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Abstract

The subject of this Ph�D� thesis is the mathematical Radon transform� which is well suited for
curve detection in digital images� and for reconstruction of tomography images� The thesis is
divided into two main parts�

Part I describes the Radon� and the Hough�transform and especially their discrete approxim�
ations with respect to curve parameter detection in digital images� The sampling relationships
of the Radon transform is reviewed from a digital signal processing point of view� The discrete
Radon transform is investigated for detection of curves� and aspects regarding the performance of
the Radon transform assuming various types of noise is covered� Furthermore� a new fast scheme
for estimating curve parameters is presented�

Part II of the thesis describes the inverse Radon transform in �D and �D with focus on re�
construction of tomography images� Some of the direct reconstruction schemes are analyzed�
including their discrete implementation� Furthermore� several iterative reconstruction schemes
based on linear algebra are reviewed and applied for reconstruction of Positron Emission Tomo�
graphy �PET� images� A new and very fast implementation of �D iterative reconstruction methods
is devised� In a more practical oriented chapter� the noise in PET images is modelled from a very
large number of measurements�

Several packages for Radon� and Hough�transform based curve detection and direct	iterative
�D and �D reconstruction have been developed and provided for free�
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Resume p�a dansk �Abstract in Danish�

Emnet for denne Ph�D� afhandling er den matematiske Radontransformation� der er velegnet til
detektion af kurver i digitale billeder og til rekonstruktion af tomogra
ske billeder� Afhandlingen
er opbygget i to dele�

Del I beskriver Radon� og Hough�transformationen og specielt deres diskrete approximationer
med henblik p�a estimation af kurve parametre i digitale billeder� Der er beskrevet samplings�
relationer for Radontransformationen ud fra et digital signalbehandlingssynspunkt� Den diskrete
Radontransformation er unders�gt med henblik p�a detektion af kurver� og der er behandlet as�
pekter vedr�rende metodens anvendelighed under antagelse af forskellige typer st�j� Desuden er
prsenteret en ny og hurtig metode for estimation af kurve parametre�

Del II af afhandlingen beskriver den inverse Radontransformation i �D og �D med fokus p�a
rekonstruktion af tomogra
ske billeder� Flere af de direkte rekonstruktionsmetoder er analyseret
inklusiv deres diskrete implementering� Desuden er der gennemg�aet en rkke liner algebra
baserede iterative rekonstruktionsmetoder� og de er anvendt til rekonstruktion af Positron Emis�
sion Tomogra
 �PET� billeder� En ny og meget hurtig implementering af �D iterative rekonstruk�
tionsmetoder er foresl�aet� I et mere praktisk orienteret kapitel er st�j i PET billeder modelleret
ud fra et stort antal m�alinger�

Et st programpakker er blevet udviklet til Radon� og Hough�transformation baseret detek�
tion af kurve parametre og til direkte	iterativ �D og �D rekonstruktion� og de bliver stillet gratis
til r�adighed�
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Preface

The Ph�D� project has been carried out from March �� ���� to May ��� ���� at the Department
of Mathematical Modelling �before January �� ���� Electronics Institute�� Technical University
of Denmark with supervisors John Aasted S�rensen and Peter Koefoed M�ller�

The image on the front page shows the surface of a brain generated by PET scanning� The
measured sinograms have been reconstructed and the brain volume has been shown using a �D
visualization package�

Contents

This Ph�D� thesis entitled The Radon Transform � Theory and Implementation is divided into
two main parts� Part I consists of Chapters � to � and Part II of Chapters � to ��� Appendices are
collected in Part III� and 
nally Part IV contains the papers submitted to journals and conferences�

In Chapter �� the Radon transform is presented in the form used within seismics� Discrete
approximations are derived� and it is shown that the Radon transform is well suited for curve
parameter estimation� and in this chapter a new way of analyzing sampling relationships is in�
troduced� Several properties are presented along with a set of examples using discrete Radon
transformation� Optimization strategies for implementation of the discrete Radon transform are
given� and some of the limitations concerning the allowed interval of slopes are also presented� A
way to circumvent this restriction is also given�

Another way of de
ning the Radon transform �using normal parameters� is used in Chapter
�� and sampling relationships are derived� It is shown how this form of the Radon transform is
related to the form analyzed in Chapter �� and that the two de
nitions mainly cover di�erent
types of images� In Chapter �� the images are assumed quadratic and the lines can have arbitrary
orientation�

A very popular Radon�like transform is the Hough transform� which is described in Chapter ��
Possibilities� limitations� and an optimization strategy are given along with a set of examples� Here
it is also shown that the discrete Hough transform is identical to the discrete Radon transform� if
some of the sampling parameters are restricted�

The Radon and the Hough transforms are generalized in order to handle more general paramet�
erized curve types� The properties of the two transforms are then exploited in the FCE�algorithm
��� ��� which is proposed for fast curve parameter estimation� The potential of the algorithm is
demonstrated in two examples�

One of the very strong features of the discrete Radon transform regards noise suppression�
which is covered theoretically in Chapter �� A novel analysis of the in�uence of both additive
noise ��� and uncertainty on the line samples ��� is presented�
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In Chapter � the thesis changes its aim and describes computerized tomography with respects
to reconstruction of PET� and CT�images� A simpli
ed description of the fundamental physics is
given and it is motivated why the inverse Radon transform can be used for reconstruction of the
measured sinograms�

Several of the common direct inverse Radon schemes are derived in Chapter �� First using
normal parameter� and later in this chapter similar inversion schemes are derived for slant stacking�

The implementation of the Radon based reconstruction methods impose the use of several
di�erent elements which are reviewed from a digital signal processing point of view in Chapter
�� but only for the Radon transform using normal parameters� Chapter � also includes a set of
examples� made with a developed software package� This and other developed software packages
are provided for free�

A very di�erent approach for developing reconstruction algorithms is based on linear algebra
and statistics� In Chapter � the basis of these methods are shown� and the relationship with
that the direct reconstruction methods is reviewed� This chapter illustrates that a broad 
eld
of research areas have contributed directly or indirectly to the 
eld of reconstruction methods�
Iterative reconstruction methods are reviewed and a very fast implementation of �D iterative
reconstruction algorithms ��� �� is proposed� A set of examples are included� where PET�images
�or PET�like images� are reconstructed from noisy sinograms and the performance of the �D fast
iterative reconstruction package is reviewed�

Next Chapter ��� goes into reconstruction of volumes using �D PET scanners� Some of
the Radon transform based reconstruction methods are derived and some of the implementation
aspects are reviewed� A software package has been developed� where Radon based and iterative
reconstruction methods have been implemented� It is shown that most of the methods can be
implemented e�ciently on a parallel computer� and a few examples are presented�

The 
nal chapter in the main thesis is Chapter ��� which is of a more practical nature� From
a huge set of measurements on phantoms and humans the noise in reconstructed PET images has
been modelled and model parameters have been estimated ��� ���

It should be mentioned that a part of the work done in this project is far better presented
using the World Wide Web tools of movies and virtual reality objects� It has been chosen to avoid
color images in the thesis� even though that colors normally will enhance the visual impression�
MPEG movies and �D virtual objects can be found at the Human Brain Project WWW�server
���� This thesis is available as a Postscript 
le� which can be down�loaded from �����

Collaborations

Chapter � present work made in collaboration with Kim Vejlby Hansen� The work has been
carried out as a joint venture project between �degaard � Danneskiold�Sams�e and Department
of Mathematical Modelling �before January �� ���� Electronics Institute�� Technical University of
Denmark� The ideas and results have been presented at the EUSIPCO Conference �� in Edin�
burgh� Scotland� and at the Interdisciplinary Inversion Summer School �� in M�nsted� Denmark�
and published in ��� ��� These papers are shown in Appendices G and H� Kim Vejlby Hansen and
I had a very long and good collaboration� He and Peter Koefoed M�ller are thanked for getting
me into the area of the Radon transform in the 
rst place�

Chapters �� �� and � are inspired by my stay at the National University Hospital in Copenhagen
�Rigshospitalet� and by two masters projects carried out at that time� Software packages have
been made for �D direct reconstruction of PET images� and one for analytical generation of
sinograms from a set of primitives� These packages can be used for quantifying the quality of
reconstruction algorithms� I will like to thank Claus Svarer and Karin Stahr for making our stay
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very good� and especially S�ren Holm with whom I have had a long and fruitful collaboration� I
have learned much about PET and tomography in general from him� My former students Peter
Philipsen and Jesper James Jensen are acknowledged for their collaboration and hard work� We
have spent many joyful hours together� and their e�orts have meant much to me�

In Chapter � the fundamentals of linear algebra based reconstruction methods are covered
with special focus on the implementation of iterative reconstruction methods� For this work I
had the pleasure of working with Jesper James Jensen� We developed a very fast technique for
implementing most �D iterative reconstruction methods� This work has been submitted in ��� and
���� shown in Appendix L and M� respectively�

Some of the functions in the �D reconstruction package presented in Chapter �� has been
made by Peter Philipsen and he helped by adding the compiler options needed to speed up the
program on the Onyx�computer from Silicon Graphics �SGI��

Chapter �� covers recent work made together with S�ren Holm� where noise in PET recon�
structed images has been modelled and the model parameters have been estimated from a huge set
of measurements� The results have been presented at the IEEE Medical Imaging Conference ��

in San Francisco USA� and published in a short version ���� shown in Appendix J� and submitted
in a longer version in ���� shown in Appendix K�

In Appendix N the published papers ���� ��� are shown� where mean 
eld techniques have been
used to improve image quality by using strong priors in the restoration of PET reconstructed
images� This work was made with Lars Kai Hansen and Peter Philipsen� It has been presented
at the Fourth Danish Conference for Pattern Recognition and Image Analysis �� in Copenhagen�
Denmark and at the Interdisciplinary Inversion Conference �� in �Arhus� Denmark�

Acknowledgments

I thank my two supervisors� Peter Koefoed M�ller and John Aasted S�rensen for getting me into
the project� their support during the years� and giving me very free limits� which I have enjoyed�

I am very grateful to Lars Kai Hansen for an inspiring collaboration and for his commitment
to create a pleasant and dynamical environment at the department� He got me interested in
medical imaging and laid many bricks along the way�

My room mates S�ren Kragh Jespersen� Cyril Goutte� and Peter S� K� Hansen are acknow�
ledged for their proofreading and support�

My wife Katja has directly and indirectly contributed to my work� and without her loving
support I could never have managed getting this work done�

Thanks to the many WWW users� who have responded on my home page� Also thank you to
all the programmers contributing to the Linux project�

Finally thanks to the other current and earlier Ph�D� students and sta� at the Electronics
Institute and Department of Mathematical Modelling� especially Jan Larsen� with whom I have
had many hard and good discussions� Torsten Lehmann for introducing and helping me to use
Linux in the early days� Mogens Dyrdal for support� and Simon Boel Pedersen for his friendly
attitude and fantastic lectures in Digital Signal Processing�
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Papers

During the project a total of �� reports have been made� mainly for teaching purposes� and
additionally several parts of this thesis has been submitted to conferences or journals�

� P� A� Toft and K� V� Hansen� �Fast Radon Transform for Detection of Seismic Re�ec�

tions�� Signal Processing VII � Theories and Applications� Proceedings of EUSIPCO ���
pages �������� Shown in Appendix G�

� K� V� Hansen and P� A� Toft� �Fast Curve Estimation Using Pre�Conditioned Generalized

Radon Transform�� Accepted for publication in IEEE Transactions on Image Processing�
Shown in Appendix H�

� Peter Toft� �Using the Generalized Radon Transform for Detection of Curves in Noisy

Images�� Proceedings of the IEEE ICASSP ����� pages ��������� in part IV� Shown in
Appendix I�

� S�ren Holm� Peter Toft� and Mikael Jensen� �Estimation of the noise contributions from

Blank� Transmission and Emission scans in PET�� Accepted for publication in the Con�
ference Issue of IEEE Medical Imaging Conference ��� Furthermore� the corresponding
abstract can be found in the abstract collection of Medical Imaging Conference ��� Shown
in Appendix J�

� S�ren Holm� Peter Toft� and Mikael Jensen� �Estimation of the noise contributions from

Blank� Transmission and Emission scans in PET�� Submitted to IEEE Transactions on
Nuclear Science� Shown in Appendix K�

� Peter Toft and Jesper James Jensen� �A very fast implementation of �D Iterative Recon�

struction Algorithms�� Submitted to IEEE Medical Imaging Conference ����� Summary
and abstract can be found in Appendix L�

� Peter Toft and Jesper James Jensen� �Accelerated �D Iterative Reconstruction�� Submit�
ted to IEEE Transactions on Medical Imaging� Shown in Appendix M�

� Peter Alshede Philipsen� Lars Kai Hansen and Peter Toft� �Mean Field Reconstruction

with Snaky Edge Hints�� Accepted for publication in the book �INVERSE METHODS � In�

terdisciplinary elements of Methodology� Computation and Application�� Will be published
by Springer�Verlag in ����� An �almost� identical paper can be found in Proceedings of the
Fourth Danish Conference on Pattern Recognition and Image Analysis �� � pages ��������
This paper can be found in Appendix N�

� Peter Toft� �Detection of Lines with Wiggles using the Radon Transform�� Submitted to
to the NORSIG	�
 � ���
 IEEE Nordic Signal Processing Symposium in Espoo� Finland�
This paper can be found in Appendix O�

May ��� ����� Peter Aundal Toft�
Department of Mathematical Modelling� Section for Digital Signal Processing�
Technical University of Denmark� ���� Lyngby� Denmark� E�mail� pto imm�dtu�dk
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Style Conventions

� References to the bibliography placed in the end of the thesis will appear as ���� or ���� ����
� Equation and Figure has been abbreviated to Eq� and Fig� Likewise Equations and Figures
to Eqs� and Figs�

� Equations� tables� and 
gures are numbered by the chapter� i�e�� Eq� ���� is the second
equation in Chapter ���

� The appendices are numbered using capitals� starting with Appendix A�
� Normally the letters m�n� k� h� l are used to denote integer type variables� and the letters

x� y� z denote continuous variables�

� Vectors are denoted by bold�faced small letters or Greek letters� like b or ��
� Transpose of a vector b is shown as bT �
� Matrices are denoted by bold�faced capital letters� like A� A real valued matrix with I rows
and J columns are denoted A � IRI�J The individual elements are ai�j corresponding to
row i and column j�

� Vectors are always column vectors� and the i!th rows of the matrix are denoted ai� i�e��

A "

�
��������

aT
�

aT
�

� � �

aT
i

� � �

aT
I

�
��������

�����

� Program examples in pseudo C�code will use the sans serif font and symbols using that font
refers to the pseudo�code� An examples of pseudo�code are called an Algorithm� which
looks like

Algorithm ��� � Small example

For k � � to K�� ��Help is placed like this
p�k� � p min	k�Delta p ��Multiplication in algorithms use �

End
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� Vector indices in equations starts from �� but in order to aid implementation i C or C##
the indices start from � in the pseudo code� Given that the pseudo code is intended for
overview� this should not lead to confusion�

� The delta function is denoted by ����� This function is reviewed in Appendix A�
� The Hamilton step function is denoted by ����� The function is zero if the argument is
negative� and one if the argument is positive�

� Rounding to the nearest upper integer� d�e�
� Rounding to the nearest lower integer� b�c� In an algorithm the function 
oor is used�

� Rounding to the nearest integer� ���� In an algorithm the function round is used�

� Fourier transform pairs are marked as g�t�� G�f��

� In equation convolutions are denoted by � for a one dimensional� �� for a two�dimensional�
and � � � for a three�dimenisonal convolution�

� In the algorithms� i�e�� pseudo�code� no convolutions are found and the symbol � will be
used as a simple multiplication�

� The scalar product between to �column� vectors a and b are denoted by a � b " aTb�

� The symbol � denotes $for all!�
� The length of vectors are normally denoted by j � j� but in Chapter � the linear algebra
notation k � k� has been used� given by kvk� "

p
vtv "

qP
j v

�
j �
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Chapter �

Slant Stacking

In this chapter the Radon transform will be introduced� The de�nition of the Radon transform is�
e�g�� used within seismics� where it is known as slant stacking� The discrete Radon transform is
also introduced and several properties are reviewed� Several examples mostly regarding detection
of straight lines from digital images are given �����

��� Why Consider the Radon Transform

First a small example is presented only to motivate that the Radon transform is suited for line
parameter extraction even in presence of noise� Fig� ��� shows an image containing three lines
of which two are very close and the image has been corrupted by additive uniformly distributed
noise� Fig� ��� shows the discrete Radon transform of the image� i�e�� the �gure shows a space of
possible line parameters� It will be shown that the Radon transform are able to transform each
of the lines into peaks positioned corresponding to the parameters of the lines� In this way� the
Radon transform converts a di	cult global detection problem in the image domain into a more
easily solved local peak detection problem in the parameter domain� and the actual parameters
can be recovered by� e�g�� thresholding the Radon transform�
Note that especially in this noisy case other algorithms in general fail� An alternative could

be to use a local detection algorithm� e�g� edge detection �lters ��
� ���� succeeded by a procedure
for linking the individual pixels together� and �nally to use linear regression for estimation of
parameters� Algorithms of this kind have problems with intersecting lines� and in case of a high
noise level� it is di	cult to stabilize the edge detection �lters� The Radon transform is not limited
in the same sense by these problems�

��� De�ning the �p� � � Radon Transform

The Radon transform can be de�ned in di�erent ways� The de�nition used� e�g�� within seismics
��� is perhaps the easiest to comprehend� The Radon transform �g�p� �� of a �continuous� two�
dimensional function g�x� y� is found by stacking or integrating values of g along slanted lines�
The location of the line is determined from the line parameters� slope p and line o�set � �

�g�p� �� �

Z �

��
g�x� px� �� dx �����

Within seismics this linear Radon transform is also known as slant stacking or the � �p transform�
Note that di�erent notation exists� and here the notation found in ���� is used�

�
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Figure ��� The corresponding discrete Radon
transform� Each of the peaks correspond to
the curves in the image� The line parameters
can here be recovered by simple means� e�g��
thresholding�

The Dirac delta function� ���� �see Appendix A for basic properties�� will be used extensively
in the following� Using the delta function implies that slant stacking can be written as

�g�p� �� �

Z �

��

Z �

��
g�x� y� ��y � px� �� dx dy �����

The values of �g�p� �� is function in two�dimensional �p� ���space� i�e�� Radon space or parameter
domain� In principle� the two parameters do not have lower or higher limits� though� as it will be
shown� discrete implementation will use a limited number of samples in both parameter directions�

��� Basic Properties of the �p� � � Radon Transform

From Eqs� ��� or ���� a set of fundamental properties can be derived� It can also be noted� that it
is possible to �nd the Radon transform analytically of some simple mathematical functions �����

����� Linearity

From Eq� ��� it is directly found� that the Radon transform of a weighted sum of functions is the
same weighted sum of the individually Radon transformed functions�

h�x� y� �
X
i

wi gi�x� y� �

�h�p� �� �
X
i

wi

Z �

��

Z �

��
gi�x� y� ��y � px� �� dx dy

�
X
i

wi �gi�p� �� �����

This property is naturally very important�
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����� Shifting

The next property is the Radon transform of a shifted function�

h�x� y� � g�x� x�� y � y�� �
�h�p� �� �

Z �

��
g�x� x�� px� � � y�� dx

�

Z �

��
g��x� p��x � x�� � � � y�� d�x� where �x � x� x�

� �g�p� � � y� � px�� �����

Thus only the o�set parameter is changed by shifting the function� From a geometrical point of
view the result is obvious� The slope of a line cannot be altered by a translation� and the o�set
must be changed as shown in Eq� ����

����� Scaling

A scaled function is assumed

h�x� y� � g

�
x

a
�
y

b

�
where a � � and b � �

�h�p� �� �

Z �

��
g

�
x

a
�
px� �

b

�
dx

� a

Z �

��
g

�
�x�
pa�x� �

b

�
d�x where �x �

x

a

� a �g

�
pa

b
�
�

b

�
�����

The result can also here be understood from the parameters of a line� It is clear that a compression
in the y�direction must be followed by a compression in the line o�set � � And it is not di	cult
to understand that any slope will be scaled with the ratio between a and b� and so will the Radon
transform�

����� The Point Source

A point source is modelled as a product of two delta functions� Initially the point source is placed
in the origin of the coordinate system�

g�x� y� � ��x� ��y� �
�g�p� �� �

Z �

��
��x� ��px � �� dx � ���� �����

The point source could easily have been placed at any given position� but now Eq� ��� is used to
do that

g�x� y� � ��x� x�� ��y � y�� � �g�p� �� � ��� � y� � px�� ���
�

This result is interesting� because any function can be written as a weighted integral of point
sources�

g�x� y� �

Z �

��

Z �

��
g�x�� y�� ��x� x�� ��y � y�� dx� dy� �

�g�p� �� �

Z �

��

Z �

��

Z �

��
g�x�� y�� ��x� x�� ��� � px� y�� dx� dy� dx �����

�

Z �

��

Z �

��
g�x�� y�� ��y� � � � px�� dx� dy� ����
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Eq� ��
 and especially Eq� �� demonstrates that any point of the function will contribute along
an in�nitely long line in the parameter domain� This aspect relates to the Hough transform� that
will be further analyzed in Chapter ��
In Fig� ���� the result is shown symbolically� Note that the �gure shows the two dimensional

function �g�p� �� by use of color� white is used to indicate �approximately� zero value and black is
a high �in this case in�nite� value� This type of graph will be used many times in the following�

*yoffset =

y=y

p

τy

x=x*

*
*

x

slope = -x

Figure ��� Left� A two dimensional function that only is non�zero in the point �x� y� � �x�� y���
Right� The corresponding Radon transform �slant stacking result�� Only when the Radon domain
parameters matches the parameters of the line a non�zero result is found�

����� The Line

This very important property assumes a function that contains a certain line� here modelled with
a delta function�

g�x� y� � ��y � p�x� ��� ������

hence the function has non�zero values only if �x� y� lies on the line with certain �xed parameters
�p�� ���� In this case the Radon transform is given by

�g�p� �� �

Z �

��

Z �

��
��y � p�x� ��� ��y � px� �� dx dy

�

Z �

��
���p� p��x� � � ��� dx

�

�������
������

�

jp� p�j for p �� p�

� for p � p� and � �� ��Z �

��
���� dx for p � p� and � � ��

������

Note that for p � p� and � � ��� the result is written as an in�nite function integrated over
an in�nite interval� hence the result is in�nite in that point� If� for now� the �nite terms are
neglected� the result is that the Radon transform of a line produces an peak �with in�nite value�
in the parameter domain� and the position of the peak matches the line parameters� This property
has naturally been the basis of many curve parameter detection algorithms� In Fig� ��� the result
is shown symbolically� Again� white color indicates �approximately� zero value and black color
high �in�nite� values�
It can be noted that in the way slant stacking is de�ned� there is duality between the two

domains� A point in the image domain� i�e�� the �x� y��space� is transformed into a line in the
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x

y

p

τ

offsetτ∗

slope p*

p=p*

τ=τ∗

Figure ��� Left� A two dimensional function that is only non�zero when on the line� Right� The
corresponding Radon transform �slant stacking result�� When the Radon domain parameters matches
the parameters of the line� a peak is found positioned at the parameters of the line in the image� The
	nite terms in the parameter domain are here ignored for sake of clarity�

Radon domain� and� if the �nite terms are ignored� a line in the image domain will be transformed
into a point in the Radon domain� This property is a direct consequence of the form of the
integration kernel in Eq� ���� This property motivates why the Radon transform can be used for
curve detection algorithms�

��� Discrete Slant Stacking

Given that only a subset of functions can be Radon transformed analytically� a discrete approx�
imation to the Radon transform that transforms a digital image is very useful� Depending of
the aim� e�g� speed� artifacts� or simplicity� there exist nearly as many de�nitions of the discrete
Radon transform as people working with the Radon transform� Though an easy way is to sample
the four variables linearly and only work with a limited set of samples�

x � xm � xmin �m�x� m � �� �� � � � �M � �
y � yn � ymin � n�y� n � �� �� � � � � N � �
p � pk � pmin � k�p� k � �� �� � � � �K � �
� � �h � �min � h��� h � �� �� � � � �H � �

������

Here the xmin is the position of the �rst sample� �x the sampling distance of x� and m is a
discrete index used to number the M samples of x� These symbols will be used many times in
the following�
By using Eq� ���� a simple and common approach to approximate the linear Radon transform

is to use a sum approximation

�g�pk� �h� �

Z �

��
g�x� pkx � �h� dx � �x

M��X
m��

g�xm� pkxm � �h� ������

Sampling of the function g�x� y� gives a digital image

g�m�n� � g�xm� yn� ������

A new symbol could be assigned to the digital image� though from the indices it should be clear
whether the continuous or the discrete version is used� Likewise will the discrete Radon transform
be written as

�g�k� h� � �g�pk� �h� ������

Hence� the discrete Radon transform can and will be presented as a digital image�
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	 Chapter �� Slant Stacking

����� Nearest Neighbour Interpolation

Given the digitally sampled image g�m�n� a fundamental problem arises� Eq� ���� requires
samples not found in the digital image� because linear sampling of all variables implies that
pkxm � �h in general never coincides with the samples yn� The problem could be corrected by
using� e�g�� a nearest neighbour approximation in the y�direction� hence the Radon transform can
be approximated by the discrete Radon transform

�g�k� h� � �x
M��X
m��

g�m�n�m� k� h�� where n�m� k� h� �

�
pkxm � �h � ymin

�y

	
������

where ��� means rounding the argument to nearest integer� Another problem is that the discrete
point �m�n�m� k� h�� need not lie within the �nite image� If the point lies outside the image the
value needed could be set to zero� i�e�� the point gives no contribution to the discrete Radon
transform�
Note that the constant term �x can be neglected� This term does not carry information� and

is only needed if the discrete Radon transform should quantitatively approximate the �continuous�
Radon transform�
It can easily be proven that the discrete Radon transform is a linear function� though the

other properties shown for the continuous Radon transform can only be used to the discrete
Radon transform with approximation�
Before showing a small part of an algorithm to compute the discrete Radon transform� the

expression for n should be rewritten to a very simple linear form� in order to reduce the compu�
tational cost�

n � �n�� and n� �
pkxm � �h � ymin

�y
� �m� � where

��
�
� � pk
x


y

� � pkxmin��h�ymin


y

����
�

The following program is written in pseudo�code� where all array indices start at �� Comments
to the code are shown in C�� style using ���

Algorithm ��� � The Discrete Slant Stacking

For k � � to K�� ��For all values of p
For h � � to H�� ��For all values of tau
alpha � p�k��Delta x�Delta y ��Calculate digital slope
beta � �p�k��x min	tau�h��y min��Delta y ��Calculate digital o
set
sum � � ��Initialize sum
For m � � to M�� ��For all values of x
n � round�alpha�m	beta� ��Use nearest neighbour approx�
If n�� and n	N ��Check if pixel lies in image
sum�sum	g�m�n� ��If so� then increment sum

End
End
g radon�k�h��Delta x�sum ��Store Radon value

End
End

In Algorithm ��� pk has been replaced by p�k�� and the initialization of the arrays has been
removed in order to reduce the size of the pseudo�code� Note that actions have to be taken to
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assure that pixel going into the sum actually lies in the image� In the time�consuming part of the
loop� i�e�� within them�loop� optimization should be done very carefully depending on the platform
�computers or similar digital equipment�� used for computing the discrete Radon transform� A
trick that can boost the performance considerably on most platforms� is to directly calculate which
values of m� that gives pixels lying within the image�

� � n � ��m� �� � N � � �
���
��
��� �

�

� � m 	
N� �

�
��

� if � � �

N� �

�
��

� � m 	 ��� �

�

� if � 	 �

� ������

mmin � max



��

�
�� � �



�

�
and mmax � min



M � ��

�
N � �

 � �

�

�
if � � �

mmin � max



��

�
N � �

 � �

�

�
and mmax � min



M � ��

�
�� � �



�

�
if � 	 � �����

where b�c and d�e rounds to the nearest lower and higher integer� respectively� So instead of using
the full interval of m�values� only m from mmin to mmax should be used� in order to avoid the
time consuming testing of valid limits�
Another issue of optimization concern the expression n�round�alpha�m	beta�� which could

be replaced by an initial noat�beta	m min�alpha �if using the alteration described in Eq� ����
and then within the loop n�round�noat� and the line noat�noat	alpha� Hence� multiplications
can be avoided in the �time� important part of the program� The extra accumulation of noise
will normally only cause problems if using a very poor �small� representation of the �oating
point numbers or using extremely large images �hardly the case�� This alteration might give
an additional speedup� but it depends on the platform� i�e�� the memory access rate� and the
adding�multiplication rate of the platform�

����� Linear Interpolation

So far only a nearest neighbour approximation has been considered� It can also be chosen to use
linear interpolation in the y�direction of the image�

�g�k� h� � �x
M��X
m��

���� w�g�m�n� � wg�m�n� ��� ������

where n� �
pkxm � �h � ymin

�y
� �m� �� n � bn�c� and w � n� � n ������

It can be noted that Eq� ���� requires the sum of twice as many samples compared to Eq�
����� In general� a better �higher order� interpolation scheme implies more computational work�
This tradeo� must be determined by sampling properties and the time available for the algorithm�
As shown in the following equation� linear interpolation does not imply much change to the

optimization strategy of computing the range of m�values� corresponding to pixels in the image�

� � n � b�m� �c � N � � �
��
�
��

� � m 	 N����
� if � � �

N����
� � m 	 ��

� if � 	 �
� ������

mmin � max

�
��

�
��

�

��
and mmax � min

�
M � ��

�
N � �� �

�

��
if � � �

mmin � max

�
��

�
N � �� �

�

��
and mmax � min

�
M � ��

�
��

�

��
if � 	 � ������
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In Algorithm ���� it is shown how to compute the Discrete Radon transform using the linear
interpolation approximation� Note also� that Eq� ���� should be used to improve the performance�

Algorithm ��� � The Discrete Slant Stacking with Linear Interpolation

For k � � to K�� ��For all values of p
alpha � p�k��Delta x�Delta y ��Calculate digital slope
For h � � to H�� ��For all values of tau
beta � �p�k��x min	tau�h��y min��Delta y ��Calculate digital o
set
Set m min and m max using Eq� ���� ��Not shown
sum � � ��Initialize sum
For m � m min to m max ��For all valid values of x
noat �alpha�m	beta ��Use nearest neighbour approx�
n�oor�noat� ��Calculate lower index
w�noat�n ��Calculate weight factor
sum�sum	g�m�n�����w�	g�m�n	���w ��Increment sum

End
g radon�k�h��sum�Delta x ��Update matrix element

End
End

In Sections ��� and ���� examples will be given in order to show di�erences between the simple
nearest neighbour approximation� given in Eq� ����� the linear interpolation approximation� and
a sinc interpolation Radon transform�

����� Sinc Interpolation

Assuming that the function g�x� y� was sampled according to the Whittaker�Shannon sampling
theorem ����� then the function can be recovered from the digital image g�m�n� by convolution
with a sinc function�

g�x� y� �
M��X
m��

N��X
n��

g�m�n�
sin� �


x�x� xm��
�

x�x� xm�

sin� �

y �y � yn��
�

y �y � yn�

������

It is not quite true that g�x� y� is exactly recovered because the summations should in principle
be in�nitely long� but these samples are assumed to have value zero�
Instead of approximating the Radon transform to a digital image� a new way of analyzing the

Radon transform of a digital image is proposed �����
Eq� ��� will now be applied to Eq� ���� in order to gain information of the Radon transform

and derive a sampling criterion for the parameter domain

�g�p� �� �
M��X
m��

N��X
n��

g�m�n� I�p� �� xm� yn� ������

I�p� �� xm� yn� �

Z �

��
sin� �


x�x� xm��
�

x�x� xm�

sin� �

y �px� � � yn��
�

y �px� � � yn�

dx ������

�
�x




Z �

��
sin�t�

t

sin��t� ��

�t� �
dt where

�����
����
t � �


x�x� xm�

� � 
x

y p

� � �

y �pxm � � � yn�

����
�
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The last integral can be interpreted as a convolution� Using that the Fourier transform of a sinc�
function is a square� and a square multiplied with a square gives a square� implies that the last
integral is a sinc function�

I�p� �� xm� yn� �
�x

�
sin

�
�min

�
��
�

j�j
��

� ������

�g�p� �� �
M��X
m��

N��X
n��

g�m�n� �x
sin
�
�min

n
�� �

j�j
o�

�
�����

The result is a sinc�interpolation discrete Radon transform� but right now the expression will be
used to analyze the sampling properties of the Radon transform�

����� Sampling Properties of the Discrete Radon Transform

Assuming that the absolute slope jpj is limited �in Section ��
� it will be shown that this is
reasonable��� i�e�� j�j 	 �� implies that the Radon transform is determined by the function sin������
which� as a function of � has an upper limit frequency of �

� � thus if � should be sampled� it should
be done with a rate faster than

�� � 
 ������

A discrete version of the Radon transform demand that the two parameters have to be sampled�
and Eq� ���� is used for each of the Radon parameters� i�e�� p and � �

�� �

������
������ � 


�y
�� � 
 � �� � �y ������

�� �

�����p
�����p � 


�y
jxmj �p � 
 � �p � �y

max jxmj ������

Note that a conservative evaluation is used to assure that the limit in Eq� ���� is valid for all
values of xm� The last equation shows that the sampling distance �p must be small if max jxmj
is large� Regarding the sampling of p� it is optimal to choose symmetrical sampling points of x�
hence minimizing max jxmj�

xmin � �xmax � xmin � �M � �
�

�x ������

Even if xmin is �xed by the underlying physics� this little trick can be used due to the shifting
property of the Radon transform� shown in Eq� ����
Another reasonable way of de�ning bounds on the sampling distances in the parameter domain

is to demand that changing one of the Radon parameters with its sampling interval� cannot lead
to more than a pixel of di�erence in the image� otherwise some of the pixels might not add weight
to the parameter domain� hence information is lost� In other terms

p � maxfj�p��p�x� � � �p x� ��jg � maxfj�p xjg � �y ������

� � maxfjp x� �� ����� �p x� ��jg � �� � �y ������

hence� the interesting conclusion is that the two approaches give the same result�
Assuming that the task is to identify line parameters� then the sampling distances �p and

�� can be set with Eq� ���� and Eq� ����� respectively� The two parameters �min and H can
be set from a requirement that� e�g�� half of the samples in the discrete Radon transform should
lie within the image� If assuming Eq� ����� it is found that H � N and �min � ymin� i�e�� the
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� Chapter �� Slant Stacking

sampling of � follows the sampling of y� The two parameters pmin and K must be set to cover
the interval of expected slopes� e�g�� if the underlying physics can be used to predict the resulting
interval of slopes� this should be incorporated� Later� in Section ��
� it will be shown that there
are limitations to this strategy�
The conclusion is that with a given digital image the parameter domain must be sampled

su	ciently dense in order to avoid aliasing problems� The limits derived in Eqs� ���� and ����
will now be tested with discrete implementations of the Radon transform�

��	 Discrete Radon Transform of a Discrete Line

An digital image was generated with ������� samples� The synthetic image contains two lines as
seen from Fig� ��� and the corresponding discrete Radon transform is shown in Fig� ���� Sampling
parameters for this example can be found in Table ���� Here �p and �� is chosen according to
Eqs� ���� and �����

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Figure ��� The image containing two lines�
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Figure ��� The corresponding discrete Radon
transform �slant stacking��

Image domain Parameter domain

Parameter Value Parameter Value

M ��� H ���
N ��� K ���
�x � �p ����
�y � �� �
xmin ��� pmin ��
ymin � �min �

Table ��� Sampling parameter settings�

The linearity of the Radon transform implies that two peaks should be expected in the discrete
parameter domain� which is shown in from Fig� ���� From the position of the peaks� it is clear
that the line parameters are �p� � ���� �� � ��� and �p � ���� � � ����
Now the sampling parameters of the parameter domain are changed� in order to zoom in

around one of the peaks� Sampling parameters are shown in left side of Table ��� and the Radon
Transform is shown in Fig� ��
� Now the peak is very broad� which suggests that the sampling
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Section ��� Discrete Radon Transform of a Discrete Line ��

of the parameter domain is unnecessary dense� It can also be noted that the number of samples
in the discrete parameter domain has been maintained so the computational cost is �almost� the
same as in Fig� ����
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Figure ��	 The discrete Radon transform of
the image shown in Fig� 
��� Dense sampling of
the parameter domain has been used�
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Figure ��
 The discrete Radon transform
of the image shown in Fig� 
��� Very sparse
sampling of the parameter domain has been
used�

In Fig� ��� the parameter domain has been sampled very sparsely� and note how the upper
peak has vanished� The sampling parameters �p and �� are here set to strongly under�sample
the parameter domain� i�e�� the limits found in Eqs� ���� and ���� are strongly violated� This
example shows how the sampling parameters of the parameter domain should be set� If the
parameter domain is sampled too densely� redundant information is acquired� On the other hand
sampling the parameter domain very sparsely implies important information might be lost� Here
information about one of the lines is lost� but the parameters of the other line is maintained�

Parameter Domain �zoom in� Parameter domain �zoom out�

Parameter Value Parameter Value

H ��� H ���
K ��� K ���
�p ����� �p ����
�� ��� �� �
pmin ��� pmin ��
�min �� �min ����

Table ��� Sampling parameter settings�

����� Comparison of Di�erent Interpolation Methods

The sampling of the parameter domain also depends on the type of interpolation being used�
and the type of image� If the image g�m�n� does not include very sharp edges with many high
frequency components� a nearest neighbour approximation might be su	cient� but an image
containing a line� like Fig� �� implies that interpolation method a�ect the result near the peak in
the discrete parameter domain�
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�� Chapter �� Slant Stacking

In the following the discrete parameter domain is found by use of the three approximations�
i�e�� the nearest neighbour interpolation in the image �Eq� ������ the linear interpolation �Eq� ������
and �nally the sinc�interpolation �Eq� ����� In all three cases the line parameters� corresponding
to Fig� ��� are found�
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Figure ��� An image with one line�

Figs� ����� ����� and ���� use the same color scaling to show the discrete parameter domains�
It can be seen that the di�erence is limited� but the value in the peak is lower in the last two
images� compared to the �rst �nearest neighbour�� In Figs� ����� ����� and ���� the discrete
parameter domains are shown using a dense sampling in the area of the peak� The images have a
common color scaling� It can be seen that the peak in Fig� ���� is very narrow� though the largest
value �� ���� is much higher compared to Fig� ����� and ����� This indicates that using nearest
neighbour approximation requires a dense sampling of the parameter domain in order to assure
that the peak is found� Using linear interpolation with this sparse image implies that the peak
value will be rather low �� 
�� but broad� This can be understood from Fig� ��� where at least
one of the two image points going into Eq� ���� is identically zero at any m� so the weight factors
will lower the result in the peak�
It is important is that a peak is generated in the discrete parameter domain of a su	cient

size� and the adequate sampling of the parameter domain should be compared to the theoretically
derived ones� From the Fig� ���� a somewhat higher peak value �� �� is found� and the e�ective
size of the peak resembles that found with linear interpolation� For Figs� ����� ����� and ���� the
sampling parameters of the image and parameter domain can be found in Table ���� and for Figs�
����� ����� and ���� in Table ���� Note the special form of the parameter domain in the nearest
neighbour case� It is a digital e�ect� and will be found when the line slope can be written as a
fraction with small numbers� e�g�� �� �

�
 � or

�
� �

The computational complexity of the three approximations is also very interesting� Using the
symbols de�ned in Eq� ���� the computational complexity of the three ways of implementing the
discrete Radon transform is approximately given by

ONearest Neighbour � O�K H M� � O�M��

OLinear Interpolation � O�K H M� � O�M��

OSinc Neighbour � O�K H M N� � O�M��

������

where O��� is the order function� and some lower order terms have been skipped� Assuming M
in the order of ���� then the computational complexity of the sinc interpolation is about ���
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Section ��� Discrete Radon Transform of a Discrete Line ��

Parameter Value

H ���
K ���
�p ������
�� ����
pmin ����
�min �

Table ��� Sampling parameter settings for Figs� 
�

� 
�
�� and 
�
��

0

10

20

30

40

50

60

70

80

90

100

p

ta
u

NN

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Figure ���� The discrete Radon transform us�
ing nearest neighbour approximation�

0

10

20

30

40

50

60

70

80

90

100

p

ta
u

NN

0.31 0.315 0.32 0.325 0.33 0.335 0.34 0.345 0.35 0.355 0.36
49

49.2

49.4

49.6

49.8

50

50.2

50.4

50.6

50.8

51

Figure ���� The discrete Radon transform in
the area of the peak using nearest neighbour ap�
proximation�
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Figure ���� The discrete Radon transform us�
ing linear interpolation�
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Figure ���� The discrete Radon transform in
the area of the peak using linear interpolation�

times higher than the other two methods� Note that linear approximation is slower than nearest
neighbour approximation� due to the summation of two samples for every m�
In Table ��� the time needed for computing the discrete parameter domain is listed� corres�

ponding to the three di�erent approximations� The algorithms have been implemented in the
C�language� As it can be seen a speedup�factor of approximately ��� has been gained by optim�
izing the code as described� The time used with linear approximation can be compared to the
�not optimized� nearest neighbour time of ���� so a minor di�erence is found there� As could
be expected from the Eq� ���� the sinc approximation is very slow� due to the fact that this al�
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Figure ���� The discrete Radon transform us�
ing the sinc expansion� Note the ripples away
from the peak�
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Figure ���� The discrete Radon transform in
the area of the peak using the sinc expansion�

gorithm has to calculate a sinc function for every �m�n� k� h�� No �op�ratings are given because
the performance is not totally dominated by the arithmetic statements� but also on the memory
access�rate and the number of comparisons needed in the algorithm�

Method Time

Nearest Neighbour ��� sec
Nearest Neighbour �optimized� ���� sec
Linear Interpolation ��
 sec
Sinc Interpolation ��
 sec

Table ��� Time for calculating the discrete Radon transform for the three types of approximation�
corresponding to Figs� 
�

� 
�
�� and 
�
�� A 
� MHz Pentium PC has been used for the measure�
ments�

One way of analyzing the resolution of the discrete Radon transform is to visualize the shape of
the discrete parameter domain with a threshold value corresponding to� e�g�� half of the potential
max of the parameter domain� i�e� in this case ��� This is a kind of fwhm�measure �full width
half max�� Figs� ����� ���
� and ���� show the parameter domain using a threshold level of ���
From the �gures it can be seen that the extension of the peak� which could be interpreted as
the resolution of the discrete Radon transform in the � �direction� is very close to the sampling
distances derived in Eq� ����� and the resolution in the p�direction is approximately � time the
one derived in Eq� ����� But it should be noted that this kind of analysis depends on the actual
threshold level� Regarding this example the conclusion is that the simple approximations actually
produce good results and much faster than using the sinc interpolation�

��
 Discrete Radon Transform of Points

In this subsection� the discrete Radon transform of individual points will be analyzed� Images
with an increasing number of points lying on a line will be analyzed in order to see the results of
Section ��� from another point of view�
Fig� ��� is generated from Fig� ��� �an image with two lines�� and the image only has eight

non�zero pixels lying on two lines� The pixel values are now attenuated horizontally across the
image �lowest pixel value in the right side of the image�� In Fig� ���� the corresponding discrete
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Figure ���� The thresholded discrete Radon
transform �nearest neighbour��
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Figure ���	 The thresholded discrete Radon
transform �linear interpolation��

0

5

10

15

20

25

30

35

40

45

50

p

ta
u

Sinc

0.31 0.315 0.32 0.325 0.33 0.335 0.34 0.345 0.35 0.355 0.36
49

49.2

49.4

49.6

49.8

50

50.2

50.4

50.6

50.8

51

Figure ���
 The thresholded discrete Radon transform �sinc interpolation��

Radon transform is shown using nearest neighbour interpolation� As could be expected from
Eq� ��
 each of the eight pixels is transformed into a line in the parameter domain� Due to the
di�erent values of the non�zero pixels in the image� it is possible to identify which non�zero pixel
in the image corresponds to a certain line in the parameter domain� Another important issue is
that the lines found in the parameter domain intersect� and amplify in two points� corresponding
to the underlying line�parameters� Sampling parameters for this example can be found in Table
����
Fig� ���� shows a similar image generated having ten points on each line� From the corres�

ponding discrete Radon transform� shown in Fig� ����� the underlying line parameters can be
extracted� due to clearly marked position of the peaks in the parameter domain� Finally Fig� ����
shows an image with two complete lines� and in Fig� ���� are shown the corresponding parameter
domain� The images have been scaled individually corresponding to the minimal and maximal
pixel value� hence it can be seen that the peak value in the last case is very high compared to the
two others�
It has been demonstrated� that each point in the image is transformed into a line in the discrete

parameter domain� where the o�set and slope �in the parameter domain� vary according to the
position of the pixel in the image� This leads to an important issue� namely that the discrete
Radon transform of any given pixel cannot be con�ned in the �nite� thus truncated� parameter
domain� In this way �perhaps important� information will get lost using discrete slant stacking�
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Figure ���� Image with ten points lying on
two lines�

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p

ta
u

NN

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Figure ���� The corresponding discrete Radon
domain�
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Figure ���� Image with � points lying on two
lines�
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Figure ���� The corresponding discrete Radon
domain�
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Figure ���� Image with � points lying on
two lines�
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Figure ���� The corresponding discrete Radon
domain�
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Section ��� Slant Stacking and Images with Steep Lines ��

��� Slant Stacking and Images with Steep Lines

It has been demonstrated that the parameter domain must be sampled su	ciently dense� in
order to assure that the discrete approximations to the Radon transform does not cause aliasing
problems�
Another problem arises when images include one or more lines with high slope �nearly vertical

lines�� First assume an image with two lines as shown in Fig� ����� One line has a slope of �
�

and the other a slope of � The corresponding discrete Radon transform is shown in Fig� �����
where the parameter p has been limited between �� and �� The parameters of the �rst line is
clearly identi�ed� but due to the high slope and the truncated parameter domain� the other line
is not detected� This illustrates that only lines with parameters that lie within the limits of the
parameter domain can be identi�ed� It is a very general property of the discrete Radon transform
that a parameter domain with many samples is required when no prior information is provided�
If� e�g�� the slopes of the lines are limited between ���� and ���� then this should be used to limit
the discrete parameter domain� in order to reduce the computational work�
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Figure ���� An image with two lines having a
slope of �

�
and � respectively�
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Figure ���� The corresponding discrete para�
meter domain� with the slope parameter p lim�
ited between �
 and 
�

One way to enable detection of both lines� is to increase K� i�e�� the number of samples in the
p�direction� in order to have pmax � pmin��K����p � � This is possible� but the computational
cost would be unnecessary high� due to the large number of samples in the discrete parameter
domain�
Another problem is that the peak value in the discrete parameter domain should be around

���� �or perhaps somewhat lower as shown in Subsection ������� due to the fact that the each
line is made of ��� non�zero samples with value of �� Assume that the parameter domain was
expanded to include the very steep line� then the value of the discrete Radon transform at the
peak would only be in the region of ��� This problem is indicated in Fig� ���
� The dashed line
show the line under which the values are summed� But stepping forward in m� in this case only
four samples contribute to the discrete Radon transform� and several samples between the four
are skipped� In Fig� ���� only around �� pixels would contribute to the discrete Radon transform
in the region of the parameter of the second line parameters� hence the peak value would be much
lower than possible from the image�
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Four samples used

Figure ���	 Image with steep line� The 	lled circles are pixels with a value of one� and the others
have a value of zero� The dashed line indicate the line of integration� Note how only four samples go
into the discrete Radon transform and several pixels are skipped�

Another serious reason for concern� comes from the analysis of functions with vertical lines�
The corresponding Radon transform can be found from the analysis of a �continuous� vertical
line�

g�x� y� � A ��x� x�� � �g�p� �� � A

Z �

��
��x� x�� dx � A ����
�

where it should be noted that the Radon transform does not depend on the position of the line x��
This implies that this information is not maintained in the parameter domain� hence the position
of vertical lines cannot be detected using slant stacking�
A way to overcome the described problems is to compute two parameter domains� The �rst

�g�p� �� is restricted to �plim 	 p � plim� and the other �g�r� �� is used to manage the remaining
line orientations�

�g�p� �� �

Z �

��
g�x� p x� �� dx ������

�g�r� �� �

Z �

��
g�r y � �� y� dy �����

The two ways of describing lines are related

y � p x� � � x � r y � � where



r � �

p

� � � �
p

������

Thus if �plim � p � plim then the other slope parameter should be bounded by � �
plim

� r � �
plim
�

A reasonable value of the limiting slope is

plim �
�y

�x
������

This limit assures that the problem illustrated in Fig� ���
 is eliminated� The change in vertical
direction when moving to the next m� during discrete Radon transform� will be less than �� From
Eq� ���
� this could be interpreted as the digital slope of the line� and p
x


y lies between �� and ��
This way of choosing plim also ful�lls the assumption in Eq� ���� that j�j � ��
Note that a discrete implementation of the Radon transform de�ned in Eq� ��� does not

imply additional programming� By applying the discrete Radon transform to the transpose of
the digital image� i�e�� h�m�n� � g�n�m�� and using Eq� ���� to convert the sampling parameters�
then the obtained discrete parameter domain estimates the wanted Radon transform�
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��� Detection of Lines Convolved with a Wavelet

So far only positive valued images have been considered� In this subsection the restriction will
be abandoned� by assuming a line convolved with a wavelet� Here a wavelet ��x� is de�ned as a
�short� signal centered around x � �� Note that this de�nition does not agree totally with the one
used in wavelet analysis� In wavelet analysis� the wavelet is also restricted to

R
��x� dx � �� This

setup is relevant in connection with �ltering of edges� where the �ltering output is both positive
and negative�
The model considered is

g�x� y� � ��y � p�x� ��� ������

hence the line has certain parameters �p�� ���� Comparing Eq� ���� with Eq� ����� it can be noted
that the wavelet ����� has been convolved in the y�direction� The wavelet could also have been
convolved perpendicularly to the line� and this could be included in the wavelet as a angular
dependent scaling parameter� The corresponding Radon transform is given by

�g�p� �� �

����
���

Z �

��
��� � ��� dx for p � p�

�

jp� p�j
Z �

��
���x� d�x for p �� p�

������

This result is interesting in various ways� In order to have a peak in the parameter domain at the
correct parameters� the wavelet should have a global maximum when the argument is zero� i�e��
corresponding to the position of the line�

���� � ��x� 	x �� � ������

Another interesting result is that when p �� p� the result only depends on the integral of the
wavelet� Consider that the wavelet is chosen to ��x� � ����x�� The integral �from minus in�nity
to in�nity� of this function is �� and the value of ������ is in�nite� hence the parameter domain
would be in�nite at the position of the line parameters �p� �� � �p�� ���� and zero otherwise�
In Fig� ���� an image containing two lines is created using the digital wavelet f����� ���� ���g�

It is found that the di�erence between the discrete parameter domains obtained by using nearest
neighbour� linear interpolation� and the sinc expansion approximation is limited� hence Fig� ���
only shows the corresponding discrete Radon transform using the nearest neighbour approxima�
tion� Two peaks are found corresponding to the line parameters� and the values in the parameter
domain are in fact small away from the peaks� Note also the negative value� just over and under
the �positive� peak�

�� Summary

Slant stacking or � �p transform was de�ned as it is common within seismics� The transform was
analyzed as a special case of the Radon transform� Discrete approximations were derived� and
sampling properties were derived and analyzed by introducing a new sinc expansion strategy�
It was demonstrated for curve detection purposes� that a nearest neighbour approximation is
adequate if sampling of the parameter domain is su	ciently dense� It was also demonstrated that
linear interpolation gave approximately the same parameter domain as the one found with the sinc
interpolation strategy�
It has been shown that slant stacking is capable of detecting curve parameters if the slope

of the line is below a certain limit related to the sampling parameters� A simple cure for this
limitation was also reviewed�
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Figure ���
 Image with two intersecting lines
convolved with a wavelet in the vertical direc�
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Chapter �

The Normal Radon Transform

In this chapter another very popular form of the linear Radon transform are reviewed� Several
ways to de�ne a discrete Radon transform is presented and an analysis of the sampling relation�
ships is presented using the same techniques as in Chapter �� A set of examples are included to
illustrate the theory�

��� De�ning the ��� �� Radon Transform

In Chapter � one form of the linear Radon transform has been considered� namely slant stacking�
This is merely one linear form of many� and the linear Radon transform can be de�ned on a more
general form as

�g���� ��� �� �

Z �

��

Z �

��
g�x� y� ���� � ��x� �y� dx dy �����

On this form the line is described with �apparently� three degrees of freedom� which is one to
many to describe a line� so the three parameters should always have a link� which removes one
degree of freedom� In the literature two forms are by far the most common� The �rst� slant
stacking� where the parameters are

���� ��� �� � ���� p���� �����

Another de�nition of the Radon transform is used in many �elds of science� e�g�� tomography�
astronomy and microscopy ����� where the fundamental function g�x� y� has no preferred orienta�
tion� This has lead to describing the line on its normal form

� � x cos � � y sin � �����

i�e�� ���� ��� �� � ��� cos �� sin ��� and the normal Radon transform� The term normal Radon
transform is not generally accepted� but here it is a very practical term and is only used to be
able to distinguish slant stacking from the form shown in Eq� ��� can be written as

�g��� �� �

Z �

��

Z �

��
g�x� y���� � x cos � � y sin �� dx dy �����

This de�nition can be compared to Eq� ���� found for slant stacking� Note again that no new
symbol for the normal Radon transform has been assigned� but the arguments are used to show
which de�nition is used�

��



� Chapter � The Normal Radon Transform

Often another equivalent way of writing Eq� ��� is used

�g��� �� �

Z �

��
g�� cos � � s sin �� � sin � � s cos �� ds �����

�
�

j sin �j
Z �

��
g

�
x�

�

sin �
� x cot �

�
dx �����

�
�

j sin �j
Z �

��

Z �

��
g�x� y� �

�
y � �

sin �
� x cot �

�
dx dy ���
�

�

Z �

��

Z �

��
g�x� y� ���� x cos � � y sin �� dx dy �����

where the s�axis lies along the line� Eq� ��� can be compared to Eq� ����
The meaning of the normal parameters used to specify the position of the line are shown in

Fig� ���� The parameter � is the shortest distance from the origin of the coordinate system to the
line� and � is an angle corresponding to the angular orientation of the line�

ρ
θ

x

y

Figure ��� The two parameters � and � used to specify the position of the line�

The �rst thing to notice about the normal Radon transform is that all lines can be described
by choosing that � � � 	 �
 and � � �� but frequently other limits are used� If negative values
of � are introduced the parameter domain are bounded by

� � � 	 
 and � �max � � � �max ����

where �max is positive� and �nite when any discrete implementation is considered� Both limitations
of the parameter domain are valid� and they are very much related by

�g��� �� � �g���� � � 
� ������

which is easily found from Eq� ��� using the fact that the delta function is even�
The normal Radon transform is �not surprisingly� linked to slant stacking� and the one can

be expressed from the other� From Eq� ��� it is found that

�g��� �� �
�

j sin �j
Z �

��
g

�
x�

�

sin �
� x cot �

�
dx �

�

j sin �j�g
�
p � � cot �� � � �

sin �

�
������

The relation is very simple� and the link between the two set of parameters can be found directly
from Figs� ��� and ���� It is clear that Eq� ���� impose a problem when � is close to �� but in
that case a link can be made to the Radon transform de�ned in Eq� ����

�g��� �� �
�

j cos �j
Z �

��
g�ry � �� y� dy where



r � � tan �
� � �

cos �

������

Using Eq� ��� several properties can be derived� Some of these can be found in appendix B�
The most important property is that the normal Radon transform is a linear function� It should
also be mentioned that several functions can be transformed analytically ���� ���� As described
in Sections B�� and C��� a set of those has been implemented in order to� e�g�� test numerical
approximations to the normal Radon transform or its inverse�
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Section 
�� De�ning the ��� �� Radon Transform �

����� The Point Source

Again the point source is used to gain information about the fundamental behavior of the normal
Radon transform� Here an arbitrary position of the point source �x�� y�� is assumed�

g�x� y� � ��x� x�� ��y � y�� � ������

�g��� �� �

Z �

��

Z �

��
��x� x�� ��y � y�� ���� x cos � � y sin �� dx dy

� ���� x� cos � � y� sin �� ������

Fig� ��� illustrates a point source and the corresponding Radon transform�

ρ

θ

ρ

θ ∗

ρ∗

θ
∗∗

y

x

Figure ��� To the left is shown a point source� and to the right is shown the corresponding normal
Radon transform�

From Eq� ����� it is derived that for any function g�x� y� the Radon transform is given by

g�x� y� �

Z �

��

Z �

��
g�x�� y�� ��x� x����y � y�� dx� dy� � ������

�g��� �� �

Z �

��

Z �

��
g�x�� y������ x� cos � � y� sin �� dx� dy� ������

�

Z �

��

Z �

��
g�x�� y������ �� cos�� � ���� dx� dy� ����
�

where �� cos �� � x� and �� sin �� � y� ������

This result is very interesting with respect to numerical algorithms� It shows that a point is
transformed into a sinusoid in the parameter domain� and the Radon transform of a point source
can be con�ned in a truncated parameter domain�

g�x� y� � � for
q
x � y � �max � �g��� �� � � for j�j � �max �����

which comes directly from Eq� ���
� This result should be compared to Eq� ��
� found for slant
stacking�
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� Chapter � The Normal Radon Transform

����� The ��� �	 Radon Transform of a Line

One of the major advantages of the normal Radon transform regards line detection� Modelling a
line with certain parameters ���� ��� with the delta function gives

g�x� y� � ���� � x cos �� � y sin ��� � ������

�g��� �� �

Z �

��
���� � �� cos � � s sin �� cos �� � �� sin � � s cos �� sin ��� ds

�

Z �

��
���� � � cos�� � ��� � s sin�� � ���� ds

�

Z �

��
�

j sin�� � ���j �
�
�� � � cos�� � ���
sin�� � ���

� s

�
ds� if sin�� � ��� �� �

�
�

j sin�� � ���j ������

and if � � ��� i�e�� sin�� � ��� � �� it is found that

�g��� �� �

Z �

��
���� � �� ds �

���
��
�� if �� �� �Z �

��
���� ds� if �� � �

������

Not surprisingly� the result is that a peak is formed� when � � �� and � � �� �and �nite terms
will also be found�� Furthermore note that there is no limitations on the orientation of the line�
which was a problem with the way slant stacking was de�ned�

��� The Discrete ��� �� Radon Transform

A discrete approximation to the continuous slant stacking was straight forward� cf� Eqs� ���� and
����� Again all parameters are sampled linearly�

x � xm � xmin �m�x� m � �� �� � � � �M � �
y � yn � ymin � n�y� n � �� �� � � � � N � �
� � �t � �min � t��� t � �� �� � � � � T � �
� � �r � �min � r��� r � �� �� � � � � R� �

������

Apparently the transform has a lot of free parameters� but normally several of them are �xed�
Eq� ��� implies that the interesting part of the function g�x� y� should be shifted towards the
center of the coordinate system� in order to get the smallest number of samples in the ��direction�
Now it will be assumed that the image is square

�x � �y ������

M � N ������

which implies that the samples should lie in a symmetrical interval around zero� i�e�

xmin � �xmax � ��M � ��
�

�x ������

ymin � xmin � �ymax � ��M � ��
�

�x ����
�

�min � ��max � ��R� ��
�

�� ������
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Section 
�
 The Discrete ��� �� Radon Transform �

Considering the angular sampling� the angular starting point can be chosen to

�min � � �����

Secondly� the sampling interval of � should be set to span 
� i�e��

�� �



T
������

This leaves only a few free parameters� namely �x� M � T � R� and ��� These limitations are
assumed in the following�
One way of de�ning a discrete normal Radon transform could be to approximate Eq� ����

�g��r� �t� �

Z �

��
g��r cos �t � s sin �t� �r sin �t � s cos �t� ds ������

� �s
J��X
j��

g��r cos �t � sj sin �t� �r sin �t � sj cos �t� ������

where sj is a linear sampling of the variable s� done as in Eq� ����� This approach have some
implications� The most serious is that for a given value of j� the image points found in Eq� �����
i�e�� �x� y� � ��r cos �t � s sin �t� �r sin �t � s cos �t� �in principle� never coincide with samples
in the �assumed� image g�m�n� � g�xm� yn�� hence an interpolation in both variables �x� y� is
needed� This two�dimensional interpolation can and should be avoided� due to the extra noise
added� compared to a one�dimensional interpolation� Another question is how densely should the
sampling interval of the parameter s� i�e�� how �s should be adjusted�
Another way of approximating the normal Radon transform and only get a one�dimensional

interpolation in the image is to reformulate Eq� ��� using the slant stacking de�nition� like it was
done in Eq� ���� and Eq� ����� That solution only requires an one�dimensional interpolation�
Either implemented as a �fast� nearest neighbour approximation like below� or e�g�� a linear
interpolation�

sin � �
�p
�
� �g��� �� �

�

j sin �j�g
�
p � � cot �� � � �

sin �

�
������

� �x

j sin �j
M��X
m��

g �m� ��m� ��� ������

where � � � cot � and � � �� xmin�cos � � sin ��

�x sin �
������

sin � � �p
�
� �g��� �� �

�

j cos �j�g�r � � tan �� � �
�

cos �
� ������

� �x

j cos �j
M��X
n��

g ���n� �� � n� ����
�

where � � � tan � and � � �� xmin�cos � � sin ��

�x cos �
������

where it has been used that �x � �y� M � N � and xmin � ymin� Note that besides the
�projection� factors �

j sin �j and
�

j cos �j in front of the integrals� the way to approximate the two
integrals follow section ��� and especially Section ��
� The idea is shown in Algorithm ����
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	 Chapter � The Normal Radon Transform

Algorithm ��� � The Discrete Normal Radon Transform

For t � � to T�� ��For all values of theta
costheta � cos�theta�t��
sintheta � sin�theta�t��
rhoo
set � x min��costheta	sintheta� ��Common factor
If sintheta���sqrt��� ��Project onto x�axis
alpha � �costheta�sintheta ��Digital slope is set
For r � � to R�� ��For all values of rho
beta � �rho�r��rhoo
set���Delta x�sintheta� ��O
set is set
mmin and mmax are set using Eq� ���� ��Expression omitted
sum � � ��Initialize sum
For m � mmin to mmax ��For all legal values of x
sum�sum	g�m�round�alpha�m	beta��� ��Increment sum

End
g radon�r�t��Delta x�sum�sintheta ��Update matrix element

End
Else ��Project onto y�axis
alpha � �sintheta�costheta ��Digital slope is set
For r � � to R�� ��For all values of rho
beta � �rho�r��rhoo
set���Delta x�costheta� ��O
set is set
nmin and nmax are set using Eq� ���� ��Expression omitted
sum � � ��Initialize sum
For n � nmin to nmax ��For all legal values of x
sum�sum	g�round�alpha�n	beta��n� ��Increment sum

End
g radon�r�t��Delta x�sum�abs�costheta� ��Update matrix element

End
End

End

As it can be seen in Algorithm ��� the program is actually split up in two parts� corresponding
to the axis on which the line integral has been projected� Each of the two parts have been optimized
like it has been described below Algorithm ���� The expressions for mmin and mmax are given
is Eq� ���� and the expressions for nmin and nmax can be derived from the same equation with
some minor changes in variables�
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Section 
�
 The Discrete ��� �� Radon Transform �

����� Sampling Properties of the ��� �	 Radon Transform

In order to gain knowledge of the sampling relationships� the sinc�expansion procedure� shown
in Subsection ������ is used� But instead of integrating to get the result� Eq� ����� i�e�� the sinc
interpolation result from slant stacking and the relation between the normal Radon transform and
slant stacking� Eq� ����� are coupled in order to get the result� This shows an important way to
gain more knowledge about the Radon transform� Some issues are better understood or easier
derived with� e�g�� slant stacking� but can easily be translated to the normal Radon transform
�and reversely��

g�x� y� � �
M��X
m��

N��X
n��

g�m�n�
sin� �


x�x� xm��
�

x�x� xm�

sin� �

y �y � yn��
�

y �y � yn�

� �����

�g��� �� �
M��X
m��

N��X
n��

g�m�n� I

�
p � � cot �� � � �

sin �
� xm� yn

�
������

�
M��X
m��

N��X
n��

g�m�n� I��� �� xm� yn� ������

I��� �� xm� yn� �
�x

�
sin

�
�min

�
�

j sin �j �
�

j cos �j
��

������

where � �



�x
��� xm cos � � yn sin �� ������

Using the technique shown in Subsection ������ the sampling properties of the normal Radon
transform is determined by �� As a function of � the function min f��j sin �j� ��j cos �jg has
values between � and

p
�� Using the maximum of

p
�� the sampling interval of the � should not

be greater than �p

� Using this limit for both parameters gives

�� �

������
������ � 


�x
�� � 
p

�
� �� � �xp

�
������

�� �

������
������ � 
p

�
� �� � min

xm�ym

�xp
�
p
xm � yn

�
�x

�jxminj ������

Note that some rather conservative assumptions are made� in order to make the expressions valid
for all values of �xm� yn�� The results show that for a given image a lower limit of sampling
intervals in the parameter domain exist� Violating these limits can lead to aliasing problems in
the parameter domain� It can be shown that Eq� ���� and Eq� ���� corresponds to a demand� that
the change of line positions should be below one sample� when changing either � or � with their
respective sampling intervals�
With a given image g�m�n� and sampling distance �x� the angular sampling distance �� can

be set using Eq� ����� hence the angular sampling parameters can be chosen to

T � d
�M � ��e and �� �



T
������

where it has been used that xmin � ��x �M � ����� When using Eq� ���� and Eq� ����� the only
remaining parameter to determine is R �or �min���max�� which can be determined by assuming
�� � 
xp


� cf� Eq� ����� and inserting Eqs� ��������� into Eq� ���� In total�

�max � max
xm�yn

q
x � y �

p
� jxminj � ����
�

R � �

p
�jxminj
��

� � � �M � � and �min � �R� �
�
�� ������
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�� Chapter � The Normal Radon Transform

����� The Discrete ��� �	 Radon Transform of Several Lines

Fig� ��� shows an image with ��� � ��� pixels� where seven lines can be found with di�erent
orientations and amplitudes � �pixel value on the line� as shown in Table ����
Fig� ��� shows the discrete parameter domain using Algorithm ���� i�e�� a nearest neighbour

approximation� Seven peaks are found and the values in the peaks correspond to the curve
amplitudes �� As seen from Table ���� the sampling parameters were chosen according to Eq�
���� and Eq� ����� Note that a high number of samples is required in the parameter domain
compared to the original image�
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Figure ��� An image with seven lines� The
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Figure ��� The corresponding discrete Radon
transform using the nearest neighbour approx�
imation� The background color correspond to a
value of zero�

Line number � � � � � � 


� �� �� �� ��� � �� ���
� ���
� ��
�� ��
�� ���
� ���� ��
�� ���

� � ��� �� � � � ��

Table ��� Line parameters corresponding to Fig� ���

Image domain Parameter domain

Parameter Value Parameter Value

M ��� R ���
N ��� T ���
�x � �� ��
�

�y � �� ����
xmin ��� �min �
��

ymin ��� �min �

Table ��� Sampling parameter settings corresponding to Figs� �� and ���
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Section 
�
 The Discrete ��� �� Radon Transform ��

