∈ H .



QC DYNAMICAL EQUIVALENCE

AMONG αω-zones , represented in rectifying coordinates:

affine map, mapping the base {1, A1} to the base {1, A2}

piecewise affine map; on the triangle, mapping the base {T1, A1} to the base {T2, A2}

.

.

Suppose ξP1 , ξP2 belong to the same combinatorial class. Then they have the same qualitative 
dynamics. In rectifying coordinates the equivalence is given through piecewise affine mappings.



QC DYNAMICAL EQUIVALENCE

AMONG center-zones : affine or piecewise affine mappings,

mapping the base to the base{T1, i} {T2, i} ,

AMONG sepal-zones with homoclinics : piecewise affine mappings.

Suppose ξP1 , ξP2 belong to the same combinatorial class.

or the base {T j
1 ,−i} to the base {T j

2 ,−i} .



THE STRUCTURE THEOREM
Given d ≥ 2 , a combinatorial data set

 is the number of equivalence classes in

PROOF

STRUCTURALLY STABLE

BIFURCATION SET

where

and

is the number of andfor

to a class, which is isomorphic to

. There exists a unique realizing the above, i.e. and

A = (A1, . . . , As, T 1, . . . , Th) ∈ Hs × Rh
+

s h
(∼P , HP ) = (∼, H)

AP = A
 by surgery. From the rectified building blocks we construct a Riemann surface

with a vector field and prove that  is isomorphic to and that there exists a unique
such that

then the number of

is holomorphically conjugate to

If

is in the bifurcation set.

has only sinks and sources, no homoclinic separatrices and no multiple equilibrium points, 
takes its maximal value . It follows that belongs  

. Hence is structurally stable.

If has a homoclinic separatrix or a multiple equilibrium point then and
. Hence

(∼, H)

(∼, H)αω-zones

αω-zones

M
M

(M, ξM)

H ξP ∈ Ξd

.

ξM

ξP

ξP

ξP

ξP

P ∈ Pd (Ĉ, ξP )
Ĉ

.

s = d− 1
Hd−1 ξP

s < d− 1
2s + h < 2(d− 1)



ILLUSTRATING the SURGERY in a FAMILIAR case d = 3
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ILLUSTRATING the SURGERY in a FAMILIAR case d = 3