Now the sampling parameters are changed� Firstly� the sampling parameters corresponding to
the discrete parameter domain shown in Fig� ���� violates Eq� ���� and Eq� ����� Here the peak
corresponding to line number three have disappeared� Secondly� in Fig� ��� a discrete parameter
domain is shown� where the sampling parameters are set to zoom in the area of parameters of line
number �ve�
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Figure ��� The sparsely sampled parameter
domain� Note how the peak corresponding to
line number three is missing� i�e�� at �� � ��� � �
������ The sampling parameters are listed in the
left part of Table ���
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Parameter domain �zoom out� Parameter domain �zoom in�

Parameter Value Parameter Value

R ��� R ���
T ��� T ���
�� ���� �� ������
�� ���� �� � � ����
�min �
��
 �min �����
�min � �min ����

Table ��� Sampling parameter settings corresponding to Figs� �� and ���

Next the discrete parameter domain using linear interpolation and sinc interpolation are dis�
played in the area of line number �ve� From Fig� ��� it can be seen that the nearest neighbour
approximation actually produces a peak� though it is a somewhat di�erent shape compared the
peaks found in Fig� ��
 and Fig� ���� which look very much alike� Again for this example� it is
found that the peak value is lowest when using linear interpolation�
The evaluation of the results should also incorporate the time used to calculate the three

zoomed parameter domains� which is shown in Table ���� The complexity of the three approxim�
ations are given by

ONearest Neighbour � O�R T M� � O�M��

OLinear Interpolation � O�R T M� � O�M��

OSinc Interpolation � O�R T M� � O�M��

�����

which is analogous to Eq� ����� And again it should be noted that linear interpolation is somewhat
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slower than using nearest neighbour interpolation�
All programs were implemented in C� and for the �rst two algorithms� the code was optimized

and implemented as described below Algorithm ���� The huge di�erence found in Table ��� from
the �rst two algorithms to the ���� seconds used with the sinc interpolation� is due to two things�
Firstly� the sinc approximation requires a sinc function� which have to be computed once per
iteration� Secondly� the �rst two algorithms have� cf� Eq� ����� a much smaller computational
cost� compared to the sinc interpolation strategy� as shown in Eq� ����

Method Time

Nearest Neighbour �� sec
Linear Interpolation ��� sec
Sinc Interpolation ���� sec

Table ��� Time for calculating the discrete Radon transform for the three types of approximation�
corresponding to Figs� ��� ��� and ��� All three times are measured on a 
� MHz Pentium�

To visualize the resolution of the discrete normal Radon transform� Figs� �� �nearest neigh�
bour�� ���� �linear interpolation�� and ���� �sinc interpolation� show the parameter domain in the
area of the peak using a threshold level of ���
It can be seen that all three implementations give approximately nearly the same resolution�

and the resolution in the ��direction is a bit over the one derived in Eq� ����� The resolution in
the ��direction is approximately �ve times the one derived in Eq� ����� but it must be noted� that
this limit was derived by using rather conservative assumptions�
In Fig� ���� the discrete parameter domain is shown in the area of the line number three in

Table ��� by using nearest neighbour approximation� and in Fig� ���� the parameter domain has
been truncated at the value ��� �note that line number three has amplitude ��� and note that the
peak value is approximately ����� It can be seen that resolution here is below the one derived
value in Eq� ����� in the ��direction� which again indicates that the threshold changes the result of
this kind of analysis� Likewise Fig� ���� shows the same part of the parameter domain found by
use of linear interpolation� Finally in Fig� ���� the parameter domain has been computed using
linear interpolation and then truncated at ���� A signi�cantly smaller region is found� which is to
be expected with the high threshold level�
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����� The Discrete ��� �	 Radon Transform of Points

Fig� ���� shows an image with only �� pixels having a value di�erent to zero� The value drops o�
linearly to the right of the image� The �� pixels lie on two lines with the same angular orientation�
and in Fig� ���
 the corresponding discrete parameter domain is shown� by use of a nearest
neighbour approximation� Sampling parameters can be found in Table ���� Each of the �� points
are clearly represented by a sinusoid� and note how the linearity of the Radon transform implies
that the sinusoids intersect and peaks are positioned corresponding to the parameters of the two
supporting lines�
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Figure ���	 The corresponding discrete para�
meter domain using a nearest neighbour approx�
imation� Note how individual sinusoids form
connected curves�

Figs� ���� and ��� show the discrete parameter domains found by using linear interpolation
and the sinc interpolation respectively� Fig� ���� shows approximately the same result as Fig�
���
� but the sinusoids are more smooth� A closer examination of Fig� ��� reveals that each of
the sinusoids have ringing e�ects� resulting in undesired non�zero values in the parameter domain
also in areas where no sinusoids are found�
Transformation times corresponding to the three approximations are given in Table ����
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In Fig� ���� is shown the discrete sparsely sampled parameter domain using a nearest neigh�
bour approximation� Sampling parameters are shown in the left side of Table ���� It should be
noted that the upper peak has a very low value� This is due to the violation of the sampling
criterion� It can also be seen that the sinusoids now are broken at certain angles� Using linear
interpolation as in Fig� ���� only implies that the curves does not break� but note again the low
value of the upper peak�
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angles�

Method Time

Nearest Neighbour �� sec
Linear Interpolation ��
 sec
Sinc Interpolation ���� sec

Table ��� Time for calculating the discrete Radon transform for the three types of approximation�
corresponding to Figs� �
�� �
�� and �
�� All times are measured on a 
� MHz Pentium�
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��� Summary

The Radon transform was de�ned on ��� �� form and discrete forms were derived� Both forms were
analyzed� and sampling properties were derived and analyzed using a sinc expansion strategy� like
it was done in the Chapter ��
It was demonstrated for curve detection purposes� that a nearest neighbour approximation is

adequate if sampling of the parameter domain is su	ciently dense� It was also demonstrated that
linear interpolation gave approximately the same parameter domain as the one found with the sinc
interpolation strategy�
As expected� it has been demonstrated that the discrete normal Radon transform can detect

lines with arbitrary orientation� which could not be ful�lled with slant stacking� The chapter was
concerned with quadratic images and the arbitrary line orientation� and that is one of the major
di�erences from the results found in Chapter ��
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Chapter �

The Hough Transform

So far the Radon transform has been investigated as a tool for line detection� Two di�erent ways
of selecting parameters gave mainly the same type of discrete transform� namely� for each position
in the parameter domain� sum up pixel values along a line in the image and store the sum with
proper scaling at that position�
If the image is very sparse� e�g�� a binary image with few non�zero pixels� most of the computer

time is spend summing up zeros� that does not contribute to the parameter domain� In one of
the most cited patents in the image processing literature� ����� P�V�C� Hough proposed a way of
incorporating that prior knowledge into the transform� in order to reduce the computational cost�
The idea was initially formulated for lines described with slope and o�set parameter �like slant
stacking�� but many authors have translated the idea into the domain of normal line parameters
��� ��� e�g�� ���� ��� ���� It should be mentioned� that there is some confusion in the literature�
regarding how the Hough and the Radon transform are related� It is a problem of de�nition� A
common opinion� which here will be used for de�ning the Hough transform� is that the Hough
transform maps the individual pixels from the image domain into a shape in the parameter do�
main� and the Radon transform transform a shape in the image domain into a single pixel in the
parameter domain� As written in ����� �For a given point on a line segment in framelet ����� a
line is drawn in the transformed plane����� thus the main idea is to transform each pixel in the
image individually into the parameter domain�
From a historical point of view it is not clear what motivated the Hough transform� It is

likely that it was a new idea� and not motivated by results like the ones shown in Section ����
Apparently it was �rst later on� that it was realized� that the Radon transform and the Hough
transform are highly related�

��� The �p� � � Hough Transform

The Hough transform can be derived from the Radon transform ����� In Eq� �� it was found that

g�x� y� �

Z �

��

Z �

��
g�x�� y�� ��x� x�� ��y � y�� dx� dy� �

�g�p� �� �

Z �

��

Z �

��
g�x�� y�� ��� � y� � px�� dx� dy� �����

Eq� ��� actually expresses what Hough meant� For each point in the image g�x�� y��� draw a line
in the transformed plane� i�e�� the parameter domain� The line is found by setting the argument
of the last delta function to zero

� � y� � px� �����

�Reference to an image in the patent�

�
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Eq� ��� states that the extra weight� or vote� that the parameter domain should be updated
with is proportional to the function value g�x�� y��� This is a natural choice� so in this light the
Hough transform on a continuous form� c�f� Eq� ���� can be viewed as a special case of the Radon
transform� But this is only true in the continuous case� and as it will be demonstrated the two
transforms are in general not identical in their discrete forms� Note also that the Hough transform
commonly is only used in a discrete form�
Eq� ��� motivates a new scheme for estimation of the parameter domain� Again in order to

reduce the size of the algorithm y�n�� is assumed to be set to yn and so on� Note that the sampling
parameters de�ned in Eq� ���� are used again�

Algorithm ��� � The Hough Transform

Set g hough�k�h��� for all �k�h� ��Initialize Hough space
For m�� to M�� ��For all values of x
For n�� to N�� ��For all values of y
gvalue � g�m�n� ��Store in simple variable
If gvalue��� ��Only consider non�zero pixels
For k�� to K�� ��For all values of p
tau�y�n��p�k��x�m� ��Calculate the tau
h�round��tau�tau min��Delta tau� ��Find the right sample
If h�� and h	H ��Check if sample is valid
g hough�k�h��g hough�k�h�	gvalue ��Update parameter domain

End
End

End
End

End

Algorithm ��� describes the core of the Hough transform� though it should be noted that
nearly all people working with the Hough transform use the ��� �� form� The key point is that
for the non�zero pixels in the image and each value of pk� a value of � is calculated� which �here�
is rounded to the nearest neighbour� In the following the implications of this strategy will be
analyzed and compared to the Radon transform�
The �rst issue is to compare the computational complexities� Assuming that only some of the

image pixels have a non�zero value� then the computational complexity of the Hough transform is
given in Eq� ���� For easy comparison the �rst line of Eq� ���� is repeated in Eq� ���� corresponding
to the nearest neighbour discrete Radon transform�

ORadon � O�K H M� � O�M�� �����

OHough � O��M N�r K� � O��M N�r M� �����

where the index r is used to indicate that a reduced number of the pixel has to be transformed�
If the image only contains one non�zero pixel then �M N�r � �� and the Hough transform will be
the fastest of the two transforms� but a more realistic value of �M N�r lies between M and M N �
depending on the structure of the image� This also indicates that most applications of the Hough
transform is in connection with binary images� often rather sparse �many zeros and few ones��
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Again the procedure described right after Algorithm ���� is applied to reduce the computational
cost� i�e�� the continuous mapping equation is rewritten using the discrete parameters

� � y � px � �����

h � yn � �k�p� pmin�xm � �min

��
� �k � � where

��
�
� � �xm
p


�

� � yn�xmpmin��min


�

�����

If a nearest neighbour approximation is applied then Eq� ��� can be used to determine the
values of h� that corresponds to parameters lying in the truncated discrete parameter domain� i�e��

� � h � ��k � �� � H � � �
���
��
� 	� �

�


 	 k 	
H� �

�
�	


 if � � �

H� �

�
�	


 	 k 	 � 	� �

�


 if � 	 �

� ���
�

kmin � max



��

�
�� � �



�

�
and kmax � min



K � ��

�
H � �

 � �

�

�
if � � �

kmin � max



��

�
H � �

 � �

�

�
and kmax � min



K � ��

�
�� � �



�

�
if � 	 � �����

In Algorithm ��� an implementation of the Hough transform is shown using �p� ���parameters
and a nearest neighbour approximation in the parameter domain� and for optimization purposes
Eq� ��� is used to assure that the pixels actually lie in the discrete parameter domain�

Algorithm ��� � The Optimized Hough Transform

Set g hough�k�h��� for all �k�h� ��Initialize Hough space
For m�� to M�� ��For all values of x
For n�� to N�� ��For all values of y
gvalue � g�m�n� ��Store in simple variable
If gvalue��� ��Only consider non�zero pixels
kappa � �x�m��Delta p�Delta tau ��Calculate digital slope
zeta � �y�n��x�m��p min�tau min��Delta tau ��Calculate digital o
set
Calculate k min and k max from Eq� ���
For k�k min to k max ��For all valid values of p
h�round�kappa�k	zeta� ��Find the right tau�value
g hough�k�h��g hough�k�h�	gvalue ��Update parameter domain

End
End

End
End

In the algorithm� it is used that only the image pixels with value di�erent from zero are
transformed� For non�binary ��oating point valued� images a threshold can be applied� but the
threshold level strongly depends on the nature of the image�

����� Line Detection Using The Hough Transform

In Fig� ��� yet another synthetic image containing six line pieces is shown� and the line parameters
can be found in Table ���� Fig� ��� shows the corresponding discrete parameter domain by use
of discrete slant stacking� Sampling parameters can be found in Table ���� Six clearly marked
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peaks positioned at the correct line parameters can be found in the discrete parameter domain�
even now� where only segments of lines are available� The starting and ending points of the line
segments cannot directly be found from the parameter domain� but a more interesting discovery
is that the parameter domain found by use of Hough transform in this case is identical to the one
found with the discrete Radon transform� This is due to the choice of sampling parameters and
the way the two algorithms compute the discrete indices�
In Eq� ���
 it is found that

n �

�
pkxm � h�� � �min � ymin

�y

	
����

If the sampling parameters have been chosen as �� � �y and �min � ymin as suggested in
Subsection ������ then Eq� ��� corresponding to the discrete Radon transform� becomes very
simple

n �

�
pkxm � h�y

�y

	
� h �

�
pkxm
�y

	
������

and for the Hough transform with the same choice of �� � �y and �min � ymin� the mapping
function is given by Eq� ����

h �

�
n�y � ymin � pkxm � �min

��

	
������

�

�
n�y � pkxm

�y

	
������

� n�
�
pkxm
�y

	
������

which is exactly the same as in Eq� ����� So the interesting conclusion is that using slope and
o�set parameters and nearest neighbour approximation� the two algorithms give exactly the same
discrete parameter domain� when choosing �� � �y and �min � ymin� It should be noted that
the Hough transform needs a general multiplicative factor of �x in order to get the same scaling
as the discrete Radon transform�
A major di�erence of the two algorithms comes with the time needed to compute the discrete

parameter domains� Using optimized discrete Radon transform requires ���� seconds� and the
optimized Hough transform requires only ����� seconds� i�e�� a factor of �� in favor of the Hough
transform� In this case only ���� of the pixels is non�zero� Both times are measured on a ���
MHz Pentium PC�

Line number � � � � � �

p ����� ����� ���� ����� ���� ����
� �� 
� �� �� �� ��

xstart ��� ��� ��� ��� ��� ���
xend � ��  �  

Table ��� Line parameters corresponding to Fig� ��
 are given along with the starting point xstart�
and the ending point xend�

Now the sampling parameters of the discrete parameter domain are changed in order to focus
on two of the peaks� Sampling parameters are shown in the left side of Table ���� In Fig� ���
the discrete parameter domain is shown using discrete Radon transform� and likewise in Fig� ���
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Figure ��� An image with � line pieces
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Figure ��� The discrete parameter domain
found by either the Radon transform or the
Hough transform�

Image domain Parameter domain

Parameter Value Parameter Value

M ��� H ���
N ��� K ���
�x � �p ����
�y � �� �
xmin ��� pmin ��
ymin � �min �

Table ��� Sampling parameter settings�

by use of Hough transformation� It can be seen that two clearly marked peaks are found by use
of the discrete Radon transform� just as expected from the previous chapters� From Fig� ��� it
is seen that the Hough transform malfunctions� Firstly� it is found� that the levels are very low�
Secondly� the regions of expected line parameters are only weakly marked� hence the parameter
domain is useless�
Next� a sparse sampling of the parameter domain in Figs� ��� and ��� is used corresponding

to the right side of Table ���� It can be seen that the discrete Radon transform malfunctions� and
only two peaks are clearly marked� This is due to the under�sampling of the parameter domain�
In contrast to Fig� ���� Fig� ��� shows that the Hough transform performs well� Six peaks can be
found� but it should be noted that the resolution is poor�

Parameter domain �zoom in� Parameter domain �zoom out�

Parameter Value Parameter Value

H ��� H ��
K ��� K ��
�p ����� �p ����
�� ���� �� �
pmin ��� pmin ��
�min �� �min �

Table ��� Sampling parameter settings for the zoom 	gures�

c�Peter Toft ����



� Chapter �� The Hough Transform

0

10

20

30

40

50

60

p

ta
u

Radon NN

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
48

50

52

54

56

58

60

62

Figure ��� The discrete parameter domain
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Figure ��� The sparsely sampled discrete para�
meter domain found by use of the discrete Radon
transform�
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Figure ��� The sparsely sampled discrete para�
meter domain found by use of the discrete Hough
transform�

����� Choosing Sampling Parameters with the �p� �	 Hough Transform

The reason why the Hough transformmalfunctions when the parameter domain is sampled densely�
and apparently works well with a coarsely sampled sampled parameter domain can be investigated
from the mapping procedure using a nearest neighbour approximation� From Eq� ��� it will be
shown that a band of image points are mapped into the same parameter vector�

h �

�
yn � pkxm � �min

��

	

 ������

� �

�
�n�y � ymin�� pk�m�x� xmin�� �h

��

	

 ������

jn� �m� �j 	 �
�

��

�y
where

��
�
� � pk


x

y

� � pkxmin��h�ymin


y

������

The important result is that the way the Hough transform is de�ned implies that all pixels lying
around the �digital� line n � �m � � within a band of width 
�


y � measured in pixels in the
n�direction� will be mapped into the same point� �k� h�� in the discrete parameter domain� This
explains the results shown in Figs� ��� and ���� Using a densely sampled parameter domain� with�
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e�g�� �� � ����y implies that the width of the band in the image domain only amounts to �
��

of a sample� hence from a statistical point of view� only every tenth pixel along the digital line
contributes to the discrete parameter domain� and a coarsely sampled parameter domain� with�
e�g�� �� � ��y� implies that for a given point in the discrete parameter domain� and a certain
value of xm� �ve pixels will contribute to the same position in the parameter domain� if their
value is di�erent from zero� If no prior knowledge of the image is known� the conclusion is that
a reasonable value of sampling distance of � is� �� � �y�
Using the Hough transform with a coarsely sampled parameter domain can imply that the

pixels need not lie on a perfect line� and still result in a peak in the parameter domain� For
the Radon transform� further implications and limitations with respect to noise are discussed in
Chapter ��
It has been shown above� that the Hough transform requires that �� is not chosen too small�

The parameter �p can be chosen from di�erent criteria� One criteria is that the absolute �digital�
slope of the line in Eq� ��� does not exceed �� in order to avoid that a pixel in the image is
mapped into a perforated line in the discrete parameter domain� as shown in Figs� ��
 and ����
This perforation problem can imply that the peak is not found in the discrete parameter domain�

j�j �
�����xm�p

��

���� � � � �p 	
��

max jxj �
���

�M � ���x ����
�

It can be noted that this limit matches Eq� ���� derived for the discrete �p� �� Radon transform�
when choosing �� � �y�
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Figure ��
 The corresponding Hough trans�
form�

��� The ��� �� Hough Transform

The Hough transform can be de�ned using normal parameters ��� �� and Eq� ���� motivates the
de�nition of the Hough transform

g�x� y� �

Z �

��

Z �

��
g�x�� y�� ��x� x�� ��y � y�� dx�dy� �

�g��� �� �

Z �

��

Z �

��
g�x�� y�� ���� x� cos � � y� sin �� dx�dy� ������

so the core of ��� �� Hough transform is that each point in the image is transformed into a sinusoid
in the discrete parameter domain� and in Algorithm ��� the Hough transform is shown using ��� ��
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parameters� The easiest implementation distributes the pixel value for every value of �t� In the
following the image is assumed quadratic� cf� Eqs� ���� and ����� and the sampling parameters
de�ned in Eq� ���� are used�

Algorithm ��� � The ��� �� Hough Transform

Set g hough�r�t��� for all �r�t� ��Initialize Hough space
For m�� to M�� ��For all values of x
For n�� to N�� ��For all values of y
gvalue � g�m�n� ��Store value in a simple variable
If gvalue��� ��Only consider non�zero pixels
For t�� to T�� ��For all values of theta
rho�x�m��cos�theta�t��	y�n��sin�theta�t�� ��Calculate the rho
r�round��rho�rho min��Delta rho� ��Find the right sample
If r�� and r	R ��Check if sample is valid
g hough�r�t��g hough�r�t�	gvalue ��Update parameter domain

End
End

End
End

End

This algorithm is valid� but the algorithm still needs a lot of checking in the inner parts of the
loops� where it is computational expensive� so for increasing the e	ciency several parts should be
optimized� Ideas for this is shown in Subsection ������

����� Choosing sampling parameters with the ��� �	 Hough Transform

Following the procedure shown in Subsection ������ a similar expression for the nearest neighbour
mapping is found

r� �
xm cos �t � y sin �t � �min

��
and r � �r��� ���������m cos �t � n sin �t �

�
�min � xmin�cos �t � sin �t�

�x

����� 	 �� ���x ������

which shows that the Hough transform maps all pixels in the image that lies within a band of
width 
�


x into the same point in the discrete parameter domain� The width is measured in pixels
perpendicular to the line� This implies that �� has to be chosen su	ciently large� and not below
�x� i�e��

�� � �x ������

Concerning the choice of ��� it should be avoided that a pixel in the image is mapped into a
perforated sinusoid� Using a �rst order approximation gives

max
xm�yn

����r��

������ 	 � � max
xm�yn

p
xm � yn
��

�� 	 � � �� 	

p
�

�M � ��
��

�x
������

In Fig� �� an image with �ve non zero pixels is shown� and in Fig� ���� the corresponding
discrete Hough transform� The sampling parameters have been set from Eq� ���� and only using
T � ��� where Eq� ���� and Eq� ���� implies that T � ��� is necessary�
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Figure ���� The corresponding Hough trans�
form� Note the perforation of the sinusoids�

Note that the discrete Radon and discrete Hough transform can give identical result in the
�p� �� case� but in the ��� �� case the results will always �somewhat� di�er� This is also clear from
the way sampling of the discrete parameter domain should be chosen�
For further reading on choosing sampling parameters ��
� is recommended�

����� Comparison Between Di�erent Optimization Strategies

Here four di�erent optimizations strategies are compared�

Case � No particular optimization as it is shown in Algorithm ����

Case � In this case� it is exploited that the fundamental mapping can be written by computing
the four vectors containing relative x� and y�values� and cosine and sine to the possible
values of �t�

xrel�m� �
xm
��

� yrel�n� �
yn
��

� and rhoo� �
�min

��
������

costheta�t� � cos �t and sintheta�t� � sin �t ������

These arrays are computed one time only and used in the t�loop� hence extra calculations
of sines and cosines are avoided� as shown in following equation

r � �xrel�m�costheta�t� � yrel�n�sintheta�t� � rhoo�� ������

Case � In Algorithm ��� it is necessary to check that the value of r lies within the image� The
cure for this problem can be incorporated in the design of discrete parameter domain� simply
by increasing R� i�e�� the number of samples in the ��direction to ful�ll

�min � �R��
 ��

� �
h
xm cos �t�yn sin �t��min


�

i
	 R for all �m�n�

��
� � ������

max
xm�yn

jxm cos �t � yn sin �tj � max
xm�yn

q
xm � yn �

p
�jxminj 	 R

�
�� � ����
�

R �
�x

��

p
��M � �� ������

where it has been used that xmin � ��x�M � �����
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Case � assumes that Eq� ���� is ful�lled and otherwise the implementation is like in Case ��
Normally the expansion of the parameter domain will require extra memory� and in practice
no extra computations are needed for that purpose�

Case � This case is like Case �� but for the mapping two matrices a calculated from the vectors
shown in Case ��

xc�m� t� � xrel�m� � costheta�t� and ys�n� t� � yrel�n� � sintheta�t�� rhoo� �����

Hence for the mapping it can simply be used that

r � �xc�m� t� � ys�n� t�� ������

A further reduction of the computational cost can be achieved from the fact that some plat�
forms provides fast truncation of �oating�point numbers compared with the round�function�
In this case the constant rhoo� can be added with ���� and truncation is used instead of the
rounding function�

This optimization technique will require two matrices and the computational load is lowered
signi�cantly if the tables are used many times� i�e�� if the image contains few non�zero
pixels and the algorithm only has to be used once� then the overhead associated with the
computation of the matrices xc and ys will degrade the performance�

Yet another strategy to optimize the calculation of the sinusoid� can be found in ����� The

idea is to use the fact that � can be written as ��m�n cos��t � ��m�n�� where xm � jyn � ��m�ne
j��m�n �

This strategy implies that one table of cosine values is needed� but additional multiplications are
needed and interpolation in the table is necessary� The techniques demonstrated in Cases �� ��
and � involve no additional approximation�
First� the times for generating Fig� ���� are measured in the four cases shown above� This

corresponds to Fig� �� with only �ve non�zero pixels� Second� the image has been altered by
adding a very small bias in order to have all pixel values considered non�zero� hence all �����
pixels take up time in the transform� From Table ��� it can be seen that initialization of the
arrays uses too much time in the case of only � non�zero pixels� so that the four cases are more
or less identical in performance� but in the case of ����� pixels� it can be seen that the case �
and � outperforms the two other cases� The measurements have been made using a ��� MHz
Pentium� hence the ratios look somewhat di�erent with other processor types� Table ��� also
demonstrates the huge time�di�erence found when going from � to ����� non�zero pixels in the
Hough transform� and in this case� the small additive bias does not imply any visible change of
the parameter domain� This also demonstrates that preprocessing� e�g�� in the simplest case as a
thresholding of the images can imply a huge speedup of the program�

Case Time �� Pixels� Time ������ Pixels�

�� No optimization � msec ���� msec
�� Vector mapping �� msec 
�� msec
�� Avoid limit check and use vector mapping � msec �
� msec
�� Avoid limit check and use matrix mapping 
 msec ��� msec

Table ��� Time consumption for the di�erent types of optimization�
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����� Other Hough
like Algorithms

A huge number of authors have proposed other kinds of Radon or Hough�like algorithms� Here
only a few of them will be mentioned� Furthermore ���� ��� �� are recommended for further
reading�

������� Random Radon transform

One of the more radically di�erent ideas is the Random Radon transform ���� ���� The output of
the algorithm is still peaks in the parameter domain at the positions of the lines� The main idea
can be generalized to handle more general types of curves ����� but here it will only be presented
for detection of lines in binary images using normal line parameters�
Basically the idea is to take two non�zero pixels randomly from the image from positions

�x�� y�� and �x� y�� and then increase the parameter domain with one vote at the line parameter
��� �� matching both pixels� which is given by

tan � �
x � x�
y� � y

and � � x� cos � � y� sin � ������

This procedure is repeated over and over again� Each iteration is very fast� and a lot of re�nements
are possible with this strategy� e�g�� with respect to storage of the parameter domain ����� but
the really tricky part is to choose a good stopping criterion� Stopping the iteration too fast a
bad estimate of the parameter domain will be obtained� and stopping too late means waste of
computing time� The methods works and is potentially very fast� but is iterative�

������� The Gradient Method

In ���� a method for increasing the speed of the �generalized� Radon transform� The idea is
here demonstrated for the slant stacking using continuous parameters� If the tangent of the line
�curve� can be estimated locally in the image domain� then the computational cost can be lowered
signi�cantly� Given an image point with non�zero value at position �x�� y�� and that the local
estimate of the slope is !p� then the image point only needs to get mapped into a single point in
the parameter domain

�x�� y��j!p � �p � !p� � � y� � !px�� ������

which implies that the computational cost will decrease with an order or magnitude� due to the
point to point mapping� The method heavily depends on the quality of the local gradient detector
and the noise level�

������� The Hierarchical Hough Transform

In ���� and ���� a hierarchical Hough algorithm for line detection in binary images is presented�
The method �rst uses a very coarse sampling of the parameter domain� to which all non�zero
pixels are transformed� Due to the very coarse sampling this operation is very fast� Then the
areas of the parameter with zero or almost zero votes are rejected for further investigation� The
areas of high votes are very likely to hold line parameters� hence they are divided into smaller
pieces �the sampling intervals in the parameter domain are lowered�� and the method is repeated
until line parameters have been detected with a high accuracy� compared to the initial resolution�
The method is potentially fast if large areas of the parameter domain can be rejected in the early
stages of the method�
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������� A Length Invariant Transform

In some curve detection algorithms the actual length of the curve is without interest� hence the
Radon transform using ��� �� as parameters could be rede�ned as

�g��� �� �
�

L��� ��

Z �

��

Z �

��
g�x� y���� � x cos � � y sin �� dx dy ������

where L��� �� is the length of the line with parameters ��� �� that lies within the image� That
length is actually the Radon transform of a square box� so it is given is subsection B���� along
with the scaling property given in Eq� B����
In that way the parameter domain will show a value close to � if the image contains lines with

amplitude �� The price of this is that the Radon transform will be highly dominated by noise
when j�j gets large� due to a decrease in L��� ���
This alteration can very easily be incorporated in the Hough transform as well� but it should

solely be used as a post�Hough weighting function of the parameter domain� and not used directly
in the mapping� due to a heavy and very unneeded rise in the computational load�

��� Summary

It has been shown that the �p� �� Hough transform can be de�ned in a way that gives exactly
the same discrete parameter domain as found with the nearest neighbour approximation of the
discrete Radon transform� The ��� �� Hough transform does not have the same property�
It has also been shown that the Hough transform behaves very di�erently when changing the

sampling intervals in the discrete parameter domain� compared to the discrete Radon transform�
Di�erent optimization schemes has been presented for the ��� �� Hough transform and a set

of other Hough�like transforms have been described brie�y�
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The FCE�Algorithm

A recurring problem in computer image processing is the identi�cation of curves with speci�c
shapes� The transform developed by Hough ���� for detection of complex patterns in binary
digital images has been discussed by several authors� e�g�� ����� ���� and generalized for multi�
dimensional pattern detection in �����
As the previous chapters have shown� the Radon transform is a mapping from an image

domain to a parameter domain� where the parameters characterize the curves to be identi�ed�
The Radon transform can be generalized to handle arbitrary curves ����� The Hough version
of the generalized Radon transform detects speci�c values of parameters� as spatially extended
curves are transformed to produce spatially compact features in the parameter domain� In this
way� the generalized Radon transform converts a di	cult global detection problem in the image
domain into a more easily solved local peak detection problem in the parameter domain�
In recent years� progress has been made to understand and increase the speed of the generalized

Radon transform ���� �
� ���� Investigations concerning both the traditional and more recent
generalized Radon transform for curve identi�cation schemes point out two problems with respect
to computational cost� First� the estimation schemes are not capable of exploiting image points
with zero value �zero image points�� and second� estimation is computationally expensive� as it
estimates unneeded information� This is a consequence of parameter estimation� in areas of the
parameter domain� where curve parameters are very unlikely�
The basis for curve parameter estimation as described in this chapter is a binary image� The

binary image can be produced in several ways� e�g�� by edge �ltering� deconvolution� or mean �eld
annealing�
In this chapter� a new algorithm for fast curve estimation� called the FCE�algorithm� is presen�

ted� The key idea of the FCE�algorithm is to pre�condition the parameter domain� creating irreg�
ular regions corresponding to the parameter regions of interest� Furthermore� the FCE�algorithm
takes advantage of pixels with zero value in generating the pre�condition map� Initially� the FCE�
algorithm identi�es regions of the parameter domain which contain peaks representing curves
in the image� Subsequently� it estimates a traditional generalized Radon transform within these
regions�
The identi�cation of hyperbolas is of particular interest within seismic signal processing� Over

the years the seismic industry has developed a method of recording seismic signals resulting in
images in which the investigated re�ections produce curves� The recording geometry of seismic
data acquisition results in signals having the same geometrical mid point between source and
receiver� see� e�g�� ���� ��� The set of signals corresponding to the same mid point is called
a common mid point gather �CMP�gather�� A common technique in seismic data analysis for
estimation of hyperbola parameters is velocity analysis� e�g�� ���� Within the presented work

�
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some features from velocity analysis are incorporated� however� the presented method has less
computational cost�
Recently� the multipulse excited speech coding technique� which was originally proposed by

Atal et al ����� has been suggested for seismic deconvolution by Cookey et al� ����� Basically�
the multipulse model for speech assumes the speech signal to be a result of an impulse train
transformed by the shape of the vocal tract �lter� In seismic deconvolution� the input signal is
often modeled as an all�pole impulse and the layered earth re�ectivity model is considered as an
impulse train� see� e�g�� ���� Thus� the multipulse technique can be used to map seismic signals
in a CMP�gather into a binary image� where the image value is set to one in case of a re�ection
and zero otherwise� The re�ections represent information concerning the geological structure of
the subsurface�
The generalized Radon transform is described in Section ��� with some of its properties�

regarding curve detection� Creation of the pre�conditioning map is described in Section ���� where
the image point mapping procedure is developed� In section ���� parameter domain sampling is
discussed and section ��� describes parameter domain blurring� which is a result of discretization�
The FCE�algorithm is presented in section ���� and is applied to two numerical examples for
detection of hyperbolas in Section ���� The FCE�algorithm is also presented in ��� �� ����
It should be mentioned that many authors have used slant stacking for interpretation of the

seismic gathers ���� ��� ��� ��� �
�� Note also that the use of the generalized Radon transform for
detection of curve parameters without forming a binary image can be found in ���� ����

��� The Generalized Radon Transform

Let g�x� y� be a continuous signal of the continuous variables x and y and let � denote an ��
dimensional parameter vector de�ned as

� � ���� � � � � �i� � � � � ��� �����

where � spans the parameter domain�

����� The Continuous Generalized Radon Transform

The generalized Radon transform can be de�ned in various ways ���� ���� A very general form is

�g��� �

Z �

��

Z �

��
g�x� y� ����x� y� ��� dx dy �����

Using the de�nition given in Eq� ���� shapes expressed by the parameter form ��x� y� �� � �
can be detected� However� a subset of Eq� ��� will be used in the following� noting that most
of the techniques to be presented later in this chapter can be modi�ed to conform to the more
general forms of the generalized Radon transform�
Let �g��� denote the continuous generalized Radon transform of the function g�x� y�� which

here is de�ned as

�g��� �

Z �

��

Z �

��
g�x� y� ��y � ��x� ��� dx dy �

Z �

��
g�x� ��x� ��� dx �����

where y � ��x� �� denotes the transformation curve� The generalized Radon transform is the
integration of g�x� y� along the transformation curve� A Jacobian�like weighting function in front
of the integral can be included if other weighting schemes is required�
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Eq� ��� can be interpreted as the generalization of the slant stacking technique described in
Chapter �� Note that Eq� ��� only allows curves to have one value of y for each value of x and the
parameter �� This excludes� e�g�� closed curves such as circles� In this case Eq� ��� can be used�
The curve to be detected is now modelled using a delta function following the curve shape�

g�x� y� � ��y � ��x� ��� �����

hence the generalized Radon transform is given by

�g��� �

Z �

��
����x� ��� ��x� ���� dx �����

�

Z �

��

IX
i��

��x� xi������x����x � ��x����
�x

��� dx �����

�
IX
i��

������xi����x � ��xi��
��

�x

��� ���
�

where each of the I values xi� cf� Eq� A��� ful�lls ��xi� �� � ��xi� �
���

Eq� ��
 shows that the generalized Radon transform will give an in�nite peak� when � � ���
and the parameter domain will also contain some other non�zero values� depending on the value
of I and the actual function �� The equation also shows that the transform will malfunction when
slope of the curve ��x is in�nite� i�e�� when the tangent to the curve in a �x� y� plane is vertical�
In conclusion� Eq� ��� is well suited for curves like parabolas� hyperbolas� and other parameterized
curves with limited slope� Note that a generalization of the technique described in Section ��
 can
be used to expand the applicability of the transform�

����� The Discrete Generalized Radon Transform

Let j denote the ��dimensional discrete index parameter vector de�ned as

j � �j�� � � � � ji� � � � � j�� �����

The correspondence between the index vector j and the sampled version of the parameter vector�
denoted �j can be written as

� � �j � ��j�� where �i � �i�ji� ����

where �i�ji� is a parameter sampling function�
If a uniform sampling of the parameter domain is chosen� the function �i can be written

�i � �i�ji� � �i�min � ji ��i� ji � �� � � � � Ji � � ������

where �i�min denotes the lower limit and ��i the sampling interval of �i�
The parameter domain and image domain sampling are assumed to be uniform� as de�ned in

Eq� ����� i�e��

x � xm � xmin �m �x� m � �� �� � � � �M � � ������

y � yn � ymin � n �y� n � �� �� � � � � N � � ������

Substitution of Eqs� ��� ���� and ���� into the transformation curve gives

y � ymin � n �y � ��xmin �m �x���j�� ������
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Using a nearest neighbour approximation of Eq� ����� the discrete index transformation curve
��m� j� can be expressed as �note the change of arguments�

��m� j� � n �

�
��xmin �m �x���j��� ymin

�y

	
������

Let g�m�n� denote the discretized version of the signal g�x� y�� i�e�� g�m�n� � g�xm� yn� and
let �g�j� denote the discrete generalized Radon transform �GRT� of g�m�n� de�ned as

�g�j� �
M��X
m��

g�m���m� j�� ������

Notice� that the term dx has been omitted in the discrete generalized Radon transform as it is a
constant due to the uniform sampling of x� If the discrete generalized Radon transform should
quantitatively approximate Eq� ���� then Eq� ���� must be multiplied by �x�
The use of rounding instead of� e�g�� linear interpolation will normally not lead to problems�

when using a su	cient sampling of the parameter domain� but interpolations schemes can easily
be incorporated in Eqs� ���� and �����

��� Image Point Mapping

The �rst part of Eq� ��� can be used to de�ne another way of estimating a discrete parameter
domain

�g�j� �
M��X
m��

N��X
n��

g�m�n� ��n� ��m� j�� ������

where ���� denotes the Kronecker delta function�
Eq� ���� shows that each image point �m�n� is transformed into a parameter curve where

n � ��m� j�� Thus mapping of image points with zero value is needless� since they will not
contribute to �g�j�� The proposed estimation scheme for the Radon transform accounts for the
fact that zero image values do not contribute� and does not include them in the summation in Eq�
����� This has the potential to reduce the computational cost considerably�
Now� assume that � is invertible in one of the parameters �i� e�g�� ��� The inverse function

����� with respect to �� can be written as

�� � ����� �x� y� �r�� �r � ���� � � � � ����� ����
�

Furthermore� assume that the sampling function �� is invertible� Then

j� �
h
���� ����

i
�
h
����� ��

��
��
�x� y� �r�

i
� "�m�n� jr�� jr � �j�� � � � � j���� ������

Eqs� ���� and ����� are the basis for an estimation scheme for the generalized Radon transform
which here is referred to here as Image Point Mapping �IPM�� The key steps of IPM can be
summarized as

�� Initialize �g�j� � � for all j

�� For all image points g�m�n� with a value di�erent from zero do
For all possible jr do
j � �jr�"�m�n� jr��
�g�j� �� �g�j� � g�m�n�
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Section ��
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Note that IPM is a generalized Hough transform ����� which has been extended to handle a
large set of non�linear transformation curves� Like the Hough transform� the objective of IPM is
parameter identi�cation� by transforming each pixel in the image into the parameter domain�
One of the fundamental di�erences between GRT and IPM is� that GRT requires rounding in

the image domain� whereas IPM rounds in the parameter domain� as schematically shown in Fig�
����

φ( x,y;  )ξ
1

g(j ,j )21

g(j ,j )21

ξ
1

1
ξ

x,y;  )φ  (ξ1

-1 ξ

y

x

ξ
2

Image domain Parameter domain

y

x

Image domain

ξ
2

Parameter domain

g(m,n)

g(m,n)

Figure ��� Top� Rounding by GRT in the image domain corresponding to a point in the parameter
domain� Bottom� Rounding by IPM in the parameter domain corresponding to a point in the image
domain�

The computational complexities of GRT and IPM� respectively� are

OGRT � O
�
M

�Y
i��

Ji

�
OIPM � O

�
��M N�r

���Y
i��

Ji

 
A �����

where �M N�r indicates that only a reduced number of image points �non�zero values� are to be
transformed� In Eq� ���� the cost to test for non�zero values is assumed to be negligible�
The major advantage of IPM over GRT is the ability of IPM to ignore image points with a

value of zero� making IPM especially well suited for sparse binary images�
If the absolute value between two successive j� values is greater than one� i�e��

j"�m�n� jr � ��� "�m�n� jr�j � � ������

where vector � contains zeros at all �� � entries and holds unit value at entry i� i�e�� �i � �� it is
seen that IPM will map the image point �m�n� into a perforated hyper�curve� i�e�� a hyper�curve
containing missing sections� Identi�cation of curve parameters can be di	cult due to the presence
of perforation holes depending on the shape and depth of the holes�
For � � � the perforation problem can be eliminated simply by adding g�m�n� to �g�j� for

the parameter values skipped between two successive parameter vectors� Consider� for example�
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Figure ��� Illustration of the perforation problem�

the hyperbolic transformation curve as illustrated in Fig� ���� where the parameter domain is
described by �j�� j� � �j

�
� � j

�
 ��

Fig� ��� shows the mapping of an image point �m�� n�� to the parameter domain� that is�
discretized parameter point accumulators to which the value d�m�� n�� of the image point must
be added� To investigate the perforation problem� two parameter points �s���� z���� and �s�� z��
on the inverse transformation curve are considered� Following the inverse transformation curve
from �s���� z���� to �s�� z�� along the s axis gives only the two parameter points �s���� z����
and �s�� z��� However� following the inverse transformation curve along the z axis also gives the
two intervening points �s�� z� � �� and �s�� z� � ��� One way of handling such intervening points
is to add the value of the image point to the parameter points skipped between two successive
parameter points on the inverse transformation curve� Therefore� in this example� d�m�� n�� must
be added to the skipped parameter points �s�� z� � �� and �s�� z� � �� when following the s axis�

��� Parameter Domain Sampling

For a given image g�m�n� an exact determination of ��i� �i�min and Ji� which match the image�
is� in general� not possible� However� some guidelines can be stated� First� some of the parameters
will be bounded by the underlying physics� e�g�� �i�min and �i�max will normally be limited� Second�
the parameter domain can be limited by requiring that at least a fraction � of the image points
addressed by the transformation curve ��m� j� lie inside the image� i�e��

M��X
m��

I fymin 	 ��xm� �� 	 ymaxg � � M� � 	 � 	 �� 	� ������

where If�g equals � when the logical expression is true and � otherwise�
Concerning use of the GRT� the sampling intervals ��i can be chosen by requiring that

maxfj��x� � � �i�� ��x� ��jg � �y� 	 x� ���i ������

where �i is a ��dimensional vector containing zeros at all entries except entry i which is ��i�
Eq� ���� states that two adjacent ��vectors give y � ��x� �� values which cannot be separated

by more than one sample in the y�direction� This design criterion is not optimal as it leads to an
unnecessarily dense sampling of certain parts of the parameter domain� however� it can be used
as an upper sampling rate limit� Increasing the sampling rate of the parameter domain above a
certain limit will not improve the resolution obtained by GRT as adjacent j vectors will result
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in the same curve n � ��m� j�� For GRT� a coarse sampling cannot guarantee a given curve will
be detected� due to the fact that no transformation curve ��m� j� can be guaranteed to follow the
image curve perfectly�
Use of IPM with a dense parameter domain sampling according to Eq� ���� produces curves

j� � "d�m�n� jr� for �m�n� values corresponding to an image curve which do not intersect in a
parameter point j� but will spread out over several parameter points� The reason for this spread is
the individual treatment of image points as regions of zero size and not regions of� e�g�� rectangular
shape� This spread can be compensated by the use of a coarse sampling of the parameter domain�
In addition� a coarse sampling will lead to a lower computational cost�
Summarizing� GRT requires a dense parameter domain sampling� while IPM gives rise to

blurring in the parameter domain in the case of dense parameter domain sampling� but works
well with a coarse sampling of the parameter domain� This observation is the basis for the curve
parameter estimation algorithm� presented in Section ����

��� Parameter Domain Blurring

Parameter domain blurring achieved by use of GRT can be interpreted in a way that makes it
usable for parameter clustering� According to Eq� ��� the continuous transformation curve can be
written as

y � ��x� ��� x  �xmin� xmax� ������

Let �y denote the sampling interval of y and let ��y be a given uncertainty of y� e�g�� � � ����
For a parameter vector � � ��j� to lie inside a band of width ���y� symmetrically positioned
around the image curve y � ��x� ���� it must satisfy the following inequality

y � � �y 	 ��x� �� 	 y � � �y� y � ��x� ���� 	x  �xmin� xmax� ������

Several parameter vectors � will correspond to image points within the band speci�ed in Eq�
����� Therefore� in general� a band in the image around a given curve described by the parameter
vector �� will give rise to a region in the parameter space which consists of parameter vectors
that correspond to curves inside the image band� These regions are named clusters and the
corresponding image curve with parameter �� is called a center curve� An example of a curve
band around a center curve and the corresponding parameter cluster is illustrated in Fig� ����
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Figure ��� Left� Center curve with an uncertainty of ��y indicated� Right� Cluster corresponding
to center curve�

c�Peter Toft ����



�� Chapter �� The FCE�Algorithm

Unfortunately� the center curves are normally unknown� and it is impossible to determine the
clusters� However� it is possible to determine whether two parameter sets �� and � belong to the
same cluster� If two parameter vectors belong to the same cluster they must satisfy

j��x� ���� ��x� ��j 	 � � �y� 	x  �xmin� xmax� ������

Parameter domain points may be gathered into regions or clusters� with the guarantee that all
possible image curves will be represented by only one cluster in the parameter domain� This
partitions the parameter domain into irregular regions� which re�ect the information level of the
image� Clustering can also be used to estimate parameter uncertainties� e�g�� the maximum and
minimum parameter value within the cluster can be used to give an estimate of the parameter

uncertainty as� e�g�� ���
cluster
i�max � �clusteri�min ���i�� Parameter domain clustering can be performed

either before or after the transform� depending on the purpose�

��	 The Fast Curve Estimation Algorithm

Consider an image where the image values are represented by continuous values� This image can
be mapped into a binary image g�m�n�� e�g�� by edge �ltering ��
� ��� by deconvolution ���� ����
or by mean �eld annealing ���� ���� The proposed algorithm estimates the parameters of curves
in the binary image g�m�n�� e�g�� lines or hyperbolas�
It is well�known that direct use of the GRT is computationally expensive� In the light of the

characteristics of GRT and IPM� a fast curve parameter estimation algorithm� the FCE�algorithm�
is proposed which simultaneously estimates all parameters of curves having a speci�c shape� e�g��
lines or hyperbolas� The FCE�algorithm uses IPM as a pre�conditioning procedure for GRT by
selecting the regions of interest in the parameter domain� IPM is suitable for a rapid determination
of regions of interest� as it works well on a coarsely sampled parameter domain and is capable of
ignoring image points with a value of zero� Another important circumstance is that GRT relates
the uncertainty on the estimated curve parameters to the image domain sampling� while IPM
relates it to the parameter domain sampling� The FCE�algorithm is shown in Fig� ���� and is
summarized as follows�

�� Design the discrete parameter domain� i�e�� choose �i�min� Ji and ��i�

�� Design a reduced parameter domain for IPM by choosing

J �i �

�
Ji

�v�i � �

�
� ��i�min � �min � v�i��i� ��i

� � ��v�i � ����i ������

where d�e rounds to the nearest upper integer� and v�i is an integer related to the resampling
�see below�� Then use IPM to estimate �gipm�j

�� as

�gipm�j
�� � IPMfg�m�n�g ����
�

�� Use the threshold function T to give

�gt�j
�� � T ��gipm�j

��� ������

The threshold function T is designed to remove all insigni�cant parameter combinations
and a suitable choice might be

T ��gipm�j
��� � ���gipm�j

��� ��M� �����
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Estimate� �gipm�j
�� � IPMfg�m�n�g

�

Threshold� �gt��j
�� � T�f�gipm�j��g

�

Resample� �gr�j� � �gt��j
��

�

Estimate� �g�j� � GRTfg�m�n�j�gr�j�g

�

Threshold� �gt�j� � Tf�g�j�g

�

Cluster� �gc�j� � Cf�gt�j�g

�

Curve Parameters

Figure ��� Flow diagram of the FCE�algorithm�

whereM denotes the number of image lines� �� a fraction de�ning the signi�cance level� and
���� the Hamilton step function� Having an image with one curve� IPM gives a corresponding
parameter domain value of M � Choosing a threshold level of ��M allows some deviation
for the image curve from the integration curve� e�g�� to handle holes�

�� Resample the parameter domain to obtain �gr�j�� The resampling process can be written as

�gr�j� � �gt�j
��� j�i �

!
ji � v�i
�v�i � �

"
������

This quickly �lls the entire parameter domain where the interesting regions have value one
while other regions have value zero�

�� Use GRT to estimate �g�j� in the regions of the parameter domain where �gr�j� is not equal
to zero�

�g�j� � GRTfg�m�n� j�gr�j� �� �g ������

�� As in step three� use the threshold function with a new signi�cance level � to account for
use of the GRT� After the thresholding� all points in the parameter domain having a value
di�erent from zero represent curve parameters�


� Finally� the identi�ed parameters are clustered into common image curves�
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The resampling process takes each parameter point corresponding to the sampling interval ���

and extends it to several parameter points corresponding to the sampling interval ��� ��i 	 ��
�
i�

Thus� the FCE�algorithm operates initially in a coarsely sampled parameter domain� using IPM
for determination of regions of interest� Subsequently� the sampling is re�ned to the required level
and GRT is applied within the regions of interest�
The signi�cance levels �� and � must be chosen to re�ect the parameter domain values� that

can be accepted as peaks corresponding to curves in the image� In general� the precise values of
�� and � are not critical� For the examples� suitable ranges of values for �� and � are ���� ��

and ��� � ���� respectively� There are two reasons for the use of a lower acceptance level in step
three� First� IPM has a tendency to blur in the parameter domain� and second� only regions of the
parameter domain ensured not to contain image curves must be removed� A higher signi�cance
level in step six ��� is justi�ed by the required certainty for correct curve identi�cation�

��
 The Hyperbolic Transformation Curve

In marine seismic acquisition ��� ��� �� it is common to use a sound emitter� e�g�� an air gun
attached to a vessel� which is towing an array of hydrophones �receivers�� The setup is shown
schematically in Fig� ����

source

hydrophone array

Figure ��� A vessel towing an
array of hydrophones� A sound
source emits a pulse� which is re�
�ected at a layer�boundary�

x

Velocity v
depth d

Figure ��� Rearranging data
corresponding to a common mid
point gives a CMP�gather�

As the vessel sails along a line an acquisition is made� With a certain time interval the air gun
emits a pulse�like signal� which penetrates the water and top layers of the ground� A simple model
is to use assume that the ground is made of homogeneous layers in which the pulse propagates
linearly until the pulse is re�ected at a layer�boundary and �nally is recorded by the hydrophones
lying near the water surface� Each of the M hydrophones record a couple of seconds of a signal
after the sound emission� The signal is sampled and stored digitally� The digital signal recorded
at a single hydrophone is called a trace�
Given that acquisition data is available for a large set of vessel positions relative to the earth�

all the measured traces can be rearranged as if the hydrophones had a common mid point ����
This collection of data is shown in Fig� ��� and is known as a CMP�gather ���� ����
Assume that the layer between the water�level and the re�ection boundary has velocity v and

depth d� Then it is easy to �nd the time between the emission of the pulse until it is recorded
at the hydrophone lying at the o�set x� Using the Pythagorean theorem gives that the two way
travel time t follows a hyperbolic curve as a function of x� This is called the normal moveout
equation�

t � t� � ��x�
 where



� � �

v
t� � �d�

������
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where � is known as the slowness� and it should be noted that the zero o�set two way travel time
t� is the value of t� when the o�set x is zero�
By assuming a multi�layered earth model� it can be shown that Eq� ���� can model the re�ec�

tion data ����� but the two parameters now depend on several layer parameters corresponding to
the actual path of the wave� e�g�� ���� ��� ���� A multi�layered subsurface will generally produce
several re�ection hyperbolas and in the following the FCE�algorithm is used to detect the para�
meters of these hyperbolas� It could be mentioned that the parameters afterwards could be used
in algorithms trying to reconstruct the individual layer parameters �velocity and thickness��
A digital image f�m�n�� containing the measurements� is formed by the �nite number of

di�erent o�set�values normally with a �xed distance between the hydrophones� i�e�� the o�set x
is sampled linearly

x � xm � xmin �m�x ������

and the index n correspond to the time t� which also is sampled linearly

t � tn � tmin � n�t ������

Consider a seismic CMP�gather� The multipulse technique or mean �eld annealing can be
used to map the seismic signals in the CMP�gather f�m�n� into a binary image g�m�n�� where
g�m�n� is set to one if position n of trace number m contains a re�ection� and to zero otherwise�
Hence� in this seismic case� the image parameter y is replaced by the time t� the parameter

domain are spanned by � and t�� and the curve to detect is given by

t � ��x��� t�� �
q
t� � ��x�

 ������

which easily can be inverted with respect to t� to give

t� � ���t� �x� t��� �
q
t � ��x� ������

Both t� and � are uniformly sampled and the parameter domain sampling is chosen in agreement
with Eq� ����� The discretized parameter domain is denoted z and s corresponding to t� and ��
respectively�

t� � t��low � z �t�� z � �� � � � � Z � � ����
�

� � �low � s ��� s � �� � � � � S � � ������

The curve perforation described in section ��� occurs in the present case of a hyperbolic trans�
formation curve� It is� however� eliminated by adding g�m�n� to �g�s� z� for the parameter values
skipped between two successive parameter vectors�

����� Clusters in the Hyperbolic case

Assume the parameter set ���� t��� corresponds to a center curve� The parameter sets ��� t��
corresponding to image curves within the band of width ���t� symmetrically positioned around
the image curve t � ��x���� t���� can according to Eq� ���� be written as

t� � �t 	
q
t� � ��x�

 	 t� � �t� t �
q
t�� � ���x�� 	x  �xmin� xmax� �����

Let q denote a binary variable� q  f�����g� Thus� the lowest and highest curve within the
image band speci�ed by Eq� ��� can be written as

q
t�� � ���x� � q ��t �

q
t� � ��x�

 
 t� �

�q
t�� � ���x� � q ��t

�
� ��x� ������
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In ���� it is shown� that xmin and xmax give the cluster limiting elliptical curves� the parameter
cluster corresponding to the center curve ���� t��� can be written ass�q

t
��

�
� ���xmin�� � ��t

��

� ��xmin�� � t� �

s�q
t
��

�
� ���xmin�� � ��t

��

� ��xmin�� ������

ands�q
t��
�

� ���xmax�� � ��t

��

� ��xmax�� � t� �

s�q
t��
�

� ���xmax�� � ��t

��

� ��xmax��

������

The left part of Fig� ��
 shows a hyperbolic center curve ���� t��� with an uncertainty of ���t�
The right part of the �gure shows the shape of the corresponding cluster� which is bounded by
four elliptical curves�

* *t =   (x;   ,t )

t  =      (x",t"+     t;  )

t  =      (x",t"-     t;  )

t  =      (x’,t’+     t;  )

t  =      (x’,t’-     t;  )
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Figure ��	 Left� A hyperbolic center curve ���� t��� with an uncertainty of ��t� Right� The shape
of the corresponding cluster� which is bounded by four elliptical curves� where x� � xmin� x

�� � xmax�
�t��� � t��� � ���xmin�

�� and �t���� � t��� � ���xmax�
��

Fig� ��� illustrates four clusters in the parameter domain� The four clusters correspond to four
center curves with an uncertainty of ���t� i�e�� � � �� It should be noted that the cluster shape
is highly dependent on the center curve ���� t����

����� An Example with Eight Hyperbolas

In this example the potential of the FCE�algorithm is illustrated� A synthetic image is composed
of eight hyperbolas� assembled into four groups of two hyperbolas each� as shown in Fig� ���
In order to get a binary gather� where the pixels are set to one� when a re�ection is found the
gather has been deconvolved� by �nding the maximum cross�correlation between the gather and
the shape of the re�ection wavelet a number of times� The result is shown in Fig� ����� Here only
��� of the pixels has been set to �� It can be seen that several pixels have erroneously been
identi�ed as re�ections�
Using GRT according to the settings in Table ��� leads to eight peaks in the parameter domain

as shown in Fig� ����� Thus� although the eight curves intersect and lie very close� GRT is able
to separate the curves in the parameter domain into eight separate peaks� The �gure can be
compared to Fig� ���� showing the actual hyperbola parameters�
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Figure ���� The binary deconvo�
luted CMP�gather�

The FCE�algorithm is used for fast detection of the interesting regions in the parameter domain
resulting from GRT� The following �gures show the steps of the FCE�algorithm� Fig� ���� shows
the coarsely sampled parameter domain obtained using IPM with v� � � and vt� � ��

c�Peter Toft ����



� Chapter �� The FCE�Algorithm

Image domain Parameter domain

Parameter Value Parameter Value

M �� S ���
N ��� Z ���
�x �� m �� ���� � ���� s�m
�t � � ����s �t� � � ����s
xmin ��� m �min ��� � ���� s�m
tmin � s t��min � s

� ��� �� ���
� ��
�
v� �
vt� �

Table ��� Image and parameter domain settings�
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bolas shown in the parameter domain�

The parameter domain is then thresholded using a signi�cance level �� � ���� and the resulting
binary parameter domain is shown in Fig� �����
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The binary parameter domain is then resampled to a full size parameter domain� which looks
exactly like Fig� ����� but now the parameter domain has �
 times the number of samples used
for IPM�
Comparing this pre�condition map with Fig� ����� shows that all regions containing curves are

contained within the pre�condition map� Next� Fig� ���� shows the parameter domain obtained
by using GRT within the regions speci�ed by the pre�condition map� Finally� the pre�conditioned
GRT parameter domain is thresholded using a threshold level � � ��
�� and the result is shown
in Fig� �����
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The estimated parameter vectors are given in Table ���� where the clustering process has used
a value of � � ���� As seen from Table ���� eight groups of curve parameters are found� and the
estimated curve parameters are rather close to the true parameters�

Curve Number True parameter Estimated parameter

� ������ s� ��
��
 ���� s�m� ������ s� ������ ���� s�m�
� ������ s� ������ ���� s�m� ������ s� �����
 ���� s�m�
� ������ s� ������ ���� s�m� ������ s� �����
 ���� s�m�
� ������ s� ������ ���� s�m� ������ s� ����� ���� s�m�
� ����� s� ������ ���� s�m� ����� s� ��� ���� s�m�
� ����� s� ������ ���� s�m� ����� s� ����� ���� s�m�

 ������ s� ������ ���� s�m� ������ s� ���
� ���� s�m�
� ������ s� ��


� ���� s�m� ������ s� ����� ���� s�m�

Table ��� The results of the FCE�algorithm along with the true curve parameters� The width of the
cluster band is set to �� i�e� � � 
��� The parameters are estimated by the center of the cluster�
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�� Chapter �� The FCE�Algorithm

The FCE�algorithm has been implemented in MATLAB and C �the loop oriented functions
are made in C�� and using a ��� MHz Pentium� as previously� result in the time measurements
shown in Table ���� The table shows the individual parts of the FCE�algorithm and the total cost�
It can be seen that the FCE�algorithm here outperforms the use of GRT with a factor of ��� and
all eight hyperbola parameters have been estimated without any additional errors�

IPM ���� sec
Threshold � ���� sec
Resampling ���� sec
Pre�Conditioned GRT ���� sec
Threshold � ���� sec
Clustering ���� sec

The FCE�algorithm ���� sec
Full GRT estimation ���� sec

Table ��� Time measurements on a 
� MHz Pentium�

Next a small example of the sensitivity of the FCE algorithm with respect to the choice of v�
and vt� is given� A binary image containing the same eight hyperbolas as above was created� No
noise is present in the image� Fig� ���
 shows the time used by the FCE�algorithm to estimate
the hyperbola parameter as a function of v� and vt� � and in Fig� ���� in shown the number of
hyperbolas identi�ed by the FCE�algorithm� From the �gures it can be seen that an optimum
with respect to time is found at vt� � � and v� � �� but for vt� � � Fig� ���� shows that one or
two of the hyperbolas can be missed� This is due to the fact that IPM requires that the parameter
domain is coarsely sampled especially in the t��parameter� cf� Eq� �����
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Figure ���	 The time used by the FCE�
algorithm to estimate the parameters of the hy�
perbolas shown as a function of v� and vt� � For
the time measurements a 
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Section ��� The Hyperbolic Transformation Curve ��

����� An Example with a Noise Corrupted Synthetic CMP
gather

To demonstrate the performance of the FCE�algorithm with many curves� an example based
on a noise corrupted synthetic CMP�gather is given� The subsurface model is a pure acoustic
�compressional waves only� horizontally layered subsurface consisting of four �nite layers and
in�nite top and bottom layers� The synthetic CMP�gather is produced by use of ray tracing
����� The resulting CMP�gather is composed of �� distinct re�ection curves� shown in Fig� ����
where each vertical line represents a trace� The binary signal has been generated by adding the
hyperbolas and noise is here simulated by switching the values of the individual binary pixels with
a probability of � � The parameters of the hyperbolas are shown in Fig� ���� and the parameters
for both image and parameter domains are given in Table ����
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Figure ���� Synthetic CMP�gather composed of � distinct re�ection curves�
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Image domain Parameter domain

Parameter Value Parameter Value

M �� S ���
N ��� Z ���
�x �� m �� ��� � ���� s�m
�t � � ����s �t� � � ����s
xmin �� m �min ���� � ���� s�m
tmin � s t��min � s

� ��� �� ���
� ���
v� �
vt� �

Table ��� Image and parameter domain settings�

Applying the FCE�algorithm to the binary image gives the IPM estimated parameter domain
shown in Fig� ����� using vt� � � and v� � �� Applying GRT on the parameter domain region
speci�ed by the resampled and thresholded IPM estimated parameter domain� with �� � ����
results in the GRT parameter domain shown in Fig� �����
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Figure ���� The preconditioned GRT�

Finally� Fig� ���� shows the estimated curve parameters� where a signi�cance level of � � ���
in the �nal threshold process and � � ��� in the clustering process have been used� In this case
hyperbolas have been identi�ed matching the original parameters very well� but two additional
hyperbolas have also been identi�ed� This is partly due to the noise level in the initial image� and
that the given sampling of the parameter domain is a tradeo� between the certainty of detection
and limiting the number of samples in the parameter domain� In this case the FCE�algorithm is
approximately ��� faster than the GRT� The decrease in speed� compared to the previous example�
is due to the higher number of hyperbolas in this example� covering a larger part of the discrete
parameter domain�
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perbolas shown in the parameter domain�

IPM ���� sec
Threshold � ���� sec
Resampling ���� sec
Pre�Conditioned GRT ���� sec
Threshold � ���
 sec
Clustering ���
 sec

The FCE�algorithm ��
� sec
Full GRT estimation 
��� sec

Table ��� Time measurements on a 
� MHz Pentium�

��� Summary

A new algorithm for fast curve parameter estimation� named the FCE�algorithm� has been presen�
ted� The algorithm identi�es curve parameters by operating on a binary image� obtained� e�g�� by
edge �ltering� deconvolution� or mean �eld annealing�
The fundamental idea of the algorithm is the use of pre�conditioning to reduce the computa�

tional cost of the traditional generalized Radon transform� The pre�conditioning map determines
regions of the parameter domain which contain peaks� and the generalized Radon transform is
applied only in these regions� As the size of the regions is less than the full parameter domain�
the pre�conditioning map reduces the computational costs when applying the generalized Radon
transform� For fast generation of the pre�conditioning map� a generalization of the Hough trans�
form named image point mapping has been developed� Image point mapping is computationally
e	cient by taking account of image points with value zero� The required parameter domain
sampling and the resulting parameter domain blurring have been investigated�
The FCE algorithm was successfully applied to the identi�cation of hyperbolas in seismic

images and two numerical examples have been presented� One example demonstrates the potential
of the algorithm for fast and accurate parameter estimation� and the other example illustrates the
robustness of the algorithm with respect to noise�
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Chapter �

Curve Parameter Estimation in Noisy

Images

So far it has been assumed� that the lines in the images are straight within the �digital� resolution�
A very reasonable question regards the situation where lines have wiggles� In Section ��� it is
analyzed� whether the discrete linear Radon transform still be used to detect line parameters ����
Analytical expressions are given to quantify the theory�
In Section ��� it is shown that lines with wiggles can be incorporated in the Radon transform�

but it is also shown that the alteration can be transformed back to the original image as a simple
non�linear �lter�
Finally in Section ��� the implications of additive noise in the image� is analyzed with respect

to curve parameter detection ���� Here a very general form of the generalized Radon transform is
assumed� and the theory is illustrated in the linear Radon transform case� Simple formulas are
derived� quantifying whether a curve in a noisy image can be detected or not�

	�� Lines with Wiggles

It is assumed that the digital line in the image can be modelled by

g�m�n� � � �n� ���m� �� � ��� where �  N ��� �� �����

where ���� is the Kronecker delta function� and ��� rounds to the nearest integer� The Gaussian
distributed noise term � determines the change in position of the line in the y�direction� and it will
be assumed that the noise terms � are uncorrelated as a function of m� The constants �� and ��

correspond to actual slope and o�set values as in Eq� ���
� i�e�� � � pk 
x

y and � � pk xmin��h�ymin


y �
What is of interest now� is to �nd the value and shape of the peak �if any is found� in

the discrete parameter domain as a function of the noise deviation �� Eq� ��� implies that the
probability of the sample g�m�n� being � is given by

Pfg�m�n� � �g � P fn � ���m� �� � ��g �����

� P f� � �n� ��m� �� � ��g �����

� P

�
��
�
	 n� ��m� �� � � 	

�

�

�
�����

and assuming that the sample point �m�n� is given from the nearest neighbour mapping in the
discrete Radon transform� n � �� m� ��� then the rounding function is modelled as an additive

�
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�noise� term �

Pfg�m�n� � �g � P

�
��
�
	 ��m� ��� ��m� �� � � 	

�

�

�
�����

� P

�
��
�
	 �m� � � � � ��m� �� � � 	

�

�

�
�����

� P

�
��
�
	 � � � � � 	

�

�

�
where � � ��� ���m� � � �� ���
�

� #

�
�
 � � � �

�

�
�#

���
 � � � �

�

�
�����

where #��� is the Gaussian probability function� and � is a displacement between the true line
parameters ���� ��� and the parameters ��� �� at a given position m�
Due to many values ofm used in the discrete Radon transform� it is a reasonable approximation

to model � as a uniformly distributed variable between the limits ���� and ���� i�e�� �m 
U������ ����� Eq� ��� implies that the average contribution from the pixel g�m�n� to the discrete
Radon transform is given by

Ef�g�k� h�jg�m�n�g �
Z �� �

�

��� �

�

Pm��� d� ����

�

Z �� �

�

��� �

�

#

�
�
 � � � �

�

�
�#

���
 � � � �

�

�
d� ������

In order to get an analytical expression for Ef�g�k� h�jg�m�n�g the Gaussian probability func�
tion is approximated

#�x� � �
�

�
� � tanh

�
x

�

��
where � �

r



�
������

i�e�� the integral of #��� can be approximated by
Z
#�x� dx � �

�

�
� � x

�
� log cosh

�
x

�

��
������

where log��� is the natural logarithm�
If Eq� ���� is inserted into Eq� ����� and doing some rearrangements of the expressions� it is

found that

Ef�g�k� h�jg�m�n�g � ��

�
log

�
�cosh

�
	
��

�
� cosh

�

��

�
cosh

�
	
��

�
� �

 
A ������

In Fig� ��� the average weight to the discrete Radon transform is shown as a function of �
and ��
A special case of interest regards � � �� i�e�� where the coordinates of the line in the image

matches exactly a sample in the discrete parameter domain�

� � � � Ef�g�k� h�jg�m�n�g � �

r



�
log

�
�

�

�
� � cosh

� p
�

�
p



���
������

In Fig� ��� the average weight to the discrete Radon transform is shown as a function of ��
when the displacement is assumed negligible� It can be seen that the function agrees well with a
simulated result shown in Fig� ���� that is found by generating ����� images with the correct noise
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Figure ��� The average weight to the discrete Radon transform Ef�g�k� h�jg�m�n�g as a function of
the noise deviation � on the 	rst axis� and the displacement 	 on the second axis�

amplitude � and computing the discrete Radon transform only for the parameter set matching
the true parameters� An even better agreement can be found using a numerical integration of Eq�
����� but Eq� ���� provides an simple analytical result that approximates the simulated results
well� though it can also be seen that the theoretical model has a small bias� when � � ����
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The vertical error bars show the measured devi�
ation�

Fig� ��� or Eq� ���� can be used to predict whether line parameters might be estimated given
that the lines have wiggles� If� e�g�� demanding that the peak value cannot decrease more than �� 
due to wiggles� then � cannot exceeds approximately ��
� And a �� decrease of the peak value
is found if � � ����� In Fig� ��� is shown an image with one line without noise� and Fig� ��� shows
the discrete parameter domain in the area of the peak� Using the same sampling parameters� Fig�
��� shows an image where � � ����� and Fig� ��
 shows the corresponding discrete parameter
domain� The images are scaled individually according to the minimal and maximal values� and it
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can be seen that the maximal value here is around ��� and the shape is approximately the same
as seen from Fig� ���� Next � � ��� gives an image like it is shown in Fig� ���� and it can be seen
that the noise level is high� In Fig� �� is shown the discrete parameter domain� and it can be seen
that the peak here covers a larger part of the �eld of view and the peak is somewhat scattered�

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Figure ��� An image without noise�

0

10

20

30

40

50

60

70

80

90

100

p

ta
u

NN

0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35

47.5

48

48.5

49

49.5

50

50.5

51

51.5

52

Figure ��� The corresponding discrete Radon
transform�
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Figure ��	 The corresponding discrete Radon
transform�

Eq� ���� can also be analyzed in the case where � � �� in order to focus on the importance of
the displacement� First� the expression for � is rewritten

� � ��� ���m� � � �� � �p� � pk�
xm
�y

�
�� � �h
�y

������

where �p�� ��� is the line parameters corresponding to ���� ���� and �pk� �h� correspond to ��� ���
Assuming that p� � pk� the displacement can be analyzed in the � �direction� From Fig� ���

it can be seen that � � �� correspond to Ef�g�k� h�jg�m�n�g � ���� i�e�� that the peak value
has decreased to approximately �� of the possible maximum� This can be used to restrict the
sampling interval �� � due to the quantization of �h

Ef�g�k� h�jg�m�n�g � �
�
� j� � �hj

�y
	 � � j� � �hj 	 �y � �� 	 �y ������
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Figure ��� The corresponding discrete Radon
transform�
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Figure ���� The corresponding discrete Radon
transform�

This result agrees with Eq� ����� but here the result comes with a very important information�
Using Eq� ���� can imply that the peak value is reduced by �� of the possible maximum� This
implies a compromise between the number of samples in the discrete parameter domain� i�e�� the
sampling intervals� and the time used to compute the discrete parameter domain�
It should be mentioned� that a simple and intuitively model can be proposed to analyze the

case � � �� but the results is not as good as obtained by the model described above� The discrete
Radon transform will due to the rounding have a window in the n�direction� like it is shown in Fig�
����� of length �� Hence assuming that the o�set � is negligible� then the probability of detecting
a � is given by

Pfg�m�n� � �g � P
�
��
�
	 � 	

�

�

�
� #

�
�

��

�
� #

�
� �
��

�
� �#

�
�

��

�
� � ����
�

which can be interpreted as the reduction factor of the peak� The probability is shown as a
function of � in Fig� �����
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The conclusion on this section is that a peak is generated in the discrete parameter domain
corresponding to each line in the image� and the value of the peak will be lowered corresponding
to the noise level� which in this case is due to the wiggles� In Section ��� additive image noise
will also be considered� and it could be of interest to combine the analysis of these two problems�

	�� A �Fuzzy� Radon Transform

Instead of using the pixel positions designated by the discrete Radon transform� a search strategy
could be used to incorporate wiggly lines into the curve detection algorithm� Assuming that the
lines have wiggles as shown in Section ���� one strategy to incorporate this prior knowledge could
be to allow the discrete Radon transform to search for the maximum image value within a �xed
window�

[αm+β]

m

Figure ���� Instead of adding the nearest vertical pixel to the sum the maximum is used within a
window of here 	ve pixels�

The strategy is demonstrated for discrete slant stacking� but can be adapted to� e�g�� the
normal Radon transform or the discrete generalized Radon transform� Assuming that the curve
amplitude is positive and additive noise is corrupting the image� Fig� ���� shows how a search
window of �ve pixels is used for each value m on the horizontal axis� Within the window one
apparent strategy is to update the sum in the discrete Radon transform by the maximum of the
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�ve pixels� Besides that this strategy implies a big increase in the processing time compared to
the use of discrete slant stacking� it is not optimal due to the fact that� this strategy is identical
to �ltering the input image with a median type �lter for each value of m� The �lter should return
the maximum of the pixels within the window� hence the strategy is equivalent to an initial image
domain �ltering and then ordinary discrete slant stacking� This demonstrates that the alteration
should not be used� but the local �ltering should only be used� if the maximum �lter can select
the correct pixel within the window�
The following six �gures illustrate the problem with the strategy� Fig� ���� is a noisy image

containing two intersecting lines� and Fig� ���� shows the corresponding discrete Radon transform
�nearest neighbour approximation�� Two peaks are very clearly marked� Next Fig� ���
 shows
the image� where a maximum �lter with window width of � pixels has been used for each value
of m� Fig� ���� shows the corresponding discrete Radon transform� and it is seen that the peaks
are still detectable� but the resolution has become worse� Finally Figs� ��� and ���� uses a �lter
window of length �� and the result is more blurring of the peaks� and that the background level
in the discrete parameter domain has gone up�
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Figure ���� The original image containing two
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Figure ���	 The 	ltered image containing two
intersecting lines covered with additive noise�
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	�� Detection of Curves in Noisy Images

A natural expansion of the Radon transform is the �discrete� generalized Radon transform �GRT�
���� �� ��� As demonstrated in Chapter � a major advantage of the GRT is that curves are allowed
to intersect� Another major advantage that will be demonstrated in this Section� is that the GRT
is very robust to noise�
In this section a probabilistic approach is used to show that the GRT can be used for curve

detection if the noise in the image is below a certain level compared to the signal values on the
curves� An analytical expression is given quantifying the limits of using GRT for curve detection
especially with respect to very noisy images� If noise is added to an image containing curves�
the problem is that peaks in the parameter domain may or may not correspond to actual curve
parameters� A threshold level� based on the noise level� is derived and applied for separation of
noise and curve information in the parameter domain�
A numerical example is provided to illustrate the presented theory� Note that the theory can

be used to reestimate the image containing curves �����

����� The Generalized Radon Transform

The generalized Radon transform� GRT� of a digital image can be de�ned in many ways� One
way is

�g�j� �
L��X
l��

g��m�l� j�� �n�l� j�� ������

where �g denotes the GRT of the image g�m�n� and j is a multi dimensional vector containing the
curve parameters� The two curve functions �m�l� j� and �n�l� j� de�ne the curve type and are
�in principle� arbitrary and an interpolation scheme is assumed implicitly� e�g�� by rounding the
functions �m�l� j� and �n�l� j� to the nearest sample point� A popular choice is the linear curve
functions� e�g�� normal parameters j � ��� ��� Another frequent choice is the ��� p��parameters�
cf� Chapter �� where �m�l� �� p� � l and �n�l� �� p� � p l � � � Choosing only �m�l� j� � l the
de�nition will match the one used in Chapter ��
Even though the GRT can be applied to any given image� the main feature of the GRT is that

an image� which contains a discrete curve matching the curve functions at one parameter vector
j� implies that the parameter domain �g�j�� will show a peak at that speci�c parameter vector
j � j�� The linearity of the GRT implies that each curve in the image will be transformed into
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a peak in the parameter domain� In this section a curve in an image is de�ned by large image
values of the same sign on the curve and otherwise �approximately� zero�
Initially only two values of the GRT will be considered� The �rst� �g�j��� corresponds to a

curve in the image� Another� �g�j��� corresponds to a parameter vector� that does not match
a curve in the image� It is assumed that �g�j�� is the sum of a mean signal value � over all L
samples� and �g�j�� covers �approximately� no samples of the curve�s� in the image� Both values
of �g are contaminated with noise� which is due to noise in the image� Assume the noise in the
image is nearly uncorrelated with zero mean �e�g�� by subtracting a DC�value from the image�
and variance ��

����� Curve Detection using the Generalized Radon Transform

A classical curve detection algorithm is to determine the parameter vectors from the positions of
peaks in the parameter space

j� � arg fj�g�j�j � L ��g �����

The reason for choosing the signi�cance level in this way is that Eq� ���� consists of a summation
over L samples� and �� is a lower positive bound on the mean signal level on the curve� e�g� found
by estimation� The purpose of the following is to estimate whether curves having the signal level
� can be detected using Eq� ���� if the image is contaminated with the described noise�
Due to the linearity� �g consists of a curve part and a noise part� If L � � the sum of the

noise terms �gnoise will approximately be Gaussian distributed with zero mean and variance L�


due to the Central Limit Theorem� This implies that the two considered values of the GRT are
distributed as �g�j�� � �L � �g�noise  N ��L�L�� and �g�j�� � �g�noise  N ��� L��� Since Eq�
��� selects the large values in the parameter domain� an important issue is the probability of
detecting the correct parameter vector of the two considered

Pdet  � Pfj�g�j��j � j�g�j��jg ������

Assume two uncorrelated stochastic variables

A  N ��A� �� and B  N ��B � �� ������

hence the joint probability distribution function is given by

f�a� b� �
�

�
�
exp�

�

���
��a��A����b��B��� ������

The probability PfjAj � jBjg will now be found by rotating the coordinate system� x � �p

�a�b�

and y � �p

�a� b�� In the new coordinates the joint probability density function is

g�x� y� �
�

�
�
exp�

�

���
��x��x����y��y��� ������

where �x �
�p

��A � �B� and �y �

�p

��A � �B��

PfjAj � jBjg �
Z �

x���

Z �

y���
g�x� y� dy dx�

Z �

x��

Z �

y��
g�x� y� dy dx ������

The two integrals can be separated and it is easily found that

PfjAj � jBjg � �
�

�
� � erf

�
�A � �B
��

�
erf

�
�A � �B
��

��
������
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where erf�x� is the error function� Inserting �A � �L� �B � �� and replacing � with �
p
L gives

Pdet  �
�

�

�
� �

�
erf

�
�

�

���
and � �

�
p
L

�
������

Note that in this case Pdet � shown in Fig� ����� only depends on one parameter �� Note that
j�j � � gives an almost certain detection� This is the case if � � � or ����
When using the GRT to detect curves then the discrete parameter domain will not only have

two� but J di�erent parameter vectors� where J is the number of samples in the parameter
domain� It is assumed that all the noise sources in the parameter domain are independent and
in the following� the detection of a single curve is analyzed� Selecting the position of the highest
peak in the parameter domain� the probability of the selected parameter vector being correct� can
be approximated by

Pdet all ��
JY
i�

Pdet  �� PJ��det  �

�
�

�

�
� �

�
erf

�
�

�

����J�� �� �� �J
�
p


e��

��� ����
�

The last simple approximation is valid if the detection probability is close to � as seen from Fig�
����� Several characteristics can be noted� The �gure shows a narrow transition from low to high
detection probability as a function of �� and J does not change the shape of Pdet all signi�cantly�
If demanding a high detection probability Pdet all then Eq� ���
 and Fig� ���� demonstrate that J
should be held low� i�e�� by reducing the number of samples in the parameter domain to a minimum�
It should be noted that this will involve a compromise on the range of possible parameter vectors�
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Eq� ���
 can also be used to set requirements on� e�g�� the absolute mean signal level �� of
the curve�s� to be detected� Demanding a detection probability Pdet all greater than P

� implies
that �� � �����

p
L�� where �� can be found by from Eq� ���
 with a given detection probability�

summation length L� number of samples in the parameter domain J � and the standard deviation
� �e�g�� by found by estimation�� Any j�j less than the threshold level� ��� can be considered as
noise� In this way it is possible to give a statistically based estimate on the thresholding level in
Eq� ����
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Section ��� Detection of Curves in Noisy Images ��

����� Discussion

Even though the above theory is developed by analyzing one curve in the image� the theory can
be used if the image contains few curves� Instead of having one peak in the parameter domain
representing one curve in the image� each of the Z curves in the image� where Z � J � will give
a peak in the parameter domain� even if the curves cross each other� With Z curves each of
corresponding Z �g�values must be larger than the rest in the parameter domain� If only a few
curves are present� the rest of the parameter domain is dominated by noise� and the probability
of detection for each of the Z curves can be found from Eq� ���
�
The theory used to derive Eq� ���
 is somewhat pessimistic in estimation of the in�uence of the

noise� This is partly due to the assumption that all the GRT�values include summing noise over L
samples� Normally some of the GRT�values will require summing up over a curve partially outside
the image� where the image must be assumed equal to zero� Furthermore some correlation must
be expected in the parameter domain� especially if the number of dimensions in the parameter
domain is higher than two� Depending on the sampling parameters� this implies that an e�ective
J �less than the number of samples in the parameter domain� must be used in Eq� ���
�

����� An Example of Line Detection in a very Noisy Image

A noise free image containing eight lines with limited slope is created� The image� shown in Fig�
����� has ��� � ��� samples� The curve sampling functions are chosen to �m � l � �� and �n �
p �l� ���� � and L is set to ���� The o�set is made in order to lower the sampling requirements
in the parameter domain� cf� Subsection ������ The sampling distances in the parameter domain
is set to �� � � and �p � ����� The line parameters are listed in Table ����

No p � � No p � �

� ���� �� ��� � ���� �� ���
� ���� �� ���� � ���� �� ����
� ����� �� ���� 
 ����� �� ����
� ����� �� ��� � ���� �� ���

Table ��� Line parameters� p is the slope� 
 is the o�set� and � is the curve amplitude�

To illustrate the potential of the GRT a very noisy image is generated� by adding Gaussian
noise to the noise free image with zero mean and standard deviation � � �� It can be seen from
Fig� ����� that the lines are hard to identify� Choosing Pdet all � ���� Eq� ���
 gives �

� � �����
i�e�� only lines with j�j � ���� should be detectable� This implies that all but line number eight
should be detectable� The absolute value of the parameter domain obtained by the use of the GRT
to the noisy image is shown in Fig� �����
Since the noisy image contains few lines with absolute curve amplitude j�j being of the same

order of magnitude as � and has approximately zero mean� � was estimated from the image using
the ordinary central variance estimator� which gave !� � ����� Setting Pdet all to ���� Eq� ���

results in L �� � ���
� This is used for thresholding of the parameter domain as shown in Fig�
����� Seven of the eight line parameters are found despite the poor signal to noise ratio in the
image� Note that some of the lines will be represented by a few neighbour parameter vectors� which
can be corrected by clustering neighbour parameter vectors� The error is due to the sampling of
the parameter domain and the �nite image size�
The theory predicted that only seven lines could be detected� The eighth line can be detected

if the curve length can be increased or the noise variance can be reduced� If the theory is used
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with Pdet all very low� L�
� get lower and noise peaks will appear in the parameter domain along

with parameters of the eighth line� In Fig� ���
 the threshold level has been reduced to� e�g��
��
L�� � ����� As it can be seen� noise will now give parameter vectors which do not represent
a curve� As seen from Fig� ���� a further reduction of the threshold level to� e�g�� ���L�� � ���
gives a parameter domain� where all eight lines are present� Due to the noise level many false
parameter vectors can also be observed�
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Figure ���� Noise free image with eight lines�
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Figure ���� The same image contaminated
with additive Gaussian noise�
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Figure ���� The absolute GRT of the noisy im�
age� Note the peaks corresponding to the curves�
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Figure ���� Threshold of the absolute GRT
using the estimated threshold level�

	�� Summary

This chapter demonstrated the possibilities and limitations of using discrete Radon transform
with respect to noise� In Section ��� detection of wiggly lines has been analyzed� and analytical
expressions have been derived that models the behavior of the discrete Radon transform with
respect to wiggly lines� In was shown in Section ��� that the simple incorporation of wiggles can
be perceived as a maximum �lter used in the image domain�
Finally Section ��� presented a statistically based noise analysis of the generalized Radon

transform� The analysis was used to derive a threshold level in order to separate curve information
and noise in the parameter domain� A numerical example was provided to illustrate the theory�
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Figure ���	 Threshold of the absolute GRT
using ��� times the estimated threshold level�
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Figure ���
 Threshold of the absolute GRT
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The Inverse Radon Transform and PET

��





Chapter �

Introduction to Computerized

Tomography

One of the major inventions in this century is the CT�scanner �Computerized Tomography�� It
can be mentioned that Cormack and Houns�eld got the Nobel�prize in Medicine �	
	 for their
work with computed axial tomography� The CT�scanner can be used for reconstruction of the
X�ray absorption in the interior of structures� such as patients or machine parts with possible
internal fractures�

Over the years several types of scanners have emerged such as the MR�scanner �MR � Magnetic
Resonance� for measuring features related to the contents of water� This type of scanner is
common in larger hospitals and it only uses magnetic �elds� no X�rays or radioactive tracers are
involved� Two other emerging techniques� both used to monitor the concentration of radioactive
tracers in the interior of an object� are SPECT �Single Photon Emission Computed Tomography�
and PET �Positron Emission Tomography�� If the radioactive tracer is attached to� e�g�� glucose
�
�� then the interesting possibility of measuring the activity of the brain arises� This possibility
of dynamic measurements of the activity of the brain is now also appearing with one of the newest
technologies fMRI �functional MRI��

What is common for the development of all types of scanners is that they� to some extent� have
been based on inversion of Radon transform� but it should be mentioned that the MRI scanners
mostly use inverse Fourier transformation� The most direct use of inverse Radon transform is
found with the CT�scanner� and Section ��� describes the fundamental theory of physics along
with the motivation of modelling the problem by use of the Radon transform� Next� Section ���
goes into the fundamentals of PET�imaging and some of the problems in practical scanning� An
introduction to the various scanners mentioned above is given in ����

Besides Section 
��� which goes through the major direct inversion methods for the �p� ��
Radon transform �slant stacking� cf� Chapter ��� this part of the thesis will go into reconstruction
from line integrals using normal parameters� First� in Chapter 
 some of the well�known direct
�D Radon inversion formulas are derived ����� A large software package that includes all of the
inversion methods mentioned in Chapters 
�� has been developed �	� ��� ���� Together with the
package for generating images and their Radon transform ���� described in Appendix C��� e�cient
and easy tools have been made for testing new algorithms and doing �D reconstruction with the
built�in algorithms�

During the very �rst years of work with the CT�scanner Houns�eld and his colleagues used an
iterative reconstruction scheme based on linear algebra for reconstructing images� This strategy
had a number of problems� and was abandoned when it was realized that the reconstruction
problem could be modelled by the Radon transform� From the moment this was realized� most

�
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reconstruction algorithms in practical use have been based on direct reconstruction methods�
especially the so called Filtered Backprojection algorithm� But in recent years� iterative recon�
struction schemes have again become a very popular area of research� In Chapter 	 the basis of
the iterative reconstruction algorithms are provided� and some of the more widely used methods
are reviewed� A very fast implementation of these algorithms in �D has been made ���� � ��� It
turns out that the methods used for iterative reconstruction of the �D images directly can also be
applied for reconstruction of �D volumes� hence the methods both cover �D and �D reconstruction
algorithms�

One of the newer and emerging techniques is �D direct reconstruction from plane integrals
���� or line integrals relevant for �D CT�scanners and �D PET medical scanners respectively
���� ��� �� ��� �
� ��� �	� 
�� 
��� Some of the direct reconstruction methods� problems� and
possibilities are shown in Chapter ��� Aspects of implementation including the use of multi
processor hardware are also considered� A software packages has been developed for generating
volumes and the corresponding Radon transform along with a package for reconstruction of �D
volumes using direct and iterative methods�

��� Fundamental Theory of the CT�Scanner

A CT�scanner can consist of a ring with one X�ray emitter and a large number of detectors
positioned opposite to the emitter as shown in Fig� ���� Rotating the emitter and the detector
array around the patient makes it possible to cover all parts of the brain� Note that the brain
could be substituted by any structure with an interesting non�homogeneous interior hidden behind
the surface�

Figure ��� The CT Scanner�

It can be assumed that the X�rays travel in straight lines� and the beam is attenuated along
that line with the attenuation coe�cient �� After the scan the attenuation coe�cient is to be found
by reconstruction in each point in the plane� It will be shown that this can be based on inversion
of the Radon transform�

Assume a planar ��D� CT�scanner with only one slice of the brain measured� then the coordin�
ate system can be chosen so that the slice is the z � � plane� Each line going through the scanned
object is parameterized with two parameters� The normal distance from ��� �� to the line �� and
the angle relative to the �rst axis �� These two parameters are shown in Fig� ����
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It must be assumed� that the scanned object is non�homogeneous� hence the attenuation coef�
�cient is a function of x and y� i�e�� ��x� y�� Assume that the emitter and one of the detectors
de�ne the line ��� ��� In Fig� ��� three di�erent objects are shown �seen along the line��
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θ
ρ

Figure ��� Parameters used to de�
scribe the lines�
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Figure ��� Three di�erent media�
with attenuation coe�cients �i and
widths si�

In case �a� the received intensity will follow the ordinary exponential decay

I��� �� � I� e
���s� �����

If two di�erent homogeneous media are penetrated as shown at �b� the received intensity is

I��� �� � I� e
���s����s� �����

If several homogeneous media are present� like in case �c�� the result is simply that additional
exponential factors are included for each layer

I��� �� � I� e
�
P

i
�isi �����

In the general form� where the attenuation coe�cient is a function of the line path� the sum in Eq�
��� will become an integral and si becomes the line element ds�

I��� �� � I� e
�
R
��x�y� ds �����

In this equation the parameter I� is the intensity of the emitter� and s denotes the parameter
in the normal form of the line� where �x� y� lies on the line de�ned by ��� ��� Note that the
exponential factor can be perceived as the probability of a single photon getting through the
absorbing medium�

From Eq� ��� the projection P��� �� is de�ned

P��� �� � log

�
I�

I��� ��

�
�

Z
��x� y� ds �

Z �

��
��� cos � � s sin �� � sin � � s cos �� ds ����

It can be recognized that P��� �� is the Radon transform of ��x� y�� cf� Eq� ���� Using the Dirac
delta function the projections can be rewritten� cf� Eq� ���

P��� �� �
Z �

��

Z �

��
��x� y� ���� x cos � � y sin �� dx dy �����
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�� Chapter �� Introduction to Computerized Tomography

The result is� that the attenuation coe�cient ��x� y� can be found from the projections using
the inverse of the Radon transform�

In the literature ���� 
�� 
�� direct inversion schemes can be found� One class is based on
the Fourier Slice Theorem� which is implemented using �D Fast Fourier Transformation� �D Fast
Fourier transformation and �D interpolation� This will normally result in a very fast algorithm�
but numerical artifacts due to the interpolation can decrease the performance� Another famous
inversion scheme is the Filtered Backprojection which is a combination of �ltering and integration�
This inversion scheme is by far the most common and used in medical scanners due to good
numerical stability� but the algorithm will normally be somewhat slower� These aspects are
covered in the following chapters�

In conclusion� it has been shown that the CT�scanner gives a map of the attenuation coe�cient�
The CT�scanners have been used several years� and one of the newer trends is to perform helical
CT� where the emitter and detector ring rotate around the patient and make a uniform motion
along the z�axis� as shown in Fig� ���� In this way a �D�image� i�e�� a volume of the interior can
be obtained with a better resolution on the z�axis� compared to a large number of plane scans
placed along the z�axis�
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Figure ��� Motion of the emitter when using helical CT scanning�

It has been demonstrated that the attenuation coe�cient can be measured indirectly� and the
reconstruction of images can be done by use of the inverse Radon transform� In the following
section another emerging technique� PET�scanning� is presented which have some similarities to
the CT�scanner� but a major di�erence is the number of features� which can be measured� e�g��
the glucose metabolism in the brain�

��� The PET Scanner

The PET scanner �Positron Emission Tomography� is based on another type of measurement�
A small dosage of a radioactive �� �positron� tracer� such as F���� O��� or C���� produced by
use of a cyclotron is build into a larger molecule such as glucose� The ���labeled glucose is
injected into the patient� The �� tracer will then be circulated in the tissue by the blood �ow� If
for instance the brain is to be scanned then the glucose metabolism in the individual regions of
the brain will correspond to the local brain activity� In the regions with high brain activity the
glucose metabolism will be high� and a corresponding number of radioactive nucleons will decay
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under emission of a positron� Within a few millimeters the positron will then interact with an
electron and annihilate under emission of two �� keV photons� The two photons will travel in
�nearly� opposite directions outwards where the photons can be detected at detectors placed in a
ring in the PET scanner� as illustrated in Fig� ��� Note that here only detectors are needed� as
the emitter is placed within the patient�

Figure ��� Emission of two photons from the place of decay�

In Fig� ��� a real PET scanner is shown � the General Electric Advance PET scanner� The
photograph was taken at the PET center at the National University Hospital in Copenhagen�

Figure ��� The GE Advance PET scanner�

In Fig� ��
 is shown the same scanner with the front opened� Note the detector blocks are
visible� Within a single block a number of detectors are attached� and in this particular scanner
�� rings of detector elements are found� which makes it possible to record � slices in �D �number
of planes in the scan� at the same time� The � slices is found because the scanner in �D recording
mode allows measuring photon pairs detected in the same ring or two adjacent rings�
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	� Chapter �� Introduction to Computerized Tomography

Figure ��	 The GE Advance PET scanner opened�

The PET hardware will sort the arrival times of the photons� so only two photons that arrived
�almost� at the same time at the detector ring are taken into account� The photons travel with
the speed of light� and the small di�erence in arrival time �within approximately � nanoseconds�
has so far only been used in the Time�of�Flight PET scanners or TOF�PET �
��� Only a very
limited number of these scanners have been build� In the following the small time di�erence is
neglected�

A two dimensional matrix of the possible detector versus detector combinations is created�
and all values are initialized to zero� The number of possible detector combinations corresponds
to a �nite set of possible line parameters� ��� ��� Assume that two photons have been detected
and the line between the two detectors have line parameters ��� �� � ���� ���� then the array is
incremented with the value one at that position in the array� This is because the only obtainable
information from the two photons is that the photon emission took place somewhere along that
line� Depending on the radioactive dosage given to the patient� many decays take place each
second in each volume element� and after a PET recording� e�g�� ��� photon pairs can have been
recorded per slice� A PET�scanning can last up to one hour or more� depending on the task of the
scanning and the half�life of the tracer� Note that the majority of photon pairs are never detected�
due to the limited size� and hence spherical coverage of one detector ring�

After the recording is terminated an array of emissions has been recorded� The individual emis�
sion recordings are no longer stored� For a single position or bin in the matrix at ��� �� � ���� ���
the array has been developed by several �� emissions which took place along the line� The ob�
tained array of emissions� known as the sinogram� are in each position approximately proportional
to the total emission intensity along that particular line �times the total recording time� denoted by
Te�� The obtained matrix divided by Te is in mathematical terms an approximation to the integral
of the emission intensity A�x� y� over that particular line� If the measured emission sinogram is
named E��� �� then

E��� �� �
Z �

��

Z �

��
A�x� y� ���� x cos � � y sin �� dx dy Te ���
�

Again it can be recognized that the recorded array E��� �� is the Radon transform of the emission
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intensity A�x� y�� Note that this intensity will not be a constant in time as it varies with the
metabolism of the brain� This may limit the allowable recording time� Note also that Eq� ��
 is an
approximation� and the approximation is not always very good� due to a very limited number of
counts in the individual sinogram bin E��� ��� Normally the limited number of counts imply that
noise is found in the reconstructed images of the activity of the patient� Nevertheless the approx�
imation is used very often in order to apply the inverse Radon transform for reconstructing the
activity pattern� even if this approach can limit the performance of the reconstruction algorithm�
Later� in Chapter 	� the ML�EM algorithm is presented� which tries to incorporate the statistical
nature of the emission scanning�

So far the absorption of photons in the tissue has been neglected� thus the inversion process
must be modi�ed to take this into account� The activity of the brain can be split up in a sum
of point sources� Assume a point source is located in a �xed place �x� y� � �x�� y��� Assume
in the time window Te that A�x�� y�� pairs of photons are produced and emitted along on the
line ��� �� � ���� ���� Assume the realistic situation that the attenuation cannot be neglected and
that attenuation projections P��� �� have been measured using the transmission tomography as
discussed in Section ���� It can be mentioned that the inverse attenuation coe�cient� i�e�� ��
�
for �� keV photons in water� similar to tissue� is about �� cm� and in a brain with a diameter of
�� cm approximately ��� of all photons are lost due to absorption�

1s s2

I(x ,y )0 0

Figure ��
 Emission of two photons from �x�� y�� along the line ��� ���

Now consider two photons traveling from �x�� y��� as shown in Fig� ���� The photon traveling
along the line piece s
 will reach the detector ring with the probability P
� given by

P
 � e�
R
s�
��x�y� ds �����

which is the result found in Eq� ���� The other photon traveling in the opposite direction along
s� will reach the opposite detector with the probability P��

P� � e�
R
s�
��x�y� ds ���	�

The two photons travel independently� which implies that the probability of detecting both photons
is the product of P
 and P�� This means that the measured matrix of emissions E��� �� from the
point source is given by

E��� �� � A�x�� y�� Te P
 P� ������

� A�x�� y�� Te e
�
R
s�
��x�y� ds e�

R
s�
��x�y� ds ������

� A�x�� y�� Te e
�
R
s
��x�y� ds ������
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where the integral in the last line is the integral of the attenuation coe�cient along the line ��� ���
which contains �x�� y��� The last equation illustrates a very important conclusion� namely that
attenuation correction in PET does not depend on the initial point of interest �x�� y��� but only
on the line parameters ��� ��� If all point sources in the brain are considered� then the measured
matrix becomes

E��� �� �

Z
s
A�x�� y�� Te e

�
R
s
��x�y� ds ds� ������

� e�
R
s
��x�y� ds

Z
s
A�x� y� Te ds ������

� e�P�����
Z
s
A�x� y� ds Te � �����

�A��� �� �

Z
s
A�x� y� ds ������

�

Z �

��

Z �

��
A�x� y� ���� x cos � � y sin �� dx dy ����
�

�
E��� ��
Te

eP����� ������

where s� denotes integration with respect to �x�� y�� along the line ��� ��� Note that the attenuation
factor becomes a constant �along that line�� and it can be moved out through the s��integral� Note
also that the transmission correction is used in the Radon domain� thus no inversion of P��� ��
is needed� The important result is that the attenuation coe�cient only produces a multiplicative
factor in the Radon domain� This implies that the essential part of producing brain images still
can be based on inversion of the Radon transform�

Here it can be mentioned that another related emission scanner� the SPECT�scanner �Single
Photon Emission Computed Tomography� operates by measuring one emission photon only and
here the attenuation correction is a function of position and line parameters� and not as simple as
in PET�

����� Correction for Attenuation in PET

In order to obtain an estimate of P��� ��� the normalization factor I� is needed� Up to this
point this factor has been assumed to be a constant� This is not true� but this problem is easily
corrected by measuring a total of three scans� First an emission scan� and then two scans to
correct for attenuation� A blank scan is normally made prior to the two other scans by measuring
the transmitted photon intensity or rather the total number of photons transmitted along the line
��� �� for Tb seconds� which gives the blank scan sinogram B��� ��� After the patient is placed in
the scanner a transmission scan is recorded for Tt seconds �with the same setup used for the blank
scan�� This gives the transmission sinogram T ��� ��� Assume that in both scans I���� �� xr� yr�
is transmitted per second from the radioactive source along the line with parameters ��� �� to the
detector at position �xr� yr�� Neglecting the absorption in air� then the measured matrix B is
given by

B��� �� � Tb I���� �� xr� yr� e
�
R
�hardware ds ����	�

where the label �hardware� indicates that some parts of the scanner cannot be avoided when
measuring the blank scan along the particular line� This could be the cabinet and the bed for the
patient�
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With the patient in the scanner� the transmission matrix T only di�ers by the absorption in
the patient�

T ��� �� � Tt I���� �� xr� yr� e
�
R
�hardware ds e�

R
�patient ds ������

From Eq� ���	 and ���� the attenuation factor is easily found

e
R
�patient ds �

B��� �� Tt
T ��� �� Tb

������

This implies that the Radon transform of the attenuation correction of the activity measurements�
cf� Eq� ����� can be carried out in the Radon domain and the very important correction formula
is given by

�A��� �� �
E��� �� B��� ��

T ��� ��

Tt
Te Tb

������

which reveals some potential problems� The sinogram corrected for attenuation �A will be highly
dependent on the statistical properties of the three individual scans� Practical aspects of this issue
is further discussed in Chapter ���

��� Summary

Some of the fundamental properties of the CT�scanner and the PET�scanner have been presented�
It was shown that the CT�scanner can measure projections of the attenuation coe�cient� and
the measured projections can be modelled as the Radon transform of the attenuation coe�cient�
This explains why the inverse Radon transform now for many years has been an important
tool in medical imaging for reconstructing images of the interior of a function from a set of
external measurements� In Chapter � of ���� it is shown that several other �elds of science� such
as astronomy and microscopy also can use exterior measurements and reconstruct the interior
function by use of the inverse Radon transform�

Note that the description given in this chapter is somewhat simpli�ed on several points� In
practical PET several problems are common such as� scattered photons �scatter�� random detection
of two photons not originating from the same annihilation process �randoms�� geometrical factors�
penetration of photons through several detectors before detection �radial elongation�� e�g�� the
chapter about PET in ����
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Chapter �

Inversion of the Radon Transform

In this chapter several direct inversion schemes are presented for the Radon transform �
�� It
can be noted that other inversion schemes are available but perhaps not that used� e�g�� �
�� 

��

��� The Fourier Slice Theorem

Inversion of the Radon transform can be done in several ways� One standard algorithm is based on
the Fourier Slice Theorem also known as the Central Slice Theorem �
�� 
	�� The Radon transform
�g��� �� is to be inverted into g�x� y�� where the inversion is based on the Fourier transform�

First the �D Fourier Transform of g�x� y� is needed�

G�kx� ky� �

Z �

��

Z �

��
g�x� y� e�j���kxx�kyy� dx dy �
���

and the inverse transform is given by

g�x� y� �

Z �

��

Z �

��
G�kx� ky� e

j���kxx�kyy� dkx dky �
���

Introducing polar frequency parameters�
kx
ky

�
� 	

�
cos �
sin �

�
�
���

and inserting in Eq� 
�� into Eq� 
�� gives

G�	 cos �� 	 sin �� �

Z �

��

�Z �

��

Z �

��
g�x� y� ���� x cos � � y sin �� e�j���� dx dy

�
d�

�

Z �

��

�Z �

��

Z �

��
g�x� y� ���� x cos � � y sin �� dx dy

�
e�j���� d�

�

Z �

��
�g��� �� e�j���� d� �
���

Thus� a one�dimensional Fourier Transform of the Fourier Transform gives the spectrum� which
subsequently gives g�x� y�� cf� Eq� 
��� The Fourier Slice Theorem can be summarized as

G�	 cos �� 	 sin �� �

Z �

��
�g��� �� e�j���� d� �
��

g�x� y� �

Z �

��

Z �

��
G�kx� ky� e

j���kxx�kyy� dkx dky �
���

The Fourier Slice Theorem makes it possible to invert the Radon transform by use of �D Fourier
transforms and �D Fourier transforms� Note� that the theorem can be used in reverse order to
calculate the Radon transform� if the signal g�x� y� is given�
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��� Filtered Backprojection

Another very famous inversion scheme is the Filtered Backprojection ���� ��� ��� ��� or as it
more correctly should have been named Backprojection of Filtered Projections method ����� It is
derived from Eq� 
��� by introducing polar coordinates

g�x� y� �

Z ��

�

Z �

�
	 G�	 cos �� 	 sin �� ej����x cos ��y sin �� d	 d�

�

Z �

�

Z �

��
j	j G�	 cos �� 	 sin �� ej����x cos ��y sin �� d	 d�

�

Z �

�

Z �

��
j	j

�Z �

��
�g���� �� e�j���� d��

�
ej����x cos ��y sin �� d	 d� �
�
�

Eq� 
�
 is commonly written in two parts� A �ltering part and an integration part�

��g��� �� �

Z �

��
j	j

�Z �

��
�g���� �� e�j���� d��

�
ej���� d	 �
���

� IFT��� fj	j FT��� f�g���� ��gg �
�	�

g�x� y� �

Z �

�

��g�x cos � � y sin �� �� d� �
����

�

Z �

�

Z �

��

��g��� �� ���� x cos � � y sin �� d� d� �
����

Note� the similarity of Eq� ��� to the forward Radon transform in Eq� 
����
The operation shown in Eq� 
��� is named backprojection and it can be shown� page ��� of

���� that the backprojection operator is nearly linked to the adjoint Radon transform� To be more
speci�c� the adjoint Radon transform is two times the backprojection operator� The concept of
the adjoint Radon transform will be used in Chapter 	�

The �ltering part in Eq� 
�� is a forward Fourier transform for each of the angles� In the
Fourier domain the signal is high pass �ltered with the �lter j	j� Finally an inverse �D�Fourier
transform is used to get the �ltered Radon domain ��g��� ��� The backprojection part is merely an
integration along a sine�curve in the �ltered Radon domain� Eqs� 
�� and 
��� form the Filtered
Backprojection inversion scheme�

Filtered Backprojection can also be expressed without using �ltering in the frequency domain�
The �lter j	j is expressed as a product�

j	j � �j sign�	�

�

j�
	 � �
����

��g��� �� � IFT���

��j sign�	�

�

j�
	 FT��� f�g���� ��g

	
�

�

�
��
� ��g��� ��

��
�
����

where � denotes a convolution in the parameter �� It should be noted that j	j does not ful�ll
the ordinary requirements for having an inverse Fourier transform� but here the Cauchy principal
value has been used in the inverse Fourier integral� Next� the Hilbert transform of a function is
introduced�

Hg�t� � �




Z �

��

g�t��

t� t�
dt� � ��g��� �� � � �

�

H��g��� ��

��
�
����

In total� �ltered backprojection can be rewritten on a very compact form resembling the one
used by Radon �����

g�x� y� � � �

�


Z �

�

�
H��g��� ��

��

�
��x cos ��y sin �

d� �
���
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Direct implementation from Eq� 
�� is somewhat problematic� because of the Hilbert transforma�
tion� The Hilbert transform cannot be implemented easily without using Fourier transformation�
If this is the case then the reconstruction formula matches the one given in Eq� 
�� and 
����

��� Filtering after Backprojection

It is also possible to make the backprojection� i�e�� the adjoint Radon transform before the �ltering
���� 
��� In this case another �lter must be used� Rewriting g�x� y� using the delta function� cf�
Eq� ����� gives

g�x� y� �

Z �

��

Z �

��
g�x�� y�� ��x� x�� ��y � y�� dx� dy� � �
����

�g��� �� �

Z �

��

Z �

��
g�x�� y�� ���� x� cos � � y� sin �� dx� dy� �
��
�

Eq� 
��
 shows that each point �x�� y�� is transformed into a sine curve in the Radon domain�
The Radon transform of g�x� y� is the sum �integral� of all the sine curves in the Radon domain�
In the following the integrations over x� and y� are omitted� This can be done because only linear
transforms are used� Now assume a point source is given and the adjoint Radon transform is
applied before a �ltering�

g�x� y� � ��x� x�� ��y � y�� � �
����

�g��� �� � ���� x� cos � � y� sin �� �
��	�

�g�x� y� �

Z �

�
�g�x cos � � y sin �� �� d� �
����

�
�

j�x� x�� sin � � �y � y�� cos �j





�x�x�� cos ���y�y�� sin ���

�
����

�
�


��x� x�� sin arctan

�
x�x�

y�y�

�
� �y � y�� cos arctan

�
x�x�

y�y�

�


 �
����

�

r
� �

�
x�x�

y�y�

��
�x�x���

y�y� � �y � y��
�

�p
�x� x��� � �y � y���

�
����

It can be recognized that this is a two dimensional convolution�

�g�x� y� � g�x� y� � �h�x� y� where h�x� y� �
�p

x� � y�
�
����

Using the technique shown in Eq� 
��
 it can be seen that Eq� 
��� is valid for any given g�x� y��
Eq� 
��� thus enables another inversion scheme� A two dimensional Fourier transform of Eq� 
���
gives

�G�kx� ky� � G�kx� ky� H�kx� ky�� �
���

G�kx� ky� �
�G�kx� ky�

H�kx� ky�
�
����

From standard �D Fourier transform tables it can be found that

h�x� y� �
�p

x� � y�
� H�kx� ky� �

�q
k�x � k�y

�
��
�

c�Peter Toft ����



	� Chapter �� Inversion of the Radon Transform

This means that g�x� y� can be found as

�g�x� y� �

Z �

�
�g�x cos � � y sin �� �� d� �
����

�G�kx� ky� �

Z �

��

Z �

��
�g�x� y� e�j���kxx�kyy� dx dy �
��	�

g�x� y� �

Z �

��

Z �

��

q
k�x � k�y �G�kx� ky� e

j���kxx�kyy� dkx dky �
����

The reconstruction method presented is here called Filtering after Backprojection� which makes
use of an integration succeeded by a two dimensional high pass �ltering� This is an inversion
algorithm very similar to Filtered Backprojection�

��� Calculation using Operators

A number of textbooks� e�g� ���� ���� de�ne operators� In this section relevant operators are
de�ned� which will enable an easy way to write the inversion algorithms� In the following x� y�
kx� and ky denotes continuous variables� To identify the continuous operators calligra�c letters
are used� e�g�� R�

Rg�x� y� � �g��� �� �

Z �

��

Z �

��
g�x� y� ���� x cos � � y sin �� dx dy �
����

Bh��� �� �
Z �

�
h�x cos � � y sin �� �� d� �
����

F�
p
h��� �� �

Z �

��
h���� �� e�j���� d�� �
����

F�
p
H�	� �� �

Z �

��
H�	� �� ej���� d	 �
����

F�
r�h�x� y� �

Z �

��

Z �

��
h�x� y� e�j���kxx�kyy� dx dy �
���

F�
r�H�kx� ky� �

Z �

��

Z �

��
H�kx� ky� e

j���kxx�kyy�dkx dky �
����

Ch��� �� �

Z �

��
j	j
�Z �

��
h���� �� e�j����d��

�
ej���� d� �
��
�

Dh�x� y� �

Z
�

��

Z
�

��

q
k�x � k�y

�Z
�

��

Z
�

��

h��x� �y� e�j���kx�x�ky �y�d�x d�y

�
ej���kxx�kyy� dkx dky ����	�

Using the symbolic operators it is easy to express the presented inversion algorithms in a short
form

Filtered Backprojection

BF�
p
 j	j F�

p
 �g � BC �g � g�x� y� � BF�
p
 j	j F�

p
 R � BCR � I �
��	�

where I is the unity operator� i�e�� Ig � g�

Filtering after Backprojection

F�
�r

q
k�x � k�y F�

�r B �g � DB�g � g�x� y�� �
����

F�
�r

q
k�x � k�y F�

�r B R � DBR � I �
����

c�Peter Toft ����



Section ��	 Sampling Considerations 		

Fourier Slice Theorem

F�
r� F�

p
 �g � g�x� y� � F�
r� F�

p
 R � I �
����

where a conversion between polar and rectangular frequency coordinates is implied�

����� The Zero Frequency Problem

In the previous sections a perfect inversion is assumed� e�g�� Eq� 
���� but the backprojection
algorithms cannot invert perfectly� due to the �lters used in the inversion� Using Filtered Back�
projection it is seen that the polar spectrum at zero frequency �	 � �� is multiplied with zero�
This implies that a non�zero mean�value in the sinogram is set to zero in all cases� hence the
mean value of the reconstructed image need not be correct� Using Backprojection after Filtering�
it is obvious that the zero frequency value of the inverted image g�x� y� must becomes zero� The
Fourier Slice Theorem also shows that problem when considering the discrete implementation�

��	 Sampling Considerations

In the previous sections it was shown that direct reconstruction formulas use the adjoint Radon
transform� in form of the backprojection operator� and or the �D �D Fourier transform� This
suggests that the presented direct reconstruction schemes can be implemented using a sum ap�
proximation for the adjoint Radon transform and FFT IFFT for the Fourier transforms� but it
calls for proper discretization of the continuous formulas and careful selection of the sampling
parameters�

In most implementations a linear sampling of all variables is used�

x � xm � xmin �m!x m � �� �� ����M � �
y � yn � xmin � n!y n � �� �� ���� N � �
� � �r � �min � r!� r � �� �� ���� R � �
� � �t � �min � t!� t � �� �� ���� T � �

�
����

and a centered square image will be assumed

!x � !y �
����

M � N �
���

xmin � �xmax � ��M � ��

�
!x �
����

Note� that this choice will in general not give optimum numerical stability� but implies fast
and fairly easy implementations� See �
�� concerning a clever use of non�linear sampling of the
parameter domain�

Eq� ���� gives a choice when choosing the limits of the parameter domain� It is possible to
choose � � �� which normally implies that � 	 �  �
� It is also possible to choose � 	 �  
 and
� both positive and negative� This choice must be done considering the speci�c implementation�
In the following it is chosen to use � 	 �  
 and �min � �� which implies that !� � �

T � because
this choice matches the limits used in� e�g�� Filtered Backprojection and those used in Chapter ��

c�Peter Toft ����




�� Chapter �� Inversion of the Radon Transform

When implementing a Radon �or inverse Radon� transform algorithm several things must be
ful�lled� to ensure a reasonable performance� Firstly sampling must be adequate in all parameters�
This will imply bounds on the sampling intervals� Secondly it is assumed that the fundamental
function g�x� y� to be reconstructed have compact support� or more precisely is zero if

p
x� � y� �

j�maxj� This demand will ensure that �g��� �� � �� if j�j � j�maxj� If this cannot be ful�lled�
numerical problems must be expected� because then a numerical implementation does not have
all the non�zero information necessary for reconstructing the function�

Assuming that g�x� y� has compact support� then �x� y� � ��� �� should be placed to minimize
j�maxj� This will reduce the size of the data array �with respect to �� used for the discrete Radon
transform� Normally �r is placed symmetrically around � � �� and r is chosen to be odd� In this
case

�min � �!� R� �

�
�
��
�

is used� This choice implies that �min � ��max� like it was chosen in Subsection ������ The
parameterM can then be chosen to ful�ll that the whole sinogram is con�ned in the reconstructed
image� in order to reconstruct an image from all of the non�zero parts of the sinogram�

max
xm�yn

q
x� � y� � xmin

p
�

!x
� �max � M �

p
�
j�minj
!x

�
� � �
����

From a given sinogram the only parameter still needed to be determined is the sampling
distance !x� Unfortunately the sinc�interpolation strategy used in Subsection ����� cannot be
used� It seems to be di�cult to make a series expansion from a �nite set in the Radon domain
and reconstruct the set using one of the direct reconstruction schemes presented in previous
sections in this chapter� Furthermore the optimal choice of image sampling distance !x will also
be determined by additional �lters used in the discrete implementation� In general a lower bound
is !� � !x� but if a low�pass �lter is used on the sinogram or the structures being scanned are
large� then a coarser can be used�

��� Inversion of the 
p� � � Radon Transform

In this section inversion formulas are derived for slant stacking� They all are equivalents forms
of the ones derived for the ��� �� Radon transform� This section has been included to support
Chapter �� but will not be supported further� The rest of the thesis will focus on the normal
Radon transform� For further reading on the use of the inverse �p� �� Radon transform see
���� ��� �� ���� It can be mentioned that the numerical implementation of the inversion schemes
will resemble closely the ones presented in Chapter ��

In this section the fundamental function is g�x� y�� Within the seismic literature the function in
question normally depend on a distance parameter x and a time t� and the �D Fourier transform
has physical interpretation as a plane wave�expansion� Here the parameters have been chosen
according to the rest of the thesis� The Radon transform using parameters �p� ��� i�e�� the slant
stack of a function g�x� y� is assumed

�g�p� �� �

Z �

��
g�x� px� �� dx �
��	�
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����� Fourier Slice Theorem

The derivation of the inversion formula is based on the two dimensional Fourier transform of
g�x� y�

G�kx� ky� �

Z �

��

Z �

��
g�x� y� e�j���kxx�kyy� dx dy �
���

g�x� y� �

Z �

��

Z �

��
G�kx� ky� e

j���kxx�kyy� dkx dky �
���

Now two new parameters are introduced� Firstly� the negative ratio between the two frequen�
cies kx and ky is denoted p� and secondly the o�set � � given by

p � �kx
ky

�
���

� � y � px �
���

If these are inserted into Eq� 
�� it is found that

G��pky� ky� �

Z �

��

Z �

��
g�x� px � �� e�j��ky� dx dy �
���

�

Z �

��

�Z �

��
g�x� px � �� dx

�
e�j��ky� dy �
��

�

Z �

��
�g�p� �� e�j��ky� dy �
���

The last equation can be recognized as the �D Fourier transform of Radon transform� hence an
inversion formula is found by combining Eqs� 
�� and 
��

G��pky� ky� �

Z �

��
�g�p� �� e�j��ky� dy

g�x� y� �

Z �

��

Z �

��
G�kx� ky� e

j���kxx�kyy� dkx dky �
�
�

This Fourier Slice Theorem shows that the function g�x� y� can be reconstructed by mapping
the �D Fourier transform of the Radon transform into the �D Fourier spectrum of g�x� y�� Again
the problem regarding high slopes� pointed out in Section ��
� reappears� If the Radon transform
only is given in a certain interval� e�g�� between �� and �� then only a bow tie shaped part of the �D
Fourier domain domain can be provided from the �D Fourier transform of the Radon transform�
which is shown in Fig� 
���

This implies that the function g�x� y� only can be reconstructed if the main Fourier components
are concentrated at the ky�axis� This demand can again be translated into the image domain�
demanding that the function cannot have line�like objects with a slope higher than the one used
when computing the Radon transform� i�e�� if the limiting slope in the parameter domain is chosen
to small� then the obvious result is that the function cannot be recovered from its Radon transform�
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k x

ky

Figure 	�� From the Radon transform only a bow tie shaped part of the The 	D Fourier domain can
be covered�

����� Filtered Backprojection

Eq� 
�
 can also be combined with Eq� 
�� in order to get a Filtered Backprojection inversion
formula for slant stacking

g�x� y� �

Z �

��

Z �

��
G��pky� ky� ej��ky� jkyj dp dky





��y�px

�
���

�

Z �

��

Z �

��
jkyj G��pky� ky� ej��ky� dkydp �
�	�

�

Z �

��

�Z �

��
jkyj

�Z �

��
�g�p� ��� e�j��ky� d��

�
ej��ky� dky

�
��y�px

dp �
����

For sake of clarity� Eq� 
��� is written in two parts" a �ltering part and a backprojection part

��g�p� �� �

Z �

��
jkyj

�Z �

��
�g�p� �� � e�j��ky� d��

�
ej��ky� dky �
����

g�x� y� �

Z �

��

��g�p� y � px� dp �
����

where the last equation also is called the backprojection operator�
This Filtered Backprojection formula for computing the inverse Radon transform implies that

the parameter domain is �ltered with the absolute frequency in the y�direction for all values of
x� and then the backprojection part integrates up along a line� Note that the linear expression in
the backprojection integral is like the one found with the point source� i�e�� the point sources have
by the Radon transform been spread into the parameter domain� and by the backprojection part�
the �ltered parameter domain is collected again�

����� An Inversion Formula using the Hilbert Transform

The next inversion formula mentioned here is on the same form as Radon derives in ����� Eq� 
���
is now written using that the Fourier transform of a product becomes a convolution �here marked
by ��

g�x� y� �

Z �

��

Z �

��
jkyj G��pky� ky� ej��ky� dp dky where � � y � px

�

Z �

��

�Z �

��
jkyj ej��ky� dky �

Z �

��
G��pky� ky� ej��ky� dky

�
dp

�

Z �

��

��
�
���

� �g�p� �� dp �
����

c�Peter Toft ����



Section ��� Inversion of the �p� �� Radon Transform 
��

where it again should be noted that jkyj does not ful�ll the ordinary requirements for having
an inverse Fourier transform� but here the Cauchy principal value has been used in the inverse
Fourier integral� The result can be found in� e�g�� ���� �page ���� F���� Now the expressions are
rearranged furthermore by inserting the convolution

g�x� y� �

Z �

��

��
�
���

� �g�p� �� dp where � � y � px �
����

�
��
�
�

Z �

��

Z �

��

�g�p� ���

�� � ����
d�� dp �
���

�
�

�
�
d

d�

Z �

��

Z �

��

�g�p� ���

� � ��
d�� dp �
����

�
�

�
�
d

dt

Z �

��

Z �

��

�g�p� ���

� � ��
d�� dp �
��
�

�
�

�
�
d

dy

Z �

��

Z �

��

�g�p� �� �

y � px� ��
d�� dp �
����

�
�

�
�
d

dy

Z �

��

Z �

��

�g�p� �y � px�

y � �y
dy dp �
��	�

The last equation can be written on a shorter form by use of the Hilbert transform

Hff�x� y�g �
�




Z �

��

f�x� �y�

y � �y
d�y � �
�
��

g�x� y� �
�

�


d

dy
H
�Z �

��
�g�p� �y � px� dp

	
�
�
��

This equation is very concise� but not that easy to implement on a discrete form� The inner part
of the inversion formula can be discretized by use of Section ���� The remaining part requires
a discrete approximation of the Hilbert transform and the derivative operator� Note� that the
Hilbert transform has a singularity which makes the discrete implementation di�cult�

����� Filtering after Backprojection

The last inversion form is equivalent to Eq� 
�
�� A way to circumvent the implementation
problems with the Hilbert transform is to note that Eq� 
�
� can be written in two stages

�g�x� y� �

Z �

��
�g�p� y � px� dp �
�
��

g�x� y� �
�

�


d

dy
Hf�g�x� y�g �
�
��

and using that the last equation is a convolution� then the inversion scheme becomes a �lter in
the Fourier domain�

The Hilbert transform� 

�y � �j sign�ky�

The derivative operator� dg�y�
dy � j�
kyG�ky�

��
� � �
�
��

g�x� y� �

Z �

��
jkyj

�Z �

��
�g�x� y� e�j��kyy dy

�
ej��ky� dky �
�
�

where sign�
� is the sign function� The conclusion is that the inversion formula proposed by Radon
can be interpreted as a backprojection followed by a �ltering operation� A very important feature
is that the reconstructed zero frequency component value becomes zero for any �xed value of x�
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��� Summary

In this section several formulas for computing the inverse Radon transform have been derived�
It has been shown that they can be based on Fourier techniques and integral transformations�
Formulas are provided both using the normal Radon transform and for the slant stack de�nition�
Some remarks have been given� regarding that the inverse Radon transform can not recover the
mean value correctly�

Considerations concerning the sampling of the continuous parameters are given� which will be
used in the following chapters�
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Chapter �

Numerical Implementation of Direct

Reconstruction Algorithms

Several authors discuss implementations of the direct reconstruction schemes presented in Chapter

� e�g�� ���� 
�� 
	� ���� In this chapter the implementation of Filtered Backprojection� Filtering
after Backprojection and the Fourier Slice Theorem are shown� All of these algorithms can be
based on the Fourier transform� which is reviewed in the next section� This theory might be
considered basic� but it appears that applying the DFT as a discrete approximation to the Fourier
transform is requires special care with phase and normalization�

��� Using the DFT to Approximate the Fourier Transformation

All of the presented direct reconstruction schemes use Fourier transformation� either for �ltering
or for re�mapping of spectra �Fourier Slice Theorem�� For digital signals the discrete Fourier
transform �DFT� can be used to estimate the spectrum� and in practice the spectrum is estimated
by the Fast Fourier Transform �FFT��

Assume that the one dimensional function� of a continuous variable t� denoted g�t� is sampled
uniformly� i�e�� gs�n� � g�n!t�� Furthermore� assume that only N values are non�zero� In this
case the Fourier transform can be approximated by the DFT

G�f� �

Z �

��
g�t� e�j��ft dt � !t

N�
X
n��

gs�n� e
�j��mn�N � Gs�m� �����

hence� Gs�m� will approximate the continuous spectrum

!tGs�m� � G

�
m

N!t

�
�����

The discrete spectrum is in Eq� ��� computed using the DFT of gs�n�� With the same approach
the inverse Fourier transform is commonly approximated by

ga�t� �

Z �

��
Ga�f� e

j��ft df � �

N!t

N�
X
m��

Gd�m� ej��mn�N � gd�n� �����

This technique can easily be generalized to two or more dimensions� Note that the inverse Fourier
transform can also be implemented using the FFT ��
��

��
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When approximating the Fourier transform by the DFT it should be noted that the spectrum is
available only in discrete samples and the samples represents the Fourier transform of a periodical
repetition of the discrete signal gs�n� with period N�

Furthermore a very important factor is that the discrete spectrum as a function of m also is
periodical with period N� i�e��

Gs�m� � Gs�m�N� �����

This implies that the maximum absolute frequency corresponds to m � N��� fu � 

��t � i�e��

the upper frequency fu equals half of the sampling frequency� Due to the periodical behavior of
the discrete spectrum� the last half of the digital spectrum� i�e�� from m � N�� to m � N � � will
correspond to negative frequencies�

����� The FFT Applied for Filtering

Now the practical use of the DFT for implementation of the operator F�
p
 will be discussed� It is

very important to note that the DFT uses an array of signal values g�n�� n � �� �� ���� N �� where
the last half of the array corresponds to negative continuous variable� In this case the relevant
signal is the discrete samples of the sinogram for a certain value of �t� i�e�� h�r� � �g��t� �r�� where
the values of � lies symmetrically around �� cf� Eqs� 
��� and 
��
� In order to get the phase of
the spectrum correct� the array g�n� used for the DFT must be �lled as shown in Fig� ���� Note
the wrapping so negative values of � are �lled into the last half of the array� It is also assumed
that the DFT transformation length is a power of two in order to use one of the fast radix�� FFT
algorithms� For the unknown entries in the middle of the array of g�n� zeros must be �lled in�
This operation is called zero padding and this action will a�ect the spectrum�

h(n)

g(n)

0 0 0 0

0 1 2

0 1 2

n=

n=

10

15

3 4 5 6 7 8 9

3 4 5 6 7 8 9 10 11 1412 13

0 Zeros filled into g(n)

Figure 
�� Filling an array h�n� into a larger array g�n�� when using radix�	 FFT�

A large number of zeros gives a more smooth spectrum �due to a denser sampling in frequency
domain�� which can be desired if interpolation in the spectrum is required� Thus� the extra zeros
padded can help to improve the numerical stability� In Fig� ��� a square signal is shown in the
left upper corner� and the corresponding spectrum in the right upper corner� Zeros have been
padded� and again the spectrum has been found� This is shown on the lower part of the �gure�
Note� that the new spectrum is more smooth�

As it brie�y has been described� the use of DFT to approximate the Fourier transform also
implies that the signal becomes cyclical with the period of the transformation length� This can lead
to problems� as it later will be demonstrated in Subsection ����� A common strategy to reduce
this cyclical in�uence is to multiply the signal with a window� i�e�� a weight function attenuating
the edges of the signal�
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Figure 
�� Upper left shows a square and the upper right shows the corresponding absolute spectrum�
The frequency ranges from 
 to the sampling frequency �last half is the negative frequencies�� Lower
left shows the square where zeros have been padded� and lower right shows the corresponding absolute
spectrum� which appears more smooth�

A property� which can be used to reduce the computational cost is based on real �non�complex�
valued signals� Assume a discrete cyclical real valued signal g�n�

G�m� � G��m�� � G�N �m�� ����

where � denotes the complex conjugate and g�n� � g�n � N�� This symmetry is easily proved
from the DFT de�nition shown in Eq� ���� and it should be used if only a real signal is provided�
such as a sinogram which should be �ltered �without complex values�� In this way the length of
the FFT needed can be reduced by a factor of two� or two real valued signals can be transformed
with the same FFT ���� �	��

Numerical algorithms are available in virtually any numerical package for e�cient calculation
of the FFT� Several packages furthermore also includes functions for calculating the DFT of a real
valued sequence g�n� of length N � �p� e�g�� Numerical Recipes �	��� Often the FFT�algorithm
is a radix�� algorithm� This restriction is for reconstruction purposes not harsh� but must be
remembered when zeros are padded�

In the implementation of Filtered Backprojection a �D �ltering of the sinogram is needed�
where the �lter is the absolute of the frequency parameter� i�e�� j	j� cf� Eq� 
��� This �lter is
approximated in many ways� but the structure of the FFT based �ltering is the same� as shown
in Algorithm ���� The algorithm does not demonstrate the implementation of the extra speedup
gained by exploiting Eq� ��� hence the array g�n� has complex entries� Note also that the algorithm
does not split the signal values as it was shown in Fig� ���� because the �ltering does not use the
actual phase of the spectrum� What matters� is that the �ltered result is extracted from the same
positions in the array� and is returned in the original sinogram �g radon�t�r��� which is done for
sake of memory e�ciency�

The �lter calculated in line three of Algorithm ��� �sampling of Eq� ���� is called the ramp
�lter or Ram�Lak �lter� Often it is multiplied with a weight function or simply another function
in order to get a better signal to noise ratio� The only item all of the �lters have in common is
that they approximate j	j at low frequencies� and the di�erence is pronounced as the frequency 	
approaches half of the sampling frequency� denoted by 	u � 


��� �
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Algorithm ��� � Filtering using DFT

Set P to upper power of two �P�R� ��Assuming radix�� FFT
For r � 	 to P�� ��Initialize Filter
f�r� � r��Delta rho
P� ��Approximate �lter

End
For t � � to T�	 ��For all angular samples
For r � � to R�	 ��For the radial samples
g�r� � g radon�t�r� ��Move the sinogram values

For r � R to P�	 ��For padding
g�r� � � ��Pad with zeros

End
Compute FFT of g�n� ��Using radix�� FFT
g��� � � ��Handle zero freq specially
g�P��� � g�P����f�P��� ��Handle half sampling freq
For r � 	 to P���	 ��Multiply with �lter
g�r� � g�r��f�r� ��Positive frequency
g�P�r� � g�P�r��f�r� ��Negative frequency

End
Compute Inverse FFT of g�r� ��Using radix�� FFT
For r � � to R�	 ��For the radial samples
g radon�t�r��real�g�r�� ��Move the real�part

End
End

Some of the �lters reported in the literature �
�� �� are given below� where it is only the the
part below a certain limit frequency 	l 	 	u� which is sampled and used� The reason for using
these weight functions also called windows or apodizing functions is to suppress the in�uence of
noise� It is obvious that the �lter j	j is a high pass �lter and it will attenuate any noise present
in the sinogram� Examples of this property will be given in Subsection ���� Many windows can
be presented� but here only four examples are given

The Cropped Ram�Lak�Ramp �lter Sample the �lter j	j until 	l� i�e�� the �lter is

H�	�Ram�Lak � j	j �����

and for 	l  j	j  	u the �lter is set to zero� The ramp �lter is widely used but will amplify
noise if 	l is chosen too high�

The Shepp�Logan �lter A sinc window is multiplied to the ramp �lter

H�	�Shepp�Logan � j	j�
�

sin
�
��
��l

�
�
��
��l

� ���
�

and for 	l  j	j  	u the �lter is set to zero�

The Hann �lter A Hann window is multiplied to the �lter

H�	�Hann � j	j
�
� � cos

�

	

	l

��
�����

and for 	l  j	j  	u the �lter is set to zero�

c�Peter Toft ����



Section 
�� Using the DFT to Approximate the Fourier Transformation 
�	

The Generalized Hamming �lter

H�	�Generalized Hamming � j	j�� � ��� �� cos�
	�	u�� ���	�

where typical values of � are ��� ���� cf� page rec��� of ���� Again for 	l  j	j  	u the
�lter is set to zero�

Stochastic Filters In Section ���� of �
��� Jain derives a parameterized �lter� which is shaped
to the actual noise level�

Fig� ��� shows three of the �lters� They can all be written as a product of the theoretical
derived ramp �lter and an apodizing window� which will in�uence the performance in presence of
noise� In general� if the apodizing window have a low cuto� frequency the resolution gets worse�
but the noise suppression can be improved�

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Absolute Frequency relative to upper limit frequency

Three of the common filters

Ramp filter

Shepp−Logan filter

Generalized Hamming filter

Figure 
�� The amplitude of the Ram�Lak�Lamp �lter� the Shepp�Logan �lter� and the generalized
Hamming �lter using �  
��� all three as a function of frequency normalized to the upper limit
frequency �u�

In the top part Fig� ��� is shown the impulse response from the ramp �lter� Note that the
lower sub��gure uses logarithmic scale� The �gure shows that the impulse response has long tails
which implies that a number of zeros� in principle an in�nite number� have to be padded to the
signal or else the cyclical behavior of the DFT can in�uence the �ltered signal�

Fig� �� shows �ltering of a sinogram corresponding to a circular disc in the image domain�
Here a Hann window has been multiplied to the ramp �lter� This �ltered sinogram will later�
in Fig� ��
� be backprojected to demonstrate the full reconstruction algorithm of Filtering after
Backprojection� From Fig� �� it can be seen that the spectrum is very localized around zero
frequency� and the high�pass �lter will amplify the edges and from the last sub��gure� it can be
seen that signi�cant negative values are found� A small remark is that the data representation in
these algorithms should include a sign bit�

It should be mentioned that the complexity of �ltering the sinogram is the number of angular
samples times the complexity of the FFT operations �plus some lower order terms�

OFiltering � O�T R logR� ������

where R should be replaced by the smallest power of two larger or equal to R if a radix�� FFT is
used�
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Figure 
�� Upper shows �� samples of a ramp �lter as a function of frequency� Upper right shows
the absolute value of the corresponding spectrum� found from a DFT of the same length� Here no
windowing has been used to reduce the cyclical behaviour of the DFT�

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

rho

Sinogram line

−2 −1 0 1 2
0

50

100

150

200

nu

1D Spectrum

−2 −1 0 1 2
0

0.1

0.2

0.3

nu

Apodized filter

−2 −1 0 1 2
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

rho

Filtered Sinogram line

Figure 
�� Upper left shows the sinogram for a �xed value of � and varying �� Upper right shows the
corresponding discrete spectrum� and it can be noted that there is a heavy low frequency dominance�
Lower left shows the �lter� which here is the ramp multiplied with a Hann window� Lower right shows
the �ltered sinogram part�

The �D �ltering could also have been done by convolving the sinogram with the proper impulse
response� which is in�nitely long as indicated in Fig� ���� hence windowing is needed� This
approach is fast if the impulse response is truncated into a short signal� which will somewhat
sacri�ce the performance in the frequency domain� This implementation of �ltering of the sinogram
followed by backprojection is known as convolution backprojection�
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��� Discrete Implementation of Backprojection

Filtered Backprojection is the easiest inversion scheme to implement� An algorithm based on
Filtered Backprojection will have two parts� A �ltering part and an integration part� The �l�
tering part has been covered in Subsection ����� and in this section the implementation of the
backprojection part is described�

The backprojection operator was found in Eq� 
���

g�x� y� �

Z �

�

��g�x cos � � y sin �� �� d� ������

where �g is the �ltered sinogram in case of Filtered Backprojection and the original sinogram in
Filtering after Backprojection�

A commonly used approximation of Eq� ���� is

g�xm� yn� � !�
T�
X
t��

��g�xm cos �t � yn sin �t� �t� ������

where a one�dimensional interpolation must be used in the ��direction� Normally either a nearest
neighbour approximation or a linear interpolation is incorporated� Now the discrete indices of the
sinogram are used�

Nearest neighbour approximation

g�xm� yn� � !�
T�
X
t��

��g ��r�� � t� � where r��m�n" t� �
xm cos �t � yn sin �t � �min

!�
������

Linear Interpolation

g�xm� yn� � !�
T�
X
t��

��� w���g�rl� t� � w��g�rl � �� t� ������

where r��m�n" t� �
xm cos �t � yn sin �t � �min

!�
�����

rl � br��m�n" t�c and w � r� � rl ������

Higher order interpolation is seldom used� due to the increased accuracy will normally not
match the increase in computational cost� See also the discussions in Chapters � and � concerning
interpolation� The complexity of the backprojection is given by the image size times the number
of angular samples

Obackprojection � O�M�T � ����
�

traditionally the backprojection part has been considered to be far more computationally expens�
ive than the �D �ltering� but the backprojection part can be optimized so the two operations use
similar amount of time for relevant sized sinograms� This will naturally also depend on the actual
hardware used for reconstruction�

From Eqs� ���� and ���� it can be seen� that the evaluation of the function r��m�n" t� should
be optimized� which can reduce the computational cost drastically� Note also the similarity to
��� �� implementation of the Hough transform found in Section ���� where a single signal value
was distributed along the sinusoid� here all the signal values along the same sinusoid are collected�
and it is relevant to the results found in Subsection ������ Table ���� where a full image has to
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be transformed� showed that time consuming initialization of one� and two�dimensional arrays
can tolerated� if the mapping procedure is very fast� Using the optimization technique shown in
Case � in Subsection ����� implies that the backprojection operator can implemented e�ectively
as shown in Algorithms ��� and ���� Here the pseudo code has been split in the initialization
part and the true backprojection part in order get a better overview� but also to indicate that the
initialization part for a given parameter setup can be computed once and only the backprojection
part shown in Algorithm ��� reused many times in many images with the same parameter setup
should be reconstructed� This is the case in multi slice �D reconstruction of PET images�

Algorithm ��� � Initialization before Backprojection

rhoo��rho min�Delta rho ��Compute o�set
For t � � to T�	 ��For all values of theta
theta � t
Delta theta ��theta is computed
costheta�t� � cos�theta� ��cos�theta� is stored
sintheta�t� � sin�theta� ��sin�theta� is stored

End
For m � � to M�	 ��For all values of x
xrel � �x min � m�Delta x��Delta rho ��compute x
For t � � to T�	 ��For all values of theta
xc�m�t��xrel�costheta�t� ��Store x times cos theta
ys�m�t��xrel�sintheta�t��rhoo� ��Store y times sin theta

End
End

Algorithm ��� � Fast Backprojection

For m � � to M�	 ��For all values of x
For n � � to M�	 ��For all values of y
sum � � ��Initialize simple variable
For t � � to T�	 ��For all values of theta
rm � xc�m�t��ys�n�t� ��Compute non�integer index
rl � �oor�rm� ��Find lower integer
w � �rm�rl� ��Compute weight
sum � sum ��	�w��g radon�t�rl��w�g radon�t�rl�	�

End ��Linear interpolation �nished
g�m�n��sum�Delta theta

End
End

Note that in Algorithm ��� it is not checked whether the value of rl correspond to pixels in the
image or not� i�e� � 	 rl  R� �� This operation is very time consuming as it is evaluated in the
most inner core of the loop� Checking can be avoided� if the initial sinogram is expanded in size
in the ��direction by padding zeros� in order to ful�ll

� 
xm cos �t � yn sin �t � ��min

!�
 R� � � �xm� yn� �t� � R� �

p
��M � ��

!x

!�
� � ������

where R� is the number of samples required in the new sinogram� when using the same sampling
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interval !�� and also adjusting the value of �min to maintain a symmetrical sampling of �

��min � �!�R
� � �

�
����	�

The given implementation shown in Algorithms ��� and ��� will require two matrices of size
MT and the computational load is lowered signi�cantly� cf� Table ��� for the implementation of
the Hough transform�

The discrete implementation of Filtered Backprojection is schematically shown in Fig� ���
using �rst �ltering and then backprojection�

θ

ρ

θ

|ν|

ν

x

yρ

The filter

1D Filtering

Figure 
�� The discrete implementation of Filtered Backprojection� At the left the sinogram is �ltered
and then the �ltered sinogram is by backprojection mapped into the reconstructed image�

Now a set of images are shown where a synthetic sinogram� corresponding to a circular disc
in the image domain� must be reconstructed using Filtered Backprojection with an increasing
number of angular samples� Fig� �� showed the �ltering of the sinogram� and here the �rotational
symmetrical� disc is placed in the middle of the coordinate system� hence each of one�dimensional
the �ltered sinogram does not depend on �t� cf� Eq� B��	� From  angular samples in the sino�
gram� i�e�� T � � Fig� ��
 demonstrates the reconstructed image using Filtered Backprojection�
The �gure clearly shows how the  sinogram parts are backprojected into the image� and more
angular samples are obviously needed� In Fig� ���� only �� angular samples was used� and the
reconstructed shape of the disc is much better recovered� but large artifacts are still very visible
outside the disc� Increasing to �� angular samples� as shown in Fig� ��	� the artifacts are reduced
in amplitude compared to Fig� ���� and with ��� angular samples� shown in Fig� ����� the disc is
nearly recovered perfectly�
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��� Implementation of Filtering after Backprojection

Implementation of Filtering after Backprojection requires a discrete implementation of the back�
projection operator� as shown in Section ���� After the backprojection the matrix g�m�n� must
be high pass �ltered cf� Eq� 
���� The implementation resembles the one shown in Subsection
������ but is extended to two dimensions�

The spectrum of an image can be obtained in two ways� Either by using one of the multidi�
mensional FFT algorithms� e�g�� �	��� or by using a one dimensional FFT on �rst all the rows and
then all the columns of the image� which is possible because the discrete spectrum can be written

G�u� v� �
M�
X
m��

N�
X
n��

g�m�n� e�j���mu�M�nv�N� ������

�
M�
X
m��

�
N�
X
n��

g�m�n� e�j��mu�M

�
e�j��nv�N ������
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where both image sizes M and N must be powers of two� if using a radix�� FFT� If this is not
true extra pad image samples at the edges� For �ltering the additional samples should not be
can be padded with zeros� Assume that the reconstructed image should look like a disc� Then
the backprojected sinogram �into the image domain� will have large non�zero values away from
the disc� due to the convolution shown in Eq� 
���� This implies that the �ltering in the image
domain will meet problem with the cyclical behavior of the DFT �or FFT�� These edge problem
must be solved by backprojecting onto a larger image than necessary �if using radix�� FFT often
to the nearest upper power of ��� and then �lter the expanded image� and cropping values of
corresponding to the speci�ed image size�

Note that the image is considered periodical and the spectrum will have a complex conjugate
symmetry for a real valued signal� as shown in Fig� �����

g�m�n� � g�m�M�n� � g�m�n�N� ������

G�u� v� � G�m�M�n� � G�m�n�N� ������

g�m�n� � g�m�n�� � G�u� v� � G��u��v�� � G�M � u�N � v�� ������

The symmetry of the spectrum can be exploited for faster computation of the spectrum� but
the symmetry can not easily be exploited for reducing the memory requirements due to a rather
odd storage strategy needed�

n=7

m=0 m=7
n=0

v=7

v=0
u=0 u=7

g(m,n) real G(u,v) complex

Complex conjugate

Figure 
��� A real valued image gives a spectrum with complex conjugate pairs�

The �D��ltering is very easy if the spectrum is calculated properly� The complex spectrum

can easily be multiplied by a sampled version of the �lter
q
k�x � k�y �

kx � u

M!x
and ky � v

N!x
�����

q
k�x � k�y �

s�
u

M!x

��
�

�
v

N!x

��
������

If addressing the negative frequencies kx  �� u must be replaced by u�M and if ky  �� v must
be replaced by v � N � Symmetry can be used so approximately half of the complex spectrum
is multiplied with the �lter and the other half is duplicated from the �rst due to the complex
conjugate symmetry� After the multiplication of the �lter� the inverse two dimensional DFT �or
rather FFT� is used� and the real part of the result is extracted� and the imaginary part should
be zero�

The �D DFT implementation of the high�pass �lter should also incorporate multiplication by
an apodizing window� in order to reduce the edge e�ects� due to the periodical behavior of the
spectrum� Of the huge amount of windows available� two relevant choices of windows should be
mentioned�
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Cropped �D Ramp �lter Here the theoretically derived �D ramp �lter is cropped at a certain
frequency kl

H�kx� ky� �

�q
k�x � k�y if

q
k�x � k�y  kl

� else
����
�

where kl is set below the upper limit frequency in one of the directions� i�e�� kl 



��x �

Hanning Window The �D ramp �lter could also be multiplied by a Hanning window

H�kx� ky� �

��
�



�

q
k�x � k�y

�
� � cos

�



p
k�x�k

�
y

kl

��
if
q
k�x � k�y  kl

� else
������

where kl again is set below the upper limit frequency in one of the directions� i�e�� kl 



��x �

The two windows both use a cuto� frequency kl� which can be varied� depending on the noise�
level� A high noise level might call for a low value for kl� which implies that the reconstructed
image will be somewhat blurred�

Note again that the mean value of the reconstructed image will always be set to zero� This
value might be estimated in an area of the reconstructed image where some prior knowledge
implies that the value should be� e�g�� zero� In brain tomography the relevant area could be
outside the brain�

��� Implementation of The Fourier Slice Theorem

The basis of the Fourier Slice Theorem is given in Section 
��� In the implementation� the discrete
spectrum of the sinogram is calculated for each of the angular samples like it was shown in Sub�
section ������ Note that here the phase is important� hence the shifting shown in Fig� ��� must be
considered� This spectrum is considered as polar samples� and must be mapped onto a quadratic
frequency grid� as shown in Fig� ����� This operation calls for two�dimensional interpolation in the
frequency domain� an item to be discussed furthermore� Finally� the two�dimensional quadratic
spectrum can be inverted using �D inverse FFT in order to get the reconstructed image�

The complexity of this implementation� where the FFT is used to computing the spectra is
given by

OForward �D FFT of sinogram � O�T R logR� ����	�

OInverse �D FFT of spectrum � O�M� logM� � ������

OFourier Slice Theorem � O�M� logM� ������

where the time used to map the polar spectrum onto the quadratic spectrum has not been con�
sidered� and it will actually be negligible if using nearest neighbour interpolation� In the last
equation it has been assumed that T � R � M � In all three equations the values of R and M
should correspond to the expanded sinogram and image �powers of two�� if using radix�� FFT� In
conclusion� Eq� ���� indicates that the implementation of the Fourier Slice Theorem is of a lower
order than Filtered Backprojection and Filtering after Backprojection�

c�Peter Toft ����



Section 
�� Implementation of The Fourier Slice Theorem 

�

υ

y

kθ

ρ

k

x

y

xθ
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Figure 
��� Following from upper left� At �rst the discrete spectrum is computed� The spectrum
is then considered to be polar� and mapped onto a quadratic grid in the frequency domain using two�
dimensional interpolation� Finally the 	D spectrum is inverted into the reconstructed image using 	D
inverse FFT�

Next some of the problems with this implementation are discussed� If omitting the important
shifting problems� illustrated in Fig� ���� the polar and the quadratic spectrum can match in three
di�erent ways as shown in Fig� ����� The boundary corresponds to the maximum frequencies
�half of the sampling frequencies�� Note that a square and centered reconstructed image is still
assumed M � N � xmin � ymin and !x � !y�

v

u

v

u

v

u

(a) (b) (c)

Figure 
��� Three ways that the polar and the quadratic spectrum can match

In the �rst case �a� the quadratic spectrum is too small� Some parts of the polar spectrum is
not mapped onto the quadratic spectrum� This is a very bad situation� and the result is unreliable
when

max jkxj � �

�!x
 	max �

�

�!�
� !x � !� ������

In the second case �b� all of the polar spectrum is mapped onto the quadratic spectrum� This will
happen when !x � !�� In the �nal case �c�� where the polar spectrum is fully covered by the
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quadratic spectrum� This means that the output image in principle uses all of the spectrum� but
the reconstructed image will appear as it was low pass �ltered� because the polar spectrum must
be assumed to be equal to zero for frequencies higher than half of the polar sampling frequency�

Concerning the �D interpolation� nearest neighbour interpolation is very fast� but the cost is
that artifacts must be expected in the reconstructed image� Another common choice is instead
to use the slower but more stable bilinear interpolation as shown in the following equations� Fig�
���� illustrates� that the value of each sample in the quadratic grid is a weighted sum of the
four nearest neighbours in the polar grid� First of all the frequencies in the quadratic grid are
expressed in polar coordinates� �

kx
ky

�
� �	

�
cos ��

sin ��

�
������

Then the four nearest neighbours are found�

Find the integer t �

�
��

!�

�
� �t 	 ��  �t�
 and set w� �

�� � �t
!�

������

Find the integer r �

�
�	

!	

�
� 	r 	 �	  	r�
 and set w� �

�	 � 	r
!	

� !���	 � 	r� �����

where the last formula only is valid for positive frequencies� In case of negative frequencies� the
periodical behavior of the spectrum must be considered and proper shifting must be used�

Finally� a bilinear interpolation in the polar coordinates of the four values are used

G�kx� ky� � ��� w������ w��G�	r� �t� � w�G�	r�
� �t��

� w����� w��G�	r� �t�
� � w�G�	r�
� �t�
�� ������

The sampling of the output image must furthermore be su�ciently dense to adjust to the
level of information in the polar spectrum� but due to the distribution of polar samples� with
an increased density towards ��� ��� a general problem is that the quadratic spectrum does not
exploit the high number of samples near ��� �� leading to aliasing artifacts� On the other hand for
high polar frequencies� the density is low� so the quadratic spectrum samples the polar spectrum
faster than necessary� Note� the angular distance between samples in the polar grid is !�� and in
the radial parameter 	 the distance between samples is !	 � 


R�� � cf� Eq� ���� The distance in

each of the coordinates in the rectangular grid is !kx � !ky � 

M�x � If choosing !� � !x� cf�

Eq� ����� one criterion is that the sampling interval in the radial parameter 	 must match the one
in the rectangular grid� which is a reasonable tradeo�� i�e��

!kx � !ky �
�

M!x
� !	 �

�

R!�
� M � R ����
�

where both M and R should correspond to the expanded values� i�e�� being a power of two if
using a radix�� FFT�

The presented reconstruction algorithm will introduce more noise than accumulated in the
backprojection algorithms� Especially� ringing problems are common� The problem can be re�
duced by use of higher�order interpolation and or use of� e�g� a non�linear grid in the Radon
domain� Note that higher�order �lters can provide better numerical results� but the computa�
tional load might increase to an unacceptable level� Another method �	�� �� illustrated in Fig�
��� is to distribute each of the polar samples onto the rectangular map using proper weights�
which implies that all of the polar samples will always be represented in the quadratic grid� but
the cost of the uneven density of samples is that an additional �ltering is required�
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Figure 
��� Strategy �� A weighted sum
of the four closest polar samples is used to
estimate the spectrum on the quadratic grid�

Figure 
��� Strategy 	� Any of the samples
on the polar grid are distributed with certain
weights to the quadratic grid�

The �D interpolation in the frequency domain described in this section is in general con�
sidered the major problem in implementations of the Fourier Slice Theorem� and the method has
apparently found limited success in clinical use�

����� Non	linear sampling of the Radon domain

The problems by using two�dimensional interpolation in the frequency domain can be reduced by
using a nonlinear grid in the Radon domain� The basic idea is to use one dimensional interpolation
in the frequency domain and �perhaps� one dimensional interpolation in the Radon domain� This
idea has been used in the Linogram method �	�� and the method has attracted attention� because
of the low complexity M� logM � and the authors claim to provide an image quality as good as
by use of Filtered Backprojection� in case of a noise�free sinogram� The Linogram method is also
covered very thoroughly in �
��� hence only the basic elements of the method is covered here� It
can be noted that other reconstruction algorithms similar to the linogram method can be found
in the literature� e�g�� �	�� 	��

The last half of the Fourier Slice Theorem� i�e�� the operator F�
�r is easily implemented using

quadratic sampling of the frequency domain� Thus the spectrum G�kx� ky� is approximated by
the two dimensional DFT on a quadratic grid denoted G�m�n�� where the �positive� frequencies
are given by

kx �
m

M!x
������

ky �
n

M!x
����	�

The polar spectrum H�	� �� is as previous mapped onto the quadratic grid using Eq� ����� and
linear sampling of � is still applied� and the sampling of 	 � r��R!�� can be chosen to vary with
� by allowing !� to be a function of �� The frequency plane is divided into two sectors where the
available values of kx and ky are used

 Sector �

sin � 
�p
�

�

���
��
kx � 	 cos ��
	 � kx

cos � � m
M�x cos � �

!	 � 

M�xj cos �j

������
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 Sector �

sin � � �p
�

�

���
��
ky � 	 sin � �
	 �

ky
sin � �

!	 � 

M�xj sin �j

������

With this choice only one�dimensional interpolation of the spectrum is needed� The non�linear
sampling of 	 results in a non�linear sampling of �� i�e�

sin � 
�p
�
� !� �

M

R
!xj cos �j ������

sin � � �p
�
� !� �

M

R
!xj sin �j ������

In Fig� ���� is shown the non�linear sampling of the frequency domain� and Fig� ���
 shows the
non�linear sampling of the Radon domain�

Nonlinear sampling of the frequency domain

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Figure 
��� Non�linear sampling of the fre�
quency domain�

Nonlinear sampling of the Radon domain
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Figure 
��	 Non�linear sampling of the
Radon domain� Here ��� �� is used as polar
coordinates�

If this technique is used� only interpolation with respect to kx when �
�  �  ��

� and only
with respect to ky is needed in the case � 	 �  �

� � ��
� 	 �  
� The additional interpolation

in the Radon domain is normally not that critical because the Radon transform has low pass
characteristics� i�e�� low�order interpolation is normally su�cient�

Another related strategy is to use the Chirp�z transform �	�� 	� to transform directly from
the sinogram �without interpolation� to the spectrum shaped as shown in Fig� ����� In �	� this
method has been implemented and evaluated� but the conclusion was that even given that all
of the involved step has complexity O�M� logM�� the method is not that fast for small sized
images� e�g�� ������� and certainly more di�cult to implement compared to� e�g�� the Fourier
Slice Theorem�
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��	 Examples Using Direct Reconstruction Algorithms

A software packages has been developed �	�� where several direct reconstruction algorithms have
been implemented� and lately additional features such as numerical forward projection �discrete
Radon transform� has been implemented� The package called #iradon$ is available from ����� and
the usage of the programs are shown in Section C��� All of the reconstruction examples in this
chapter has been generated using #iradon$� Synthetic images and corresponding sinograms are
generated using another developed package named #RadonAna$� described in Sections C�� and
B���

��
�� Reconstruction using Di�erent Methods

Here reconstruction of a head phantom is examined� In Fig� ���� is shown the noise�free sinogram
corresponding to the image shown in Fig� ���	� Note that all of the following �gures are color�scaled
individually corresponding to the minimum and maximum value� First� Filtered Backprojection
has been used to reconstruct the image as shown in Fig� ����� It can be seen that the mean
value is displaced� and a ring is visible outside the head phantom with a radius corresponding to
the extension of the sinogram in the ��direction� This is a good example showing that zeros in
general must be padded to the sinogram in that direction in order to reduce the cyclical behavior
of the FFT based �ltering� If using Filtering after Backprojection� as shown in Fig� ����� the ring
e�ect has disappeared� but otherwise the result appears to be just as good with respect to edge
sharpness�

Finally� a nearest neighbour implementation of the Fourier Slice theorem has been used as
shown in Fig� ����� The reconstructed image appears to be comparable to the two backprojection
methods� but more #texture$ can be found in the area outside of the head �and inside too��

The sampling parameters of the sinogram are !� � ����� R � ���� T � ���� and for the
image� M � ��� and !x � ���� has been used�
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Figure 
��
 Sinogram of the phantom�
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Figure 
��� The reconstructed head phantom
using Filtered Backprojection�
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��� The reconstructed head phantom
using Filtering After Backprojection�
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Figure 
��� The reconstructed head phantom
using Fourier Slice theorem�

��
�� Sinogram with very few Samples in the Angular Direction

A sinogram corresponding to a spiral of discs was created� and the number of samples in the
angular direction� T � ��� is very small compared to R � �� and !� � ���� The sampling
parameters of the reconstructed image is chosen to M � �� and !x � ���� First� Fig� ���� shows
the reconstructed image using a nearest neighbour implementation of the Fourier Slice theorem�
The few samples in the ��direction can be seen as an angular blurring especially farthest away from
the center of the image� Using Filtered backprojection �with a ramp �lter� gives approximately
the same visual impression� but without the angular blurring� Approximately the same number of
discs can be identi�ed in the image�
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��� The reconstructed spiral using
Filtered Backprojection�

��
�� Reconstruction with Varying Image Size

The next example addresses quanti�cation of the reconstruction quality and artifacts when using
a Fourier Slice algorithm� Filtered Backprojection� and Filtering after Backprojection� From the
sinogram shown in Fig� ����� images have been reconstructed with increasing image size� going
from M � � to M � ��� in steps of � samples �on each dimension of the reconstructed image��
where the sampling distance has been changed in order to keep the image in focus� as shown in
Fig� ���	�

A modi�ed L��measure of mis�t given in Eq� ����� has been used to quantify the error� The
modi�cation is that the DC�level does not alter the measure� due to the problems mentioned in
Subsection 
�����

L� �

vuutPm�n�gm�n � grefm�n � �g � �gref ��P
m�n�g

ref
m�n � �gref ��

������

where grefm�n is the reference image �the original� and the bars indicate the average over all samples�
Fig� ��� shows the mis�t in this case as a function of the image size M � It can be seen

that here the errors limited� and the Fourier Slice method has the worst error�measure� These
observations are naturally also depend on the image contents� For Filtered Backprojection Fig�
���� shows that the error has several reasons� It is obvious that the steep edges in the image are
not reconstructed perfectly� due to the use of simple linear �lters� Furthermore� lines are visible
in the �gure� which are due to aliasing problems� The sinogram should have been sampled more
densely� Finally the ring also found in Fig� ���� will also add to the total error�

For a Pentium ��� MHz �Linux system� the time needed to reconstruct the images are shown
in Fig� ���
� It is clear that the radix�� FFT used for this implementation implies that several
steps can be seen in the Filtering after Backprojection and the Fourier Slice implementation� The
reason that Filtering after Backprojection is much slower compared to Filtered Backprojection
is that backprojection must be done into a larger number of samples �power of two� in order to
reduce edge e�ects in the subsequent �ltering� It can be seen that Filtering after Backprojection
from image size �� to �� gets slightly faster� In this range the use of radix�� FFT implies that
a ����� image is generated in all three cases �������� and ��� when backprojecting� and due
to the implementation� the subsequent cropping becomes slightly faster here�
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This example shows that Filtered Backprojection can be implemented e�ciently on a PC and
provide fast reconstruction� approximately as fast as the Fourier Slice theorem for the images size
shown in this example�
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��
�� Reconstruction into a Oversampled Image

In order to illustrate the problems with the Fourier Slice theorem if !x � !�� �cf� Eq� ����� a
sinogram with R � ��� T � ���� and !� � ����� has been created� The sinogram corresponding
to a square in the image domain is shown in Fig� ����� Then two reconstruction methods have
been used� namely the Fourier Slice Theorem in Fig� ���	� and Filtering after Backprojection in
Fig� ����� It can be seen that the �ltering after backprojection has no problems� but the DC
component is of course wrong� Using the Fourier Slice theorem severe artifacts can be seen� due
to aliasing of the spectrum�
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��
�
 Noise in the Sinogram

One of the problems found in PET reconstruction� is that the sinograms are noisy� Assume that the
noise is mainly due to �nite measurement time of the emission sinogram� then each of the sinogram
bins will be approximately Poisson distributed P ��r�t� with a parameter �r�t � E��r� �t�Te� where
E denotes the mean and unknown emission activity in a bin of the sinogram� and Te is the
measurement time for the emission sinogram� This situation is often assumed in the literature�
but it will be shown in Chapter �� that especially the transmission scan might add much noise�

Here the sinogram is quanti�ed by the total number of counts in the emission sinogram�
i�e�� the sum over all bins in the sinogram� For four values of the total number of counts� a
sinogram corresponding to a disc is generated using a Poisson generator� �	��� The sinogram is
then reconstructed using Filtered Backprojection�

First Fig� ���� shows the ��� � ��� samples sinogram �corresponding to a disc in the image
domain� with ��� counts� and Fig� ���� shows the corresponding reconstructed �� � �� samples
image� Likewise Fig� ���� has been reconstructed from ��� counts in the sinogram� and �nally
Fig� ���� from ��� counts� The sinogram size ������ bins� corresponds to an average number of
counts per sample in the range �������� All three reconstructions have been made with Filtered
Backprojection using a ramp �lter�
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Figure 
��� Sinogram with �
� counts�

From the reconstructed images it is clear that few counts implies a high noise level in the
reconstructed images� As mentioned in Chapter � the ordinary cure is to multiply the ramp �lter
with an apodizing window� As an example a Hanning window will be multiplied to the ramp
�lter with a varying relative cuto� frequency 	u� cf� Eq� ���� The L� measure has been computed
as a function of 	l�	u� i�e�� the cuto� frequency relative to half of the sampling frequency� and
the result is shown in Fig� ���� In this case where the object of interest is very large a very low
value of the optimal 	l is found� Using 	 � ���	u the #optimal$ reconstructed image is shown in
Fig� ����� It can be seen that the high�frequency contents of the image has been removed� but the
edges have also been blurred�

In general the choice of 	u will always imply a tradeo� between resolution and noise sup�
pression� To illustrate the tradeo�� the head phantom� previously shown in Fig� ���	� has been
reconstructed using a ramp �lter apodized with a Hanning window with 	u � ���	u� Here it can
be seen that the value of 	u is de�nitely too small� and most of the �ner details have been removed
by the low pass �ltering�
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��� Summary

In this chapter the implementation of several direct inversion schemes and hints for improving the
speed have been presented� Filtered Backprojection is normally precise but somewhat slow� with
complexity O�M��� where M is the number of samples in one direction of the resulting image�
Filtered Backprojection is the algorithm used in most scanners today� The Fourier Slice Theorem
gives a fast algorithm� O�M� logM�� but does not have the same numerical stability� due to the
two�dimensional interpolation� Another algorithm is a hybrid between the two inversion schemes�
The Linogram method� see �
�� 	��� This inversion method gives better numerical stability than
implementations of the Fourier Slice Theorem and has complexity O�M� logM�� The algorithm
uses the non�linear sampling of the frequency domain described above�

Finally� a set of examples using some of the direct reconstruction algorithms have been shown�
demonstrating some of the possibilities and limitations with the direct reconstruction algorithms�
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Chapter �

Reconstruction Algorithms Based on

Linear Algebra

Inversion of the Radon transform need not be based on the direct inverse formulas as shown
in Section 
��� A di�erent class of reconstruction schemes is based on linear algebra �	�� ���
	
�� The chapter presents the linear algebra based reconstruction theory� and the modelling of
the reconstruction problem� Several of the well known iterative reconstruction techniques are
demonstrated� and a fast implementation of the iterative reconstruction algorithms is presented
along with a set of examples�

�� From the Radon Transform to Linear Algebra based Recon�
struction

The Radon transform is a linear transform� with respect to the function g�x� y�� and so is the
discrete versions of the Radon transform� hence instead of considering the integral version of the
Radon transform operators a matrix representation can used

�g��� �� � R g�x� y�
� � �
b � A x

�	���

Assume a discrete set of values for the Radon transform �g��r� �t� � �gd�r� t�� and a given
sampling of wanted image g�xm� yn� � gd�m�n� used for the reconstruction� If the matrix �g�r� t�
is rearranged into a vector� e�g��

bi � brT�t � �g�r� t� �	���

and the same technique is applied to the image� e�g��

xj � xnM�m � g�m�n� �	���

then using a series expansion shown in Eq� 	� the Radon transform can be written in the form
shown in equation 	���� The vector dimensions are I � RT and J � MN � thus the transformation
matrix A have RTMN elements� and will normally be very large�

g�x� y� �
X
m

X
n

g�m�n���x � xm� y � yn� � �
���

�g�r� t� �

Z
�

��

Z
�

��

�X
m

X
n

g�m�n� ��x� xm� y � yn�

�
���r � x cos �t � y sin �t� dx dy �
��

�
X
m

X
n

g�m�n�

Z
�

��

Z
�

��

��x � xm� y � yn� ���r � x cos �t � y sin �t� dx dy �
���

��	




�� Chapter 	� Reconstruction Algorithms Based on Linear Algebra

hence the matrix elements of the system matrix can be calculated as

ai�j � arT�t�nM�m �	�
�

�

Z �

��

Z �

��
��x� xm� y � yn� ���r � x cos �t � y sin �t� dx dy �	���

�

Z �

��

Z �

��
��x� y� ����r � xm cos �t � yn sin �t�� x cos �t � y sin �t� dx dy �	�	�

� ����r � xm cos �t � yn sin �t� �t� �	����

where the function ��
� is the expansion function in the image domain specifying how the pixel
at �xm� yn� models the image domain with the continuous positions �x� y�� Eq� 	��� shows that
the matrix element is the Radon transform of the expansion function� where the ��parameter has
been shifted according to the pixel position� Alternatives to the image pixel driven generation of
matrix elements can be found in �	���

The methods to be presented all rely on a linear dependence between two vectors" the known
I�dimensional vector b �I � RT �� containing the sinogram� and the unknown J�dimensional vector
x �J � M��� For tomography the vector b will contain the sinogram values wrapped into a vector
using Eq� 	��� and x is the set of reconstructed pixels in the image formed as a vector using Eq�
	���

In the rest of this chapter a linear algebra formalism is used instead of deriving integrals
formulations of the inverse Radon transform� which then is approximated in order to implement
the algorithms� Now the reconstruction problem will can be written in a matrix vector formulation

b � Ax �	����

where A � IRI�J is called the system matrix containing the weight factors between each of the
image pixels and each of the line orientations from the sinogram� as illustrated in Fig� 	���

Image pixel j

Line index i

Figure ��� The matrix element ai�j can be considered as the weight factor between a certain sinogram
value numbered by i and the image pixel j�
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Compared to the Radon based direct reconstruction methods shown in Chapter 
� several new
possibilities and problems arise

 Linear algebra is very strongly supported in mathematics� and the formalism can be used
for both �D and �D PET reconstruction�

 An irregular scanner geometry with� e�g�� limited line orientation is very bad for the direct
methods� e�g�� see �		�� and with the linear algebra approach� problems with missing data in
the sinogram can easily be incorporated into the matrix formalism�

 A �nite� i�e�� non�zero detector size can be modelled into the system� hence the model need
no be based on a ray approximation� and varying detector sensibility can in principle be
modelled into the system of equations� hence better modelling of the physical scanner setup
is possible�

 The system matrix A is in general not quadratic �I �� J�� which limit the number of
techniques applicable if not forming the normal equations� which will be shown in Eq� 	����

 The system matrix A will be �near� singular� i�e�� have very small singular values� i�e�� that
reconstruction written in the linear algebra formalism is an ill�conditioned problem� Some
of the image valued can be under determined and others very over determined due to the
uneven coverage of the projections �sinogram lines� in the image domain� This problem
must then be controlled with constraints and or regularization�

 It turns out that A does not has a simple structure� such as a band matrix� hence the
inversion of A have to use rather slow methods� The reason that A does not have a simple
structure is partly due to the easy sorting schemes shown in Eqs� 	�� and 	��� Another reason
is that line parameters ��� �� does not have a very simple relation to the image coordinates
�x� y��

 The matrix A is normally very large� e�g�� ��� � ��� elements� thus calculation of a
generalized inverse of A is extremely costly both in time and memory�

 The system matrix will be sparse due to the fact that only approximately M of the M �M
image pixels adds weight to a certain bin in the sinogram�

�� The Calculation of Matrix Elements

The matrix A can be estimated in several ways� One very common approach is to use a nearest
neighbour approximation �	��� But a �rst order approximation better interpolation can also be
used� As mentioned previous� alternatives to the image pixel driven generation of matrix elements
can be found in �	���

Even though that some of the following interpolation schemes are very simple� they can be
attractive if they can be computed fast� due to the fact that the large matrices normally are not
stored in memory but calculated many times in the iterative reconstruction schemes and a good
interpolation scheme takes longer time compared to the coarse interpolation schemes�
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����� Pixel Oriented Nearest Neighbour Approximation

Around each pixel �xm� ym� is placed a square !x �!x wide� If the line with parameters ��r� �t�
crosses the square then the matrix element aij is set to !x� and else to �� From Fig� 	�� it is easy
to see that the test criterion can written as

�� � �r � xm cos �t � yn sin �t �	����

j�� cos �tj  !x

�
and j�� sin �tj  !x

�
� arT�t�nM�m � !x �	����

Note that the index rT � t can easily be inverted to give r and t using truncation to lower integer
and the modulus operator� and likewise with the index nM �m� This is relevant when generating
the matrix� e�g�� column�wise or row�wise� Often the matrix elements are set to � in case of the
line crosses the pixel �	�� and zero otherwise� This will imply a general scaling of the solution x�

ρ’

ny

xm

r t(ρ ,θ )

θ

ρr
ΔX

t

Figure ��� The line with index i� corresponding to ��r� �t�� crosses the square pixel centered at
�xm� yn��

����� Discrete Radon Transform

Another interpolation scheme is to use the discrete Radon transform to approximate the forward
matrix multiplication� This can be done using Algorithm ���� either once �requires storage of the
system matrix� or every times it is needed� If multiplication with the transpose of the matrix is
needed� then the discrete backprojection operator �multiplied with a factor of two� can be used�
cf� Eq� 	��	 and Algorithm ����

����� First Order Pixel Oriented Interpolation Strategy

Alternatively a ray�tracing strategy can be used� by assuming that the pixel at position �xm� ym�
is a square !x � !x wide with constant amplitude of �� Now the length through the pixel with
line orientation given by ��r� �t� is used as the matrix element� By use of the rules for translation
and scaling given in Eqs� B�� and B��� the result can be obtained from the Radon transform of
a basic square �gsq� If the square is centered around ��� �� with side lengths � � �� then the results
found in Subsection B���� can used directly

arT�t�nM�m �
!x

�
�gsq

�
�
�r � xm cos �t � yn sin �t

!x
� �t

�
�	����

A variation of this scheme is to use several rays and average the result from each of the rays�
The rays could represent some symmetrically placed spots in the parameter domain� lying within
a square corresponding to the sampling distances� which is indicated in Fig� 	��� In this way the
�nite size of pixel resolution and detector size �width of lines� can be modelled�
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Figure ��� Left� A pixel in the discrete parameter domain� which here is subdivided into four center
values� Right� For each of the center values the length though the square image pixel is averaged and
used as the matrix value�

����� The Sinc Interpolation Strategy

Another approach is to use Eq� ����� which is based on a sinc interpolation scheme� This expres�
sion gives the elements of the A

arT�t�nM�m �
!x

%
sin

�
%min

�
�

j sin �tj �
�

j cos �tj
	�

�	���

% �



!x
��r � xm cos �t � yn sin �t� �	����

Note that this way of generating the matrix implies that some of the matrix elements will
be negative� which de�nitely is bad from a physical point of view� Assuming that only one
pixel is non�zero in the image� then negative counts will be measured for some line orientations�
Nevertheless Eq� 	�� represent a better interpolation from a signal processing point of view�
Another drawback is that it is very costly to generate the matrix in this way compared to the
other methods shown above�

�� Duality between Matrix Operations and the Radon Trans�
form

Using the Radon transform scheme along with the matrix formalism as shown in Eq� 	�� implies
ordinary matrix operations have equivalent Radon transform operations� Eq� 	�� is the Radon
transform of discrete image g�m�n� into the full discrete parameter domain �g�r� t��

b � Ax� Radon transform to full size parameter domain �	��
�

Iterative algorithms� such as ART and MART� described in the Sections 	�� and 	�
� use the scalar
product between row number i of A� i�e�� ai and the current reconstructed image x� i�e�� aTi x�
which is the Radon transform of the image x into one speci�c sample in the parameter domain�

bi � aTi x� Radon transform to one sample in the parameter domain �	����

Another common operator in iterative algorithms is the transpose of the matrix� The operation
�x � ATb is the backprojected discrete parameter domain into the image domain�

�x � ATb� Adjoint Radon transform of the sinogram into the image domain �	��	�

This fact is often not recognized in the literature� but it is a direct consequence from the matrix
formalism� The transpose of a matrix �without complex values� is the adjoint operator� and in
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this case the adjoint Radon transform is two times the backprojection operator� cf� page ��� of
����� and it is equivalent to the transpose matrix� cf� Eq� 
����

One well known approach to solve set of equations with a non�square system matrix is to form
the normal equations�

ATb � �ATA�x �	����

An interesting analysis shown in ����� is that the solution to the normal equations

x � �ATA��
ATb �	����

can be interpreted in formalism of the direct reconstruction methods� The matrix AT represent
the backprojection operator� cf� Eq� 	��	� and then �ATA��� represents the �lter in Eq� 
����
Likewise can it be shown that Filtered Backprojection can interpreted from Eq� 	��� if assuming
full rank of A

x � �ATA��
ATb �	����

� �ATA��
AT �AAT ��AAT ��
b �	����

� �ATA��
�ATA�AT �AAT ��
b �	����

� AT �AAT ��
b �	���

where �AAT ��
 represents the j	j �lter in Eq� 
�� and AT �again� represents the backprojection
operator� Note that the assumption of full rank is not quite valid� due to the problems mentioned
in Subsection 
���� with recovering the DC level when using Filtering after Backprojection or
Filtered Backprojection�

�� Regularization and Constraints

In linear algebra regularization or constraints of an ill�conditioned set of equations is used to
stabilize the solution� The problem is that the solution to Eq� 	��� in a two�norm sense as shown
in Eq� 	��� often is useless� due to large undesired �uctuations in the solution ������

x � argmin
n
kb�Axk��

o
�	����

These problems are nearly related to the conditional number of the system matrix� One way to
deal with this problem is to use truncated SVD� which will be described in Section 	�� Note that
Eq� 	��� is very general least�squares �t and is not based the noise actual noise statistics found
in PET sinograms�

A very simple approach to stabilize the solution is to use constraints on the solution in iterative
reconstruction algorithms� If� e�g�� the activity of the brain is to be reconstructed� then a non�
negativity constraint can be imposed� and perhaps a upper limit on the activity also can be
imposed� then the solution can be truncated to the desired values simply by setting values outside
of the interval to the upper lower limit� It seems like an ad hoc approach� but it is often used
in practice �	�� and constraints can de�nitely improve the stability of iterative reconstruction
algorithms� but it seems to be di�cult to analyze the implications of constraints from a theoretical
point of view�

A very common way of stabilizing iterative methods is to use regularization� This can be done
by adding another term to Eq� 	����

x � argmin
n
kb�Axk�� � ��kL�x� x��k��

o
�	��
�
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where x� is an estimate of the solution� and if none is available it can be set to zero� The operator
L is a matrix which can be selected to the identity matrix �restricts large values� or to approximate
the �rst or second order derivative of the solution x �restricts fast variations�� The parameter �
controls how much weight the regularization term should have� Methods to estimate the optimal
value of � can be found in ������

A simple way to include regularization terms in the reconstruction algorithms is to expand
the set of equation by adding a set of regularization rows to the original set of equation�

A

�L

�
x �

�
b

�Lx�

�
�	����

But it should be noted that the noise properties of the original and the the expanded set of
equations is normally are very di�erent� and it is not easy to predict theoretically how it will
in�uence on a particular iterative reconstruction algorithm�

�	 Singular Value Decomposition

The system matrix A can be analyzed by use of the SVD �Singular Value Decomposition� �����

�� ���� The basic idea of the SVD is to decompose the matrix A � IRI�J as

A � U�V T �	��	�

where the matrix � � IRI�J is a diagonal matrix with the singular values of A on the diagonal�
� � diag��
� ��� ���� �J � and the matrices U � IRI�I and V � IRJ�J are orthogonal matrices� The
singular values are normally ordered in a non�increasing order� �i � �i�
� and the conditional
number of A is the ratio between the largest and the smallest singular value�

cond�A� �
�

�J

J 	 I �	����

To illustrate the properties of the system matrix� A has been calculated from Eq� 	��� cf�
Section 	��� The sampling parameters are been chosen as shown in Eqs� 	����	���� and the
corresponding system matrix shown in Fig� 	���

Note that this example is a toy example� as it only concerns a very small �� � �� image
reconstructed from a ����� sinogram� but it illustrates some of the basic properties of the system
matrix� In this example the SVD could be computed in approximately �� sec on a Pentium ���
MHz using the SVD�routine in Matlab� and the decomposition required approximately additionally
� MBytes of memory�

xm � �� �m 
 ���� m � �� �� ���� �� �	����

yn � �� � n 
 ���� n � �� �� ���� �� �	����

�r � �� � r 
 ���� r � �� �� ���� �� �	����

�t � t 
 

��
� t � �� �� ���� �	 �	����

The singular values is shown in Fig� 	�� and it can be seen that approximately �� large
singular values are succeeded by approximately � slowly decaying ones� and here a dramatic
change occurs and then the singular values are decaying rapidly� The �� large singular values
corresponds to the size of the system matrix and the actual sampling� It can be seen that the
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Figure ��� The system matrix A�
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Figure ��� The singular values of the system
matrix A�

problem is ill�conditioned� This is normally mended by restricting the variations of x� by use of
regularization ������

One way to invert an ill�conditioned problem is to separate the matrix � in a part with large
singular values �
 and a part with small singular values ���

� �

�
�� �
� ��

�
�	���

i�e�� the singular values in �� are insigni�cant� Choosing a rank p approximation� i�e� �
 � IRp�p�
The generalized inverse of � is de�ned as

�� �

�
��

�
 �
� �

�
�	����

Note that this inversion is easily computed� The generalized inverse can be used for inversion
of Eq� 	����

x � V ��UTb �	��
�

This solution is a minimum norm solution to the least square problem minx kb�Axk��
From Fig� 	� it could be suggested to separate large and small singular values at singular

value number �
� In Fig� 	�� is shown the generalized inverse matrix using the �rst �
 singular
values� A very stable structure is found looking something like the one found in Fig� 	��� which
could be expected due to the underlying line transformation model� Next� Fig� 	�
 shows the
generalized inverse matrix using the �rst ��� singular values� Very little structure can be seen
and here the inverted matrix is dominated by fast oscillations�

The suggested inversion strategy is not viable for varying geometries because SVD has com�
plexity O��I�J � �IJ��� cf� page ��� of ������ where I and J is the number of rows and columns
of the matrix A respectively� This implies that the SVD used for inversion of the Radon trans�
form has complexity approximately O�M��� where M still is the number of pixels on each of the
axes in the image domain� Here it should be noted that for a �xed scanner geometry the SVD
only has to be computed once� After the SVD decomposition of the system matrix the minimum
norm solution can easily be found using matrix multiplications� and a varying rank or �ltering the
singular values more softly by use of� e�g�� the popular Tikhonov regularization� e�g�� ����� ���� is
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Figure ��� The generalized inverse of the sys�
tem matrix using 	�� singular values� A struc�
ture resembling the transpose of the system mat�
rix can be seen�
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Figure ��	 The generalized inverse of the sys�
tem matrix using �	
 singular values� The struc�
ture has vanished and note the span in amplitude
compared to Fig� ����

easily incorporated in the inversion scheme� Despite the high computational complexity� the SVD
has been used for reconstruction of SPECT images ����� ���� and it has been reported that the
SVD of matrices with size 
��� � ���� can be computed in approximately � hours on a SUN
Sparc �� ��� For �D reconstruction with a signi�cantly higher number of sinogram values and
voxels� the SVD based reconstruction requires a change in computing technology�

�� Iterative Reconstruction using ART

A well�known way to solve Eq� 	��� is named ART� which stands for Algebraic Reconstruction
Technique� Many articles� e�g�� �	�� ���� 
�� demonstrate the algorithm� ART was published in
the biomedical literature in �	
�� and Cormack and Houns�eld used ART for reconstructing the
very �rst tomography images� They probably did not know of the work of Johann Radon at
that point� and later it was discovered that ART is a reinvention of the algorithm introduced by
Kaczmarz ���
� in back in �	�
�

The basis operator required in ART is the scalar product between to certain row i of the
system matrix� ai and a solution vector �x

�bi �
JX
j�


aij �xj � aTi �x �	����

ART is formulated as an iterative reconstruction algorithm� where the solution vector in iteration
k is updated by adding a scaled version of row i of the system matrix�

x�k�
� � x�k� �
bi � aTi x

�k�

aTi ai
ai �	��	�

The main idea of ART is that the equation i is ful�lled in iteration k� which easily is shown�

aTi x
�k� � aTi x

�k�
� �
bi � aTi x

�k�
�

aTi ai
aTi ai � bi �	����

If using the Radon transformation terminology� then ART will modify the reconstructed image
in iteration k� in order to give the correct Radon transform at ��r� �t�� where �r� t� is found from
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the sinogram sorting scheme shown in Eq� 	��� In this way the reconstruction quality of ART in
a given area can be altered by choosing that i matches the lines passing through an interesting
area frequently�

Often �
�� i as a function of k is chosen to i � k MOD I� where MOD is the modulus operator�
but this choice is not very good ����� ����� Another very common and easy strategy is to choose
i randomly using a uniform probability density function� Initially x��� can be chosen to zero or
some good guess on the solution� e�g�� in �D from a fast algorithm like one based on Fourier Slice
Theorem� Yet another strategy is to initialize all solution values with a constant� as it will be
shown in Subsection 	�����

The ART algorithm can also be interpreted from a geometrical point of view� Fig� 	�� shows
the use of ART in a two parameter estimation problem with two projection lines� As shown in Eq�
	��� the current solution in iteration k� i�e�� x�k� is projected perpendicularly �along the direction
of aTi � onto the hyperplane �in this case a line� determined by bi�k� � aTi x

�k�� As seen from Fig�
	�� the speed of convergence is very dependent on the angle between the hyperplanes�
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Figure ��
 Three di�erent cases of iteration in a two parameter problem using ART� Depending of
the orthogonality of the hyperplanes �here lines� the convergence can be slow �left most �gure� or fast
�right most �gure��

Note that ART in each iteration only requires the scalar product between ai and the current
solution x�k�� which can be compared to calculating one value in the parameter domain using
discrete Radon transform� hence each iteration is very fast but the quality enhancement gained
from one iteration is in general very limited� Often when comparing ART to other iterative
algorithms that requires computation of a full discrete parameter domain� the iteration number
used for ART is a full loop through all I rows� i�e�� I times the actual number of iterations in
ART�

A common alteration of ART is to introduce a relaxation parameter in form of a weight factor
as shown in Eq� 	����

x�k� � x�k�
� � �k
bi � aTi x

�k�
�

aTi ai
aTi �	����

where �k can be set as a simple function of k� such as a linear function or a exponential decay� Even
given the result Eq� 	��� it has experimentally been proven ���	�� that setting �k to values di�erent
from one can improve the speed of convergence� It should be noted that the optimum value of
�k is a function of k� the sinogram values� and the sampling parameters of the reconstructed
image� In ����� it is shown that optimizing the value of �k in each iteration and careful selection
of row index i as a function of k results in a reconstructed image quality as good as using the
EM�algorithm� at a order of magnitude less computational cost �The EM�algorithm is presented
in Section 	����

In the literature� authors have optimized ART and or EM� and for some years it was not clear
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whether the one was better than the other� Now it seems as if ART is loosing popularity compared
to EM for �D reconstruction� but for �D reconstruction the opposite seems to be the case �����
and Section �����

As shown in Algorithms 	�� and 	�� ART is very easy to implement� Only a scaler product
is really needed� In the algorithm the matrix elements are used over and over again� and note
for a huge problem which cannot be stored in memory all at one time each matrix element has
be calculated in a function like it was shown in Section 	��� In Algorithm 	�� the denominator
values aTi ai are computed once as a function of i� The reason for showing two algorithms is that
the �rst part can be computed once� and if several sinograms with the same geometry should be
reconstructed� then it is only Algorithm 	�� which should be used several times�

Algorithm ��� � Initialization of the ART algorithm

For i � � to I�	 ��For all values of i
sum � � ��Calculate the denominator
For j � � to J�	 ��For all values of j
sum � sum � a�i�j��a�i�j� ��Accumulate value

End
anorm�i��sum ��Store denominator

End
For j � � to J�	 ��For all values of j
x�j� � c ��Initialize with a constant

End

Algorithm ��� � The ART algorithm

For k � � to K�	 ��For K iterations of ART
Set i as a function of k ��Choose row index in iteration k
sum � � ��Initialize scalar product
For j � � to J�	 ��For all values of j
sum � sum � a�i�j��x�j� ��Update scalar product

End
w � lambda�k���b�i��sum��anorm�i� ��Calculate common weight
For j � � to J�	 ��For all values of j
x�j� � x�j� � w�a�i�j� ��Project solution

End
End

����� ART with Constraints

It is not guaranteed� that ART will provide a non�negative solution� as required by the physical
meaning of the solution" in PET emission activity and in CT absorption coe�cient� As mentioned
in Section 	�� a crude� but very easily implemented strategy is to restrict the solution after some
iterations from a upper limit estimate on the solution in each pixel� i�e�� vector element or maybe
just using a upper limit constant in each iteration� A non�negativity constraint can be imposed as
shown in Algorithm 	��� where the initialization part shown in Algorithm 	�� has been removed�
Other constraining schemes for ART can be found in �	���
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Algorithm ��� � The ART algorithm with Constraints

For k � � to K�	 ��For K iterations of ART
Set i as a function of k ��Choose row index in iteration k
sum � � ��Initialize scalar product
For j � � to J�	 ��For all values of j
sum � sum � a�i�j��x�j� ��Update scalar product

End
w � lambda�k���b�i��sum��anorm�i� ��Calculate common weight
For j � � to J�	 ��For all values of j
x�j� � x�j� � w�a�i�j� ��Project solution

End
If k MOD kc � � ��Every kc iterations use constraints
For j � � to J�	 ��For all values of j
If x�j�  � ��Negative solution is found
x�j� � � ��which is set to zero

End
If x�j� � Maxx�j� ��Too large solution is found
x�j� � Maxx�j� ��which is set to max limit

End
End

End
End

����� Initialization

Using iterative algorithms also implies that the solution vector x should be initialized with a
constant value or a good start guess� which need not be a constant� One possibility is to use fast
direct algorithms� such as Fourier Slice based methods� for producing a start guess� If the start
guess is good the iterative algorithms in general will converge faster� but it also implies that the
behavior of the algorithm will be biased by the direct method� Another very common starting
guess is to initialize the solution with a constant ������ For the ART algorithm no restrictions
are made concerning the initial value� but for other iterative algorithms such as MART �Section
	�
� and EM �Section 	��� the initial value has to be positive� Assuming that the solution is a
constant� then by averaging in Eq� 	��� the value should be

x�j �

IX
i�


bi

JX
j�


IX
i�


ai�j

� j �	����

This initialization requires that the system matrix is computed an additional time or can be
combined with the �rst part of Algorithm 	��� A faster scheme is to use the approximation that
for a certain value of i a line approximately crosses M pixels each with a value of approximately
!x� hence

JX
j�


IX
i�


ai�j � IM!x � x�j �
�

IM!x

IX
i�


bi � j �	����
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�� Multiplicative ART

Another technique is MART �Multiplicative Algebraic Reconstruction Technique�� that can be
found in the literature� but MART has apparently not had a major impact in practical recon�
struction applications� The basis of MART is to maximize the entropy of the solution

�
JX

j�


xj log xj �	����

under the constraints that
bi � aTi x

�k� and xj � � �j �	���

Like ART� the algorithm is very easy� At �rst all image values are initialized to the constant
value

x� � e�
 �	����

and then the general iteration step looks like

x
�k�
�
j �

�
bi

aTi 
 x�k�
�	kai�j

x
�k�
j �	��
�

where �k is a positive tunable relaxation parameter� Just like ART will MART require a scheme
for selecting the row index i as a function of the iteration index k� Again two strategies are
commonly used" cyclical �i � k MOD I� or randomly with a uniform probability distribution
over all indices�

According to �	�� the behavior of the algorithm is not properly known� especially with respect
to the in�uence of noise in the sinogram� Another problem is that the denominator in Eq� 	��

can become zero� which indicates that problems with instability can be expected�

�� The EM algorithm

So far the reconstruction methods have modelled the projections as line integrals� which was
reconstructed by use of discretization of the inverse Radon transform� Especially in emission
tomography with limited counts in each sinogram bin� the statistical noise can dominate the
reconstructed images when using direct reconstruction methods� cf� Subsection ���� This lead
many scientists to consider statistical approaches to derive reconstruction algorithms�

One of the most prominent iterative reconstruction methods for emission tomography is Max�
imum Likelihood Reconstruction using the EM algorithm� which stands for Expectation Max�
imization� In the very famous articles ���� by Shepp and Vardi and ����� by Vardi� Shepp� and
Kaufman a statistical framework for reconstruction is given� It is assumed that the measurements
originate from uncorrelated Poisson generators� which ideally model the underlying physics� but
problems like attenuation correction are not modelled in this framework� Another feature of the
EM�algorithm is that the model includes a non�negativity constraint�
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The key idea of the EM�algorithm is to maximize the Likelihood

L�x� � P �bjx� �
IY

i�


�b�i �
bi

bi&
e�b

�
i �	����

where b� contains the unknown mean values of b� i�e�� the true sinogram without noise� and it is
assumed that b� �t the solution perfectly

b� � Ax �	��	�

where the coe�cients of the system matrix are considered as transition probabilities normalized
as

� �
IX

i�


ai�j �	���

in PET meaning that a photon pair at detector pair i originates from one of the regions in the
brain �pixels in the image� with the probability of one�

Now the expectation of the Likelihood is maximized from the log Likelihood l�x� by setting
the derivatives of l�x� to zero

�l�x�

�xj
� �

IX
i�


ai�j �
IX

i�


ai�jbiPJ
j��
 ai�j�xj�

� �� �
IX

i�


ai�jbiPJ
j��
 ai�j�xj�

� � �	���

In the literature an additional non�negativity constraint is imposed and it can be shown that this
results in the Kuhn�Tucker conditions�

xj
�l�x�

�xj
� � � j where xj � � �	���

�l�x�

�xj
	 � � j where xj � � �	���

where the �rst equation is used to formulate an iterative mapping scheme

� � xj
�l�x�

�xj
� xj

�
�� �

IX
i�


ai�jbiPJ
j��
 ai�j�xj�

�
� �	���

x
�k�
j � x

�k�
�
j

IX
i�


ai�jbiPJ
j��
 ai�j�x

�k�
�
j

�	��

This equation is very often found in statistical reconstruction literature� but it should be noted
that it requires that the elements of the system matrix is properly normalized� Here another
version of the EM algorithm proposed in ������ and found to give very good results in ������ is
used� It does not require the assumption shown in Eq� 	��� and works �ne with the normalization
used in Section 	���

x
�k�
j �

x
�k�
�
jPI

i��
 ai��j

IX
i�


ai�jbiPJ
j��
 ai�j�x

�k�
�
j

�	���
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Eq� 	�� is a very compact form to show the EM�algorithm� but it does not show that each
iteration consists of four steps

bf � Ax�k�
� �	�
�

bqi �
bi

bfi
�	���

xb � ATbq �	�	�

x
�k�
j �

x
�k�
�
j xbj
sj

�	����

where sj �
PI

i�
 ai�j� forms a normalization vector that can be calculated once for all�
In Subsection 	����� it will be demonstrated� that Eq� 	�� can lead to instability� Assume

a PET imaging situation where a certain i corresponds to a line not entering regions of activity�
hence the forward projected value bfi becomes zero� thus the denominator in Eq� 	�� is a potential
stability problem�

The EM algorithm is computationally demanding� Eq� 	�
 shows that each iteration requires
a forward projection �Radon transform� of the current solution� cf� Eq� 	��
� The quotient in

each point between the measured sinogram bi and the forward projected solution bfi � i�e�� bq

is then backprojected into the image domain� Finally� in Eq� 	���� the next estimate of the

solution is generated by multiplying for each index j� the current estimate of the solution x
�k�
�
j

with the backprojected solution xbj weighted with sj� This shows that each iteration of EM
actually costs more than using� e�g�� Filtered Backprojection� Note also that the EM algorithm is
nonlinear� hence additive noise in the sinogram will not automatically lead to an additive noise
term in the reconstructed images� as it has been the case for all the previous methods� For
further reading on the EM algorithm for Maximum Likelihood iterative reconstruction methods
���� ���� ��� ���� ���� ���� are recommended�

In Algorithms 	�� and 	� are shown the implementation of the EM�algorithm� It has been
split into two parts indicating that the �rst part has to be calculated once� and the last part can
then be used to reconstruct several images with the same geometry�

Algorithm ��� � Initialization of the EM algorithm

For j � � to J�	 ��For all values of j
sum � � ��Calculate the values of s�j�
For i � � to I�	 ��For all values of i
sum � sum � a�i�j� ��Accumulate value

End
s�j��sum ��Store value

End
For j � � to J�	 ��For all values of j
x�j� � c ��Initialize with a constant

End

Note that the initialization of the EM�algorithm requires that the system matrix is generated
once in the initialization part� but this can be avoided by initializing the solution vector as as
shown in Algorithm 	��� and then use Algorithm 	� for the remaining iterations� Note that in
the �rst line of the Algorithm 	� the counter should then be For k � 	 to K�	�
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Algorithm ��	 � The EM algorithm

For k � � to K�	 ��For K iterations of EM
For i � � to I�	 ��For all values of row index
sum � � ��Initialize scalar product
For j � � to J�	 ��For all values of j
sum � sum � a�i�j��x�j� ��Update scalar product

End
bq�i� � b�i��sum ��Store scaled forward projection

End
For j � � to J�	 ��For all values of column index
sum�� ��Initialize backprojection sum
For i � � to I�	 ��For all values of row index
sum � sum � a�i�j��bq�i� ��Accumulate sum

End
x�j� � x�j��sum�s�j� ��Update solution

End
End

Algorithm ��
 � The first iteration of the EM algorithm

For i � � to I�	 ��For all values of row index
sum � � ��Initialize scalar product
For j � � to J�	 ��For all values of j
sum � sum � a�i�j��x�j� ��Update scalar product

End
bq�i� � b�i��sum ��Store scaled forward projection

End
For j � � to J�	 ��For all values of column index
s�j� � � ��Initialize s�values
sum�� ��Initialize backprojection sum
For i � � to I�	 ��For all values of row index
la � a�i�j� ��Store value in simple variable
sum � sum � la�bq�i� ��Accumulate sum
s�j� � s�j� � la ��Increment s

End
x�j� �x�j��sum�s�j� ��Update solution

End
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� The Conjugate Gradient Method

The Conjugate Gradient algorithm �or CG for short� is a well�documented technique for iterat�
ively solving equation systems with a symmetrical positive de�nite system matrix ����� ��
�� For
reconstruction purposes the Conjugate Gradient algorithm is not well suited� due to the restric�
tions on the system matrix� but reconstruction can form the normal equations� shown in Eq� 	����
which gives the least squares solution to the original set of equations� shown in Eq� 	���� Using
normal equations the e�ective system matrix ATA is symmetrical and the singular values are
now squared compared to the singular values of A�

Given that the system matrix is sparse� which can be exploited for e�ective storage� the system
matrix of the normal equations ATA should not be generated� because it in general will not be
sparse� thus it requires a lot of storage space� In several textbooks� e�g�� ���
� an algorithm is
found implementing the Least Squares Conjugate Gradient method �LSCG� without computing
ATA�

Initialize x� �	����

s� � b�Ax� �	����

r� � p� � ATs� �	����

q� � Ap� �	����

Then for each iteration the LSCG algorithm on the normal equations becomes

� �
krk�
k��
kqk�
k��

�	���

xk � xk�
 � �pk�
 �	����

rk � ATsk�
 �	��
�

rk � rk�
 � �qk�
 �	����

� �
krkk��
krk�
k��

�	��	�

pk � rk � �pk�
 �	�
��

qk � Apk �	�
��

Note that each step of the iteration requires several vector updates and scalar products� by the
bulk of the computational load lies in the forward projection and the backprojection operation�
So the computational complexity per iteration resembles that of the EM�algorithm� No algorithm
is given here� due to the fact that Eqs� 	����	�
� only includes simple operations� but many� hence
the pseudo code will be long�

Note that the LSCG algorithm estimates a solution for the equation system shown in Eq�
	���� which implies that the e�ective system matrix ATA squares the singular values� and a bad
conditional number gets squared� According to ����� the CGmethod has an inherent regularization
and in ����� the regularization properties are examined�

In ������ it is demonstrated that for the LSCG Method� it really does not matter� whether a
constant �here zeros� or an image generated by use of Filtered Backprojection is used�
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��� Accelerated Iterative Reconstruction

From an implementation point of view the iterative algorithms shown in the previous sections� so
far have been treated as if all the values in the system matrix ai�j are available in general� One
problem is that the system matrix is normally huge� A �D sinogram from� e�g�� a GE Advance
PET scanner contains I � ��� � ��� values� and reconstructed into a J � ��� � ��� grid� i�e�� the
system matrix has approximately �� billion elements� requiring over �� GBytes of memory� when
using � bytes per matrix element� This is a lot of memory� even looking some years into the future�
Besides� it would not be wise to store all that data� due to the fact that approximately 	�� of
the matrix entries will be zeros� This knowledge should be incorporated into the reconstruction
schemes�

Assuming that memory is not available for storing the full system matrix� one possibility is to
compute the individual matrix elements in each iteration when needed� This can be done by use
of the discrete Radon transform� as described in Section 	�� or other modelling schemes for the
scanner� This approach is viable� is rather easily implemented� and the storage requirements are
reduced to a minimum� Memory is only required for the sinogram �b� and the current solution �x��
and perhaps some additional temporary variables of the same size or smaller� but no system matrix
is stored in memory� It will be demonstrated that this implementation has a major drawback in
speed� since the system matrix will be computed many times during an iterative reconstruction�
Each time with the same high computational cost�

Here a new hybrid solution is proposed �� �� for accelerating the iterative reconstruction al�
gorithms� but requiring as much memory as modern workstations are currently equipped with� or
will be soon� The idea is to only store the non�zero elements of the system matrix in the main
memory using sparse matrix techniques� In this way the core of the reconstruction algorithms�
highly based on matrix vector multiplications� can be accelerated signi�cantly� and thereby re�
moving one of the major drawbacks of the iterative methods�

It is proposed that the system matrix A is calculated one time only using all the modi�cations
found for the actual scanner setup� If no speci�c scanner model is provided then the system matrix
can be modelled and generated using the Radon transform or other simpler schemes as shown in
Section 	��� From the system matrix the very small values are truncated to zero�

�ai�j �

�
ai�j if ai�j � �
� Otherwise

�	�
��

where the threshold � can be chosen to a small fraction of the maximum matrix value� e�g��
� � ���maxi�jfai�jg� If � is chosen su�ciently low� a good compromise between resolution and
the sparseness of the matrix can be reached� and normally this does not alter the behavior of the
algorithms� and for some of the schemes used to estimate the matrix values the value of � can be
set to �� due to a �nite interpolation width in� e�q�� Eq� 	����

The sparse structure ofA can be exploited by only storing non�zero values in the fast memory�
For a certain row� number i� all of the matrix elements are calculated� stored� and truncated using
Eq� 	�
�� Hereby will the number of non�zero elements in the row� denoted by Zi� be much smaller
than the image size J � M�� The values of Zi are stored in a simple one dimensional vector�
Two vectors of length Zi� indexed by an integer z� can then be allocated and stored containing
the non�zero matrix value az and the corresponding column index jz� The procedure is repeated
for all rows�

Assuming a nearest neighbour approximation with one pixel for each point along the integ�
ration lines and using � bytes for storing each of the vector elements� then the total storage
requirement is reduced to approximately �

PI
i�
 zi � �IM bytes� In the example shown above
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approximately ��� MBytes of memory is required� Assuming that amount of memory is present
most iterative algorithms can be implemented from three basic operations� Matrix vector multi�
plication A�x� scalar product between the i�th row of the system matrix and a vector aTi �x� and
�nally multiplication with the transpose of the matrix AT �b�

In the following� the implementations of the scalar product �Algorithm 	�
�� the matrix vec�
tor multiplication �Algorithm 	���� and the multiplication with the transpose the system matrix
�Algorithm 	�	� are shown�

Algorithm ��� � bfi � aTi �x

Set a and j to correct row ��Use pointer technique
sum � � ��Initialize
For z�� to Z�i��	 ��For row i
sum�sum�a�z��x�j�z�� ��Increment sum

End
bt�sum ��Store value

Algorithm ��� � bf � Ax

For i � � to I�	 ��For all rows
sum � � ��Initialize
Set a and j to correct row ��Use pointers
For z�� to Z�i��	 ��For row i
sum�sum�a�z��x�j�z�� ��Increment sum

End
bt�i��sum ��Store value

End

Algorithm ��� � xb � ATb

For j�� to J�	 ��For all columns
xb�j��� ��Initialize

End
For i�� to I�	 ��For all rows
Set a and j to correct row ��Using pointers
For z�� to Z�i��	 ��Compute sum
xb�j�z���xb�j�z���a�z��b�i� ��Update sum

End
End

����� A Fast �D Iterative Reconstruction Package

A software package� named #it$ has been written in the C�language� A short description is
provided in Section C��� The package includes the proper structures for manipulating sparse
matrices and vectors� along with optimized code for computing matrix vector like products� well
suited for iterative reconstruction algorithms� The software package are provided for free from
�����
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In the package ART� EM� and LSCG are implemented both in a fast version using sparse
matrix storage of the system matrix and in a slow version where the system matrix is not stored
and required matrix entries are computed in each part of the iterative steps� In this way the
package can be used to reconstruct any size of images� and if enough memory is available the
reconstruction is very fast�

The package also features constraining of the solution using either a constant minimum and a
constant maximum for each of the solution values� or an image can be supplied masking the ROI
�region of interest�� used to limit the solutions di�erently in several areas�

Currently one regularization option is found in the package� namely a discrete version of the
Laplace operator� shown in Table 	��� used in the reconstructed image� The operator and the
image are convolved� and for each pixel in the image the regularization term will add one line to
the system matrix� cf� Eq� 	���� Likewise is the b�vector expanded with zeros match the extra
number of rows of the system matrix�

� �� �

�� � ��

� �� �

Table ��� Discrete approximation to the Laplace operator� used in the image domain�

In the software package #it$ it has been done by appending extra rows to the system matrix
at runtime� after the system matrix has been generated or read from the disk� Due to the use of
sparse storage techniques and the small support of the operator� the appended part to the system
matrix can be generated very fast and will not require much memory� hence the regularization
factor � can be supplied at runtime and the software package can be used number of times with
di�erent regularization factors and use the same system matrix stored on the disk�

Several interpolation methods have been implemented for generation of the system matrix�

 Binary estimation of the matrix matrix� cf� Eq� 	����

 Nearest Neighbour interpolation based on the Radon transform� cf� Algorithm ����

 Linear interpolation based on the Radon transform�

 Analytical Radon transform of a square� i�e�� the length through a quadratic pixel is used�
cf� Subsection B�����

 The Radon transform of a sinc expansion in the image domain� cf� Eq� 	���

��� Examples Using Iterative Reconstruction Algorithms

In this section a set of examples are presented where iterative reconstruction methods have been
used� The examples have been generated with the package #it$� The arti�cial sinograms used for
some examples is generated using #RadonAna$� Both packages are described in Appendix C�

The program has been used on two types of machines� A Linux machine with a ��� MHz
Pentium processor and an Silicon Graphics �SGI� Onyx equipped with four ��� MHz R����
processors� where the program was running on one processor�
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������ A Small Reconstruction Example

In the �rst example the �synthetic� sinogram has �� � ��� samples and the reconstructed image
has ��� � ��� samples� In Table 	�� the reconstruction times on both machines are shown for the
fast and the slow method as well as the ratio between the execution times �slow fast��

Times are measured for ART� EM� and the LSCG�method� when EM and LSCG were running
�arbitrarily� �� iterations� and ART �� full iterations� i�e�� �� times the number of rows �chosen
randomly�� which is ��������� iterations in Eq� 	��	� Note that all times only correspond to
the actual iterations� For the fast versions of the iterative reconstruction algorithms� the time
to generate the system matrix once should be added if changing the system matrix� e�g�� when
changing the sampling parameters of the reconstructed image�

For this example the system matrix was modelled using discrete Radon transformation with
linear interpolation� where the threshold � was chosen to zero� hence the slow and the fast meth�
ods give exactly the same results� Note that the large di�erence in speedup between ART and
EM LSCG is due to the implementation of the discrete Radon transform is more e�cient than
the multiplication with the transpose of the system matrix� The slow methods can be accelerated
some by implementing multiplication with the transpose of the system matrix �adjoint operator�
as a backprojection integral� but note that this implies that the approximation of the system mat�
rix will be di�erent in the forward and the backprojection part� The sparse system matrix for
this transformation geometry required approximately �� MBytes of memory� and each iteration
requires approximately one second�

Machine Type ART EM LSCG

Fast �� sec �
 sec �
 sec
Pentium Slow ���� sec 

� sec �� sec

Ratio � ��� ��	

Fast �� sec �� sec �� sec
SGI Onyx Slow ���� sec �
�� sec �
� sec

Ratio �� �
� �
�

Table ��� Time usage for 	
 iterations of EM and LSCG� For ART the time is for 	
 full iterations�
i�e�� 	
��	���
� of the iterations used in Eq� ����� The time measurements are for a sinogram with
�	� � �
� samples reconstructed into a �
� � �
� samples image�

������ A Larger Reconstruction Example

In Fig� 	�	 a �D sinogram with ������� samples is shown� which was measured on a GE Advance
PET scanner� The sinogram is reconstructed into a �large� image with ������� samples� The
system matrix has 	�����	���� elements of which ����� are non�zero when modelling then system
matrix using the Radon transform of a square� On the Onyx it required ���� seconds to generate
sparse matrix requiring �
 MBytes of memory� and each iteration of EM required � sec in the fast
version and ���
� sec in the slow implementation� After �� iterations the algorithm was stopped�
The reconstructed image is shown in Fig� 	���� For sake of comparison� the same sinogram
reconstructed image using Filtered Backprojection is shown in Fig� 	���� and this reconstruction
used � seconds on the Onyx�
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Figure ��� A slice of a 	D PET sinogram of a human brain�
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Figure ���� The reconstructed image using
Filtered Backprojection with a ramp �lter�

The front page of the thesis is generated from the reconstruction of � slices of �D sinograms�
as the one shown in Fig� 	�	� The reconstructed slices have been put into a single volume� The
volume has been segmented using a marching cubes based program ���	�� which makes a iso�
surface corresponding to a chosen threshold level� A �D model of the reconstructed brain is
available from ������

������ Comparison with Di�erent Noise Levels

In this subsection an �synthetic� image with ��� � ��� pixels shown in Fig� 	��� should be recon�
structed from the noisy sinogram shown in Fig� 	���� The sinogram has been generated by use
of the program #RadonAna$� described in Section C��� where an additive uncorrelated Gaussian
noise �� � �� term was added� Likewise has a sinogram been generated without the noise term�
and one where the Gaussian deviance is  �� � �� It can very well be argued� that this noise
term is very unphysical� due to �negative� sinogram values clearly lying outside of the head� but
some of the correction algorithms used in practice can also produce artifacts like this�
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In order to quantify the quality of images here it is chosen to use the L� measure of mis�t�

L� �
kx� � xrefk�
kxrefk� �	�
��

where x� is the estimated solution and xref is the true solution� It should also be mentioned that
constraints have been used to generate the following �gures� After each iteration the solution has
been limited to the interval between � and ���

In Fig� 	��� ART� EM� and LSCG has been used for reconstruction of the sinogram without
noise and the L� measures of mis�t have been shown� For ART� both cyclical and random selection
of row index are shown� It can be seen that ART is very fast� and using random selection of row
index ends up with the lowest error after three full iterations� The �gure also shows that EM
approximately gets to the same level� but so much slower� Here the LSCG algorithm does not
do a good job� and more constraining or regularization is needed here� It can be mentioned that
Filtered Backprojection gets an L��measure of ����� �and only requiring less than one second��

Fig� 	�� has the same setup as Fig� 	��� for the noise corrupted sinogram with � � �� Here
ART and LSCG reaches approximately the same error level �but ART is by far the fastest here��
and EM clearly demonstrates a better performance� Note also that EM has a very �at plateau
at the lowest error� which is very nice when designing criteria for selection of the number of
iterations� For the same sinogram Filtered Backprojection gives L������
� so EM is the better
algorithm in this case� even though the error is not Poisson distributed�

Finally for the high noise level � � � Fig� 	��� shows a very di�erent behavior for ART�
It clearly diverges� but the constraints implies that the solution stays limited �but does not
approximate the true solution�� Both LSCG and EM converges in the �rst nine iterations� and
ends up with L������ and L����
 respectively and in this case Filtered Backprojection ends
up with L����
� But note that the comparison is somewhat harsh� because that the �lter in
Filtered Backprojection is a ramp �lter amplifying the noise� and in general the sinogram could
be low�pass �ltered with lowered cuto� at high noise levels�

For the previous three �gures the system matrix has been modelled using the Radon transform
of a square� cf� Subsection B����� Now the results are compared to another choice of model for the
noisy sinogram � � �� In Fig� 	��
 the binary model found in Eq� 	��� and the Radon transform
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EM� and LSCG to reconstruct from the sino�
gram noisy sinogram ��  ���

of a square has been used to model the system matrix� and for ART is is apparently the simple
binary model which provides the lowest error� but not much di�erence is found�

For EM� three models have been tried� The binary model� the Radon transform of a square�
and the sinc�interpolation based model� cf� Eq� 	��� For the sinc model a cuto� value � � ���!x
was used to limit the size of the sparse stored system matrix to �� MBytes �lowering � with
an additional factor of two implied twice as much memory was needed�� Fig� 	��� shows that
EM gets to a lower error when the model is improved� and the sinc interpolation scheme and the
Radon transform of a square gives the same convergence until iteration ��� where the truncation
of the matrix values implies that the two models split up in performance� For LSCG shown in
Fig� 	��	 an odd convergence is found� The two models ends up with the same error� but after a
very di�erent number of iterations� but it is clear that LSCG can and should be improved�

ART (cyclical)

ART (random)  

EM            

LSCG          

0 5 10 15 20 25 30 35 40 45 50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Iterations

L2
 e

rr
or

Head Phantom (noise sigma=5)
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������ Reconstruction Using Constraints

In this example the EM and the LSCG algorithm has been to reconstruct images of ��� � ���
samples from the sinogram shown in Fig� 	�	�

Figs� 	����	�� �rst show the reconstructed images after � ��� and � iterations using EM
with and without a simple constraints� In this case the constraints are implemented by placing
an ellipse around the reconstructed head� After each iteration the values will be truncated to zero
outside of the head� This is a very simple prior� which actually works out �ne� The following
�gures use the same color scaling in a row� but not in a column� The color scaling has been
truncated to see a reasonable image of the brain� Already after  iterations of EM is instability
found in a single pixel originating from pixels and lines outside of the head� Fig� 	��� uses a
truncated color scaling� but a line can be seen to the right of the head� and Fig� 	��� many
artifacts are found in the image� which at some places have extremely high values� In the �gures
to the right the ellipse is clearly marked and no artifacts are found until after �� iterations� The
reconstructed images appears to be very nice and far better than the one shown in Fig� 	��� where
Filtered Backprojection was used� The intrinsic noise in the sinogram is not dominating in the
reconstructed image� and edges appear to be more sharp� which is a feature that often is reported
in the reconstruction literature�

Next reconstructed images using LSCG are shown in Figs� 	����	���� Note that Figs� 	��� and
	��
 show a very di�erent result than Figs� 	��� and 	���� but after �� iterations the reconstructed
images from EM and LSCG look almost identical in the area of the brain� After � iterations
LSCG shows signs of instability� Low�frequency components dominate the area outside of the
brain� which is major source for the bad performance of LSCG showed in Section 	������ But it
is probably even worse that the values in the interior of the brain �the so called the white matter�
are forced very close to zero� With even more iterations the reconstructed images gets worse�

This example clearly demonstrates the potential of the iterative methods compared to the
�classical� direct reconstruction methods� but it is not a simple task to choose the number of
iterations in a real�world case due to the numerous noise sources�
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�����
 Reconstruction Using Regularization

For the EM and the LSCG methods tests have been conducted using the Laplace operator as a
regularizing operator L� For ART it can be found that the regularization term will add some
��xed� stability� but the regularization parameter � is has no e�ect� due to the update scheme

x�k�
� � x�k� �
�� �lTi x

�k�

�lTi �li
�lTi � x�k� � lTi x

�k�

lTi li
lTi �	�
��

where lTi is certain row of the regularization matrix L� The conclusion is that regularization of
ART will have to be devised with another scheme�

In Fig� 	��� is shown that EM responds very negatively to the extra regularization rows in the
�expanded� system matrix� The sinogram is the same as used in Section 	����� with the noise
amplitude � � �� From the �gure is can be seen that a non�zero � actually implies a faster
divergence and a larger error� This is due to the fact that the extra rows of the system matrix
have a very di�erent statistical nature compared to the original system matrix�

For LSCG with the same sinogram� as shown in Fig� 	���� the regularization term will stabilize
the solution� i�e�� the change in error per iteration is minimized� but it does not lead to a better
solution in terms of L� error�
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��� Summary

This chapter demonstrated reconstruction methods based on linear algebra� It was shown that the
system matrix can be modelled in di�erent ways� here mostly shown from the Radon transform
point of view�

The SVD was then used to indicate the structure of the singular values of the system matrix�
but the SVD is very computationally demanding� hence it has currently a limited value for practical
reconstruction purposes�

Some of the popular iterative reconstruction algorithms have been presented� and a very fast
implementation of iterative reconstruction algorithms� comparable in speed to direct reconstruc�
tion methods� has been presented with theory and examples� The implementation is based on
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��

storing of the system matrix in fast memory using sparse techniques� The approach is mainly
applicable to �D reconstruction� due to the requirements of a su�cient amount of memory� but
in principle the method can also be applied for �D reconstruction�

Examples have been shown demonstrating how di�erent modelling schemes of the system
matrix in�uences on the solution� and the use of constraints and regularization have been shown
in a number of examples� It is also clear the many open ends exist in this �eld� which the number
of publications at conferences and relevant journals clearly demonstrate�
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Chapter ��

The �D Radon Transform for Lines

So far the reconstruction techniques have been related to �D reconstruction� One of the problems
with �D PET scanners is the very low photon e�ciency� The problem is that only a small fraction
of photon pairs are actually detected on the same detector ring� One obvious possibility is to use a
multi ring detector setup where photons pairs can be detected at di�erent rings� as shown in Fig�
����� The basic physics is as described in Section ���� but now the photon pairs can form a line
with �in principle� arbitrary orientation� which leads to a much higher rate of pairs of photons�

This chapter will �rst describe lines in �D� which then is used to generalize the Radon trans�
form for lines in �D� Some direct reconstruction methods are also shown� The implementation
of some of the elements in direct and iterative reconstruction algorithms will be described� A
software package has been developed providing both direct and iterative reconstruction methods�
The chapter will also present some examples to illustrate �D reconstruction�

In recent years commercial �D PET scanners have become available� such as the GE Advance
PET scanner and the Siemens CTI Ecat Exact scanners� Some theoretical issues are still not
fully resolved ��
� and some practical� such as attenuation correction� can still be improved in �D
scanners� Currently the attenuation correction is often based on �D measurements�

In Chapter � it was shown that the �D Radon transform used lines are the fundamental shape�
The Radon transform is also de�ned in higher dimensions ����� and in �D the fundamental shape
is a plane �and not a line in the �D space�� hence the ordinary �D Radon transform cannot be
used� Appendix D describes some of the fundamental properties� along with some reconstruction
methods� and a method for using these techniques to reconstruct volumes from line integrals is
shown�

Figure ���� A multi ring PET scanner where pairs of photons can be detected at di�erent rings�

�	
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���� Lines in a Three Dimensional Space

Lines in a three dimensional space can not be written in a single normal form as in the two
dimensional case� Instead a parameter description can be used� In the following a line description
using four parameters is shown� This description is the basis of direct inversion schemes� In
general a line can be described by

r � r� � s� ������

where s is the free parameter� and r� is an o�set vector� The vector � is a directional vector
which can be normalized to unit length� i�e�� j� j � �� The vector can� e�g�� be described by

� �

�
B� cos � cos�

sin � cos�
sin�

�
CA ������

The base point vector �or o�set vector� r� is described by two parameters u and v using two
directional vectors � and �� both normalized to unit length�

r� � u�� v� ������

The coordinate system is shown in Fig� ����

r0

x

y

z

τ

α

β

Figure ���� The �x� y� z� coordinate system and a line lying along the � �axis� The base point vector
r� can be written as a linear combination of � and ��

It can be chosen that the three vectors � � � and � form an orthogonal basis� and the last
rotational degree of freedom can be used for specifying that the z�component of � is zero� In �����
� and � are de�ned as

� �

�
B�� sin �

cos �
�

�
CA and � �

�
B�� cos � sin�
� sin � sin�

cos�

�
CA ������

It should be mentioned that other symbols of the vectors can be found in the literature� e�g��
���� �� ����
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Following ��
�� line integrals through a three dimensional space can be expressed by the sym�
bols de�ned in Eqs� ���� and ����

�g��� �� u� v� �

Z �

��
g�s� � u�� v�� ds �����

where ��� �� u� v� is the four�dimensional parameter domain and in PET the �measured� values
are still named the sinogram� like in �D�

The mapping from the �x� y� z� domain to �s� u� v� is very useful

r � s� � u�� v� � ������

r �

�
B� x
y
z

�
CA �

�
B� cos � cos� � sin � � cos � sin�

sin � cos� cos � � sin � sin�
sin� � cos�

�
CA
�
B� s
u
v

�
CA � Qp ����
�

Using that the base vectors are orthogonal and normalized to unit length� hence the rotation
matrix Q is unitary� i�e��

p � Q�
r � QTr ������

One feature of the matrix Q is that only two angles are used compared to a general rotation
matrix which uses three degrees of freedom� i�e�� three angles� The de�nition of the line integrals in
Eq� ��� implies that a three dimensional function g�x� y� z� is transformed into a four dimensional
parameter domain �g��� �� u� v�� This change in dimensions will naturally impose some inherent
di�culties to be analyzed later�

It has been chosen to denote the line integrals of g�r� with the symbol �g� It can be argued
that Eq� ��� is not a Radon transform of the function g�x� y� z�� It is not� cf� Eq� D��� a three
dimensional Radon transform nor a four dimensional� but it can be seen as a hybrid or generalized
Radon transform for lines through a three dimensional space�

In the following� Eq� ��� is called the �D line Radon transform or simply the Radon transform�
In the rest of this chapter only the �D line Radon de�nition will be considered� and the actual
parameters will �as previously� uniquely determine which type of transformation is used� From the
de�nition of the �D line Radon transform some basic rules are derived and shown in Appendix E�
Additionally� the Radon transform of simple geometrical functions are given in the same appendix�

The �D line Radon transform can be perceived as a convolution between a function g�r� and
a kernel h expressed in the coordinates p for a given combination of the angles � and ��

h�r� � h�p� � h�s� u� v� � ��u���v� ����	�

which can be seen from the following� where � � � implies a three dimensional convolution in the
parameters �s� u� v��

�g��� �� u� v� � g�r� � � � ��u���v� �������

�

Z �

v����

Z �

u����

Z �

s����
g�s�� � u��� v��� ��u � u����v � v�� ds� du� dv�

�

Z �

s����
g�s�� � u�� v�� ds� �������

Besides the new integration variable s�� the result matches Eq� ����
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At this time it could be appropriate to look back to the two dimensional results� This can be
done by choosing � � �� v � z� and u � �� thus the line integral reduces to

�g��� �� �� �

Z �

��
g�s cos � � � sin �� s sin � � � cos �� z�� ds �������

From Eq� ���� this can be recognized as the ordinary two dimensional Radon transform of the
function in the plane z � z�� where the angular parameter � has been rotated 	� degrees compared
to the de�nition of the two dimensional Radon transform�

����� Limiting the �D line parameters

The angular parameters � and � control the orientation of the line and it is obvious that they can be
bounded as normal spherical angles� i�e�� � 	 �  �
 and �
�� 	 �  
��� This corresponds to
a full angular coverage� but the interval of the ��parameter can further be restricted to � 	 �  
�
due to Eqs� ���� and ����

�g��� �� u� v� � �g�� � 
�����u� v� �������

This little trick will enable a reduction of the parameter domain with a factor of two� The trick
is not used in ��
� and ����� hence the �lters found in these papers will di�er with a constant
�a factor of two� from those presented in the following� This problem relates to the di�erence
between the adjoint and the backprojection operator� which for �D was mentioned in Section 	���

The reconstruction geometry will now be based on truncated elliptical tubes� relevant to multi
ring PET scanners� where the geometry '
 is de�ned as

'
 � f� 	 �  
 � j�j 	 �g �������

where � is called the axial acceptance angle� The geometry� where � � �� i�e�� '� corresponds to
the two dimensional case treated in the previous chapters �see also Eq� ������� and '��� is full
angular coverage� Actually '
 is of interest due to the possibility to derive direct reconstruction
formulas� but actually �D PET scanners do not measure in this geometry � some of the line
orientations are missing� This aspect will be covered in Section �����

The two remaining parameters u and v are translation parameters controlling the position of
the line in a plane perpendicular to the directional vector � � Theoretically u and v� can only be
bounded if it can be assumed that the scanned object is �nite� The origin of the three dimensional
coordinate system is placed �approximatively� at the center of the object� This implies that the
distance from the origin to the outer edge of the object is minimized to rmax� or in mathematical
terms

g�x� y� z� � � for x� � y� � z� � r�max ������

If rmax is found then u and v can be restricted� because the distance from the origin to the volume
element at r � s� � u�� v� are jrj � p

s� � u� � v�� This is due to othonormality of the three
expansion vectors� Assuming that u� � v� � r�max� implies that the integral is zero� because the
function g is zero along the line� This result implies that each of the translation parameters can
be bounded as

�rmax 	 u 	 rmax and � rmax 	 v 	 rmax �������
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���� Fourier Slice Reconstruction in �D

From the line integrals de�ned in Eq� ���� the function g�r� can be recovered using Fourier
techniques� and the Fourier Slice Theorem is now derived for �D line integrals by applying the
two dimensional Fourier transform to each of the �u� v��planes in Eq� ����

�G��� �� 	u� 	v� �

Z �

��

Z �

��
�g��� �� u� v� e�j���u�u�v�v� du dv �����
�

�

Z �

��

Z �

��

Z �

��
g�s� � u�� v�� e�j���u�u�v�v� du dv ds �������

which indicates a close connection to the three dimensional Fourier transform of the function g�r��

G��� �

Z �

��

Z �

��

Z �

��
g�r� e�j��r�� dr �����	�

g�r� �

Z �

��

Z �

��

Z �

��
G��� ej��r�� d� �������

where � is the three dimensional frequency vector�
Now the integration parameters in Eq� ����� is changed into x� y and z� i�e�� r� It is used that

� � �� and � are orthogonal�

r � s� � u�� v� � �������

u � � 
 r and v � � 
 r � �������

u	u � v	v � r 
 �	u�� 	v��� �������

�G��� �� 	u� 	v� �

Z �

��

Z �

��

Z �

��
g�r� e�j��r���u���v�� dr �������

This interesting result shows that the two dimensional Fourier transform of the line integrals is
the three dimensional Fourier transform of the function to be reconstructed ��
��

�G��� �� 	u� 	v� � G�	u�� 	v�� ������

which is a Fourier Slice Theorem for line integrals in a three dimensional space� It implies that the
function g�r� can be recovered by applying a two dimensional Fourier transform to the sinogram
for all values of ��� ��� followed by a mapping of the spectrum� and �nally recovering the desired
volume by using a three dimensional inverse Fourier transform�

G�	u�� 	v�� �

Z �

��

Z �

��
�g��� �� u� v� e�j���u�u�v�v� du dv �������

g�r� �

Z �

��

Z �

��

Z �

��
G��� ej��r�� d� �����
�

A non�trivial problem arises when implementing the mapping of the spectrum� Each frequency
point � is mapped into 	u�� 	v�� but � is a three�dimensional vector and 	u� � 	v� has four
degrees of freedom� This implies that each � matches an in�nite set of parameters ��� �� u� v��
One possible solution is to use weighted averages of the possible �D frequency vectors for each
value of �� and this problem is still an area of active research� though in ��	� several aspects have
been covered�
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���� Backprojection Based Inversion of Line Integrals in �D

Analogous to the �D Filtered Backprojection� it is possible to �lter the line projections and then
make a backprojection of the sinogram into the volume domain �x� y� z� ��
�� The backprojection
operator in �D is now analyzed from the transformation of a point source� Again� it is used that
any function can be resolved into a weighted sum �integral� of delta functions�

g�r� �

Z �

��

Z �

��

Z �

��
g�r�� ��x� x����y � y����z � z�� dx� dy� dz� �������

�
Z �

��
g�r�� ��r � r�� dr� �����	�

This implies that the corresponding Radon transform is given by

�g��� �� u� v� �

Z �

��
g�r��

�Z �

s���
��s� � u�� v� � r�� ds

�
dr� �������

This shows that any function g�r� can be Radon transformed� if the point source can be trans�
formed� Now this will be done�

gp�r� � ��r � r�� � �������

�gp��� �� u� v� �

Z �

��
��s� � u�� v� � r�� ds �������

�

Z �

��
���s� s��� � �u� u���� �v � v���� ds �������

�

Z �

��
���s� � �u� u���� �v � v���� d�s �������

Here the unambiguous substitution r� � s�� � u�� � v�� has been used� Using that the delta
function will be non�zero if and only if the argument is a zero length vector implies that the result
will be non�zero only if u � u� � r� 
 � and v � v� � r� 
 �� and because the base vectors are
orthogonal the result can be expressed using the delta function�

�gp��� �� u� v� � ��u� u����v � v�� � ��u� r� 
 ����v � r� 
 �� ������

This can also be found directly from Eq� ������ It is a very important result which can be used
to formulate a backprojection operator in �D ��
��

�g �

Z
�
�g��� �� u � r
�� v � r
�� d' �

Z �

���

Z 


���

�g��� �� u � r
�� v � r
�� cos� d� d� �������

For convenience the integration over angles is written as a single integral with index '� If the
geometry is� e�g�� '
 the integration becomes the last part of Eq� ������ where the term cos� is
the Jacobian� found when converting to spherical coordinates�
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���� Filtering after Backprojection of Line Integrals in �D

Like in two dimensional backprojection algorithms� a high pass �lter is needed either before or
after the backprojection ��
�� In this section the aim is to �nd a condition for the �lter used after
backprojection� i�e�� on the volume� It can be derived by backprojecting the Radon transform of
a function g� Inserting Eq� ��� in ����� gives

�g�r� �

Z
�

Z �

s���
g��r 
 ���� �r 
 ��� � s� � ds d' �����
�

Now it is utilized that the s�integration can be shifted along the � �axis� like it was done from Eq�
����� to ������ Here the o�set is chosen to r 
 � �

�g�r� �

Z
�

Z �

s���
g��r 
���� �r 
 ��� � �r 
 � �� � s� � ds d' �������

�

Z
�

Z �

s���
g�r � s� � ds d' �����	�

which can be recognized to be a convolution� thus a �D Fourier transform can be applied on both
sides�

�G��� �

Z
�

Z �

s���

Z �

r���
g�r � s� � e�j����r dr ds d' �������

�

Z
�

Z �

s���

Z �

�r���
g��r� e�j������r�s� � d�r ds d' �������

�

Z
�

Z �

s���
G��� ej��s��� ds d' �������

�

Z
�
G���

�Z �

s���
ej��s��� ds

�
d' �������

� G���

Z
�
��� 
 � � d' � G���

Ha���
�������

This result is a �D Filtering after Backprojection reconstruction method� The spectrum of
the backprojected sinogram is multiplied with the �lter Ha���� shown in Eq� ����� Finally Eq�
����� is used recover the desired volume�

Ha��� �
�R

� ��� 
 � � d'
������

In the geometry '
� the �lter can also be found on an analytical form� Several papers� e�g�� ����
�
�� have shown di�erent �lters� which again have been shown to only di�er with a normalization
constant� Due to the circular symmetry around the z�axis the �lter can be calculated� with 	y�
i�e�� the y�component of the frequency vector� set to zero�Z

�
��� 
 � � d' �

Z 


���


Z �

���
��	x cos � cos�� 	z sin�� cos� d� d� �������

� �

Z 


���


Z ���

���
��	x cos � � 	z tan�� d� d� �����
�

� �

Z �

����

�

j	x sin ��j d� where

�
� � minf�� j arctan�	x�	z�jg
	x cos �� � 	z tan� � �

�������

� �

Z �

����

cos�q
	�x � �	�x � 	�z � sin

� �
d� �����	�
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The symmetry of the integral is used again to get the general result� i�e�� in the last line j	xj is
substituted back to

q
	�x � 	�y � and the result is

Ha��� �

����
���

�
� if

q
	�x � 	�y  j�j sin�

�

�
� arcsin

�
j�jp
��x��

�
y

sin�

���

otherwise

������

Two things can be noted in Eq� ����� First� letting � � 
�� implies full angular coverage
and Eq� ���� becomes very easy� i�e�� Ha��� � ��
� On the other hand letting � � � implies

that the �lter becomes close to Ha��� �
q
	�x � 	�y������ If neglecting the normalization constant

�� the �lter can be recognized as the �lter used in �D Filtering after Backprojection� cf� Eq� 
����
In Fig� ���� is shown the angular dependence of the �lter from Eq� ����� The �lter has been
multiplied by ��j� j and on the �rst axis is shown the angle �� � arcsin�	z�j�j��
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Figure ���� Normalized angular part of the �lter as a function of 
�  arcsin��z�j�j� for � 
�
�� 	
�� � � � � �
��

���	 Filtered Backprojection of Line Integrals in �D

Analogous to the two dimensional Filtered Backprojection method� the �ltering can be done
before the backprojection of the line integrals in �D� Here a two dimensional �lter hb��� �� u� v� is
convolved in the �u� v��plane of the sinogram for each value of ��� ��� After the �ltering shown in
Eq� ����� the backprojection operator is used as shown in Eq� �����

��g��� �� u� v� � hb��� �� u� v� � ��g��� �� u� v� ������

�

Z �

u����

Z �

v����
hb��� �� u� u�� v � v�� �g��� �� u�� v�� du� dv� ������

g�r� �

Z
�

��g��� �� r 
 �� r 
 �� d' ������
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Section ��	 Filtered Backprojection of Line Integrals in �D 
��

The criterion that the �lter in �D Filtered Backprojection will have to satisfy can be derived
by choosing g�r� as a point source and requiring that Eqs� ���� and ���� are self�consistent�
i�e��

g�r� � ��r� � �g��� �� u� v� � ��u���v� � ������

��r� �

Z
�
hb��� �� r 
 �� r 
 �� d' �����

The last equation can also be viewed in the �D Fourier domain

� �

Z
�

�Z �

��

Z �

��

Z �

��
hb��� �� r 
�� r 
 �� e�j����r dr

�
d' ������

�

Z
�

�Z �

��

Z �

��

Z �

��
hb��� �� u� v� e

�j���s����u����v���� dp

�
d' ����
�

�

Z
�
Hb��� ��� 
��� 
 ��

Z �

��
e�j��s��� ds d' ������

�

Z
�
Hb��� ��� 
��� 
 �� ��� 
 � � d' ����	�

where the �D Fourier transform of the �lter has been used

Hb��� �� 	u� 	v� �

Z �

��

Z �

��
hb��� �� u� v�e

�j���u�u�v�v�du dv �������

In a given geometry� several �lters are valid ��
�� due to the �D to �D transformation during
reconstruction� In general� part of the �lters belong to a null�space� which could be used to
improve noise performance without altering the signal reconstruction� though more research is
needed to derive appropriate �lters�

In ��
� a criterion is given which makes Filtered Backprojection in a sense equivalent to
Filtering after Backprojection�

Hb�	u� 	v� � Ha�	u�� 	v�� �������

De�ning 	x � 	u�x� 	v�x and 	y � 	u�y � 	v�y� then Eqs� ���� and ����� imply that one valid
�lter is

Hb�	u� 	v� �

����������
���������

p
��u��

�
v

� if
q
	�x � 	�y  j�j sin�

q
	�u � 	�v

� arcsin

�
�p	�u � 	�vq

	�x � 	�y
sin�

�
A

otherwise �������

In the geometry '���� the �lter is very simple

Hb��� �� 	u� 	v� �
�




q
	�u � 	�v �������
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The '�����lter can be validated by inserting Eq� ����� in ���	�Z
����

Hb��� ��� 
 ��� 
 �� ��� 
 � � d' �������

�
�




Z
����

q
�� 
 ��� � �� 
 ��� ��� 
 � � d' ������

�
�




Z
����

q
�� 
 ��� � �� 
 ��� � �� 
 � �� ��� 
 � � d' �������

�
�




Z
����

j�j ��� 
 � � d' � � �����
�

In the last line the result from Eqs� ���������� are used� with � � 
���

���� Reconstruction Scheme for �D Multi Ring PET Scanners

One of the fundamental problems in �D PET reconstruction is that the '
 geometry de�ned in
Eq� ����� does not perfectly match the measuring situation with multi ring PET scanners� In
order to detect many events �detection of paired photons� a large scanner is needed� which leads
to a high value of �� but it can be shown� e�g�� �
�� that a large value of � implies that scanners
will lack some areas of the sinogram� The relative importance of this problem increases with ��

In the very famous article �
�� by Kinahan� Harrop and Rogers� a three�stage process is pro�
posed� namely that a crude volume� actually a set of axial slices� is reconstructed from the events
lying �approximately� in the same axial plane� cf� Eq� ������ using �D Filtered Backprojection�
From this volume of reconstructed slices� the missing parts of the four�dimensional sinogram can
be generated using the Radon transform� Eq� ���� Finally� the complete sinogram are used to
reconstruct the volume using either Section ���� or ���� An implementation is reviewed in �
���
where it is shown that the approach is viable and it is shown that an improvement of the volumes
quality is obtained� compared to �D reconstruction of the axial planes from the sinogram� The
implementation was done on a VAX ��� where the total reconstruction algorithm requires ���
minutes for a volume of ��� � ��� � � voxels and a sinogram with 	 � �� � ��� � � samples�

This technique has become very popular� Currently� almost all �D reconstruction articles relate
their results to this method and the Kinahan ( Rogers reprojection technique �called �DRP in
������ is also used in commercial scanners�

It should be mentioned that other strategies exist to reconstruct volumes from line integrals�
In ����� the SSRB method �Single Slice Rebinning� is presented� A simple approximation is
used� namely that the four�dimensional sinogram �rst is rebinned into a set of �D sinograms�
by projecting onto the nearest axial slice� These �D sinograms are then reconstructed using
�D techniques� This approach is much faster� and can be implemented using signi�cantly less
memory� compared to the #true$ �D reconstruction techniques� In ����� a comparison has been
made showing that for a PET scanner with � � 	� the SSRB method can essentially be as accurate
as the �DRP method� and for the HEAD PENN�PET scanner with � � �
� �developed at the
University of Pennsylvania� a more accurate reconstruction is found using �DRP�

Another strategy has recently been developed by Defrise ������ Basically the idea is like
the SSRB� i�e�� to map the �D sinogram onto a set of �D sinograms� but here the mathematical
development is based on a frequency�distance relation in the sinogram� In this method the Fourier
transform of the �D sinogram is mapped onto a set of �D sinograms in the Fourier domain� For
practical PET usage this method will also need additional parts of the sinogram found by use of�
e�g�� the Kinahan ( Rogers technique�
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Section ��� A �D Reconstruction Package 
�	

As stated in Section 	��� one of the bene�ts of using iterative reconstruction methods is that
an irregular geometry is �in principle� easily supported� hence the reprojection step described
above can be avoided� In ����� �D iterative reconstruction algorithms �ART and EM� have been
tested along with the �DRP method� The conclusion was that ART gave the highest Signal to
Noise ratio� closely followed by �DRP� Another conclusion was that the EM method apparently
performed worse� In their example the reconstruction required ���� hours for ART� ��� hours for
�DRP� and ����� hours for EM� These measurements correspond to a SUN Sparc ���

���� A �D Reconstruction Package

A software package for �D reconstruction of volumes from line integrals has been developed� The
package has been written in C for Unix systems� and is available for free at ����� The package has
been tested on Linux systems� and on an Onyx�computer from Silicon Graphics �SGI��

Going from �D to �D reconstruction one major di�erence is the size of the inversion problem�
as the examples mentioned in Section ���� indicated� A practical reconstruction program �direct
or iterative� will include several steps� of which �ltering� Radon transform� and the backprojection
is the most time consuming �the actual elements depend on the algorithm�� In the implementation
these central elements have been written to run e�ciently on a single processor system� as well as
in parallel on an Onyx using the Iris Power�C compiler� Compiler options has been added to the
code to enable parallel execution� and one of the nice features of the SGI implementation is that
the code still can be compiled on any other Unix machine� e�g�� a Linux box� where the additional
parallel compiler options will be ignored�

The reconstruction program #Recon�D$ is intended for testing of di�erent �D reconstruction
algorithms� and no Kinahan ( Rogers reprojection step is currently included� in order not to mix
�D and �D algorithms� but all of the tools for implementing the reprojection step are available�

The program will require a uniformly sampled sinogram� as it will shown in Eq� ������ based
on the '
�geometry and the reconstructed volumes will also be sampled uniformly� The value
of � is de�ned by the user� The package also includes the program #�D RadonAna$� which has
been developed for generating a volume and the corresponding four�dimensional sinogram from a
set of scaled� translated� and rotated primitives� This program is based on the properties shown
in Appendix E and especially Section E��� The usage of the program is shown in Appendix F� In
the following section the implementation of the Radon transform operator and the backprojection
operator are shown� which cover two of the central elements of the software package�

���� Implementation of the �D Reconstruction Methods

It has been shown that reconstruction of volumes from �D line integrals can be done by �ltering�
either the projections� cf� Eq� ������ or the backprojected volume� cf� Eq� ����� The implement�
ation is a straight forward generalization of the �D reconstruction implementation discussed in
Chapter �� but the �lters are not as simple� if the limiting angle �  �

� � Again� apodizing windows
should be multiplied to the �lters in order to limit the in�uence of noise�

Here the reconstruction algorithms are based on the geometry '
� and the parameters in the
parameter domain are sampled uniformly

� � �p � �� � p �

P�
 � p � �� �� � � � � P � �

� � �t � t �T � t � �� �� � � � � T � �
u � ui � umin � i!u� i � �� �� � � � � I � �
v � vj � vmin � j!v� j � �� �� � � � � J � �

�������
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where !� � �

P�
 � !� � �

T � �min � �� and �min � �� have been inserted�
The parameters of the reconstructed volume are also samples uniformly

x � xk � xmin � k!x� k � �� �� � � � �K � �
y � yl � ymin � l!y� l � �� �� � � � � L� �
z � zm � zmin �m!z� m � �� �� � � � �M � �

�����	�

Note that a measured sinogram must be resampled �rebinned� into this geometry and missing
parts of the sinogram can be estimated using the Kinahan ( Rogers reprojection technique�

����� Implementation of the Backprojection Operator

The backprojection operator can be approximated by a sum� here shown using a nearest neighbour
approximation

�g�rk�l�m� �

Z �

���

Z 


���

�g��� �� u � r 
�� v � r 
 �� cos� d� d� ����
��

� !�!�
P�
X
p��

cos�p

T�
X
t��

�g

�
t� p�

�
rk�l�m 
 �p�t � umin

!u

�
�

�
rk�l�m 
 �p�t � vmin

!v

��
����
��

In Algorithm ���� the implementation of the backprojection operator is shown� when using
nearest neighbour interpolation� Better interpolation schemes� such as bilinear interpolation in
the u and v parameters� can easily be included�

It has been shown that all of the reconstruction methods are heavily based on projections
of the directional vectors �� �� and � onto the volume coordinates r� In order to speed up the
reconstruction algorithms� the vectors � � ��x� �y� �z�

T � � � ��x� �y� �z�
T � and � � ��x� �y� �z�

T �
should be computed once� for all values of �p� t�� This can be done rather e�ciently and will
only require six matrices� In Algorithm ���� the arrays are assumed given� e�g�� alpha x�t� p� �
�x��t� �p�� For further optimization� the double loop of all possible angles ��� �� can be combined
into one loop� and the values of x�k�� y�l�� and z�m� should be moved to simple variables before
entering the inner loops� In this way many of the array calculations can be avoided� Additional
optimization techniques have been shown in Chapter � for the �D Radon transform�

For each value of �t� p�� Eq� ���
� requires that the u� and the v� values lies within the bounds
shown in Eq� ������ One scheme to avoid this time�consuming testing is to expand the sinogram
in the u and v direction �by padding with zeros at the edges�� though this might not be desirable�
due to the memory requirements �a measured sinogram from a GE Advance PET scanner can
require about � MBytes of memory�� For the expansion� it can easily be shown that

��max jrk�l�mj � umin

!u

�
	 i 	


max jrk�l�mj � umin

!u

�
����
����max jrk�l�mj � vmin

!v

�
	 j 	


max jrk�l�mj � vmin

!v

�
����
��

Another scheme to avoid the index testing� could be to compute the intervals of �p� t�� which
will give legal values of u and u� cf� Eq� ������ In principle this is viable� but might require more
computations compared to the reduction being o�ered by this alteration�
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 Implementation of the �D Reconstruction Methods 
�


Algorithm ���� � Backprojection Operator in �D

For k�� to K�	 ��For all values of x
For l�� to L�	 ��For all values of y
For m�� to M�	 ��For all values of z
sum�� ��Initialize sum
For p�� to P�	 ��For all values of phi
sump�� ��Initialize sump
For t�� to T�	 ��For all values of theta
u�x�k��alpha x�t�p��y�l��alpha y�t�p��z�m��alpha �t�p� ��Calculate u value
i�round��u�u min��Delta u� ��Calculate i index
If �	iI ��Check if index is valid
v�x�k��beta x�t�p��y�l��beta y�t�p��z�m��beta �t�p� ��Calculate v value
j�round��v�v min��Delta v� ��Calculate j index
If �	jJ ��Check if index is valid
sum�sum�g radon�t�p�i�j� ��Update sum

End
End

End
sum�sum�sump�cosphi�p� ��Update sump

End
g backproject�k�l�m��sum�Delta rho�Delta phi ��Store result

End
End

End

The number of loops shown in Algorithm ���� illustrates that the complexity of backprojection
is high� namely

O�D Backprojection � O�KLMPT � ����
��

Hence� the complexity increases with the number of voxels in the reconstructed volume times the
number of angular samples in the sinogram� and it indicates that the backprojection operator is
a rather demanding operation�

One nice feature is that Algorithm ���� can be parallelized very easily� On the Onyx�computer
using Iris Power�C� it was concluded that the parallel chunks of code should be as large as possible�
and in Section ���	 it will be shown that splitting the outer�most loop of the algorithm� i�e�� the
k�loop on four processors leads to a very good performance�

����� Implementation of the Radon Transform Operator

An implementation of the Radon transform de�ned in Eq� ��� will now be shown� This operator
is needed for the Kinahan ( Rogers reprojection methods and for any of the iterative methods
presented in Chapter 	�

�g��� �� u� v� �

Z �

��
g�s� � r�� ds� where r� � �x�� y�� z��

T � u�� v� ����
�

�

Z �

��
g�s�x � x�� s�y � y�� s�z � z�� ds ����
��

In order to avoid the problems with too high slopes� analogous to the problems pointed out in
Section ��
� the line integral is projected onto the axis with maximum absolute component of the
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directional vector relative to its sampling interval� It can be mentioned that this strategy also was
applied for the �D Radon transform in Section ���� Assume that the projection is made onto the
x�axis j�xj

!x
�
j�yj
!y

and
j�xj
!x

�
j�yj
!y

����

�

Then the �D Radon transform can be rewritten

�g��� �� u� v� �

Z �

��

�

j�xjg
�
x� xy�x� � y

�x�
� � xz�x� � z

�x�
�

�
dz ����
��

where

y�x� �
�y
�x

and y
�x�
� � y� � y�x�x� ����
	�

z�x� �
�z
�x

and z
�x�
� � z� � z�x�x� �������

where the exponent �x� merely means with respect to x�
A simple discretization� which will require few calculations each time� can now be derived

from Eqs� ����	� ���
�� ���
	� and ������

�g��� �� u� v� � !x
K�
X
k��

g

�
k�

�
xky

�x� � y
�x�
� � ymin

!y

�
�

�
xkz

�x� � z
�x�
� � xmin

!z

��
�������

� !x
K�
X
k��

g
�
k�
h
a�x�y k � b�x�y

i
�
h
a�x�z k � b�x�z

i�
�������

where a�x�y �
�y
�x

!x

!y
and b�x�y �

�y
�x

�xmin � x��

!y
�
y� � ymin

!y
�������

a�x�z �
�z
�x

!x

!z
and b�x�z �

�z
�x

�xmin � x��

!z
�
z� � zmin

!z
�������

With respect to the high slope problem� Eq� ���

 implies that



a�x�y




 	 � and



a�x�z




 	 �� i�e��

a step from k to k � � in the sum shown in Eq� ������ will not lead to a step in l or m greater
than ��

The discrete implementation of the Radon transform is also quite demanding� due to the
complexity

O�D Radon transform � O�PTIJK� ������

which accounts for the number of times where the projection is made onto the x�axis� For pro�
jection onto the y� and z�axis similar expressions are found� with K substituted by L and M �
respectively�

If either the absolute y� or z�component of � is the greatest� then it is very easy to derive
almost identical formulas� and the formulas will only require swapping of symbols compared to
the ones shown above� In Algorithm ���� the implementation of the discrete �D Radon transform
is shown using a nearest neighbour approximation� but� e�g�� bilinear interpolation in the y and
z coordinate can easily be incorporated� The algorithm only shows the case where Eq� ���



is ful�lled� The algorithm uses the discrete variables a y � a
�x�
y � a z � a

�x�
z � b y � b

�x�
y � and

b z � b
�x�
z � Two very similar algorithms are needed to cover projection onto the y�axis and the

z�axis� respectively�
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Section ��� Examples of �D Reconstructed Volumes 
��

Algorithm ���� � Discrete �D Radon Transform

For p�� to P�	 ��For all values of phi
For t�� to T�	 ��For all values of theta
For i�� to I�	 ��For all values of u
For j�� to J�	 ��For all values of v
Assuming Eq 	��� is ful�lled
Set a y� b y� a z� and b z from Eqs 	��� and 	���
sum�� ��Initialize sum
For k�� to K�	 ��For all values of x
l�round�a y�k�b y� ��Calculate y�index
If �	lL ��Check if index is valid
m�round�a z�k�b z� ��Calculate z�index
If �	mM ��Check if index is valid
sum�sum�g�k�l�m� ��Update sum

End
End

End
g radon�p�t�i�j��sum�Delta x ��Update Radon domain

End
End

End
End

��� Examples of �D Reconstructed Volumes

In this section a few examples of �D reconstruction using #Recon�D$ are given� The �D visu�
alization has been done using either the commercial package IDL� or combination of the #Polyr$
program ���	� and the excellent Geomview program� available for free at ������ Polyr can convert
volumes into a mesh of triangles� The mesh is a iso�surface though the volume for a certain
user�de�ned threshold level� The mesh can be imported directly into Geomview for interactively
inspection of the �D object�

����� Reconstruction of a Ball

The �rst example concern reconstruction of a homogeneous ball� cf� Subsection E����� In this case
the axial limiting angle � was set to 	��� Here the reconstructed volume has � � � � � voxels
and the �noise free� sinogram uses P � ��� T � ��� and � � � samples in each of the �u� v�
planes� Both the volume and the sinogram requires roughly �� MBytes of memory�

In Fig� ����� �D Filtered backprojection has been used to reconstruct the ball� and in Fig� ���
�D Filtering after Backprojection� In both cases an iso�surface has been generated using IDL�
and a slice has been inserted to show the volume values in that plane� The �gures indicate that
the ball has been recovered well� though the edges of the ball is somewhat blurred� This could be
expected� due to the low number of samples in both domains� The �gures are not intended for
quantitatively evaluation of the reconstruction results� but illustrates which kind of tools can be
used to visualize �D reconstructed volumes�
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Figure ���� Reconstructed ball using �D
Filtered Backprojection�

Figure ���� Reconstructed ball using �D Fil�
tering after Backprojection�

Next the iterative reconstruction methods ART and EM have been used to reconstruct the
same ball� For ART some artifacts were be found� while EM is very successful� The values outside
of the ball are very close to zero� Here �gures like Fig� ���� has been omitted� due to the high
similarity to the one shown above� For ART the sinogram entries were chosen randomly� though
with a large axial acceptance angle �� it was experimentally found useful to use a weight function
favoring the line orientations perpendicular to the z�axis� i�e�� favoring a small value of �� Assume
� � 	��� and a uniform random weighing scheme to select the sinogram index in ART� cf� Section
	��� In that case many of the lines orientations through the scanned object will be close� and ART
will converge very slowly or produce artifacts� cf� Fig� 	���

For the Onyx� Table ���� shows the times needed to reconstruct the ball� obtained with and
without parallel options enabled� When running in parallel� the program will use four ��� MHz
MIPS R���� processors�

For Filtering Backprojection running in parallel the �ltering required ���� sec and the back�
projection required ��	 sec� The same �gures for one processor are ���� sec and ���	� sec� In
the software package the e�orts were concentrated on the backprojection� and here a speedup
factor of �� was obtained on four processors� Filtering after Backprojection gets slower because
the sinogram is being backprojected into a larger volume in order to avoid edge e�ects� and the
speedup factor is somewhat lower due to a larger part of the total time is assigned to �D �ltering�
based on a multi�dimensional FFT �currently� running on a single processor� For reference� the
much cheaper Pentium ��� MHz running Linux can reconstruct the same volume in �� sec� when
using Filtered Backprojection�

From Table ���� is can be seen that ART actually gets slower when running in parallel mode�
In each iteration of ART� the part of the program running in parallel is the Radon transform of
the volume for one single parameter vector� The size of code assigned to each processor is here
very small� and most of the time the four processors are waiting to synchronize their operation�

����� Reconstruction of the Mickey Phantom

In this example the axial acceptance angle has been reduced to merely � � 	�� The volume was
centered around ��� �� �� and sampled with !x � !y � !z � ��� and K � L � M � 
�� which
requires ��� MBytes of memory� In the sinogram T � 	�� P � ��� I � J � ��� and !u � !v � �
were used� and the sinogram requires ���
 MBytes of memory�
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Algorithm FB FAB ART EM

Time in seconds on one processor ��� �� � �
Time in seconds running parallel ��� �� �	 ��

Speedup factor �� ��� ��� �

Table ���� Reconstruction time for reconstruction of the ball using Filtered Backprojection �FB��
Filtering after Backprojection �FAB�� one full iteration of ART� and �nally one iteration of EM� All
times are measured in seconds on an Onyx�

Using �D Filtering after Backprojection� the reconstructed volume has been visualized using
Polyr and Geomview� Fig� ���� shows the result� which looks like the original Mickey Mouse
phantom� In Figs� ���
 and ���� the reconstructed central �x� y� and �y� z� planes are shown� The
following �gures use individual color scale according to the minimal and maximal value� This
phantom has the value ��� inside the #skull$ and a small #tumor$�ball with radius of � and value
��� placed at ��� �� ��� The tumor is visible but blurred� but it is clear that the general structures
have been recovered well� The reconstructing required �
� sec on a ��� MHz Pentium� and here
the sinogram was backprojected onto a ����������� volume in order to use radix�� FFT �ltering�
No apodizing windows have been used� and is probably the reason for the ripples outside of the
phantom�

Figure ���� The Mickey phantom�

Next Filtered Backprojection has been used to reconstruct the same phantom� The total
reconstruction used ���	 sec on the ��� MHz Pentium� divided in 
 sec for the �ltering� ����
sec for the backprojection and � sec for additional minor operations� Figs� ���	 and ����� show
the central �x� y� and �y� z� planes for Filtered Backprojection�

Finally� �ve iterations using the EM algorithm has been used� Fig� ����� and ����� again show
the �x� y� and �y� z� planes� It is obvious that additional iterations are needed� and the images
look blurred�
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��

����� Summary

In this chapter several methods have been described for reconstruction of volumes from their line
integrals� which is very relevant for �D PET scanners� It has been shown that the measured sino�
gram in this case becomes four dimensional� and the reconstructed volumes are three dimensional�
The problems with this change in dimensions have been outlined� but more research is needed in
this area�

The implementation of two of the central elements of reconstruction algorithms have been
shown� and aspects of parallel implementation are given� The theory has been implemented in
a software package� where both direct and iterative reconstruction methods are available� The
package also includes a program for generation of synthetic sinograms and the corresponding
volume� This is very useful when testing the reconstruction methods�

The software package is working� but some parts of the package can be improved with respect
to the tradeo� between the degree of approximation and the time needed to reconstruct the
volumes� Especially the use of apodizing windows in the algorithms could be investigated� and this
will de�nitely alter how the reconstruction algorithms are in�uenced by noise� That is why only
a few examples have been presented with sparse information on the quantitatively performance
of the individual algorithms�
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Chapter ��

Noise Contributions from Blank�

Transmission and Emission Scans in

PET

This chapter describes quanti�cation of noise contributions in PET� and is more practically ori�
ented than the previous chapters� This work has been carried out at the National University
Hospital in Copenhagen �Rigshospitalet� �
� ���

���� Introduction

PET scans require correction for attenuation in order to be quantitative� cf� Eq� ����� Even in
brain activation studies where absolute units are often replaced by relative values �i�e�� normalized
to a mean value�� inter�individual comparisons still assume that values across an image re�ect
the local tracer concentration� Corrections can be applied� e�g�� by assuming uniform values of
attenuation within geometrically de�ned boundaries or in segmented areas of the image� but a
more accurate description of the attenuation requires measurement by a transmission scan�

Unfortunately the attenuation correction also adds noise to the image and adds to the total
procedure time� In some cases� mainly in body scanning� the increase in noise is immediately
noticed and may even be so high that quanti�cation must be sacri�ced in order to provide a reas�
onable visual impression� However� in other situations� e�ects that are invisible for the human
observer might still be of importance when examining the subtle di�erences of brain activation
by statistical methods� The purpose of this work is to establish guidelines for the relative import�
ance of the noise contributions from blank� transmission� and emission scans in typical imaging
situations�

Although much information can be deduced theoretically from existing knowledge of recon�
struction algorithms ����� ��� ����� here a mainly experimental approach has been applied� The
limitations in generality caused by the obvious di�culty of varying all of the many possible para�
meters of acquisition and reconstruction are outweighed by the advantage of the close reproduction
of actual scan setups� including some human studies� The following section describes the model
used for �tting to the observed data� It should not be considered as a rigorous derivation" it
merely lists the di�erent structures of the datasets included in the study comprising homogeneous
as well as inhomogeneous objects�

�
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���� Theory

Due to the the linearity of the reconstruction process when using direct reconstruction methods�
such as Filtered Backprojection� the PET images �volumes� denoted xi� can be described as
a weighted sum of the sinogram values sj� with weight factors �ij corresponding to the linear
reconstruction algorithm� cf� 	���

xi �
X
j

�ijsj ������

where the actual image pixel �voxel� is denoted by i� and j denotes the pixel position in the
sinogram�

In order to compensate for attenuation the sinogram used for reconstruction is calculated from
an emission sinogram ej� a transmission sinogram tj� and a blank scan bj � In Eq� ���� it is shown
that calculation basically amounts to

sj �
ejbj
tj

������

although this in practice usually is quali�ed by a �ltering of the factor
bj
tj
�

All three types of sinograms in principle inherit their statistical properties from the Poisson
statistics of the radioactive decay� A number of corrections that are performed before the stage
of reconstruction described here� however� adds to the raw counts� noise� The overall e�ect of
correction for randoms and scatter can be described as a decrease in e�ective counts� the resulting
�gure being widely known as Noise Equivalent Counts �NEC� ���
� ����� A practical formulation
used in this work is�

NEC � T ��� SF��

� � �f RT
������

where T is true counts �including scatter�� R is random counts from the full �eld�of�view� f is the
fraction of the sinogram covered by the object under investigation� and SF is the scatter fraction�
In all applications of NEC in this study� the value of SF has been set to zero�

While NEC as a global measure may be adequate for the noise description in the case of homo�
geneous phantoms extending the full axial �eld�of�view �AFOV�� objects of limited extension may
be better characterized by a value per slice� In the following� all NEC values quoted correspond
to a single slice�

������ One Emission and One Transmission Scan

In the simplest case where the image noise is estimated from a single image set� using a Taylor
expansion and assuming no noise correlation between pixels in the reconstructed images implies
that the pixel noise variance V fxig can be estimated by

V fxig �
X
j

��ijV

�
ejbj
tj

 
�
X
j

��ijE
�fsjg

�
V fejg
E�fejg �

V fbjg
E�fbjg �

V ftjg
E�ftjg

�
������

Due to the Poisson statistics the variance in the emission sinogram relative to the squared mean

value
V fejg
E�fejg

is inversely proportional to the mean of an in�nite amount of experiments Efejg�
i�e�� inversely proportional to number of counts NEC in the emission sinogram� Similar arguments
can be used for the transmission and blank scan terms� hence the total pixel variance normalized
with the mean of the image can be modelled by

V fxig
E�fxig �

a

NEC
� b�

c

Tt
�

d

Tb
�����
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where Tt is the transmission scan time in seconds� Tb the blank scan time in seconds �for the given
geometry and source strength�� In the model a base term b is included to accommodate e�ects
in the reconstruction process� not explained by the other terms� e�g�� varying sensitivity of the
detectors� not properly corrected for by normalization� For �xed values of �either� Tt or Tb the
corresponding terms may also be thought of as part of this constant term� The model applies to
regions with limited structural variation� hence measuring variance in a heterogeneous object like
the brain or the thorax is problematic�

������ Two Emission Scans

To overcome the problem with heterogeneous structures the di�erence between two PET images�

corresponding to two equivalent but independent emission scans e
�
�
j and e

���
j � can be calculated�

Due to Eqs� ���� and ���� the di�erence image is given by

xi �
X
j

�ij
�
e
���
j � e

�
�
j

� bj
tj

������

Using a Taylor expansion� and using that the two emission scan have the same mean values Efejg
and variance V fejg implies that

xi �
X
j

�ij
��
e
���
j �Efejg

�
�
�
e
�
�
j �Efejg

�� Efbjg
Eftjg ����
�

Thus the variance V fxig is given by

Vtwo e�scansfxig � �
X
j

��ijE
�fsjg V fejg

E�fejg ������

Normalized with the squared mean of the heterogeneous structure and using the same de�nition
of constants as in Eq� ��� gives that

�

�

Vtwo e�scansfxig
E�fxig � a

NEC
����	�

Thus only the emission term of the noise variance can be estimated from two emission scan and
one transmission scan� This result somewhat surprising� but is also found in the measurements�
Since all structural information is removed by using di�erences� no constant term �b� can appear�

If instead two transmission scans �and one emission scan� are available� it is easy to show
that two times the transmission variance can be estimated �and only that� from a normalized
di�erence image�

������ Two Emission and Two Transmission Scans

Using the same Taylor technique with two sets of emission scans and two transmission scans� it
can be shown that

�

�

Vtwo e and t�scansfxig
E�fxig � a

NEC
�

c

Tt
�������

This implies that both the emission and transmission term can be estimated in the inhomogeneous
case if a double set of independent and equivalent emission and transmission scans are measured
and reconstructed pairwise� Note that any normalized variance shown in the following has been
divided by two if measured from two scans� cf� Eqs� ���� ���	 and ������

c�Peter Toft ����




�� Chapter 

� Noise Contributions from Blank� Transmission and Emission Scans in PET

������ Zeroes in the Transmission Sinogram

A common problem especially in body scanning is zeros in the transmission sinogram due to huge
attenuation leading to few counts and poor statistics in the transmission sinogram� One option is
to replace the zeros with a small number T�� so the attenuation correction can be done using Eq�
����� Although over�ow is avoided this may imply that reconstructed images contain strong lines
causing a signi�cant change in the noise structure� Let Z be the set of j� where the measured tj
is zero� Assume that the variance of the blank scan is negligible and further that only the terms
with zeros e�ectively contribute to the noise� In this case

V fxig �
X
j	Z

��ijV

�
ejbj
T�

	
�
X
j	Z

��ijV fejg
E�fbjg
T �
�

�������

This indicates that the number of zeros �through the sum� and the variance on the emission scan
determines the noise level� Hence the variance normalized with the squared mean is approximately
proportional to the number of zeros and inversely proportional to NEC� In the limit where this
kind of noise is dominating� however� the reconstructed images consist of many lines and become
useless anyway�

�����
 Limitations

Using either of Subsections ������� ������� or ������ to estimate the noise terms� we estimate the
noise variance from a chosen ROI �region of interest� and normalize with the squared mean of the
ROI� Due to the global features in the reconstruction process the noise tends to have only a very
small correlation with the underlying structure and often it is approximately evenly distributed
across the ROI�s used� This implies that that the normalized noise variance of the ROI depends
strongly on the selected ROI� through the squared mean�

���� Overview of the Measurements

Measurements were made on the GE Advance PET scanner ����� ��	� ���� with �D acquisition and
reconstruction capability� Its 	 GBytes raw data disk can hold about ��� �D frames �recordings
with � slices�� suitable for phantom decay studies� Reconstruction in our con�guration �with
�� i��� processors� takes approximately � minutes per frame ������ For blank and transmission
scanning� which is always performed in �D� the scanner applies two pin sources� During the initial
experiments the pin source activities were ��	 MBq and ��� MBq� respectively� The blank scan
sinogram count rate was ��	� Mcps� corresponding to an average count rate per sinogram element
of � ���� cps �counts per sec� in the center� On later phantom and human studies� blank and
transmission scan times have been scaled in accordance with the currently observed blank scan
count rates and the values quoted in seconds are therefore directly comparable�

������ Phantom studies

Three di�erent water��lled phantoms have been used� the �� cm standard �NEMA� cylinder�
a torso�like ellipse with axes �� and � cm �shown in Fig� ������ and an axially symmetrical�
elliptical brain phantom �Capintec� with axes � and �� cm� as shown in Fig� �����

Using initially the two homogeneous phantoms in accordance with Eq� ���� emission scans
were made as decay series with F��� in �D �total of �� measurements� and �D �limited to ��
time frames�� Transmission scans were made starting from Tt��� seconds and doubling the time
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Figure ���� The torso�like phantom� here
shown with lung�phantoms�

Figure ���� The elliptical brain phantom
�Capintec� with axes �� and 	
 cm�

for each step up to ��
�� seconds� Blank scans were made from Tb��� to ��	� seconds and
complemented with one ������ seconds scan�

Reconstructions were made for all relevant combinations of emission and transmission scans
using the ���� seconds blank scan� All emission scans were further reconstructed with a calculated
attenuation correction �CAC� using a circular or elliptical contour respectively� For the �D cylinder
case the emission image with highest count was reconstructed with the longest transmission scan
and all blank scans� The cylinder was reconstructed in a ���� matrix with pixel size ��� mm�
and a � mm Hann �lter� For the ellipse� a ���� matrix of pixel size ��� mm was used with a
� mm Hann �lter� The �D axial �lter �Hann� was also set to its minimum value of �� mm�
The attenuation data were preprocessed with a � mm Gaussian �lter for the cylinder case� and
�� mm for the ellipse� All available corrections were applied� including detector normalization�
randoms subtraction� and scatter correction� In all slices of all reconstructed images �order of
����� images� the mean and variance was calculated from an ROI extending 
�� of the diameter
or ellipse axes� In �D� the data were averaged over �� �of �� slices avoiding edge e�ects but
ignoring the minor di�erences between direct and cross slices� In �D only the central � slices
having almost identical noise were included in the average� For each reconstructed dataset the
noise was represented by the normalized variance� i�e�� variance mean�� in subsequent plots and
�tting� From the total rates curves a Noise Equivalent Count �NEC� value per slice was calculated
for each scan frame� The rate dependent correction between trues and NECs due to randoms did
not exceed ���

The brain phantom has two separate chambers ��grey� and �white� matter� respectively�� It
was �lled to resemble the usually quoted ratio of ��� between these two substances for �ow or
metabolism� Two di�erent sets of measurements have been performed� One set �repeated in �D
and �D� was originally designed to address count rate performance ����� ����� The phantoms
were loaded with C��� carbonate well above the expected saturation limit of the scanner and pairs
of ������� seconds scans were performed every �� minutes for about  hours �� half lives�� The
maximum number of slice counts observed in this study was limited to ��� which would not allow
a su�ciently clear distinction between the transmission scan times� One more decay series was
therefore prepared in �D with F��� measuring for �� half lives� each split in two frames with a ratio
of ���������� yielding approximately equal NEC� The C��� series were reconstructed using an
�in�nite� ���
�� sec� transmission scan� For the F��� series� a set of � pairs of transmission scans�
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�� � ����� sec� were obtained� Reconstructions were made to provide datasets with independent
transmission and emission noise according to Eq� ����� by combining the E�T frames as odd�
odd� even�even� Reconstruction parameters for the brain phantom were identical to those for the
cylinder except that the axial Hann �lter was replaced by a Ramp �lter� From both the C���
series and the F��� series di�erence images were calculated� and ROI�s placed over grey matter
�central and peripheral�� white matter� and whole brain in the original as well as the di�erence
images for mean and standard deviation calculation respectively�

������ Human studies

For one person �case KL� included in a count rate performance and dose optimization study with
O�� ������ the usual 	� second integration time �starting �� seconds after bolus injection� was
supplemented by � short frames ������ sec�� The study comprised of injections with ����� MBq
in �D and ����� MBq in �D� Reconstruction and analysis was performed as above� although only
with one �� minutes transmission scan� The number of NECs in the short scans were about ���
of the corresponding 	� seconds frames normally used�

One person �case MN� injected with ��� MBq of FDG had a double set of emission scans
����� sec� of the brain starting � hours after injection� followed by a double set of transmission
scans ������ sec� yielding a total of �� data points in �E�T��plane� Reconstruction and data
analysis was made to match the brain phantom F��� series�

One patient �case BB� undergoing a dynamic FDG scanning of the heart additionally had a
series of � transmission scans ��� � �� min�� Pairs of emission scans �������� min� from di�erent
parts of the dynamic study were reconstructed with all the transmission scans� and subsequent
data analysis made as described above �Eq� ���	� in a large body circumferential ROI�

������ Fitting data

From the emission data �see Subsections ������� ������� and ������� the parameter a was estimated
by linear regression in a log�log diagram of the normalized variance using the longest transmission
scan available� Depending on the setup the transmission parameter c �and the base term b� was
subsequently estimated by subtracting the estimated emission part of the normalized variance�
a�NEC� and again applying linear regression� This approach is very simple and was considered
adequate for the purpose� Non�linear data �tting was also tried and found to give similar results�

���� Results

In this section data and parameters are presented for the previously described experiments and
compared to the model� Again it should be noted that any variance shown has been divided by
two if measured from paired di�erence scans so that the results presented are comparable and
represent noise in the single images�

Estimated model parameters from the Cylinder phantom in �D and �D modes� the Elliptical
Body phantom in �D and �D� The Brain Phantom� and Case MN� are given in Table ����� This
table give parameters valid for any practically used value of NEC and Tt�

In Fig� ���� the measured normalized variance in the Cylinder ��D� case is shown� It can
be seen that the transmission scans will e�ectively start to add to the variance if NEC is larger
than approximately ��� counts per slice and that they � for transmission scan lengths normally
encountered � are dominating at ���� Note also� that the emission noise model as judged from the
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Case Mode a �k counts� b � � c �sec�

Cylinder �D �
�
 ������� ����
Cylinder �D �
�� ������ ����
Ellipse �D ���� ������
 ���
Ellipse �D ���� ������ ����
Brain Phantom �D ���
 ����
Case MN �D ��� ��	

Table ���� Estimated model constants�

linearity in the log�log plot remains valid down to the level where the noise exceeds the mean by
an order of magnitude� i�e�� beyond any practical application of the images as such�

In the Cylinder ��D� case the blank scan parameter d has also been estimated from reconstruc�
ted images corresponding to varying blank scan length Tb� and the estimated value is d � ��	��
By comparison with the parameter c from Table ���� the transmission scan in the cylinder case
��D� is seen to contribute approximately ��
 times more to the variance than a blank scan with
the same duration� in accordance with the average attenuation of the central region of a �� cm
water��lled phantom�

In Fig� ����� corresponding to the Brain phantom scanned in �D� a contour plot shows the
normalized variance as a function of NEC and transmission length Tt� Shading is used to in�
dicate the actual variance� which can be seen from the rightmost grey scale bar� Contours show
approximate equidistant level of noise� Furthermore two lines are inserted to show where the
transmission term equals ��� and ���� respectively of the emission term�
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In the Brain phantom ��D� case and in case MN two emission and two transmission scans were
measured� thus both emission and transmission parameters have been estimated� The parameters
are listed in Table ����� Despite the approximations made for deriving the models Figs� ��� and
���� demonstrate an excellent match between the measured data and the model for many decades

c�Peter Toft ����




�� Chapter 

� Noise Contributions from Blank� Transmission and Emission Scans in PET

of NEC� Note that the very low noise level� compared to Fig� ����� is due to the use of di�erence
images made from paired emission and transmission scans� which eliminates the b�term�
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Fig� ���
 illustrates how well the emission data measured on human brains agree with the
phantom studies� The �gure shows case KL ��D �D�� case MN ��D �D�� and the Brain Phantom
��D �D�� In all cases data corresponding to only one transmission scan are shown�

Table ���� shows noise estimates obtained from di�erent ROIs� The emission parameter a and
the transmission parameter c have been estimated for the Brain Phantom ��D� in four di�erent
ROIs� The Head ROI is an ellipse just surrounding the activity of the brain� WM is a small region
within white matter� GMp and GMc are two small grey matter regions� peripheral and central�
respectively� The averages of the measured regions are normalized to the average of WM� Note
the approximately constant ratio between a and c� indicating the major in�uence of the average
on the coe�cients�

ROI a �k counts� c �sec� Average

Head �
 ��� ���

WM 
� ��
 ����
GMp ��� ���� ��	�
GMc 
�� ���	 ���

Table ���� Brain phantom data ��D� with di�erent ROIs�

Finally Fig� ���� shows data from body measurements� The �D Elliptical Body phantom
follows the previous noise model� but in case BB �large patient with arms in FOV� only a single
set of transmission scans� the noise curves for the � and � minutes transmission scans are shifted
upwards� Inspection of the reconstructed images reveals large number of lines� due to �clusters
of� zeros in the transmission scan �cf� Eq� �������
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Figure ���	 Normalized variance of Case
KL �	D��D�� case MN �	D��D�� and Brain
phantom �	D��D� as a function of NEC per
slice�
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Figure ���
 Normalized variance of body stud�
ies case BB �	D� and Elliptical phantom �	D� as
a function of NEC per slice� Note that case BB
���	 and � min� shows a di�erent noise behavior�

���	 Optimization

One application of the estimated noise parameters is optimization of the patient time used in
the scanner ������ Assume that the total time available for the examination of a patient is T
seconds and that the transmission scan and the emission scan are distinct� The duration of the
two scans are Tt and Te respectively� and T � Tt � Te� For simplicity assume that the rate of
Noise Equivalent Counts is constant and equals RNEC� This implies that the sum of the emission
and transmission term are given by

V

E�
�

a

RNEC�T � Tt�
�

c

Tt
�������

Thus the optimum duration of the transmission scan is given by

Tt �
T

� �
q

a
c RNEC

�������

Figs� ���	 and ����� show the normalized variance of the individual noise terms and their sum
as a function of transmission scan time Tt in two cases� Both correspond to the paramet�
ers found in Table ���� for the Brain Phantom ��D� and the sum of the transmission scan
time and emission scan time is arbitrarily set to ���� sec� In Fig� ���	 it is assumed that
RNEC � ���� counts per slice per sec� which gives an optimized normalized variance of �����
when Tt � �� sec� Assuming RNEC � ����� counts per slice per sec as in Fig� ����� implies
that the optimum is found at Tt � 
�� sec and the normalized variance is �����	�
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 counts per
slice per sec�

���� Discussion of the Results

The general noise properties of reconstructive tomography are well described in the literature
����� ���� Previous descriptions of the Advance scanner also include count rate dependence in
phantoms and humans ���	� ���� ���� but the noise characterization so far ����� focused on the
emission noise� A theoretical derivation ����� using data from the GE ���� scanner formed part
of the basis for the design of the Advance scanner�s ��pin source transmission scanning system� In
the present paper we have measured the relative importance of the noise contributions from blank�
transmission� and emission scans for a range of imaging situations encountered� Transmission scan
values are presented as scan durations in seconds for a given� speci�ed set of sources� Optimal
conditions with � sources of maximal strength ���� MBq� would almost double the transmission
count rate� Given the current expensive Germanium��� pin sources� the presented con�guration
represents a likely mean value over source life time� Results can be scaled according to the
observed blank scan count rate� to accommodate for di�erences in number or activity of pin
sources and their rotation radius�

An excellent �t to the empirical variance has been found both in �D and �D studies� The
numerical values of the measure chosen for the noise examination is strongly dependent on recon�
struction parameters� in part because of the neighbour pixel correlation disregarded in the theory
section� Most parameters� however� will a�ect the emission and transmission contributions in the
same way �through �ij only�� and therefore the model and its output is considered adequate for
the purpose of identifying areas in the E�T plane where one source is dominating� The analysis
largely ignores the fact that the tomographic noise is non�stationary with higher values found to�
wards the center as exempli�ed by the di�erently located ROIs in the brain phantom� but also in
this respect is the ratio between the emission and the transmission term approximately constant�

From the estimated value of d � ��	� it is seen that the blank scan contribution to the noise
as expected is only a small fraction of the transmission noise for same duration� the ratio being
well explained by the average attenuation of the �central part of� the �� cm Cylinder phantom�
For all practical purposes� therefore� the application of a �� minutes blank scan will ensure that
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Section ���� Summary 
�	

the blank scan contribution is negligible since the cases where a longer transmission scan might
be applied are those with a higher attenuation�

A typical �D brain activation study with O�� water in our setup will contain �� Mcounts for
a central slice� �Fig� ���
�������� With a �� minute transmission scan� the transmission variance
calculated from the phantom data in Table ���� is ������
 compared to the emission contribution
of ������� i�e�� the transmission adds �only� � to the �nal result� If di�erence images are made�
the e�ect becomes even smaller� For the case MN the corresponding �gures would be ������
�transmission�� ����
 �emission� and 
�� respectively� This higher value is due to the lack of a
skull for the Brain phantom�

A �� minute� �D FDG brain scan typically would also have ���� M counts yielding the same
���� ratio� while acquiring the same data in �D would make the two contributions almost equal
and therefore call for a more detailed analysis of timing� It should be noted that in this imaging
condition no attribute has been made to the small additional noise from the emission correction
of the transmission scan which is necessary if the transmission is performed with activity present�

Fig� ���� suggests that within the emission count range of a typical dynamic heart FDG scan�
the emission noise contribution �when using a �� minute transmission scan� is dominating� Data
are� however� currently not available that can demonstrate the region in which the transmission
noise curves split up� It should be emphasized that the observed shifts of the curves with short
transmission time are due to line�artifacts caused by �clusters of� zeros in the transmission sino�
gram� This deteriorating e�ect is usually more important and calls for an improved methods of
attenuation correction� e�g�� by using image segmentation as described in �����

���� Summary

The measured image noise variance from a GE Advance PET scanner has been modelled as a sum
of terms corresponding to the noise in the emission scan� the transmission scan� and the blank
scan� The weight parameters in this simple model have been determined from a large number of
experiments in both �D and �D scan mode for the �� cm standard �NEMA� cylinder� a torso�like
ellipse with axes �� and � cm� and an axially symmetrical� elliptical brain phantom �Capintec�
with axes � and �� cm� Furthermore� noise model parameters have been found from some human
studies� For brain studies there is an excellent agreement between model and observation� and
between phantoms and human studies� The estimated parameters have been used to optimize the
durations of the emission and transmission scan under the constraint that their sum is constant�
For studies of the heart or other body regions the model is still generally valid� but the parameters
not as well documented� and the transmission noise is often dominated by line artifacts�
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Conclusion and Topics for Further

Research

This thesis has demonstrated that the Radon transform and its inverse can be implemented on
ordinary computers and provide a stable and useful tool for image processing�

Two common parameter de�nitions have been considered with the linear Radon transform� and
the central issues concerning sampling requirements have been covered thoroughly in Chapters
� and �� The literature often neglect to consider the implications of discretization� and a new
sinc�interpolation strategy has been used to show that simple interpolation strategies in general
are su�cient for line detection algorithms�

In Chapter � the relationship between the Radon and the Hough transform has been covered�
and it was shown that the discrete forms of the two algorithms can give exactly the same parameter
domain� if some restrictions are made on the sampling parameters� Many variations of the Hough
transform can be found in the literature� and some of them are described in the last part of the
chapter� From the literature� it is not clear how the Radon and the Hough transform are related�
It has been demonstrated that the two methods act very di�erently� when changing the sampling
distances in the parameter domain�

A new computationally e�cient algorithm� named the FCE�algorithm� for fast curve parameter
estimation has been presented in Chapter �� The algorithm uses the Radon transform and the
Hough transform in a generalized form� and exploits the best properties of the two� The algorithm
initially uses the generalized Hough transform to estimate a coarsely sampled parameter domain�
which is exploited to reduce the computational cost for the subsequently used generalized Radon
transform� The algorithm has been validated in two examples� in which hyperbolas are detected
from seismic images� The FCE�algorithm has been derived using a speci�c form of the generalized
Radon transform� but the FCE�algorithm can be modi�ed to cover virtually all parameterized
curve shapes�

Novel approaches to analyze the in�uence of noise on the discrete Radon transform have been
presented in Chapter � For the discrete Radon transform� it has been shown that parameterized
curves can be detected even for extremely bad signal to noise ratios� It was also shown that
the discrete Radon transform is robust to random �uctuations on the line pixels� Analytical
expressions have been given in Chapter  to quantify the in�uence from these noise sources� It
could also be of interest to make a combined analysis of these two noise sources�

A large software package has been developed for �D Radon based reconstruction� Several
Radon based reconstruction methods have been implemented� based on the theory presented in
Chapters 
 and �� The package also includes two other programs� The �rst is a program for
generation of an image and the corresponding sinogram from a set of primitives� This program
is based on the analytically derived Radon transform of a set of primitives� as shown in Section
B��� With the program it is simple to combine shifted� scaled� and rotated primitives to build a
complex image and its sinogram� A noise model can also be added to the noise free sinogram�

�	�
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� Noise Contributions from Blank� Transmission and Emission Scans in PET

hence the program is suitable for testing reconstruction algorithms�
The last program in the �D reconstruction package contains several iterative reconstruction

methods� implemented using a new and computationally e�cient technique� shown in Chapter 	�
A huge acceleration has been obtained with the last package compared to a traditional approach�
where the individual values of the system matrix are not stored but calculated when needed�

Chapter 	 covered some parts of the linear algebra based reconstruction methods� Even
though many aspects have been covered or mentioned in the thesis� several issues should be
examined� A modi�cation of the iterative methods that might aid performance is to incorporate
di�erent regularization techniques� This topic should be investigated in the future� Lately a
very interesting article ������ based on the combination of the Least Squares Conjugate Gradient
method and regularization techniques� showed interesting results�

One major question in all iterative methods� is the choice of a stopping criterion� Like it was
assumed for the derivation of the EM algorithm� work has been done� where the fundamental
assumption is that the values in the sinogram are generated in a Poisson process� but it seems
doubtful that methods narrowly based on the Poisson assumption is the way to proceed� In
practical PET reconstruction the noise has many sources� such as the noise from the �nite length
of the emission� transmission� and blank scan� cf� Chapter ��� As previously mentioned additional
e�ects like scatter� randoms� and detector variations �Chapter PET in ���� also contribute to a
total noise model being far more complicated�

An important issue in iterative reconstruction theory is the modelling of the system matrix� In
Chapter 	� examples mostly using Radon based approaches have been presented� but given that a
reconstructed image is a result of both the sinogram� the system matrix� the number of iterations�
iterative method chosen� it could also be of interest to take the interactions of the individual parts
into account�

An interesting path to follow could be to incorporate prior knowledge of edges in the model
of the reconstructed image and use mean �eld theory ����� ��
� or ���� ���� In the last two
papers� shown in Appendix N� the model only operates on the reconstructed image� However� a
combination of the reconstruction process and a more detailed model of the image seems to be a
very interesting research area� This model is very relevant to PET reconstruction� where prior
information could be included� e�g�� found from a high resolution MR�scan� The MR�scan can be
used to extract edges between localized anatomical structures� which can be used to stabilize the
adaptive reconstruction methods for PET� Adaptive Finite Element methods ����� might also be
a way to incorporate information about edges� in order to enhance and segment the volumes�

Chapter �� was concerned with �D reconstruction methods� where the volume of interest
should be recovered from a set of line integrals through the volume� The derivation of several
reconstruction methods has been shown� The methods are not contained within the normal Radon
transform de�nition� but it has been shown that the �D Radon based reconstruction methods can
be generalized to the �D case� and the �D iterative methods are almost directly applicable for �D
reconstruction� For this purpose yet another software package has been developed� providing both
direct and iterative reconstruction methods� The package also includes a program for generation
of volumes and the corresponding sinogram from a set of primitives like in �D�

The area of reconstruction methods is still under development� where new adaptive methods
and very computer demanding methods will become feasible� due to the rapid development in
computer performance� It has� e�g�� been reported ���	�� that reconstruction methods can be
implemented e�ciently using texture mapping hardware� Techniques as VRML �Virtual Reality
Modelling Language� and volume rendering� will soon add new dimensions to the interpretation
of volume scans�
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Appendix A

The Dirac Delta Function

The Dirac delta function ���� was introduced by Dirac ����	 The function is a part of a new class
of functions known as generalized functions	 A good reference for generalized functions is ��
��	

The delta function is special in the sense that it is de�ned from

��x�  � for x � � �A	��Z �

��
��x� dx  � �A	��

The most important property of the delta function comes is thatZ �

��
g�x� ��a x� b� dx 

�

jaj
Z �

��
g

�
x� b

a

�
��x� dx 

�

jajg
��b

a

�
�A	��

which also shows that the delta function is an even function of its argument ��x�  ���x�	
If the delta function has a general function as argument is can be rewritten ����

��f�x�� 
IX

i��

��x� xi�

jf ��xi�j �A	
�

where xi is the zeros of the function f�x�	 Thus it is found that

Z �

��
g�x���f�x�� dx 

IX
i��

g�xi�

jf ��xi�j �A	��

This result is very important with respect to the Radon transform and especially to the generalized
Radon transform� where the argument of the delta function determines the curve shape	

The delta function is not a normal function and often approximations that converge to the
delta function are quite useful� e	g	

��x� 
�p
�a

e��
x

a
�
�

�A	��

and in the limit
lim
a��

��x�  ��x� �A	��

The function ���� can be very valuable� because it easily can be analyzed with conventional
calculus and its derivatives can also be used to approximate the derivatives of the delta function	

lim
a��

��n��x�  ��n��x� �A	��

���





Appendix B

Properties of the Normal Radon

Transformation

B�� Basic Properties of the Radon Transform

In this section several basic properties of the normal Radon transform are shown	 All of the
following based on the properties of the ��function reviewed in Appendix A	

�g��� �� 

Z �

��

Z �

��
g�x� y���� � x cos � � y sin �� dx dy �B	��

B���� Linearity

The �rst property is that the normal Radon transform is linearity	 If �q is an array of constants�
then

g�x� y� 
X
q

�q gq�x� y�� �g��� �� 
X
q

�q �gq��� �� �B	��

B���� Shifting

Assume that a function g�x� y� is shifted

h�x� y�  g�x� x�� y � y�� � �B	��

�h��� �� 

Z �

��

Z �

��
g�x� x�� y � y�� ���� x cos � � y sin �� dx dy �B	
�



Z �

��

Z �

��
g��x� �y� ����� x� cos � � y� sin ��� �x cos � � �y sin �� d�x d�y �B	��

 �g��� x� cos � � y� sin �� �� �B	��

Note that only the ��coordinate is changed	

B���� Rotation

Here g�x� y� is expressed in polar form� i	e	� g�x� y�  g�r� ��	 In this case rotation is fairly easy

h�r� ��  g�r� � � ��� �B	��

�h��� �� 

Z �

��

Z �

�
g�r� � � ��� ���� r cos� cos � � r sin� sin �� jrj d� dr �B	��



Z �

��

Z �

�
�g�r� ��� ��� � r cos�� � ��� ���� jrj d�� dr �B	��

 �g��� � � ��� �B	���
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This is quite obvious	 If the coordinate system �x� y� is turned ��� then the Radon transform is
also turned ��	

B���� Scaling

Assume a scaling in both coordinates

h�x� y�  g

�
x

a
�
y

b

�
� a 	 � and b 	 � �B	���

In this case the Radon transform can be rewritten

�h��� �� 

Z �

��
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��
g
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�
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�
���� x cos � � y sin �� dx dy �B	���

 ab
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j
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b sin �
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j
j
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ab

j
j �g����
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Now �� and �� must be found as functions of � and �	 From the equations above it is found that

cos �� 
a cos �



and sin �� 

b sin �



�B	���

cos	 �� � sin	 ��  � � 
 
q
�a cos ��	 � �b sin ��	 � �B	���

�� 
�





�p
�a cos ��	 � �b sin ��	
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�
b

a
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To summarize the equations shown above
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If using � � � � �� then the arctan function is

arctan

�
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a
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a
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Section B�� The Shepp�Logan Phantom Brain ���

B���� Convolution

Assume the function h�x� y� being a �D convolution of f�x� y� and g�x� y�	

h�x� y�  f�x� y� � �g�x� y� 
Z Z

f�x�� y�� g�x� x�� y � y�� dx� dy� �B	���

Then the Radon transform of h�x� y� is given by
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Z
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The result is that the Radon transform of a two dimensional convolution is a one dimensional
convolution of the Radon transformed functions with respect to �	 The result is quite obvious
from the Fourier Slice Theorem shown in Eq	 �	�	 The two dimensional Fourier transformation of
a convolution becomes a product	 The product is still a product expressed in polar coordinates	
The inverse one dimensional Radon transform of the product becomes a convolution in �	

B�� The Shepp�Logan Phantom Brain

A �famous� model of a brain is the Shepp Logan Phantom	 This is a model based on ellipses� which
can be Radon transformed analytically	 The phantom can be used to test the numerical algorithms
and evaluate the numerical errors quantitatively	 Using the properties shown in Section B	� a sum
of ellipses can be transformed analytically� if a circle with radius one can be transformed� as
shown in Fig	 B	�	 A unit circle is here de�ned as

g�x� y� 

	
� if x	 � y	 � �
� otherwise

�B	���

In this case the function is invariant to rotation around the origin of the coordinate system�
thus the Radon transform does not depend on �	 The Radon transform can� e	g	� be calculated
for �  �� as shown in Fig	 B	�	 Due to the constant excitation on the circle� the Radon transform
is merely the length of the line crossing the circle	

From Fig	 B	� it is found that

�g��� �� 

	
�
p
�� �	 if �	 � �

� otherwise
�B	���

Using Eq	 B	�� and the properties shown in appendix B� it is found that a sum of ellipses can
be transformed analytically	 If the unit circle is scaled� rotated and shifted an ellipse is formed�
shown in Fig	 B	�	
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If the ellipse is called gA�a�b���x��y��x� y�� then the Radon transform is given by

�gA�a�b���x��y���� �� 

��
� �Aab

p
��
�
����x� cos ��y� sin ���

��
�

if j�� x� cos � � y� sin �j � ��

� otherwise
�B	���

�	�  a	 cos	�� � �� � b	 sin	�� � �� �B	���

If Q ellipses are given with a set of parameters� then due to the linearity� the Radon transform is
a sum

g�x� y� 
QX
q��

gAq �aq�bq��q�x��q�y��q �x� y� � �B	���

�g��� �� 
QX
q��

�gAq �aq�bq��q�x��q�y��q ��� �� �B	���

The Shepp�Logan Phantom is a sum of ten ellipses with parameters� shown in Table B	�	 Note
that the ellipse amplitude A does not exactly match those of the original phantom	 This choice
gives a better contrast	

The resulting phantom brain is shown in Fig	 B	
 and the corresponding Radon transform is
shown in Fig	 B	�	
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A a b x� y� �

�	� �	�� �	�� �	� �	� ��

��	� �	���
 �	��
 �	� ��	���
 ��

��	� �	�� �	�� �	�� �	� ����

��	� �	�� �	
� ��	�� �	� ���

�	� �	�� �	�� �	� �	�� ��

�	� �	�
� �	�
� �	� �	� ��

�	� �	�
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� �	� ��	� ��

�	� �	�
� �	��� ��	�� ��	��� ��
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Table B�� Parameter settings for the Shepp Logan Phantom�
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Figure B�� The corresponding Radon trans�

form�

B�� Analytical Radon Transform of Primitives

During the project the normal Radon transform of several functions were derived analytically	
The results are given in the following subsections	 Using the linearity of the Radon transform and
basic rules about translation� rotation and scaling rather complicated two dimensional functions
can be modelled and the corresponding Radon transform can expressed on an analytical form	
This provides a useful tool to generate test sets for testing of reconstruction algorithms	 A
program is available� where the theory is implemented and sampled versions of the functions
and their Radon transform can be obtained	 In ���� and Section C	� are also shown how to use
the program	 The following paragraphs show which basic functions and their Radon transform�
available in the program	 The program is available from ����	

B���� The Circular Disc

The normal Radon transform of the circular discnormal Radon transform was found in Eq	 B	��	
In Fig	 B	� the basic function is shown and Fig	 B	� shows the corresponding parameter domain	
Due to the rotational symmetry of the disc� the Radon transform does not depend on the angle �	
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Figure B�	 The corresponding Radon trans�

form�

B���� The Square

Another very useful primitive is the square as shown in Fig	 B	�	 This function can be written as

gs�x� y�  ���� jxj����� jyj� �B	�
�

where ���� is the Hamilton step function	 It is easy to see that the Radon transform of this
primitive must exhibit several symmetries	

gs�x� y�  gs�jxj� jyj� �B	���

�gs��� ��  �gs��� � � p
�

�
� �B	���

 �gs���
�

�
� �� �B	���

where p is an integer	 Eq	 B	�� implies that the Radon transform is only needed in the interval
������	 Eq	 B	�� further sharpens this demand to the interval ����
�	 Using the general feature
�g��� ��  �g���� � � �� implies together with Eq	 B	�� that only � � � must be investigated	 It is
also easy to �nd that

�gs��� ��  � if � 	
p
� �B	���

The remaining case � �
p
� is fairly easy due to the simple geometry	 First are the intersections

between the line �  x cos � � y sin � and the boundaries found

y  �� � x  x�� 
�

cos �
� tan � �B	���

y  � � x  x� 
�

cos �
� tan � �B	
��

x  � � y  y� 
�

sin �
� cot � �B	
��

Three cases exist
x� 	 �� �g��� ��  � �B	
��
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x� � � and x�� � � � �B	
��

�g��� �� 
q
�	 � �x� � x���	 �B	

�


�

cos �
�B	
��

x� � � and x�� 	 � � �B	
��

�g��� �� 
q
��� x��	 � ��� x���	 �B	
��

These formulas are computed in their respective region giving the total Radon transform of the
square	 In Fig	 B	� the square is shown and Fig	 B	� shows the corresponding Radon transform	
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Figure B�� The Radon transform of the

square�

B���� The Triangle

The following primitive is the triangle shown in Fig	 B	��	 This Radon transform of this primitive
can also calculated on a analytical form	 The �rst thing is that the rotational symmetry implies
that

�g��� ��  �g������  �g

�
�� � � p

��

�

�
�B	
��

where p is an integer	 These relation together with �g��� ��  �g���� � � �� implies that it is only
relevant to investigate � � � and � � � � �


 	
Three lines are relevant

	 l� � y  � �p


�x� ��� i	e	� the upper slanted line of the triangle	

	 l� � y  �p


�x� ��� i	e	� the lower slanted line of the triangle	

	 l � �  x cos � � y sin �� i	e	� the transformation line	
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First is the intersection between l and l� is found� i	e	�

x� 
sin � �

p
��

sin � �
p
� cos �

�B	
��

y� 
�p
�
�x� � �� �B	���

and the intersection between l and l�

x� 
sin � �

p
��

sin � �
p
� cos �

�B	���

y�  � �p
�
�x� � �� �B	���

Another interesting intersection is between the vertical line x  ��
	 and the integration line	

The corresponding y  yl is given by

yl 
��� cos �

� sin �
�B	���

It is easy to realize that x� 	 � implies that the integration line does not cross the triangle�
i	e	� �g��� ��  �	

The remaining cases all imply that the integration line intersects l�

yl �

p
�

�

 �g��� �� 

s�
x� �

�

�

�	
� �yl � y��	 �B	�
�

yl 	

p
�

�

 �g��� �� 

q
�x� � x��	 � �y� � y��	 �B	���

These formulas are computed in their respective region giving the total Radon transform of
the triangle	 In Fig	 B	�� the square is shown and Fig	 B	�� shows the corresponding Radon
transform	

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

The triangle

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure B��� The triangle�
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Figure B��� The Radon transform of the tri�

angle�

Using the presented set of primitives with proper scaling� rotation and translation as shown
in the �rst part of this appendix� e	g	� a �man� can be created as shown in Fig	 B	��	 The
corresponding Radon transform is shown in Fig	 B	��	
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Figure B��� The Radon transform of the Man�

B���� The Gaussian Bell

The previous cases all concern �nite objects with sharp edges	 The next case is the in�nite and
soft varying Gaussian bell

g�x� y�  exp��x	 � y	� �B	���

Due to the rotational symmetry the Radon transform can be calculated at any angle� e	g	�
�  �� where the integration reduces to

�g��� �� 

Z �

��
g�x  �� y� dy �B	���

 exp���	�
Z �

��
exp��y	� dy �B	���


p
� exp���	� �B	���

The Gaussian bell is shown in Fig	 B	�
 and the corresponding Radon transform given in Eq	
B	�� is shown in Fig	 B	��	 Note that the bell is in�nite� thus it cannot be bounded in the image�
or the Radon�domain	

B���� The Pyramid

The square can be used to simulate digital images using pixels with constant excitation	 This
is in fact a nearest neighbour approach	 In some application� e	g	� Radon transformation� the
nearest neighbour approach introduces to much noise	 In this case a linear interpolation strategy
is very common	 The discrete image is convoluted with a triangle in both directions� resulting in
a pyramid�like structure	 If normalizing the sampling distance to �� the convolution kernel can be
written as

g�x� y� 

	
��� jxj���� jyj� for jxj � �� jyj � �
� otherwise

�B	���
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Gaussian Bell�

The interpolated image can written as the integral

si�x� y� 

Z �

��

Z �

��

X
m

X
n

s�m�n� ��x� � xm� ��y
� � yn� g�x� x�� y � y�� dx� dy� �B	���


X
m

X
n

s�m�n� g�x� xm� y � yn� �B	���

where s�m�n� is the discrete image	 Due to the linearity and translation property the Radon
transform of the continuous function si�x� y� can found if the Radon transform of the kernel
g�x� y� can be found	 This will be done	

Due to the symmetry in the pyramid�like kernel it is easy to �nd that

�g��� ��  �g���� ��  �g��� � � p���  �g��� ��� �� �B	���

It is also apparent that the Radon transform is zero if � 	
p
�� i	e	� the Radon transform is only

needed in the interval � � � �
p
� and � � � � �
	

�g��� �� 
�

j cos �j
Z �

��
g

�
�

cos �
� y tan �� y

�
�B	�
�


�

j cos �j
Z �

y�
�cos � � j�� y sin �j���� jyj� dy �B	���

where
y�  maxf��� y�g �B	���

and

y� 
�� cos �

sin �
�B	���

For test purposes it can used that y� 	 � implies that �g��� ��  �	 The meaning of y� is indicated
in Fig	 B	��	

Yet another de�nition	 It turns out that a vital parameter is

y� 
�

sin �
�B	���

Solving the rather simple integrals in Eq	 B	�� �it only requires good bookkeeping� the Radon
transform can be derived	 The result can be written as
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g(x,y)=(1-|x|)(1-|y|)

Integration line
-1

-1

1

1

y
1

Figure B��� The Pyramid�

y� � �� and y� 	 �

�g��� �� 
� cos � � �

cos	 �
�B	���

y� � �� and y� � �

�g��� �� 
� cos � � sin � � ��y� � �y	�

� cos	 �
�B	���

�� � y� � � and y� 	 �

�g��� �� 
cos ���� �y� � �y	��� ��� ��y� � �y	� � sin �

� cos	 �
�B	���

�� � y� � � and y� � �

�g��� �� 
cos ���� �y� � �y	�� � ���� �y� � �y	� � �y� � y	��� sin �

� cos	 �
�B	���

y� 	 � and y� 	 �

�g��� �� 
cos ���� �y� � �y	�� � ���y� � �� y� � y	�� � sin �

� cos	 �
�B	���

y� 	 � and y� � �

�g��� �� 
cos ���� �y� � �y	�� � ���� �y� � �y� � �y	� � y	��� sin �

� cos	 �
�B	�
�

In Fig	 B	�� the basic �pyramid��function g�x� y� is shown and �nally Fig	 B	�� shows the cor�
responding Radon transform	

Note that the Radon transform could also be calculated from the square using that the auto
correlation function can be Radon transformed	
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Appendix C

Usage of the �D Program Packages

Several software packages has been made for reconstruction of sinograms	 The packages are
provided for free� but protected by the GNU General Public License	 All programs described
in this appendix has been developed on a a Linux system and implemented in C	 The program
should compile directly on any GNU�C Unix system	 The programs are available from ����	

In Section C	� a program called �RadonAna� is described	 The program is based on the
derivation of the Radon transform of several well known and some new primitives� shown in
Section B	�	 The program can be used to generate pairs of analytically images and their Radon
transform	 The program can� e	g	� be used to benchmark reconstruction packages	

In Section C	� the usage of the program �iradon� is described	 In the program several of the
classical reconstruction techniques have been implemented	

In Section C	� the iterative reconstruction program �it� is described	 Here slow and fast
versions of ART� EM and LSCG reconstruction have been implemented	

C�� The Analytical Sinogram Program �RadonAna�

The program RadonAna can be used to generate Radon transform pairs	 The basic idea is to specify
a set of scaled� rotated� and shifted primitives from which the Radon transform is calculated and
sampled in both the image domain and the Radon domain	

The program will produce two �les OutFileNamea�fif and OutFileNamer	�f� where the �le
OutFileName is speci�ed by the user� and the a��le is the image and the r��le is the radon space	

The program uses the following parameters

OutFileName �String� With this parameter the base �le name is determined	 If OutFileName is
man�fif then the image is written in mana�fif and the sinogram in the �le manr�fif	

XSamples �Integer� Speci�es the number of image samples on the �rst axis	 Should be an odd
number	

YSamples �Integer� Speci�es the number of image samples on the second axis	 Should be an odd
number	 If not given the program uses XSamples�YSamples	

DeltaX �Float� Speci�es the sampling distance of both axes in the image	

Xmin �Float� Speci�es the minimum sample position in the image on the �rst axis	 If not given
the image is centered around the middle	

Ymin �Float� Speci�es the minimum sample position in the image on the second axis	 If not given
the image is centered around the middle	

���



	�� Chapter C� Usage of the 	D Program Packages

RhoSamples �Integer� Speci�es the number of samples in the distance parameter � in the sinogram	
Should be an odd number	

ThetaSamples �Integer� Speci�es the number of samples in the angular parameter � in the sino�
gram	 The sinogram is sampled linearly from � to �approximately� � radians	 The sampling
distance in � is �ThetaSamples	

DeltaRho �Float� Speci�es the sampling distance in �	 The program will center the sampling
points around �	

OverSamp �Integer� This parameter speci�es whether an oversampled image and sinogram should
be generated or not� i	e	� if OverSamp �	 If� e	g	� OverSamp�� an image is calculated with
� times ���OverSamp��� the resolution in both parameters	 This image is then averaged so
the output value make a better approximation to the average value under the sample	 This
technique is also applied the the sinogram	 It will reduce aliasing problems	

GenerateImage �Integer� If set to � the image is generated	

GenerateRadon �Integer� If set to � the sinogram is generated	

NumberOfShapes �Integer� Here the number of primitives are speci�ed	

DebugNiveau �String� Log �les is generated if this parameter is set to Debug	 No log��le and no
screen output can be used with DebugNiveau� HardCore	

The ordering of the parameters shown above are arbitrary	 After these parameters a number
of lines must follow specifying a scaling� rotation� and shifting parameters of each primitive	 The
line uses the following parameters in this order

Shapei �String� where i is � to NumberOfShapes��	

Type �Integer� The type of primitive� where

� A circle centered around ����� with radius � and uniform signal � on the disk	

� A square centered around �����	 �� � x � � and �� � y � �	 The signal is � on the
disk	

� A Gaussian bell exp��x	 � y	�	

� An even sided triangle centered around ��� ��	 The triangle has corners ��� ��� ���
	 �

p


	 �

and ���
	 ��

p


	 �	

� The image and the Radon domain is con�terminated with white Gaussian noise	 Note
that in this case the noise term in the Radon domain is NOT the Radon transform of
the noise in the image	

	 A �pyramid� f�x� y�  ��� jxj���� jyj� for �� � x � � and �� � y � �	

a �Float� Scaling of the primitive in the direction of the �rst axis	

b �Float� Scaling of the primitive in the direction of the second axis	

x
 �Float� Shift of the primitive in direction of the �rst axis	

y
 �Float� Shift of the primitive in direction of the second axis	
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phi �Float� Rotation of the primitive measured in degrees	

power �Float� Scaling of the intensity of the primitive	

Description �String� Optional description of the primitive	

The program is executed with the initialization �le or �INI��le as sole argument	 A typical
�INI��le could be the one used to generate the man	 Note that comments can be used� such as
the line above Shape
	

OutFileName�man�fif

XSamples���� Number of X samples

DeltaX����� Sampling Distance in X

RhoSamples���� Number of rho samples

OverSamp�� Half oversampling factor�

GenerateImage�� Generates image if �� Optional 	
 Generates if omitted

GenerateRadon�� Generates sinogram if �� Optional 	
 Generates if omitted

DeltaRho����� Sampling distance in rho

ThetaSamples���� Number of theta samples� Distributed from � to pi�

NumberOfShapes��� Number of simple elements�

DebugNiveau��DDebug

type a b x� y� phi power description

Shape�� � � ��� ��� �� � ��� head

Shape�� � ��� ��� ��� �� � 	��� mouth

Shape�� � ��� ��� ��� ��� � ��� stomach

Shape�� � ��� ��� ��� 	��� � 	��� belt

Shape�� � ��� ��� ��� ��� �� ��� right arm

Shape�� � ��� ��� 	��� ��� 	��� ��� left arm

Shape�� � � ��� ��� ��� �� 	��� triangle on stomach

Shape� � ��� ��� 	��� �� � ��� left ear

Shape�� � ��� ��� ��� �� � ��� right ear

Shape�� � ��� ���� ��� ���� � ��� lower part of hat

Shape��� � �� ��� ��� ��� � ��� upper part of hat

Shape��� � ��� ��� 	��� ��� � 	��� left eye

Shape��� � ��� ��� ��� ��� � 	��� right eye

Shape��� � ��� ��� ��� ��� � 	��� nose

Shape��� � ��� ��� ��� 	��� 	�� ��� right leg

Shape��� � ��� ��� ��� �� �� ��� right hand

Shape��� � � ��� ��� 	��� �� ��� left foot

Shape�� � ��� ��� 	��� 	��� �� ��� left leg

Shape��� � ��� ��� 	��� 	��� 	��� ��� left hand

Shape��� � � ��� 	��� 	��� 	�� ��� right foot

Shape��� � � ��� ��� ��� 	�� ��� ice cream cone in right hand

Shape��� � ��� ��� ��� ��� � ��� only one ice cream cube�
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C�� The Direct Reconstruction Program �iradon�

In ���� the �iradon� package is described	 Later additional features have been added� and here
the basic possibilities are given	

The ordering of the following items which can be speci�ed in the parameter �le �	ini��le� are
not important� but each require one line	

OutFile �String� Name of the �le to write the reconstructed image �for the reconstruction func�
tions�	 The program recognizes the following �le extensions�

fif Float image format which includes sampling parameters	

gif The very popular graphics format	

dat raw and outdated image format	

mat Matlab �les with one matrix	

analyze GE speci�c �le format	

InFile �String� Name of the �le to read the sinogram image �for the reconstruction functions�	
The sinogram should be a �f��le and contain the sampling parameters	

OrgFile �String� �Optional� If the name of a �f��le is provided� the sampling parameters are used
to create the output��le� and measures of mis�t can be made between the OrgFile and the
OutFile	 This can be used to input the true solution and get error levels	

Function �String� The function the program should do	 Currently supported functions are

FB Filtered Backprojection	

BF Filtering After Backprojection	

CNF Central Slice	 FFT based with Nearest Neighbour approximation	

CBF Central Slice	 FFT based with Bilinear Interpolation	

CNC Central Slice	 Chirp�z based with Nearest Neighbour approximation	

CBC Central Slice	 Chirp�z based with Bilinear Interpolation	

Forward The InFile is forward Radon transformed into the OutFile	

Convert Very handy function Convert In�le directly to OutFile �in another �le�format�	

Trace Pick a trace of the InFile	

Info Get statistics about the In�le	

DebugLevel �String� This parameter controls the level of output	 The parameter is mixed and
overrules with the one used in the Print�statements �extended printf de�ned in the program�	

Normal Standard level of output to screen and log �le	

Debug Almost all output is logged to screen and log �le	

NoScreen Screen output is disabled and log �le level is ordinary	

NoLog Log �le output is disabled and screen level is ordinary	

HardCore No information at all	

Palette �String� �Optional� Name of external colormap �le to use when writing gif�images	
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InterPol �Integer� �Optional� Interpolation level	 Used by Filtered Backprojection to interpolate
the sinogram	 Default value is �	

FilterType �String� �Optional� Filter choice in Filtered Backprojection	 For all three choices see
also FilterCutoff	

Ramp Ordinary Ramp �lter	

Hanning The ramp �lter is apodized with Hanning window	

Hamming The ramp �lter is apodized with Hamming window	

FilterCutoff �Float� �Optional� For Filtered Backprojection the frequency where the �lter is set
to zero	 The number is relative to half of the sampling frequency� i	e	� should be set between
� and �	

SliceNumber �Integer� �Optional� If the InFile is an analyze��le with a lot of slices� then this
parameter will select the slice number	

Xmin �Float� The minimum x�position of the reconstructed image	 Not needed if a �f��le is
provided as OrgFile	

Ymin �Float� The minimum y�position of the reconstructed image	 Not needed if a �f��le is
provided as OrgFile	

DeltaX �Float� Sampling distance on the x�axis	 Not needed if a �f��le is provided as OrgFile	

DeltaY �Float� Sampling distance on the y�axis	 Not needed if a �f��le is provided as OrgFile	

XSamples �Integer� Number of samples on the x�axis	 Not needed if a �f��le is provided as
OrgFile	

YSamples �Integer� Number of samples on the y�axis	 Not needed if a �f��le is provided as
OrgFile	

Assume that the sinogram mysino�fif should be reconstructed into rec�fif using Filtered
Backprojection with the same parameters as found in myorg�fif� then a possible parameter �le
myrec�ini could look like�

InFile�mysino�fif

OutFile�rec�fif

Function�FB

DebugLevel�Normal

InterPol��

OrgFile�myorg�fif
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C�� The Fast Iterative Reconstruction Program �it�

The �it� program implements three of the major iterative reconstruction techniques� ART� EM�
and LSCG� but with the basic framework provided virtually all iterative reconstruction algorithms
based on matrix operations can easily be implemented	 The program uses many of the same
elements as �iradon� and provides several new for matrix operations relevant for iterative recon�
struction	

OutFileName �String� Name of the �le to write the reconstructed image	 File formats are as
described under �iradon�	

InFileName �String� Name of the �le where the sinogram image can be read	File formats are as
described under �iradon�	

RefFileName �String� If provided the reconstructed image will use sampling parameters from this
image	 Error measures can be made between the RefFile and the OutFile	

StartFileName �String� If provided the initial guess on the reconstructed image is taken from
this image� else a constant solution will be assumed from start	

Algorithm �String� The iterative reconstruction method used� Currently three are available�
ART� EM and CG �LSCG�	

UseFast �Integer� If � then fast reconstruction is used� where the system matrix is stored using
sparse techniques� else slower but memory e�cient reconstruction is used	

RadonKernel �String� The type of kernel used to model the system matrix	 Currently available
are the following methods

NN Two�level Nearest Neighbour approximation	 �Memory consuming�	

RNN Ray driven Nearest Neighbour discrete Radon transform based �Very fast with small
system matrix�	

RL Ray driven Linear Interpolation discrete Radon transform based �Fast with small system
matrix�	

P� Method based on Radon transformation of square with pre�guidance �slow but good�	

P� Method based on Radon transformation of square with no pre�guidance �slower but
better�	

SINC Sinc interpolation methods in the image and analytically Radon of that	 �Very slow�	

IterationType �Integer� For ART� If set to � a cyclical selection of the row index is used� and
else a random selection is chosen	

Iterations �Integer� For EM and CG the number of iterations before the iteration ends	 For
ART the number of full iterations� i	e	� the number of actual ART iterations is Iterations
times the number of rows in the system matrix	

SaveIterations �Integer� �optional� If set to � the current solution will be saved after each
iteration	

LowestALevel �Float� �optional� If fast reconstruction is used this the matrix elements are trun�
cated to this level relative to the sampling distance of x� �x 	 If not set the value is
�	
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ConstrainMin �Float� �optional� After each iteration the solution will forced up to this limit	

ConstrainMax �Float� �optional� After each iteration the solution will forced down to this limit	
For both limit it is assumed that negative limits imply that the feature is not used	

Alpha �Float� �optional� For ART the initial update weight �if not speci�ed then it is set to ��	

Beta �Float� �optional� For ART the multiplicative change to the weight factor� which should be
less than one �if not speci�ed then it is set to ��	

Regularization �Float� If set di erent from zero and using fast reconstruction� then the program
will append rows to the system matrix with a simple Laplace operator	 The parameter is
used to control the degree of regularization	

KernelFileName �String� If using fast reconstruction the system matrix will be saved and restored
with the extension �sif		 If a system matrix on the disk is incompatible with the sampling
parameters� a new will be generated	

SaveMatlab �Integer� If the parameter is set to �� then a sparse matrix is saved compatible with
Matlab	 The �lename used will be KernelFileName	sia� where KernelFileName also should
be speci�ed	

ThetaSamples �Integer� Number of angular samples T in the sinogram� only needed if the sino�
gram �le does not contain sampling information	

ThetaMin �Float� Start of the angular sampling �should be set to zero�� only needed if the sinogram
�le does not contain sampling information	

DeltaTheta �Float� Angular sampling distance �should be set to �!ThetaSamples�� only needed
if the sinogram �le does not contain sampling information	

RhoSamples �Integer� Number of samples in the sinogram R in the ��direction� only needed if the
sinogram �le does not contain sampling information	

DeltaRho �Integer� Sampling distance in �� i	e	� ��� only needed if the sinogram �le does not
contain sampling information	

RhoMin �Float� Start of sampling positions in � �should be set to ���R��	 �	

Xmin �Float� The minimum x�position of the reconstructed image	 Not needed if a �f��le is
provided as OrgFile	

Ymin �Float� The minimum y�position of the reconstructed image	 Not needed if a �f��le is
provided as OrgFile	

DeltaX �Float� Sampling distance on the x�axis	 Not needed if a �f��le is provided as OrgFile	

DeltaY �Float� Sampling distance on the y�axis	 Not needed if a �f��le is provided as OrgFile	

XSamples �Integer� Number of samples on the x�axis	 Not needed if a �f��le is provided as
OrgFile	

YSamples �Integer� Number of samples on the y�axis	 Not needed if a �f��le is provided as
OrgFile	
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DebugLevel �String� This parameter controls the level of output	 The parameter is mixed and
overrules with the one used in the Print�statements �an expanded printf de�ned in the
program�	

Normal Standard level of output to screen and log �le	

Debug Almost all output is logged to screen and log �le	

NoScreen Screen output is disabled and log �le level is ordinary	

NoLog Log �le output is disabled and screen level is ordinary	

HardCore No information at all	

An example of a valid ini��le for �it� is shown below	 The ini��le is used to reconstruct a
sinogram smallmanr�fif into smallman�EM�fif with the same sampling parameters as contained
in the �le smallmana�fif	 Here fast ART is used with a discrete Radon transform �linear
interpolation� system matrix saved in syssmall�sif	 Constraints are also used	

InFileName�smallmanr�fif

OutFileName�smallman�EM�fif

RefFileName�smallmana�fif

KernelFileName�syssmall�sif

Algorithm�ART

UseFast��

RadonKernel�RL

Iterations��

ConstrainMin��

ConstrainMax���

DebugLevel�Normal
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Appendix D

The Three Dimensional Radon

Transformation

The general form of the Radon transformation in N dimensions ��
� ��� is given by

�g��� �� 

Z �

��
g�r� ���� � � r� dr �D	��

where r and � � IRN but � has only N�� degrees of freedom� e	g	� done by normalizing j�j  �	 A
common approach is to express the vector � in hyper�spherical coordinates ��
�	 In two dimensions
�  �cos �� sin ��T and in three dimensions the vector can be chosen to

� 



B� cos� sin �
sin� sin �
cos �

�
CA �D	��

The fundamental body of the Radon transform is in two dimensions a line� cf	 Eq	 �	
� and in
three dimensions a plane described by the kernel of the Radon transform

� � r  x cos� sin � � y sin� sin � � z cos � � �D	��

�g��� �� �� 

Z �

��

Z �

��

Z �

��
g�r� ���� x cos� sin � � y sin� sin � � z cos �� dx dy dz �D	
�

Here it can be noted that the three dimensional Radon transform will transform a three dimen�
sional signal g�r� into a three dimensional parameter domain �g��� �� ��	

The three dimensional Radon transform can be viewed as a convolution with a �lter

���� �D	��

where the � depends on the angles	 Eq	 D	� shows that the Radon transform picks out a plane
perpendicular to �	

Like it was done for the two dimensional Radon transform the �D Radon transform can also be
written without the delta function� and here the integral is two dimensional	 For sake of simplicity
two other vectors orthogonal vectors are introduced� where �� �� and � are form a orthogonal
basis	

� 



B�� sin�

cos�
�

�
CA � 



B�� cos� cos �
� sin� cos �

sin �

�
CA �D	��

�g��� �� �� 

Z �

��

Z �

��
g�r�� p� � ��� dr dp �D	��

In the following sections methods for inversion of the �D Radon transform are derived	

���



	�� Chapter D� The Three Dimensional Radon Transformation

D�� The Three Dimensional Fourier Slice Theorem

The Fourier Slice Theorem can also be generalized to �D	 The inversion formula is based on
Fourier transformation of Eq	 D	�	

�G��� �� 

Z �

��
�g��� �� e�j	��� d� �D	��



Z �

��

�Z �

��
g�r� ��� � � � r� dr

�
e�j	���d� �D	��



Z �

��
g�r� e�j	����r dr �D	���

De�ning the frequency parameters

�� 



B� u

v
w

�
CA �D	���

then the one dimensional Fourier transform of �g can be recognized to the three dimensional Fourier
transform of g	

�G��� �� 

Z �

��

Z �

��

Z �

��
g�x� y� z� e�j	��xu�yv�zw� dx dy dz 
 �D	���

g�r�  g�x� y� z� 

Z �

��

Z �

��

Z �

��
�G��� �� ej	��xu�yv�zw� du dv dw �D	���

Note that the result is very similar to the two dimensional result and here the transformation is
from a three dimensional domain into another three dimensional domain	

D�� Filtered Backprojection in �D

Filtered Backprojection can also be generalized into a �D version	 The inversion scheme is derived
by expressing Eq	 D	�� in spherical coordinates	

g�x� y� z�  g�r� 

Z �

���

Z �

���

Z 	�

���
�	 sin � �G��� �� ej	����r d� d� d� �D	�
�

Now an inherent symmetry of spherical coordinates are used

�G��� ��  �G��� �� ��  �G���� � � �� �� �� �D	���

which is inserted in Eq	 D	�
� and after a simple splitting of the � integral� it is found that

g�r� 

Z �

����

Z �

���

Z �

���
�	 sin � �G��� �� ej	����r d� d� d� �D	���

Now Eq	 D	� is inserted into Eq	 D	��	

g�r� 

Z �

����

Z �

���

Z �

���
�	 sin �

�Z �

����
�g��� �� �� e�j	��� d�

�
ej	����r d� d� d� �D	���

This equation can for convenience be written in two parts

"�g��� �� �� 

Z �

����
�	
�Z �

����
"�g���� �� �� e�j	�� �� d��

�
ej	��� d� �D	���

g�r� 

Z �

���

Z �

���
sin � "g�� � r� �� �� d� d� �D	���



Z �

����

Z �

���

Z �

���
sin � gy��� �� �� ���� � � r� d� d� d� �D	���
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Note the similarity between the �D Filtered Backprojection inversion scheme and the �D version
as shown in Eqs	 D	�� and D	��	 Naturally Eq	 D	�� is named the backprojection operator	 Note
also that the �ltering part of �D Filtered Backprojection requires a quadratic �lter �		

These inversion schemes are generalizations of the ones shown for the two dimensional Radon
transform� and implementation can be done by generalizing the techniques described in Chapter
�	 It should be mentioned that ���� has a thorough description of the linogram method extended
to three dimensions	

D�� Connection between the �D plane integrals and �D line in�

tegrals

In this section the connection between the �D line integrals �see Chapter ��� and the �D plane
integrals is established	 This can be used to exploit the inverse �D plane Radon transform� e	g	�
Filtered Backprojection shown in Eq	 D	�� and D	�� to reconstruct a volume from line integrals
and supplement the methods shown in Chapter ��	

Assume a plane with parameters �p� �p� �p �index p for plane�	 From �p and �p an orthonormal
basis can be found

� 



B� sin �p cos�p
sin �p sin�p

cos �p

�
CA � 



B�� sin�p

cos�p
�

�
CA � 



B� cos �p cos�p
cos �p sin�p
� sin �p

�
CA �D	���

Now all lines in the plane �normal to �� is be found	 The direction vector � of the lines can
in general be written as

�  � cos� � � sin� �D	���

The vectors are illustrated in Fig	 D	�	

η ζ τ

ρξ u α+vβ

Figure D�� The plane with normal vector �� The line r � s� � u�� v� lies in the plane�

Another useful vector is �� de�ned as the vector product between � and �	 Using that �� �
and � are orthonormal vectors imply that

�  � sin� � � cos� �D	���

hence the lines can be described by
r  s� � r� �D	�
�

where s is the free parameter and r� is the base point of the lines� resolved as shown in Section
��	�	 Using the symbols de�ned there gives

r�  u�� v	 �D	���
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Using the basis vectors shown in Fig	 D	� the plane integral �g��� �� can be expressed as

�g���� �� 

Z �

r���

Z �

t���
g��� � r�� t� � dt dr �D	���



Z �

r���
�g��l� �l� u� v� dr �D	���

where �l and �l �The index l stands for line� are the angles corresponding to � found from Eq	
��	�	 The parameters u and v are found from

�� � r�  u�� v	 �D	���

where � and 	 are found from the angles �l and �l	
The result in Eq	 D	�� depends on the angle �	 The �nal estimate of the plane integral may

be set to a weighted integral

�g��� �� 
�

�

Z �

���
q��� �g���� �� d� �D	���


�

�

Z �

���
q���

Z �

r���
�g��l� �l�� � ��� � r���	 � ��� � r��� dr d� �D	���

where q��� is a weight designed after the available data	 In general it must ful�llZ �

���
q��� d�  � �D	���
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Appendix E

Properties of the �D line Radon

Transform

From the �D line Radon transform shown in Eq	 E	� several properties are derived	

E�� Basic Properties of the �D line Radon Transform

For sake of clarify the �D line Radon transform given in Eq	 ��	�� is repeated here	

�g��� �� u� v� 

Z �

��
g�s� � u�� v	� ds �E	��

E���� Linearity

The �rst crucial property is linearity of the transform	

g�r� 
X
i

�i gi�r� � �g��� �� u� v� 
X
i

�i �gi��� �� u� v� �E	��

where the set of �i are arbitrary constants	

E���� Translation

It is assumed that

h�r�  g�r � r�� � �E	��

�h��� �� u� v� 

Z �

��
g�s� � u�� v	 � r�� ds �E	
�

Here the translation r� are resolved after the basis vectors� i	e	�

r�  s�� � u��� v�	 �E	��

This can be done in an unambiguous way

s�  r� � � u�  r� � � v�  r� � 	 �E	��

���



			 Chapter E� Properties of the 
D line Radon Transform

This is inserted in Eq	 E	
	

�h��� �� u� v� 

Z �

��
g��s� s��� � �u� u���� �v � v��	� ds �E	��



Z �

��
g��s� � �u� u���� �v � v��	� d�s� �E	��

�h��� �� u� v�  �g��� �� u� r� ��� v � r� � 	� �E	��

Note that the angular parameters � and � are not changed	

E���� Rotation and Scaling

Rotation and scaling can be controlled by means of a general transformation matrix A

h�r�  g�Ar� �E	���

The diagonal elements of the � � � matrix control the individual scaling and the o �diagonal
elements are controlling the rotation	 The corresponding Radon transform is given by

�h��� �� u� v� 

Z �

��
g�A�s� � u�� v	� ds �E	���



Z �

��
g�sA� � uA�� vA	� ds �E	���

This will in general alter the directional vector � of the line� i	e	� a new direction vector is needed

A�  
�� j�� j  � 
 � � �E	���

The vector �� de�nes cf	 Eq	 ��	� two corresponding angles �� and ��� which again de�nes the two
remaining vectors �� and �	� cf	 Eq	 ��	
	 Now Eq	 E	�� is inserted into Eq	 E	��	

�h��� �� u� v� 
�




Z �

��
g �s�� �A �u�� v	�� ds �E	�
�

The next step is to resolve the line o set parameters after the three new tilde vectors� which again
can be done unambiguously	

A �u�� v	�  s��� � u� ��� v� �	 �E	���

This implies that the �D line Radon transform is given by

�h��� �� u� v� 
�




Z �

��
g
�
�s� s���� � u� ��� v� �	

�
ds �E	���


�




Z �

��
g
�
�s�� � u� ��� v��	

�
d�s �E	���


�



�g���� ��� u�� v�� �E	���

where the four tilde parameters are given by

�� 



B� cos �� cos ��

cos �� sin ��

sin ��

�
CA 

�

jA� jA� � �� 



B�� sin ��

cos ��
�

�
CA and �	 



B�� sin �� cos ��

� sin �� sin ��

cos ��

�
CA �E	���


  jA� j� u�  �� �A � ��u� 	v�� v�  �	 �A � ��u� 	v� �E	���
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The matrix A can be partitioned in three rotational matrices and one scaling matrix

AzAyAxS �E	���

where Ax rotates in the y � z coordinates� e	g	

Ax 



B� � � �
� cos�x sin�x
� � sin�x cos�x

�
CA �E	���

and Ay rotates in the x� z coordinates� e	g	

Ay 



B� cos�y � sin�y

� � �
� sin�y � cos�y

�
CA �E	���

and �nally Az rotates in the x� y coordinates� e	g	

Az 



B� cos�z sin�z �
� sin�z cos�z �

� � �

�
CA �E	�
�

The scaling matrix S is here chosen to be the last in Eq	 E	�� because the interpretation of the
scaling is by far easier when applied directly on the base function g�r�	 The matrix can be chosen
to

S 



B�

�
Sx

� �

� �
Sy

�

� � �
Sz

�
CA �E	���

The scaling parameters in the diagonal is chosen so they directly relate to length in the new
function h�r�	 The total rotation and scaling matrix de�ned in Eq	 E	�� multiplied together
becomes

A 



BBBBB�

cos�x cos�y
Sx

cos�y sin�x
Sy

sin�y
Sz

�cos�z sin�x � cos�x sin�y sin�z
Sx

cos�x cos�z � sin�x sin�y sin�z
Sy

cos�y sin�z
Sz

sin�x sin�z � cos�x cos�z sin�y
Sx

�cos�z sin�x sin�y � cos�x sin�z
Sy

cos�y cos�z
Sz

�
CCCCCA

�E	���
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E�� Analytical Radon Transformation of Primitives

Along with the basic rules of the �D line Radon transform it is very useful to have a set of base
�D functions and their corresponding Radon transform	 In the following the Radon transform
of the unit ball and a Gaussian bell are derived	 This can be used to produce more complex
functions written as a weighted sum of shifted� rotated and scaled primitives	

E���� The ball

The �rst primitive is the unit ball� i	e	�

gball�x� y� z� 

	
� for x	 � y	 � z	 � �
� for x	 � y	 � z	 � �

�E	���

Due to the rotational symmetry of the primitive the corresponding Radon transform cannot depend
on the two angular parameters � and �� thus the Radon transform is derived in a rotated coordinate
system with � lying along the x�axis and the vector r�  u��v	 along the y�axis	 As illustrated
in Fig	 E	� is the Radon transform merely the distance between the two intersection points between
the line and the ball	

�������
�������
�������
�������

�������
�������
�������
�������

1 x

y

z

Figure E�� The unit ball with radius � and the Radon transform is the length between the two

intersection points between the line and the surface of the ball�

The length of r� is
p
u	 � v	� which implies that the Radon transform can be calculated as

�gball��� �� u� v� 

Z �

��
gball

�
s�
p
u	 � v	� �

�
ds � �E	���

�gball��� �� u� v� 

	
�
p
�� u	 � v	 for u	 � v	 � �

� for u	 � v	 � �
�E	���

E���� The Gaussian bell

The Gaussian bell is another primitive� where the Radon transform can be found analytically	

ggauss�x� y� z�  exp��x	 � y	 � z	� �E	���

Again the function has rotational symmetry� hence the Radon transform does not depend on the
angular parameters � and �� and the Radon transform can� e	g	� be derived as

�ggauss��� �� u� v� 

Z �

��
e�s

��u��v� ds � �ggauss��� �� u� v� 
p
�e�u

��v� �E	���
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Appendix F

Usage of the �D Reconstruction Tools

A software packages has been made for �D reconstruction of sinograms �line integrals�� as shown
in Chapter ��	 The package are provided for free� but protected by the GNU General Public
License	 The programs described in this appendix has been developed on a a Linux system and
implemented in C	 The program should compile directly on any GNU�C Unix system	 Furthermore
will the program compile on a SGI Onyx� and parallel options� �pragma XXX� have been added to
take advantage of the parallel possibilities of Iris Power C	 The package is available from ����	

In Section F	� is the usage of the reconstruction program �Recon�D� described	 As mentioned
in Section ��	� the program is intended for testing of di erent �D reconstruction algorithms� and
no Kinahan # Rogers reprojection step is currently included	

In Section F	� is the program ��D RadonAna� described� which can generate a volume and the
corresponding four�dimensional sinogram from a set of scaled� translated� and rotated primitives	

F�� The �D Reconstruction Program �Recon�D�

The program �Recon�D� uses the following parameters

DebugLevel �String� This parameter controls the level of output	 The parameter is mixed and
overrules with the one used in the Print�statements �extended printf de�ned in the program�	

Normal Standard level of output to screen and log �le	

Debug Almost all output is logged to screen and log �le	

NoScreen Screen output is disabled and log �le level is ordinary	

NoLog Log �le output is disabled and screen level is ordinary	

HardCore No information at all	

WorkDir �String� Directory where the data��les are stored	 The style ���signals is valid	

Sinogram �String� Name of the �le containing the 
D sinogram	 The �le must have extension
�f�f �binary format� or �a�f �ASCII format�	

OrgFile �String� �optional� Name of a volume specifying the sampling parameters of the recon�
structed volume	 If given� then error measures will be computed with respect to this volume	

Volume �String� Name of the volume to be reconstructed	 The �le must have extension �f�f

�binary format� or �a�f �ASCII format�	

���



		� Chapter F� Usage of the 
D Reconstruction Tools

Function �String� Parameter specifying the action to be used	

FB Direct reconstruction using Filtered Backprojection	 Result in the Volume	

FAB Direct reconstruction using Filtering after Backprojection	 Result in the Volume	

CS Direct reconstruction using Fourier Slice Theorem �Experimental�	 Result in the Volume	

Forward Radon transform of Volume into the Sinogram	

MART Iterative reconstruction using MART	 Result in the Volume	

ART Iterative reconstruction using ART	 Result in the Volume	

EM Iterative reconstruction using EM	 Result in the Volume	

Iterations �Integer� For EM the number of iterations before the iteration ends	 For ART and
MART the number of full iterations� i	e	� the number of actual ART iterations is Iterations
times the number of rows in the system matrix	

Iterative Par � �Float� In ART and MART the initial weight parameter �	

Iterative Par � �Float� In ART and MART the �nal weight parameter �	

Select Par � �Integer� In Fourier Slice Reconstruction a value of � will choose a nearest neigh�
bour interpolation in the spectrum� and a value of � implies that tri�linear interpolation is
used	

Xmin �Float� The minimum value of x in the volume	 Only needed if OrgFile is not speci�ed	

Ymin �Float� The minimum value of y in the volume	 Only needed if OrgFile is not speci�ed	

Zmin �Float� The minimum value of z in the volume	 Only needed if OrgFile is not speci�ed	

DeltaX �Float� The sampling interval of x in the volume	 Only needed if OrgFile is not speci�ed	

DeltaY �Float� The sampling interval of y in the volume	 Only needed if OrgFile is not speci�ed	

DeltaZ �Float� The sampling interval of z in the volume	 Only needed if OrgFile is not speci�ed	

XSamples �Integer� The number of samples of x in the volume	 Only needed if OrgFile is not
speci�ed	

YSamples �Integer� The number of samples of y in the volume	 Only needed if OrgFile is not
speci�ed	

ZSamples �Integer� The number of samples of z in the volume	 Only needed if OrgFile is not
speci�ed	

An example of a valid ini��le for �Recon�D� is shown below	 The ini��le is used to recon�
struct a sinogram ���signals�Mickey Sino�f�f into Mickey Out�f�f with the same sampling
parameters as contained in the �le Mickey Vol�f�f	 Here Filtered Backprojection is used	

WorkDir����signals

Sinogram�MickeySino�f�f

Volume�MickeyOut�f�f

OrgFile�MickeyVol�f�f

Function�FB

DebugLevel�Normal

Iterations��
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Section F�� The Analytical Sinogram Program ��D RadonAna� 		�

F�� The Analytical Sinogram Program ��D RadonAna�

The program ��D RadonAna�uses the following parameters

DebugLevel �String� This parameter controls the level of output	 The parameter is mixed and
overrules with the one used in the Print�statements �extended printf de�ned in the program�	

Normal Standard level of output to screen and log �le	

Debug Almost all output is logged to screen and log �le	

NoScreen Screen output is disabled and log �le level is ordinary	

NoLog Log �le output is disabled and screen level is ordinary	

HardCore No information at all	

OutFileName �String� First part of the name to output	 Two �les can be written	 The volume
in OutFileName Vol�f�f and the sinogram in OutFileName Sino�f�f	 Here the style
���signals�MickeyBig can be used	

Xmin �Float� The minimum value of x in the volume	

Ymin �Float� �optional� The minimum value of y in the volume	 If not speci�ed Xmin will be used	

Zmin �Float� �optional� The minimum value of z in the volume	 If not speci�ed Xmin will be used	

DeltaX �Float� The sampling interval of x in the volume	

DeltaY �Float� �optional� The sampling interval of x in the volume	 If not speci�ed the valued of
DeltaX will be	

DeltaZ �Float� �optional� The sampling interval of z in the volume	 If not speci�ed the valued of
DeltaX will be	

XSamples �Integer� The number of samples of x in the volume	

YSamples �Integer� �optional� The number of samples of y in the volume	 If not speci�ed XSamples

will be used	

ZSamples �Integer� �optional� The number of samples of z in the volume	 If not speci�ed XSamples

will be used	

USamples �Integer� The number of samples of u in the sinogram	

VSamples �Integer� The number of samples of v in the sinogram	 If not speci�ed USamples will
be	

DeltaU �Float� The sampling interval of u in the sinogram	

DeltaV �Float� The sampling interval of v in the sinogram	 If not speci�ed DeltaU will be	

PhiSamples �Integer� The number of samples of � in the sinogram	 This number will be distrib�
uted from �min  ��  �PhiLimit to ��min  �  PhiLimit	

PhiLimit �Float� The axial acceptance angle � �measured in degrees�	

GenerateVolume If set to � then the volume will not be generated� and � then it will be generated	
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GenerateSinogram If set to � then the sinogram will not be generated� and � then it will be
generated	

NumberOfShapes Number of primitives used	

The ordering of the parameters shown above are arbitrary	 After these parameters a number
of lines must follow specifying a scaling� rotation� and shifting parameters of each primitive	 The
line uses the following parameters in this order

Shapei �String� where i is � to NumberOfShapes��	

Type �Integer� The type of primitive� where

� A ball centered around ����� with radius � and uniform signal � in the ball	

� A �D Gaussian bell exp��x	 � y	 � z	�	

offx �Float� Shift of of the primitive in the direction of the x�axis	

offy �Float� Shift of of the primitive in the direction of the y�axis	

offz �Float� Shift of of the primitive in the direction of the z�axis	

rotx �Float� Rotation angle of the primitive around the x�axis	

roty �Float� Rotation angle of the primitive around the y�axis	

rotz �Float� Rotation angle of the primitive around the z�axis	

scalx �Float� Scaling of the primitive in direction of the x�axis	

scaly �Float� Scaling of the primitive in direction of the y�axis	

scalz �Float� Scaling of the primitive in direction of the z�axis	

power �Float� Scaling of the value of the primitive	
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The program is executed with the initialization �le or �INI��le as sole argument	 A typical
�INI��le could be the one used to generate the Big Mickey	 Note that comments can be used�
such as the line above Shape
	

OutFileName����signals�MickeyBig

XSamples����

DeltaX�
��

USamples���

ThetaSamples��

PhiSamples��

PhiLimit��


DeltaU�
��

NumberOfShapes���

GenerateVolume��

GenerateSinogram��

DebugLevel�Normal

Type offx offy offz rotx roty rotz scalx scaly scalz power
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Appendix G

Fast Radon Transform for Detection of

Seismic Re�ections

This appendix contains the paper Fast Radon Transform for Detection of Seismic Re�ections� by
Peter A	 Toft and Kim V	 Hansen ���	 The work has been carried out as a joint venture project
between $degaard # Danneskiold�Sams%e and Department of Mathematical Modelling �before
january �	 �� Electronics Institute�	

The results have been presented at the Interdisciplinary Inversion Summer School �� which
took place in M%nsted� Denmark� and later this paper was presented at the EUSIPCO �� in
Edinburgh� Scotland	
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Fast Radon Transform for Detection of Seismic Re�ections

Peter A� TOFT and Kim V� HANSEN
y

Electronics Institute� Technical University of Denmark� DK����� Lyngby� Denmark�
Tel�Fax �	
 	
 �� 	� ��	� �� �� �� E�Mail� ptoft�ei�dtu�dk

y�degaard � Danneskiold�Sams�e ApS� Kroghsgade �� DK����� K�benhavn �� Denmark�
Tel�Fax �	
 �
 �� �� ����
 �� 
� ��� E�Mail� kvh�oedan�dk

Abstract� A new method for fast detection of seimic re�ections is proposed� Generally the method can be viewed
as a curve matching method for images with a speci�c structure� In this paper the method is applied to seismic
signals assembled to constitute an image in which the investigated re�ections produce hyperbolic curves�
The idea of the proposed method is to estimate the re�ection curves by combining the multipulse technique and
the FCE�algorithm ���� The FCE�algorithm is an algorithm used for fast curve estimation within binary images�
The foundation of the FCE�algorithm is the composition of a pre�condition map which signi�cantly reduces the
computational cost compared to the traditional generalized Radon transform�
The proposed method is succesfully applied for detection of hyperbolic re�ection curves within CMP�gathers�

� Introduction

The seismic industry has developed a method of
sampling seismic signals that gives multiple coverage�
The recording geometry of seismic acquisition results
in signals having the same mid point between source
and receiver ���� The set of signals corresponding to
the same mid point is called a CMP�gather 	common
mid point gather
�

Without any assumptions concerning the seismic
signal processing� two facts of the CMP�gather are
noticed� Almost the same short signal sequence 	the
wavelet
 is observed several times within each trace
and the same short signal sequence is seen along curves
within several traces� These two facts form the basis
of the re�ection detection� The re�ections represent
information concerning the geological structure of the
subsurface� If the subsurface is assumed to be hori�
zontally layered it can be shown ��� that the shape of
the re�ection curves are hyperbolas� described by the
normal moveout equation� Currently� re�ections are
identi�ed from CMP�gathers by using velocity ana�
lysis succeeded by a manual picking of primary re�
�ections� This procedure is inconvenient due to the
computational burden and the required interpretation
performed by an expert� These facts motivate the
development of an automatic re�ection identi�cation
procedure�

The key idea of the proposed method for detection
of re�ection curves is to combine the multipulse tech�
nique with the FCE�algorithm ���� The multipulse
technique is used to identify the wavelet in each trace�
and the FCE�algorithm is used to coordinate the es�

timation of the re�ection sequence�
The proposed method works on CMP�gathers� shot�

gathers� and other types of gathers�

� The Multipulse Technique

Recently� the multipulse excited speech coding tech�
nique� which was originally proposed by Atal et al�

���� has been suggested for seismic deconvolution by
Cookey et al� ��� Basically� the multipulse model for
speech assumes the speech signal to be a result of
several impulses modulated by the shape of the vo�
cal tract �lter� Within seismic deconvolution models�
the input signal is often modeled as an all�pole impulse
and the layered earth re�ectivity model is considered
as an impulse train�

Fundamentally� the re�ections within each trace
are estimated by minimizing the mean square error
between the recorded and the modeled signal� The
method is characterized by successive estimation of
a pre�de�ned number of re�ections� Thus� the mul�
tipulse technique can be used to map seismic signals
in a CMP�gather into a binary image� where the image
value is set to one in case of a re�ection and otherwise
is set to zero�

� Fast Hyperbola Estimation

A recurring problem in computer image processing is
the identi�cation of curves with speci�c shapes� In di�
gital image processing a special variant of the general�
ized Radon transform ���� called the Hough transform

�
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��� ��� is used for detection of curves in images� The
Hough transform detects speci�c values of paramet�
ers� which characterize these curves� Spatially exten�
ded curves are transformed to produce spatially com�
pact features in a space of possible parameter values�
Thus� the generalized Radon transform converts a dif�
�cult global detection problem in the image space into
a more easily solved local peak detection problem in
a parameter space�
The foundation of the FCE�algorithm is the compos�

ition of a pre�condition map which reduces the com�
putational costs of the traditional generalized Radon
transform� The pre�condition map is composed of ir�
regular regions in the parameter domain which rep�
resent the interesting areas of the parameter domain�
i�e�� the regions of the parameter domain which con�
tain peaks representing curves� Initially� the FCE�
algorithm estimates the pre�condition map and sub�
sequently applies a traditional generalized Radon
transform within the regions speci�ed by the pre�
condition map� To generate the pre�condition map a
fast mapping procedure named image point mapping

	IPM 
 is presented� As IPM maps image points into
the corresponding parameter values in the parameter
domain� it can pro�t by image points with value zero�
Assuming a horizontally layered subsurface the re�

�ection curves within a CMP�gather are described by
the normal moveout equation ���

tn  �	�x� t��z� �s
 
q

t�
��z � 	�s�x
� 	�


where tn denotes the two way travel time� t��z the zero
o�set two way travel time� �x the o�set� and �s the
slowness� The subscripts denote corresponding dis�
crete variables�
In this paper a linear sampling of the variables is

chosen according to

�i  �i�j  �i�low � ji ��i� ji  �� �� � � � � Ji � � 	�


where ji is a discrete variable� �i�low denotes the lower
limit� ��i the sampling interval and Ji is the number
of samples of �i�
Substitution of the linear sampling into eq� 	�
 gives

n  �d	x� z� s


 round		�	�x� t��z� �s
� tlow
��t
 	�


where round	�
 rounds to the closest integer�
Let d	x� n
 denote a discrete image and let D	z� s


denote the discrete generalized Radon transform of
d	x� n
 de�ned by

D	z� s
 
X��X
x��

d	x� �d	x� z� s

 	�


Normally� the use of rounding instead of e�g�� linear
interpolation will not cause problems� However� in�
terpolation can easily be incorporated in eq� 	�
 and
	�
�

The discrete generalized Radon transform can be
rewritten as

D	z� s
 

X��X
x��

N��X
n��

d	x� n
 		n � �d	x� z� s

 	�


where 		�
 denotes the Kronecker delta function�
Eq� 	�
 shows that each image point 	x� n
 is trans�

formed into a parameter curve where �d	x� z� s
  n�
Thus mapping of image points with zero value is need�
less� as they will not contribute to D	z� s
�
Inversion of eq� 	�
 and insertion of the linear

sampling relations of the variables leads to

z  �d	x� n� s


 round		
p

t�n � 	�s�x
� � t��low
��t�
 	�


Based on eq� 	�
 and 	�
 the estimation scheme IPM
is de�ned� This can be summarized as

�� Initialize D	z� s
  � for all 	z� s


�� For all image points d	x� n
 with a value different
from zero do
For all possible s do
D	�d	x� n� s
� s
 � D	�d	x� n� s
� s
�d	x� n


In the hyperbolical case eq� 	�
 will describe an
ellipse� This causes a problem for j�d	x� n� s
 �
�d	x� n� s � �
j 
 �� which results in a perforated
ellipse� This perforation problem can be eliminated
simply by adding d	n� x
 to D	z� s
 for the para�
meter values skipped between two subsequent para�
meter vectors� Using IPM the ellipses from points
lying on a hyperbola might not intersect in one para�
meter combination� but will spread out� This problem
can be eliminated using a sparse sampled parameter
domain� However� GRT requires a dense sampling of
the parameter domain to ensure that all hyperbolas
are detectable�

��� The FCE�algorithm

From the characteristics of GRT and IPM it is pos�
sible to construct a fast curve parameter estimation
algorithm� the FCE�algorithm ���� that simultaneously
estimates all curve parameters within a sparse binary
image�
The FCE�algorithm can be summarized as follows�

�� Design the discrete parameter domain� i�e��
choose �i�low� Ji and ��i� �i � ft��z� �sg�

�� Design a reduced parameter domain for IPM by
choosing

J �i  ceil

�
Ji

�v�i � �

�
	�


��i�low  �low � v�i��i 	�


���i  	�v�i � �
��i 	�
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where ceil��� rounds to the nearest upper integer�
Then use IPM to estimate Dm�z

�� s�� as

Dm�z
�� s�� � IPM fd�x� n�g ����

�� Use a threshold to remove all insigni	cant para

meter combinations� A suitable choice could be

Dt�z
�� s�� � ��Dm�z

�� s��� �� X� ����

where X denotes the number of image lines� ��
a fraction de	ning the signi	cance level� and ����
the Hamilton step function�

�� Resample the parameter domain to obtain
Dr�z� s�� The resampling process can be written
as

Dr�z� s� � Dt�z
�� s�� ���

j�

i � round

�
ji � v�i
v�i � �

�
����

This gives a full size parameter domain where the
interesting regions have value one while all other
regions have value zero�

�� Use GRT to estimate D�z� s� in the regions of the
parameter domain where Dr�z� s� is not equal to
zero�

D�z� s� � GRTfd�x� n�j Dr�z� s� �� �g ����

�� As in step three use the threshold function with
signi	cance level ��� After the thresholding all
points in the parameter domain having a value
di�erent from zero represent curve parameters�

The signi	cance levels �� and �� must be chosen in
accordance with the properties of the image� In general
�� and �� are not critical� A suitable choice of �� and
�� could be ������� and �������� respectively� There
are two reasons for a low acceptance level in step three�
Firstly� IPM has a tendency to blur in the parameter
domain and secondly� only regions of the parameter
domain ensured not to contain image curves must be
left out� A higher signi	cance level in step six ����
is justi	ed by the required certainty for correct curve
identi	cation�

� Numerical Example

To illustrate the performance of the presented method
for determination of re�ection curves within CMP

gathers a numerical example is given�
Consider a CMP
gather where the image values are

represented by continuous values� The CMP
gather
can be mapped into a binary image d�x� n� by deconvo

lution based on the multipulse technique ��� ��� Figure

��left shows a synthetic CMP
gather and Figure ��right
the thresholded image obtained by multipulse tech

nique deconvolution� The CMP
gather is composed of
seven re�ection curves� Concerning the deconvolution
	fteen re�ections are chosen to be estimated within
each trace� which implies that eight erroneous re�ec

tions within each trace have been found� These eight
re�ection will act as uncorrelated noise�
Next� Figure  shows the parameter domain ob


tained by use of IPM � where vt� �  and v� � ��
Figure � shows the parameter domain achieved by ap

plying GRT in the parameter domain region speci	ed
by the thresholded and resampled parameter domain
obtained by IPM � Within the thresholding process
a signi	cance level of �� � ��� has been used� Fi

nally� Figure � shows the identi	ed re�ection hyper

bolas� where a signi	cance level of �� � ��� has been
used in the thresholding� As seen all re�ection curves
have been found�

� Conclusion

A new method for fast detection of seismic re�ections
is presented� Generally� the method can be viewed as
a curve matching method for images with a speci	c
structure�
The foundation of the proposed method is to es


timate the re�ection curves by combining the mul

tipulse technique ��� �� and the FCE
algorithm ����
The multipulse technique is used for wavelet identi

	cation within each trace� and the FCE
algorithm is
used to coordinate the wavelet identi	cation between
the individual traces�
The proposed method is succesfully applied for de


tection of hyperbolic re�ection curves within CMP

gathers�
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Figure �� Left� CMP�gather� Right� Thresholded
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Figure �� IPM�domain�
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Figure �� GRT�domain�

10 20 30 40 50

50

100

150

200

250

300

350

400

Trace index  x

T
im

e
 i
n
d
e
x
  
n

Figure �� Identi�ed re�ection curves�

c�Peter Toft ����





Appendix H

Fast Curve Estimation Using

Pre�Conditioned Generalized Radon

Transform

This appendix contains a pre�print of the paper Fast Curve Estimation Using Pre�Conditioned

Generalized Radon Transform� by Kim V	 Hansen and Peter A	 Toft ���	 The work has been
carried out as a joint venture project between $degaard # Danneskiold�Sams%e and Department
of Mathematical Modelling �before january �	 �� Electronics Institute�	

The paper has been accepted for publication in the IEEE Transactions on Image Processing
and should appear in the December �� issue	

���



	�� Chapter H� Fast Curve Estimation Using Pre�Conditioned Generalized Radon Transform

Fast Curve Estimation Using Pre�Conditioned

Generalized Radon Transform

Kim V� Hansen� Oticon� Strandvejen ��� ���� Hellerup� Phone 	
� �������

e�mail kvh�Oticon�Oticon�dk
���dk

Peter A� Toft� Department of Mathematical Modelling� Building �
��

Technical University of Denmark� ���� Lyngby� Denmark� Phone 	
� 
���
���

e�mail ptoft�ei�dtu�dk

Abstract

A new algorithm for fast curve parameter estim�
ation based on the generalized Radon transform
is proposed� The algorithm works on binary im�
ages� obtained� e�g�� by edge �ltering or decon�
volution� The fundamental idea of the sugges�
ted algorithm is the use of a pre�condition map
to reduce the computational cost of the general�
ized Radon transform� The pre�condition map
is composed of irregular regions in the para�
meter domain� which contain peaks that rep�
resent curves in the image� To generate the
pre�condition map� a fast mapping procedure
named image point mapping is developed� As
the image point mapping scheme maps image
points into the corresponding parameter val�
ues in the parameter domain� it is possible to
improve computational e�ciency be recogniz�
ing image points with value zero� Initially� the
suggested algorithm estimates the pre�condition
map and subsequently applies the generalized
Radon transform within the regions speci�ed by
the pre�condition map� The required parameter
domain sampling and the resulting blurring are
also investigated�

The suggested algorithm is successfully ap�
plied to the identi�cation of hyperbolas in seis�
mic images� and two numerical examples are
given�

I Introduction

A recurring problem in computer image pro�
cessing is the identi�cation of curves with spe�
ci�c shapes� The transform developed by
Hough ��	 for detection of complex patterns in
binary f
� �g digital images has been discussed
by several authors� e�g�� ��	� ��	 and generalized
for multi�dimensional pattern detection in �	�
The Hough transform can be deduced ��	 as a
special case of a more general transform� known
as the Radon transform ��	� The Radon trans�
form is a mapping from an image domain to a
parameter domain� where the parameters char�
acterize the curves to be identi�ed� The Radon
transform can be generalized to handle arbit�
rary curves ��	� The Hough version of the gen�
eralized Radon transform detects speci�c val�
ues of parameters� as spatially extended curves
are transformed to produce spatially compact
features in the parameter domain� In this way�
the generalized Radon transform converts a dif�
�cult global detection problem in the image do�
main into a more easily solved local peak de�
tection problem in the parameter domain�

In recent years progress has been made to
understand and increase the speed of the gener�
alized Radon transform ��� �� 	� Investigations
concerning both the traditional and more recent
generalized Radon transform for curve identi�
�cation schemes point out two problems with
respect to computational cost� First� the estim�
ation schemes are not capable of exploiting im�
age points with zero value �zero image points��
and second� estimation is computationally ex�
pensive� as it estimates unneeded information�
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This is a consequence of parameter estimation�
in areas of the parameter domain where curve
parameters are very unlikely�

The basis for curve parameter estimation as
described in this paper is a binary image� The
binary image can be produced in several ways�
e�g�� by edge �ltering or deconvolution�

In this paper� a new algorithm for fast
curve estimation� called the FCE�algorithm� is
presented� The key idea of the FCE�algorithm
is to pre�condition the parameter domain� creat�
ing irregular regions corresponding to the para�
meter regions of interest� Furthermore� the
FCE�algorithm takes advantage of zero image
values in generating the pre�condition map� Ini�
tially� the FCE�algorithm identi�es regions of
the parameter domain which contain peaks rep�
resenting curves in the image� Subsequently�
it estimates a traditional generalized Radon
transform within these regions�

The identi�cation of hyperbolas is of partic�
ular interest within seismic signal processing�
Over the years the seismic industry has de�
veloped a method of recording seismic signals
resulting in images in which the investigated
re�ections produce curves� The recording geo�
metry of seismic data acquisition results in sig�
nals having the same geometrical mid point
between source and receiver� see� e�g�� ��	
�
The set of signals corresponding to the same
mid point is called a common mid point gather
�CMP�gather�� A common technique in seismic
data analysis for estimation of hyperbola para�
meters is velocity analysis� e�g�� ���
� Within
the presented work some features from velocity
analysis are incorporated� however� the presen�
ted method has less computational cost�

Recently� the multipulse excited speech cod�
ing technique� which was originally proposed by
Atal et al ��
� has been suggested for seismic
deconvolution by Cookey et al� ���
� Basic�
ally� the multipulse model for speech assumes
the speech signal to be a result of several im�
pulses transformed by the shape of the vocal
tract �lter� In seismic deconvolution� the in�
put signal is often modeled as an all�pole im�
pulse and the layered earth re�ectivity model is

considered as an impulse train� see� e�g�� ���
�
Thus� the multipulse technique can be used to
map seismic signals in a CMP�gather into a bin�
ary image� where the image value is set to one
in case of a re�ection and zero otherwise� The
re�ections represent information concerning the
geological structure of the subsurface�
The traditional generalized Radon transform

is described in section II� Creation of the pre�
conditioning map is described in section III�
where the image point mapping procedure is
developed� In section IV� parameter domain
sampling is discussed and section V describes
parameter domain blurring� which is a result of
discretization� The FCE�algorithm is presented
in section VI� and is applied to two numerical
examples for detection of hyperbolas in section
VII� Regarding notation� scalars are denoted
by letters� and vectors by bold�faced letters�

II The Generalized Radon

Transform

Let f��� t� be a continuous signal of the con�
tinuous variables � and t and let � denote an
��dimensional parameter vector de�ned as

� � ���� � � � � �i� � � � � ��� ���

where ��� t� is called the image domain� � the
parameter domain� and f��� t� the image�

A� The Continuous Generalized Radon

Transform

Let F ��� denote the continuous generalized
Radon transform of f��� t�� de�ned as

F ��� �

Z
�

��

f��� ���� ��� d� ��

where t � ���� �� denotes the transformation
curve� The generalized Radon transform is the
integration of f��� t� along the transformation
curve�
Other de�nitions of the generalized Radon

transform can be found in the literature ��
� ��
�
Equation  can be interpreted as a generaliz�
ation of the Slant Stacking technique used in
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geophysics� e�g�� ���� but the new ideas presen�
ted in this paper can be modi�ed to con�rm
with this literature�

B� The Discrete Generalized Radon

Transform

Let j denote the ��dimensional discrete index
parameter vector de�ned as

j 	 
j�� � � � � ji� � � � � j�� 
��

The correspondence between the index vector j
and the sampled version of the parameter vector
� can be written as

� 	 �j 	 �
j�� where �i 	 �i
ji� 
�

where �i
ji� is a parameter sampling function�
If a uniform sampling of the parameter do�

main is chosen� the function �i can be written

�i 	 �i
ji� 	 �i�min � ji ��i� ji 	 �� � � � � Ji � �

��

where �i�min denotes the lower limit and ��i the
sampling interval of �i�
The parameter domain and image domain

sampling are assumed to be uniform� The
correspondence between the discrete image do�
main indices 
m�n� and the continuous vari�
ables 
�� t� can be written as

� 	 �m 	 �min �m ��� m 	 �� �� � � � �M � �
��

t 	 tn 	 tmin � n �t� n 	 �� �� � � � � N � � 
��

where �min and tmin denote the lower limits and
�� and �t the sampling interval of � and t�
respectively�
Substitution of Equation � � and � into the

transformation curve gives

t 	 tmin � n �t 	 �
�min �m ����
j�� 
��

From to Equation �� the discrete index trans�
formation curve �d
m� j� can be expressed as

�d
m� j� 	 n 
��

	 round

�
�
�min �m ����
j��� tmin

�t

�

where round
�� rounds to the closest integer�

Let d
m�n� denote the discretized version of
the signal f
�� t�� i�e�� d
m�n� 	 f
�m� tn� and
let D
j� denote the discrete generalized Radon
transform 
GRT� of d
m�n� de�ned as

D
j� 	
M��X
m��

d
m��d
m� j�� 
���

Notice� that the term d� has been omitted in
the discrete generalized Radon transform as it
is a constant due to the uniform sampling of ��
The use of rounding instead of� e�g�� linear in�
terpolation will normally not lead to problems�
If necessary� interpolation can easily be incor�
porated in Equations � and ���

III Image Point Mapping

From Equation �� the continuous generalized
Radon transform F 
�� can be written as

F 
�� 	

Z
�

��

Z
�

��

f
�� t� �
t� �
�� ��� dt d�


���
where �
�� is the Dirac delta function�

Analogously� the discrete generalized Radon
transform� from Equation ��� can be written as

D
j� 	
M��X
m��

N��X
n��

d
m�n� �
n� �d
m� j�� 
���

where �
�� denotes the Kronecker delta function�

Equation �� shows that each image point

m�n� is transformed into a parameter curve
where �d
m� j� 	 n� Thus mapping of image
points with zero value is needless as they will
not contribute to D
j�� The proposed estima�
tion scheme for the Radon transform accounts
for the fact that zero image values do not con�
tribute� and does not include them in the sum�
mation in Equation ��� This has the potential
to reduce the computational cost considerably�

Now� assume that � is invertible in one of the
parameters �i� e�g�� ��� The inverse function
����� with respect to �� can be written as

�� 	 ����� 
�� t� �r�� �r 	 
��� � � � � ����� 
���
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Furthermore� assume that the sampling function
�� is invertible� Then

j� � round����

� �����

� round����

� ����

��
��� t� �r��

� �d�m�n� jr�� jr � �j�� � � � � j�����	
�

Equations 	� and 	
� are the basis for an estim�
ation scheme for the generalized Radon trans�
form which is referred to here as Image Point

Mapping �IPM�� The key steps of IPM can be
summarized as

	� Initialize D�j� �  for all j

�� For all image points d�m�n� with a value
di�erent from zero do
For all possible jr do
j � �jr��d�m�n� jr��
D�j� �� D�j� � d�m�n�

Notice� that IPM is a generalization of the
Hough transform �	� extended to handle arbit�
rary transformation curves� Like the Hough
transform� the objective of IPM is parameter
identi�cation�

The fundamental di�erence between GRT
and IPM is� that GRT requires rounding in the
image domain� whereas IPM rounds in the para�
meter domain� as schematically shown in Figure
	�

The computational complexities of GRT and
IPM� respectively� are

WGRT � O

�
M

�Y
i��

Ji

�

WIPM � O

�
��M N�r

���Y
i��

Ji

�
A �	��

where �M N�r indicates that only a reduced
number of image points �nonzero values� are to
be transformed� In Equation 	�� the cost to test
for nonzero values is assumed to be negligible�

The major advantage of IPM over GRT is
the ability of IPM to ignore image points with a
value of zero� making IPM especially well suited
for sparse binary images�

1ξφ  (ξ
-1 ,t;  )κ

2

ξ
1

1
ξ

1ξ ξ2

ξ
2

Image domain d(m,n)

Image domain

ξ
2

21Parameter domain

21Parameter domain

D(j ,j )

D(j ,j )

κ

κ

t

t
φ(κ;   ,   )

d(m,n)

Figure 	� Top� Rounding by GRT in the image
domain corresponding to a point in the para�
meter domain� Bottom� Rounding by IPM in
the parameter domain corresponding to a point
in the image domain�

If the absolute value between two successive
j� values is greater than one� i�e��

j�d�m�n� jr � ��� �d�m�n� jr�j � 	 �	��

where vector � contains zeros at all ��	 entries
and holds unit value at entry i� i�e�� 	i � 	�
it is seen that IPM will map the image point
�m�n� into a perforated hypercurve� i�e�� a hy�
percurve containing missing sections� Identi�c�
ation of curve parameters can be di�cult due
to the presence of perforation holes depending
on the shape and depth of the holes�
For � � � the perforation problem can be

eliminated simply by adding d�m�n� to D�j�
for the parameter values skipped between two
successive parameter vectors� Consider� for ex�
ample� the hyperbolic transformation curve as
illustrated in Figure �� where the parameter do�
main is described by �j�� j�� � �s� z��
Figure � shows the mapping of an image point

�m�� n�� to the parameter domain� that is� dis�
cretized parameter point accumulators to which
the value d�m�� n�� of the image point must
be added� To investigate the perforation prob�
lem� two parameter points �s� � 	� z� � �� and
�s�� z�� on the inverse transformation curve are
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z

s

s*-1

s*

z*+3

z*

Figure �� Illustration of the perforation prob�

lem�

considered� Following the inverse transforma�

tion curve from �s�� �� z��	
 to �s�� z�
 along

the s axis gives only the two parameter points

�s� � �� z� � 	
 and �s�� z�
� However� fol�

lowing the inverse transformation curve along
the z axis also gives the two intervening points

�s�� z���
 and �s�� z���
� One way of handling

such intervening points is to add the value of the

image point to the parameter points skipped

between two successive parameter points on

the inverse transformation curve� Therefore�

in this example� d�m�� n�
 must be added to

the skipped parameter points �s�� z� � �
 and

�s�� z� � �
 when following the s axis�

IV Parameter Domain

Sampling

For a given image d�m�n
 an exact determin�

ation of ��i� �i�min and Ji� which match the
image� is� in general� not possible� However�

some guidelines can be stated� First� some of

the parameters will be bounded by the underly�

ing physics� e�g�� �i�min and �i�max will normally

be limited� Second� the parameter domain can

be limited by requiring that at least a fraction

� of the image points addressed by the trans�

formation curve �d�m j
 lie inside the image�

i�e��

M��X

m��

I ftmin � ���m �
 � tmaxg � � M� ��

���


where � � � � �� and If�g equals � when the

logical expression is true and � otherwise�
Concerning use of the GRT� the sampling in�

tervals ��i can be chosen by requiring that

maxfj��� � � �i
� ��� �
jg � �t � �� ���i

���


where �i is a 	�dimensional vector containing

zeros at all entries except entry i which is ��i�

Equation �� states that two adjacent ��

vectors give t � ��� �
 values which can�

not be separated by more than one sample in
the t�direction� This design criterion is not

optimal as it leads to an unnecessarily dense

sampling of certain parts of the parameter do�

main� however� it can be used as an upper

sampling rate limit� Increasing the sampling

rate of the parameter domain above a certain

limit will not improve the resolution obtained

by GRT as adjacent j vectors will result in the

same curve n � �d�m j
� For GRT� a coarse

sampling cannot guarantee a given curve will be

detected� due to the fact that no transformation
curve �d�m j
 can be guaranteed to follow the

image curve perfectly�

Use of IPM with a dense parameter domain

sampling according to Equation �� produces

curves j� � �d�m�n jr
 for �m�n
 values cor�

responding to an image curve which do not in�

tersect in a parameter point j� but will spread

out over several parameter points� The reason

for this spread is the individual treatment of im�

age points as regions of zero size and not regions

of� e�g�� rectangular shape� This spread can be

compensated by the use of a coarse sampling of
the parameter domain� In addition� a coarse

sampling will lead to a lower computational

cost�

Summarizing� GRT requires a dense para�

meter domain sampling� while IPM gives rise to

blurring in the parameter domain in the case of

dense parameter domain sampling� but works

well with a coarse sampling of the parameter
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domain� This observation is the basis for the
curve parameter estimation algorithm� presen�
ted in section VI�

V Parameter Domain

Blurring

Parameter domain blurring achieved by use of
GRT can be interpreted in a way that makes it
usable for parameter clustering� According to
Equation � the continuous transformation curve
can be written as

t � ���� �	� � � 
�min� �max� ��	

Let �t denote the sampling interval of t and let
��t be a given uncertainty of t� e�g�� � � ����
For a parameter vector � � ��j	 to lie inside a
band of width ���t� symmetrically positioned
around the image curve t � ���� ��	� it must
satisfy the following inequality

t� � �t � ���� �	 � t� � �t ���	

t � ���� ��	� �� � 
�min� �max� ���	

Several parameter vectors � will correspond to
image points within the band speci�ed in Equa�
tion ��� Therefore� in general� a band in the im�
age around a given curve described by the para�
meter vector �� will give rise to a region in the
parameter space which consists of parameter
vectors that correspond to curves inside the im�
age band� These regions are named clusters and
the corresponding image curve with parameter
�� is called a center curve� An example of a
curve band around a center curve and the cor�
responding parameter cluster is illustrated in
Figure ��
Unfortunately� the center curves are normally

unknown� and it is impossible to determine the
clusters� However� it is possible to determine
whether two parameter sets �� and �� belong
to the same cluster� If two parameter vectors
belong to the same cluster they must satisfy

j���� ��	����� ��	j � � � �t� � � 
�min� �max�
���	

Parameter domain points may be gathered into
regions or clusters� with the guarantee that

t=  (  ,   ,   ) +      yξ ξ
ξ ξ

ξ ξ

ξ ξ

ξ

αΔ1 2’ ’κ
κ 1 2’ ’t=  (  ,   ,   )

αΔ1 2’ ’κt=  (  ,   ,   ) -      y

x ξ

ξ

1

2

ξξξ 1

2

Image domain Parameter domain 1 2κ

φ

highlow

low

high

1,low 1,high

2,low

2,high

ξ

ξ

’

’

f(  ,t) F(  ,  )
t

t

t

φ

φ

κ κ

Figure �� Left� Center curve with an uncer�
tainty of ���t indicated� Right� Cluster cor�
responding to center curve�

all possible image curves will be represented
by only one cluster in the parameter domain�
This partitions the parameter domain into ir�
regular regions� which re�ect the information
level of the image� Clustering can also be
used to estimate parameter uncertainties� e�g��
the maximum and minimum parameter value
within the cluster can be used to give an es�
timate of the parameter uncertainty as� e�g��
�

�
��i�max��i�min���i	� Parameter domain clus�

tering can be performed either before or after
the transform� depending on the purpose�

VI The Fast Curve

Estimation Algorithm

Consider an image where the image values are
represented by continuous values� This image
can be mapped into a binary image d�m�n	�
e�g�� by edge �ltering 
���� 
��� or by deconvo�
lution 
���� 
���� The proposed algorithm es�
timates the parameters of curves in the binary
image d�m�n	� e�g�� lines or hyperbolas�

It is well�known that direct use of the GRT
is computationally expensive� and gives a lot of
unnecessary information concerning estimation
of curve parameters� In the light of the char�
acteristics of GRT and IPM� a fast curve para�
meter estimation algorithm� the FCE�algorithm�
is proposed which simultaneously estimates all
parameters of curves having a speci�c shape�
e�g�� lines or hyperbolas� The FCE�algorithm
uses IPM as a pre�conditioning procedure for
GRT by selecting the regions of interest in the
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parameter domain� IPM is suitable for a rapid

determination of regions of interest� as it works

well on a coarsely sampled parameter domain

and is capable of ignoring image points with a

value of zero� Another important circumstance

is that GRT relates the uncertainty on the es�

timated curve parameters to the image domain

sampling� while IPM relates it to the parameter

domain sampling� The FCE�algorithm is shown
in Figure �� and is summarized as follows�

�� Design the discrete parameter domain� i�e��

choose �i�min� Ji and ��i�

	� Design a reduced parameter domain for

IPM by choosing

J �

i 
 ceil

�
Ji

	v�i � �

�
�	�

��

i�min 
 �min � v�i��i �	��

��i
� 
 �	v�i � ����i �	��

where ceil��� rounds to the nearest upper

integer� and v�i is an integer related to the

resampling �see below�� Then use IPM to

estimate Dipm�j
�� as

Dipm�j
�� 
 IPMfd�m�n�g �	��

� Use the threshold function T to give

Dt�j
�� 
 T �Dipm�j

��� �	��

The threshold function T is designed to re�

move all insigni�cant parameter combina�

tions and a suitable choice might be

T �Dipm�j
��� 
 ��Dipm�j

��� ��M� �	��

where M denotes the number of image
lines� �� a fraction de�ning the signi�cance

level� and ���� the Hamilton step function�

Having an image with one curve� IPM gives

a corresponding parameter domain value

of M � Choosing a threshold level of ��M

allows some deviation for the image curve

from the integration curve� e�g�� to handle

holes�

�� Resample the parameter domain to obtain

Dr�j�� The resampling process can be

written as

Dr�j� 
 Dt�j
�� �	��

j�

i 
 round

�
ji � v�i
	v�i � �

�
���

This quickly �lls the entire parameter do�

main where the interesting regions have

value one while other regions have value

zero�

�� Use GRT to estimateD�j� in the regions of

the parameter domain where Dr�j� is not

equal to zero�

D�j� 
 GRT fd�m�n� jDr�j� �
 �g ���

�� As in step three� use the threshold function
with a new signi�cance level �� to account

for use of the GRT� After the thresholding�

all points in the parameter domain having

a value di�erent from zero represent curve

parameters�

�� Finally� the identi�ed parameters are

clustered into common image curves�

The resampling process takes each para�

meter point corresponding to the sampling in�

terval ��� and extends it to several parameter

points corresponding to the sampling interval

��� ��i � ���

i� Thus� the FCE�algorithm op�

erates initially in a coarsely sampled parameter

domain� using IPM for determination of regions

of interest� Subsequently� the sampling is re�

�ned to the required level and GRT is applied

within the regions of interest�

The signi�cance levels �� and �� must be

chosen to re�ect the parameter domain values�
that can be accepted as peaks corresponding

to curves in the image� In general� the precise

values of �� and �� are not critical� For the ex�

amples� suitable ranges of values for �� and ��
are ���� ��� and ���� ���� respectively� There

are two reasons for the use of a lower acceptance

level in step three� First� IPM has a tendency

to blur in the parameter domain� and second�
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Estimate� Dipm�j
�� � IPMfd�m�n�g

�

Threshold� Dt��j
�� � T�fDipm�j

��g

�

Resample� Dr�j� � Dt��j
��

�

Estimate� D�j� � GRTfg�m�n�jDr�j�g

�

Threshold� Dt��j� � T�fD�j��g

�

Cluster� Dc�j� � CfD�j�g

�

Curve Parameters

Figure �� Flow diagram of the FCE�algorithm	

only regions of the parameter domain ensured
not to contain image curves must be removed	
A higher signi
cance level in step six ���� is jus�
ti
ed by the required certainty for correct curve
identi
cation	

VII The Hyperbolic

Transformation Curve

Consider a seismic CMP�gather	 The mul�
tipulse technique can be used to map the seis�
mic signals in the CMP�gather into a binary
image d�m�n�� where d�m�n� is set to one if
position n of trace number m contains a re�ec�
tion� and to zero otherwise	 If the subsurface
is assumed to be horizontally layered� it can
be shown ��� that the shape of the re�ection
curves are hyperbolas	 Traditionally� the re�
�ection curves within the CMP�gather are de�
scribed by the normal moveout equation ����

which can be written as

������ t�� � t �
q
t�
�
� �� ���� � � ��min� �max�

����
where t denotes the two way travel time with
distance � between source and receiver� t� the
zero o�set two way travel time� and 
nally �

denotes the slowness	 The variable � is also
known as the o�set	

According to Equation ��� ������ t�� can eas�
ily be inverted with respect to t� to yield

t� � ���t�
��� t��� �

q
t� � �� ��� ����

Both t� and � are uniformly sampled and the
parameter domain sampling is chosen in agree�
ment with Equation �	 The discretized para�
meter domain is denoted z and s corresponding
to t� and �� respectively�

t� � t��low � z �t�� z � �� � � � � Z �  ����

� � �low � s ��� s � �� � � � � S �  ����

The curve perforation described in section III
occurs in the present case of a hyperbolic trans�
formation curve	 It is� however� eliminated by
adding d�m�n� to D�s� z� for the parameter val�
ues skipped between two successive parameter
vectors	

Assume the parameter set ���� t���� corres�
ponds to a center curve	 The parameter sets
��� t�� corresponding to image curves within the
band of width ���t� symmetrically positioned
around the image curve t � ������� t����� can
according to Equation � be written as

t� � �t 	
q
t�
�
� �� ��� 	 t� � �t ����

t �
q
t�
��� � ��� ��� �� � ��min� �max� ����

Figure � illustrates four clusters in the para�
meter domain	 The four clusters correspond to
four center curves with an uncertainty of ��t�
i	e	� � � �	 Formulas for the cluster shape is
shown in appendix A	

To illustrate the performance of the FCE�
algorithm two numerical examples will be given	
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Figure �� Four clusters in the parameter domain

corresponding to an uncertainty of ���t� i�e��
� 	 ��

A� Example �

In this example� the image is composed of eight

hyperbolas� assembled into four groups of two

hyperbolas each� as shown in Figure 
� Us�

ing GRT according to the settings in Table �

leads to eight peaks in the parameter domain

as shown in Figure �� Thus� although the eight

curves intersect and are very close� GRT is able

to separate the curves in the parameter domain

into eight separate peaks�

Image domain Parameter domain

Par� Value Par� Value

M �� S ��

N ��� Z ���

�� �� m �� ���
� � ���� s�m
�t � � ����s �t� � � ����s
�min ��� m �min �� � ���� s�m
tmin � s t��min �s

� ��� �� ���
�� ����
v� �

vt� �

Table �� Image and parameter domain settings�

The FCE�algorithm is used for fast detection

of the interesting regions in parameter domain

resulting from GRT� The following �ve �gures

show each step of the FCE�algorithm� Figure �

shows the coarsely sampled parameter domain
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Figure 
� Synthetic binary CMP�gather com�

posed of eight hyperbolas�
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	��

obtained using IPM with v� � � and vt� � ��

The parameter domain is thresholded using

a signi�cance level �� � ���	 and the resulting

binary parameter domain is shown in Figure 
�
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Figure 
� Thresholded IPM estimated para�

meter domain	 where �� � ����

The binary parameter domain is then res�

ampled to a full size parameter domain as

shown in Figure ��
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Figure �� Resampled parameter domain�

Comparing this pre�condition map with Fig�

ure �	 indicates that all regions containing

curves are contained within the pre�condition

map� Next	 Figure  shows the parameter do�

main obtained by using GRT within the regions

speci�ed by the pre�condition map�

Finally	 the pre�conditioned GRT parameter

domain is thresholded using a threshold level

�� � ����	 and the result is shown in Figure ��
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Figure � Parameter domain obtained using

GRT within the regions speci�ed by the res�

ampled parameter domain shown in Figure ��
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Figure �� Thresholded GRT estimated para�

meter domain using �� � �����
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The estimated parameter vectors are given in
Table �� where the clustering process has used
a value of � � ���� As seen from Table �� eight
groups of curve parameters are found� and the
estimated curve parameters are rather close to
the true parameters�

Curve Number Parameter

� True �	��	� s� ��
	�
 �	�� s�m�
� Estimated �	��		 s� ��
	� �	�� s�m�

� True �	��	� s� ����		 �	�� s�m�
� Estimated �	��		 s� ����� �	�� s�m�
� Estimated �	��	 s� ���� �	�� s�m�

� True �	���� s� ���			 �	�� s�m�
� Estimated �	���� s� ���	� �	�� s�m�

 True �	���� s� ����		 �	�� s�m�
 Estimated �	���� s� ���� �	�� s�m�
 Estimated �	���� s� ���� �	�� s�m�

� True �	��	� s� ��				 �	�� s�m�
� Estimated �	��	 s� ���� �	�� s�m�

� True �	���� s� ���� �	�� s�m�
� Estimated �	���� s� ���	 �	�� s�m�
� Estimated �	���� s� ��� �	�� s�m�


 True ����	� s� ��
	�
 �	�� s�m�

 Estimated ����		 s� ��
�� �	�� s�m�

 Estimated ����		 s� ��
�
 �	�� s�m�

� True ����	� s� ���			 �	�� s�m�
� Estimated ����	 s� ���� �	�� s�m�
� Estimated ����	 s� ��
� �	�� s�m�

Table �� The results of the FCE�algorithm along
with the true curve parameters� The width of
the cluster band is set to �� i�e� � � ����

B� Example �

To demonstrate the performance of the FCE�
algorithm in the presence of noise� an example
based on a noise corrupted synthetic CMP�
gather is given� The subsurface model is a pure
acoustic �compressional waves only� horizont�
ally layered subsurface consisting of four �nite
layers and in�nite top and bottom layers� The
synthetic CMP�gather is produced by use of ray
tracing ��	�� The resulting CMP�gather is com�
posed of �� re�ection curves� shown in Figure

��� where each vertical line represents a trace
and the signal values are illustrated using grey
scale� The parameters for both image and para�
meter domains are given in Table ��
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Figure ��� Synthetic CMP�gather composed of
�� re�ection curves� added with uncorrelated
noise�

Image domain Parameter domain

Par� Value Par� Value

M �	 S �		
N ��� Z ���
�� �	 m �� ���
 � �	�� s�m
�t  � �	��s �t�  � �	��s
�min �		 m �min �	 � �	�� s�m
tmin 	 s t��min 	 s

� ��� �� 	��
�� 	��
v� 
vt� �

Table �� Image and parameter domain settings�

In Figure � the corresponding true re�ection
curve parameters are shown� that is the values
of t� and � corresponding to the �� re�ection
curves�
Next� the multipulse technique ���� is used

to map the seismic signals in the CMP�gather
into a binary image� shown in Figure ��� As
seen� the mapping process results in erroneous
re�ections� i�e�� re�ections without correlation
over traces� Furthermore� the re�ection curves
have gaps� intersect and in cases are very close�
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These problems are caused by the fact that the

multipulse technique is a one dimensional pro�

cess�
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Figure ��� True re�ection curve parameters�
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Figure ��� Binary CMP�gather obtained using

multipulse technique at Figure �	�

Applying the FCE�algorithm to the binary

image gives the IPM estimated parameter do�

main shown in Figure �
� using vt� �  and

v� � ��

Applying GRT on the parameter domain re�

gion speci�ed by the resampled and threshol�

ded IPM estimated parameter domain� with

�� � ���� results in the GRT parameter domain

shown in Figure ���

Finally� Figure �� shows the estimated curve

parameters� where a signi�cance level of �� �

��� in the �nal threshold process and � � ���
in the clustering process have been used� Com�
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� IPM estimated parameter domain�

paring Figure �� with Figure ��� which shows

the true re�ection curves� all re�ection curves

are seen to have been found� and the accuracy

of the estimated re�ection curves is good� The

deviations of the curve parameters are less than

� � ���� s for t� and ���� � ���� s�m for ��
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using a pre�condition map� estimated by use of
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VIII Conclusion

A new algorithm for fast curve parameter es�

timation� named the FCE�algorithm� has been

presented� The algorithm identi�es curve para�

meters by operating on a binary image� ob�

tained� e�g�� by edge �ltering or deconvolution�

The fundamental idea of the algorithm is the

use of pre�conditioning to reduce the computa�

tional cost of the traditional generalized Radon

transform� The pre�conditioning map determ�
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Figure ��� Estimated curve parameters using
the FCE�algorithm�

ines regions of the parameter domain which con�
tain peaks� and the generalized Radon trans�
form is applied only in these regions� As the
size of the regions is less than the full parameter
domain� the pre�conditioning map reduces the
computational costs when applying the gener�
alized Radon transform� For fast generation
of the pre�conditioning map� a generalization of
the Hough transform named image point map�

ping has been developed� Image point mapping
is computationally e�cient by taking account
of image points with value zero� The required
parameter domain sampling and the resulting
parameter domain blurring have been investig�
ated�

The FCE algorithm was successfully applied
to the identi	cation of hyperbolas in seismic
images and two numerical examples have been
presented� One example demonstrates the po�
tential of the algorithm for fast and accurate
parameter estimation� and the other example il�
lustrates the robustness of the algorithm with
noise�
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A Clustering Using

Hyperbolic

Transformation Curves

In the case of hyperbolic transformation curves
the exact shape of the parameter domain blur�
ring can be calculated�
Let q denote a binary variable� q � f����g�

Thus� the lowest and highest curve within the
image band speci	ed by Equation �� can be
written

q
t�
���  ��� ���  q � �t �

q
t�
�
 �� ��� �

t�
�
�
�q

t�
���  ��� ���  q � �t

��
� �� ���

It can be shown that �low and �high give
the cluster limiting elliptical curves� The para�
meter cluster corresponding to the center curve
�t���� ��� can be written as

r�q
t
�

��� � ��� �low�� � � �t
��
� �� �low�� � t�

�

r�q
t
�

��� � ��� �low�� � � �t
��
� �� �low��

andr�q
t�
��� � ��� �high�� � � �t

��
� �� �high�� � t�

�

r�q
t
�

��� � ��� �high�� � � �t
��
� �� �high��

Figure �� �left� shows a hyperbolic center curve
�t���� ��� with an uncertainty of ���t� Figure
�� �right� shows the shape of the correspond�
ing cluster� which is bounded by four ellipt�
ical curves� It should be noted that the cluster
shape is highly dependent on the center curve
�t���� ����
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ABSTRACT

In this paper the discrete generalized Radon transform
will be investigated as a tool for detection of curves in
noisy digital images� The discrete generalized Radon
transform maps an image into a parameter domain�
where curves following a speci�c parameterized curve
form will correspond to a peak in the parameter do�
main� A major advantage of the generalized Radon
transform is that the curves are allowed to intersect�
This enables a thresholding algorithm in the parameter
domain for simultaneous detection of curve parameters�
A threshold level based on the noise level in the image is
derived� A numerical example is presented to illustrate
the theory�

�� INTRODUCTION

In recent years the Hough transform ��� and the re�
lated Radon transform �	� have received much atten�
tion� These two transforms are able to transform two
dimensional images with lines into a domain of possible
line parameters� where each line in the image will give
a peak positioned at the corresponding line parame�
ters� This have lead to many line detection applications
within image processing� computer vision� and seismics�

A natural expansion of the Radon transform is the

discrete� generalized Radon transform 
GRT� ��� � ���
Analogous to the linear Radon transform� the GRT
transforms curves in the image into a discrete multi
dimensional parameter domain producing peaks posi�
tioned at the corresponding curve parameters� In this
way the GRT converts a di�cult global detection prob�
lem into a more easily solved local peak detection prob�
lem� A major advantage of the GRT is that curves are
allowed to intersect� Another major advantage that will
be demonstrated in this paper� is that the GRT is very
robust to noise�

In this paper a probabilistic approach is used to
show that the GRT can be used for curve detection if
the noise in the image is below a certain level compared
to the signal values on the curves� If noise is added to

an image containing curves� the problem is that peaks
in the parameter domain may or may not correspond
to actual curve parameters� A threshold level� based
on the noise level� is derived and applied for separa�
tion of noise and curve information in the parameter
domain� A numerical example is provided to illustrate
the presented theory�

�� THE GENERALIZED RADON

TRANSFORM

The Generalized Radon transform� GRT� of a digital
image can be de�ned in many ways� One way is

�g
j� �

L��X

l��

g
�m
l� j�� �n
l� j�� 
��

where �g denote the GRT of the image g
m�n� and j is
a multi dimensional vector containing the curve para�
meters� The two curve functions �m
l� j� and �n
l� j�
de�ne the curve type and are 
in principle� arbitrary��
A popular choice is the linear curve functions� e�g�� nor�
mal parameters j � 
�� ��� Another frequent choice is
the 
�� p��parameters 
known as slant stacking in seis�
mics�� where �m
l� �� p� � l and �n
l� �� p� � p l � � �

Even though the GRT can be applied to any given
image� the main feature of the GRT is that an im�
age� which contains a discrete curve matching the curve
functions at one parameter vector j� implies that the
parameter domain �g
j�� will show a peak at that spe�
ci�c parameter vector j � j�� The linearity of the GRT
implies that each curve in the image will be transformed
into a peak in the parameter domain� In this paper a
curve in an image is de�ned by large image values of the
same sign on the curve and otherwise 
approximately�
zero�

Initially only two values of the GRT will be con�
sidered� The �rst� �g
j��� corresponds to a curve in the

�An interpolation scheme is assumed implicitly� e�g�� by round�
ing the functions �m�l� j� and �n�l� j� to the nearest sample
point�
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image� Another� �g�j��� corresponds to a parameter
vector� that does not match a curve in the image� It is
assumed that �g�j�� is the sum of a mean signal value �
over all L samples� and �g�j�� covers �approximately�
no samples of the curve�s� in the image� Both values
of �g are contaminated with noise due to noise in the
image� Assume the noise in the image is nearly uncor�
related with zero mean �e�g�� by subtracting a DC�value
from the image� and variance ���

A classical curve detection algorithm is to determine
the parameter vectors from the positions of peaks in the
parameter space

j� � arg fj�g�j�j � L ��g �	�

The reason for choosing the signi
cance level in this
way is that Eq� � consists of a summation over L
samples� and �� is a lower positive bound on the mean
signal level on the curve� e�g� found by estimation� The
purpose of the following is to estimate whether curves
having the signal level � can be detected using Eq� 	�
if the image is contaminated with the described noise�

Due to the linearity� �g consists of a curve part and
a noise part� If L � � the sum of the noise terms
�gnoise will approximately be Gaussian distributed with
zero mean and variance L�� due to the Central Limit
Theorem� This implies that the two considered values
of the GRT are distributed as �g�j�� � �L  �g�noise �
N ��L�L��� and �g�j�� � �g�noise � N ��� L���� Since
Eq� 	 selects the large values in the parameter domain�
an important issue is the probability of detecting the
correct parameter vector of the two considered

Pdet � � Pfj�g�j��j � j�g�j��jg ���

Assuming that �g�j�� and �g�j�� are independent� in�
serting the joint probability distribution function� i�e�
the product of the two individual Gaussian probability
distribution functions� and using the trick of rotating
the coordinate system �� degrees� the integrals separ�
ate into one dimensional integrals which easily can be
expressed by the error�function� erf���

Pdet � �
�

	

�
� 

�
erf

�
�

	

���
�

and � �
�
p
L

�
���

Note that in this case Pdet �� shown on Fig� �� only
depends on one parameter �� Note that j�j � � gives
an almost certain detection� This is the case if � � �
or ����

When using the GRT to detect curves then the dis�
crete parameter domain will not only have two� but J
di�erent parameter vectors� where J is the number of
samples in the parameter domain� It is assumed that

all the noise sources in the parameter domain are inde�
pendent and in the following� the detection of a single
curve is analyzed� Selecting the position of the highest
peak in the parameter domain� the probability of the
selected parameter vector being correct� can be approx�
imated by

Pdet all
	�

JY
i��

Pdet �
	� PJ��

det �
�

�
�

	

�
� 

�
erf

�
�

	

���
��J��

	� �
 	J
�
p
�
e����� ���

The last simple approximation is valid if the detection
probability is close to � as seen from Fig� 	� Several
characteristics can be noted� The Figure shows a nar�
row transition from low to high detection probability
as a function of �� and J does not change the shape of
Pdet all signi
cantly� If demanding a high Pdet all then
Eq� � and Fig� 	 demonstrate that J should be held
low� i�e�� by reducing the number of samples in the para�
meter domain to a minimum� It should be noted that
this will involve a compromise on the range of para�
meter vectors�
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Figure �� The probability of detecting the right curve
parameters of two possible as a function of ��

Eq� � can be used to set requirements on� e�g��
the absolute mean signal level �� of the curve�s� to be
detected� Demanding a detection probability Pdet all

greater than P� implies that �� � �����
p
L�� where

�� can be found by from Eq� � with a given detection
probability� summation length L� number of samples in
the parameter domain J � and the standard deviation �
�e�g�� by found by estimation�� Any j�j less than the
threshold level� ��� can be considered as noise� In this
way it is possible to give a statistically based estimate
on the thresholding level in Equation 	�

Even though the above theory is developed by ana�
lyzing one curve in the image� the theory can be used

c�Peter Toft ����



	� Chapter I� Using the Generalized Radon Transform for Detection of Curves in Noisy Images

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

P
 d

et
 a

ll

Figure �� Solid lines show the probability of detecting
the right curve parameter as a function of �� and dashed
lines show the simple approximation� From left to right
J������ J������ and rightmost J��������

if the image contains few curves� Instead of having one
peak in the parameter domain representing one curve
in the image� each of the Z curves in the image� where
Z � J � will give a peak in the parameter domain�
even if the curves cross each other� With Z curves each
of corresponding Z 	g
values must be larger than the
rest in the parameter domain� If only a few curves are
present� the rest of the parameter domain is dominated
by noise� and the probability of detection for each of
the Z curves can be found from Eq� ��

The theory used to derive Eq� � is somewhat pessi

mistic in estimation of the in�uence of the noise� This
is partly due to the assumption that all the GRT
values
include summing noise over L samples� Normally some
of the GRT
values will require summing up over a curve
partially outside the image� where the image must be
assumed equal to zero� Furthermore some correlation
must be expected in the parameter domain� especially
if the number of dimensions in the parameter domain
is higher than two� Depending on the sampling para

meters� this implies that an eective J �less than the
number of samples in the parameter domain� must be
used in Eq� ��

�� AN EXAMPLE OF LINE DETECTION IN

A VERY NOISY IMAGE

A noise free image containing eight lines with limited
slope is created� The image� shown in Fig� �� has ����
��� samples� The curve sampling functions are chosen
to �m � l� �� and �n � p �l� ��� � � and L is set to
���� The oset is made in order to lower the sampling
requirements in the parameter domain� The sampling
distances in the parameter domain is set to �� � � and
�p � ����� The line parameters are listed in Tab� ��

No p � � No p � �

� ���� �� ��� � ���� �� ���
� ���� �� 
��� � ���� �� 
���
� 
���� �� 
��� � 
���� �� 
���
� 
���� �� ��� � ���� �� ���

Table �� Line parameters� p is the slope� � is the oset�
and � is the curve amplitude�

To illustrate the potential of the GRT a very noisy
image is generated� by adding Gaussian noise to the
noise free image with zero mean and standard deviation
� � �� It can be seen from Figure �� that the lines
are hard to identify� Choosing Pdet all � ����� Eq� �
gives �� � ����� i�e�� only lines with j�j � ���� should
be detectable� This implies that all but line number
eight should be detectable� The absolute value of the
parameter domain obtained by the use of the GRT to
the noisy image is shown in Fig� ��

Since the noisy image contains few lines with ab

solute curve amplitude j�j being of the same order of
magnitude as � and has approximately zero mean� �
was estimated from the image using the ordinary cent

ral variance estimator� which gave �� � ����� Setting
Pdet all to ����� Eq� � results in L �� � ����� This
is used for thresholding of the parameter domain as
shown in Figure �� Seven of the eight line parameters
are found despite the poor signal to noise ratio in the
image� Note that some of the lines will be represen

ted by a few neighbor parameter vectors� This error
be can corrected by clustering neighbor parameter vec

tors� The error is due to the sampling of the parameter
domain and the �nite image size�

The theory predicted that only seven lines could be
detected� The eighth line can be detected if the curve
length can be increased or the noise variance can be
reduced� If the theory is used with Pdet all very low� L�

�

get lower and noise peaks will appear in the parameter
domain along with parameters of the eighth line� In
Fig� � the threshold level has been reduced to� e�g��
���L�� � ����� As it can be seen� noise will now give
parameter vectors which do not represent a curve� As
seen from Fig� � a further reduction of the threshold
level to� e�g�� ���L�� � ���� gives a parameter domain�
where all eight lines are present� Due to the noise level
many false parameter vectors can also be observed�

�� CONCLUSION

A statistically based noise analysis of the generalized
Radon transform has been presented� which was used
to derive a threshold level in order to separate curve
information and noise in the parameter domain� A nu

merical example was provided to illustrate the theory�
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Figure �� Noise free image with eight lines�
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Figure �� The same image contaminated with additive
Gaussian noise�
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Figure �� The absolute GRT of the noisy image� Note
the peaks corresponding to the curves�
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Figure �� Threshold of the absolute GRT using the es�
timated threshold level�
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Figure 	� Threshold of the absolute GRT using 
�	
times the estimated threshold level�
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Figure �� Threshold of the absolute GRT using 
��
times the estimated threshold level�
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Estimation of the Noise Contributions from

Blank� Transmission and Emission Scans in PET

S�ren Holmy� Peter Toftz� and Mikael Jenseny
y Dept� of Nuclear Medicine� Rigshospitalet� National University Hospital�

Copenhagen� Denmark �sholm�pet�rh�dk��
zElectronics Institute� Technical University of Denmark �ptoft�ei�dtu�dk��

Abstract

This work determines the relative importance of noise from
blank �B�� transmission �T� and emission �E� scans in
PET using a GE Advance scanner on a �� cm cylinder� a
brain phantom� and a torso�like ellipse ��	
�� cm� with ex�
amples of human scans �brain O��� water and F��	 FDG�
heart FDG� Phantom E scans were acquired in both �D
and �D modes as decay series with C��� or F��	 over ��
� decades of Noise Equivalent Counts �NEC� B and T
scans were made using two pin sources ��	����� MBq�
with times �������	 sec In humans only a limited sub�
set was available In homogeneous phantoms normalized
variance �var� was estimated from pixel distributions in
single images In other objects� including the human stud�
ies� calulations were performed on di�erences of paired
images In all cases a �t was made to a simple noise
model The cylinder data shows expected relations of T to
B noise proving the adequacy of B scan times � �� min for
most purposes For cylinder and brain phantom� contour
plots are provided for var�E�T� In a typical �D O��� water
study with ��M counts per central slice� a �� min T�scan
ensures that var�T�����var�E� Using �� min T scan for
a static �D FDG brain study of �� min having �M counts
yields equal E and T variance contributions In human
body scans T noise has a relative larger importance and is
often dominated by e�ects of line artefacts from �clusters
of� zeros in the T�scan� not included in the simple model

I� Introduction

The purpose of this work is to establish guidelines for the
relative importance of the noise contributions from blank�
transmission and emission scans in typical imaging situ�
ations in PET Although much information can be deduced
theoretically from existing knowledge of reconstruction al�
gorithms ��� ��� we have mainly applied an experimental
approach The limitations in generality caused by the ob�
vious di�culty of varying all of the many possible para�
meters of acquisition and reconstruction are outweighed
by the advantage of the close reproduction of actual scan

setups� and direct testing in some human studies The fol�
lowing paragraph describes the model used for �tting to
the observed data

II� Theory

Due to the the linearity of the reconstruction process the
PET images �volumes� xi� can be described as a weighted
sum of the sinogram values sj � with weight factors �ij cor�
responding to the actual �linear� reconstruction algorithm

xi �
X

j

�ijsj ���

where the actual image pixel �voxel� is denoted by i� and
j denotes the pixel position in the sinogram In order to
compensate for attenuation the sinogram used for recon�
struction is calculated from an emission sinogram ej � a
transmission sinogram tj � and a blank scan bj  The cal�
culation basically amounts to�

sj �
ejbj

tj
���

although this is usually quali�ed by a �ltering of the factor
bj
tj


All three types of sinograms in principle inherit their
statistical properties from the Poisson statistics of the ra�
dioactive decay A number of corrections that are per�
formed before the stage of reconstruction described here�
however� adds to the raw counts� noise The overall e�ect
of correction for randoms and scatter can be described as
a decrease in e�ective counts ���� the resulting �gure be�
ing widely known as Noise Equivalent Counts �NEC� A
practical formulation used in this work is�

NEC � T
��� SF ��

� � �f R
T

���

where T is true counts �including scatter�� R is random
counts from the full �eld�of�view� f is the fraction of the
sinogram covered by the object under investigation� and
SF is the scatter fraction In all applications of NEC in
this study� the value of SF has been set to zero Within
this paper NEC per slice is used as a parameter
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A� The Noise Model

In the simplest case where the image noise is estimated
from a single image set� using a Taylor expansion and
disregarding noise correlation between pixels implies that
the pixel noise variance V fxig can be estimated by

V fxig �
X

j

��ijV

�
ejbj

tj

�

�
X
j

��ijE
�fsjg

�
V fejg

E�fejg
�

V fbjg

E�fbjg
�

V ftjg

E�ftjg

�
���

Due to the Poisson statistics the variance in the emission
sinogram relative to the squared mean value

V fejg
E�fejg

is in�

versely proportional to the mean Efejg� i�e�� inversely pro�
portional to number of counts NEC in the emission sino�
gram� Similar arguments can be used for the transmission
and blank scan terms� hence the total pixel variance nor�
malized with the mean of the image can be modelled by

V fxig

E�fxig
	

a

NEC
� b�

c

Tt
�

d

Tb
�
�

where Tt is the transmission scan time in seconds� Tb the
blank scan time in seconds �for the given geometry and
source strength�� In the model a base term b is included
to accommodate e�ects in the reconstruction process� not
explained by the other terms� e�g�� varying sensitivity of
the detectors� not properly corrected for by normalization�
In this paper all measured data have been �tted to the

model shown in Equation 
� In cases with heterogeneous
ROIs the variance was measured for di�erences between
equivalent and independent images ���� In these cases the
measured normalized variance has been divided by two so
estimated noise parameters are directly comparable�

III� Methods

Measurements were made on the GE Advance scanner
��� �� with �D acquisition and reconstruction capability�
Its � GByte raw data disk can hold about ��� �D frames
�byte mode� separate prompts and delayed�� convenient
for phantom decay studies� Reconstruction in our con�
�guration takes approximately � minutes per frame� The
scanner applies two pin sources for blank and transmission
scanning� During the initial experiments the pin source
activities were ��� MBq and ��� MBq� respectively� and
the blank scan sinogram count rate was ���� Mcps� On
later phantom and human studies� blank and transmis�
sion scan times have been scaled in accordance with the
currently observed blank scan count rates and the values
quoted in seconds �powers of �� are therefore assumed to
be directly comparable�

A� Phantom studies

Three di�erent water��lled phantoms have been used� the
�� cm standard �NEMA� cylinder� a torso�like ellipse with

axes �� and �
 cm� and an axially symmetrical� elliptical
brain phantom �Capintec� with axes �
 and �� cm�

Using initially the two homogeneous phantoms in ac�
cordance with Equation 
� emission scans were made in
both �D and �D as decay series with F��� starting at rates
well below saturation of the scanner� In �D a total of ��
measurements were performed starting with a half�life of
F��� and then reducing the time down to ��������� seconds�
e�ectively reducing the number of counts by a factor of �
for each acquisition� In �D the dataset was limited to ��
time frames� Transmission scans were made starting from
Tt	�� seconds ��� on the ellipse� and doubling the time
for each step up to ����� seconds� Blank scans were made
from Tb	�� to ���� seconds and complemented with one
������ seconds scan�

Reconstructions were made for all relevant combinations
of emission and transmission scans using the ���� seconds
blank scan� All emission scans were further reconstructed
with a calculated attenuation correction �CAC� using a cir�
cular or elliptical contour respectively� For the �D cylinder
case the emission image with highest count was recon�
structed with the longest transmission scan and all blank
scans� The cylinder was reconstructed in a ���� matrix
with pixel size ��� mm� and a Hann �lter �designated �
mm corresponding to the approximate resulting resolution
FWHM�� For the ellipse� a ���� matrix of pixel size ���
mm was used with a Hann � mm �lter� The �D recon�
struction further contains an axial �ltering �Hann� set to
its minimum value of ��
 mm� The attenuation data were
preprocessed with a Gaussian �lter� � mm for the cylinder
case� and �� mm for the ellipse� All available corrections
were applied� including detector normalization� randoms
subtraction� scatter correction� �slice� sensitivity and ab�
solute calibration� and decay correction to scan start� In
all slices of all reconstructed images �order of �
���� im�
ages� the mean and variance was calculated from an ROI
extending ��� of the diameter or ellipse axes� These ROI�
data were imported to MATLAB for further analysis� In
�D the data were averaged over �� �of �
� slices avoiding
edge e�ects but ignoring the minor di�erences between
direct and cross slices� In �D only the central �
 slices
having almost identical noise were included in the average�
For each reconstructed dataset the noise was represented
by the normalized variance� i�e�� variance�mean

�
� in sub�

sequent plots and �tting� From the total rates curves ac�
quired with the images a Noise Equivalent Count �NEC�
value per slice was calculated for each scan frame� The
rate dependent correction between trues and NECs due to
randoms was in all these cases below �
� except in the
�rst �D cylinder frame where it amounted to �
��

The brain phantom has two separate chambers �grey
and white matter� respectively�� It was �lled to re�
semble the usually quoted ratio of ��� between these two
substances for �ow or metabolism� During scanning the
phantom was embedded in a Rando�Alderson whole body
phantom �normally used for radiotherapy dosimetry pur�
poses� from which a few slices of the head had been re�
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moved� Also the thorax was replaced by the body ellipse
phantom containing � times the total activity in the brain
to provide more natural scatter and randoms conditions
than the brain phantom alone� Two di�erent sets of meas�
urements have been performed� One set �repeated in �D
and �D	 was originally designed to address count rate
performance 
��� The phantoms were loaded with C�
Carbonate well above the expected saturation limit of the
scanner and pairs of ������	 seconds scans were performed
every � minutes for about � hours �� half lives	� The
relatively short half life of C� and the intention of hav�
ing not only similar counts but also count rates in each of
the two paired scans limited the maximum number of slice
counts observed to �� which would not allow a su�ciently
clear distinction between the transmission scan times� One
more decay series therefore was prepared in �D with F��
starting below maximum counts� and measuring for � half
lives utilizing all the time for recording� Each of the half
lives were split in two frames with a ratio of �����������	
yielding approximately equal counts� The C� series were
reconstructed using an �in�nite� ������ second	 transmis�
sion scan� For the F�� series� a set of � pairs of transmis�
sion scans were obtained ���������������������������	
seconds� Reconstructions were made to provide datasets
with independent transmission and emission noise by com�
bining the E�T frames as odd�odd� even�even� Reconstruc�
tion parameters for the brain phantom were identical to
those for the cylinder except that the axial Hann �lter
was here replaced by a ramp �lter� From both the C�
series and the F�� series� di�erence images were calcu�
lated� whole brain ROI�s were placed in the original as
well as the di�erence images for mean and standard devi�
ation calculation respectively�

B� Human studies

For one person �case KL	 included in a count rate per�
formance and dose optimization study with O�� 
�� the
usual �� second integration time �starting �� seconds after
bolus injection	 was supplemented by � short frames ����
�� seconds	� The study comprised injections with ������
MBq in �D and ������ MBq in �D� Reconstruction and
analysis was performed as above� although only with one
� minutes transmission scan� The number of NECs in
the short scans were about �� of the corresponding ��
seconds frames normally used�

One person �case MN	 injected with ��� MBq of FDG
had a double set of emission scans ����� sec in �D and ��
�� sec in �D	 of the brain starting � hours after injection�
followed by a double set of transmission scans ������ sec	
yielding a total of �� data points in �E�T	� Reconstruction
and data analysis matched the brain phantom F�� series�

One patient �case BB	 undergoing a dynamic FDG scan�
ning of the heart additionally had a series of transmission
scans� ��������������	 minutes� Pairs of emission scans
��������� minutes	 from di�erent parts of the dynamic
study were reconstructed with all the transmission scans

with subsequent data analysis in a large body circumfer�
ential ROI�

IV� Results

In this section data and parameters are presented for the
previously described experiments and compared to the
model�

A� The Cylinder and Elliptical Body phantom

Estimated parameters for the Cylinder phantom in �D and
�D modes� and the Elliptical Body phantom in �D and �D
are given in table  and ��

Table � Cylinder data �D and �D
Cylinder �D Cylinder �D

a 
M Counts� ����E�� ����E��
b 
 � ���E�� ����E��
c 
sec� ���� ���
d 
sec� ����
Min�NEC	 
M�Counts� ���� ���
Max�NEC	 
M�Counts� ���� �����
Min�Tt	 
sec� �� ���
Max�Tt	 
sec� ����� �����
Min� V

E� 	 ����E�� ��E��
Max� V

E� 	 ���E� ����E��
Max�Error	 ���E�� ����E��

Table �� Elliptical body phantom data �D and �D
Ellipse �D Ellipse �D

a 
M Counts� ����E�� ����E��
b 
 � ���E�� ���E��
c 
sec� ���� ���
Min�NEC	 
M�Counts� ��� ����
Max�NEC	 
M�Counts� ���� �����
Min�Tt	 
sec� ��� ���
Max�Tt	 
sec� ���� �����
Min� V

E� 	 ���E�� ����E��
Max� V

E� 	 ���E� ���E��
Max�Error	 ����E�� ����E��

In the following two Figures of the normalized variance
are shown as a function of NEC and transmission scan
length Tt� Figure  corresponds to the Cylinder ��D	 and
Figure � to the Cylinder ��D	�
Also in the Brain phantom ��D	 case and in case MN

both the emission and transmission parameters have been
estimated� The parameters are listed in Table � together
with the range of the �t� Figure � shows the normalized
variance for the Brain phantom and Figure � demonstrates
that the model �ts the measured data nicely�
To illustrate how well the emission data measured on

brains agree with the phantom studies� Figure � shows case
KL ��D��D	� case MN ��D��D	� and the Brain Phantom
��D��D	� In all cases data corresponding to only one
transmission scan are shown�
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Figure �� Normalized variance of Cylinder ��D� as a func�
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Tt� Contours show iso�noise curves with levels indicated�
Lines show where the ratio of transmission to emission
noise terms is unity and �	
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0.02

0.04

0.06

0.08

0.1

0.12

NEC per Slice [M−Counts]

T
ra

ns
m

is
si

on
 s

ca
n 

tim
e 

[s
ec

]

Normalized Variance

0.067 0.13 0.27 0.54 1.1 2.2 4.3 8.5 17 32 59 100

64

128

256

512

1024

2048

4096

8192

16384
0.002

0.005
0.01

0.05

Var(T)=Var(E)

Var(T)=0.1*Var(E)

Figure �� Normalized variance of Brain phantom ��D� as
a function of NEC per slice and duration of transmission
scan Tt�

Table �� Brain phantom data �D and Case MN �D
Brain Ph� Case MN

a �M Counts ����E�� ����E��
c �sec ��	� ����
Min�NEC� �M�Counts ���E�� ���E��
Max�NEC� �M�Counts ��� ���
Min�Tt� �sec �� ��
Max�Tt� �sec ����� ���

Measured
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Figure �� Normalized variance of case MN ��D� as a func�
tion of NEC per slice and duration of transmission scan Tt�
Stars show the measured data and lines the �tted model�
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Figure �� Normalized variance of Case KL ��D��D�� case
MN ��D��D�� and Brain phantom ��D��D� as a function
of NEC per slice�
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��D� and Elliptical phantom ��D� as a function of NEC
per slice� Note that case BB ���� and � min� shows a
di�erent noise behavior�
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Figure � shows body data� The �D Elliptical Body
phantom follows the previous noise model� but in case BB
�large patient with arms in FOV� the noise curves for the
� and � minutes transmission scans are shifted upwards�
Inspection of the reconstructed images reveals large num	
ber of lines� due to �clusters of� zeros in the transmission
scan�

V� Discussion

The general noise properties of reconstructive tomography
are well described in the literature 
�� ��� Previous de	
scriptions of the Advance scanner also include count rate
dependence in phantoms and humans 
�� � but the noise
characterization so far 
�� focused on the emission noise�
In this paper we have determined the relative import	
ance of the noise contributions from blank� transmission�
and emission scans for a range of imaging situations en	
countered�

As shown� a good �t to the empirical variance is found
both in �D and �D studies� The numerical values of the
measure chosen for the noise examination is strongly de	
pendent on reconstruction parameters� in part because
of the neighbor pixel correlation disregarded in the the	
ory section� Most parameters� however� will a�ect the
Emission and Transmission contributions in the same way
�through �ij only�� and therefore the model and its output
is considered adequate for the purpose of identifying areas
in the E	T plane where one source is dominating�

From Table � it is seen that the blank scan contribution
to the noise as expected is only a small fraction of the
transmission for same duration� the ratio being well ex	
plained by the average attenuation of the �central part of�
the �� cm Cylinder phantom� For all practical purposes�
therefore� the application of a �� minutes blank scan will
ensure that the blank scan contribution is negligible since
the cases where a longer transmission scan might be ap	
plied are those with a higher attenuation�

A typical �D brain activation study with O	�� water in
our setup will contain ��� Mcounts�central slice� Figure
��
�� With a �� minutes transmission scan� the transmis	
sion variance calculated from the phantom data in Table �
is ����E	� compared to the emission contribution of ���E	
�� i�e�� the transmission adds �only� �� to the �nal result�
For the human case MN the corresponding �gures would
be ����E	� �transmission�� ���E	� �emission� and ��� re	
spectively� A �� minutes� �D FDG brain scan typically
would also have ���	� M counts yielding the same �	���
ratio� while acquiring the same data in �D would make
the two contributions almost equal and therefore call for a
more detailed analysis� It should be noted that in this ima	
ging condition no attribute has been made to the additional
noise from the emission correction of the transmission scan
which is necessary if the transmission is performed with
activity present�

Figure � suggests that within the emission count range

of a typical dynamic heart FDG scan� the transmission
noise contribution �from a �� minutes transmission scan�
is not dominating� Data are� however� not available that
can demonstrate the region in which the transmission noise
curves split up� It should be emphasized that the observed
shift of the short	time curves is due to line	artefacts caused
by �clusters of� zeros in the transmission sinogram� This
deteriorating e�ect is usually more important and calls for
improved method of attenuation correction� e�g�� by using
image segmentation as described in 
���
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Abstract

This work determines the relative importance of noise from
blank �B�� transmission �T� and emission �E� scans in
PET using a GE Advance scanner on a �� cm cylinder� a
brain phantom� and a torso�like ellipse ��	
�� cm� with ex�
amples of human scans �brain O��� water and F��	 FDG�
heart FDG� Phantom E scans were acquired in both �D
and �D modes as decay series with C��� or F��	 over ��
� decades of Noise Equivalent Counts �NEC� B and T
scans were made using two pin sources ����� MBq total�
over �������	 sec In humans only a limited subset was
available In homogeneous phantoms normalized variance
�var� was estimated from pixel distributions in single im�
ages In other objects� including the human studies� calu�
lations were performed on di�erences of paired images In
all cases a �t was made to a simple noise model The cylin�
der data show expected relations of T to B noise proving
the adequacy of B scan times � �� min for most pur�
poses For the brain phantom� a contour plot is provided
for var�E�T� In a typical �D O��� water study with ��M
counts per central slice� a �� min T�scan adds less than
��� to the total noise level An example shows how to
split a total scan time between E and T scans� in order to
minimize the variance

I� Introduction

PET scans require correction for attenuation in order to
be quantitative Even in brain activation studies where
absolute units are often replaced by relative values �ie�
normalized to a mean value�� inter�individual comparisons
still assume that values across an image re�ect the local
tracer concentration Corrections can be applied� eg� by
assuming uniform values of attenuation within geometric�
ally de�ned boundaries or in segmented areas of the im�
age� but a more accurate description of the attenuation
requires measurement by a transmission scan Unfortu�
nately this also adds noise to the image and adds to the
total procedure time In some cases� mainly in body scan�
ning� the increase in noise is immediately noticed and may
even be so high that quanti�cation must be sacri�ced in
order to provide a reasonable visual impression However�

in other situations� e�ects that are invisible for the hu�
man observer might still be of importance when examin�
ing the subtle di�erences of brain activation by statist�
ical methods The purpose of this work is to establish
guidelines for the relative importance of the noise contri�
butions from blank� transmission� and emission scans in
typical imaging situations Although much information
can be deduced theoretically from existing knowledge of
reconstruction algorithms ��� �� �� we have here applied
an experimental approach The limitations in generality
caused by the obvious di�culty of varying all of the many
possible parameters of acquisition and reconstruction are
outweighed by the advantage of the close reproduction of
actual scan setups� including some human studies The
following Section describes the model used for �tting to
the observed data It should not be considered as a rigor�
ous derivation� it merely lists the di�erent structures of the
datasets included in the study comprising homogeneous as
well as inhomogeneous objects

II� Theory

Due to the the linearity of the reconstruction process the
PET images �volumes� xi� can be described as a weighted
sum of the sinogram values sj � with weight factors �ij cor�
responding to the actual �linear� reconstruction algorithm

xi �
X

j

�ijsj ���

where the actual image pixel �voxel� is denoted by i� and
j denotes the pixel position in the sinogram In order to
compensate for attenuation the sinogram used for recon�
struction is calculated from an emission sinogram ej � a
transmission sinogram tj � and a blank scan bj  The cal�
culation basically amounts to�

sj �
ejbj

tj
���

although usually quali�ed by a �ltering of the factor
bj
tj


All three types of sinograms in principle inherit their
statistical properties from the Poisson statistics of the ra�
dioactive decay A number of corrections that are per�
formed before the stage of reconstruction described here�
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however� adds to the raw counts� noise� The overall e�ect
of correction for randoms and scatter can be described as
a decrease in e�ective counts ��� �	� the resulting 
gure
being widely known as Noise Equivalent Counts �NEC��
A practical formulation used in this work is

NEC � T
��� SF��

� � �f RT
���

where T is true counts �including scatter�� R is random
counts from the full 
eld�of�view� f is the fraction of the
sinogram covered by the object under investigation� and
SF is the scatter fraction� In all applications of NEC in
this study� the value of SF has been set to zero�

While NEC as a global measure may be adequate for the
noise description in the case of homogeneous phantoms ex�
tending the full axial 
eld�of�view �AFOV�� objects of lim�
ited extension may be better characterized by a value per
slice� In the following� all NEC values quoted correspond
to a single slice�

A� One Emission and One Transmission Scan

In the simplest case where the image noise is estimated
from a single image set� using a Taylor expansion and
assuming no noise correlation between pixels implies that
the pixel noise variance V fxig can be estimated by

V fxig �
X

j

��ijV

�
ejbj

tj

�

�
X
j

��ijE
�fsjg

�
V fejg

E�fejg
�

V fbjg

E�fbjg
�

V ftjg

E�ftjg

�
���

Due to the Poisson statistics the variance in the emission
sinogram relative to the squared mean value

V fejg
E�fejg

is in�

versely proportional to the mean of an in
nite amount of
experiments Efejg� i�e�� inversely proportional to number
of counts NEC in the emission sinogram� Similar argu�
ments can be used for the transmission and blank scan
terms� hence the total pixel variance normalized with the
mean of the image can be modelled by

V fxig

E�fxig
�

a

NEC
� b�

c

Tt
�

d

Tb
���

where Tt is the transmission scan time in seconds� Tb the
blank scan time in seconds �for the given geometry and
source strength�� In the model a base term b is included to
accommodate e�ects in the reconstruction process� not ex�
plained by the other terms� e�g�� varying sensitivity of the
detectors� not properly corrected for by normalization� For

xed values of �either� Tt or Tb the corresponding terms
may also be thought of as part of this constant term� The
model applies to regions with limited structural variation�
hence measuring variance in a heterogeneous object like
the brain or the thorax is problematic�

B� Two Emission Scans

To overcome the problem with heterogeneous structures
the di�erence between two PET images� corresponding to

two equivalent but independent emission scans e
���
j and

e
���
j � can be calculated� Due to Equations � and � the
di�erence image is given by

xi �
X
j

�ij

�
e
���
j � e

���
j

� bj

tj
���

Using a Taylor expansion� and using that the two emission
scan have the same mean values Efejg and variance V fejg
implies that

xi �
X
j

�ij

��
e
���
j � Efejg

�
�
�
e
���
j �Efejg

�� Efbjg

Eftjg

���
Thus the variance V fxig is given by

Vtwo e�scansfxig � �
X
j

��
ijE

�fsjg
V fejg

E�fejg
���

Normalized with the squared mean of the heterogeneous
structure and using the same de
nition of constants as in
Equation � gives that

�

�

Vtwo e�scansfxig

E�fxig
�

a

NEC
���

Thus only the emission term of the noise variance can be
estimated from two emission scan and one transmission
scan� Since all structural information is removed by using
di�erences� no constant term �b� can appear�
If instead two transmission scans �and one emission

scan� are available� it is easy to show that two times the
transmission variance can be estimated �and only that�
from a normalized di�erence image�

C� Two Emission and Two Transmission Scans

Using the same Taylor technique with two sets of emission
scans and two transmission scans� it can be shown that

�

�

Vtwo e and t�scansfxig

E�fxig
�

a

NEC
�

c

Tt
����

This implies that both the emission and transmission term
can be estimated in the inhomogenous case if a double set
of independent and equivalent emission and transmission
scans are measured and reconstructed pairwise� Note that
any normalized variance shown in the following has been
divided by two if measured from two scans� cf� Equations
�� � and ���

D� Zeroes in the Transmission Sinogram

A common problem especially in body scanning is zeros
in the transmission sinogram� One option is to replace
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the zeros with a small number T�� so the attenuation cor�
rection can be done cf� Equation �� Although over�ow
is avoided this may imply that reconstructed images con�
tain strong lines causing a signi�cant change in the noise
structure� Let Z be the set of j� where the measured tj is
zero� Assume that the variance of the blank scan is negli�
gible and further that only the terms with zeros e�ectively
contribute to the noise� In this case

V fxig �
X

j�Z

��ijV

�
ejbj

T�

�

�
X
j�Z

��ijV fejg
E�fbjg

T �

�

	

�

This indicates that the number of zeros 	through the sum�
and the variance on the emission scan determines the noise
level� Hence the variance normalized with the squared
mean is approximately proportional to the number of zeros
and inversely proportional to NEC� In the limit where this
kind of noise is dominating� however� the reconstructed
images consist of many lines and become useless anyway�

E� Limitations

Using either of subsections A� B or C to estimate the noise
terms� we estimate the noise variance from a chosen ROI
and normalize with the squared mean of the ROI� Due
to the global features in the reconstruction process the
noise tends to have only a very small correlation with the
underlying structure and often it is approximately evenly
distributed across the ROI�s used� This implies that that
the normalized noise variance of the ROI depends strongly
on the selected ROI� through the squared mean�

III� Methods

Measurements were made on the GE Advance scanner
�� �� �� with �D acquisition and reconstruction capab�
ility� Its � GByte raw data disk can hold about 
�� �D
frames 	byte mode� separate prompts and delayed�� suit�
able for phantom decay studies� Reconstruction in our
con�guration 	with 
� i��� processors� takes approxim�
ately � minutes per frame ��� For blank and transmission
scanning� which is always performed in �D� the scanner
applies two pin sources� During the initial experiments
the pin source activities were ��� MBq and 
�� MBq�
respectively� The blank scan sinogram count rate was
���
 Mcps� corresponding to an average count rate per
sinogram element of � ���� cps in the center� On later
phantom and human studies� blank and transmission scan
times have been scaled in accordance with the currently
observed blank scan count rates and the values quoted in
seconds are therefore directly comparable�

A� Phantom studies

Three di�erent water��lled phantoms have been used� the
�� cm standard 	NEMA� cylinder� a torso�like ellipse with
axes 
� and �� cm� and an axially symmetrical� elliptical
brain phantom 	Capintec� with axes 
� and �� cm�

Using initially the two homogeneous phantoms in ac�
cordance with Equation �� emission scans were made as
decay series with F�
� in �D 	total of �� measurements�
and �D 	limited to 
� time frames�� Transmission scans
were made starting from Tt��� seconds and doubling the
time for each step up to ����� seconds� Blank scans were
made from Tb��� to ���� seconds and complemented with
one 
����� seconds scan�

Reconstructions were made for all relevant combinations
of emission and transmission scans using the ���� seconds
blank scan� All emission scans were further reconstruc�
ted with a calculated attenuation correction 	CAC� using
a circular or elliptical contour respectively� For the �D
cylinder case the emission image with highest count was
reconstructed with the longest transmission scan and all
blank scans� The cylinder was reconstructed in a 
���

matrix with pixel size ��� mm� and a � mm Hann �lter�
For the ellipse� a 
��� matrix of pixel size ��� mm was
used with a � mm Hann �lter� The �D axial �lter 	Hann�
was also set to its minimum value of ��� mm� The at�
tenuation data were preprocessed with a � mm Gaussian
�lter for the cylinder case� and 
� mm for the ellipse� All
available corrections were applied� including detector nor�
malization� randoms subtraction� and scatter correction�
In all slices of all reconstructed images 	order of ������
images� the mean and variance was calculated from an
ROI extending ��� of the diameter or ellipse axes� In �D�
the data were averaged over �
 	of ��� slices avoiding edge
e�ects but ignoring the minor di�erences between direct
and cross slices� In �D only the central 
� slices hav�
ing almost identical noise were included in the average�
For each reconstructed dataset the noise was represented
by the normalized variance� i�e�� variance�mean

�
� in sub�

sequent plots and �tting� From the total rates curves a
Noise Equivalent Count 	NEC� value per slice was calcu�
lated for each scan frame� The rate dependent correction
between trues and NECs due to randoms did not exceed

���

The brain phantom has two separate chambers 	�grey�
and �white� matter� respectively�� It was �lled to resemble
the usually quoted ratio of ��
 between these two sub�
stances for �ow or metabolism� Two di�erent sets of
measurements have been performed� One set 	repeated
in �D and �D� was originally designed to address count
rate performance �� 
��� The phantoms were loaded with
C�

 carbonate well above the expected saturation limit
of the scanner and pairs of 	������ seconds scans were
performed every 
� minutes for about � hours 	
� half
lives�� The maximum number of slice counts observed in
this study was limited to 
�� which would not allow a suf�
�ciently clear distinction between the transmission scan
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times� One more decay series was therefore prepared in
�D with F��� measuring for �� half lives� each split in
two frames with a ratio of 	
����
����� yielding approx�
imately equal NEC� The C��� series were reconstructed
using an �in�nite� 	����� sec� transmission scan� For the
F��� series� a set of � pairs of transmission scans� �� �
����� sec� were obtained� Reconstructions were made to
provide datasets with independent transmission and emis�
sion noise according to Equation �
 by combining the E�T
frames as odd�odd� even�even� Reconstruction parameters
for the brain phantom were identical to those for the cyl�
inder except that the axial Hann �lter was replaced by a
Ramp �lter� From both the C��� series and the F��� series
di�erence images were calculated� and ROI�s placed over
grey matter 	central and peripheral�� white matter� and
whole brain in the original as well as the di�erence images
for mean and standard deviation calculation respectively�

B� Human studies

For one person 	case KL� included in a count rate per�
formance and dose optimization study with O��� ���� the
usual �
 second integration time 	starting �
 seconds after
bolus injection� was supplemented by � short frames 	�
�
�� sec�� The study comprised of injections with ����


MBq in �D and �
��

 MBq in �D� Reconstruction and
analysis was performed as above� although only with one
�� minutes transmission scan� The number of NECs in
the short scans were about ��� of the corresponding �

seconds frames normally used�

One person 	case MN� injected with ��
 MBq of FDG
had a double set of emission scans 	����� sec� of the brain
starting � hours after injection� followed by a double set of
transmission scans 	������ sec� yielding a total of �� data
points in 	E�T��plane� Reconstruction and data analysis
was made to match the brain phantom F��� series�

One patient 	case BB� undergoing a dynamic FDG scan�
ning of the heart additionally had a series of � transmis�
sion scans 	
�� � �
 min�� Pairs of emission scans 	
��������
min� from di�erent parts of the dynamic study were recon�
structed with all the transmission scans� and subsequent
data analysis made as described above 	Equation �� in a
large body circumferential ROI�

C� Fitting data

From the emission data 	see subsections in section II�� the
parameter a was estimated by linear regression in a log�
log diagram of the normalized variance using the longest
transmission scan available� Depending on the setup the
transmission parameter c 	and the base term b� was sub�
sequently estimated by subtracting the estimated emission
part of the normalized variance� a�NEC� and again apply�
ing linear regression� This approach is very simple and
was considered adequate for the purpose� Non�linear data
�tting was also tried and found to give similar results�

IV� Results

In this section data and parameters are presented for the
previously described experiments and compared to the
model� Again it should be noted that any variance shown
has been divided by two if measured from paired di�er�
ence scans so that the results presented are comparable
and represent noise in the single images�
Estimated model parameters from the Cylinder

phantom in �D and �D modes� the Elliptical Body
phantom in �D and �D� The Brain Phantom� and Case
MN� are given in Table �� This table give parameters
valid for any practically used value of NEC and Tt�

Table � Estimated model constants�

Case Mode a �k counts� b � � c �sec�
Cylinder �D ���� 
�

��� ���

Cylinder �D ���
 
�


�� ����
Ellipse �D ���� 
�

��� ����
Ellipse �D ���� 
�

��� ����
Brain Ph� �D ���� ��
�
Case MN �D ���� ����

In Figure � the measured normalized variance in the
Cylinder 	�D� case is shown� It can be seen that the trans�
mission scans will e�ectively start to add to the variance
if NEC is larger than approximately �
� counts per slice
and that they � for transmission scan lengths normally en�
countered � are dominating at �
�� Note also� that the
emission noise model as judged from the linearity in the
log�log plot remains valid down to the level where the noise
exceeds the mean by an order of magnitude� i�e�� beyond
any practical application of the images as such�

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

NEC per Slice

N
or

m
al

iz
ed

 v
ar

ia
nc

e

Tt=64 sec

Tt=128 sec
Tt=256 sec

:
Tt=32768 sec

CAC

Figure � Normalized variance from �D PET scan of the

�� cm Cylinder phantom as a function of NEC per slice and

duration of transmission scan Tt� CAC means calculated at�

tenuation correction�

In the Cylinder 	�D� case the blank scan parameter d
has also been estimated from reconstructed images corres�
ponding to varying blank scan length Tb� and the estimated
value is d � 
���� By comparison with the parameter c
from Table � the transmission scan in the cylinder case
	�D� is seen to contribute approximately ��� times more
to the variance than a blank scan with the same duration�
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in accordance with the average attenuation of the central
region of a �� cm water�lled phantom�
In Figure �� corresponding to the Brain phantom

scanned in �D� a contour plot shows the normalized vari�
ance as a function of NEC and transmission length Tt�
Shading is used to indicate the actual variance� which can
be seen from the rightmost grey scale bar� Contours show
approximate equidistant level of noise� Furthermore two
lines are inserted to show where the transmission term
equals 	�
 and 	��
 respectively of the emission term�
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Figure � Normalized variance of Brain phantom ��D� as
a function of NEC per slice and duration of transmission
scan Tt� Contours show iso�noise curves with levels indic�
ated� Lines show where the ratio of transmission to emission
noise terms is unity and ��	 respectively�

In the Brain phantom ��D� case and in case MN two
emission and two transmission scans were measured� thus
both emission and transmission parameters have been es�
timated� The parameters are listed in Table 	� Despite
the approximations made for deriving the models Figures
� and  demonstrate an excellent match between the meas�
ured data and the model for many decades of NEC� Note
that the very low noise level� compared to Figure 	� is due
to the use of di�erence images made from paired emission
and transmission scans� which eliminates the b�term�
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Figure � Normalized variance of Brain phantom ��D� as a
function of NEC per slice and duration of transmission scan
Tt� Stars show the measured data and lines the 
tted model�

Figure � illustrates how well the emission data meas�
ured on human brains agree with the phantom studies�
The Figure shows case KL ��D��D�� case MN ��D��D��
and the Brain Phantom ��D��D�� In all cases data corres�
ponding to only one transmission scan are shown�
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Figure � Normalized variance of Case KL ��D��D� case
MN ��D��D� and Brain phantom ��D��D� as a function of
NEC per slice�

Table � shows noise estimates obtained from di�erent
ROIs� The emission parameter a and the transmission
parameter c have been estimated for the Brain Phantom
��D� in four di�erent ROIs� The Head ROI is an ellipse
just surrounding the activity of the brain� WM is a small
region within white matter� GMp and GMc are two small
grey matter regions� peripheral and central� respectively�
The averages of the measured regions are normalized to
the average of WM� Note the approximately constant ra�
tio between a and c� indicating the major in�uence of the
average on the coe�cients�

Table � Brain phantom data ��D� with di�erent ROIs�

ROI a �k counts� c �sec� Average
Head 	� 	�� ����
WM �� ��� 	���
GMp � ��� ����
GMc ��� ��� ���

Finally Figure � shows data from body measurements�
The �D Elliptical Body phantom follows the previous noise
model� but in case BB �large patient with arms in FOV�
only a single set of transmission scans� the noise curves
for the 	 and � minutes transmission scans are shifted
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upwards� Inspection of the reconstructed images reveals
large number of lines� due to �clusters of� zeros in the
transmission scan �cf� Equation ����

Elliptical Phantom 2D
Case BB 2D           
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Figure � Normalized variance of body studies case BB ��D�
and Elliptical phantom ��D� as a function of NEC per slice�
Note that case BB ���� and � min� shows a di	erent noise
behavior�

V� Optimization

One application of the estimated noise parameters is op�
timization of the patient time used in the scanner� �	
� As�
sume that the total time available for the examination of
a patient is T seconds and that the transmission scan and
the emission scan are distinct� The duration of the two
scans are Tt and Te respectively� and T � Tt � Te� For
simplicity assume that the rate of Noise Equivalent counts
is constant and equals RNEC� This implies that the sum
of the emisssion and transmission term are given by

V

E�
�

a

RNEC�T � Tt�
�

c

Tt
���

Thus� with respect to the total noise level� the optimum
duration of the transmission scan is given by

Tt �
T

� �
q

a
c RNEC

��	�

Figure � shows the normalized variance of the individual
noise terms and their sum as a function of transmission
scan time Tt� The Figure corresponds to the parameters
found in Table � for the Brain Phantom �	D� and the sum
of the transmission scan time and emission scan time is
arbitrarily set to ���� sec� In Figure � it is assumed that
RNEC � ���� counts per slice per sec� which gives an op�
timized normalized variance of ����� when Tt � 	�� sec�
Assuming RNEC � ����� counts per slice per sec implies
that the optimum is found at Tt � ��� sec and the nor�
malized variance is ������

VI� Discussion

The general noise properties of reconstructive tomography
are well described in the literature ��� 
� Previous de�
scriptions of the Advance scanner also include count rate
dependence in phantoms and humans ��� �� ��
 but the
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Figure � The transmission and emission noise terms and
their sum as a function of the transmission scan duration�
when the total �patient� scan time is �
�� sec� Parameters cor�
respond to the Brain Phantom �D�� The rate of Noise Equi�
valent counts is ���� counts per slice per sec�

noise characterization so far ���
 focused on the emission
noise� A theoretical derivation �	
 using data from the GE
��� scanner formed part of the basis for the design of the
Advance scanner�s �pin source transmission scanning sys�
tem� In the present paper we have measured the relative
importance of the noise contributions from blank� trans�
mission� and emission scans for a range of imaging situ�
ations encountered� Transmission scan values are presen�
ted as scan durations in seconds for a given� speci�ed set
of sources� Optimal conditions with  sources of maximal
strength ���� MBq� would almost double the transmis�
sion count rate� Given the current expensive Germanium�
�� pin sources� the presented con�guration represents a
likely mean value over source life time� Results can be
scaled according to the observed blank scan count rate�
to accomodate for di�erences in number or activity of pin
sources and their rotation radius�

An excellent �t to the empirical variance has been found
both in D and 	D studies� The numerical values of the
measure chosen for the noise examination is strongly de�
pendent on reconstruction parameters� in part because
of the neighbor pixel correlation disregarded in the the�
ory section� Most parameters� however� will a�ect the
emission and transmission contributions in the same way
�through �ij only�� and therefore the model and its out�
put is considered adequate for the purpose of identifying
areas in the E�T plane where one source is dominating�
The analysis largely ignores the fact that the tomographic
noise is non�stationary with higher values found towards
the center as exampli�ed by the di�erently located ROIs
in the brain phantom� but also in this respect is the ratio
between the emission and the transmission term approx�
imately constant�

From the estimated value of d � ���� it is seen that the
blank scan contribution to the noise as expected is only a
small fraction of the transmission noise for same duration�
the ratio being well explained by the average attenuation
of the �central part of� the � cm Cylinder phantom� For
all practical purposes� therefore� the application of a �
minutes blank scan will ensure that the blank scan contri�
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bution is negligible since the cases where a longer trans�
mission scan might be applied are those with a higher
attenuation�

A typical �D brain activation study with O��� water in
our setup will contain ��� Mcounts�central slice	 
Figure
�	���� With a �� minute transmission scan	 the transmis�
sion variance calculated from the phantom data in Table
� is ������� compared to the emission contribution of
������	 i�e�	 the transmission adds 
only� �� to the �nal
result� If di�erence images are made	 the e�ect becomes
even smaller� For the case MN the corresponding �gures
would be ������� 
transmission�	 ����� 
emission� and ��	
respectively� This higher value is due to the lack of a skull
for the Brain phantom�

A �� minute	 �D FDG brain scan typically would also
have ����� M counts yielding the same ����� ratio	 while
acquiring the same data in �D would make the two con�
tributions almost equal and therefore call for a more de�
tailed analysis of timing� It should be noted that in this
imaging condition no attribute has been made to the small
additional noise from the emission correction of the trans�
mission scan which is necessary if the transmission is per�
formed with activity present�

Figure � suggests that within the emission count range
of a typical dynamic heart FDG scan	 the emission noise
contribution 
when using a �� minute transmission scan�
is dominating� Data are	 however	 currently not available
that can demonstrate the region in which the transmission
noise curves split up� It should be emphasized that the
observed shifts of the curves with short transmission time
are due to line�artifacts caused by 
clusters of� zeros in the
transmission sinogram� This deteriorating e�ect is usually
more important and calls for an improved methods of at�
tenuation correction	 e�g�	 by using image segmentation as
described in ����

VII� Conclusion

The measured image noise variance from a GE Advance
PET scanner has been modelled as a sum of terms corres�
ponding to the noise in the emission scan	 the transmission
scan	 and the blank scan� The weight parameters in this
simple model have been determined from a large number
of experiments in both �D and �D scan mode for the ��
cm standard 
NEMA� cylinder	 a torso�like ellipse with
axes �� and �� cm	 and an axially symmetrical	 elliptical
brain phantom 
Capintec� with axes �� and �� cm� Fur�
thermore	 noise model parameters have been found from
some human studies� For brain studies there is an excellent
agreement between model and observation	 and between
phantoms and human studies� The estimated parameters
have been used to optimize the durations of the emission
and transmission scan under the constraint that their sum
is constant� For studies of the heart or other body regions
the model is still generally valid	 but the parameters not
as well documented	 and the transmission noise is often
dominated by line artifacts�
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Appendix L

A very fast Implementation of �D

Iterative Reconstruction Algorithms

This appendix contains the abstract and summary of the paper A very fast Implementation of 	D

Iterative Reconstruction Algorithms� by Peter Toft and Jesper James Jensen ���	 The abstract
and summary has been submitted to the IEEE Medical Imaging Conference �� 	 Note that a paper
has also been submitted� see Appendix M	

A very fast Implementation of �D Iterative

Reconstruction Algorithms

Peter Tofty and Jesper James Jensenz

y IMM	 Technical University of Denmark	 DK
���� Lyngby	 Denmark	 Email ptoftei�dtu�dk�

z $DS�Holding A!S� Kroghsgade �� DK����� Copenhagen E� Denmark� Email jjj&oedan	dk	

abstract

One of the limitations of using iterative reconstruction methods in tomography is the slow
performance compared with the direct reconstruction methods� such as �ltered backprojection	
In this paper we demonstrate a very e�cient implementation of virtually all types of iterative
reconstruction methods	 The key idea of our methods is to generate the huge system matrix
only once� and store it using sparse matrix techniques	 From the sparse matrix we can perform
the matrix vector products very fast� which implies a huge acceleration of the reconstruction	
In this paper we demonstrate that iterative reconstruction algorithms can be implemented and
run almost as fast as direct reconstruction algorithms	 The method has been implemented in a
software package which is available for free� providing ART� EM� and the Least Squares Conjugate
Gradient Method	
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A very fast Implementation of �D Iterative Reconstruction Algorithms
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� Introduction

In the last �
 years the iterative reconstruction methods have gained much attention in the literature ���	 Several
methods have been very prominent� such as EM Expectation Maximization� ��� ��� ART Algebraic Reconstruction
Technique� ���� and LSCG Least Squares Conjugate Gradient� �
�	 Each of the methods formulates the reconstruction

problem as a linear set of equations b � Ax � bi �
PJ��

j�� ai�jxj � where b is an I�dimensional vector containing the
known sinogram values wrapped into a vector� and x is a J�dimensional vector containing the unknown image to be
reconstructed	 The matrix A is the system matrix� which contains the weight factors between each of the image pixels
and each of the sinogram values� corresponding to line orientations	

One problem is the huge size of the system matrix� often impossible to store in memory	 Assuming that memory is
not available for storing the full system matrix� then one possibility is to compute the individual matrix elements in each
iteration when needed	 This can be done by using of the discrete Radon transform or other modelling schemes of the
scanner	 This solution is rather easily implemented and is viable and storage requirements are reduced to a minimum�
by only requiring memory for the sinogram b� and the current solution x�� and perhaps some additional temporary
variables of the same size or smaller� but no system matrix is stored in memory	 This implementation has a major
drawback in speed� due to the many times the system matrix has to be computed during an iterative reconstruction	
Each time at the same high cost	

� Accelerated �D Iterative Reconstruction

Here a hybrid solution is proposed for accelerating the reconstruction speed of the iterative methods and only requiring
as much memory as modern workstations are currently equipped with or will be soon	 The idea is to store the non�zero
elements of the system matrix in the memory using sparse matrix techniques	 In this way the core of the reconstruction
algorithms� highly based on matrix vector multiplications� can be accelerated signi�cantly� and thereby solve one of the
major drawbacks of the iterative methods	

It is proposed that the system matrix A is calculated one time only using all the modi�cations found for the actual
scanner setup	 If no speci�c scanner model is provided then the system matrix can be modelled and generated using the
Radon transform or other simpler schemes	 From the system matrix the very small values in the matrix are truncated
to zero by using a very small threshold level	

The sparse structure of A can be exploited by only storing the non�zero values in the fast memory	 For a certain
row� number i� all of the matrix elements are calculated� stored� and truncated	 Hereby the number of non�zero elements
in the row� denoted by Zi� will be much smaller than the image size J � M�	 The values of Zi are stored in a simple
one dimensional vector	 Two vectors of length Zi indexed by an integer z can then be allocated containing both the
non�zero matrix value az and the corresponding column index jz	 Assuming that � bytes are required for storing
each of the vector elements then the total storage requirement is reduced to approximately �

PI

i�� zi � �IM bytes�
assuming a nearest neighbour approximation with one pixel for each point along the integration lines�	 Assuming that
a su�cient amount of memory is present most iterative algorithms can be implemented from three basic operations�
Matrix vector multiplication A�x� scalar product between the i�th row of the system matrix and a vector aT

i �x� and
�nally multiplication with the transpose of the matrix AT �b	

A software package has been written in C including the proper structures for manipulating sparse matrices and
vectors� along with an optimized code for computing matrix vector products� well suited for iterative reconstruction
algorithms	 In the package ART� EM� and LSCG have all been implemented in a fast version using sparse matrix
storage of the system matrix and in a slow version where the system matrix is not stored and needed matrix entries

�
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are computed in each part of the iterative steps� The software package is provided for free� protected by the GNU
General Public License�

Several interpolation methods have been implemented for generation of the system matrix� ���� Nearest Neighbour
interpolation based on the Radon transform� ���� Linear interpolation based on the Radon transform� �	�� Analytical
Radon transform of a square� i�e�� the length through a quadratic pixel is used� �
�� The Radon transform of a sinc
expansion in the image domain�

� Results

The program has been used on two types of machines� A Linux machine with a ��� MHz Pentium processor and a
SGI Onyx with four ��� MHz R

�� processors� with the program running on one processor�

As an example a sinogram with ��� � ��� samples is reconstructed into an image with ��� � ��� pixels� In Table �
the reconstruction time is shown for the fast and the slow methods on the two machines�

Times are measured for ART� EM� and the LSCGmethod� where EM and LSCG were running �arbitrarily� ��
iterations� and ART �� full iterations� i�e�� �� times the number of rows �chosen randomly�� which is ���������� itera
tions� Note that all times only correspond to the actual iterations� For the fast versions of the iterative reconstruction
algorithms� the time to generate the system matrix once should be added if changing the parameters determining the
system matrix� e�g�� the sampling parameters of the sinogram or the reconstructed image�

For this example the system matrix was modelled using discrete Radon transformation with linear interpolation�
where the threshold was chosen to zero� hence the slow and the fast methods give exactly the same results� In this
example the sparse system matrix required approximately �	 MBytes memory�

Note that the large di�erence in speedup between ART and EM�LSCG is due to a very e�ective implementation of
the forward projection compared with the backprojection� The slow methods can be accelerated some by implementing
multiplication with the transpose of the system matrix �adjoint operator� as a backprojection integral� but note that
this implies that the approximation of the system matrix will be di�erent in the forward and the backprojection part�

Machine Fast ART Slow ART Fast EM Slow EM Fast LSCG Slow LSCG

Pentium �� sec ���� sec �� sec ���� sec �� sec ���� sec
Onyx �� sec �	�� sec �� sec ���� sec �� sec ���� sec

Table � Time usage for �� iterations of EM and LSCG� For ART the time is for �� full iterations� i�e�� ���������� iterations�

� Conclusion

We have demonstrated a very fast implementation of iterative reconstruction based on storing the system matrix in fast
memory by using sparse techniques� The approach is mainly applicable to �D reconstruction� due to the requirements
of a su�cient amount of memory� but in principle the method can also be applied to 	D reconstruction�

The cost of the proposed idea is that a large amount of memory is required� but for ART we have demonstrated a
speedup factor of approximately �� and for EM and LSCG a speedup factor larger than ���� between the slow and the
fast implementation� In the example it was showed that each iteration of ART� EM� or LSCG requires approximately
one second on most modern workstations�
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Appendix M

Accelerated �D Iterative

Reconstruction

This appendix contains the paper Accelerated 	D Iterative Reconstruction� by Peter Toft and
Jesper James Jensen� which has been submitted to IEEE Transactions on Medical Imaging ���	
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Accelerated �D Iterative Reconstruction
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Abstract

One of the limitations of using iterative reconstruction
methods in tomography is the slow performance com�
pared with the direct reconstruction methods� such
as �ltered backprojection� In this paper we demon�
strate a very fast implementation of most types of
iterative reconstruction methods� The key idea of our
method is to generate the huge system matrix only
once� and store it using sparse matrix techniques�
From the sparse matrix we can perform the matrix
vector products very fast� which implies a major ac�
celeration of the reconstruction algorithms� In this
paper we demonstrate that iterative reconstruction
algorithms can be implemented and run almost as
fast as direct reconstruction algorithms� The method
has been implemented in a software package that is
available for free� providing reconstruction algorithms
using ART� EM� and the Least Squares Conjugate
Gradient Method�

I� Introduction

In the last �� years the iterative reconstruction meth�
ods have gained much attention in the literature ��� 	
�
Several methods have been very prominent� such as
EM �Expectation Maximization� �� �� �� �� �
� ART
�Algebraic Reconstruction Technique� ��� �� �
� and
LSCG �Least Squares Conjugate Gradient� ���� ��
�
These methods formulate the reconstruction prob�

lem as a linear set of equations

b � Ax � bi �
J��X

j��

ai�jxj� i � �� 	� � � � � I ���

where b is an I�dimensional vector containing the
known sinogram values wrapped into a vector� and x
is a J�dimensional vector containing the unknown im�
age to be reconstructed� HereA is the system matrix�

which contains the weight factors between each of the
image pixels and each of the values in the sinogram�
corresponding to line orientations� Compared with
Radon transform based direct reconstruction meth�
ods ��	
� the use of linear algebra has several advant�
ages� such as easier incorporation of irregular geomet�
ries� The system matrix can model several real�world
properties� such as �nite� i�e�� non�zero detector size
and varying detector sensitivity� Furthermore regu�
larization can easily be incorporated ��� ��
 in order
to a�ect the often ill�conditioned reconstruction prob�
lem�

One problem is the huge size of the system mat�
rix� A 	D sinogram from� e�g�� a GE Advance PET
scanner contains I � 	���� values� and reconstruc�
ted into a J � �� � �� grid� i�e�� the system matrix
has approximately ��� billion elements� requiring over
� GBytes of memory� when using � bytes per mat�
rix element� This is a large amount of memory� even
looking some years into the future� Besides this as�
pect� it would not be wise to store all that data� due to
the fact that approximately ��� of the matrix entries
will be zeros� This knowledge should be incorporated
into the reconstruction schemes�

Assuming that memory is not available for storing
the full system matrix� one possibility is to compute
the individual matrix elements in each iteration when
needed� This can be done by using the Radon trans�
form� e�g�� ���
 or other modelling schemes for the
scanner� This approach is rather easily implemented
and is viable and storage requirements are reduced
to a minimum� only requiring memory for the sino�
gram �b� and the current solution �x�� and perhaps
some additional temporary variables of the same size
or smaller� but no system matrix is stored in memory�
It will be demonstrated that this implementation has
a major drawback in speed� since the system mat�
rix will be computed many times during an iterative
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reconstruction� Each time at the same high computa�

tional cost�

II� Accelerated �D Iterative

Reconstruction

Here a hybrid solution is proposed for accelerating the
iterative reconstruction algorithms� but requiring as

much memory as modern workstations are currently

equipped with� or will be soon� The idea is to store

the non�zero elements of the system matrix in the main

memory using sparse matrix techniques� In this way

the core of the reconstruction algorithms� highly based

on matrix vector multiplications� can be accelerated

signi�cantly� and thereby solve one of the major draw�

backs of the iterative methods�

It is proposed that the system matrix A is calcu�

lated one time only using all the modi�cations found

for the actual scanner setup� If no speci�c scanner

model is provided then the system matrix can be

modelled and generated using the Radon transform

or other simpler schemes� From the system matrix

the very small values in the matrix are truncated to

zero�

�ai�j �

�
ai�j if ai�j � �

� Otherwise
	
�

where the threshold � can be chosen to a certain
fraction of the maximum matrix value� e�g�� � �

����maxi�jfai�jg� If � is chosen suciently low� a

good compromise between resolution and the sparse�

ness of the matrix can be reached� and normally this

does not alter the behaviour of the algorithms� Cur�

rent work concerns the quanti�cation of the truncation

error�

The sparse structure of A can be exploited by only
storing non�zero values in the fast memory� For a

certain row� number i� all of the matrix elements

are calculated� stored� and truncated using Eq� 
�

Hereby the number of non�zero elements in the row�

denoted by Zi� will be much smaller than the image

size J � M�� The values of Zi are stored in a simple�

one dimensional vector� Two vectors of length Zi�

indexed by an integer z� can then be allocated and

stored containing the non�zero matrix value az and

the corresponding column index jz� The procedure is

repeated for all rows�

Assuming a nearest neighbour approximation with

one pixel for each point along the integration lines and

using � bytes for storing each of the vector elements�

the total storage requirement is then reduced to ap�

proximately �
PI

i�� zi � �IM bytes� In the example

shown above approximately ��� MBytes memory is

required� Assuming this amount of memory is present

most iterative algorithms can be implemented from

three basic operations� Matrix vector multiplication

A�x� scalar product between the i�th row of the sys�

tem matrix and a vector aT
i �x� and �nally multiplica�

tion with the transpose of the matrix AT �b�

In the following pseudo code 	called Algorithms��

the implementation of the matrix vector multiplica�

tion and the multiplication with the transpose of the

system matrix are shown� A C�� style is used for
comments and note that all indices here start at zero�

Algorithm � � Ax

For i � � to I�� ��For all rows

sum � � ��Initialize

Set a and j to correct row ��Use pointers

For z�� to Z�i��� ��For row i

sum�sum	a�z��x�j�z�� ��Increment sum

End

bt�i��sum ��Store value

End

End Algorithm

Algorithm � � AT
b

For j�� to J�� ��For all columns

xb�j��� ��Initialize

End

For i�� to I�� ��For all rows

Set a and j to correct row ��Using pointers

For z�� to Z�i��� ��Compute sum

xb�j�z���xb�j�z��	a�z��b�i� ��Update sum

End

End

End Algorithm

III� Implemented Methods

A software package has been written in C including

the proper structures for manipulating sparse matrices

and vectors� along with an optimized code for com�

puting matrix vector products� well suited for iterative

reconstruction algorithms� In the package ART� EM�

and LSCG are implemented both in a fast version us�

ing sparse matrix storage of the system matrix and in
a slow version where the system matrix is not stored

and needed matrix entries are computed in each step

of the iterative algorithms� The software package is

available for free� but protected by the GNU Gen�

eral Public License� Contact the authors to obtain

the package�
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ART For a certain row i of the matrix �i depends
on the iteration number k�� the general iteration step
incrementing the current solution x�k� can be found
in� e�g�� ���

x�k��� 	 x�k� 

bi � aT

i x
�k�

aT
i ai

ai ���

EM The general iteration step of EM ��� ��� requires
a forward projection� a backprojection� and two fast
updates in each iteration�

bf 	 Ax�k��� ��

bri 	
bi

b
f
i

���

xb 	 ATbr ���

x
�k�
j 	

x
�k���
j xb

j

sj
where sj 	

IX

i��

ai�j ���

LSCG The Least Squares Conjugate Gradient
method requires some initialization ����

s��� 	 b�Ax��� ���

r��� 	 p��� 	 ATs��� ���

q��� 	 Ap��� ����

Then for each iteration the LSCG algorithm on the
normal equations becomes

� 	

�
r�k���

�T
r�k���

�
q�k���

�T
q�k���

����

x�k� 	 x�k��� 
 �p�k��� ����

r�k� 	 ATs�k��� ����

r�k� 	 r�k��� � �q�k��� ���

� 	

�
r�k�

�T
r�k�

�
r�k���

�T
r�k���

����

p�k� 	 r�k� 
 �p�k��� ����

q�k� 	 Ap�k� ����

For all three methods an initial value of the solution�
i�e�� x��� is needed� In the package an image found by�
e�g�� a fast direct method� can be supplied and used�
If not provided� all of the initial values of the vector
are initialized to a properly chosen constant�

Interpolation Methods� Several interpolation
methods have been implemented for computing the
system matrix�

� Nearest Neighbour interpolation based on the
Radon transform�

� Linear interpolation based on the Radon trans�
form�

� Analytical Radon transform of a square� i�e�� the
length through a quadratic pixel is used�

� The Radon transform of a sinc expansion in the
image domain�

IV� Results

The program has been used on two types of machines�
A Linux machine with a ��� MHz Pentium processor
and an Onyx from SGI equipped with four ��� MHz
R�� processors� where the program was running on
one processor�

A� Example �

In the �rst example the �synthetic� sinogram has
��� � ��� samples and the reconstructed image has
������� samples� In Table � the reconstruction times
on both machines are shown for the fast and the slow
method as well as the ratio between the execution
times �slow�fast��

Times are measured for ART� EM� and the LSCG�
method� when EM and LSCG were running �arbitrar�
ily� �� iterations� and ART �� full iterations� i�e�� ��
times the number of rows �chosen randomly�� which
is ���������� iterations in Eq� �� Note that all times
only correspond to the actual iterations� For the fast
versions of the iterative reconstruction algorithms� the
time to generate the system matrix once should be ad�
ded if changing the system matrix� e�g�� when chan�
ging the sampling parameters of the reconstructed im�
age�

For this example the system matrix was modelled
using discrete Radon transformation with linear in�
terpolation� where the threshold � was chosen to zero�
hence the slow and the fast methods give exactly the
same results� Note that the large di�erence in spee�
dup between ART and EM�LSCG is due to the im�
plementation of the forward projection is more e��
cient than the multiplication with the transpose of
the system matrix� The slow methods can be accel�
erated some by implementing multiplication with the
transpose of the system matrix �adjoint operator� as
a backprojection integral� but note that this implies

�
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that the approximation of the system matrix will be

di�erent in the forward and the backprojection part�

The sparse system matrix for this transformation geo�

metry required approximately �� MBytes� and each

iteration requires approximately one second�

Machine Type ART EM LSCG

Fast �� sec �� sec �� sec

Pentium Slow ���� sec ���� sec ���� sec

Ratio �� 	
� 	��

Fast �� sec �� sec �� sec

SGI Onyx Slow �	�� sec ���� sec ���� sec

Ratio �� ��� ���

Table � Time usage for �� iterations of EM and LSCG�

For ART the time is for �� full iterations� i�e�� ����������

of the iterations used in Eq� �� The time measurements

are for a sinogram with ��� � ��� samples reconstructed

into a ��� � ��� samples image�

B� Example �

In Fig� � a �D sinogram with �	����
 samples is

shown� which was measured on a GE Advance PET

scanner� The sinogram is reconstructed into a �large�

image with ����� samples� The system matrix has

����
��
� elements of which ���� are non�zero

when modelling then system matrix using the Radon

transform of a square� On the Onyx it required ��



seconds to generate the ��� MBytes sparse matrix�

and each iteration of EM required �� seconds in the
fast version and ��
�	 sec in the slow implementa�

tion� After � iterations the algorithm was stopped�

The reconstructed image is shown in Fig� �� For sake

of comparison� the same sinogram reconstructed im�

age using Filtered Backprojection is shown in Fig� ��

and this reconstruction used 
 seconds on the Onyx�
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Figure � A PET sinogram of a human brain�
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Figure � The reconstructed image after �� iterations

of EM�
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Figure � The reconstructed image using Filtered Back	

projection with a ramp 
lter�

C� Example �

Here the LSCG method is used to reconstruct a

����� image from the sinogram shown in Fig� ��

On the Onyx �
� seconds is required to generate the
system matrix and each iteration required � seconds�

The reconstructed image after �� iterations is shown

in Fig� ��
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Figure � The reconstructed image using �� iterations

of the Least Squares Conjugate method� The artifacts

around the brain can be removed by proper masking�
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V� Conclusion

We have demonstrated a very fast implementation of
iterative reconstruction comparable in speed with dir�
ect reconstruction methods� The implementation is
based on storing of the system matrix in fast memory
using sparse techniques� The approach is mainly ap�
plicable to �D reconstruction� due to the requirements
of a su�cient amount of memory� but in principle the
method can also be applied to �D reconstruction�

The cost is that a large amount of memory is re�
quired� but for ART we have demonstrated a speedup
factor of approximately �	 and for EM and LSCG

�	���	 depending on the machine� for a xed trans�
formation geometry and interpolation level� Once
again these factors could be somewhat moderated by
a faster implementation of the multiplication with the
inverse system matrix�
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Appendix N

Mean Field Reconstruction with Snaky

Edge Hints

This appendix contains the paper Mean Field Reconstruction with Snaky Edge Hints� by Peter
Alshede Philipsen� Lars Kai Hansen and Peter Toft� which has been presented at the Interdis�
ciplinary Inversion Conference �� in Aarhus	 The paper will appear in INVERSE METHODS �

Interdisciplinary elements of Methodology� Computation and Application� which will be published
from Springer Publications in ���� ����	

The paper has also been presented and published in the proceedings of the Fourth Danish

Conference for Pattern Recognition and Image Analysis �� ����	
In the paper mean �eld techniques have been used to improve image quality by using strong

priors in the restoration of PET reconstructed images	 This work is based on the results shown
in ����	
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Mean Field Reconstruction with Snaky Edge Hints

Peter Alshede Philipsen� Lars Kai Hansen and Peter Toft
connect� Electronics Institute� build� ���

Technical University of Denmark�
DK��	

 Lyngby� Denmark

email� pap�lkhansen�ptoft�ei�dtu�dk

������

� Introduction

Reconstruction of imagery of a non�ideal imaging system is a fundamental aim of computer vision�
Geman and Geman ��� introduced Metropolis sampling from Gibbs distributions as a simulation
tool for visual reconstruction and showed that a Simulated Annealing strategy could improve the
e�ciency of the sampling process� The sampling process implements a stochastic neural network
with symmetric connections� Peterson and Anderson applied the Mean Field approximation� and
observed substantial improvements in speed and performance �	��

In the next section the Bayesian approach to reconstruction is outlined� as model example we study
the so�called Weak Membrane model� The Weak Membrane is a popular vehicle for piece�wise
smooth reconstruction and involves edge units 
called line processes in ����� Edge unit control
has shown to be a major challenge in applications of the Weak Membrane� However� recently
there has been substantial progress in use of deformable models for contour 
�D� and surface

D� modeling� see� e�g�� ��� �� In this contribution we suggest to combine the two approaches�
in particular we show how a �Snake� contour model may be used to produce e�cient edge hints
to the Weak Membrane� Section three contains experiments and concluding remarks�

� Bayesian Visual Reconstruction

The basic idea is to consider both the source 
un�degraded� signal and the processes of the imaging
system as stochastic processes� The Bayes formula can then be used to obtain the distribution
P 
V jd� of the reconstructed signal V � conditioned on the observed degraded signal d�

P 
V jd� �
P 
djV �P 
V �

P 
d�

��

This conditional distribution is the product of the distribution of the imaging system process�
P 
djV � � P 
V � d�� and the prior distribution of the reconstructed signal P 
V �� P 
V jd� of
Equation 
�� is referred to as the posterior distribution� A useful estimate of the reconstructed
signal is given by the location of the mode of the posterior distribution� the so�called Maximum

A Posteori estimate�

�
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��� The Weak Membrane Model

The prior distribution re�ects our general insight on the objects being imaged� for example
expressing that the image represents extended �D structures etc� The Weak Membrane is a
simple model for reconstruction of piece�wise continuous intensity surfaces ��D signals	 from
noisy observations 
��� In the lattice �m�n	 � Z� version the reconstructed surface is described
by the intensity values Vm�n� The prior information formalizes the expectation that neighbor
intensity values should be close� except when they are disconnected by the rare occasion of an
active edge�unit� We introduce horizontal hm�n and vertical edges vm�n� The prior probability
distribution for a membrane reads

P �V� h� v	 � Z��� exp ��Eprior�y� h� v		 ��	

where Eprior�y� h� v	 is the energy or cost function

Eprior�V� h� v	 �
�

�

�X
m�n

��� hm�n	�Vm�n � Vm���n	
� � ��� vm�n	�Vm�n � Vm�n��	

�

�

�
X
m�n

�hm�nhm�n �
X
m�n

�vm�nvm�n �
X
m�n

�m�nhm�nhm�n��vm�nvm���n ��	

and Z��� is a normalization constant� This is a Gibbs distribution�� Note that last terms in the
cost function act as local chemical potentials for control of the number of active edge�units �i�e��
hm�n � ��	�

The degradation process produces the measurements �Vm�n � dm�n	� In the Weak Membrane
example we will for simplicity study addition of zero�mean� white Gaussian noise with variance
��� Note that any other model of the degeneration process can be incorporated here

P 
djV � � Z��� exp

�
�

�

���

X
m�n

�Vm�n � dm�n	
�

�
��	

Using Bayes formula ��	� we can combine Equations ��	 and ��	� to obtain the parameterized
posterior distribution

P 
V� h� vjd� � Z�� exp��E�V� h� v� d		 ��	

where Z is a normalization constant and the energy function is given by�

E�V� h� v� d	 �
�

���

X
m�n

�Vm�n � dm�n	
� �Eprior�V� h� v� d	� ��	

��� Network design

Inspecting the posterior distribution we note that the three�component process �Vm�n� hm�n� vm�n	
realizes a Compound Random Markov Field� This property ensures that the neural network im�
plementation only involves neighbor connectivity� To enhance the sampling e�ciency we use a
simulated annealing strategy as recommended by Geman and Geman 
��� The scheme is imple�
mented by introducing a temperature T in the Gibbs distribution and design the sampler with a

�A distribution of the form P �x� � Z�� exp ��E�x��T �� where E�x� is a cost�function� bounded from below�
and T is a parameter�

�
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decreasing sequence of temperatures ending up at T � �� The temperature dependent distribution
reads�

P �V� h� vjd� � Z��
T

exp

�
�
E�V� h� v� d�

T

�
�	


Sampling of this distribution� as investigated by Geman and Geman� is too slow for most applic�
ations and it is therefore recommended to invoke a deterministic approximation scheme to obtain
the necessary averages ��� �� The self�consistent Mean Field equations for the Weak Membrane
model in the k�th iteration read �see also ��� for an introduction
�

V k��
m�n � ���

h
��� dm�n � ��� hkm�n
V

k
m���n � ��� hkm���n
V

k
m���n

� ��� vkm�n
V
k
m�n�� � ��� vkm�n��
V

k
m�n��

i

hk��
m�n � tanh

�
�

�
�

�
�V k

m�n � V k
m���n


� � �h � �m�n �
h
m�n�k


��
��


vk��
m�n � tanh

�
�

�
�

�
�V k

m�n � V k
m�n��


� � �h � �m�n �
v
m�n�k


��

where � � ��T and

�hm�n�k
 � hkm�n��v
k
m�nv

k
m���n � hkm�n��v

k
m�n��v

k
m���n�� ��


�vm�n�k
 � vkm���nh
k
m�nh

k
m�n�� � vkm���nh

k
m���nh

k
m���n�� ���


� � ��� � �� hkm�n � hkm���n � vkm�n � vkm�n�� ���


We have used the same symbols for the averaged quantities as for the stochastic� but that should
not lead to confusion since the two never occur in the same expression� The coupled equations
are solved by straightforward iteration as shown in Equation ��
� de�ning a recursive nearest
neighbor connected cellular neural network�

��� Snake hints

There has been much recent progress in the use of deformable models for edge and surface identi�
�cation� see� e�g�� ���� In this presentation we suggest to produce strong edge hints for the Weak
Membrane through a Snake deformable model� The Snake is de�ned to be a periodic set of N
points in the visual �eld of an image� rj � �xj� yj
� Periodicity meaning rj�pN � rj � p � Z� The
Snake energy function consists in a form control part Eform and a match part Ematch�

E � Eform � Ematch ���


In this simple version the form control preserves total length�

Eform �
a

�
�d� d�


� ���


d �
X
j

jrj � rj��j ���


where d� is the initial Snake length� More complex form controls can be designed that preserve
shape� corners� etc� The Snake match energy is designed to ensure that the Snake points track
edge contours in the image �eld� This e�ect may be obtained by letting the Snake points seek
local maxima in the gradient energy map of the image� G�r
� The total Snake match energy is
then given by�

Ematch � �
X
j

G�rj
	 ���


�
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Snake dynamics is established through gradient descent�

�

�

�rj

�t
� �

�E

�rj
� a�d� d��

�d

�rj
�
�G�rj�

�rj
����

� Experiments and concluding remarks

In numerous image processing applications quite detailed prior information can be devised	 In�

e	g	� brain scan reconstruction detailed atlases are known describing the generic brain topography

under various scanning modes	 To illustrate the potential in brain scans of using strong edge hints

we want to reconstruct a head phantom shown in Figure �	 This is done from a noise corrupted

image shown in Figure 
	 Under the reconstruction process we also want to estimate edges	
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Figure �� Original head phantom without

noise	
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Figure 
� Noise corrupted head phantom

shown in same color scale	

Snakes are initialized in seven generic positions� shown in Figure �	 For the particular instance the

Snake equilibrates in about � iterations as illustrated in Figure �	 The approach to equilibrium
is quite sensitive to the topography of the image and careful control of � is necessary	 This

problem may be relieved by use of a pseudo�second order search direction instead of the gradient

of the edge energy map	
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Figure �� Edge energy map with initial

snake positions shown in white	
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Figure �� Edge energy map with equilib�

rated Snake positions shown in white	
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Subsequently� hints are created by modulating the chemical potentials �
h
m�n� �

v
m�n� �m�n� This

modulation imply that edge units are strongly suppressed outside of the region suggested by the

Snakes� Finally we relax the cellular network as de�ned in Equation ����

The result of the cellular net is presented in Figures � �without Snakes� and 	 �using Snakes��

Note that the intensity level inside the region of the Snake has been estimated more closely using

Snakes� This might be of signi�cant importance in� e�g�� brain activation studies� in which the

minute di
erences in brain activity between activated and resting states are investigated� Using

Snakes enhances the Signal to Noise ratio �SNR� with ���� dB� Without Snakes the improvement

is ��� dB� The improvement is due to a better estimation of edges�
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Figure �� Restored head phantom using

Mean Field Annealing�

0

10

20

30

40

50

60

70

x

y

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 	� Restored head phantom using

Snakes as edge priors to the Mean Field

Annealing�

In Figures � and � are shown the active edges without using Snakes respectively with Snakes�

As seen from Figure � it is possible to incorporate strong priors in order to obtain closed edge
contours� This can be used to segment the image�
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Figure �� Estimated edges without using

snakes� Active edges are marked black�
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Figure �� Estimated edges using Snakes as

priors
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Another way of evaluating the results is to examine the histograms of the images� Figure � shows

the histogram of the original noise free image and Figure �� shows� in the same interval� the

histogram of the noise corrupted image�
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Figure �� Histogram of original noise free

head phantom�
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Figure ��� Histogram of the observed noise

corrupted head phantom�

Without using Snakes the histogram after restoration can be seen in Figure ��� Finally Figure ��

shows the histogram corresponding the restored image using Snakes as a prior� From the Figures

it can be seen that the two higher levels 	�� and 
�� is better resolved using Snakes and compared

to the noisy histogram shown in Figure �� the result is far better�
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Figure ��� Histogram of the restored image

without using Snakes�
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Figure ��� Histogram of the restored image

using Snakes as priors�

In conclusion we have shown that strong structural priors may be introduced in the Weak Mem�

brane model by invoking deformable models like Snakes� The present study was based on a

head phantom we are currently pursuing the viability of the approach in the context of Positron�

Emission�Tomography�
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Detection of Lines with Wiggles using the Radon Transform

Peter Toft

Department of Mathematical Modelling� Technical University of Denmark�

DK����� Lyngby� Denmark� Email pto�imm�dtu�dk�

Abstract

The discrete Radon transform is a useful tool in image
processing for detection of lines �or in general curves� in
digital images�
One of the key properties of the discrete Radon trans�

form is that a line in an image is transformed into a peak
in the parameter domain� where the position of the peak
corresponds to the line parameters�
What often is needed� is to determine whether a Radon

transform based curve detection algorithm will work in
presence of noise� This paper regards detection of lines in
images� where the lines are assumed to have wiggles� A
theoretical analysis is given providing analytical expres�
sions for this kind of noise�

I� Introduction

The Radon transform can be de�ned in various ways� In
general image processing the lines are often parameter�
ized using normal parameters �	
� and in seismic signal
processing the � �p transform or slant stack version of the
Radon transform use slope p and o�set � to parameterize
the lines ��� 
� Here the last de�nition will be used�

�g�p� �� �

Z
�

��

g�x� px� �� dx �	�

One of the key properties of the �discrete� Radon trans�
form is that a line in an image is transformed into a peak
in the parameter domain ��
� where the position of the peak
corresponds to the line parameters� In this way� the Radon
transform converts a di�cult global detection problem in
the image domain into a more easily solved local peak de�
tection problem in the parameter domain�
For a discrete image g�m�n�� a nearest neighbour ap�

proximation of Eq� 	 will be used

�g��� �� �

M��X
m��

g �m� ��m� �
� ���

where ��
 denotes rounding to nearest neighbour� Lately
analytical expressions for the probability of detecting a

curve in presence of additive noise has been analyzed ��
�
and here another kind of noise is considered� namely that
the lines in the images might not be perfectly linear but
include some random misalignment� here called wiggles�

II� Lines with Wiggles

Assuming that a line in the image can be modelled as

g�m�n� � ��n� ���m� �� � �
� ��

where ���� is the Kronecker delta function� i�e�� the Gaus�
sian distributed noise term � � N ��� ��� determines the
change in position of the line in the n�direction� and it will
be assumed that the noise terms � are uncorrelated as a
function of m�
What now is considered� is to �nd the average value

�and shape� of the peak �if any is found� in the discrete
parameter domain as a function of the noise deviation ��
Eq�  implies that the probability of the sample g�m�n�
being 	 is given by

Pfg�m�n� � �g ���

� P fn � ���m� �
� � ��g �	�

� P

n
�
�



� n� �

�

m� �
� � � �

�




o
���

and assuming that the sample point �m�n� is given from
the nearest neighbour mapping in the discrete Radon
transform� n � ��m� �
� then the rounding function is
modelled as an additive �noise� term �

Pfg�m�n� � �g ���

� P

n
�
�



� ��m� ��� �

�

m� �
� � � �

�




o
��

� P

n
�
�



� �m� � � � � �

�

m� �
� � � �

�




o
���

� P

n
�
�



� � � � � � �

�




o
����

� �

�
�

�
� � � �

	

�
� �

�
� �

�
� � � �

	

�
����

� � ��� �
��m� � � �

� ��
�

where ���� is the Gaussian probability function� and 	 is
a displacement between the true line parameters ���� ���
and the parameters ��� �� at a given position m�
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Due to many values of m used in Eq� �� it is a reas�
onable approximation to model � as a uniformly dis�
tributed variable between the limits ���� and ���� i�e��
�m � U������ ����� Eq� �� implies that the average con�
tribution from the pixel g�m�n� to the discrete Radon
transform is given by

Ef	g��� ��jg�m�n�g 

Z �� �

�

��� �

�

Pm��� d� ����




Z �� �

�

��� �

�

�

�
�

�
 �  �

�

�
��

�� �

�
 �  �

�

�
d� ����

In order to get an analytical expression for
Ef	g��� ��jg�m�n�g the Gaussian probability function is
approximated

��x� � �

�

�
�  tanh

�
x

	

��
where 	 


r



�
����

i�e�� the integral of ���� can be approximated byZ
��x� dx � 	

�

�
�  x

	
 log cosh

�
x

	

��
����

where log��� is the natural logarithm�
If Eq� �� is inserted into Eq� ��� followed by some re�

arrangements of the expressions� it is found that

Ef	g��� ��jg�m�n�g 
 	�

�
log

�
�cosh

�
��

��

�
 cosh

�
�

��

�
cosh

�
��

��

�
 �

�
A

����
In Fig� � the average weight to the discrete Radon trans�

form is shown as a function of � and ��
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Figure � The average weight to the discrete Radon trans�
form Ef�g��� ��jg�m�n�g as a function of the noise deviation
� on the �rst axis� and the displacement � on the second axis�

A special case of interest regards � 
 �� i�e�� where
the coordinates of the line in the image matches exactly a
sample in the discrete parameter domain�

� 
 � � Ef	g��� ��jg�m�n�g ����


 �

r



�
log

�
�

�

�
�  cosh

� p
�

�
p



			
����

In Fig� � the average weight to the discrete Radon trans�
form is shown as a function of �� when the displacement
is assumed negligible� It can be seen that the function
agrees well with a simulated result shown in Fig� �� that is
found by generating ����� images with the correct noise
amplitude � and computing the discrete Radon transform
only for the parameter set matching the true parameters�
An even better agreement can be found using a numerical
integration of Eq� ��� but Eq� �� provides an simple ana�
lytical result that approximates the simulated results well�
though it can also be seen that the theoretical model has
a small bias� when � � ����
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Figure � The theoretical result of the average weight to the
discrete Radon transform� found in Eq� 	
� as a function of �
when the displacement � is negligible�
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Figure � The simulated average value of the peak using
	���� images for each noise level� The vertical error bars
show the measured deviation�

Fig� � or Eq� �� can be used to predict whether line
parameters might be estimated given that the lines have
wiggles� If� e�g�� demanding that the peak value cannot
decrease more than ��� due to wiggles� then � cannot
exceeds approximately ���� And a ��� decrease of the
peak value is found if � � �����

�
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III� Examples

In Fig� � is shown an image containing one line without
noise� and Fig� � shows the discrete parameter domain in
the area of the peak� Next� Fig� � shows an image where
� � ���� and Fig� 	 shows the corresponding discrete para

meter domain� On the �gure
axes� the continuous vari

ables� indicated in Eq� �� have been used� This merely
imply a linear scaling of the discrete parameters used in
Section II�� The images have been scaled individually ac

cording to the minimal and maximal values� and it can be
seen that the maximal value here is around ��� and the
shape is more uneven than seen from Fig� �� This value
lies within the error bars shown in Fig� �
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Figure � An image containing one line without any kind of

noise�
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Figure � The discrete Radon transform of the image shown

in Fig� � zoomed in at the peak�

IV� Conclusion

The conclusion is that a peak is generated in the discrete
parameter domain corresponding to each of the wiggly line
in the image� and the value of the peak will be lowered
corresponding to the noise level� Analytical expressions
have been given to determine the actual reduction of the
peak value as a function of the noise level�

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Figure � An image containing one wiggly line where � � ����
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Figure � The discrete Radon transform of the image shown

in Fig� � zoomed in at the peak�
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